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BAYESIAN COMPRESSIVE SENSING APPROACH
FOR ULTRA-WIDEBAND CHANNEL ESTIMATION

SUMMARY

Ultra-Wideband (UWB) impulse radio (IR) is an emerging technology for wireless
communications. Owing to distinguishing properties such as having low transmit
power, low-cost simple structure, immunity to flat fading and capability of resolving
multipath components individually with good time resolution, UWB-IRs have been
selected as the physical layer structure of Wireless Personal Area Network (WPAN)
standard IEEE 802.15.4a for location and ranging, and low data rate applications. In
the implementation of UWB-IRs, one of the main challenges is the channel estimation.
Due to ultra-wide bandwidth of UWB-IRs, the main disadvantage of implementing the
conventional maximum likelihood (ML) channel estimator is that very high sampling
rates, i.e., very high speed analog-to-digital (A/D) converters are required for precise
channel estimation.

Reconstruction of sparse signals with a sampling rate significantly lower than Nyquist
rate is possible with compressive sensing (CS). Due to the sparse structure of UWB
channels, compressive sensing can be used for UWB channel estimation in order to
overcome the high-rate sampling problem. Among various implementations of CS,
the inclusion of Bayesian framework has shown potential to improve signal recovery
as statistical information related to signal parameters is considered. Accordingly, the
application of Bayesian CS (BCS) approach to the estimation of sparse UWB channels
is considered in this study.

In this thesis, the channel estimation performance of BCS is studied for various UWB
channel models and noise conditions. Specifically, the effects of (i) sparse structure of
standardized IEEE 802.15.4a channel models, (ii) signal-to-noise ratio (SNR) regions,
and (iii) number of measurements on the BCS channel estimation performance are
investigated, and they are compared to the results of ℓ1-norm minimization based
estimation, which is widely used for sparse channel estimation. Furthermore, a lower
bound on mean-square error (MSE) is provided for the biased BCS estimator and it is
compared with the MSE performance of implemented BCS estimator. Moreover, the
computation efficiencies of BCS and ℓ1-norm minimization are investigated in terms
of computation time by making use of the big-O notation.

The study shows that BCS exhibits superior performance at higher SNR regions
for adequate number of measurements and sparser channel models (e.g., CM-1 and
CM-2). Furthermore, BCS is found to be computationally more efficient compared
to ℓ1-norm minimization. Based on the results of this thesis, the BCS method or the
ℓ1-norm minimization method can be preferred over the other one for different system
implementation conditions.
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ULTRA GENİŞ BANT KANAL KESTİRİMİ İÇİN
BAYES SIKIŞTIRILMIŞ ALGILAMA YAKLAŞIMI

ÖZET

Ultra geniş bant dürtü radyosu, kablosuz haberleşme için yeni gelişen bir teknolojidir.
Amerika Birleşik Devletleri’nde haberleşme alanında düzenleyici kuruluş olan
Federal Haberleşme Komisyonu (FCC) tarafından ultra geniş bant teknolojisiyle ilgili
düzenlemeler yapıldıktan sonra öncelikle IEEE 802.15.3 standardı görev grubu, ultra
geniş bant dürtü radyolarıyla yüksek hızlı kablosuz kişisel alan ağı uygulamaları için
yeni bir fiziksel katman yapısı oluşturulması amacıyla 802.15.3a çalışma grubunu
kurmuştur. Ultra geniş bant veri iletiminde iletim uzaklığındaki artış, veri hızında
düşüşe neden olur. Bu doğrultuda IEEE 802.15.4 standardı görev grubu, ultra
geniş bant dürtü radyolarıyla düşük hızlı fakat iletim uzaklığı daha büyük olan
kablosuz kişisel alan ağı uygulamaları için yeni bir fiziksel katman yapısı oluşturulması
amacıyla 802.15.4a çalışma grubunu kurmuştur. Bu çalışma grubu, özellikle ortalama
bir veri hızı fakat düşük güç tüketimi, karmaşıklık ve maliyet gerektiren sensör ağı
uygulamaları gibi uygulamalar üzerinde çalışmalarını yoğunlaştırmıştır. Bu çalışmada
IEEE 802.15.4a bünyesindeki çeşitli ultra geniş bant kanal modellerinin kestirimi
üzerine odaklanılmıştır.

Düşük iletim gücü, düşük maliyetli basit yapı, düz sönümlemeye karşı bağışıklık ve
çokyollu bileşenleri iyi bir zaman çözünürlüğüyle ayrı ayrı çözme yeteneği gibi ayırt
edici özelliklere sahip olması dolayısıyla ultra geniş bant dürtü radyoları, konumlama,
uzaklık belirleme ve düşük veri hızlı uygulamalar için belirlenen kablosuz kişisel
alan ağı IEEE 802.15.4a standardının fiziksel katman yapısı olarak seçilmiştir. Ultra
geniş bant dürtü radyolarının gerçekleştiriminde karşılaşılan temel zorluklardan biri
de kanal kestirimidir. Kanal karakteristikleri hakkında doğru bir bilgiye sahip olmak,
haberleşme açısından etkin bir veri iletimi gerçekleştirmek ve sistem performansını
artırmak için oldukça önemlidir. Bu nedenle kanal dürtü yanıtı hakkında bilgi edinmek
için kanal kestirimi gereklidir. Ultra geniş bant dürtü radyolarının bantgenişliğinin çok
fazla olması dolayısıyla, kanal kestiriminde klasik en büyük olabilirlik kestirimcisinin
kullanılmasının başlıca dezavantajı, hassas bir kanal kestirimi için Nyquist kriterine
göre alıcıdaki örnekleme işleminde çok yüksek örnekleme oranlarına, bir başka
ifadeyle çok yüksek hızlı analog-sayısal dönüştürücülere ihtiyaç duyulmasıdır. Bu
durum alıcıda devre karmaşıklığının ve maliyetin artmasına neden olur.

Yüksek örnekleme oranı gerektiren bu ultra geniş bant kanal kestirimi probleminin
üstesinden gelmek için sıkıştırılmış algılama kullanılabilir. Sıkıştırılmış algılama
yöntemi, Nyquist oranından önemli ölçüde daha düşük bir örnekleme oranıyla seyrek
sinyallerin geri elde edilmesini mümkün kılmaktadır. Seyrek sinyal ifadesi en basit
anlamda, bir çok bileşeni sıfır veya sıfıra yakın olan bir başka ifadeyle çok az
bileşeni sıfırdan farklı olan sinyaller için kullanılan bir ifadedir. Alıcıda ard arda
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alınan ultra geniş bant sinyaller kayda değer bir zaman gecikmesiyle alıcıya ulaştığı
ve alıcıda ayrı ayrı çözülebildiği için ultra geniş bant çokyollu kanallar için seyrek
yapıya sahip olma varsayımı yaygın kabul görmüştür. Ultra geniş bant kanalların bu
özelliği nedeniyle sıkıştırılmış algılama yöntemi, yüksek örnekleme oranı probleminin
üstesinden gelmek için ultra geniş bant kanal kestiriminde kullanılabilir. Böylece
sıkıştırılmış algılama ile alıcının yüksek maliyeti, karmaşıklığı ve güç tüketimi
azaltılarak daha basit yapıda bir alıcı, ultra geniş bant sistemde kullanılabilir.

Sıkıştırılmış algılama literatüründe, aynı zamanda basis pursuit (BP) olarak da
bilinen ℓ1-norm enküçültme ve matching pursuit (MP) olmak üzere seyrek sinyal
geri elde ediniminde kullanılan 2 temel algoritma vardır. Literatürde aynı zamanda
bu algoritmaların basis pursuit de-noising (BPDN), orthogonal matching pursuit
(OMP), stagewise orthogonal matching pursuit (StOMP) ve compressive sampling
matching pursuit (CoSaMP) gibi çeşitli türevleri de bulunmaktadır. Son yıllarda Bayes
yapının sıkıştırılmış algılama teorisine uygulanmasıyla birlikte, Bayes tabanlı çeşitli
sıkıştırılmış algılama algoritmaları, sıkıştırılmış algılama literatürünün bir parçası
olmaya başlamıştır. Bu tezde kullanılacak olan Bayes sıkıştırılmış algılama algoritması
da bunlardan biridir. Sıkıştırılmış algılamanın bu çeşitli gerçekleştimlerinin
arasında Bayes yapının katkısı, ilgili sinyalin istatistiksel özellikleri de göz
önünde bulundurulduğundan sinyal geri elde ediniminin iyileştirilmesi açısından
önemli bir potansiyel göstermiştir. Bu doğrultuda, Bayes sıkıştırılmış algılama
yaklaşımının seyrek ultra geniş bant kanalların kestirimine uygulanması bu çalışma
ile gerçekleştirilmiştir.

Bu tezde gerçeğe uygun çeşitli ultra geniş bant kanal modelleri için Bayes
sıkıştırılmış algılamanın kanal kestirim performansı incelenmiştir. Özellikle Bayes
sıkıştırılmış algılama modelini doğrudan etkilediği için analiz açısından önemli olan
(i) standartlaştırılmış IEEE 802.15.4a kanal modellerinin seyrek yapılarının, (ii)
işaret-gürültü oranı seviyelerinin ve (iii) ölçüm sayısının çeşitli senaryolar için Bayes
sıkıştırılmış algılama kanal kestirim performansı üzerindeki etkileri araştırılmış ve bu
sonuçlar seyrek sinyal kestirimi için yaygın olarak kullanılan ℓ1-norm enküçültme
tabanlı kestirim sonuçlarıyla karşılaştırılmıştır.

Sıkıştırılmış algılama tabanlı ultra geniş bant kanal kestiriminde önemli rol oynayan
ultra geniş bant kanalların seyrek yapıya sahip olma varsayımı, kanal ortamları
incelenerek doğrulanmalıdır. Bu nedenle tezde, çeşitli kanal ortamlarını modelleyerek
oluşturulmuş ve ultra geniş bant araştırma çalışmalarında yaygın olarak kullanılan
IEEE 802.15.4a standardı bünyesindeki kanal modeli-1, kanal modeli-2, kanal
modeli-5 ve kanal modeli-8 olmak üzere 4 farklı kanal modeli göz önünde
bulundurulmuştur. Kısaca bu kanal modellerinin belirgin karakteristikleri özetlenecek
olursa:

Kanal modeli-1, alıcı verici arasında doğrudan görüşün (LOS) olduğu konut içi ortamı
temsil eden ve IEEE 802.15.4a standardı bünyesindeki en seyrek yapıya sahip olan
kanal modelidir.

Kanal modeli-2, alıcı verici arasında doğrudan görüşün olmadığı (NLOS) konut içi
ortamı temsil eden kanal modelidir. Kanal modeli-2 de kanal modeli-1 gibi seyrek
yapıya sahiptir fakat kanal modeli-1’e kıyasla daha fazla çokyollu bileşene sahiptir.
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Kanal modeli-1 ve kanal modeli-2’nin temsil ettikleri ortam, kısa mesafedeki güvenlik
ve ölçüm sensörlerinin bulunduğu ev ağları için oldukça önemlidir.

Kanal modeli-5, alıcı verici arasında doğrudan görüşün olduğu kapalı olmayan (açık
alan) ortamı temsil eden kanal modelidir. Kanal modeli-1 ve kanal modeli-2’ye göre
oldukça düşük seyrekliğe sahiptir. Bu kanal modelinde çokyollu bileşenler genellikle
birkaç küme halindedir.

Kanal modeli-8, alıcı verici arasında doğrudan görüşün olmadığı endüstriyel ortamı
temsil eden kanal modelidir. Ortam bir çok metal yansıtıcılarla dolu geniş fabrika
holleri tarafından karakterize edilir. Böylesi bir ortam çok yoğun şekilde çokyollu
bileşenlerin oluşmasına neden olur. Bu sebeple kanal modeli-8, seyrek kanal modeli
olarak tanımlanamaz. Dolayısıyla bu 4 kanal modeli içinde en az seyrek yapıya sahip
kanal modelidir.

Kestirim problemleri analizinde, olabilecek en iyi kestirimci hata performansını
belirlemek, performans analizi için önemlidir. Performans alt sınırları da bu
en iyi kestirimcinin hata performansını gösterdiği için gerçeklenen kestirimcinin
hata performansının değerlendirilmesi açısından önemli bir değerlendirme ölçütüdür.
Cramér-Rao alt sınırı yanlı olmayan (unbiased) kestirimciler için yaygın olarak
kullanılan bir performans sınırıdır. Gerçekte Cramér-Rao alt sınırı, yanlı olmayan
kestirimcilerin toplam varyansı üzerindeki bir alt sınırdır. Bununla birlikte yanlı
olmayan kestirimciler için ortalama karesel hata varyansa eşit olduğu için, Cramér-Rao
alt sınırı aynı zamanda kestirim hatası üzerindeki bir alt sınırdır. Ancak, bu çalışmada
ultra geniş bant kanal kestirimi için önerilen Bayes sıkıştırılmış algılama kestirimcisi,
Bayes bir kestirimci olmasının yanı sıra aynı zamanda yanlı (biased) bir kestirimcidir.
Dolayısıyla kestirim hatası üzerinde değerlendirme ölçütü olarak bir performans
alt sınırı belirlemek, Bayes sıkıştırılmış algılama kestirimcisinin performans analizi
açısından önemlidir. Literatürde var olan sonsal (Posterior) Cramér-Rao alt sınırı veya
Bayes Cramér-Rao alt sınırı, yanlı olmayan Bayes kestirimcilerin kestirim hatası değil
de varyansları üzerindeki bir alt sınırdır. Cramér-Rao alt sınırına ek olarak sonsal
Cramér-Rao alt sınırı için Bayes yapıdan dolayı kestirilecek parametre vektörüne
ilişkin önsel (prior) olasılık dağılımı da göz önünde bulundurulur. Bu nedenle, bu
çalışmada doğrusal yanlılık vektörlerine sahip yanlı Bayes kestirimciler için parametre
vektörüne ilişkin önsel olasılık dağılımına ek olarak yanlılık terimi de göz önünde
bulundurularak ortalama karesel hata üzerinde bir alt sınır sağlanmış ve bu ortalama
karesel hata alt sınırı, gerçeklenen Bayes sıkıştırılmış algılama kestirimcisinin kanal
kestirim performansıyla karşılaştırılmıştır. Dahası Bayes sıkıştırılmış algılama ve
ℓ1-norm enküçültme yöntemlerinin işlemsel verimliliği büyük-O notasyonundan
faydalanılarak işlem sürelerine göre incelenmiştir.

Çalışma sonucunda, Bayes sıkıştırılmış algılamanın yüksek işaret-gürültü oranı
seviyelerinde yeterli sayıda ölçüm ve seyrek kanal modelleri (kanal modeli-1 ve
kanal modeli-2) için ℓ1-norm enküçültme yöntemine kıyasla üstün bir performans
sergilediği görülmüştür. Ayrıca ℓ1-norm enküçültme yöntemiyle karşılaştırıldığında,
Bayes sıkıştırılmış algılama yönteminin işlemsel olarak daha verimli olduğu sonucu
çıkarılmıştır. Bu tezin sonuçları göz önünde bulundurulduğunda, farklı sistem
gerçekleştirim durumları için Bayes sıkıştırılmış algılama yöntemi veya ℓ1-norm
enküçültme yöntemi diğerinin yerine tercih edilebilir.
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1. INTRODUCTION

1.1 Motivation of the Thesis

In the last decade, there have been significant developments and advances in wireless

communications which have become extensively a part of our lives nowadays.

Moreover, demands on the wireless services have been increasing day by day with

the technological advancements in communications. However, due to the limited

structure of the electromagnetic spectrum, crowdedness of existing frequency bands

with licensed systems and the growing demands on wireless services, newly developed

systems have encountered important challenges such as frequency allocation in

the spectrum. Therefore in recent years, efficient usage of the spectrum with

spectrum sharing techniques have received great interest. To address this issue,

ultra-wideband (UWB) impulse radio (IR) [1], an emerging technology in wireless

communications, has received great interest from both academia and industry [2]

owing to features such as low interference when sharing the spectrum with licensed

systems due to its ultra-wide bandwidth and transmission with low power spectral

density. This short-range wireless technology will play an important role in networks

where everybody and everything in that short-range is connected each other with

communication links. Low power consumption, low complexity and low cost

transceiver structure, accurate ranging and positioning capabilities, high data rates,

capability of resolving multipath components individually with fine time resolution

due to its ultra-wide bandwidth, low probability of intercept and detection, immunity

to interference, low susceptibility to multipath fading and superior material penetrating

capability are remarkable features of the UWB technology.

Considering the distinguishing properties that are mentioned above, there are different

applications of UWB in various fields such as through-wall [3] and in-wall detection,

ground penetrating radar [4], medical imaging [5], construction and home repair
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imaging, mining, surveillance systems [6] in radar imaging field; collision avoidance

[7], roadside assistance [8] in vehicular radar imaging field; positioning, locating

objects, monitoring infrastructure, perimeter intrusion detection in Wireless Sensor

Networks (WSNs) [9], medical information gathering with body attached sensors in

Wireless Body Area Networks (WBANs) [10] and high rate data communications with

high wireless connectivity, location and ranging in Wireless Personal Area Networks

(WPANs) in UWB communications field. In addition to these applications, the features

that are mentioned above also make the use of UWB an attractive choice for future

wireless applications.

Historically, the development of UWB is speeded up with the development of

the sampling oscilloscope in the early 1960s and the corresponding techniques for

generating sub-nanosecond baseband pulses [11]. Henning F. Harmuth at Catholic

University of America and Gerald F. Ross and Kenneth W. Robins at Sperry Rand

Corporation whose works accelerated the development of UWB, are some of the

important pioneers of the modern UWB communications in the United States from

the late 1960’s. Gerald F. Ross became the owner of the first U.S. patent for

UWB communications in 1973 [12]. Between the 1960’s and the late 1990’s, the

development and applications of UWB were restricted to the military and works

funded by the U.S. Department of Defense classified programs. Due to precise

positioning capability and low probability of interception and detection, radar and

high secure communication applications constitutes the military applications, where

the term "ultra-wideband" was used by U.S. Department of Defense in 1989 for the

first time. The commercial usage of UWB communication has started up in the late

1990s with the chipsets called PulsON and Trinity that developed by the Time Domain

and XtremeSpectrum companies, respectively [11]. Thus, UWB technology has taken

place in commercial applications as well as in military applications and it has been

gaining more importance gradually.

UWB-IRs have been selected as the physical layer structure of WPAN standard IEEE

802.15.4a for location and ranging, and low data rate applications [13] owing to the

remarkable properties that are specified above. In the implementation of UWB-IRs,

one of the main challenges is the channel estimation. It is important to identify accurate
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characteristics of the channel for the communication in order to realize an effective

transmission and to improve the system performance. Accordingly, channel estimation

is essential to acquire information about the channel impulse response. However, due

to ultra-wide bandwidth of UWB-IRs, the main disadvantage of implementing the

conventional maximum likelihood (ML) channel estimator [14, 15] is that very high

sampling rates, i.e., very high speed analog-to-digital (A/D) converters are required

for precise channel estimation and this causes the increasing of circuit complexity and

cost at the receiver.

In order to overcome the high-rate sampling problem, compressive sensing (CS)

theory proposed in [16–18] can be considered for UWB channel estimation. CS is

a promising paradigm in signal processing, where a signal that is sparse in a known

transform domain can be recovered with high probability from a set of random linear

projections with much fewer measurements than usually required by the dimensions of

this domain. As the received sequential UWB pulses arrive with a considerable time

delay and can be resolved individually at the receiver, sparse structure assumption is

widely accepted for UWB multipath channels. This property of UWB channels, makes

the applicability of CS for the channel estimation possible.

There are state of the art algorithms such as ℓ1-norm minimization, also referred

to as basis pursuit (BP), and matching pursuit (MP) which are used for the signal

recovery in the CS literature. Also, variations of these algorithms such as basis

pursuit de-noising (BPDN) (for the noisy case of BP), orthogonal matching pursuit

(OMP), stagewise orthogonal matching pursuit (StOMP) and compressive sampling

matching pursuit (CoSaMP) have been studied in the literature. In recent years,

Bayes’ theorem based CS algorithms have begun taking a part of CS literature with

the application of Bayesian framework in CS theory, where Bayesian CS (BCS) is one

of these algorithms. BCS exploits statistical information of the unknown signal for

the estimation unlike the non-Bayes based algorithms that are mentioned above. Prior

knowledge of the unknown signal is used in BCS. Hence in this thesis, the application

of BCS to UWB channel estimation is realized and the improvement of UWB channel

estimation performance is investigated by using BCS and compared to the ℓ1-norm

minimization method, which is widely used method in CS based estimation.
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Earlier works on UWB channel estimation and CS theory related to the content of this

thesis are given in the next section.

1.2 Literature Review

Due to the high speed A/D converters requirement, reducing the complexity and cost

of the receiver is the main concern in UWB-IR system design. Consequently, CS based

UWB transceiver design and CS based UWB channel estimation topics have received

great interest recently. In [19–22], CS based transceiver design is investigated, where

the main purpose is the detection of the UWB signal with low sampling rate compared

to Nyquist rate with the negligible performance deterioration and eventually reduction

of the complexity and cost of the system. On the other hand, the CS theory which is

proposed for sparse signal reconstruction can be applied for sparse channel estimation

in communications [23, 24]. UWB multipath channels are qualified as having sparse

structure since the received sequential UWB pulses arrive with a considerable time

delay on account of having low duty-cycle. Accordingly, CS has been exploited for

UWB channel estimation [25–28]. In [25], a channel detection and estimation method

based on the MP algorithm is proposed. In [26], a pre-filtering method based on the

OMP algorithm is proposed for UWB channel estimation. In [27], novel CS-based

data detection and channel estimation approaches for UWB-IR systems are proposed

by using MP and BPDN algorithms. In [28], the conventional ℓ1-norm minimization

method has been used for the estimation of different UWB channel models.

Among various implementations of CS, one approach has been to include the Bayesian

model. Considering the sparse Bayesian model in [29], a Bayesian framework has

been developed for CS in [30]. In [31], a hierarchical form of Laplace priors on

signal coefficients is taken into consideration for BCS. Both of the frameworks have

shown potential to improve signal recovery as the posterior density function over the

associated sparse channel coefficients is considered. In [32], a Turbo BCS algorithm

for sparse signal reconstruction through exploiting and integrating spatial and temporal

redundancies in multiple sparse signal reconstruction is proposed. In [33], the Laplace

prior based BCS algorithm in [31] has been modified for joint reconstruction of

received sparse signals and channel parameters for multiuser UWB communications.
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In [34], the proposed approach in [30] is considered for UWB channel estimation,

where BCS estimation results are compared to the ℓ1-norm minimization results.

However, the effects of UWB channel models (i.e., sparsity condition) or additive noise

level (i.e., Bayesian approach depends on the statistical information about channel

parameters and additive noise) on the channel estimation performance have not been

considered in [34]. These effects should be also quantified to generalize the CS based

UWB channel estimation results.

1.3 Purpose of the Thesis

Motivated by investigating the factors that affect the performance of BCS in

realistic UWB channels, the effects of (i) sparse structure of standardized IEEE

802.15.4a channel models, (ii) signal-to-noise ratio (SNR) regions, and (iii) number

of measurements on the channel estimation performance are studied in this thesis.

These factors are important to analyze as sparsity, noise level and measurements

directly affect the BCS model. Accordingly, BCS channel estimation performance

for various scenarios is compared to the ℓ1-norm minimization based estimation,

which is a method widely used for sparse channel estimation. Furthermore, it is

important to specify a lower bound on the estimation error as a benchmark for

the performance analysis of BCS estimators. Posterior Cramér-Rao lower bound

(PCRLB), also referred to as the Bayesian CRLB, is a widely used bound that defines

a lower bound on the mean-square error (MSE) of unbiased Bayesian estimators [35].

Indeed, CRLB is a lower bound only on the total variance of unbiased estimators [36],

where MSE becomes equal to the variance for unbiased estimators. However, for

biased estimators the bias term should be taken into account in addition to the variance

of the estimator. By considering the bound in [37], an MSE lower bound will be

presented for biased Bayesian estimators with linear bias vectors to compare with the

actual channel estimation performance of BCS. In addition, computation efficiency of

BCS over the ℓ1-norm minimization will be justified in terms of computation time

by making use of the big-O notation. The comparison results provided are important
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in order to define the conditions where BCS may be preferred over the conventional

ℓ1-norm minimization method.

1.4 Preview of the Thesis

In this first chapter, motivation of the thesis, literature review related to the subject of

the thesis and the purpose of the thesis are presented. The rest of the thesis is organized

as follows. In Chapter 2, basics of UWB communications are given in brief and IEEE

802.15.4a channel models that are widely used in UWB communications are explained.

In Chapter 3, the overview of CS theory, ℓ1-norm minimization, Bayesian model and

their applications to UWB channel estimation are presented. In Chapter 4, an MSE

performance bound for a biased BCS estimator is provided. In Chapter 5, simulation

results for performance comparison are presented and also computation efficiencies of

both BCS and ℓ1-norm minimization are compared. Concluding remarks are given in

Chapter 6.
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2. ULTRA-WIDEBAND COMMUNICATIONS

2.1 Overview of Ultra-Wideband Communications

UWB is a promising technology and has a significant potential for short-range wireless

communications due to its notable properties such as having high date rates, very good

time resolution which allows precise positioning and ranging applications, immunity

to multipath fading, low processing power and potential of allowing simple and low

cost transceiver structure. Accordingly, these remarkable properties make UWB an

attractive choice for applications of commercial communications [38]. Since interest

in the commercialization of UWB systems has increased gradually from the late 1990s

as mentioned in the Introduction chapter, frequency allocation for the UWB systems

in the spectrum becomes an important issue due to their ultra-wide bandwidth range.

Especially, developers of UWB systems began pressuring the Federal Communications

Commission (FCC) that is the regulatory body in U.S., to approve regulatory review

of UWB for commercial usage. Consequently, the FCC report [39] which included the

authorization of different commercial unlicensed uses of UWB in the frequency range

of 3.1−10.6 GHz for communications appeared in April 2002. According to the FCC

rulings, a transmission which is realized with signals that has bandwidth (BW) greater

than 500 MHz or fractional bandwidth (B f ) equal or greater than 0.2 is defined as an

UWB transmission.

BW > 500 MHz or B f ≥ 0.2 (2.1)

The fractional bandwidth is expressed as the ratio of signal bandwidth to center

frequency ( fc) [39]

B f =
BW
fc

=
( fH − fL)

( fH + fL)/2
, (2.2)

where fH and fL are the upper and lower frequencies, respectively, at -10dB below the

peak emission point. For the various regions of the spectrum, different allowed power

spectral densities should be determined in order to avoid interference with existing
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communication systems. Hence, the FCC has assigned allowed effective isotropic

radiated power (EIRP), which is the power radiated by an omnidirectional antenna

with gain 1, limit for frequency bands of UWB [40]. Accordingly, for the UWB

communication systems, FCC radiation limit is determined as −41.3 dBm/MHz (75

nW/MHz) in the frequency range of 3.1−10.6 GHz [39]. This is the limit (FCC Part

15 limit) of interference to the existing communication systems and also the limit of

protection from the existing radio services. For this purpose, FCC has assigned two

spectral masks for the indoor and outdoor UWB communication systems which are

given in Figures 2.1 and 2.2, respectively.
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Figure 2.1 : FCC spectral mask for indoor UWB communication systems.

While the radiation limits in the 3.1−10.6 GHz frequency range are the same for both

indoor and outdoor masks, the only difference is in the 1.61−3.1 GHz frequency range

where the indoor radiation limit is 10dB greater than the outdoor radiation limit. For

particular susceptible frequency bands such as the global positioning system (GPS)

band (0.96− 1.16 GHz), although the radiation limit is the same for both indoor and

outdoor UWB systems, it is much lower compared to Part 15 limit in order to minimize
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Figure 2.2 : FCC spectral mask for outdoor UWB communication systems.

the interference with GPS. A comparison of spectrum allocations of UWB and existing

narrowband wireless communication systems with respect to emitted signal power is

given in Figure 2.3. It is seen from the figure that the signal power of UWB systems is

significantly lower than the other narrowband systems.

Figure 2.3 : Spectrum of UWB and existing narrowband communication systems [41].

After the FCC regulations, standardization works on the UWB technology has speeded

up. UWB technology offers significant potential for wireless communication systems:

(i) high data rate short-range communications (high data rate WPANs), (ii) low
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data rate mid-range communications (low data rate WPANs, positioning and sensor

networks). 802.15.3 standard task group of IEEE, has established the 802.15.3a study

group (TG3a) in order to characterize a new physical layer notion for high data rate

WPAN applications. In the UWB transmission, an increasement in transmission range

is provided with trading a reduction in data rate. Accordingly, IEEE 802.15.4 standard

task group has also established the 802.15.4a study group (TG4a) to characterize a new

physical layer notion for low data rate WPAN applications. The study group addressed

applications which require moderate data rate but low power consumption and low

complexity and cost, such as sensor network applications [41]. This study is focused

on the estimation of UWB channels which are involved in IEEE 802.15.4a standard.

In the UWB communications, ultra-short pulses, whose time durations on the order of

nanoseconds, with relatively low energy are used for the transmission of information.

IR refers to the generation of a sequence of these ultra-short (impulse-like) waveforms

(also referred to as monocycles). Since these ultra-short pulses are used, UWB

signals have low sensitivity to multipath fading, which occurs when a modulated

signal arrives at a receiver from different paths. Thus, these dense reflected paths

can be resolved with fine time resolution at the receiver and it provides rich multipath

diversity. The data which will be transmitted, is modulated directly into the sequence

of ultra-short pulses. Data can be modulated using modulation techniques such as

binary phase shift keying (BPSK) also known as bi-phase modulation or pulse position

modulation (PPM) which are widely used in UWB communications. This type of

signal tranmission does not require a carrier since the pulse can propagate well in the

radio channel. Therefore, such a transmission enables the low complexity and low cost

of UWB systems with low power consumption by eliminating up/down-conversion

processes and radio frequency (RF) mixing stage which are required in conventional

radio technology [41].

Monocycle can be any pulse shape whose spectrum satisfies the FCC spectral

requirements for UWB signals. The Gaussian pulses and its higher order derivatives

are frequently used in the UWB systems as they can be easily generated by pulse

generators (in comparison with the rectangular pulses that have very short rise and fall

time). A typical widely used UWB pulse shape, which is the second derivative of a
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Gaussian monocycle given in Figure 2.4, can be expressed as [1]

p(t) = A

(
1−4π

[
t −µ

dw

]2
)

exp

(
−2π

[
t −µ

dw

]2
)
, (2.3)

where A is the amplitude of the pulse, µ denotes the location of the pulse center and

dw is the parameter that determines the pulse width.
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Figure 2.4 : A typical UWB pulse shape.

In BPSK modulation, the binary data is encoded in the polarity of the pulses. A BPSK

modulated signal shown in Figure 2.5, can be expressed as

s(t) =
∞

∑
i=−∞

ai p(t − kTf ), (2.4)

where ai ∈ {+1,−1} denotes the polarity of the modulated pulse and Tf is the frame

duration and also known as pulse repetition interval. If the information bit is 1, ai

becomes +1; otherwise if the information bit is 0, ai becomes −1.

Figure 2.5 : An UWB BPSK modulated signal.

However, the most preferable modulation technique is PPM in the UWB literature [41].

In the UWB-IR transmission, the pulses are sent at regular time intervals from the

transmitter and due to this pulse repetition in time, peaks called "spectral lines" or
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"comb lines" appear in the power spectral density of transmitted UWB signal at the

locations which are multiples of the inverse of pulse repetition interval [42]. Since

these peaks exceeds the FCC Part 15 limit easily and causes interference with the other

operating communication systems, they are undesirable. PPM minimizes these spectral

peaks by encoding tha data in the fine time shift of the pulses. Since the information is

carried with the positions of pulses in PPM, it is less sensitive to noise than BPSK. An

M-ary PPM modulated signal shown in Figure 2.6, can be expressed as

s(t) =
∞

∑
i=−∞

p(t − iTf −miTd), (2.5)

where mi ∈ {0,1, ...,M − 1} is the ith M-ary symbol and Td denotes the modulation

time shift.

Figure 2.6 : An UWB 4-ary PPM modulated signal.

In Figure 2.7, a transmitted PPM modulated UWB signal, which has low duty cycle

pulses, is given when Tf = 20ns. Due to the low duty cycle nature of pulses, it is seen

from the figure that the transmitted signal has a sparse structure.

This UWB signal, which is sent from the transmitter, reaches to the receiver after

passing through the UWB channel. The signal is corrupted with destructive effects

such as fading and noise in the channel. Mathematically, the transmitted modulated

signal is convolved with channel impulse response (CIR) and noise is added to the

signal, when it arrives the receiver antenna. This received signal can be expressed as

r(t) =
∞∫

−∞

s(l)h(t − l)dl +n(t), (2.6)

where r(t), s(t), h(t), n(t) denotes the received signal, the transmitted modulated

signal, CIR of the UWB channel and the additive noise, respectively. BPSK or PPM

modulated data can be detected coherent receiver structures, where Rake receivers are

used [41, 42]. Accordingly, in order to determine the transmitted signal accurately at

the receiver, a knowledge about the UWB channel characteristics is required. In other
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Figure 2.7 : A transmitted PPM modulated UWB signal.

words, it is necessary to know the channel impulse response of the UWB channel,

which shows the channel charecteristics of the UWB channel, to obtain the transmitted

signal accurately from the received signal considering the channel effects. Therefore,

in the next section, CIR of the UWB channels according to the channel models and

channel models that we used in this thesis will be presented, respectively.
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2.2 Ultra-Wideband Channel Model

In this section, the discrete-time equivalent UWB channel model and the standardized

IEEE 802.15.4a channel models are presented, respectively.

In order to obtain the discrete-time channel model, the general CIR should be presented

first. Accordingly, the continuous-time channel h(t) can be modeled as

h(t) =
Lr

∑
k=1

hkδ (t − τk), (2.7)

where hk represents the kth multipath gain coefficient, τk is the delay of the kth

multipath component, δ (·) is the Dirac delta function and Lr represents the number

of resolvable multipaths.

The continuous-time CIR given in (2.7) assumes that multipaths may arrive any time.

This is referred to as the τ-spaced channel model [43]. Suppose that two sequential

multipaths with delays τm and τm+1 arrive very close to each other. Further suppose

that a pulse with Ts-duration is transmitted through this channel. If Ts > |τm − τm+1|,

then the pulse at the receiver cannot be resolved individually for each path, and it

is concluded the combined channel response of the mth and (m+ 1)th paths. Let us

define an approximate Ts-spaced channel model that combines multipaths arriving in

the same time bin, [(n−1)Ts,nTs], ∀n. Accordingly, for [(n−1)Ts,nTs], ∀n, the delays

{τk|1,2, . . . ,Lr} that arrive in the corresponding quantized time bins can be determined,

and the associated {hk|1,2, . . . ,Lr} gains can be linearly combined to give the new

channel coefficients {cn|1,2, . . . ,N}. Note that some of the cn values may be zero due

to no arrival during that time bin. The equivalent Ts-spaced channel model can be

expressed as

h(t) =
N

∑
n=1

cnδ (t −nTs), (2.8)

where Tc =NTs is the channel length. Using (2.8), the discrete-time equivalent channel

can be written as

h = [c1,c2, . . . ,cN ]
T , (2.9)

where the channel resolution is Ts. Assuming that h has K nonzero coefficients, the

sparsity assumption of (2.9) is valid if K ≪ N.

14



0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

time[ns]

am
pl

itu
de

(a)

0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

time[ns]

am
pl

itu
de

(b)

0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

time[ns]

am
pl

itu
de

(c)

1 2

τ
k

τ
k+1

Figure 2.8 : The equivalent Ts-spaced channel model example. (a) UWB continuous
time CIR; (b) Ts-spaced CIR when Ts = 1ns; (c) Ts-spaced CIR when Ts
= 0.25ns.

An example for the equivalent Ts-spaced channel model explained above is given

in Figure 2.8. In the first dashed circle (which is indicated with number 1) in

Figure 2.8(a), absolute value of the difference between the delays of two consecutive

multipaths is equal to |τk − τk+1| = 0.1089ns. Since the considered Ts values (1ns,

0.25ns) in Figure 2.8(b) and (c) are greater than this value, the sum of these two

multipaths is acquired to give the new channel coefficient in Figure 2.8(b) and (c). On

the other hand, absolute value of the difference between the delays of two consecutive

multipaths is equal to |τk − τk+1| = 0.6676ns in the second dashed circle (which is

indicated with number 2) in Figure 2.8(a). Since the value of Ts = 1ns is greater

than this absolute value, the sum of these two multipaths is acquired to give the new
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channel coefficient in Figure 2.8(b) as the consecutive multipaths cannot be resolved

individually at the receiver. However in Figure 2.8(c), the value of Ts = 0.25ns is

smaller than this absolute value, and therefore, the two consecutive multipaths in the

second dashed circle are represented individually.

Based on the discrete-time equivalent channel model above, the UWB channels are

widely accepted as having a sparse structure. This assumption for UWB channels

plays an important role in CS based UWB channel estimation. However, the channel

environment should be inspected to prove this assumption. In [44], a comprehensive

model for UWB propagation channels, which was accepted as the standardized

channel model for IEEE 802.15.4a, has been developed considering various channel

environments and conducting different measurement campaigns. These environments

include indoor residential, indoor office, outdoor, industrial environments, agricultural

areas and body area networks with having either a line-of-sight (LOS) or a non-LOS

(NLOS) transmitter-receiver connection. In [28], the sparsity assumption of UWB

channels has been discussed over the widely used channel models CM-1, CM-2, CM-5

and CM-8. In order to investigate the effects of channel sparsity on the BCS channel

estimation performance, the same channel models are considered also in this study.

Salient characteristics of these channel models can be expressed briefly as follows:

CM-1 is a channel model with a LOS connection in a residential indoor environment.

It has the most sparse structure among the channel models for IEEE 802.15.4a and also

it is frequently used channel model to qualify performance of the UWB systems.

CM-2 models a NLOS connection in a residential indoor environment where is the

same as in CM-1. It has also sparse structure but there are more multipath components

in CM-2 compared to CM-1. The environment of CM-1 and CM-2 (indoor residental)

is cruical for home networking, connecting different devices as well as safety and

measurement sensors in a short-range.

CM-5 is a channel model with a LOS connection in an outdoor environment. Although

there are various outdoor scenarios, this model covers only a suburban-like microcell

scenario, with a relatively short-range. It has a significantly less sparse structure

compared to CM-1 and CM-2. Typically, multipaths arrive in a few clusters.

CM-8 models a NLOS connection in an industrial environment. The environment is
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characterized by larger factory halls which are filled with a lot of metallic reflectors.

This causes the issue of arriving the multipaths so densely and hence, CM-8 is not

qualified as a sparse channel model. It has the least sparse structure among the channel

models considered.

Single channel realizations of CM-1, CM-2, CM-5 and CM-8 with the parameters

given in Appendix A are plotted in Figure 2.9 for illustrative purposes. For the

implementations, the channel length and resolution are fixed to Tc = 250ns and Ts =

0.25ns, respectively, resulting in the discrete-time channel length N = Tc/Ts = 1000.
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Figure 2.9 : Realizations of channel models when Tc = 250ns and Ts = 0.25ns.

Here, K/N can be regarded as the sparsity ratio (i.e., the ratio of number of nonzero

coefficients to the length of the equivalent discrete-time channel). The channel models’

sparsity ratios, which are acquired by averaging over 200 channel realizations, for

fixed Tc = 250 and Ts = 0.25ns values are given in Table 2.1. It is crucial to determine

accurate channel length (Tc) for the implementation in order to take account of all

multipaths with considering delay of the multipaths. Although the value of Tc = 100ns

is adequate for CM-1 and CM-2, considering the CM-5 and CM-8 which include dense

multipaths, for a fair comparison, channel length is determined as Tc = 250ns for all

channel models. Besides, the value of channel resolution (Ts) is also important to
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resolve the multipaths at the receiver. Small value of channel resolution helps resolving

the multipaths individually possible. Therefore, channel resolution is determined as

Ts = 0.25ns. Furthermore, a smaller choice of Ts value makes the channel sparser [28].

Table 2.1 : Sparsity ratios of channel models when Tc = 250ns and Ts = 0.25ns.

Channel model Sparsity ratio (K/N)
CM-1 0.06
CM-2 0.09
CM-5 0.47
CM-8 0.79
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3. COMPRESSIVE SENSING FOR UWB CHANNEL ESTIMATION

Due to the ultra-wide bandwidth of UWB-IRs, very high speed and complex

A/D converters are required for sampling process at the receiver according to the

conventional Nyquist criteria (the sampling rate must be at least twice the maximum

frequency of the signal). However, it is known that the UWB channel has a sparse

structure (see Section 2.2). Due to this sparsity prior knowledge about the channel,

the emerging framework CS can be employed for UWB channel estimation in order

to overcome the high-rate sampling problem. CS theory asserts that recovering sparse

signals from fewer measurements corresponds to lower sampling rate than required

for conventional methods [45]. Thus, more simple receiver structure can be used in the

UWB system by reducing high cost, complexity and power consumption of the receiver

with the CS. In the following, the overview of CS theory, ℓ1-norm minimization and its

application to UWB channel estimation, and the Bayesian CS model will be presented,

respectively.

3.1 Overview of Compressive Sensing

Consider the problem of reconstructing a discrete-time signal x ∈ ℜN which can be

represented in an arbitrary basis ΨΨΨ ∈ ℜN×N with the weighting coefficients θθθ ∈ ℜN as

x =
N

∑
n=1

ψnθn = ΨΨΨθθθ . (3.1)

Suppose that θθθ = [θ1,θ2, . . . ,θN ]
T has only K nonzero coefficients, where K ≪ N and

ΨΨΨ = [ψ1,ψ2, . . . ,ψN ]. As x is a linear combination of only K basis vectors, it can be

called a K-sparse signal and can be expressed as

x =
K

∑
i=1

ψniθni , (3.2)

where {ni}’s are the indices that correspond to nonzero coefficients. By projecting x

onto a random measurement matrix ΦΦΦ ∈ ℜM×N , a set of measurements y ∈ ℜM can be
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obtained as

y = ΦΦΦΨΨΨθθθ , (3.3)

and it is shown in Figure 3.1 where M ≪ N.

Figure 3.1 : Model of the compressive sensing.

In (3.3), the measurements y, the measurement matrix ΦΦΦ and the basis ΨΨΨ where the

signal is sparse are known and θθθ thereby x are wanted to estimate. However due

to M ≪ N, the problem of solving θθθ from (3.3) is underdetermined1 and there are

infinitely many solutions for θθθ in (3.3). In order to choose an accurate solution to such

an underdetermined system, additional appropriate constraints should be imposed. The

solution to this underdetermined system of equations can be found via the CS by

using the constraint of sparsity. CS seeks the sparsest solution (which have smallest

number of nonzero coefficients) of θθθ that satisfies the system of equations in (3.3).

Accordingly, θθθ can be estimated as

θ̂θθ = min∥θθθ∥0 subject to y = ΦΦΦΨΨΨθθθ , (3.4)

where ∥.∥0 denotes ℓ0-norm, which is the number of nonzeros in its argument.

Unfortunately, this combinatorial minimization problem is computationally intractable

due to the search space of solutions being exponentially large [17, 46]. Therefore,

ℓ2-norm minimization (least squares solution) can be proposed instead of ℓ0-norm

1An underdetermined linear system has fewer equations than unknowns and generally has an infinite
number of solutions.

20



minimization for the solution of θθθ in (3.3) where ℓp-norm is denoted as ∥θθθ∥p =(
∑N

n=1 |θn|p
) 1

p for a real number 1 ≤ p < ∞. However, this method does not promote

sparsity for the solution, spreads the energy of signal to all coefficients and leads to

a poor result. On the other hand, ℓ1-norm minimization tends to concentrate energy

of the signal on to nonzero cofficients and promotes sparsity. Hence, it provides a

good approximation to ℓ0-norm minimization and it is tractable compared to ℓ0-norm

minimization [47]. If θθθ becomes sufficiently sparse, then the solution found with

ℓ1-norm minimization will be quite close to the solution of ℓ0-norm minimization [48].

Accordingly, instead of ℓ0-norm minimization, θθθ can be estimated as

θ̂θθ = min∥θθθ∥1 subject to y = ΦΦΦΨΨΨθθθ . (3.5)

The reconstruction problem hence becomes an ℓ1-norm optimization problem, and

estimating θθθ from the vector y instead of x corresponds to a lower sampling rate at

the receiver. In (3.3), the measurement matrix should be incoherent with the basis in

addition to the sparsity condition for accurately estimating the weighting coefficients.

The incoherency is usually achieved by random matrices with independent identically

distributed (i.i.d) elements from Gaussian or Bernoulli distributions [45]. Instead

of using the N-sample x to estimate the weighting coefficients θθθ , the M-sample

measurement vector y can be used.

The CS theory explained in (3.1)-(3.3) and (3.5) can be employed to UWB channel

estimation. Suppose that g ∈ ℜN is the discrete-time representation of the received

signal given as

g = Ph+n, (3.6)

where P ∈ ℜN×N is a scalar matrix representing the time-shifted pulses, h =

[c1,c2, . . . ,cN ]
T are the channel gain coefficients, and n are the additive white Gaussian

noise (AWGN) terms. Since the UWB channel structure is sparse, h has only K

nonzero coefficients. Similar to (3.3), the received signal g can be projected onto a

random measurement matrix ΦΦΦ ∈ ℜM×N so as to obtain y ∈ ℜM as

y = ΦΦΦPh+ΦΦΦn

= Ah+ z. (3.7)
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Due to the presence of the noise term z, the channel h can be estimated as

ĥ = min∥h∥1 subject to ∥y−Ah∥2 ≤ ε , (3.8)

where ε is related to the noise term as ε ≥ ∥z∥2. The ℓ1-norm minimization problem in

(3.8) can be recast as a second-order cone program (SOCP) and solved2 with a generic

log-barrier algorithm.

3.2 Bayesian Compressive Sensing

In this section, the CS problem will be presented from a Bayesian perspective for UWB

channel estimation. However, before presenting BCS theory, a short discussion about

Bayes’ theorem is provided.

The main aspect of Bayesian statistical approach is to define a probability about degree

of belief on the unknown parameter based on the noisy observation data and prior

information about the unknown parameter. Let us consider the problem of making

inference about an unknown parameter vector t from a noisy observation data vector

r. For the uncertainty about parameter vector, a prior distribution is defined (which

expresses a known belief) on the unknown parameter vector t before data are observed.

By accounting observation data, a statistical model called likelihood is chosen to

describe all the information about the acquired data that related to the underlying

unknown parameter vector. Combining all these together gives Bayes’ theorem as

p(t|r) = p(r| t)p(t)
p(r)

, (3.9)

where p(t|r) is the posterior distribution over the unknown parameter vector t, p(t)

is the prior distribution that describes the knowledge about t, p(r| t) is the likelihood

function which includes all information about the observation data r and p(r) is the

marginal distribution of the r which can be also expressed as p(r) =
∫

p(r| t)p(t)dt.

Mainly with the Bayes’ theorem, the prior statistical information about the unknown

paremeter is updated to the posterior statistical information by using the observation

data.
2For the implementation of (3.8), the codes provided by Romberg and Candès publicly available at

http://users.ece.gatech.edu/∼justin/l1magic/ are used.
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In the BCS framework proposed in [29, 30], the statistical information about the

compressible signal and the additive noise is considered, where ℓ1-norm minimization

does not consider these factors. Considering sparsity prior of h and the noise model

assumption together with the signal model in (3.7), BCS can be used3 for UWB

channel estimation. Taking into consideration (3.7), the full posterior distribution over

all unknowns of interest for the problem at hand becomes

p(h,βββ ,σ2 | y) =
p(y | h,βββ ,σ2) p(h,βββ ,σ2)

p(y)
, (3.10)

where βββ represents hyperparameters that control the inverse variance of each channel

coefficient, and σ2 is the variance of each noise term in z. Unfortunately, this full

posterior term is not tractable since the integral

p(y) =
∫ ∫ ∫

p(y | h,βββ ,σ2) p(h,βββ ,σ2) dh dβββ dσ2 (3.11)

cannot be computed analytically. Hence, we decompose the full posterior distribution

as

p(h,βββ ,σ2 | y)≡ p(h | y,βββ ,σ2) p(βββ ,σ2 | y). (3.12)

In (3.7), the noise term z can be modeled probabilistically as independent zero-mean

Gaussian random variables:

p(z) =
M

∏
m=1

N (zm | 0,σ2). (3.13)

This noise model infers Gaussian likelihood for observation y:

p(y | h,σ2) = (2πσ2)−M/2 exp
(
−∥y−ΦΦΦh∥2

2σ2

)
. (3.14)

Since a Gaussian likelihood is inferred by AWGN term z, a conjugate4 prior

distribution has to be defined for computational convenience [49] so that the associated

Bayesian inference may be performed in closed form [50]. Therefore, suppose that a

zero-mean Gaussian prior distribution is defined on channel coefficients with {βn}:

p(h | βββ ) =
N

∏
n=1

N (hn | 0,β−1
n )

= (2π)−N/2
N

∏
n=1

β 1/2
n exp

(
−βnh2

n
2

)
. (3.15)

3For the implementation of BCS, the codes provided by Shihao Ji publicly available at
http://people.ee.duke.edu/∼lcarin/BCS.html are used.

4In Bayesian probability theory, a class of prior probability distributions p(θθθ) is said to be conjugate
to a class of likelihood functions p(y|θθθ) if the resulting posterior distributions p(θθθ |y) are in the same
family as p(θθθ) [50].
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{βn}’s are independent hyperparameters that form the βββ = [β1, ...,βN ]
T vector and

control the strength of the prior over associated channel coefficients individually.

The first term of (3.12), p(h | y,βββ ,σ2), the posterior distribution over the channel

coefficients, can be expressed via Bayes’ rule as

p(h | y,βββ ,σ2) =
p(y | h,σ2) p(h | βββ )

p(y | βββ ,σ2)
. (3.16)

Considering Gaussian likelihood together with Gaussian prior, this posterior

distribution is also N (µµµ,ΣΣΣ) where

ΣΣΣ = (ΛΛΛ+σ−2ΦΦΦT ΦΦΦ)−1,

µµµ = σ−2ΣΣΣΦΦΦT y, (3.17)

with ΛΛΛ = diag(β1,β2, . . . ,βN) and is analytically tractable. To compute the full

posterior distribution approximately, hyperparameter posterior p(βββ ,σ2 | y), the second

term in (3.12), needs to be approximated. This approximation is provided by type-II

ML procedure. This procedure, also known as the evidence approximation or the

emprical Bayes, is used to estimate hyperparameters by maximizing the marginal

likelihood function (LF) [51, 52]. According to the Bayes’ theorem, hyperparameter

posterior p(βββ ,σ2 | y) can be expressed as:

p(βββ ,σ2 | y) ∝ p(y | βββ ,σ2) p(βββ ,σ2). (3.18)

Using appropriately selected uniform5 hyperpriors for βββ and σ2 in (3.18)

(i.e., p(βββ ,σ2 | y) ∝ p(y | βββ ,σ2)), the estimates of βββ and σ2 can be found by

maximizing marginal LF p(y | βββ ,σ2) as a consequence of type-II ML procedure. The

marginal LF can be obtained by integrating over the channel coefficients h as:

p(y | βββ ,σ2) =
∫ ∞

−∞
p(yyy | h,σ2) p(h | βββ )dh. (3.19)

Maximization of the marginal LF with respect to βββ or equivalently, its logarithm can

be expressed as:

L (βββ ,σ2) = log p(y | βββ ,σ2)

= log
∫ ∞

−∞
p(y | h,σ2) p(h | βββ )dh

= −1
2
[M log(2π)+ log |CCC|+yTCCC−1y] (3.20)

5Uniform or flat hyperpriors are known as noninformative hyperpriors [49] which have a minimum
effect on the hyperparameter posterior and they can be ignored.
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where CCC = σ2I + ΦΦΦΛΛΛ−1ΦΦΦT and I ∈ ℜM×M is an identity matrix. Differentiating

L (βββ ,σ2) with respect to βββ and σ2, and equating it to zero yields the following

expressions which can be solved iteratively [29]:

βn
new =

γn

µ2
n
, σ2new

=
∥y−ΦΦΦµµµ∥2

2

M−∑N
n=1 γn

, (3.21)

where γn ∈ [0,1] is defined as γn = 1−βn ∑nn with ∑nn being the nth diagonal element

of the posterior coefficient covariance from (3.17) and µn is the nth posterior coefficient

mean from (3.17).

By employing re-estimates of hyperparameters, an iterative systematic approach is

used to determine which basis vectors should be included in the model and which

should be removed to promote sparsity [30].

After presenting the theories of applications of ℓ1-norm minimization and BCS to the

UWB channel estimation, estimation of a CM-1 channel realization (CM-1 has the

sparsest structure among the channel models considered, see Figure 2.9) with both

ℓ1-norm minimization and BCS when the SNR level is at 5dB and 20dB are given in

Figures 3.2 and 3.3, respectively. For the implementation of CM-1, channel length of

Tc = 100ns and channel resolution of Ts = 0.25ns are adequate to take into account

all multipaths and to resolve these multipaths individually. The corresponding discrete

time channel length becomes N = Tc/Ts = 400. The number of measurements used for

the estimation is M = 200. To remove the path loss effect, the channel coefficients are

normalized as ∑N
n=1 c2

n = 1.

When the Figures 3.2 and 3.3 are compared, it is seen that the estimation performance

of ℓ1-norm minimization is superior than BCS at 5dB SNR level. The two estimation

error values (ℓ1-norm minimization error = 0.4731, BCS error = 1.0976) of the channel

coefficients vector for ℓ1-norm minimization and BCS justifies this argument. On the

other hand for 20dB SNR level, the estimation performance of BCS is superior than

ℓ1-norm minimization. Similarly, this argument can be justified with the estimation

error values (ℓ1-norm minimization error = 0.0578, BCS error = 0.0120) of the channel

coefficients vector for both methods. Unlike the ℓ1-norm minimization, BCS uses prior

distribution of the channel coefficients (thereby posterior distribution over channel

coefficients) the for the estimation. Due to the destructive effects of the noise at
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Figure 3.2 : Estimation of a CM-1 signal with ℓ1-norm minimization and BCS when
Tc = 100ns, Ts = 0.25ns, N = 400, M = 200 and SNR = 5dB. (a) A CM-1
signal and its estimation with ℓ1-norm minimization, estimation error of
the channel coefficients vector for ℓ1-norm minimization = 0.4731; (b)
Same CM-1 signal in (a) and its estimation with BCS, estimation error of
the channel coefficients vector for BCS = 1.0976.

low SNR (i.e., when the domination of the noise is increased), BCS cannot attain

an accurate prior information about the coefficients. Therefore at 5dB SNR level,

BCS estimates paths at non-path locations indeed. On the other hand, destructive

effects of the noise is decreased significantly at 20 dB SNR level and with the accurate

prior information, estimation performance of the BCS becomes superior than the

performance of ℓ1-norm minimization. It can be concluded from this estimation

example that BCS has a superior performance compared to ℓ1-norm minimization at
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Figure 3.3 : Estimation of the same CM-1 signal in Figure 3.2 with ℓ1-norm
minimization and BCS when Tc = 100ns, Ts = 0.25ns, N = 400, M =
200 and SNR = 20dB. (a) Same CM-1 signal and its estimation with
ℓ1-norm minimization, estimation error of the channel coefficients vector
for ℓ1-norm minimization = 0.0578; (b) Same CM-1 signal in (a) and its
estimation with BCS, estimation error of the channel coefficients vector
for BCS = 0.0120.

higher SNR regions. The detailed analysis for the effect of SNR regions on the channel

estimation performance will be given in the Results chapter.

Beside the application of BCS to the UWB channel estimation, also an MSE

performance lower bound is provided for biased BCS based channel estimator. The

evaluation of this bound is given in the next chapter.
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4. PERFORMANCE ANALYSIS

As in any estimation application, it is useful to quantify the best performance that

may be achieved from channel estimator approach proposed. Performance bounds can

serve as a benchmark with the goal of facilitating performance comparisons of the

various estimation techniques under consideration. Such bounds may also indicate

characteristics of the problem that require extra attention for optimal performance.

The CRLB is a widely used performance bound in order to indicate the minimum

achievable total variance of any unbiased estimator of deterministic parameter vector

[36]. Since MSE becomes equal to variance for unbiased (zero bias) estimators, CRLB

also provides a benchmark on the estimation error for this type of estimators. However,

the BCS estimator proposed for UWB channel estimation in this study is a biased

estimator as well as being Bayesian. Accordingly, restriction to unbiased approach of

the lower bound for the problem at hand leads to unreasonable performance results. It

is necessary to determine a lower bound on the estimation error which characterizes

both the total variance and the bias of the biased estimator. Hence, an MSE lower

bound for biased Bayesian estimators (MSEl,b, where subscript l stands for lower

bound and subscript b stands for biased Bayesian) is provided by making use of

bound in [37], which is based on biased CRLB in [53]. In literature, PCRLB or

Bayesian CRLB [35] was defined for unbiased Bayesian estimators considering prior

information about the parameter vector that is wanted to estimate. In addition to

CRLB, PCRLB also takes into account prior probability distribution of the parameter

vector. Nevertheless, PCRLB is a lower bound on the variance of the unbiased

Bayesian estimator not on the estimation error. Accordingly, the MSEl,b that is

provided considering bias with the prior information of channel vector will become

a lower bound on the estimation error of biased Bayesian estimators. Note that the

bias and the prior distribution of the parameter vector are included in the derivation

of the performance bound presented below, however, the sparsity conditions are not
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incorporated into the model and are subject for future research. The MSE of general

and Bayesian biased estimators are presented in the following sections, respectively.

4.1 MSE of a Biased Estimator

In what follows, MSE of the biased estimator is expressed as a sum of the squared

norm of bias and trace of covariance matrix for the channel vector h with given linear

signal model in (3.7),

MSE(ĥb) = E
{∥∥(ĥb)−h

∥∥2
}
= ∥b(h)∥2 +Tr(Cĥb

), (4.1)

where bias vector, b(h) ∈ ℜN , and covariance matrix of the biased estimator, Cĥb
∈

ℜN×N , can be denoted respectively as

b(h) = E
{

ĥb
}
−h, (4.2)

Cĥb
= E

{[
ĥb −E(ĥb)

][
ĥb −E(ĥb)

]T}
, (4.3)

and ĥb ∈ ℜN corresponds to estimated channel vector.

Regarding suitability of regularity condition on p(y | h) [36]

Ey

[
∂ ln p(y |h)

∂h

]
= 0 ∀ h, (4.4)

biased CRLB in [53] for any biased estimator with a given bias can be obtained for

the vector case as follows:

Cov(ĥb)≥

(
1+ ∂b(h)

∂h

)2

Ey|h

{[∂ ln py|h (y|h)
∂h

]T [∂ ln py|h (y|h)
∂h

]} , (4.5)

where the denominator of (4.5) also can be denoted as

Ey|h

{[∂ ln py|h (y |h)
∂h

]T [∂ ln py|h (y |h)
∂h

]}
=−Ey|h

{[
∂ 2 ln py|h (y |h)

∂hT ∂h

]}
. (4.6)

4.2 MSE of Bayesian Biased Estimator

Counterpart of the biased CRLB in Bayesian framework can be expressed for Bayesian

estimators as

Cĥb
= Cov(ĥb)≥

(
1+ ∂b(h)

∂h

)2

−Ey,h

{[
∂ 2 ln py,h(y,h)

∂hT ∂h

]} . (4.7)
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Moreover, the denominator of (4.7) can be decomposed into two parts using the Bayes’

rule:

−Ey,h

{[
∂ 2 ln py,h(y,h)

∂hT ∂h

]}
=−Ey|h

{[
∂ 2 ln py|h (y |h)

∂hT ∂h

]}
−Eh

{[
∂ 2 ln ph(h)

∂hT ∂h

]}
(4.8)

which can be expressed in matrix form as

JH = JD +JP, (4.9)

where JH ∈ ℜN×N , JD ∈ ℜN×N and JP ∈ ℜN×N correspond to Bayesian Fisher

information matrix (FIM), observation data (y) information matrix and prior

information matrix, respectively. Considering the linear signal model in (3.7) with

(3.13) and (3.14), observation data information matrix JD can be expressed as

JD =−Ey|h

{[
∂ 2 ln py|h (y |h)

∂hT ∂h

]}
= AT C−1

z A, (4.10)

where Cz = σ2I ∈ ℜM×M is the covariance matrix of the noise term z and A ∈ ℜM×N

is the measurement matrix which is also a full rank matrix. Exploiting assumption

(h∼N (0,Ch)) in (3.15), prior information matrix JP is equal to inverse of covariance

matrix of the channel vector Ch ∈ ℜN×N :

JP =−Eh

{
∂ 2 ln ph(h)

∂hT ∂h

}
= C−1

h . (4.11)

Ch is a diagonal matrix and each diagonal element is formed by inverse of the

hyperparameters

Ch = diag
{

β−1
n
}
, n ∈ {1,2, ...,N} . (4.12)

Once JD and JP are obtained, the Bayesian FIM JH can be rewritten in compact form

as

JH = (AT C−1
z A)+C−1

h . (4.13)

Since the denominator of (4.7) is obtained, to form a final expression for the biased

Bayesian CRLB, an a-priori choice of the bias gradient is required. In [37], estimators

with only linear bias vectors are considered instead of taking into account all possible

estimators. For its simplicity and tractability, only linear bias vectors are also

considered in this study. Advantages of restricting attention to linear bias vectors can
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be expressed as follows. Linear bias case is easier than nonlinear cases analytically

and it is also easy to constitute estimators achieving the corresponding MSE lower

bound with the efficient unbiased estimators practically [37]. Linear bias vector can be

denoted as

b(h) = Sh, (4.14)

where S ∈ ℜN×N is the bias gradient matrix defined by

S =
∂b(h)

∂h
. (4.15)

Thus, (4.7) can be rearranged as

Cĥb
≥ (I+S) J−1

H (I+S)T , (4.16)

where I∈ℜN×N is an identity matrix. Inserting (4.14) and (4.16) into (4.1), the MSEl,b

for biased Bayesian estimators can be obtained as

MSEl,b = E
{∥∥(ĥb)−h

∥∥2
}

= hT ST Sh+ Tr
{
(I+S) J−1

H (I+S)T
}
. (4.17)

Now, the optimal S matrix needs to be determined to find the achievable smallest MSE

over all estimators with linear bias. Since (4.17) is convex in S, the smallest value of

MSEl,b can be found by equating its derivative to zero

∂hT ST Sh+Tr
{
(I+S)J−1

H (I+S)T
}

∂S
= 0 (4.18)

2hT hS+2J−1
H +2J−1

H S = 0,

which yields

S(J−1
H +hT h) =−J−1

H . (4.19)

Multiplying both sides of (4.19) with (J−1
H +hT h)−1 leaves the matrix S alone at the

left side in (4.19). Using the matrix inversion lemma in (4.20) with the replacements

of D = J−1
H , U = hT , Q = I, V = h

(D+UQV)−1 = D−1 −D−1U(Q−1 +VD−1U)−1VD−1, (4.20)

(J−1
H +hT h)−1 can be expressed as

(J−1
H +hT h)−1 = JH − JHhhT JH

1+hT JHh
. (4.21)
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After multiplying the right side of (4.19) with (4.21), the optimal S matrix can be

obtained as follows:

S =−I+
1

1+hT JHh
hhT JH . (4.22)

Note that when S = 0, which is the zero bias case, CRLB for unbiased Bayesian

estimators (i.e., PCRLB) is obtained: MSEl,b = Tr(J−1
H ). Therefore MSEl,b also

includes unbiased Bayesian estimation as a special case.

The results of the MSEl,b provided in this chapter together with detailed analysis of the

effects of noise level, number of measurements and sparsity are given in the following

chapter.
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5. RESULTS

The numerical results of the application of BCS to the UWB channel estimation is

composed of two sections, as follows:

(a) performance results section, which includes the channel estimation performance of

BCS for various UWB channel models, noise conditions and number of measurements

compared to the results of ℓ1-norm minimization based estimation and MSE lower

bounds of BCS performances, and

(b) computation efficiency section, which includes the comparison of computation

efficiencies of BCS and ℓ1-norm minimization in terms of computation times.

5.1 Performance Results

In this section, the effects of (i) number of measurements, (ii) SNR regions, and

(iii) the IEEE 802.15.4a channel models on the BCS channel estimation performance

are investigated, and the results are compared to the performance of the ℓ1-norm

minimization results. Furthermore, MSE lower bounds for the BCS performances

in the channel models are provided. As the performance measure, the MSE of the

estimated channel vector is evaluated. To remove the path loss effect and to treat each

channel model fairly, the channel coefficients are normalized as ∑N
n=1 c2

n = 1. For the

simulations, the channel length and resolution are fixed to Tc = 250ns and Ts = 0.25ns,

respectively, resulting in the discrete-time channel length N = Tc/Ts = 1000. The

elements of the measurement matrix ΦΦΦ are obtained from the N (0,1) distribution,

and the basis where the channel vector is sparse is defined as ΨΨΨ = I in the simulations.

5.1.1 Effect of number of measurements on the MSE performance

In Figure 5.1, MSE performances of ℓ1-norm minimization and BCS are compared

with respect to number of measurements (M) at 20dB SNR level. Here, M/N can

be regarded as the compression ratio (i.e., the ratio of number of measurements to
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the length of the equivalent discrete-time channel). As expected, BCS outperforms

ℓ1-norm minimization in the sparser channel models (i.e., CM-1 and CM-2) for the

number of measurements greater than M = 110 and M = 160, respectively, at 20dB.

Due to the sparse structures of the CM-1 and CM-2, these number of measurements

are adequate to outperform ℓ1-norm minimization. For these channel models, MSE

performances of both estimation methods do not change much with the number of

measurements between 600 < M < 750. Hence, the number of measurements can be

limited with M = 600. It means that the required sampling rate for minimum MSE can

be decreased for CM-1 and CM-2 with negligible MSE performance degradation.
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Figure 5.1 : Effect of the number of measurements on the MSE performances of
BCS and ℓ1-norm minimization estimations for the channel models when
SNR = 20dB.

For CM-5, BCS has a superior MSE performance for the number of measurements

greater than M = 380. The goal here is to achieve the channel estimation

with minimum MSE and maximum compression ratio (minimum number of

measurements). As the sparsity decreases for CM-5 in comparison with CM-1 and

36



CM-2, more number of measurements are needed in order for BCS to outperform

ℓ1-norm minimization. Accordingly, the compression ratio decreases for BCS in

CM-5. For CM-8, which is not a sparse channel model, the number of measurements

should be greater than M = 680 in order for BCS to have a superior performance

compared to ℓ1-norm minimization. Therefore, the minimum compression ratio

among the channel models for BCS is acquired for CM-8. As a result, it is seen

from Figure 5.1 that superior MSE performances are obtained with BCS compared

to ℓ1-norm minimization with significantly fewer measurements in CM-1 and CM-2,

which are the sparser channel models, than required in CM-5 and CM-8, which have

less sparse structures.

5.1.2 Effect of channel models on the MSE performance and MSE lower bounds

The performances are evaluated for M = {250,500,750} measurements in the

[0,30]dB SNR region in this part of the chapter. In Figures 5.2, 5.3, 5.4 and 5.5,

the channel estimation performances of BCS and ℓ1-norm minimization are compared

for various number of measurements and SNR values for the channel models CM-1,

CM-2, CM-5 and CM-8, respectively. The best channel estimation performance

for both methods is obtained for CM-1, as it exhibits the sparsest structure among

these channel models (see Figure 2.9 and Table 2.1). BCS outperforms ℓ1-norm

minimization in the sparser channel models CM-1 and CM-2 for SNR values greater

than 12-13dB for all measurements considered. This can be explained as for the

higher SNR regions posterior density function over the channel coefficients and noise

is beneficial to the channel coefficients estimation, whereas for lower SNR regions the

uncertainty in the estimation is higher. As for CM-5, which is a less sparse channel,

the number of measurements should be greater than M = 500 in order for BCS to have

a superior performance at higher SNR regions. As for CM-8, which is not a sparse

channel model, as the multipaths arrive almost in every time bin, the BCS performs

inferior compared to the ℓ1-norm minimization for almost all conditions. In summary,

BCS can be an effective channel estimation method for sparser channel models at high

SNR regions. This is mainly due to BCS considering the channel and noise statistics
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and providing a posterior density function over noise and the channel coefficients,

whereas the ℓ1-norm minimization method not utilizing such statistics.
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Figure 5.2 : MSE performance comparison of BCS and ℓ1-norm minimization for
CM-1.

The MSE performance results with respect to the number of measurements given in

Figure 5.1 are consistent with the results for SNR = 20dB given in figures in this

section.

Next, the MSE performance of BCS is compared with the MSE lower bound, MSEl,b,

in Figures 5.2, 5.3, 5.4 and 5.5. It can be observed that the MSE lower bound

performance improves with the number of measurements M as expected. On the other

hand, for M fixed the MSE bounds are similar for different channel models. This

can be explained as follows. When quantified, the MSEl,b term in (4.17) is observed

to be dominated by the second term, which depends on JH = JD + JP. Here, the

observation data information matrix JD has more significant contribution compared to

the prior information matrix JP that carries the channel model information. Therefore,

MSEl,b values have found to be similar despite channel model differences. Lastly,
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a performance gap between the MSE performance of BCS and the MSE lower

bound is observed as in [35], where they compared their proposed CS based block

maximum-a-posteriori least mean squares (CS-BMAP-LMS) method to the Bayesian

CRLB. A tighter bound for the implementation of BCS may be obtained if the sparsity

knowledge of the channel can be incorporated into the lower bound computation and

the linearly assumed bias vector can be generalized to cover nonlinear bias vectors.

Both considerations are non-trivial to implement, however, are expected to provide

tighter bounds and subject to further investigation.

In the next section, the second part of the results, which is related to computation times

of both methods will be presented.

0 5 10 15 20 25 30

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR [dB]

M
S

E

 

 

l
1
 M=250

l
1
 M=500

l
1
 M=750

BCS M=250
BCS M=500
BCS M=750
MSE

l,b
 M=250

MSE
l,b

 M=500

MSE
l,b

 M=750

Figure 5.3 : MSE performance comparison of BCS and ℓ1-norm minimization for
CM-2.

39



0 5 10 15 20 25 30

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR [dB]

M
S

E

 

 

l
1
 M=250

l
1
 M=500

l
1
 M=750

BCS M=250
BCS M=500
BCS M=750
MSE

l,b
 M=250

MSE
l,b

 M=500

MSE
l,b

 M=750

Figure 5.4 : MSE performance comparison of BCS and ℓ1-norm minimization for
CM-5.

5.2 Computation Efficiency

Before presenting numerical values for computation times, a short discussion on the

comparison of computation efficiencies of both BCS and ℓ1-norm minimization is

provided in this section.

In ℓ1-norm minimization, whose computational complexity is proportional to O(N3)

[54], the basis vectors are added to the model and never removed during the channel

coefficients estimation. Therefore, not only the K basis vectors that correspond to

nonzero coefficients but all basis vectors are considered during the channel estimation

process. This situation apparently increases the computational complexity of this

method. However, in BCS, whose computational complexity is proportional to

O(NK2), there is an iterative update approach which sequentially adds or removes

40



0 5 10 15 20 25 30

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR [dB]

M
S

E

 

 

l
1
 M=250

l
1
 M=500

l
1
 M=750

BCS M=250
BCS M=500
BCS M=750
MSE

l,b
 M=250

MSE
l,b

 M=500

MSE
l,b

 M=750

Figure 5.5 : MSE performance comparison of BCS and ℓ1-norm minimization for
CM-8.

basis vectors to the model until all K basis vectors have been included [30]. Thus,

BCS is computationally more efficient compared to the ℓ1-norm minimization.

To justify this argument, computation times of both methods are provided. The average

computation times of the channel estimators for both methods are compared based on

the publicly available codes, where their main structures are not modified but adapted

to IEEE 802.15.4a channel estimation. In Tables 5.1, 5.2, 5.3 and 5.4, the computation

times of both methods are presented for different number of measurements in CM-1,

CM-2, CM-5 and CM-8, respectively. The simulations were run on a computer that

has a 3.4 GHz Intel Core i7 CPU and a 3.88 GB RAM. It can be observed that the

computation time of BCS is significantly shorter than the ℓ1-norm minimization for

every channel model and number of observations. It can be further observed that the

computation time of ℓ1-norm minimization does not change much with sparsity or the

number of measurements. This can be explained by the computational complexity

of ℓ1-norm minimization not depending on the number of nonzero coefficients (K)
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but only on the discrete-time channel length (N), which is the same for all channel

models considered. Unlike ℓ1-norm minimization, the computational complexity of

BCS depends on K, and therefore, the computation time of BCS changes remarkably

with sparsity and the number of measurements.

Table 5.1 : Computation times of both methods for CM-1.

Number of ℓ1-norm
Bayesian CS

measurements minimization
M=250 3.5911 secs 0.13607 secs
M=500 3.6684 secs 0.2892 secs
M=750 3.5778 secs 0.76564 secs

Table 5.2 : Computation times of both methods for CM-2.

Number of ℓ1-norm
Bayesian CS

measurements minimization
M=250 3.6073 secs 0.15767 secs
M=500 3.627 secs 0.31896 secs
M=750 3.4591 secs 0.82328 secs

Table 5.3 : Computation times of both methods for CM-5.

Number of ℓ1-norm
Bayesian CS

measurements minimization
M=250 3.748 secs 0.22791 secs
M=500 3.5745 secs 0.47146 secs
M=750 3.2783 secs 1.1099 secs

Table 5.4 : Computation times of both methods for CM-8.

Number of ℓ1-norm
Bayesian CS

measurements minimization
M=250 3.8257 secs 0.27791 secs
M=500 4.0806 secs 0.84026 secs
M=750 3.6359 secs 1.9952 secs

The computation times of both methods are summarized in Table 5.5 for different

channel models when the number of measurements is fixed to M = 250. Considering

CM-1, which has the sparsest structure, and CM-8, which has the least sparse structure

among the channel models, the computation time of ℓ1-norm minimization in CM-8

increases 6.53% compared to CM-1 but for BCS this ratio becomes 104.24%. Similar

observations were made for the cases M = {500,750}. This remarkable increase in
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the computation time of BCS is a result of its computational complexity depending

on K. Nevertheless, BCS is computationally more efficient compared to ℓ1-norm

minimization as shown with practical examples.

Table 5.5 : Computation times of both methods for channel models when M = 250.

Channel ℓ1-norm min. Bayesian CS
model ∼O(N3) ∼O(NK2)
CM-1 3.5911 secs 0.13607 secs
CM-2 3.6073 secs 0.15767 secs
CM-5 3.748 secs 0.22791 secs
CM-8 3.8257 secs 0.27791 secs

43



44



6. CONCLUSION AND FUTURE WORK

In this thesis, the application of Bayesian CS to UWB channel estimation was

considered, and its channel estimation performance for various UWB channel models

and noise conditions was studied. Specifically, the effects of the (i) sparse structure

of standardized IEEE 802.15.4a channel models, (ii) SNR regions, and (iii) number

of measurements on the BCS channel estimation performance are investigated, and

they are compared with the results of the conventional ℓ1-norm minimization based

estimation. Moreover, an MSE lower bound on the estimation error for biased

Bayesian estimators with linear bias vectors is provided, and computational efficiencies

of both BCS and ℓ1-norm minimization for channel estimation are compared.

The results of this study show that BCS exhibits superior performance at sparser

channel models and higher SNR regions as it utilizes the statistics of channel

coefficients and noise. Furthermore, the computational efficiency of BCS has been

found to be significantly better than ℓ1-norm minimization for the cases considered.

Based on the results of this study, the implementation conditions of BCS can be

determined for practical cases.

While this study focused on the UWB channel estimation performance of BCS for the

IEEE 802.15.4a standardization, the future work may be the incorporation of sparsity

knowledge of the channel for a tighter MSE bound and improvement of the MSE

performance of BCS (prevention of BCS from estimating paths at the locations of

non-existent paths) at lower SNR regions by exploiting this sparsity knowledge of the

channel.
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[28] Başaran, M., Erküçük, S. and Çırpan, H. A. (2011). The effect of channel
models on compressed sensing based UWB channel estimation, IEEE
International Conference on Ultra-Wideband (ICUWB), pp. 375–379.

[29] Tipping, M. E. and Faul, A. C. (2003). Fast marginal likelihood maximization for
sparse Bayesian models, Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics.

[30] Ji, S., Xue, Y. and Carin, L. (2008). Bayesian compressive sensing, IEEE
Transactions on Signal Processing, 56(6), 2346–2355.

[31] Babacan, S. D., Molina, R. and Katsaggelos, A. K. (2009). Fast Bayesian
compressive sensing using Laplace priors, IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2873-2876.

[32] Yang, D., Li, H. and Peterson, G. D. (2011). Decentralized turbo Bayesian
compressed sensing with application to UWB systems, EURASIP Journal
on Advances in Signal Processing, 2011, article ID 817947.

[33] Tang, L., Zhou, Z. and Shi, L. (2011). Ultra-wideband channel estimation based
on distributed Bayesian compressive sensing, International Journal of
Digital Content Technology and its Applications (JDCTA), 5(2), 1–8.

[34] Shi, L., Zhou, Z., Tang, L. and Yao, H. (2010). Ultra-wideband channel
estimation based on Bayesian compressive sensing, Proceedings of
the 10th International Symposium on Communications and Information
Technologies (ISCIT), pp. 779–782.

[35] Zayyani, H., Babaie-Zadeh, M. and Jutten, C. (2009). Compressed sensing
block MAP-LMS adaptive filter for sparse channel estimation and a
Bayesian Cramér-Rao bound, IEEE International Workshop on Machine
Learning and Signal Processing (MLSP), pp. 1–6.

[36] Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation
Theory, Upper Saddle River, New Jersey, Prentice Hall.

49



[37] Eldar, Y. C. (2006). Uniformly improving the Cramér-Rao bound and maximum
likelihood estimation, IEEE Transactions on Signal Processing, 54(8),
2943–2956.

[38] Di Benedetto, M. G., et al. (2006). UWB Communications Systems: A
Comprehensive Overview, EURASIP Series on Signal Processing and
Communications, New York, Hindawi Publishing.

[39] Federal Communications Commission (FCC) (2002). Revision of Part 15 of the
commission’s rules regarding ultra-wideband transmission systems, first
report and order, ET-Docket 98-153, FCC 02-48, Washington, DC.

[40] Hongson, S., et al. (2003). On the spectral and power requirements for UWB
transmission, IEEE International Conference on Communications (ICC),
pp. 738–742.

[41] Siriwongpairat, W. P. and Ray Liu, K. J. (2005). Ultra-Wideband Communica-
tions Systems: Multiband OFDM Approach, Hoboken, New Jersey, Wiley.

[42] Nikookar, H. and Prasad, R. (2009). Introduction to Ultra Wideband for Wireless
Communications, Milton Keynes, UK, Springer.

[43] Erküçük, S., Kim, D. I. and Kwak, K. S. (2007). Effects of channel models
and Rake receiving process on UWB-IR system performance, IEEE
International Conference on Communications (ICC), pp. 4896–4901.

[44] Molisch, A. F., et al. (2006). A comprehensive standardized model for
ultrawideband propagation channels, IEEE Transactions on Antennas and
Propagation, 54, 3151–3166.

[45] Candès, E. J. and Wakin, M. B. (2008). An introduction to compressive sampling,
IEEE Signal Processing Magazine, 25, 21–30.

[46] Tropp, J. A. (2006). Just relax: convex programming methods for identifying
sparse signals in noise, IEEE Transactions on Information Theory, 52(3),
1030–1051.

[47] Donoho, D. L. (2006). For most large underdetermined systems of linear equations
the minimal ℓ1-norm solution is also the sparsest solution, Journal of
Communications on Pure and Applied Mathematics, 59(6), 797–829.

[48] Candès, E. J., Romberg, J. K. and Tao, T. (2006). Stable signal recovery from
incomplete and inaccurate measurements, Journal of Communications on
Pure and Applied Mathematics, 59(8), 1207–1223.

[49] SAS Institute Inc. (2008). Introduction to Bayesian analysis procedures,
SAS / STAT 9.2 User’s Guide, pp. 141–175. Date retrieved: 02.12.2012,
adress: http://support.sas.com/documentation/cdl/en/statugbayesian/
61755/PDF/ default/statugbayesian.pdf

[50] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian Data
Analysis, 2nd edition, Boca Raton, Florida, CRC Press.

50



[51] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd
edition, New York, NJ, Springer.

[52] Bishop, C. M. (2006). Pattern Recognition and Machine Learning, New York, NJ,
Springer.

[53] Van Trees, H. L. (1968). Detection, Estimation and Modulation Theory (Part I),
New York, Wiley.

[54] Baraniuk, R. G. (2007). Compressive sensing, IEEE Signal Processing Magazine,
24(4), 118–121.

[55] Qiu, R. C. and Lu, I-T. (1996). Wideband wireless multipath channel modeling
with path frequency dependence, IEEE International Conference on
Communications, 5(2), 23–27.

[56] Qiu, R. C. and Lu, I-T. (1999). Multipath resolving with frequency dependence
for wide-band wireless channel modeling, IEEE Transactions on Vehicular
Technology, 48(1), 273–285.

[57] Chong, C. C., Kim, Y. E., Yong, S. K. and Lee, S. S. (2005). Statistical
characterization of the UWB propagation channel in indoor residential en-
vironment, Journal of Wireless Communications and Mobile Computing,
5(5), 503–512.

[58] Molisch, A. F., et al. (2005). IEEE 802.15.4a channel model - final report,
Technical Report Document IEEE 802.15-04-0662-02-004a, 2005.

[59] Saleh, A. A. M. and Valenzuela, R. (1987). A statistical model for
indoor multipath propagation, IEEE Journal on Selected Areas in
Communications, 5(2), 128–137.

[60] Chong, C. C. and Yong, S. K. (2005). A generic statistical-based UWB channel
model for high rise apartments, IEEE Transactions on Antennas and
Propagation, 53(8), 2389–2399.

51



52



APPENDICES

APPENDIX A: IEEE 802.15.4a UWB Channel Modeling

53



54



APPENDIX A: IEEE 802.15.4a UWB Channel Modeling

Parameters that provide the UWB channel modeling for IEEE 802.15.4a standard is
presented briefly in this part of the thesis. While IEEE 802.15.4a channel models were
developped within the framework of the standardization of low data rate systems, they
are not only suitable for low data rate UWB systems. These channel models are valid
for UWB systems regardless of their data rate and modulation form [44].

A.1 Path Gain

Path gain is defined as the ratio of the received power averaged over both the
small-scale fading and the large-scale fading to the transmit power. The path gain
expresses the average SNR that a system can achieve. In addition to distance
dependence, due to the frequency dependence of propagation effects, it also shows
dependence on frequency. Hence, distance and frequency dependent path gain is
expressed as [44]

G( f ,d) =
1

∆ f
E
{∫ f+(∆ f/2)

f−(∆ f/2)
|H( f̃ ,d)|2d f̃

}
, (A.1)

where H( f ,d) represents the transfer function from transmitter antenna connector
to receiver antenna connector and the total path gain is obtained by integrating
this transfer function over the whole bandwidth of interest. As mentioned above
the expectation E{.} is taken over both the small-scale fading and the large scale
fading. The frequeny range ∆ f is chosen small enough so that diffraction coefficients,
dielectric constants, etc., can be considered constant within that bandwidth. In order
to simplify computations, distance and frequency dependent path gain can be written
as a multiplication of the frequency dependence and distance dependence [44]

G( f ,d) = G( f ) G(d). (A.2)

The frequency dependence of the channel path gain is given as [55–57]√
G( f ) ∝ f−κ , (A.3)

where κ represents decaying factor. The distance dependence of the path gain in dB is
expressed as [44]

G(d) = G0 −10n log10(
d
d0

), (A.4)

where d0 is reference distance and it is set to 1m, G0 is the measured path gain at the
reference distance and n is the path gain (propagation) exponent. n depends on the
environment with having either LOS or NLOS transmitter-receiver connection.
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A.2 Shadowing

Shadowing (large-scale fading) gain is described as the variation of the local mean
around the path gain. When the shadowing gain is taking into account, the distance
dependence of the path gain in (A.4) can be rewritten as [58]

G(d) = G0 −10n log10(
d
d0

)+S, (A.5)

where S represents the shadowing gain in dB and it is a random variable which has a
Gaussian distribution with zero mean and standard deviation σS.

A.3 Power Delay Profile

Power delay profile describes the received signal power as a function of multipaths
delay and it can be obtained using the impulse response of the channel as [42]

P(τ) = E
{
|h(t,τ)|2

}
, (A.6)

where τ denotes the delay. The channel impulse response (in complex baseband) of
the Saleh-Valenzuela (S-V) model is denoted as [44]

hdiscrete(t) =
L

∑
l=0

K

∑
k=0

ak,l exp( jϕk,l)δ (t −Tl − τk,l), (A.7)

where ak,l and ϕk,l represents the tap weight and phase of the kth component in the
lth cluster, Tl is the delay of the lth cluster and τk,l is the delay of the kth multipath
component relative to the lth cluster arrival time Tl . The phases ϕk,l are uniformly
distributed, i.e., for a bandpass system, the phase is taken as a uniformly distributed
random variable from the range [0,2π].

Figure A.1 : Principle of the Saleh-Valenzuela channel fading model [59].
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In S-V model the strength of the clusters decreases exponentially with time and
therefore there is no need to consider all clusters. The number of clusters (L) is
modeled as a random variable with Poisson distribution [44]

pd fL(L) =
(L)L exp(−L)

L!
(A.8)

so that the mean L completely characterizes the distribution.

The distributions of cluster arrival times are modeled by a Poisson process so that the
inter-cluster arrival times are exponentially distributed

p(Tl|Tl−1) = Λl exp[−Λl(Tl −Tl−1)] l > 0, (A.9)

where Λl is the cluster arrival rate (assumed to be independent of l). The ray arrival
times are modeled with a mixture of two Poisson process as follows [60]:

p(τk,l|τ(k−1),l) = βλ1 exp[−λ1(τk,l − τ(k−1),l)]

+ (1−β )λ2 − exp[−λ2(τk,l − τ(k−l),l)] k > 0, (A.10)

where β and λ1, λ2 represent the mixture probability and the ray arrival rates,
respectively.

For some environments which have dense arrival of the multipaths such as industrial
environment (CM-8), each resolvable delay bin contains significant energy. In this
situation, the notion of arrival rates losses its meaning and a tapped delay line model
with regular tap spacing based impulse response realization is used.

The power delay profile (the mean power of different paths) is exponential within each
cluster [58]

E{|ak,l|2}= Ωl
1

γl[(1−β )λ1 +βλ2 +1]
exp(−τk,l/γl), (A.11)

where Ωl represents the integrated energy of the lth cluster and γl represents the
intra-cluster decay time constant.

The cluster decay time depends linearly on the cluster arrival time as [44]

γl = kγTl + γ0, (A.12)

where kγ is the incrase of the decay constant with delay.

The energy of the lth cluster which is averaged over both the small-scale fading and the
cluster shadowing and also normalized to γl , follows an exponential decay in general
as [44]

10log(Ωl) ∝ 10log(exp(−Tl/Γ))+Mcluster, (A.13)

where Mcluster is a Gaussian distributed variable with standard deviation σcluster.

For the NLOS case of some scenarios such as office and industrial, the model of the
power delay profile can be different and expressed as [58]

E
{∣∣ak,l

∣∣2}=

(
1−χ exp

(
−τk,l

γrise

))
exp
(
−τk,l

γ1

)(
γ1 + γrise

γ1

Ω1

γ1 + γrise(1−χ)

)
(A.14)
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on a log-linear scale where χ is the attenuation of the first component, γrise describes
how fast the power delay profile incrases to its local maximum, and γ1 represents the
decay at later times.

A.4 Small-Scale Fading

Small scale fading is defined as the instantaneous fluctuations of the received signal
strength over short distances or duration times. The distribution of the small-scale
amplitudes |ak,l| in the model expressed as Nakagami distribution [44]

pd f (x) =
2

Γ(m)
(

m
Ω
)mx2m−1 exp(−m

Ω
x2), (A.15)

where Γ(m), m ≥ 1/2 and Ω denote the gamma function, Nakagami-m factor and the
mean-square value of the amplitude, respectively. The parameter Ω corresponds to
the mean power, and hence its delay dependence is given by the power delay profile
above. The m-parameter is random variable which has a lognormal distribution, whose
logarithm has a mean µm and standard deviation σm. Both of the mean and the standard
deviation can have a delay dependence and they are expressed as [44]

µm(τ) = m0 − kmτ, (A.16)
σm(τ) = m̂0 − k̂mτ. (A.17)

The Nakagami-m factor is modeled differently for the first component of each cluster.
It is assumed to be deterministic and independent of delay [44]

m = m̃0. (A.18)

After presenting the parameters that provide the UWB channel modeling, measurement
values of these channel parameters are given in Table A.2 for CM-1, CM-2, CM-5 and
CM-8, respectively.
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Table A.1 : Definitions of the channel parameters given in Table A.2.

d transmission distance
G0 path gain at the reference distance
n path gain exponent
S shadowing gain
σS standart deviation of the shadowing gain
κ frequency dependence of decaying factor
L̄ mean number of clusters
Λ inter-cluster arrival rate
λ1, λ2 ray arrival rates
β mixture probability
Γ inter-cluster decay constant
kγ increase of the decay constant with delay
γ0 intra-cluster decay time constant
σcluster standart deviation of cluster shadowing
χ attenuation of the first path
γrise describes how fast the power delay profile incrases to its local maximum
γ1 decay at later times
m0, km Nakagami-m factor mean
m̂0, k̂m Nakagami-m factor variance
m̃0 Nakagami-m factor for strong multipath components
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Table A.2 : Parameters of the IEEE 802.15.4a UWB channel models used in this thesis
[44].

Channel
CM-1 CM-2 CM-5 CM-8

Parameters

valid range of d 7-20 m 7-20 m 5-17 m 2-8 m
frequency range 3-10 GHz 3-10 GHz 3-6 GHz 3-10 GHz

Path gain

G0 [dB] -43.9 -48.7 -45.6 -56.7
n 1.79 4.58 1.76 2.15
S [dB] 2.22 3.51
σS [dB] 0.83 6
κ [dB/octave] 1.12 1.53 0.12 -1.427

Power delay profile

L̄ 3 3.5 13.6 1
Λ [1/ns] 0.047 0.12 0.0048
λ1, λ2 [1/ns] 1.54, 0.15 1.77, 0.15 0.27, 2.41
β 0.095 0.045 0.0078
Γ [ns] 22.61 26.27 31.7
kγ 0 0 0
γ0 [ns] 12.53 17.5 3.7
σcluster [dB] 2.75 2.93 3
χ 1
γrise [ns] 17.35
γ1 [ns] 85.36

Small-scale fading

m0 [dB] 0.67 0.69 0.77 0.36
km 0 0 0 0
m̂0 [dB] 0.28 0.32 0.78 1.15
k̂m 0 0 0 0
m̃0
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