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who gave me the opportunity to do research under his supervision for his precious
guidance and supports during this study. I would also like to deeply thank to
Assoc. Prof. Dr. Ali YAPAR for his great help and many valuable contributions
to this thesis.

December-2007 Çag̃daş GENÇ
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IMAGING OF PERFECTLY MAGNETIC CONDUCTING

ROUGH SURFACE THROUGH SINGLE FREQUENCY SINGLE

VIEW DATA

SUMMARY

In this thesis, a novel and effective algorithm is derived for the solution of inverse

scattering problems related to perfectly magnetic conducting rough surface. Such

problems are of great importance in electromagnetic theory due to the their

potential applications in practice such as modeling of ground wave propagation,

microwave remote sensing, optical system measurements, underwater acoustics,

non-destructive testing etc.

The surface is illuminated by a time-harmonic plane wave from the half space

above the surface and the scattered field is assumed to be measured on a certain

line. The method is obtained for a single illumination at a fixed frequency.

In order to give a suitable representation of the electromagnetic field in the

half-space above the surface, the half space is separated into two parts by an

estimated plane. Then the electric field vector above the this plane is represented

as spectrum of plane waves while Taylor series expansion is used in the region

between the surface and estimated plane. Though the special representation of

the field mentioned above, the measured scattered data leads to obtain the total

electric field in the whole half space. The perfect magnetic conductivity of the

surface requires that the normal derivative of the total electric field vanishes, and

application of this condition yields a non-linear equation whose unknown is the

surface function. The non-linear equation is solved iteratively via the Newton

method and reconstruction in the least square sense.
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MÜKEMMEL MANYETİK İLETKEN YÜZEYLERİN TEK

FREKANSTA TEK ÖLÇÜM VERİSİYLE GÖRÜNTÜLENMESİ

ÖZET

Bu tez çalışmasında, engebeli ve mülemmel manyetik iletken özelliklerine sahip

bir yüzeyden ters saçılma probleminin çözümü için yeni ve etkin bir yöntem

verilmiştir. Söz konusu problemler, yer dalgası yayılımının modellenmesi, mikro-

dalga uzaktan algılama teknikleri, sualt akustik çalışmaları gibi pek çok uygu-

lama alanına sahip olmaları sebebiyle elektromagnetik teoride büyük öneme

sahiptirler.

Problem çözümünde düzlemsel bir kaynak tarafından aydınlatılan ve yüzeyden

saçılan dalgalar, belirli bir uzaklıkta ölçülmler kullanılmaktadır. Bu metod kul-

lanılarak, tek öçümle, tek frekansta alınana verilerle yüzey yeniden oluşturulmuştur.

Takip edilen yöntem sırasında, yüzeyim üzerinde kalan yarım uzay, bir tahmini

yüzey ile iki parçaya ayrılmıştıır. Ölçümler sonucu elde edilen verilerden yarar-

lanılarak elektrik alan bu tahmini yüzeyde hesaplanmış ve bu yüzeyden bulun-

maya çalşılan gerçek yüzey dog̃rultusunda elektrik alan taylor serisine açılmıştr.

Son olarak mülemmel manyetik iletken özelliklere sahip yüzey üzerinde nor-

mal türevlerin tanımlanması ile lineer olmayan problem iterasyon yöntemi ile

çözülmüştür.
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1 INTRODUCTION

Imaging of an inaccessible rough surface constitutes an important class of prob-

lems in inverse scattering theory due to the large domain of applications such as

microwave remote sensing, optical system measurements, underwater acoustics,

non-destructive testing etc. In these kinds of problems one tries to recover the

location and shape, as well as the surface characteristics of an unknown surface

through scattered field measurements in a certain domain. The surface to recon-

structed can be perfect electric of magnetic conductor, or it may be an interface

separating two half-spaces. Although several exact and numerical methods have

been developed for the solution of these problems they can be improved to obtain

more effective and faster algorithms. As far as we know, most of the inversion

schemes in the open literature are concerned with the reconstruction of surfaces

with small perturbations[1-5]. A large number of studies were done under the

Kirchhoff approximation where the rough surface is assumed to be locally planar

[4-6]. A simple FFT-based approach for surfaces having small variations is given

in [3] where the problem is reduced to the solution of two integral equations that

can be solved approximately. An approximate inversion scheme under the Rytov

approximation is addressed in [7]. In [8] the problem is reduced to the solution

of a pair of coupled integral equations with two unknown functions in the case

of grazing-incidence. As far as can be observed, among the above-mentioned

methods the one given in [3] has the highest surface profile limits.

Most of the above methods are derived for perfectly electric conducting surface.

On the other hand, as far as we know not much work have been done for the

perfect magnetic conducting (PMC) surface although they have applications in

practical such as modeling of ground wave propagation, microwave remote sens-

ing, optical system measurements, underwater acoustics, non-destructive testing

etc.
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The main aim of this thesis is to give a new, simple and fast method to determine

the location and shape of a perfectly magnetic conducting rough surface. For the

sake of simplicity, we consider surfaces having a variation in one direction. The

surface is reconstructed using the illumination by a single plane monochromatic

wave and the near field measurements of the scattered field are performed on a

line parallel to the mean surface. The novelty of the method is that the lossy half-

space above the surface is first separated into two parts by an estimated plane,

and then the scattered field in the upper region above this plane is expressed in

terms of a Fourier transform while it is expanded into a Taylor series in the lower

part. The boundary condition on the PMC surface requires that the normal

derivative of the total electric field should vanish. The use of this condition

allows the reduction of the problem to the solution of a non-linear equation

for the unknown surface function. Note that the resulting non-linear equation

contains both the surface function and its derivative as unknowns. The non-

linear equation is solved iteratively via the classical Newton method, i.e.: the

problem is linearized in the Newton sense and the realty linear system is solved

by an iterative schema. In this iteration procedure the required derivatives of

the unknown surface function are calculated numerically. Since the solution is

sensitive to errors in the data, a regularization in the least square sense is applied.

The method yields satisfactory reconstructions for slightly rough surface profiles.

The resolutions of the reconstructions obtained here are slightly higher than those

given in [3]. A time factor exp(−iωt) is assumed and omitted.

The organization of the thesis is as follows: In Section 2 a new method for the

scattering of electromagnetic waves from a locally rough surface is given. An

Iterative Reconstruction method is given in Section 3. Numerical results are

given in Section 4 and a conclusion is presented in Section 5. A time factor e−iωt

is assumed and omitted throughout the thesis.
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2 SCATTERING OF ELECTROMAGNETIC BY PERFECT MAG-
NETIC ROUGH SURFACE

In this section, a general theory for the scattering of electromagnetic waves from

PMC rough surface is given, and a special representation for the electromagnetic

field in the half-space above the surface is derived, which is suitable for the inverse

scattering problem that will be taken into account in section 3.

Consider the two-dimensional scattering problem illustrated in figure 1. In this

configuration Γ0 is a perfectly magnetic conducting smooth surface which is

defined by the relation x2 = f(x1) where f(x1) is a single-valued function and

has continuous first-order derivatives for all x1 [9, p:2]. Γ0 is assumed to be

locally rough, i.e.: f(x1) differs from zero over a finite interval. The half-space

above the surface Γ0 is filled with a non-magnetic simple material whose dielectric

permittivity and conductivity are ε and σ, respectively. The inverse scattering

problem considered here consists in recovering the location and the shape of the

surface Γ0, i.e.: f(x1) from a set of scattered field measurements performed on the

line x2 = `. To this aim, the surface Γ0 is illuminated by a time-harmonic plane

wave whose electric field vector ~Ei is always parallel to the Ox3 axis, namely;

~Ei = (0, 0, ui(x1, x2)) (2.1)

with

ui(x1, x2) = e−ik(x1 cos φo+x2 sin φo) (2.2)

where φ0 is the incidence angle while k is the square root of k2 = ω2εµ0 + iωσµ0.

Due to the homogeneity in the x3 direction, the total and scattered electric field

vectors will have only x3 components and the problem is reduced to scalar one.

Let u(x) denote the total electric field in the half-space
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Figure 2.1: Geometry of the problem.

x2 > f(x1) where x = (x1, x2) is the position vector in R2.

u(x), satisfies the reduced wave equation

∆u + k2u = 0 (2.3)

under the boundary condition

∂u(x)

∂n
= 0 , x ∈ Γ0 (2.4)

when Γ is the normal vector of the surface directed to the upper half-space. Then

the scattered field, us(x), is the difference

us(x) = u(x)− ui(x)− ur(x) , x2 > f(x1) (2.5)

and satisfies the reduced wave equation

4



∆us + k2us = 0 , x2 > f(x1) (2.6)

with the boundary condition

∂us(x)

∂n
= −∂ui(x)

∂n
− ∂ur(x)

∂n
, x ∈ Γ0 (2.7)

and the radiation condition for |x| → ∞. In (2.3), ur(x) denotes the reflected

field from the perfectly magnetic conducting plane x2 = 0 and given by

ur(x) = e−ik(x1 cos φo−x2 sin φo). (2.8)

Consider now the Fourier transform of us(x) with respect to x1 , namely,

ûs(ν, x2) =
∫ +∞

−∞
us(x)e−iνx1dx1. (2.9)

Note that (2.7) is valid only in the region x2 > β with β = max f(x1), ∀x1 ∈
(−∞,∞) (see figure 2.1 ), where there is no physical discontinuity in the x1-

direction. Then the Fourier transform of (4) yields

d2ûs

dx2
2

− γ2(ν)ûs = 0 , ν ∈ L , x2 > β (2.10)

where

γ(ν) =
√

ν2 − k2. (2.11)

Here L stands for a horizontal straight line in the regularity strip of ûs in the

complex ν-plane (see Fig. 2.2). The asymptotic behavior of u(x) as x1 → ±∞
has a symmetry and consequently, the regularity strip also includes the real ν-

axis. Thus without loss of generality, L can be considered as real ν-axis [10].

The square root function in (2.9) is defined in the complex ν-plane cut as shown

in Fig. 2.2 such that γ = −ik as ν → 0 [11, p:459].

A solution to (2.8) can be obtained very easily and one gets

ûs(ν, x2) = A(ν)e−γx2 , x2 > β (2.12)

5



Figure 2.2: The complex ν-plane.

with the radiation condition taken into account. Here A is a coefficient to be

determined. The scattered field in the region x2 > β can then be obtained

through the inverse Fourier transform integral

us(x) =
1

2π

∫

L
A(ν)e−γx2eiνx1dν , x2 > β (2.13)

Note that us(x) given by (2.11) satisfies the radiation condition as |x| → ∞.

This can be shown by evaluating the integral on the right hand side of (2.11)

asymptotically for |x| → ∞ through classical saddle point technique [11].

The scattered field below x2 = β can be obtained by using the field us(x) given

by (2.11). To this aim, us(x) is expanded into a Taylor series in terms of x2

around the plane x2 = α, where β < α < `, as follows [9, p:110]:

us(x) =
∞∑

m=0

1

m!

∂mus(x1, α)

∂xm
2

(x2 − α)m, x2 ∈ [f(x1), α) (2.14)

The m’th order derivatives of us(x) at x2 = α appearing in the right hand side

of (2.12) can be obtained very easily from (2.11) and one has

6



∂mus(x1, α)

∂xm
2

=
1

2π

∫

L
(−1)mγmA(ν)e−γαeiνx1dν. (2.15)

Since us(x) is a regular function of x2 the series (2.12) is always convergent down

to the surface Γ0 [9]. Thus to write the solution of (2.4), the half-space over

the surface Γ0 is first separated into two regions x2 > α and x2 ∈ [f(x1), α),

and the scattered field in both regions are expressed through (2.13) and (2.14),

respectively.

The pair (2.13) and (2.14) can be used to solve either direct or inverse scattering

problems related to the configuration in Fig.1. In the direct problem the surface,

consequently the function f(x1), is known and one tries to obtain the spectral

coefficient A(ν) via the boundary condition in (2.7.). In the inverse problem the

function f(x1) has to be determined from the measured values of the scattered

field us(x) on the line x2 = `, namely, us(x1, `). In the following an iterative

method to reconstruct f(x1) from these measured data is given.

7



3 SOLUTION OF THE INVERSE PROBLEM

3.1 Reconstruction of scattering field from the measured data

Let us assume that us(x1, `) is known for all x1 ∈ (−∞,∞). Then by putting

x2 = ` in (11) one gets

us(x1, `) =
1

2π

∫

L
A(ν)e−γ`eiνx1dν. (3.1)

Hence the spectral coefficient A(ν) can be determined from (14). Indeed (14) is

the inverse Fourier transform of the function A(ν)e−γ` and one has

A(ν) = ûs(ν, `)eγ` (3.2)

where ûs(ν, `) denotes the Fourier transform of us(x1, `) with respect to x1,

namely,

ûs(ν, `) =
∫ +∞

−∞
us(x1, `)e

−iνx1dx1. (3.3)

Since A(ν) is known, the scattered field in the half-space x2 > f(x1) can be

obtained through (11) and (12). In the practical applications us(x1, `) is only

known at a finite number of points on the line x2 = ` through the measurements.

In such a case the integral appearing on the right hand side of (16) is evaluated

by using one of the known quadrature techniques which gives approximate values

of the spectral coefficient A(ν) from (15).

3.2 An iteratively reconstruction of the surface

The reconstruction of the surface Γ0 can now be achieved by searching the points

where the boundary condition (2.4) is satisfied. Note that since the surface is not

8



known, one cannot directly calculate the normal derivative appearing in (2.4).

On the other hand, we have the expressions

∂

∂s
=

1√
1 + [f ′]2

(
∂

∂x1

+ f ′
∂

∂x2

) (3.4)

and

∂

∂n
=

1√
1 + [f ′]2

(−f ′
∂

∂x1

+
∂

∂x2

) (3.5)

for the tangential and normal derivatives on Γ where f’ denotes the derivation of

f with respect to x1. Thus the inverse scattering problem is reduced to finding

the points when the condition

1√
1 + [f ′]2

(−f ′
∂u

∂x1

+
∂u

∂x2

) = 0 (3.6)

is satisfied.

To this aim, x2 = f(x1) is first put in (3.6) and the infinite series in (3.14) is

approximated by truncating the summation at an appropriate number M . The

resulting expression can be written in a compact form as follows:

FM(f) = 0 (3.7)

where FM is the non-linear operator given by

FM(f) =
∂

∂n
[

M∑

m=0

1

m!

∂mus(x1, α)

∂xm
2

(f(x1)− α)m +

e−ik(x1 cos φo+f(x1) sin φo) − e−ik(x1 cos φo−f(x1) sin φo)] (3.8)

FM(f) =
1√

1 + [f ′]2
(−f ′

∂

∂x1

+
∂

∂x2

)[
M∑

m=0

1

m!

∂mus(x1, α)

∂xm
2

(f(x1)− α)m +

e−ik(x1 cos φo+f(x1) sin φo) − e−ik(x1 cos φo−f(x1) sin φo)] (3.9)

9



Note that for given data us(x1, `) the coefficients ∂mus(x1,α)
∂xm

2
in (3.25) are all known

through the relations (3.2) and (2.15). Thus the reconstruction problem is re-

duced to the solution of non-linear equation (3.7) for the unknown function f .

The convergence rate of the Taylor series in (2.14) for x2 = f(x1) is related to

|f(x1) − α| which is the distance between the surface Γ0 and the plane x2 = α

for a certain x1. If the plane x2 = α close to the surface and the surface function

f(x1) is a slightly varying one, the distance |f(x1) − α| becomes small and the

series in (2.14) can be approximated by choosing a small truncation number

M . To select the appropriate M , a threshold value δ is chosen and the series is

truncated at the smallest M , satisfying

∣∣∣∣∣
1

M !

∂Mus(x1, α)

∂xM
2

(min[f(x1)]− α)M

∣∣∣∣∣ < δ. (3.10)

The non-linear equation (3.7) can be solved iteratively via Newton method [12].

To this aim, for an initial guess f0, the nonlinear equation (3.7) is replaced by

the linearized equation

FM(f0) + F ′
M(f0)∆f = 0 (3.11)

where ∆f = f − f0, that needs to be solved for ∆f in order to improve an

approximate boundary Γ0 given by the function f0 into a new approximation

with surface function f0 + ∆f . In (3.12) F ′
M denotes the Frechet derivative of

the operator F with respect to f [13]. It can be shown that F ′
M reduces the

ordinary derivative of FM with respect to f .

The Newton method consists in iterating this procedure, i.e.: in solving

F ′
M(fi)∆fi+1 = −FM(fi), i = 0, 1, 2, 3, .... (3.12)

for ∆fi+1 to obtain a sequence of approximations through fi+1 = fi + ∆fi+1.

It is obvious that this solution will be sensitive to errors in the derivative of

FM in the vicinity of zeros. To obtain a more stable solution, the unknown ∆f

10



is expressed in terms of some basis functions φn(x1), n = 1, . . . , N, as a linear

combination

∆f(x1) =
N∑

n=1

anφn(x1). (3.13)

A possible choice of basis functions consists of trigonometric polynomials [12].

Then (3.12) is satisfied in the least squares sense, that is, the coefficients a1, . . . , aN

in (3.13) are determined such that for a set of grid points x1
1, . . . , x

J
1 the sum of

squares

J∑

j=1

∣∣∣∣∣F
′
M(f(xj

1))
N∑

n=1

anφn(xj
1) + FM(f(xj

1))

∣∣∣∣∣

2

(3.14)

is minimized. The number of basis functions N in (3.13) can be considered as a

kind of regularization parameter. Choosing N too large leads to instabilities due

to the ill-posedness of the underlying inverse problem. Choosing N too small

results in poor approximation quality. Hence one has to compromise between

stability and accuracy and in this sense N serves as a regularization parameter.

Notice that the propagation of the scattered wave from x2 = ` to x2 = α is

also ill-posed. This can be seen by substituting A(ν) given by (3.2) into (2.13)

and considering a real wave-number k. In such a case the integral appearing in

(2.13) will have the term eγ(`−α)ûs(ν, `) which represents the propagation of the

measured data from x2 = ` to x2 = α. Then by taking

γ(ν) =





√
ν2 − k2, |ν| > k

−i
√

k2 − ν2, |ν| < k
, for ν, k ∈ R (3.15)

into account [11] one can easily conclude that the errors in the data, i.e.: errors

in ûs(ν, `), will be amplified by the factor eγ(`−α) for |ν| > k. This causes the

problem to be ill-posed. Therefore some regularization is required. This can

be done by restricting the integral on L appearing in (2.13) to a finite interval.

Accuracy of the approximation requires this interval to be large and stability

requires it to be small. In the following this interval was chosen as (−k, k),

corresponding to the non-evanescent components of the scattered wave.
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4 NUMERICAL IMPLEMENTATION

In this section some numerical results which demonstrate the validity of the

method, as well as the effects of some parameters on the reconstructions will be

given.

The half-space over the surface is assumed to be free space. In all cases the op-

erating frequency is 300 MHz and the height of the measurement line is ` = 5λ

where λ is the free-space wavelength. The scattered data which should be col-

lected by real measurements are calculated synthetically by solving the associated

direct problem through the single layer potential approach [14] for locally rough

surfaces with a length of locality L0. The integral appearing in (2.13) is evalu-

ated numerically by using the trapezoidal rule. In all examples random noise is

added to the simulated data of the scattered field. In particular a random term

n`|us
m|e2irdπ is added to each scattering field values us

m, n` being the noise level

and rd a random number between 0 and 1. In the application of least squares

solution the basis functions are chosen as φn(x1) = ei2πnx1/L0 , n = 0,±1, . . . ,±N,

and the number N is determined by trial and error.

The first example is devoted to the validation of the proposed method. To this

end we consider a sinusoidal slightly rough surface given by

f(x) = 0.1λcos(
2π

12λ
x) (4.1)

12



The surface is illuminated from normal direction. The number of terms in the

Taylor series M=27 and number of basis function in the Least Square regulariza-

tion N=120 The exact and reconstructed surface obtained after 6 iteration and

illustrated in Figure 4.1. Obviously, reconstructed surface is completely the same

with the exact one. This example show that for surface having a small variation

the method yields quite accurate reconstruction.

−6 −4 −2 0 2 4 6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Reconstructed Surface

Exact Surface

Mean Line

Figure 4.1: Exact and reconstructed values of the surface for noise-free data.

In order to see the effect of the incident direction, the surface (4.1) is illuminated

by a plane wave of an incident direction φ0 = π
6

and the exact and reconstructed

values of the surface are presented in Figure 4.2. For this illumination, as can be

observed, the reconstructions in the right part of the surface are not as accurate

as the left part. This is due to the fact that the right end part of the surface

stays in the shadow region and the measured data does not contain enough

information about this part of the surface. For that reason, one can conclude

that best reconstruction can be obtained for the normal incidence case.
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−0.05
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0.15

Reconstructed Surface
Exact Surface
Mean Line

Figure 4.2: Exact and reconstructed values of the surface for incident angle
φ0 = π

6
.

In figure 4.3, the exact and reconstructed values of the sinusoidal surface which is

2 times greater then the one in Fig. 4.1. All the parameter are the same for the

example in Fig 4.1. As can be seen, the accuracy of the method fails for surface

having large variations. In other words, the proposed method yields accurate

reconstruction slightly varying surfaces.

For a sinusoidal surface having large number of fluctuations, we present the

results in Figure 4.4. The parameters are kept the same as in the previous

example.
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Figure 4.3: Exact and reconstructed values of the surface for a sinusoidal surface
having 2 times greater amplitude than the one in (Fig 4.1).
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Figure 4.4: Exact and reconstructed values of the surface for a sinusoidal surface
having 3 times larger number of fluctuations than the one in (Fig 4.1).

15



To see the effect of the noise level is the reconstructions, we added %5 and

%10random noise to the measured data for the surface given in Fig 4.1. By

keeping all the parameters same with obtained the reconstruction given in Figure

4.5.
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Mean line
%5 Noise
%10 Noise
Noisy free

Figure 4.5: Exact and reconstructed values of the surface (4.1) for different level
of noise.

In the figure (4.6), (4.7), (4.8) and (4.9) exact and reconstructed values of the

surfaces having different veriations are demonstrated. For the surfaces in (4.6),

(4.7), (4.8) and (4.9) have same with example in Fig 4.1.
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Figure 4.6: Exact and Reconstructed values of a corrugated surface.
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Figure 4.7: Exact and Reconstructed variations of a random surface.
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Figure 4.8: Exact and Reconstructed variations of a random surface.
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Figure 4.9: Exact and Reconstructed variations of a random surface.
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5 CONCLUSIONS

An inverse scattering problem whose aim is to recover the one-dimensional profile

of a perfectly magnetic conducting rough surface has been presented. Through

a special representation of the scattered field in terms of Fourier transform and

Taylor series the total field in the half-space over the surface is computed from

measured data. The problem is then reduced to the solution of a non-linear

equation which can be treated iteratively via Newton method.

This method yields satisfactory reconstructions for the surfaces having a peak-to-

peak variation less than λ/2. This level of roughness is at least 5 times greater

than those of the methods based on the perturbation approach and Kirchhoff

approximation and comparable to that of the method given in [3] in the case

of noisy data. The resolutions of the reconstructions are closely related to the

number of terms in the Taylor expansion, the number of basis functions in the

least squares solution and the integration limits in the numerical evaluation of

the inverse Fourier transform. Furthermore, as has been shown, more terms in

the Taylor series result in higher resolution. Future studies are aimed to extend

the method for the rough interfaces between two dielectric half-spaces.
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CODES

Direct and inverse problem simulation

Periodic Rough Surface

clear; clc; format long tic,

phi0 = 0; f = 3. ∗ 108; omeg = 2. ∗ pi ∗ f ; epsr1 = 1.; eps0 = (1E − 9)/(36. ∗
pi); mu0 = 4∗pi∗(1E−7); ak0 = omeg∗sqrt(eps0∗mu0); lambda0 = 2.∗pi/ak0;

Nc=27; Nc1=Nc+1;

tolerans=10−5;

P=12*lambda0; someparametersforthedefinitionofthesurfacefunctiony = f(x)p1 =
0.1∗lambda0; someparametersforthedefinitionofthesurfacefunctiony = f(x)p2 =
0.1∗ lambda0; someparametersforthedefinitionofthesurfacefunctiony = f(x)

Part 1. Solution of the direct problem (Using Flouqet Theorem for periodic
surfaces under the assumption of Rayleigh hypotesis) 1. Solve a matrix equation
[K1]*[Bn] = [A1]forBn2.Scatteredfieldissum(Bn ∗ exp(i ∗ betaxn ∗ x + i ∗ qn ∗
y))(summationfrom−NctoNc)

q=ak0*cos(phi0); betax = ak0 ∗ sin(phi0);

for n1=1:2*Nc+1 betaxn(n1) = betax + 2 ∗ (n1−Nc1) ∗ pi/P ; end

for nb=1:2*Nc+1, if abs(betaxn(nb)) > ak0qn(nb) = i∗sqrt(betaxn(nb)∗betaxn(nb)−
ak0 ∗ ak0); elseqn(nb) = sqrt(ak0 ∗ ak0− betaxn(nb) ∗ betaxn(nb)); endend

for m2=1:2*Nc+1, for n2=1:2*Nc+1, K1(m2,n2)=-quad(@int2,-P/2,P/2,tolerans,0,ak0,P,q,qn(n2),m2, n2, p1, p2); endA1(m2) =
quad(@int1,−P/2, P/2, tolerans, 0, ak0, P, q, m2, Nc1, p1, p2); end

B1=inv(K1)*A1.’;

x2=p1; x10=P/2; Nx=120; delx=2*x10/Nx;

for ns=1:2*Nc+1, for nx=1:Nx+1 x1(nx)=-x10+delx*(nx-1); EN(ns)=qn(ns) ∗
abs(B1(ns))2;

usger(ns, nx) = B1(ns)∗exp(i∗qn(ns)∗x2+i∗betaxn(ns)∗x1(nx)); usd1ger(ns, nx) =
i∗qn(ns)∗B1(ns)∗exp(i∗qn(ns)∗x2+i∗betaxn(ns)∗x1(nx)); usd2ger(ns, nx) =
qn(ns) ∗ qn(ns) ∗B1(ns) ∗ exp(i ∗ qn(ns) ∗ x2 + i ∗ betaxn(ns) ∗ x1(nx));

uiger(nx) = exp(i∗betax∗(x1(nx))−i∗q∗x2); uid1ger(nx) = −i∗q∗exp(i∗betax∗
(x1(nx))− i ∗ q ∗ x2); uid2ger(nx) = −q ∗ q ∗ exp(i ∗ betax ∗ (x1(nx))− i ∗ q ∗ x2);

t1=rand(101); t2=t1(10,:);

26



fsurr(nx)=surface1(x1(nx),P,p1,p2); end end

oran=2*pi*max(fsurr)/P Etot=sum(EN);

uscager = sum(usger); uscad1ger = sum(usd1ger); uscad2ger = sum(usd2ger);

utotger = uiger+uscager; utotd1ger = uid1ger+uscad1ger; utotd2ger = uid2ger+
uscad2ger;

fr1stger = x2−utotger./utotd1ger; fr2nd1ger = x2+(−utotd1ger+sqrt(utotd1ger.∗
utotd1ger−2.∗utotger.∗utotd2ger))./(utotd2ger); fr2nd2ger = x2+(−utotd1ger−
sqrt(utotd1ger. ∗ utotd1ger − 2. ∗ utotger. ∗ utotd2ger))./(utotd2ger);

x2meas=max(fsurr)+5.*lambda0;

x100=6*P/2; /scattered field is assumed to be measured on the line y=x2meas
at Nxx1 discrete points in the interval x1 ∈ (−x100, x100)

Nxx1=570

delxx=2*x100/Nxx1;

for ns=1:2*Nc+1, for nx=1:Nxx1+1 xx1(nx)=-x100+delxx*(nx-1);

usmeas1(ns, nx) = B1(ns)∗exp(i∗qn(ns)∗x2meas+i∗betaxn(ns)∗xx1(nx)); usd1(ns, nx) =
i∗qn(ns)∗B1(ns)∗exp(i∗qn(ns)∗x2meas+i∗betaxn(ns)∗xx1(nx)); usd2(ns, nx) =
−qn(ns) ∗ qn(ns) ∗B1(ns) ∗ exp(i ∗ qn(ns) ∗ x2meas + i ∗ betaxn(ns) ∗ xx1(nx));

end end

usmeas = sum(usmeas1);

nois1=rand(Nxx1+1); nois2=nois1(:,19); nois21=nois1(:,37); v1=nois2.*nois2;
v2=nois21.*nois21; rr=v1.*v1+v2.*v2; v3=sqrt(-2*(log(rr))./rr); noisratio=0.0;
nreal=1.; nimag=2.; nabs=sqrt(nreal*nreal+nimag*nimag); nois3=noisratio*max(abs(usmeas));

for nji=1:Nxx1+1,

noisy(nji)=usmeas(nji)+noisratio∗(usmeas(nji))∗((nreal+i∗nimag)/(nabs))∗
nois2(nji); end

usmeasnoisy = noisy.′;

Part 2. calculation of Fourier transform and solution of the spectral coefficient
A(nu)

nu0=ak0-0.1; Nnu=140 delnu=2*nu0/Nnu; for nnx=1:Nxx1+1, for nnu1=1:Nnu+1,
nu(nnu1)=-nu0+delnu*(nnu1-1);

if abs(nu(nnu1)) ¡= abs(ak0) gamma0(nnu1)=-i*sqrt(-nu(nnu1)*nu(nnu1)+ak0*ak0);
else gamma0(nnu1)=sqrt(nu(nnu1)*nu(nnu1)-ak0*ak0); end

ggpec(nnx, nnu1) = usmeasnoisy(nnx) ∗ exp(−i ∗ nu(nnu1) ∗ xx1(nnx)) ∗ delxx;

end end

yy1=sum(ggpec);

for kk=1:Nnu+1, Anu(kk)=exp(gamma0(kk)*(x2meas))*yy1(kk); end

xx10=P/2.; Nxx=120; delx1=2*xx10/Nxx;
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alphax=max(fsurr)+0.1*lambda0;

for nxx=1:Nxx+1,

y2(nxx)=0.*max(fsurr)/2+0.00*lambda0; y2dx101(nxx) = 0. ∗max(fsurr)/2 +
0.00 ∗ lambda0; y2dx102(nxx) = 0. ∗max(fsurr)/2 + 0.00 ∗ lambda0;

end

Mc=13;

for itn2=1:6, itn2

for nnu2=1:Nnu+1; for nxx=1:Nxx+1, for mm1=1:Mc, xx11(nxx)=-xx10+delx1*(nxx-
1);

ui(nxx)=exp(-i*q*y2(nxx)+i*betax*xx11(nxx)); uidx201(nxx) = (−i∗q)∗exp(−i∗
q ∗ y2(nxx)+ i ∗ betax ∗xx11(nxx)); uidx202(nxx) = (−i ∗ q) ∗ (−i ∗ q) ∗ exp(−i ∗
q ∗ y2(nxx) + i ∗ betax ∗ xx11(nxx)); uidx101(nxx) = (−i ∗ q ∗ y2dx101(nxx) +
i ∗ betax) ∗ exp(−i ∗ q ∗ y2(nxx) + i ∗ betax ∗ xx11(nxx)); uidx102(nxx) = (−i ∗
q ∗ y2dx102(nxx)) ∗ exp(−i ∗ q ∗ y2(nxx) + i ∗ betax ∗ xx11(nxx))... + (−i ∗ q ∗
y2dx101(nxx)+i∗betax)2∗exp(−i∗q∗y2(nxx)+i∗betax∗xx11(nxx)); uidx1x20101(nxx) =
(−i ∗ q) ∗ (−i ∗ q ∗ y2dx101(nxx) + i ∗ betax) ∗ exp(−i ∗ q ∗ y2(nxx) + i ∗ betax ∗
xx11(nxx));

us(nnu2,nxx,mm1)=(1/prod(1:mm1-1))*((y2(nxx)-alphax)(mm1−1))...∗(1/(2∗
pi))∗((−1)(mm1−1))∗(gamma0(nnu2)(mm1−1))...∗Anu(nnu2)∗exp(−gamma0(nnu2)∗
(alphax)) ∗ exp(i ∗ nu(nnu2) ∗ xx11(nxx)) ∗ delnu;

usdx201(nnu2, nxx, mm1) = (mm1 − 1) ∗ (1/prod(1 : mm1 − 1)) ∗ ((y2(nxx) −
alphax)(mm1− 2))... ∗ (1/(2 ∗ pi)) ∗ ((−1)(mm1− 1)) ∗ (gamma0(nnu2)(mm1−
1))...∗Anu(nnu2)∗exp(−gamma0(nnu2)∗(alphax))∗exp(i∗nu(nnu2)∗xx11(nxx))∗
delnu;

usdx202(nnu2, nxx, mm1) = ((mm1− 1) ∗ (mm1− 2)) ∗ (1/prod(1 : mm1− 1)) ∗
((y2(nxx)−alphax)(mm1−3))∗(1/(2∗pi))∗((−1)(mm1−1))∗(gamma0(nnu2)(mm1−
1))...∗Anu(nnu2)∗exp(−gamma0(nnu2)∗(alphax))∗exp(i∗nu(nnu2)∗xx11(nxx))∗
delnu;

usdx101(nnu2, nxx, mm1) = (i∗nu(nnu2))∗(1/prod(1 : mm1−1))...∗((y2(nxx)−
alphax)(mm1− 1))... ∗ (1/(2 ∗ pi)) ∗ ((−1)(mm1− 1)) ∗ (gamma0(nnu2)(mm1−
1))...∗Anu(nnu2)∗exp(gamma0(nnu2)∗(alphax))∗exp(i∗nu(nnu2)∗xx11(nxx))∗
delnu... + ((mm1 − 1) ∗ y2dx101(nxx)) ∗ (1/prod(1 : mm1 − 1)) ∗ ((y2(nxx) −
alphax)(mm12))...∗(1/(2∗pi))∗((−1)(mm1−1))∗(gamma0(nnu2)(mm1−1))...∗
Anu(nnu2)∗ exp(−gamma0(nnu2)∗ (alphax))∗ exp(i∗nu(nnu2)∗xx11(nxx))∗
delnu;

usdx102(nnu2, nxx, mm1) = (i ∗ nu(nnu2)) ∗ usdx101(nnu2, nxx,mm1)... + (i ∗
nu(nnu2)) ∗ ((mm1− 1) ∗ y2dx102(nxx)) ∗ (1/prod(1 : mm1− 1)) ∗ ((y2(nxx)−
alphax)(mm1− 2))... ∗ (1/(2 ∗ pi)) ∗ ((−1)(mm1− 1)) ∗ (gamma0(nnu2)(mm1−
1))...∗Anu(nnu2)∗exp(gamma0(nnu2)∗(alphax))∗exp(i∗nu(nnu2)∗xx11(nxx))∗
delnu... + (mm1 − 2) ∗ y2dx101(nxx) ∗ (mm1 − 1) ∗ y2dx101(nxx) ∗ (1/prod(1 :
mm1− 1))... ∗ ((y2(nxx)− alphax)(mm1− 3)) ∗ (1/(2 ∗ pi)) ∗ ((−1)(mm1− 1)) ∗
(gamma0(nnu2)(mm1− 1))... ∗ Anu(nnu2) ∗ exp(gamma0(nnu2) ∗ (alphax)) ∗
exp(i∗nu(nnu2)∗xx11(nxx))∗delnu...+(mm1−1)∗y2dx102(nxx)∗ (1/prod(1 :
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mm1− 1)) ∗ ((y2(nxx)− alphax)(mm1− 2)) ∗ (1/(2 ∗ pi)) ∗ ((−1)(mm1− 1)) ∗
(gamma0(nnu2)(mm1− 1))... ∗Anu(nnu2) ∗ exp(−gamma0(nnu2) ∗ (alphax)) ∗
exp(i ∗ nu(nnu2) ∗ xx11(nxx)) ∗ delnu;

usdx1x20101(nnu2, nxx, mm1) = (i ∗ nu(nnu2) ∗ (mm1 − 1) ∗ y2dx101(nxx)) ∗
(1/prod(1 : mm1−1))∗((y2(nxx)−alphax)(mm1−2))∗(1/(2∗pi))∗((−1)(mm1−
1))∗(gamma0(nnu2)(mm1−1))...∗Anu(nnu2)∗exp(gamma0(nnu2)∗(alphax))∗
exp(i ∗ nu(nnu2) ∗ xx11(nxx)) ∗ delnu... + (mm1− 1) ∗ y2dx101(nxx) ∗ (mm1−
2) ∗ y2dx101(nxx) ∗ (1/prod(1 : mm1− 1)) ∗ ...((y2(nxx)− alphax)(mm1− 3)) ∗
(1/(2 ∗ pi)) ∗ ((−1)(mm1 − 1)) ∗ (gamma0(nnu2)(mm1 − 1)) ∗ Anu(nnu2) ∗
exp(−gamma0(nnu2) ∗ (alphax)) ∗ exp(i ∗ nu(nnu2) ∗ xx11(nxx)) ∗ delnu;

end end end

u=ui+sum(sum(us,3)); udx101 = uidx101 + sum(sum(usdx101, 3)); udx201 =
uidx201+sum(sum(usdx201, 3)); udx102 = uidx102+sum(sum(usdx102, 3)); udx202 =
uidx202+sum(sum(usdx202, 3)); udx1x20101 = uidx1x20101+sum(sum(usdx1x20101, 3));

for pp=1:Nxx+1,

F(pp)=(-1.*(y2dx101(pp))∗udx101(pp)+udx201(pp))∗(1/sqrt(1+(y2dx101(pp))2));

Fdx201(pp) = (−udx102(pp)+udx202(pp))∗(1/sqrt(1+(y2dx101(pp))2))...+(−1.∗
(y2dx101(pp)) ∗ udx101(pp) + udx201(pp)) ∗ (−0.5/((1 + (y2dx101(pp))2)1.5));

Fdx101(pp) = (1/sqrt(1 + (y2dx101(pp))2) ∗ ((−(y2dx102(pp)) ∗ udx101(pp) +
y2dx101(pp))∗udx102(pp))+udx1x20101(pp))...+(−1.∗(y2dx101(pp))∗udx101(pp)+
udx201(pp)) ∗ (−0.5 ∗ y2dx102(pp)/((1 + (y2dx101(pp))2)1.5));

Fdn01(pp) = 1/sqrt(1+(y2dx101(pp))2)∗(−y2dx101(pp)∗Fdx101(pp)+Fdx201(pp));

Fds01(pp) = 1/sqrt(1+(y2dx101(pp))2)∗(Fdx101(pp)+y2dx101(pp)∗Fdx201(pp));

end

ax=F; bx=Fdx201;

M0=78; fdirek=-ax./bx; rh=-ax;

for pp=1:Nxx+1, for mm=1:2*M0+1, mat1(pp,mm)=exp(i*(mm-M0-1).*xx11(pp)).*(bx(pp));
end end

cn1=pinv(mat1)*rh.’;

for ppx=1:Nxx+1, for mm=1:2*M0+1, g1(ppx,mm)=cn1(mm)*exp(i*(mm-M0-
1).*xx11(ppx)); end end

y2=y2+(real(sum(g1,2))).’; x2=0; y2dx101 = diff(y2)/delx; y2dx101(121) = 2 ∗
y2dx101(120)−y2dx101(119); y2dx102 = diff(y2dx101)/delx; y2dx102(121) = 2∗
y2dx102(120)− y2dx102(119);

end

frcs=y2; toc beep

figure plot(x1,real(frcs),’k’) hold plot(x1,(fsurr),”) plot(x1,imag(frcs),’g’)

Rough surface definitions

int2 function y1 = int1(x,ak0,P,q,m,Nc1,p1,p2)
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y1=exp(-i*q*(surface1(x,P,p1,p2))).*exp(-i*2*(m-Nc1)*pi*x/P).*(-i*q + i*2* (m-
Nc1)*pi*(surface2(x,P,p1,p2))/P);

function y1 = int2(x,ak0,P,q,qn,m, n, p1, p2)

y1=exp(i*qn ∗ (surface1(x, P, p1, p2))).∗ exp(i∗2∗ (n−m)∗pi∗x/P ).∗ (i∗ qn−
i ∗ 2 ∗ (n−m) ∗ pi ∗ (surface2(x, P, p1, p2))/P );

surface1

function fs=surface1(x,P,p1,p2)

if x¿=-P/2 x¡0 fs=cos(7*pi*x/P).*(exp(-abs(x/6))).*(p1*(1+x/(P/2))); else fs=p1*(exp(-
abs(x/10))).*exp(-1*x/3).*cos(5*pi*x/P); end

if x¿-P/2 x¡0 fs=24*(x/P).*cos(10*pi*x/P).*(exp(-abs(1.*x))).*(p1*(1+x/(P/2)));
elseif x¡P/2-1 x¿=0 fs=26*p1*(x/P).*(exp(-abs(x/2))).*exp(-1.*x).*cos(13.*pi*x/P);
else fs=0.; end

if x¿=-P/2 x¡0 fs=24*(1.2*x/P).*cos(7*pi*x/P).*(exp(-1.2*abs(x))).*(p1*(1+2.*x/(P/2)));
else fs=25*p1*(x/P).*(exp(-1.1*abs(x))).*exp(-x/6).*cos(5*pi*x/P); end

if x¿=-P/2 x¡-P/3 fs=exp(-x.*x/4).*(p1*(1+x/(P/2)))*x; elseif x¿=-P/3 x¡0
fs=exp(-x.*x).*(p1*exp(-1*x).*cos(5*pi*x/P)); elseif x¿=0 x¡P/3 fs=exp(-x.*x).*(p1*exp(-
1*x).*cos(5.*pi*x/P)); else fs=exp(-x.*x).*(p1*exp(-1*x).*cos(5*pi*x/P)); end

if x¿=-P/2 x¡0 fs=p1*cos(2*pi*x/P); else fs=p1*cos(2*pi*x/P); end

if x¿=-P/2 x¡0 fs=(4*p1/P)*(x+P/4); elseif x¿=0 x¡P/2 fs=-(4*p1/P)*(x-
P/4); elseif x¿=P/2 x¡P fs=(4*p1/P)*(x-P+P/4); elseif x¿=P x¡=3*P/2 fs=-
(4*p1/P)*(x-P-P/4); elseif x¿=-P x¡-P/2 fs=-(4*p1/P)*(x+P-P/4); else fs=(4*p1/P)*(x+P+P/4);
end if x¿=-P/2 x¡-P/6 fs=p1/6*sin(2*pi*x/(P/3)); else fs=p1/6*(5/(24/8)-
x/(P/8)); rough7 if x¿=-P/2 x¡-P/6 fs=p1/6*sin(2*pi*x/(P/3)); elseif x¿=-
P/6 x¡P/12 fs=0.; elseif x¿=P/12 x¡P/3 fs=p2/6*(5/(24/8)-x/(P/8)); else
fs=p1/6*(-3+x/(P/6)); end

surface2

function fs1=surface2(x,P,p1,p2)

if x¿=-P/2 x¡0 fs1=sin(7*pi*x/P).*(exp(-abs(x/6))).*(p1*(1+x/(P/2)))*(-7*pi/P)...
+ cos(7*pi*x/P).*(exp(-abs(x/6))).*(p1*(1+x/(P/2)))*(1/6)... + cos(7*pi*x/P).*(exp(-
abs(x/6))).*(p1/(P/2)); else fs1=p1*(exp(-abs(x/10))).*exp(-1*x/3).*cos(5*pi*x/P)*(1/10)...
+p1*(exp(-abs(x/10))).*exp(-1*x/3).*cos(5*pi*x/P)*(-1/3)... +p1*(exp(-abs(x/10))).*exp(-
1*x/3).*sin(5*pi*x/P)*(-5*pi/P); end

if x¿-P/2 x¡0 fs1=24*(1/P).*cos(10*pi*x/P).*(exp(-abs(1.*x))).*(p1*(1+x/(P/2)))...
+24*(x/P).*sin(10*pi*x/P).*(exp(-abs(1.*x))).*(p1*(1+x/(P/2)))*(-10*pi/P)...
+24*(x/P).*cos(10*pi*x/P).*(exp(-abs(1.*x))).*(p1*(1+x/(P/2)))... +24*(x/P).*cos(10*pi*x/P).*(exp(-
abs(1.*x))).*(p1*(1+x/(P/2)))*(p1*2/P); elseif x¡P/2-1 x¿=0 fs1=26*p1*(1/P).*(exp(-
abs(x/2))).*exp(-1.*x).*cos(13.*pi*x/P)... +26*p1*(x/P).*(exp(-abs(x/2))).*exp(-
1.*x).*cos(13.*pi*x/P)*(-1/2)... +26*p1*(x/P).*(exp(-abs(x/2))).*exp(-1.*x).*cos(13.*pi*x/P)*(-
1)... +26*p1*(x/P).*(exp(-abs(x/2))).*exp(-1.*x).*sin(13.*pi*x/P)*(-13*pi/P);
else fs1=0.; end

if x¿=-P/2 x¡0 fs1=24*cos(7*pi*x/P).*(exp(-1.2*abs(x))).*(p1*(1+2.*x/(P/2)))*(1.2/P)...
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+24*(1.2*x/P).*sin(7*pi*x/P).*(exp(-1.2*abs(x))).*(p1*(1+2.*x/(P/2)))*(-7*pi/P)...
+24*(1.2*x/P).*cos(7*pi*x/P).*(exp(-1.2*abs(x))).*(p1*(1+2.*x/(P/2)))*(1.2)...
+24*(1.2*x/P).*cos(7*pi*x/P).*(exp(-1.2*abs(x))).*(4*p1/P); else fs1=25*p1*(exp(-
1.1*abs(x))).*exp(-x/6).*cos(5*pi*x/P)*(1/P)... +25*p1*(x/P).*(exp(-1.1*abs(x))).*exp(-
x/6).*cos(5*pi*x/P)*(-1.1)... +25*p1*(x/P).*(exp(-1.1*abs(x))).*exp(-x/6).*cos(5*pi*x/P)*(-
1/6)... +25*p1*(x/P).*(exp(-1.1*abs(x))).*exp(-x/6).*cos(5*pi*x/P)*(5*pi/P);
end

if x¿=-P/2 x¡-P/3 fs=exp(-x.*x/4).*(p1*(1+x/(P/2))); fs1=exp(-x.*x/4).*(p1/((P/2)))*x+(-
2*x/4)*exp(-x.*x/4).*(p1*(1+x/(P/2))) x+exp(-x.*x/4).*(p1*(1+x/(P/2)));; el-
seif x¿=-P/3 x¡0 fs=exp(-x.*x).*(p1*exp(-1*x).*cos(5*pi*x/P)); fs1=(-2*x)*exp(-
x.*x).*(p1*exp(-1*x).*cos(5*pi*x/P))+(-1)*exp(-x.*x).* (p1*exp(-1*x).*cos(5*pi*x/P))+(-
5*pi/p)*exp(-x.*x).*(p1* exp(-1*x).*sin(5*pi*x/P)); elseif x¿=0 x¡P/3 fs=exp(-
x.*x).*(p1*exp(-1*x).*cos(5.*pi*x/P)); fs1=(-2*x)*exp(-x.*x).*(p1*exp(-1*x).*cos(5*pi*x/P))+(-
1)*exp(-x.*x).* (p1*exp(-1*x).*cos(5*pi*x/P))+(-5*pi/p)*exp(-x.*x).*(p1* exp(-
1*x).*sin(5*pi*x/P)); else fs1=(-2*x)*exp(-x.*x).*(p1*exp(-1*x).*cos(5*pi*x/P))+(-
1)*exp(-x.*x).* (p1*exp(-1*x).*cos(5*pi*x/P))+(-5*pi/p)*exp(-x.*x).*(p1* exp(-
1*x).*sin(5*pi*x/P)); end

if x¿=-P/2 x¡0 fs1=p1*(-2.*pi/P)*sin(2*pi*x/P); else fs1=p1*(-2.*pi/P)*sin(2*pi*x/P);
end

if x¿=-P/2 x¡0 fs1=(4*p1/P); elseif x¿=0 x¡P/2 fs1=-(4*p1/P); elseif x¿=P/2
x¡P fs1=(4*p1/P); elseif x¿=P x¡=3*P/2 fs1=-(4*p1/P); elseif x¿=-P x¡-P/2
fs1=-(4*p1/P); else fs1=(4*p1/P); end

if x¿=-P/2 x¡-P/6 fs1=p1/6*(2*pi/(P/3))*cos(2*pi*x/(P/3)); else fs1=p1/6*(-
1/(P/8)); rough7 if x¿=-P/2 x¡-P/6 fs1=p1/6*(2*pi/(P/3))*cos(2*pi*x/(P/3));
elseif x¿=-P/6 x¡P/12 fs1=0.; elseif x¿=P/12 x¡P/3 fs1=p2/6*(-1/(P/8)); else
fs1=p1/6*(1/(P/6)); end
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