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Tezin Enstitüye Verildiği Tarih : 5 Mayis 2008

Tezin Savunulduğu Tarih : 11 Haziran 2008
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MODELLING OF PERIODIC PERFECTLY CONDUCTING
ROUGH SURFACES IN TERMS OF HIGHER ORDER

IMPEDANCES

SUMMARY

In this study, a method is presented for the equivalent representation of a per-
fectly conducting (PEC) periodic rough surface in terms of planar boundary with
higher order periodic impedance boundary condition (HPIBC). In the proposed
approach, the periodic rough surface is replaced by a flat one having higher order
periodic impedance boundary condition (HPIBC). For the sake of simplicity the
analysis is carried out for one-dimensional (1-D) surfaces. The explicit relations
between the inhomogeneous surface impedances appearing in HPIBC and the
surface variation of the periodic PEC surface are derived through the Taylor ex-
pansion of the total field. This direct relation between the surface impedances
and the variation of the periodic surface also causes the impedances to be peri-
odic. The surface impedances are independent of the incidence angle, and yield
to an universal equivalent boundary condition for perfectly conducting periodic
rough surfaces. Therefore, by representing the perfectly conducting(PEC) rough
surface in terms of a plane one characterized by the above mentioned inhomoge-
neous impedance boundary condition, one can achieve a simpler formulation of
the corresponding scattering problem. On the other hand, it has to be remarked
that the method allows to computing the field scattered by the original surface
only in the region exterior to the fictitious plane.

The resulting scattering problem related to a planar surface with HPIBC is solved
by using the Floquet mode expansion, which reduces the problem to the solution
of a linear system of equations. The results of the proposed method are compared
with those of Finite Difference Time Domain (FDTD) Method for a number of
different surfaces. Numerical simulations show that the method yields accurate
results and it is computationally effective. From the numerical implementations
it is observed that the MSE error between two methods is always less than 1%.
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PERİYODİK MÜKEMMEL İLETKEN ENGEBELİ YÜZEYLERİN
YÜKSEK MERTEBEDEN EMPEDANSLAR İLE

MODELLENMESİ

ÖZET

Bu çalışmada, mükemmel iletken periyodik engebeli yüzeylerin, yüksek mertebe-
den periyodik empedans sınır koşuluna sahip düzlemsel bir yüzey ile eşdeğer
olarak modellenmesini sağlayan bir metod sunulmaktadır. Önerilen metod, periy-
odik engebeli yüzeyin yüksek mertebeden periyodik empedans koşuluna sahip
düzlemsel bir yüzey ile gösterilimine dayanmaktadır. Sadelik amacıyla, analiz
tek boyutlu yüzeyler için gerçekleştirilmektedir. Yüksek mertebeden periyo-
dik empedans sınır koşulunda bulunan homojen olmayan yüzey empedansları
ile mükemmel iletken periyodik yüzeyin değişimi arasındaki açık ilişki, toplam
elektrik alanın Taylor serisi açılımı ile elde edilirler. Yüzey empedansları ile periy-
odik yüzeyin değişimi arasındaki direkt ilişki, empedansların da periyodik ol-
masını sağlamaktadır. Yüzey empedansları aydınlatma açısından bağımsızdırlar
ve mükemmel iletken periyodik engebeli yüzeyler için evrensel bir eşdeğer sınır
koşulu oluşturmaktadırlar. Dolayısıyla, mükemmel iletken engebeli yüzeyleri
yukarıda anlatıldığı gibi homojen olmayan empedans sınır koşuluna sahip bir
düzlemsel yüzey ile modelleyerek, söz konusu saçılma problemi için daha ba-
sit bir formülasyon elde etmek mümkündür. Öte yandan, göz önünde bulun-
durulmalıdır ki; burada önerilen metod ile, orjinal yüzeyden saçılan alanı sadece
yüzeyin maksimum noktasına teğet olan farazi bir düzlemin üzerinde kalan bölgede
hesaplamak mümkündür.

Elde edilen, yüksek mertebeden sınır koşuluna sahip düzlemsel yüzeyle ilişkili
eşdeğer saçılma problemi; problemi, lineer bir denklem sisteminin çözümüne in-
dirgeyen Floquet teoremi ile çözülmüştür. Önerilen metodun sayısal sonuçları,
Sonlu Farklar Zaman Domeni(FDTD) Metodu ile elde edilen referans sonuçlar
ile karşılaştırılmaktadırlar. Sayısal simülasyonlar göstermektedir ki, önerilen
metod ile tatmin edici sonuçlar alınmaktadır ve metod hesaplama süresi açısından
etkindir. Uygulamalardan görüldüğü üzere, referans yöntem ve önerilen yöntemin
sonuçları arasındaki ortalama kare hata (MSE), %1 ’in altında kalmaktadır.

viii



1. INTRODUCTION

1.1 Scattering from Periodic Rough Surfaces

Rough surface models are divided into two classes: surfaces with random

irregularities and surfaces with given profiles. Random surfaces met in nature

are treated with statistics because of the absence of details. Surfaces with given

profiles are known exactly and do not involve any statistics. However, for another

class of rough surfaces,rough surfaces with periodic irregularities, a non-statistical

approach is possible and desirable. Although periodic surfaces are less often met

in practice than random surfaces, there is at least two reasons why they merit close

study. Firstly, it is possible to give a general indication of the general behavior of

rough surfaces.Secondly, if a surface is to be manufactured for a specific purpose,

it is easier to make the roughness periodic than make it of a random nature with

a recommended probability distribution [1].

Periodic structures often appear in the applications such as antenna design,

microwave systems, metamaterials, radomes, EMC applications etc and the

analysis of electromagnetic wave propagation in such structures has an important

place in the electromagnetic theory. Correspondingly, random rough surfaces

are often treated as periodic structures constructed by repeating a suitable

unit cell [2–6]. Scattering of electromagnetic waves from perfectly conducting

periodic surfaces are of importance and one can find several research activities in

this direction. The development of broadband absorbers, study of sea surface

scattering, design of uniform antenna arrays, microwave lenses, and artificial

dielectric media are a few examples. The most common methodology for

solving scattering problems related to periodic surfaces is based on the Rayleigh

Hypothesis which is only valid for surfaces having a sinusoidal variation and small

slopes compared to wavelength. In such a case the scattered field is assumed

to be represented in terms of discrete spectrum of outgoing plane waves. The
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method was first investigated by Rayleigh in the case of normal incidence onto a

sinusoidal surface in 1895. Rayleigh obtained an approximation of the first few

scattered modes [7–13]. His method is easily generalized for oblique incidence by

LaCasce and Tamarkin in 1956 and the general Rayleigh approach was developed

by Rice in 1951 for slightly rough and random surfaces [14,15]. Deryugin extended

the method to the solutions for periodic rectangular corrugations in 1960 [16].

Schouten and De Hoop developed the extension of the Rayleigh method for the

solutions of any analytically given rough surface in 1957 [17]. The boundary

element method and the perturbation methods [18, 19] are the other frequently

used approaches in the solution of scattering problems related to periodic surfaces.

Besides, the Method of Moments (MoM) [20] was used to analyze perfectly

conducting surfaces with a profile of sinusoidal shape, where a unit cell of

the periodic surface is treated by means of a Green’s function for periodic

arrays [21, 22]. The finite element method (FEM) [23] is an useful alternative

because of its capabilities to model complex structures and inhomogeneous

materials. Another popular method is finite difference time-domain (FDTD)

method. However, especially for oblique incidence of a plane wave on a periodic

surface, a time-domain formulation becomes challenging with respect to the

analysis of the periodic structures; FDTD solution is a very satisfying method [24].

It is also used as a reference solution of the original problem presented in this

work.

1.2 Approximate Boundary Conditions

Approximate boundary conditions can be very helpful in simplifying the

solutions of wave problems involving complex structures such as electromagnetics,

hydrodynamics, and acoustics etc. In electromagnetics, approximate boundary

conditions have been widely used in scattering, propagation, and waveguide

analysis to simulate the material and geometric properties of the surfaces involved.

Since the boundary conditions themselves are approximate, the difficulties are

eliminated at the expense of obtaining only an approximate solution of the

scattering problem. The approximate boundary conditions is based on the

relationship between the tangential electric field and tangential magnetic field

2



at any point on the boundary between the exterior of the scatterer and the free

space. In many cases acceptable accuracy may be attained, and the approximate

boundary conditions may be used to obtain solutions to scattering problems that

cannot be solved using other methods. Accordingly, a considerable amount of

computational cost is reduced when the approximate boundary conditions are

employed. Assuming the approximate boundary condition accurately models

the electromagnetic behavior of the surface, the loss in accuracy relative to the

exact solution can be minimal. The accuracy of the approximate boundary

condition depends on the complexity of the given geometry [25–28]. Among these

methods, Impedance Boundary Conditions (IBC) are widely used to simplify the

mathematical and numerical complexities in the solution of scattering problems in

electromagnetic theory. Along this line, effective impedance boundary conditions

have been developed for such objects as the earth surface, thin layers of dielectrics

and multilayered dielectric structures.The simplest form of Impedance Boundary

Conditions is the first-order (or standard) impedance boundary condition (SIBC)

which was first described by Leontovich in 1948. In this case, tangential

components of the electric field are related to those of the magnetic fields by

a simple multiplication factor. In particular, when the reflection characteristics

of the boundary are essentially the same for all angles of the incidence the

SIBC is an excellent approximate boundary condition. The applications of

this method was recognized after 1950s with the works of J.R. Wait. Wait

used the boundary condition to simulate the land in studies of ground wave

propagation over the earth [29–33]. As a result of their simplicity and ease of

use, more general versions of these conditions (improved or higher order versions)

are now considered for electromagnetic applications. These improved impedance

conditions are derived as a result of a restriction, namely the behavior of the

coating or the surface treatment must be independent of the angle of incidence.

These higher order impedance boundary conditions(HOIBC), often referred to

as generalized impedance boundary conditions(GIBC), permit the simulation

of more complicated material and composite surfaces with greater accuracy.

By using HOIBC, the virtue of the derivatives and the additional degrees of

freedom helps to simulate the material properties better. The restriction that the

3



properties of the coating or surface treatment not be a function of the angle of

incidence is removed by incorporating derivatives of the field components in the

impedance boundary condition [34–38]. Agreeably, the coefficients appearing in

the differential equations of the HOIBC depend on the local parameters of the

scatterer and can be determined in a number of ways [39]. On the other hand,

although the generalized impedance boundary conditions have been used in a

number of analytical and numerical solutions of scattering problems, difficulties

may arise if the surface has an edge or a discontinuity. Accordingly, different

boundary conditions can be derived for specific geometries, such as rough surfaces

or buried objects, in order to give a simple solutions to the scattering problems..

The determination of the IBC for a given scatterer constitutes an important class

of problems in the electromagnetic theory and various approximate methods have

been established in the literature for special kind of geometries and surfaces. The

equivalent impedance boundary concept can also be used for the scattering of

electromagnetic waves from periodic surfaces. As far as I know, not much work

have been done in this direction except [40]. In this work, a standard impedance

boundary condition is derived for a perfectly conducting periodic rough surface.

1.3 The Aim of the Work

The main objective of this study is to derive the higher order inhomogeneous

impedance boundary condition for the perfectly conducting periodic rough

surfaces and to give a simple method for the solution of the equivalent problem.

In [41], a higher order inhomogeneous impedance boundary condition is given

for the perfectly conducting cylindrical objects. In the present work, the idea

given in [41] is extended to the periodic rough surface case. In the proposed

approach, the periodic rough surface is replaced by a flat one having higher order

periodic impedance boundary condition (HPIBC). For the sake of simplicity the

analysis is carried out for one-dimensional (1-D) surfaces. Through the Taylor

expansion of the total field it is shown that the surface impedances which appear

in the impedance boundary condition are directly related to variation of the

periodic surface, which also causes the impedances to be periodic. The surface

impedances are independent of the incidence angle, and yield to an universal

4



equivalent boundary condition for perfectly conducting periodic rough surfaces.

Therefore, by representing the perfectly conducting(PEC) rough surface in terms

of a plane one characterized by the above mentioned inhomogeneous impedance

boundary condition, one can achieve a simpler formulation of the corresponding

scattering problem. On the other hand, it has to be remarked that the method

allows to computing the field scattered by the original surface only in the region

exterior to the fictitious plane.

The resulting scattering problem related to planar surface with HPIBC then can

be solved by applying the Floquet Theorem [42], which reduce the problem to

the solution of a linear system of equations. The results of the proposed method

are compared with those of Finite Difference Time Domain (FDTD) Method for

some surfaces and quite good agreements have been observed.

The organization of the paper is as follows: in section II an equivalent higher

order periodic impedance boundary condition is derived for the given perfectly

conducting rough surface. A method based on the Floquet representation of the

scattered field for equivalent problem is given in Section III, while the numerical

results are presented in Section IV. Concluding remarks are addressed in Section

V. A time factor e−iωt is assumed and omitted throughout the paper.
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2. DERIVATION OF THE IMPEDANCE BOUNDARY CONDITION

Consider the two-dimensional scattering problem related to the periodic structure

given in Figure 2.1. In this configuration, Γ0 is a perfectly conducting periodic

surface having a period L. In each period the surface is represented by

the equation x2 = f (x1 + pL), x1 ∈ (0,L), p = 0,±1,±2, ..., where f (x1) is a

single-valued periodic function and has continuous first-order derivatives for all

x1 ∈ R. The half-space above the perfectly conducting surface Γ0 is filled with a

non-magnetic simple lossless dielectric material whose dielectric permittivity is ε .

Figure 2.1: Perfectly conducting periodic surface

The scattering problem related to configuration given in Figure 2.1 is to determine

the effect of Γ0 on the propagation of electromagnetic waves in the upper

half-space, more precisely, to obtain the scattered field from the periodic rough

surface. In the present work the surface Γ0 is assumed to be illuminated by a

TM polarized time-harmonic quasi-periodic wave whose electric field vector is

given as ~E i = (0,0,E i(x)) where x = (x1,x2) is the position vector in R2. The

quasi-periodicity [43] implies that E i(x1 + L,x2) = e−iβLE i(x1,x2) where β is the

propagation constant in the x1-direction. Then according to the Floquet theorem

6



the scattered field distribution of a periodic structure as in Figure 2.1 remains

unchanged under a translation of the observation point in the x1-direction through

a period L while its amplitude is multiplied by a complex constant e−iβL which

corresponds to the variation of the incident field with x1. Note that due to the

homogeneity in the Ox3 direction the problem is reduced to a two-dimensional

(2D) scalar one in terms of the total field function E(x), where the total electric

field vector is defined by ~E = (0,0,E(x)).

The total electric field E(x) within the region

Ωp := {x = (x1,x2) : pL < x1 < (p + 1)L, x2 > f (x1)} satisfies the reduced

wave equation

∆E + k2E = 0, x ∈ΩP (2.1)

with the boundary condition

E(x) = 0 on Γ0 (2.2)

where k = w
√εµ0 is the wave-number of the upper half-space. The scattered

field which is defined by Es = E−E i satisfies the classical quasi-periodic radiation

condition expressed by the Floquet series of the scattered wave [44,45]. Invoking

Floquet theorem, the problem can be readily reduced to a consideration of the

fields over a single period, sometimes is called a unit cell. For that reason, in the

following, the analysis will be carried out for p = 0.

The problem stated by (2.1) and (2.2) can be treated by using one of the common

methodologies such as surface integral methods, small-perturbation approach,

Kirchoff approximation etc [46–52]. In the following a new method is introduced

which is based on the representation of the periodic surface Γ0 in terms of a

HPIBC on a plane above the surface. To do this, one first has to obtain required

impedance boundary condition for a given periodic surface Γ0.

In order to derive an equivalent impedance boundary condition for the problem

stated above, the idea in [41] is extended to the present problem, i.e.: we first

consider the plane x2 = α , α ≥ max( f (x1)) and expand the total electric field E

into a Taylor series with respect to x2 around this plane, namely,

7



E(x1,x2) =
∞

∑
m=0

1
m!

∂ mE(x1,α)
∂xm

2
(x2−α)m, x ∈Ω0. (2.3)

Since the total field E(x1,x2) is a regular function of x2, the series (2.3) is

convergent down to the surface Γ0 [53].

For that reason (2.3) can be considered as an explicit expression of the total

electric field in the region f (x1) < x2 < α and has to satisfy the boundary condition

(2.2) on the surface x2 = f (x1), which yields

∞

∑
m=0

1
m!

∂ mE(x1,α)
∂xm

2
( f (x1)−α)m = 0. (2.4)

On the other hand the general expression of the M′th order impedance boundary

condition given on the plane x2 = α with inhomogeneous surface impedances

Z0(x1) = iωµ0 and Zm(x1), m = 1,2, ..M is in the form

M

∑
m=0

Zm(x1)
∂ mE(x1,α)

∂xm
2

= 0, x ∈Ω0. (2.5)

Then, by taking M terms in the Taylor series appearing in (2.4) and comparing the

resulting expression with the boundary condition (2.5), one can easily conclude

that the surface impedances are related the surface function f (x1) as follows:

Zm(x1) = iωµ0
1

m!
( f (x1)−α)m, m = 0,1, ...,M. (2.6)

Note that since f (x1) is periodic, the resulting surface impedances Zm(x1)’s are

also periodic. This property together with the quasi-periodicity of E yields the

boundary condition (2.5) to be periodic which we call higher order periodic

impedance boundary condition ( HPIBC).

(2.5) furnishes an equivalent representation of the periodic PEC surface in terms

of a flat one having inhomogeneous surface impedances. Therefore, for x2 > α , the

scattering problem is then reduced to the solution of (2.1) under the boundary

condition (2.5). In the next section we will give a solution for this equivalent

problem in terms of Floquet mode expansion of the scattered field.

8



3. SOLUTION OF THE EQUIVALENT PROBLEM

The scattering problem stated above is now equivalently reduced to the solution

of the scattering of electromagnetic waves from a plane having a HPIBC given in

(2.5) (see Figure 3.1). This latter problem which is also periodic can be treated

by using Floquet theorem and we will concentrate the scattered field in a single

period Ω̂0 where Ω̂0 := {x = (x1,x2) : 0 < x1 < L, x2 > f (x1)}.

Figure 3.1: Geometry of the Reduced HPIBC Problem

Consider now the case where the incident field is a plane wave of the form

E i(x1,x2) = e−iβx1eγx2 (3.1)

where β = k cosφ0 and γ(β ) =
√

β 2− k2, with φ0 ∈ (0,π) is the incidence angle.

The square root function appearing in γ is defined as γ(0) =−ik.

Then the scattered field defined by Es = E − E i satisfies the reduced waves

equation

∆Es + k2Es = 0, x ∈ Ω̂0 (3.2)

9



and the boundary condition

M

∑
m=0

Zm(x1)
∂ mEs(x1,α)

∂xm
2

=−
M

∑
m=0

Zm(x1)
∂ mE i(x1,α)

∂xm
2

(3.3)

under the appropriate radiation condition. The scattering problem given by (3.2)

and (3.3) can now be solved by expressing the unknown scattered field Es in terms

of Floquet modes, namely,

Es(x1,x2) =
n=∞

∑
n=−∞

Bne−iβnx1e−γnx2, x2 > α (3.4)

where βn = β +(2nπ/L) and γn =
√

β 2
n − k2. In (3.4), Bn’s,n = 0,±1,±2, . . . are the

coefficients to be determined. It has to be remarked that according to Rayleigh

hypothesis, it is allowed that the unknown scattered field can be expressed as

only outgoing waves [13].

The substitution of (3.1) and (3.4) into (3.3) results in

∞
∑

n=−∞
iωµ0Bn e−γnαe−i2π n

L x1 +
∞
∑

n=−∞

M
∑

m=1
Bn Zm (x1)(−γn)me−γnαe−i2π n

L x1

= {−iωµ0eγα −
M
∑

m=1
Zm(x1)(γmeγα) }

(3.5)

which can be reduced to a simple one by using the orthogonality properties of the

functions e−i2π p
L x1 , p = 0,±1,±2, .... To this end one first multiplies both sides of

(3.5) by ei2π p
L x1 , p = 0,±1,±2, ... and integrate over the interval (0,L) to lead a

compact form as follows:

[K]B = f (3.6)

B = [. . . ,B−1,B0,B1, . . . ]T (3.7)

K = [kpq], p, q = 0,±1,±2, . . . (3.8)

kpq =





iωµ0e−γqα +
M
∑

m=1
(γq)me−γqα Ẑm,0 ,q = p

M
∑

m=1
(γq)me−γqα Ẑm,q−p ,q 6= p

(3.9)
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and

Ẑm,q−p =
1
L

∫ L

0
Zm(x1)e−i2π (q−p)

L x1dx1 (3.10)

fp =
∫ L

0
{−iωµ0eγpα −

M

∑
m=1

Zm(x1)(γm
p eγpα)}ei2π p

L x1dx1 (3.11)

(3.6) constitutes a system of linear equations for the unknowns Bp, p =

0,±1,±2, . . . which can be solved by truncating the infinite summation in the

left hand side of (3.5) to an appropriate interval (−N,N). Then the substitution

of B−N , . . . ,B−1,B0,B1, . . . ,BN into (3.4) yields the required scattered field.
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4. NUMERICAL IMPLEMENTATION

The validity of the surface impedance modeling given in the previous section

is tested by considering some illustrative examples. In all cases the half-space

above the PEC surface is assumed to be free space. The reference solution of

the original scattering problem is obtained via Finite Difference Time Domain

(FDTD) method [54]. In order to make a precise comparison between the results

of both methods, the mean square error (MSE) defined by

MSE =

Nc
∑

n=1
|Es,n−Es,n

r |2

Nc
(4.1)

is considered. Here Nc is the number of observations, while Es,n and Es,n
r are the

scattered fields on the corresponding observation point n, obtained via HPIBC

modeling and FDTD, respectively. The operating frequency is chosen as 300

MHz.

The first results are related to a periodic rough surface of

f (x1) = (
2x1−L

20L
).cos(3π

2x1−L
2L

).(
2x1

L
).exp(|L/2− x1|+ −5(x1−L/2)2

L
) (4.2)

where the period L = 12λ (see Figure 4.1(a)). The surface is illuminated by a

plane wave of incidence direction φ0 = 110o. Figure 4.1(b) and 4.1(c) illustrate

the amplitudes and phases of the scattered fields on the line x2 = 0.75λ computed

via FDTD and HPIBC modeling. The truncation number N is chosen as 40. The

results for the impedance modeling are obtained for only one impedance term in

the HPIBC (2.5), i.e.: M = 1, which is nothing but the standard impedance

boundary condition (SIBC). For the surface given in (4.2) the SIBC yields

very accurate results, this is because the surface has a smooth variation, where

maximum rate of change with respect to x1 is approximately max(d f (x1)
dx1

) = 0.025,

and a single impedance is enough to represent this variation on the chosen

impedance plane. The MSE is %0.68 and it does not change when higher order

impedance terms are included in the solution.
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Figure 4.1: (a) The surface (b) Amplitudes (c) phases of the scattered fields obtained
by HPIBC modeling and FDTD approach
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A more rapidly changing surface defined by the function

f (x1) = (0.1).(
2x1−L

2
).sin(9π

2x1−L
2L

).exp(−(x−L/2)2

2(L/3)3 − 5(x1−L/2)2

L
) (4.3)

is considered as a second numerical application. For this surface max(d f (x1)
dx1

) =

0.55 and the peak-to-peak amplitude 0.53λ are quite greater than those of

the surface given in previous example. Therefore, it is expected to include

higher order impedance terms in HPIBC method. In Figure 4.2(b) and 4.2(c),

the amplitudes and phases of scattered field obtained for M = 1 and M = 10

are compared with the FDTD solution where the incidence angle of the plane

wave and observation height are chosen as φ0 = 90 and x2 = 0.75λ , respectively.

Although SIBC modeling produces incompatible results compared to the FDTD

solution, the inclusion of higher order terms for that kind of rapidly changing

rough surfaces improves the quality of the results and makes it possible to obtain

quite satisfactory solutions as clearly seen in Figure 4.2. The effect of higher order

impedance terms can also be observed via error analysis. In Figure 4.3, the MSE

error as a function of the number of terms in the impedance boundary condition

is plotted and it is observed that; although the MSE is %61 while M = 1, it

decreases rapidly by increasing number of higher order impedance terms. For

M = 10, MSE becomes %0.8 and remain still for M > 10.

Although the theory is developed for the smoothly varying surfaces it is worth

to analyze its behavior for different kind of surfaces such as corrugated one. To

this aim we consider the surface given in Figure 4.5(a). As it is seen from Figure

4.4(a),the surface is a triangular sawtooth function which has four edges within a

single period and the maximum rate of change with respect to x1 is approximately

max(d f (x1)
dx1

) = 0.07. The amplitudes and phases of the scattered field calculated

at x2 = 0.9λ are illustrated in Fig. 4.5(b) and 4.5(c) for the illumination angle

of φ0 = 95o. As it is is observed from the figures, M = 1, which corresponds to

SIBC, is not fairly enough to model the rough surface, while M = 7, (i.e., HPIBC)

gives more accurate results compared to the FDTD solution. The corresponding

MSE’s for M = 1, M = 4, M = 7 and M = 12 are %16, %0.7, %0.65 and %0.65

respectively and does not change for M > 7 (see Figure 4.4).
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Figure 4.3: Variation of the MSE versus number of terms in HPIBC for the solution
according to surface given in Figure 4.2(a)

Figure 4.4: Variation of the MSE versus number of terms in HPIBC for the solution
according to surface given in Figure 4.5(a)
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As it is stated in Chapter 2, the periodic rough surface is replaced by a flat

one having HPIBC on the plane x2 = α , α ≥ max( f (x1)). This plane is chosen

as the one tangential to the maximum point of the original surface. If a rough

surface with a quite greater peak-to-peak amplitude is chosen to be examined,

the flat surface having HPIBC ,which replaces the original one, should be placed

relatively high with respect to the minimum value of the amplitude of the original

surface. In order to investigate the effect of this, a rough surface by the function

f (x1) = (0.1).(
x1

L
).sin(3π

x1

L
).(

1+ x1

L/2
) (4.4)

is considered (see Figure 4.6(a)). Although variation of the the rough surface is

not rapidly changing, the peak-to-peak amplitude is relatively greater than the

ones of the previous examples. The peak-to-peak amplitude of the original surface

chosen for this example is approximately 0.7. It yields that the flat surface having

HPIBC of the equivalent problem is placed relatively higher. In Figure 4.6(b) and

4.6(c), the amplitudes and phases of scattered field obtained for M = 1 and M = 4

are compared with the FDTD solution where the incidence angle of the plane wave

and observation height are chosen as φ0 = 100 and x2 = 1λ , respectively. As it is

shown by this example, by taking the more derivatives in the impedance boundary

condition into the account, one can achieve to model more rough surfaces with

sharp peaks. The corresponding MSE’s for M = 1 and M = 4 are %1.3 and %0.5

respectively and does not change for M > 4.

According to previous examples, the method yields accurate results and effective

to model the periodic rough surfaces. The last analysis is carried out to show the

effect of the operating frequency. The surface is chosen as the same one used in

previous example(see Figure 4.7(a)). The amplitudes and phases of the scattered

field calculated for the operating frequencies of 300MHz, 450MHz and 900MHz

are illustrated in Fig. 4.7(b) and 4.7(c) and the results are obtained for M = 4,

the incidence angle φ0 = 95 and observation height x2 = 1λ . As the frequency

is increased, dimensions of the rough surface is going to be greater according to

wavelength and effects of more details emerge on the scattered field, so that the

variation of the scattered field is rapidly changing as expected.

18



0 2 4 6 8 10 12
−0.05

0

0.05

(a) Original Surface

x
1
/λ

f(
x 1)/

λ

0 2 4 6 8 10 12
0.7

0.8

0.9

1

x
1
/λ

I U
s I

(b) Comparison of Amplitudes

0 2 4 6 8 10 12
−200

−100

0

100

200

x
1
/λ

P
ha

se
(D

eg
re

es
)

(c) Comparison of Phases

1st Impedance 4th Impedance FDTD
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5. CONCLUSION

An equivalent representation of a periodic PEC surface is derived in terms of

a HPIBC on a planar one. It has been shown that there are explicit relations

between the surface variation and surface impedances. The equivalent problem

with HPIBC is first formulated through the Floquet mode expansion of the

scattered field and then reduced to a simple system of linear equations. The

validity of the presented method is tested by comparisons with FDTD simulations

and quite satisfactory results are obtained. From the numerical implementations

it is shown that the MSE error between two methods is always less than 1%. It has

been observed that for surfaces having smooth variations and small peak to peak

values, SIBC modeling is quite enough to obtain satisfactory results. On the other

hand it is also shown that higher order impedances have to be included to improve

the accuracy for the rapidly changing surfaces having relatively higher peak to

peak values. The method is also applied to the corrugated surfaces having sharp

edges and again very satisfactory results are obtained. Future studies will be

devoted to the extension of the method to the two-dimensional periodic surfaces.
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