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PERIODIC BURIED OBJECT APPROACH FOR SOLVING SCATTERING 
PROBLEMS RELATED TO PERIODIC ROUGH SURFACES 

SUMMARY 

In this study, a new approach for the scattering of electromagnetic waves from periodic 
dielectric rough surfaces is addressed. The method is an extension of the buried object 
approach (BOA) which is an efficient method for the scattering of electromagnetic 
waves from dielectric rough surfaces of infinite extent. The basic idea in the Periodic 
Buried Object Approach (PBOA) is to assume the fluctuations of the rough surface from 
the flat one as buried objects in a periodic two half - spaces medium with planar 
interface. Such an approach allows formulating the problem as a scattering of 
electromagnetic waves from cylindrical bodies located periodically in a two half – 
spaces medium. By considering that the number of irregularities in a period is finite and 
by using the periodic Green's function of two half spaces medium with planar interface, 
the problem is reduced to the solution of a Fredholm integral equation of second kind. 
The periodic Green's function of two half spaces medium with planar interface is 
calculated via Floquet mode expansion. Here, the resulting Fredholm integral equation is 
solved via an application of Method of Moments (MoM) by reducing it to a linear 
system of equations. The method yields quite accurate results even for surfaces having 
large variations. This method can also be used to solve the scattering problems of rough 
surfaces of infinite extend and having a localized roughness. In such a case, it is 
assumed that the local rough surface is periodically repeated in one direction which 
allows one to formulate the problem as a scattering from a periodic rough surface. In 
order to have an accurate model, the period should be chosen large enough as compared 
to the length of the rough part. Numerical simulations show that the method yields 
effective and accurate results for surfaces of arbitrary variation.   
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ENGEBELĐ PERĐYODĐK YÜZEYLERDEN SAÇILMA PROBLEMLERĐNĐN 
ÇÖZÜMÜ ĐÇĐN PERĐYODĐK GÖMÜLÜ CĐSĐM YAKLAŞIMI 

ÖZET 

Bu tez çalışmasında, elektromanyetik dalgaların periyodik engebeli dielektrik 
yüzeylerden saçılmasına yönelik yeni bir yöntem ele alınmıştır. Ele alınan yöntem, 
Periyodik Gömülü Cisim Yaklaşımı,  sonsuz uzunluktaki engebeli yüzeylerden saçılma 
problemini cözen Gömülü Cisim Yaklaşımı’nın periyodik yüzeylere uygulanmasıyla 
elde edilmiştir. Periyodik Gömülü Cisim Yaklaşımı’ndaki temel prensip, düzlemsel 
arayüz ile ayrılan periyodik iki boyutlu uzayda engebeli yüzeylerin engebelerinin 
gömülü cisim olarak varsayılmasıdır. Bu yaklaşım, problemin iki boyutlu uzayda yer 
alan silinidirik cisimlerden saçılması şeklinde formüle edilmesini sağlar. Bir periyottaki 
düzensizliklerin sonlu kabul edilmesi ve iki boyutlu uzayın periyodik Green’s 
fonksiyonun kullanılması ile problem ikinci tür bir Fredholm integral eşitliği 
probleminin çözümüne indirgenir. Đki boyutlu uzayın periyodik Green’s fonksiyonu 
efektik yöntemler kullanılarak sayısal hesaplamları yapılan Floquet mod açılımıyla 
hesaplanır. Burada, Fredholm integral eşitliği Method of Moments (MoM)‘in lineer 
sistem eşitliklerine indirgenmesiyle elde edilir. Tezde ele alınan Periyodik Gömülü 
Cisim Yaklaşımı, büyük salınımlar yapan yüzeyler için dahi çok iyi sonuçlar 
vermektedir. PBOA, aynı zamanda sonsuz uzunlukta olup bölgesel engebeye sahip 
yüzeylerden saçılma problemlerinin çözümünde de kullanılabilir. Bu durumda, bölgesel 
engebeli yüzeyin bir yönde periyodik olarak tekrarlandığı varsayılarak problemin 
periyodik bir yüzeyden saçılma problemi şeklinde formüle edilmesi sağlanır. Bu tarz 
problemleri çözerken doğru sonuçlar elde etmek için periyodun engebeli parçaya oranla 
yeterince büyük olması gerekmektedir. Sayısal simülasyonlar, yeni olan bu yöntemin 
rasgele dağılıma sahip yüzeyler için efektif ve doğru sonuçlar verdiğini göstermektedir.   
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1. INTRODUCTION 

Periodic structures appear in many applications such as antenna design, microwave 

systems, metamaterials, integrated optics etc. and the analysis of electromagnetic wave 

propagation in periodic structures constitutes an important and interesting class of 

problems in electromagnetic theory due to it applications [1-4]. Among them scattering 

of electromagnetic waves from periodic surfaces have been of considerable interest to 

scientists and engineers for many years since they are of practical importance in 

designing reflection and transmission gratings often used as filters, broadband absorbers, 

and polarizers, and in the study of reflection by periodic surfaces such as the sea on 

radar systems [5].   

The analysis of wave propagation in periodic structures was first investigated as early as 

1887 by Lord Rayleigh. At the end of the nineteenth century and early twentieth century 

many scientists (Vaschy, Pupin, Campbell) used periodic networks to develop electric 

filters. In 1928, the problem of an atomic grating subject to a periodic sinusoidal 

potential and the behavior of particles in force fields that are characterized by sinusoidal 

and rectangular periodic variations was analyzed by Strutt and Van der Pol.  In the same 

year, the solutions of the use of partial differential equations with periodic equations as a 

result of Floquet composed the base of the theory of electrons in crystals, i.e., of the 

theory of solids and energy bands. The periodic structures were also of considerable 

interest in the field of optical multilayers that have applications such as filters, 

antireflection films, beam splitters, and polarizers. In the 1950's, the main emphasis in 

the fields of periodic structures was due to slow wave structures and antennas. In the 

1960’s, the solution of the electromagnetic wave equation in sinusoidally periodic and 

laminar media, wave propagation in time and space-time periodic media, and localized 

source radiation had generated a new interest in the field of periodic structures. In the 

early 1970’s, due to technological achievements the idea that the new materials having 

the properties such as nonlinear, piezoelectric, anisotropic, magnetoelastic  etc. could be 

used in the forms of bulk, thin film, fibers with very good periodicities to help 
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electromagnetic, acoustic and electron waves stimulated the studies of the waves in 

periodic structures.  In addition, the properties of periodic structures were of important 

interest in the fields of structural engineering, classical acoustic, liquid crystals, and 

insect vision. [6]. In the following decades, enormous efforts have been devoted to the 

investigation of the periodic structures in such fields and several analytical and 

numerical techniques have been developed.    

Finally, being faced in nature in the form of crystals, being generated by a standing 

wave, an acoustic wave in a fluid or solid, or an electromagnetic wave in a nonlinear or 

active medium, being produced by repeating a unit cell the periodic structures attracted 

the scientists’ attention to study their characteristics. However, what made the periodic 

structures so unique and important is their eigenmodes which are composed of an 

infinite number of space-harmonics with phase-velocities from zero to infinity and their 

support to propagating waves only in well-specified propagation bands. [6] 

Periodic surfaces in interest may be a perfectly conducting one [5, 7-10] or an interface 

separating two dielectric media [11-14]. The most common methodology for solving 

scattering problems related to periodic surfaces is based on the Rayleigh Hypothesis 

which is only valid for surfaces having a sinusoidal variation [14, 15] and small slopes 

compared to wavelengths. In such a case, the scattered field is assumed to be represented 

in terms of discrete spectrum of outgoing plane waves [15]. The boundary element 

method [3-4] and method of moments (MoM) [5] are among the most frequently used 

approaches in the solution of scattering problems related to periodic surfaces. In [4], the 

problem is solved by reducing it to coupled type surface integral equations which are 

solved by boundary element method. The interesting part of this work is the application 

of the solution procedure to the analysis of anechoic chamber absorbers. 

Within this framework, this paper aims to give a new and effective method for the 

solution of scattering problems related to periodic dielectric rough surfaces. The method 

is the extension of Buried Object Approach (BOA) given in [16, 17, 18] to the present 

problem. For the sake of simplicity, periodic surfaces in one direction are considered.  

The basic idea in the BOA is to assume the fluctuations of the rough surface from the 

flat one as buried objects in a periodic two half - spaces medium with planar interface. 
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Such an approach allows formulating the problem as a scattering of electromagnetic 

waves from cylindrical bodies located periodically in a two half – spaces medium. By 

considering that the number of irregularities in a period is finite and by using the 

periodic Green's function of two half spaces medium with planar interface, the problem 

is reduced to the solution of a Fredholm integral equation of second kind. The periodic 

Green's function of two half spaces medium with planar interface is calculated via 

Floquet mode expansion [15] and we utilize the efficient calculation methodologies in 

its numerical evaluation [19]. The resulting Fredholm integral equation is solved via an 

application of Method of Moments (MoM) by reducing it to a linear system of 

equations. The method yields quite accurate results even for surfaces having large 

variations. The length of the period as well as the number of irregularities of the 

roughness affects the computational cost of the method. 

The theory developed here can also be used for solving scattering problems related to 

surfaces of infinite extent and having a local roughness. In such a case, it is assumed that 

the local rough surface is periodically repeated in one direction which allows one to 

formulate the problem as a scattering from a periodic rough surface. 

In order to have an accurate model, the period should be chosen large enough as 

compared to the length of the rough part. Note that in the BOA solution one has to use 

the Green's function of a two half-space medium which involves the calculation of the 

Sommerfeld type integrals. This usually increases the computational cost. On the other 

hand in the periodic model we use only Green's function of the periodic medium which 

can only be calculated in terms of Floquet modes. Numerical solutions show that the 

model is quite accurate and computationally less expensive. 

 In section 2, a general formulation and the Floquet Theorem are given while the 

application of the BOA to the periodic surfaces is described in section 3. Section 4 is 

devoted to the solution of Fredholm integral equation of second kind by an application 

of MoM. Numerical results are presented in section 5. Throughout this work, a time 

factor iwte−  is assumed and omitted.    
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2. FORMULATION OF THE PROBLEM  

2.1 Geometry of the Problem 

Consider the two-dimensional scattering problem related to the periodic structure given 

in Figure 2.1, where the upper and lower dielectric half spaces are separated by the 

periodic interface 
0Γ  having a period L. In each period the interface is either represented 

by the function 2 1 1x = f (x  + pL), x   (0, L),  p = 0, 1, 2,...,∈ ± ±     where 1f (x ) a single 

valued function [20] is or it can be a random one with rms height h , correlation length 

l . The half-spaces above and below 0Γ  are assumed to be filled with simple non-

magnetic materials having dielectric permittivities and conductivities 1 1, 0ε σ =  and 

2 2,ε σ  respectively.  

The scattering problem considered here is to determine the effect of  0Γ  on the 

propagation of electromagnetic waves excited in the upper half-space   2 1  ( )x f x>  , 

more precisely to obtain the scattered field from the surface 0Γ  in each period. To this 

aim, the half-space 2 1 < ( )x f x  is illuminated by a time-harmonic plane wave whose 

electric field vector is always parallel to the 3Ox  axis, namely,  

1 2(0,0, ( , ))i iE u x x
→

=                                                                                                   (2.1)                                                         

which can be written as [16] 

1 1 2

1 2 0( , ) i x x

iu x x A e eβ γ−=                                                                                            (2.2)                     

where 1 0coskβ φ=  with 0 (0, )φ π∈  being the incidence angle while 1k  stands for the 

wave number of the upper half-space which is defined by 
1 1 0k ω ε µ= . The square root 

function 2 2

1 1( ) kγ β β= −  appearing in (2) is defined as 
1 1(0) ikγ = −  in the properly cut 

complex β - plane. Since the problem is homogenous in the 
3Ox  direction, the problem 
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is reduced to a 2D  scalar one in terms of the total field function ( )u x , where the total 

electric field vector is defined by (0,0, ( ))E u x
→

=    solution.   

 
Figure 2.1:  Geometry of the problem 

In order to adapt the formulation to this type of problem, a Floquet expansion is applied. 

In the following, the Floquet theorem which is the starting point of solving the problems 

of periodic structures will be explained.  

2.2  The Floquet Theorem 

Consider a wave propagating in periodic structures, as shown in Figure 2.2. The fields at 

a point z in an infinite periodic structure differ from the fields one period L away by a 

complex constant since there should be no difference between the fields at z and at z + L 

except for the constant attenuation and phase shift. Let a function ( )u z  represent a wave. 

Then a wave ( )u z  at a point z  and a wave ( )u z L+  at z L+  are related in the same 

manner as a wave ( )u z L+  at z L+  and a wave ( 2 )u z L+  at 2z L+ .  
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Figure 2.2:  Periodic structures 

So mathematically, it can be written as 

( ) ( 2 ) ( )

( ) ( ) [ ( 1) ]

u z L u z L u z mL
C

u z u z L u z m L

+ + +
= = = =

+ + −
constant                                          (2.3)                 

( ) ( )mu z mL C u z+ =                                                                                                  (2.4)                 

The constant C  can be written as 

j LC e β−=                                                                                                                  (2.5) 

where β  is the complex propagation constant. 

Let us consider a function 

( ) ( )j LR z e u zβ=                                                                                                        (2.6)                  

Then ( )( ) ( ) ( ).j z LR z L e u z L R zβ ++ = + =  Therefore, R(z) is a periodic function of z  with 

the period L , and thus can be represented in a Fourier series. 

(2 / )( ) j n L z

nR z A e π
∞

−

−∞

= ∑                                                                                              (2.7)                  

L L L 

 

 

       y 

 

z 

      x 
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Using (2.5) the general expression for a wave in a periodic structure with the period L  is 

obtained as 

( ) nj z

nu z A e β−= ∑                                                                                                     (2.8)               

where 

2
n

n

L

π
β β= +                                                                                                           (2.9)                 

This is a representation of a wave in periodic structures in a form of an infinite series 

resembling harmonic representation ( )njw te−  in time. The n th term in (2.8) is called n th 

space harmonic. Equation (2.7) is the mathematical representation of Floquet theorem 

for outgoing waves, which states that the wave in periodic structures consists of an 

infinite number of space harmonics.  

According to the Floquet theorem the scattered field distribution of a periodic structure 

as in Figure 2.1 remains unchanged under a translation of the observation point in the 

1x -direction through a period L  while its amplitude is multiplied by a complex constant 

i Le β  which corresponds to the variation of the incident field with 
1x . Invoking the 

Floquet theorem, the problem can be readily reduced to a consideration of the fields over 

a single period of L . Then the total field u  in a single period 1 (0, )x L∈ satisfies the 

reduced wave equation 

2

1( ) 0, (0, )u k x u x L
→

∆ + = ∈                                                                                       (2.10) 

with 

2

1 2 12

2

2 2 1

, ( )
( )

, ( )

k x f x
k x

k x f x

 >
= 

<

  

  
                                                                                        (2.11) 
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under the boundary conditions 

0and are continuous on
u

u
n

∂
Γ

∂
    .                                                                           (2.12) 

In (2.11) 2k  is the wave number of the half-space 2 1( )x x<   which is defined as the 

square root of 2 2

2 2 0 2 0.k iω ε µ ωσ µ= +   

Note that the scattered field defined as 
0( ) ( ) ( )su x u x u x= −  satisfies the classical quasi-

periodic radiation condition expressed by the Floquet series of the scattered wave [24, 

25]. Here 
0 ( )u x  is the total electric field in a single period in the case of the interface is 

a flat one. This field can be obtained very easily and one has  

1 1 2

1 2 2

12 2

0

12 2

( ) ( ) , 0
( )

( ) , 0

i x x

i

i x x

u x R e x
u x

T e x

β γ

β γ

β

β

− −

− +

 + >
= 

<

     

   
                                                             (2.13) 

where 
12R  and 

12T  are the reflection and transmission coefficients of the plane 
2 0x = , 

respectively and given by 

1 2
12

1 2

( ) ( )
( )

( ) ( )
R

γ β γ β
β

γ β γ β
−

=
+

                                                                                         (2.14) 

1
12

1 2

2 ( )
( )

( ) ( )
T

γ β
β

γ β γ β
=

+
                                                                                          (2.15) 

with  

2 2

2 2( ) kγ β β= −  , 2 2(0) ikγ = − . It is well known that this problem can be treated very 

easily when the roughness of the interface is in the limitations of the Rayleigh 

Hypothesis by using the Floquet Theorem where the field is represented in terms of 

Floquet modes inside each period [17]. Note that the solution based on Rayleigh 

Hypothesis is valid for periodic rough surfaces satisfying the condition 2 / 0.448h Lπ <  

where h  is the maximum peak point of the the surface [14]. In the following, we will 
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give a method which is valid beyond the Rayleigh limits and for surfaces of arbitrary 

variation.  
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3. PERIODIC BURIED OBJECT MODELLING 

In this section, the application of a method called buried object approach (BOA) to 

periodic surfaces will be described. Before giving the details of periodic buried object 

approach ( PBOA) a brief survey of  BOA modelling will be given. 

3.1 Buried Object Approach 

BOA, an efficient method for the scattering of electromagnetic waves from dielectric 

rough surfaces of infinite extent was introduced in [18-20]. The method in [19] is for the 

scattering of electromagnetic waves from a locally rough interface between two 

dielectric half – spaces. It is based on the assumption that the perturbations of the rough 

surface from the planar interface are objects buried in a media of two half spaces with a 

planar boundary. This allows one to reduce the problem to the scattering of 

electromagnetic waves by cylindrical bodies of arbitrary cross section. Then through the 

Green’s function of the background medium one obtains a Fredholm integral equation of 

the second kind, which is solved via an appliction of the MoM. The present formulation 

permits one to get the near and far field expressions of the scattered wave. This method  

gives very accurate results for the surfaces which are locally rough, rapidly varying and 

having large rms height.  One of the main difficulties in the application of this method is 

that it requires computing the Green's function of the two half spaces medium, which 

usually involves the computation of Sommerfeld integrals causing the method to be 

computationally expensive. On the other hand, the Green's function of a periodic two-

half spaces media with planar interface can be calculated in terms of Floquet mode 

expansion [21] and its numerical evaluation is not costly. By taking this property into 

account, one can consider to extend the BOA method to the scattering by periodic rough 

interfaces, which from now on will be called as PBOA. 
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3.2 Periodic Buried Object Approach  

In PBOA modeling, the whole space is separated into two parts by the plane 2 0x = . In 

such a case, one has domains bounded by the rough surface 0Γ  and the plane 2 0x =  

which are located periodically in a two half-space media with planar interface (see 

Figure 3.1). Then the problem can be considered as scattering of electromagnetic waves 

from periodically located cylindrical bodies in a layered media. In the following, it will 

be assumed that the number of the cylindrical bodies in a period is N , having cross 

sections 1 2, ,... NB B B  with the 1 2Ox x  plane.  

By considering the periodic Green's function ( ; )pG x y  of the two-half spaces media, the 

problem can be reduced to the solution of the following Fredholm integral equation of 

second kind for the total field u  within the period 1 (0, )x L∈ . 

0 ( ; )

1

( ) ( ) ( ) ( )

n

N

p x y

n B

u x u x G y u y dyυ
=

= + ∑ ∫                                                                      (3.1) 

where 

'

1 '

'

2 '

2 2
, 2

1

2 1
, 2

2

( 1) 0

( )

( 1) 0

n

n

n

k x B x

x

k x B x

ε
ε

υ
ε
ε


− ∈ >


= 

 − ∈ <

 ,       

 ,       

                                                                    (3.2) 

in which '

2 2 2 /iε ε σ ω= +    stands for the complex dielectric permittivity of the lower 

half-space. Note that by taking the quasi-periodicity of the field into account, the total 

field in the p'th period can be written as ( )pi L
e u x

β
,  where 

1

2
cosp

p
k

L

π
β θ= + . 
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Figure 3.1: Buried object modeling of the rough surface 

In Section 4, the method based on MoM to solve ( )u x  from (3.1) will be given. Before 

going further, it will be convenient to give an explicit expression of the Green’s function       

( ; )pG x y .  

By definition, the ( ; )pG x y satisfies the reduced wave equation 

2

2( ; ) ( ) ( ; ) ( , )p p aG x y k x G x y J x y∆ + = −                                                                    (3.3) 

with 

2

1 22

2

2 2

, 0
( )

, 0

k x
k x

k x

 >
= 

<

  

  
                                                                                                (3.4) 

and 

1 1 2 2( , ) ( ) ( ).a

p

J x y x y pL x yδ δ
∞

=−∞

= − − −∑                                                                  (3.5) 
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In this equation  2y∈�  is an arbitrary point and δ is the Dirac’s delta distribution. 

Following the same procedure given in [21] one can show that the periodic Green's 

function for the present problem is given by 

1 1 1 2 2

1 1 1 2 2 2

2 2

2 2

1 2 2
0 1 1 1 2 2

( ) ( )( )

12
1

( ) ( ) ( )

12
1

 

0, 0

0, 0

( ( ) ( ) )
4

1 1
( ) ,

2 ( )

1 1
( ) ,

2 ( )

( ; )

p p

p p p

p

i x y x y
p

p

i x y y x
p

pp

p

x y

x y

i
H k x y pL x y

e R e
L

T e e
L

G x y

β γ β

β γ β γ β

β
γ β

β
γ β

∞

=−∞

− − +

∞
− − +

=−∞

=









 

+

  

>  >

<  >

− − + −

     

        

∑

∑

   

         

  

1 1 1 2 2 2

1 1 2 2 2

( ) ( ) ( )

21 2 2
1

1 2 2
0 2 1 1 2 2

( ) ( )( )

12
2

  

 

1 1
( ) 0, 0

2 ( )

( ( ) ( ) )
4

1 1
( ) ,

2 ( )

p p p

p p

i x y x y
p

pp

p

i x y x y
p

p

T e e x y
L

i
H k x y pL x y

e R e x
L

β γ β γ β

β γ β

β
γ β

β
γ β

∞
− − +

=−∞

∞

=−∞

− − +









                

   ,      

 

+

>  

− − + −

     

<∑

∑    

         

  

2 2
0, 0y





























>  <        (3.6) 

where  

2
21

1 2

2 ( )
( )

( ) ( )
T

γ β
β

γ β γ β
=

 + 
                                                                                   (3.7) 

Note that the convergence of the Hankel function series appearing in (14) is quite poor 

for the values of x  close to y  while the exponential series converges rapidly after p  

exceeds values satisfying Re( ( )) 0, 1,2i p iγ β >   =  due to the exponential decay. Thus the 

exponential series can be truncated at the smallest P  with Re( ( )) 0, 1,2i p iγ β >   =  . The 

value of the truncation number P  increases with the increasing values of , 1,2ik i  =   and 

period L . As to the Hankel series, one needs to use efficient techniques to accelerate 

the convergence such as the ones given in [20, 21]. On the other hand, by considering 

the asymptotic behavior of 1

0H  for large arguments, one can conclude that the truncation 
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number P  for the Hankel series is inversely proportional to the wave-number 

, 1, 2ik i  =  and period L . 
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4. A METHOD OF MOMENT SOLUTION 

In the sequel, to solve ( )u x from (2.16) [26] a method which is an application of MoM  

will be described. To this aim, the equation (2.16) is written in an abbreviated form as 

2

0( ) ( ) ( ),I K u x u x x− =    ∈�                                                                                    (4.1) 

where K  is the linear operator defined by 

1

( ) ( ; ) ( ) ( )

n

N

p n

n B

Ku x G x y y u y dyυ
=

= ∑ ∫                                                                          (4.2)  

Consider now the integral on the 'thn  region nB  appearing in (3.2). Due to the definition 

of nυ , it is a constant in nB  and it can be taken out of the integration. In order to 

calculate the remaining integral, nB  is divided into nM  small cells which allows one to 

write 

1

( ; ) ( ) ( ; ) ( )
n

n nm

M

p p

mB S

G x y u y dy G x y u y dy
=

= ∑∫ ∫                                                                (4.3) 

where nmS denotes 'thm cell of the region nB . If nmS  is small enough one can make the 

approximation ( ) ( )nmu y u y� for the total field inside the related cell, where 

1 2( , )nm nm nmy y y =  stands for the center point of the cell 
nmS . Then one has 

1

( ; ) ( ) ( ) ( )
n

n

M
nm nm

p

mB

G x y u y dy u y C x
=

 ∑∫ �                                                                       (4.4) 
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Here we put 

( ) ( ; )

nm

nm

p

S

C x G x y dy= ∫                                                                                            (4.5) 

When the geometry of 
nmS  is given the coefficients ( )nmC x  can be calculated  through 

(3.6) and (4.5). For a rectangular cell with side lengths 1 22 *2 , ( )nmy y C x∆ ∆   will be 

   

0 1 2

2 2

3 2

54 2

2

2

2

2

( ) ( )

( )

( )

( )

( ) ( )   

, 0, 0

, 0, 0

, 0, 0

, 0, 0

nm nm nm

nm nm

nm

nm nm

nm nm nm

C x C x

C x

C x

C x

C x C x

y

x y

x

x y

x y















=

  +

<

 < 

  + < < 

 

 

         

     >   >

                   >  

                 >   

       

                      (4.6) 

where 

1

1 1 1 1 1 02
11 1

0

1 2 2

1 1 0 1 1 2 2

1

( ) 2 ( ) ( ),
2

( )

( ) ( ( ) ( ) ,
2

nm

p

nm

nm nm nm

p

i a
k aH k a i J k a Y pL x y

k k

C x

i a
J k a H k x y pL x y x y

k

π
π

π

∞

=

∞

= −∞


 + −            =  


= 


  − − + −   ≠  


∑

∑

        (4.7) 

1 1 1 2 21 2 1

12

1 1

( ) ( )( )

1

sinh( ( ) ) sin( )4 1
( )

2 ( ) ( )
( ) ,

nm nm
p pp p

p

p p p p

i x y x ynm
y y

R
L

C x e e
β γ βγ β β

β
γ β γ β β

∞

= −∞

− − +∆ ∆
= ∑

 (4.8) 

21 1 1 2 21 2 1

12

1 1

( ) ( ) ( ) )

2

sinh( ( ) ) sin( )4 1
( )

2 ( ) ( )
( ) ,

nm nm
p p pp p

p

p p p p

i x y y xnm
y y

T
L

C x e e
β γ β γ βγ β β

β
γ β γ β β

∞
+

= −∞

− −∆ ∆
= ∑

 (4.9) 

1 1 1 2 2 22 2 1

21

1 2

( ) ( ) ( ) )

3

sinh( ( ) ) sin( )4 1
( )

2 ( ) ( )
( ) ,

nm nm
p p pp p

p

p p p p

i x y x ynm
y y

T
L

C x e e
β γ β γ βγ β β

β
γ β γ β β

∞

= −∞

− − +∆ ∆
= ∑

 (4.10) 
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1 1 2 2 22 2 1

12

1 2

( ) ( )( )

4

sinh( ( ) ) sin( )4 1
( )

2 ( ) ( )
( ) ,

nm nm
p pp p

p

p p p p

i x y x ynm
y y

R
L

C x e e
β γ βγ β β

β
γ β γ β β

∞

= −∞

− +∆ ∆−
= ∑   

(4.11) 

1

2 1 2 1 2 02
12 2

5

1 2 2

1 2 0 2 1 1 2 2

2

( ) 2 ( ) ( ) ,
2

( )

( ) ( ( ) ( ) ,
2

nm

p

nm

nm nm nm

p

i a
k aH k a i J k a Y pL x y

k k

C x

i a
J k a H k x y pL x y x y

k

π
π

π

∞

=

∞

= − ∞

  + −            =  


= 

  − − + −   ≠  


∑

∑

        

                          (4.12)                              

In (4.7) and (4.12) " "a  denotes the radius of the circular cell whose area is equivalent to 

the rectangular cell  1 22 *2y y∆ ∆  [27]. 

Substituting (4.4) into (4.3) and writing (3.1) for , 1,2,..., , 1, 2,...,pq

px y p N q M =   =   =  

one gets a linear system of equations for the field values of ( )pqu y . Note that in such a 

case the operator K  is reduced to a square matrix with dimensions 

1 2 1 2( (N NM M M M M M+ + ... + )∗ + + ...+ )  and the number of unknowns in the linear 

system is 1 2( NM M M+ + ...+ ) . 

Since the field ( )u y  is now known at inner points of each cell 
nmS , one can calculate 

( )u x for any 2

1, (0, )x x L∈  ∈�  through the relation 

0

1 1

( ) ( ) ( ) ( ) ( )
nMN

nm nm nm

n

n m

u x u x y u y C xυ
= =

 + ∑∑� .                                                        (4.13)                              
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5. NUMERICAL IMPLEMENTATION 

In this section, the accuracy and the effectiveness of the algorithm given in the previous 

section will be tested with some illustrative examples. In all examples, the upper half-

space is assumed to be free space.  

5.1 Sinusoidally  Periodic Surface  

Consider a periodic surface , as in Figure 5.1, having a sinusoidal variation of the form  

1
1 1

2
( ) 0.02 cos( ), (0, )

x
f x x L

π
λ

λ
= −     ∈                                                                     (5.1) 

 where λ  is the free-space wavelength. Note that the maximum slope of the surface is  

0.1256
f

x

∂
 = 

∂
 which is smaller than 0.448 . Thus, the Rayleigh hypothesis is satisfied and 

one can express the scattered field in terms of outgoing waves yielding an analytical 

solution [17]. The parameters of the lower half-space are 5

2 0 2, 10ε ε σ − = 3   =  and the 

incidence angle is 0 / 4φ π=  . The periodic buried object modeling yields two objects 

which are located in the upper and lower half-spaces in a period. The cell sizes in the 

application of the MoM solution are chosen / 30* /150λ λ  and 3P =  terms are used in 

the series representation of the Periodic Green's function. The computational time is 

0.109 seconds for analytical method and 1.343 seconds for PBOA. In Figure 5.2, the 

amplitude and the phase of the scattered field on a line 2 0.3x λ=  in a period calculated 

by both the analytical and PBOA are presented. It is obvious that both results are in a 

very good agreement.  
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Figure 5.1: Sinusoidally surface profile 

 

 

Similar simulations are carried out for another sinusoidal variation of the form 

 1
1 1

2
( ) 0.07 cos( ), (0, )

x
f x x L

π
λ

λ
= −     ∈                                                                    (5.2) 

The maximum slope of the surface is 0.439
f

x

∂
 = 

∂
, which while quite close to 0.448 still 

satisfies the Rayleigh hypothesis. The parameters of the lower half-space are 

5

2 0 2, 10ε ε σ − = 3   =  and the incidence angle is 
0 / 6φ π= . The cell sizes are the same as in 

the previous example. The amplitude and the phase of the scattered field is calculated on 

a line 
2 0.5x λ=  in a period. As in Figure 5.3, both results are in a very good agreement. 
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Figure 5.2: Comparison of the amplitude and the phase of the scattered field obtained 

by Analytical and PBOA methods for the surface given in (5.1) 

  

Figure 5.3: Comparison of the amplitude and the phase of the scattered field obtained 

by Analytical and PBOA methods for the surface given in (5.2) 



21 

 

 

5.2 Periodic Random Surface 

As a second case, the results of PBOA and perturbation method [27] are compared for a 

random surface with rms height 0.006h λ= , correlation length 0.6λ=l  and the period 

4L λ= . The cell size used in the PBOA method is / 25* /150λ λ and the incidence 

direction is 0 2 / 3φ π=  while the truncation number of the series for periodic Green's 

function is 20P = . The dielectric permittivity and conductivity of the lower medium are 

taken as 2 03.6ε ε=  and 5

2 10σ −= . Figure 4 illustrates the variations of amplitudes and 

phases of the scattered fields obtained via both methods in a period. Clearly, both 

methods yield very close results. 

  
 

Figure 5.4: Comparison of the amplitude and the phase of the scattered field obtained 

by Perturbation and PBOA methods for the random surface of 0.006 , 0.6h λ λ= =l  and 

4L λ= . 
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5.3 The Effect of the Roughness on the Propagation of Incident Plane Wave 

To give a physical insight about the interaction of the electromagnetic wave with the 

periodic rough interface, consider a random surface of rms height 0.2h λ= , correlation 

length 0.8λ=l , period 10L λ=  with Gaussian distribution. The parameters of lower 

half space are chosen as in previous example and 40P = . Note that the roughness for 

this example is very high. Figure 5.5 shows the variation of the amplitude of the total 

electric field in a rectangular domain. This result allows us to see the effect of the 

roughness on the propagation of an incident plane wave. 

 
Figure 5.5: Variation of the total field amplitude in a rectangular region for the random 

periodic surface of 0.2 , 0.8h λ λ= =l and 10L λ=  

As a second example to see the effect of the roughness on the propagation of incident 

plane wave, consider a random surface of rms height 0.08h λ= , correlation length 

0.8λ=l , period 10L λ= . The parameters of the lower half space are 

5

2 0 2, 10ε ε σ − = 3   =  and the incidence angle is 
0 / 4φ π=  as in previous example and 

40P = . Figure 5.6 shows the variation of the amplitude of the total electric field in a 

rectangular domain.  
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In Figure 5.7 and Figure 5.8, the variations of the amplitudes of the total field for two 

different incidence directions 0 / 2φ π=  and 0 / 4φ π=  are presented for the case of a 

random air- mica interface with parameters 0.15 , 0.6h λ λ= =l and 11L λ= . Note that 

the electromagnetic parameters of mica are 15

2 0 2, 10ε ε σ − = 5.4   = . 

 
Figure 5.6: Variation of the total field amplitude in a rectangular region for the random 

periodic surface of 0.08 , 0.8h λ λ= =l and 10L λ=  
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Figure 5.7: Variation of the total field amplitude for the random periodic air-micra 

interface with 0.15 , 0.6 , 11h Lλ λ λ=   =   =l and 0 / 2φ π=  

 
Figure 5.8: Variation of the total field amplitude for the random periodic air-micra 

interface with 0.15 , 0.6 , 11h Lλ λ λ=  =  =l and 0 / 4φ π=  
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5.4 Locally Rough Surface 

The PBOA presented here can also be extended to solve the scattering problems related 

to surfaces of infinite extend having a local roughness of length Rl  (see Figure 5.9a). To 

this aim, consider a periodic rough surface of period L  and assume that it has the same 

roughness with the infinite extent one in a period (Figure 5.9b). As long as the period L  

is taken large enough compared to length of rough part Rl , the periodic one can be used 

as a model to the original one for the field within a period. Note that the scattering 

problem of the rough surface of infinite extent can be treated by using BOA which 

generally involves the computation of Sommerfeld integrals in Green's function of two 

half-spaces medium [18-20]. This causes the method to be computationally expensive. 

On the other hand, in the periodic model the required Green's function can be expressed 

in terms of Floquet modes whose computational evaluation is not costly. Thus by using 

the periodic model, the scattering of electromagnetic waves from locally rough surfaces 

can be solved more effectively through PBOA. To see the applicability and the accuracy 

of this idea, some surfaces are taken into consideration, the related scattering problems 

by both BOA and PBOA are solved and their results are compared.  

In Figure 5.10, the amplitudes and the phases of the scattered field on the line 

2 10.3 , (0, )x x Lλ=   ∈  calculated by both PBOA and BOA are compared for a locally 

rough surface defined by 

1 1

1

22
0.25 sin [0.5 cos 0.25 sin ], ( 2 ,2 )

( ) 2 0.8

0, .

x xx
x

f x

otherwise

π ππ
λ λ λ λ

λ λ λ
   −         ∈ −

= 
                                                                              

             (5.3) 
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Figure 5.9: (a) A locally rough surface interface of infinite extent (b) its periodic model 

The results of periodic model are given for 60 .L λ=  Note that the chosen period 

60L λ=  is 15 times greater than the length of the roughness 4R λ=l . The incidence 

direction is 
0 / 2φ π= , the truncation number of the series for the periodic Green's 

function is 90P = . The dielectric permittivity and conductivity of the lower medium are 

taken as 2 04.5ε ε=  and 4

2 10σ −= . The computational times of the PBOA and BOA 

methods to get the results given Figure 5.10 with a Pentium 4 based computer are 35.469 

seconds and 391.542 seconds, respectively. 

On the other hand, the root mean square error between both methods is defined as  

2

1

1 P
i i

PBOA BOA

i

RMSE u u
P =

 = −∑                                                                               (5.4) 

where P  is the number of the sample points. In Figure 5.11, the RMSE versus the length 
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 of the period L  used in the PBOA modeling is given, which shows that when the period 

L  is chosen sufficiently large compared to Rl , the results are quite accurate.  

 

Figure 5.10: Comparison of the amplitude and the phase of the scattered field obtained 

by BOA and PBOA for a locally rough surface given in (5.3) 

 
Figure 5.11: RMSE between BOA and PBOA for the surface given in (5.3) 
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Similar simulations are carried out for a random surface of rms height 0.4λ  and 

correlation length 0.7λ  in the case of normal incidence in which 50L λ=  and 90.P =  

The electromagnetic parameters of the lower half space are selected as 
2 08ε ε=  and 

3

2 10σ −= for this implementation. The comparisons of the amplitudes and phases of the 

scattered fields are shown in Figure 5.12 while the RMSE is presented in Figure 5.13. 

Note that the choice of period L  is related to the roughness level as well as the 

roughness length Rl . It has been observed that for a surface having peak to peak 

variation 0.5λ  one gets good agreement in the results of both approaches for a period of 

10 RL ≈ l . For surfaces having smaller variations a / RL l ratio less than 10 is sufficient. 

 
 

Figure 5.12: Comparison of the amplitude and the phase of the scattered field obtained 

by BOA and PBOA methods for a random surface of 0.4 , 0.7h λ λ=  =l  and 4R λ=l  
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Figure 5.13: RMSE between BOA and PBOA for a random surface of  0.4 ,h λ=   

0.7λ=l   and 4R λ=l  
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6. CONCLUSION 

The problem of scattering of electromagnetic waves from periodic rough interfaces is 

solved by extending the BOA. One of the main advantages of the method is that it can 

also be used for the scattering from rough surfaces of infinite extend. Since the periodic 

Green's function of the two half-spaces media can be calculated in a pretty fast and 

efficient way, the computational cost of the method is cheap compared to original form 

of the BOA. The method yields quite accurate results for highly rough surfaces beyond 

the Rayleigh Hypothesis. It should be noted that in the direct and inverse scattering 

problems related to the objects buried in a layered media with periodic rough interfaces 

the determination of the periodic Green's function of the background medium constitutes 

a very important problem. Along this line the proposed method would be a very efficient 

tool to this aim by just taking the incident field as a line source. Future studies are 

devoted to extend the method to 2D  surfaces. 
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