
 

 
 

 
 
 
 

 
 

  

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Department of Electronics and Communication Engineering 
 

Telecommunication Engineering Programme 

 

ISTANBUL TECHNICAL UNIVERSITY � GRADUATE SCHOOL OF SCIENCE 
ENGINEERING AND TECHNOLOGY  

M.Sc. THESIS 

June 2012 
 

AN ENHANCED COMPRESSION TECHNIQUE 
USING IMPROVED MOTION COMPENSATION  

Kevser BOZOĞLU 

 
 

  

  



 

  



 

    

June 2012 

ISTANBUL TECHNICAL UNIVERSITY � GRADUATE SCHOOL OF SCIENCE 
ENGINEERING AND TECHNOLOGY 

AN ENHANCED COMPRESSION TECHNIQUE 
USING IMPROVED MOTION COMPENSATION  

 

M.Sc. THESIS 

Kevser BOZOĞLU 
 504091370 

Department of Electronics and Communication Engineering 
 

Telecommunication Engineering Program 

Thesis Advisor: Prof. Dr. Melih PAZARCI 



 

  



 

    

Haziran 2012 

İSTANBUL TEKN İK ÜNİVERSİTESİ � FEN BİLİMLER İ ENSTİTÜSÜ 

GELİŞMİŞ HAREKET KEST İRİMİ KULLANARAK 
VIDEO SIKI ŞTIRMA İYİLEŞTİRMESİ 

YÜKSEK L İSANS TEZİ 

Kevser BOZOĞLU 
504091370 

Elektronik ve Haberleşme Mühendisliği Anabilimdalı 
 

Telekomünikasyon Mühendisliği Programı 

Tez Danışmanı: Prof. Dr. Melih PAZARCI 





v 
 

  

Thesis Advisor :  Prof. Dr. Melih PAZARCI    .............................. 
 İstanbul Technical University  

Jury Members :  Prof. Dr. Melih PAZARCI    ............................. 
İstanbul Technical University 

 Prof. Dr. Bilge GÜNSEL   .............................. 
 İstanbul Technical University 

Asst. Prof. Hülya YALÇIN    .............................. 
İstanbul Technical University 

Kevser Bozoğlu, a M.Sc. student of ITU Graduate School of Science, Engineering 
and Technology student ID 504091370, successfully defended the thesis entitled 
“An Enhanced Compression Technıque Using Improved Motion  
Compensation”, which she prepared after fulfilling the requirements specified in the 
associated legislations, before the jury whose signatures are below. 
 

Date of Submission : 04 May 2012 
Date of Defense :  08 June 2012 
 



vi 
 

 
  



vii 
 

FOREWORD 

I wish to thank, first, Prof. Dr. Melih Pazarcı for  his guidance, attention, insight, and 
patience during this work. Without his continuous support, encouragement and 
constructive criticisms, it would not be possible for me to complete this thesis. 

I want to express my respects to Prof. Dr. Ahmet Dervişoğlu and Inst. Deniz Pazarcı 
for teaching me at Yeditepe Univesity and also thank them for their encouragement 
to start my master education. 

Special thanks are due to my friends Ayşe Akdoğan and Özge Irmak with whom 
courses  were smooth and enjoyable. 

Financial support in the form of MSc scholarship from TUBITAK-BIDEB is 
sincerely acknowledged. 

Above all, I am especially indepted to my parents Ali-Hanife Bozoğlu for their love, 
generous support during my whole life and also for their continuous effort to my 
education. 

 
 
 
June, 2012 
 

Kevser BOZOĞLU 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



ix 
 

TABLE OF CONTENTS 

Page 

FOREWORD ............................................................................................................ vii 
TABLE OF CONTENTS .......................................................................................... ix 
ABBREVIATIONS ................................................................................................... xi 
LIST OF TABLES .................................................................................................. xiii 
LIST OF FIGURES ................................................................................................. xv 
SUMMARY ............................................................................................................ xvii 
ÖZET ........................................................................................................................ xix 
1. INTRODUCTION .................................................................................................. 1 

1.1 Purpose of the Thesis ......................................................................................... 1 
1.2 Thesis Organization ............................................................................................ 2 

2. INTERFRAME VIDEO COMPRESSION TECHNIQUES ........ ...................... 3 
2.1 Motion Compensation ........................................................................................ 3 
2.2 Block Matching Algorithm (BMA) .................................................................... 4 

2.2.1 Video quality measure ................................................................................ 7 
2.2.2 Unsuccessful conditions of BMA ............................................................... 7 

2.2.3 BMA results ................................................................................................ 7 
3. SIFT AND MOTION ESTIMATION ................................................................ 11 

3.1 Sift Algorithm .................................................................................................. 11 
3.1.1 Step 1: Scale Space and DoG Image ......................................................... 11 
3.1.2 Step 2: Maxima and Minima (Extrema) Detection ................................... 13 

3.1.3 Step 3: Keypoints Elimination .................................................................. 15 
3.1.4 Step 4: Orientation Assignment ................................................................ 16 
3.1.5 Step 5: Descriptor Vector Calculation ...................................................... 16 

3.2 Motion Vectors using SIFT .............................................................................. 17 
4. THE PROPOSED IMPROVED MOTION COMPENSATION TECHNI QUE
 .................................................................................................................................... 21 

4.1 Development Environment .............................................................................. 21 
4.2 Using SIFT in BMA ......................................................................................... 21 

4.2.1 Stage 1 ....................................................................................................... 22 
4.2.2 Improved Motion Compensation (IMC) ................................................... 25 

4.2.2.1 Eliminating collinear and same located points................................... 25 
4.2.2.2 Obtaining the transform matrix .......................................................... 26 
4.2.2.3 Determination of region that will be transformed .............................. 28 
4.2.2.4 Finding predicted block in transformed region .................................. 29 

5. RESULTS ............................................................................................................. 31 
5.1 Test Frame Results ........................................................................................... 31 
5.2 Real Video Frame Results ................................................................................ 35 

6. CONCLUSION ..................................................................................................... 43 
REFERENCES ......................................................................................................... 45 

APPENDIX A.1 ..................................................................................................... 48 



x 
 

APPENDIX A.2 ..................................................................................................... 49 
CURRICULUM VITAE .......................................................................................... 51 
 
 
 
 



xi 
 

ABBREVIATIONS 

AVC : Advanced Video Coding 
BMA : Block Matching Algorithm 
FPS : Frames per Second 
FSBMA : Full Search BMA 
GOP : Group of Pictures 
IMC :  Improved Motion Compensation 
ISO : International Organization for Standardization 
ITU : International Telecommunication Union 
MPEG : Motion Picture Experts Group 
MSE : Mean Squared Error 
PSNR : Peak Signal to Noise Ratio 
SAD : Sum of Absolute Differences 
SIFT : Scale Invariant Feature Transform 
 

 

 

 

  



xii 
 



xiii 
 

LIST OF TABLES 

Page 

Table 4.1: Coordinates of keypoints in a block. ........................................................ 28 

Table 5.1: Test frame results. .................................................................................... 31 
Table 5.2: Video properties ....................................................................................... 35 
Table 5.3: Real video results ..................................................................................... 36 
Table 5.4: Computation Time of algorithms (in seconds) ........................................ 37 
Table A.1: SAD enhancements of example blocks. .................................................. 48 

Table A.2: SAD enhancements of example blocks (cont.) ....................................... 48 
Table A.3: SAD enhancements of example blocks (cont.) ....................................... 48 



xiv 
 

  



xv 
 

LIST OF FIGURES 

Page 

Figure 2.1 : Flow of information through motion compensation process. .................. 4 

Figure 2.2 : Basic elements of Full Search BMA. ...................................................... 5 
Figure 2.3 : Flow chart of BMA. ................................................................................ 6 
Figure 2.4 : a)Reference image, b) Current image (right). ......................................... 8 
Figure 2.5 : Motion vectors for Example 1 ................................................................. 8 
Figure 2.6 : Predicted image for the target frame (PSNR = 38.7828) ........................ 8 

Figure 2.7 : a) Reference image, b) Current image. .................................................... 9 
Figure 2.8 : Motion vectors for Example 2 ................................................................. 9 
Figure 2.9 : Predicted image for the current frame (PSNR = 33.7365) .................... 10 
Figure 3.1 : Finding Scale Space and DoG[4] .......................................................... 12 
Figure 3.2 : Scale Space and DoG ............................................................................ 13 

Figure 3.3 : Extrema Detection Algorithm [4] .......................................................... 14 
Figure 3.4 : Extrema detection in DoG Images [3] ................................................... 14 
Figure 3.5 : Using [6], 987 SIFT keypoints are found. ............................................. 17 
Figure 3.6 : 80th (top) and 83th (bottom) frames of video. ...................................... 19 

Figure 3.7 : 80th and 83th odd fields of an interlaced video. ................................... 19 
Figure 3.8 : Motion vectors for odd fields 80 to 83 are shown with red arrows. ...... 20  
Figure 4.1 : Basic understanding of new algorithm. ................................................. 22 
Figure 4.2 : The region (left) is taken from previous image and rotated to the  

opposite direction as seen on (right). The predicted block is obtained. 23 
Figure 4.3 : Flow chart of Stage1. ............................................................................. 24 
Figure 4.4 : a: original block from current frame, b: selected region from reference 

image , c: the region after transformation of (b), d: candidate predicted 
block which is selected from (c). .......................................................... 29 

Figure 4.5 : Flow chart of IMC. ................................................................................ 30 
Figure 5.1 : Reference test frame .............................................................................. 32 
Figure 5.2 : Current test frame .................................................................................. 33 
Figure 5.3 : Reconstructed frame with BMA motion vectors. .................................. 33 
Figure 5.4 : Reconstructed frame with Stage 1. ........................................................ 34 
Figure 5.5 : Reconstructed frame with IMC. ............................................................ 34 

Figure 5.6 : An example of GOP structure ............................................................... 36 
Figure 5.7 : 80th odd field .......................................................................................... 37 

Figure 5.8 : 81th odd field .......................................................................................... 38 
Figure 5.9 : Reconstracted 81th odd field through BMA .......................................... 38 
Figure 5.10 : Reconstructed 81th odd field through IMC .......................................... 38 
Figure 5.11 : 82th odd field ........................................................................................ 39 
Figure 5.12 : Reconstructed 82th odd field through BMA ........................................ 39 
Figure 5.13 : Reconstructed 82th odd field through IMC .......................................... 39 
Figure 5.14 : 83th odd field ........................................................................................ 40 
Figure 5.15 : Reconstructed 83th odd field through BMA ........................................ 40 
Figure 5.16 : Reconstructed 83th odd field through IMC .......................................... 40 
Figure 5.17 : 84 th odd field ....................................................................................... 41 
Figure 5.18 : Reconstructed 84th odd field through BMA ........................................ 41 
Figure 5.19 : Reconstructed 84th odd field through IMC .......................................... 41 
Figure 5.20 : 85 th odd field ....................................................................................... 42 
Figure 5.21 : Reconstructed 85th odd field through BMA ........................................ 42 



xvi 
 

Figure 5.22 : Reconstructed 85th odd field through IMC .......................................... 42 

 

 
 
 
 
 
 
 



xvii 
 

AN ENHANCED COMPRESSION TECHNIQUE USING IMPROVED 
MOTION COMPENSATION 

SUMMARY 

In the digital age, almost all video storage and delivery systems depend heavily on 
compression technology. Video compression standards have been used and improved 
since 90s. There are many standards that use motion compensation to reduce 
unnecessary data and compress video. This thesis proposes an improved compression 
technique based on both block matching compensation and SIFT. This new 
technique reveals an improved motion compensation (IMC) which is achieved by 
using invariant features.  

SIFT finds local invariant features in a given image. It has been used in many 
implementations in the literature. However, none of them used invariant features to 
obtain a better motion compensation. In this thesis, SIFT is used to detect rotated 
regions and obtain better reconstruction with higher PSNR than classical block 
matching. 

To achieve this, invariant features are found in adjacent frames and then feature 
keypoints are matched. In conventional BMA, each non-overlapping 16x16-pixels 
block in current frame is predicted from previous frame by finding the block that 
gives minimum SAD value. However, if an object rotates from previous frame to the 
current, BMA cannot achieve an accurate prediction. In this case, the algorithm 
implemented in this thesis comes up with more accurate results because SIFT 
keypoints are utilized to detect and correct rotation between frames in the 
implemented algorithm. 

The proposed algorithm is tested on both test frames and real video frames. PSNR 
results are given for comparison of the proposed algorithm with classical BMA. It is 
seen that the proposed algorithm, which is called IMC in this thesis, caused an 
improvement of almost ~1.4 dB for the reconstructed test frame. This improvement 
is approximately 0.5 dB for real video frames. PSNR values are calculated for whole 
images. To see the block improvements, SAD values of blocks for compared 
algorithms are exhibited. These improvements may also be visually observed in the 
given reconstructed frame pictures. 

 
  



xviii 
 

  



xix 
 

 

GELİŞMİŞ HAREKET KEST İRİMİ KULLANARAK V İDEO SIKI ŞTIRMA 
İYİLEŞTİRMESİ 

ÖZET 

Bulunduğumuz dijital çağda, hemen hemen tüm video depolama ve iletim 
sistemlerinin temeli veriyi sıkıştırma teknolojisine dayanır. Dijital videoyu doğrudan 
saklamak ya da iletmek çok yüksek veri kapasitesi gerektirir. Bu nedenle, dijital 
video saklanacaksa veya iletilecekse öncesinde sıkıştırılır. Video sıkışıtırma 
standartları 90lı yıllardan beri kullanılmakta ve sürekli geliştirilmektedir.  

İlk video sıkıştırma standartı 1990 yılında uygulanan ITU H.261 standartı olarak 
kabul edilebilir. ISO ve ITU organizasyonlarının ortaklaşa onayladığı MPEG-2/H-
262 standartı 1993 yılında kullanılmaya başlanmıştır ve günümüzde de yaygın olarak 
kullanılmaktadır. 1995 yılında, ITU H.263 standartını geliştirmiştir. Günümüzün 
video konferans sistemleri ve cep telefonu kodeklerinde de çoğunlukla H.263 
standartı mevcuttur [14]. Son sıkıştırma algoritması, ITU ile ISO’nun birlikte 
geliştirdikleri H.264/MPEG-4 Part10/AVC standartıdır. Bu son standart, 
geliştirirlmi ş sıkıştırma kalitesi sayesinde MPEG-2’ye gore zaman zaman %50 ye 
kadar daha az bitle iletim sağlayabilir. Başka bir deyişle, H.264 standartı bir videoyu 
önceki standartlarla aynı kalitede ancak onlardan iki kat daha fazla sıkıştırabilir. 
Sonuç olarak H.264, 21. Yüzyılın en gelişmiş video kodlama standartı olarak 
görülmektedir [10].  

Video sıkıştırma işlemi genel olarak, video çerçevelerini (frame) depolamak veya 
iletmek için ihtiyaç duyulan bit sayısını azaltmayı hedefler. Video sıkıştırma 
standartları bilgiyi/veriyi azaltmak için farklı metodlar kullanırlar. Bu sebeple, her 
bir standartın bit oranı ve veri kalitesi de farklıdır. Yukarıda bahsedilen tüm 
standartlar veriyi kodlarken hareket tahmini (motion estimation) tekniklerini 
kullanırlar. En yaygın kullanılan hareket tahmini tekniği, blok eşleme algotritması 
(block matching algorithm) tekniğidir. Bu teknikte video çerçeveleri belirli sayıda 
pixellerden oluşmuş bloklara ayrılır. Şimdiki video çerçevesi içindeki her bir blok, 
önceki çerçeveden aynı büyüklükte ve kendisine en çok benzeyen bir blokla 
eşleştirilir. Bu şekilde eşleşen bloklar tahmin edilen (predicted) çerçeveyi oluşturur. 
Ancak, klasik blok eşleme algoritması, video süresince dönen bir cisim olması 
durumunda çok iyi sonuçlar verememektedir.  

Blok eşleme algoritmasında çeşitli blok arama stratejileri kullanılabilir. Bunlardan 
bazıları kapsamlı arama (exhaustive or full search), hızlı arama (fast search), çapraz 
arama (cross search) olarak adlandırılabilir. Bu tez kapsamlı blok eşleme 
algoritmasını temel alacak şekilde geliştirilmi ş ve bu algoritmanın iyileştirilmesi 
amaçlanmıştır. Kapsamlı blok eşleme algoritmasında blok ve pencere boyutu 
kullanıcı tarafından belirlenebilmekle birlikte, bu boyutlar algoritmayı şu şekilde 
etkilerler: Daha büyük blok boyları, genelde gürültüye karşı daha dayanıklıyken, 
küçük bloklar daha belirgin çizgiler yakalayabilirler. Doğru eşlemeyi bulmak içinse 



xx 
 

arama penceresi boyutunu doğru belirlemek önemlidir. Pencre boyutu büyüdükçe 
doğru eşleme olasılığı artarken, algoritmanın hesap yükü ve hesaplama için geçen 
zaman da artmaktadır. Genelde kullanılan blok boyutları 4x4, 8x8 veya 16x16 piksel 
olmakla beraber en yaygın kullanılan blok boyutu 16x16 pikseldir. Arama penceresi 
de genelde bloğun etrafında sağ, sol, üst ve altta 7şer pixel genişlik sağlayacak 
şekilde seçilir. 

Literatür tarama sürecinde, SIFT algoritması ve algoritmanın hangi alanlarda 
kullanıldığı incelenmiştir. SIFT algoritması, input olarak kullanılan bir resmin kilit-
nokta tanımlayıcılarını (key-point descriptors) bulur. Her bir kilit-nokta, resmin 
rotasyondan, ölçeklemeden ve gürültüden bağımsız bir özelliğini oluşturur. Bir kilit 
nokta ise 128 elemandan oluşan bir vektörle tanımlanır. Her bir vektörün eleman 
sayısının bu kadar fazla olmasının sebebi, her bir kilit-noktayı diğerlerinden ayıracak 
özelliklerin kendini tanımlayan vektörde saklanıyor olmasıdır.  

SIFT algoritması ilk olarak [2]’de daha sonra ise [3]’te anlatılmıştır. Hareket tahmini 
ve takibi, robot lokalizasyon ve haritalama, resimlerin panaromik birleştirilmesi, üç 
boyutlu (3D) sahne modellemesi gibi bir çok alanda başarılı uygulamalarının olduğu 
[5]’te belirtilmiştir. Ayrıca, [11]’de bir resimde kopyalanmış bölgenin belirlenmesi, 
[12]’de bahsedilen kamera affine model parametrelerinin hesaplanması, [13]’te 
sunulan çok görüşlü videolarda daha doğru yan bilgilerin bulunması gibi başarımlar 
SIFT kilit-nolkaları ile elde edilmiştir. Tüm bu araştırmalar sonucunda SIFT’in daha 
önce blok eşleme algoritmasında geliştirmek için kullanıldığına rastlanmamıştır. Bu 
tezin amacı, Ölçekten Bağımsız Nitelikler Transformu’ndan (SIFT) yararlanarak 
daha iyi bir hareket kestirim algoritması elde etmektir. 

[4]’te patenti Lowe tarafından alınan SIFT algoritmasının internette farklı 
parametreler içeren bir çok gerçeklemesi bulunmaktadır. Bu tezde [6]’da verilmiş 
olan aynı zamanda [3] ve [4]’te açıklanan gerçekleme kullanılmıştır. 

Önçalışma amacıyla, [6]’da verilen gerçekleme kullanılarak bir videoya ait ardarda 
gelen iki çerçevenin kilit-noktları bulunmuştur. SIFT algoriması çıktı olarak kilit-
noktaların x ve y koordinatlarını, büyüklüğünü ve oryantasyon değerlerini 
vermektedir. Yine [6]’da bulunan eşleme algoritması ile bu çerçevelerdeki kilit-
noktalar eşlenmiştir. Böylece kilit-noktalara ait hareket vektörleri de hesaplanıp 
çizdirilmiştir. Sonuçta her bir blok (16x16 pixel) içinde en az 0, en fazla 5 eşleşen 
kilit-nokta olabildiği görülmüştür.  

Tezde önerilen algoritma, blok eşleme algoritmasının iyi sonuç vermediği yerlerde 
devreye girer. Eğer video içinde rotasyon hareketi yapan bir obje varsa blok eşleme 
algoritması iyi sonuç vermezken, tezde önerilen algoritma rotasyondan etkilenen 
blokları belirleyerek bu bloklara ters rotasyon uygulayıp tahmin edilen resme bu 
şekilde yerleştirmeyği hedefler. 

Bunu başarmak için kullanılan yöntem şu şekildedir: Önceki resimden alınan bloğun 
şimdiki resme dönüşüm matrisi, eşleşen ve kolineer olmayan kilit-noktalar 
kullanılarak bulunabilir. Bir blokta eşleşen nokta sayısı arttıkça daha karmaşık 
dönüşüm matrisleri hesaplanabilir. Genelde bir blokta en fazla dört ya da beş eşleşen 
nokta bulunsa da bu noktalar bazen kolineer olabiliyor ya da bazı noktların büyüklük 
ve oryantasyonları farklı olsa da aynı lokasyonda bulunabiliyorlar. Bu durumda 
algoritmada iki veya üç kolineer olmayan kilit-nokta kullanarak belirlenebilen iki 
boyutlu (2D) dönüşümlere odaklanılmıştır. 



xxi 
 

Bu aşamada, bir video içerisinde ardarda gelen çerçevelerdeki kilit-noktlar 
bulunduktan sonra [6]’da verilen eşleme algoritması amaca yönelik değiştirilmi ştir. 
Eşleme algoritmasının girdileri şimdiki çerçeve ile referans çerçevedir. Çıktıları ise 
şimdiki çerçeve içindeki her bir 16x16 blok için hesaplanmış makro-blok tablolardır. 
Bu tablolarda, eşleşmiş ve kolineer olmayan kilit-nokta sayısı, her bir blok içindeki 
kilit noktaların bulunduğu satır ve sütun bilgileri, bu kilit-noktlarla eşleşen referans 
çerçevedeki kilit-noktaların satır ve sütun bilgileri ve her bir eşleşen noktanın 
rotasyon bilgisi tutulmaktadır. 

Tüm bu veriler saklandıktan sonra, klit-noktaların yer (koordinat) bilgileri cp2tform 
fonksiyonunun girdileri olarak kullanılırlar. cp2tform fonksiyonu MATLAB’in hazır 
fonksiyonudur ve çift kontrol noktalarından özel dönüşümü hesaplar. Bu 
fonksiyonun girdileri şimdiki çerçevenin kilit-nokta koordinatları ile bu noktalarla 
eşleşmiş olan referans çerçevenin koordinat bilgileridir. Nokta koordinat bilgilerinin 
yanında girdi olarak transformtype parametresine de gerek duyulmaktadır. 
Transformtype, fonksiyonun kontrol noktalarından bulacağı transformun türüdür ve 
her transform için gereken kontrol nokta sayısı farklıdır. Bizim algoritmamızda 
transformtype’ı belirleyen klit-nokta sayısıdır ve kilit-nokta sayısı (point_num) bize 
üç duruma; üç farklı transforma ulaşma olanağı sunar: 

İlk durumda, bir blok içinde en az üç ve daha fazla kilit-nokta vardır ve bu sayı affine 
transform için gerek ve yeter koşul olduğundan transformtype’ı affine olarak 
belirleyerek affine dönüşüm matrisini bulabiliriz. İkinci durum blok çinde eşleşen iki 
kilit-nokta olmasıdır. İki nokta affine dönüşümü belirlemek için yeterli olmadığından 
burada transformtype parametresi “nonreflective similarity” olarak verilir. Bu 
dönüşüm türünde rotasyon, kayma ve ölçekleme gibi parametreler belirlenebilirken 
şekil değişimleri belirlenemez. Bu sebeple tezin amacı göz önünde bulundurulursa 
affine dönüşüme gore rotasyon belirleme açısından bir kaybı yoktur. Son olarak, blok 
içinde eşleşen tek bir nokta olması durumundaysa, bir nokta herhangi bir dönüşüm 
matrisini çözmek için kullanılamayacağından dolayı, bu nokta çeversine açı farkı 
kadar rotasyon uygulanır. 

Uygulanan gerekli dönüşümden sonra, yeni yöntem kullanarak kestirilen blok ile 
klasik blok eşleme yöntemi sonucunda kestirilen blok karşılaştırılır ve optimum 
sonucu hangi algoritma verdiyse o algoritmanın öngördüğü blok kestirilen resim 
çerçevesine atanır. 

Sonuç olarak önerilen algoritma hem test resimlerinde hem de gerçek video resimler 
üzerinde test edilmiştir. Testler sonucunda, BMA ile karşılaştırma yapmak için elde 
edilen resimlerin PSNR değerleri hesaplanmıştır. Elde edilen verilere gore, önerilen 
algoritmanın sonuçları BMA sonuçları ile karşılaştırıldığında test frameler üzerinde 
~1.4 dB’ye varan, gerçek video resimleri üzerinde ise 0.5 dB’ye varan iyileştirmeler 
sağladığı gözlemlenmiştir. Bu iyileştirmeler, sonuçlar kısmındaki şekillerden de 
görsel olarak gözlemlenebilir. 

 

 

 

 
 
 
 



xxii 
 

 
 
 
 
 
 
 
 
 
 
 
  



1 

1.  INTRODUCTION 

Directly storing or transmitting digital video generally requires very high data 

capacity. Compression is needed for economical storage and/or transmission. Video 

compression has the goal of reducing the number of bits required to store or convey 

video frames. It can be said that digital video compression started with the ITU 

H.261 standard in 1990. The MPEG-2/H-262 standard was approved by ISO and 

ITU standardization organizations in 1993 and widely used today. In 1995, ITU 

developed the H.263 standard, which is dominantly used in today’s video 

conferencing and cell phone codecs [14].  H.264/MPEG-4 Part10/AVC is the latest 

compression standard developed by the ITU and ISO organizations together. Because 

of its improved compression quality, H.264 can reach %50 additional bit rate savings 

over MPEG-2. In other words, it can compress video at twice the rate of previous 

video standards while achieving the same quality. H.264 standard has become the 

most successful video coding standard of the twenty-first century [10].  

All these video compression standards use different methods to reduce data and this 

is why the bit rate and quality is different for each standard. Standards mentioned 

here use motion compensation techniques while encoding data. Most widely used 

motion compensation technique is based on block motion compensation in which the 

frames are divided into blocks of pixels and then predicted by matching each block 

in current frame with a block of equal size in the previous frame. 

1.1 Purpose of the Thesis 

The aim of this thesis is to express a new motion compensation technique by using 

Scale Invariant Feature Transform (SIFT) which is a local feature technique. Before 

starting the details on this subject, the areas that use the SIFT algorithm are 

investigated. This technique is shown to be successful in many fields such as object 

recognition and tracking, robot localization and mapping, panorama stitching, 3D 

scene modeling etc. [5]. In [11], a new region duplication detection method based on 

the image SIFT features is presented. The SIFT is applied to global motion 



2 

estimation in [12] and parameters of the camera affine model are computed. In [13], 

feature keypoints are used to yield more accurate side information for multi-view 

videos. At this point, there is no study that aims to improve full search BMA by 

using SIFT. Conventional full search BMA cannot handle cases when a region has 

rotated in a video. This thesis aims to detect this kind of transformed regions and 

obtain a better reconstruction with higher PSNR by using the invariance feature of 

matched keypoints. 

1.2 Thesis Organization 

This thesis is organized as follows. In Chapter 2, interframe video compression 

techniques are introduced and motion compensation is explained. BMA, which is a 

motion estimation search technique, is described in detail because it is used as a base 

technique in this thesis. Unsuccessful conditions for BMA are discussed and finally 

two BMA examples are exhibited with their results. SIFT which is the local feature 

technique is introduced in Chapter 3. After a brief introduction to SIFT, the steps that 

are executed until keypoint descriptors are obtained have been described. Then, use 

of SIFT in image matching and motion estimation are explained. Chapter 4 includes 

information about the development environment and the implementation of the two 

new algorithms. In other words, improved BMA using SIFT features is explained in 

detail. Results are given and discussed in Chapter 5. Finally, in Chapter 6, some 

conclusions are drawn and some recommendations for future work are given. 

  



3 

 

2.  INTERFRAME VIDEO COMPRESSION TECHNIQUES 

Video compression aims to reduce redundancy in a video signal by using coding 

techniques. The redundancy in a video signal is based on two principles. The first 

one is the spatial redundancy that exists in each frame. The second one is temporal 

redundancy, which is the fact that, a video frame is very similar to its adjacent 

frames. Eliminating spatial redundancy is called intra-frame compression. Reducing 

temporal redundancy is called inter-frame compression. Video compression reduces 

the number of bits required to store and transmit digital video. Therefore, 

compressed video can be transmitted more economically over a smaller bandwidth. 

Inter-frame compression works by comparing current frame with the previous one. If 

current frame contains exactly the same areas with the previous one, the system 

copies this part from the previous frame. If an objects move, the system sends the 

direction and quantity of movement information, and then these areas are copied with 

movement compensation. 

In video compression, motion estimation and motion compensation techniques are 

widely used for describing a frame in terms of copied and translated parts of a 

reference frame. These copied and translated parts are generally 4x4, 8x8 or 16x16 

pixels. 

2.1 Motion Compensation 

In video sequences, there exists a high level of redundancy between consecutive 

frames. Changes are generally very little from one frame to the next. Therefore, 

temporal redundancy reduction is achieved by encoding first a reference frame then 

encoding only the difference between the reference frame and the target frame for 

consecutive frames.  

There are some different redundancy reduction techniques such as differential coding 

and block-based motion compensation. Differential coding is used by most video 

compression standards including H.264. In differential coding, a frame is compared 



4 

with a reference frame and only the pixels that have changed with respect to the 

reference frame are coded. A better technique is block-based motion estimation, 

which gives better results especially if the motion rate is high.  

This thesis is based on block-based motion compensation and a new implemented 

approach is compared with this technique. Figure 2.1 shows the flow chart of block-

based motion compensation process. The block matching box in this chart is 

explained in detail in Chapter 2.2. 

 

Figure 2.1 : Flow of information through motion compensation process. 

2.2 Block Matching Algorithm (BMA) 

Block matching algorithm aims to detect the motion of non-overlapping blocks. Each 

block from the current frame is matched with a block in the previous frame. This 

matching is achieved by shifting the current block over a predefined region of pixels 

in the reference frame. At each shift position, the sum of absolute differences (SAD) 

between the gray values of the two blocks are computed as shown in (2.1). The shift 



5 

that gives the lowest SAD is accepted as the best match. SAD calculation is given in 

(2.1). 

���(�, �) = 	 ∑�	���
�, �� − 	�(� + �� , � + ��)	�                     (2.1) 

Here, 	I��� is the current frame and 	I� is the previous frame. 
i, j� is the beginning 

location of the block for which SAD is computed. v�, v� are x and y components of 

the motion vector for that block respectively. Utilized v� and v� values give the 

location where minimum SAD is calculated. Therefore, they generate the motion 

vector for that block. 

For block matching algorithm, there are various search strategies such as full 

(exhaustive) search, fast search, three step search, cross search etc. Full search 

algorithm is selected as the reference algorithm for this thesis. Block size and search 

window can be determined as inputs to the full search algorithm. In general, bigger 

blocks are less sensitive to noise while smaller blocks produce better contours [1]. 

For this thesis, 16x16 blocks are used for both the reference and proposed 

algorithms. The size of the search window is important to find the true match. The 

computation load and time increase with the growth of the search window.  

 

Figure 2.2 : Basic elements of Full Search BMA. 

Flow chart of the the FSBMA is shown in the Figure 2.3 below. However, there are 

some cases that change these implementation steps. One of them is the fact that, in 



6 

some cases the true motion vector may address pixels outside the frame. If this 

situation is detected, this motion vector is neglected and algorithm continues with the 

next motion vector. The other case is when the frame size is not a multiple of block 

size. This situation occurs generally at the edges of the image but it is not available in 

this thesis because all video frames are a multiple of 16x16. Therefore, it is not a 

drawback for this thesis. 

 

Figure 2.3 : Flow chart of BMA. 

 



7 

2.2.1 Video quality measure 

The peak signal to noise ratio (PSNR) in decibel (dB) is widely used as a quality 

measure in video coding [1]. The PSNR is defined as 

��� = 10	����	�
��
�

��� 																																												(�.�) 
Where �
�� is the peak (maximum) intensity value of the video signal and mean 

square error (MSE) between two images (im1 and im2) is calculated as 

��� =
1��� ∙ ����
��1 − ��2�� 																																		(�.�) 

Here, row and column represent the row length and column length of the image, 

respectively. 

As it is noted in [1]; a PSNR over 40 dB typically indicates an excellent image 

(being very close to the original), between 30 to 40 dB usually means a good image 

(distortion is visible but acceptable), between 20 and 30 dB is quite poor and finally, 

a PSNR lower than 20 dB is unacceptable. 

2.2.2 Unsuccessful conditions of BMA 

Block Matching Algorithm cannot find the true match when an object is occluded 

between frames, when there is an aperture problem or if there is a rotation/affine 

transformation in the image. 

The last problem can be solved by checking the blocks if there is a rotation or 

transformation. When it is detected, applying a special algorithm for this block will 

improve the motion estimation result. In this thesis, this idea is implemented by using 

the Scale Invariant Feature Transform (SIFT) which is explained in next chapter. 

2.2.3 BMA results 

To observe BMA results, blockmatching function is written in MATLAB. Inputs of 

blockmatching function are previous frame (im_pre), current frame (im_cur), block 

size (N), search window size (M) and threshold (th). The outputs of the function are 

motion vector parameters (Vx, Vy) and predicted image (predicted). The use of 

blockmatching function is as follows: 

[predicted, Vx, Vy] = blockmatching(im_pre, im_cur, N, M,th); 



8 

Inputs and outputs of blockmatching function are observed in two examples below. 

In these examples, M=16, N=16, th=1. 

Example 1: foreman video 

a)  b)  

Figure 2.4 : a)Reference image, b) Current image (right). 

 

Figure 2.5 : Motion vectors for Example 1 

 

Figure 2.6 : Predicted image for the target frame (PSNR = 38.7828)  

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10
motion vectors



9 

Example 2: 

a)  

b)  

Figure 2.7 : a) Reference image, b) Current image. 

 

Figure 2.8 : Motion vectors for Example 2 

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18
motion vectors



10 

 

 

Figure 2.9 : Predicted image for the current frame (PSNR = 33.7365) 

 
  



11 

 

3.  SIFT AND MOTION ESTIMATION 

The Scale Invariant Feature Transform (SIFT) algorithm assigns features of an image 

which are distinct, and these features can be used to identify similar objects even if 

they are rotated, scaled or brightened in other images. 

The SIFT was first published in [2], later in [3] and is also patented in [4]. However 

there is not just one implementation, there are many implementations with different 

parameters on the internet due to the fact that distinctive features for an image are not 

unique. Implementation in [6] which is also explained in [3] and [4] is used in this 

thesis.  

3.1 Sift Algorithm 

SIFT takes an image as an input and generates a set of key-point descriptors.  A 

keypoint is an image feature which is so stable that rotation, scaling or noise cannot 

distort the keypoint. A descriptor is a 128 dimensional vector array that describes a 

keypoint. The reason for this high dimension is that, each descriptor should include a 

lot of information to distinguish this keypoint from others. 

The SIFT algorithm can be divided into five computational steps: 

3.1.1 Step 1: Scale Space and DoG Image 

In the first step of the SIFT algorithm, the input image is blurred by applying a one 

dimentional Gaussian function �
�,��, given in (3.1) to the vertical and horizontal 

directions. 

�
�,�� = 	 �

√���
 ���/��� 	                                                (3.1) 

In [4], � is selected as √2 and it is implemented by using 7 samples of �
�,��. 



12 

After calculating the blurred image, the Difference-of-Gaussian (DoG) image is 

obtained by subtracting the blurred image from the input image. Then the resolution 

of the DoG image is checked. If it is less than a predefined resolution, which is 

30x30 pixels in [4], this step is ended. If the DoG image resolution is higher than the 

predefined resolution, the DoG image is down-sampled (1.5 times in [4]). This lower 

resolution image is then used as the input image so it is blurred again. This flow is 

repeated until DoG image which has less than 30x30 pixels is obtained. The flow 

chart of the algorithm is given in Figure 3.1. 

 

Figure 3.1 : Finding Scale Space and DoG[4] 

Here, input image and blurred image form an octave set. In [4], an octave set consists 

of two images (one input and one blurred). Generally, to obtain an octave set, input 

image is blurred progressively, and more than one blurred image is produced as in 



13 

[3]. In addition, the number of octaves are determined by two parameters: resolution 

of the first image and the predefined DoG resolution. Figure 3.2 shows the DoG 

pyramid as implemented in [3]. 

 

Figure 3.2 : Scale Space and DoG 

3.1.2 Step 2: Maxima and Minima (Extrema) Detection 

In Step 1, DoG images which have different resolutions are obtained. In this step, 

pixel amplitude extrema is going to be located in each DoG image with the algorithm 

that is shown in Figure 3.3. An extrema can be defined as any value in a diference 

image greater than all its neighbours in scale space. 

In this algorithm, each pixel of each difference image is iterated and checked with all 

its neigbours at the same level, and it is also checked with previous and next levels as 

depicted in Figure 3.4. Cross signed pixel is the compared pixel and green colored 

pixels are the neighbours of it. As a result, this check is done with totally 26 points (8 

same level, 9 previous level, 9 next level) for one iteration. 

These found extremas are not exact extremas because they do not have to be on a 

pixel, they may be on somewhere between pixels.  



14 

 

Figure 3.3 : Extrema Detection Algorithm [4] 

 

Figure 3.4 : Extrema detection in DoG Images [3] 



15 

To access data between pixels, in [3], localization of the keypoint is improved to 

subpixel acuracy by using a second order Taylor series expansion of scale space 

function	�(�, ",�): 
�
�� = � +

#��

#�� � + 	1
2
�� #��#�� �																																			(�.�) 

The derivative of this function with respect to x is taken and set to zero. This gives 

the true extrema location [3]. 

3.1.3 Step 3: Keypoints Elimination 

In this step, some weak points are eliminated from the candidate list of keypoints. 

These weak keypoints have one of two specific features which are low contrast and 

being located on an edge.  

Candidate keypoints with a value below a threshold are discarded in order to reject 

unstable extrema with low contrast. For example, it is assumed that pixel values are 

in the range [0,1] and an extrema with a value of less than 0.03 are eliminated in [3]. 

To eliminage keypoints on edges, the situation used in [3] that, the exixstance of a 

large principle curvature across the edge but a small curvature in the perpendicular 

direction in the DoG function. Principle curvatures can be computed from a 2x2 

Hessian matrix which is computed at the location and scale of the keypoint where the 

derivatives are estimated by taking differences of neighboring sample points:  

$ = %��� ������ ���
&                                                      (3.5) 

The eigenvalues of H are proportional to the principle curvatures of D. Since only the 

ratio of eigenvalues is considered, it is not needed to compute eigenvalues. If the 

eigenvalue with the largest magnitude is named as α and the smaller one is β, the 

sum of eigenvalues can be computed from the trace of H and their product can be 

computed from the determinant. 

'�
$� = ��� + ��� = 	( + )                                         (3.6) 

� *
$� = 	 ������ − (���)
� = ()                                    (3.7) 

If the ratio between α and β is r, then it can be expresed as α = rβ. Then, 



16 

'�
$��� *
$� = 	 (( + ))�() =

�) + )���)� =

(� + 1)�� 																											(�.+) 
It can be seen that (3.9) depends on just the ratio of the eigenvalues, r, not their 

individual values. The equation (3.9) is minimum when the two eigenvalues are 

equal and it increases with r. Then in order to eliminate these keypoints, it is enough 

to check whether the ratio of principle curvature is below some threshold, r (=10 in 

[3]). 

��� + 	��������� − (���)
� <

������

�
																																															(�.,)	 

                                                  

3.1.4 Step 4: Orientation Assignment 

This step aims to assign a consistent orientation to the keypoints based on local 

image properties. The gradient magnitude m
x, y� and orientation θ
x, y� is pre-

computed using pixel differences: 

�
�, "� = 	-(.
� + 1, "� − 	.
� − 1, "�)� + (.
�, " + 1� − .
�, " − 1�)�   (3.10) 

/
�, "� = 	 tan�� L
x, y + 1� − L
x, y − 1�
L
x + 1, y� − 	L
x − 1, y�																														(�.00) 

An orentation histogram is formed from the gradient orientations of sample points 

within a 3σ window around the keypoint [4]. In this histogram, 360 degrees is 

divided into 36 bins in [3] so each bin consists of 10 degrees. For example, if the 

gradient direction of a sample point is 21, it will be in the bin for 20-29 degrees. 

After all pixels are added to a bin, there will be one peak or multiple peaks. All peaks 

within 80% in the orientation histogram will be assigned to the keypoint. Therefore, 

there will be keypoints with the same location and scale but different orientations if 

there are multiple peaks within 80%. 

3.1.5 Step 5: Descriptor Vector Calculation 

This stage aims to assign a specific vector to each keypoint so each keypoint will be 

different than others. To achieve this, a 16x16 pixel region around the keypoint is 

divided into 4x4 sub-regions. For each 4x4 region, gradient magnitutes and 

orientations are calculated. Their coordinates and gradient orientation are rotated 



17 

relative to key-point orientation and are located in a particular bin among 8 bins 

which are -22.5 to 22.5 , 22.5 to 67.5, 67.5 to 112.5 etc. Their gradient magnitudes 

are weighted by an appropriate gaussian weighting function to give less significance 

to gradients that are far from the center of a descriptor. Finally, a keypoint will have 

4x4 regions with 8 directions; a total of 128 different numbers. 

 

Figure 3.5 : Using [6], 987 SIFT keypoints are found. 

Found keypoints in Figure 3.5 are shown on the 288x704 image. 

3.2 Motion Vectors using SIFT 

This part aims to find motion vectors between two consequtive frames by using SIFT 

keypoints. It is also a preliminary study of Chapter 4 of this thesis because the 

number of keypoints per block is important for IMC and is observed for an image 

and the suitabilitiy of motion vectors that are found through SIFT keypoints are 

investigated in this part. These analyses will be useful while utilizing keypoints to 

improve block mathing results. 

To investigate the use of SIFT in the subject of motion estimation, SIFT keypoints 

are found and stored for two sequential frames (let’s say im1 and im2) of a video. 

Then keypoints of im1 are matched with the keypoints of im2. 

In order to extract SIFT keypoints, sift function which is written in MATLAB and 

included in the demo software in [6] that is provided by David Lowe is used. In the 

sift function, there is a call to an exacutable file named as siftWin32 which is the 

program that finds the invariant keypoints. Input to the sift function is an image file, 

and it gives descriptors and locs matrices of the input image as output. 



18 

Descriptors is K-by-128 matrix where K is the number of keypoints. Each row gives 

an invariant descriptor for a keypoint, so descriptor is a vector of 128 values. The 

parameter locs is a K-by-4 matrix which includes the keypoints’ location information 

as row, column, scale and orientation. In other words, the first column of locs matrix 

gives the y-position of the keypoints, second column gives the x-positon. Third and 

fourth columns give the scale and orientation of the keypoint, respectively. 

Orientation is in the range 1− π, π2 radians. When siftWin32 is called, it writes 

invariant keypoints to tmp.key. 

To find motion vectors via invariant keypoints, first the sift function is called to find 

descriptors and locs matrices of im1, then the respective matrices of im2 are found 

by another “sift” call. After these matrices are stored, matching operation starts and 

each keypoint of im1 is compared with each keypoint of im2. 

To match im1 keypoints with im2 keypoints, instead of Euclidean distance, [6] 

suggested the use of a modified distance function to improve the matching speed. In 

this algorithm, there are two equal length vectors which are 128 long descriptors of 

im1 and im2. Then the dot product of these vectors are calculated as im1 • im2 

which gives the same result as with |im1||im1| cos α. Here, angle α between the 

vectors can be found easily with inverse cosine function. For one keypoint, there is a 

K-long angle (α) vector; then the values in this vector are sorted in ascending order. 

The first match in that order is checked. If the distance of first match is less than 

distRatio times the distance to the second match, where distRatio is a constant, the 

first match is accepted as the best match. In [6], distratio is used as 0.6 radians. 

Figure 3.7 shows matched keypoints of two sequential frames of a video. 

Now, the location of a keypoint for both im1 and im2 are known. Then the motion 

vectors can be calculated and drawn for matched invariant keypoints. In Figure 3.8, 

motion vectors are drawn by using the MATLAB quiver function and they are shown 

with red arrows on im1. 



19 

 

 

Figure 3.6 : 80th (top) and 83th (bottom) frames of video. 

Locations of 508 matched keypoints are shown by circles on corresponding frames. 

 

Figure 3.7 : 80th and 83th odd fields of an interlaced video.  



20 

Each matched keypoint is connected with a line in Figure 3.7. 

 

Figure 3.8 : Motion vectors for odd fields 80 to 83 are shown with red arrows. 

The frame in Figure 3.8 is divided into 16x16 pixel blocks shown with yellow lines. 

  



21 

4.   THE PROPOSED IMPROVED MOTION COMPENSATION 

TECHNIQUE  

In this chapter a new block based motion estimation based on SIFT is proposed to 

yield a better predicted reconstructed image at the end of the motion compensation 

process. When a better prediction is achieved for the current frame, the interframe 

differences will be reduced thus yielding a better compression for block based 

interframe compression algorithms. The new algorithm is explained clearly in sub-

sections of this chapter and the results are exhibited in the next chapter. Simulation 

results verifiy that the proposed algorithm yields a higher PSNR of reconstructed 

images, as compared to full search BMA which is the classical motion estimation 

algorithm as explained in the 2nd chapter. In this algorithm, 16x16 sized blocks are 

utilized for both BMA and the new algorithm, however any other size may be used. 

This new algorithm checks the blocks for which the full search BMA does not give a 

good result. If there is a rotation, the new algorithm detects and derotates the block in 

the opposite direction and then uses it in the predicted image. 

4.1 Development Environment 

The new algorithm is implemented using the MATLAB R2009b software 

development environment. A PC with Intel Core i5 2.53 GHz CPU and 4 GB of 

RAM was used. 

4.2 Using SIFT in BMA 

To improve the BMA algorithm, the SIFT algorithm is used to find rotated objects 

(blocks) and then applies inverse rotation before reconstruction. Basic understanding 

of the new algorithm is depicted in Figure 4.1. Here, a block size is NxN (where N is 

16 for this thesis) and the reference region is sized as MxM which depends on the 

rotation angle (α) as seen in (4.1). 

� = �(sin( + cos()                                                 (4.1) 



22 

 

Figure 4.1 : Basic understanding of new algorithm. 

4.2.1 Stage 1 

In this stage, SIFT keypoints are found for two adjacent frames and matched by 

using match function, which is also provided in [6]. Hovewer, this fuction is 

modified for Stage 1 algorithm as: 

[loc_x, loc_y, delteta, M] = match_alg1 (im_pre, im_cur); 

Here, loc_x, loc_y, delteta, M are macroblock tables and all have (
���

�
)(

���

�
) cells 

where N=16 for this thesis. im_pre and im_cur are the previous and current frames 

respectively. 

loc_x: For every non-overlapping (16x16) block of current frame, matched SIFT 

points’ x-coordinates in previous frame are averaged through mean function and 

stored in loc_x matrix.  

loc_y: For every non-overlapping (16x16) block of current frame, matched SIFT 

points’ y-coordinates in previous frame are averaged through mean function and 

stored in loc_y matrix. 

delteta: For every non-overlapping (16x16) block of current frame, matched SIFT 

points’ orientation differences are calculated and stored in delteta matrix. This data 

also gives information about the amount of rotation. 



23 

M: is the edge length of reference region in previous frame. After delteta is 

calculated, M can be calculated easily as in (4.1). M is calculated for each non-

overlapping (16x16) block of current frame and stored in M matrix. 

After all these data are stored, the BMA algorithm is applied to adjacent frames. For 

blocks whose minimum SAD is grater than 750 and less than a maximum threshold, 

SIFT keypoints are checked if there is a rotation or not through delteta matrix. If the 

rotation delteta(a,b) is higher than 1 degree, rotation in the reverse direction is 

applied to the region around the (loc_x(a,b), loc_y(a,b)) point. This region’s edge 

length is M(a,b) taken from M matrix. To apply rotation, imrotate [8] function of 

MATLAB is used. This function takes the image and the rotation angle in degrees as 

inputs, rotates the image by specified angle in opposite direction around its center 

point.  

 

Figure 4.2 : The region (left) is taken from previous image and rotated to the  
opposite direction as seen on (right). The predicted block is obtained. 

Finally, the block that is obtained by BMA is compared with the block that is 

obtained using Stage 1. Then, the block which gives a better result is accepted as 

predicted block. In experiments, it is realized that if locations (loc_x and loc_y 

macroblock tables) are calculated by the “median” instead of “mean” of keypoint 

coordinates, better results are obtained. However, this stage does not yield a 

remarkable enhancement because the center of rotation cannot be calculated 

accurately by taking the median or mean of keypoint coordinates. Stage 1 image 

results and also numerical results are exhibited in 5th Chapter. Due to the fact that, 

the center of region is determined by averaging the locations of SIFT keypoints 

coordinates, results are usually not better than BMA results. Even if Stage 1 

algorithm did not give very well results, it was an inspiration for IMC. The flowchart 

of the Stage 1 algorithm is shown in Figure 4.3.  



24 

 

Figure 4.3 : Flow chart of Stage1. 



25 

4.2.2 Improved Motion Compensation (IMC) 

In stage 2, SIFT points are still used but this time they are modified through match 

function for algorithm 2 as: 

[point_num, loc1x, loc1y, loc2x, loc2y, rotation] = match_alg2 (im_pre, im_cur); 

Here, all outputs are macro-block tables for blocks. 

point_num: matrix includes the number of matched noncollinear keypoints for each 

block. 

loc1x: matrix includes x-coordinates of keypoints for each block in previous image. 

loc1y: matrix includes y-coordinates of keypoints for each block in previous image. 

loc2x: matrix includes x-coordinates of keypoints for each block in current image. 

loc2y: matrix includes y-coordinates of keypoints for each block in current image. 

rotation: matrix includes orientation differences of keypoints for each block in 

current image. 

The idea is to find a transformation matrix of the 16x16 block from previous image 

to current image by using matched noncollinear keypoints. When there are higher 

number of matched keypoints per block, it is possible to detect transformations that 

are more complex. Generally, there are at most 4 or 5 keypoint in a 16x16 block as 

mentioned in Chapter 3.2. However, these matched keypoints may be collinear by 

chance or because some keypoints may have the same location and scale with 

different orientations as also mentioned in chapter 3.1.4. Therefore, this algorithm 

focuses on 2D transformations that can be detected by 2 or 3 noncollinear keypoints. 

4.2.2.1 Eliminating collinear and same located points 

First, collinearity is checked and collinear points are eliminated. To achieve that, 

noncollinear function is created and used as: 

[lxn, lyn, num] = noncollinear (lx, ly); 

This function takes the x-axis and y-axis locations of matched keypoints in lx and ly 

arrays respectively, and then gives the outputs as new noncollinear vectors; lxn and 

lyn. In noncollinear function, MATLAB’s unique function which finds unique values 

in an array is used. For example, locations of six matched keypoints in a block are: 



26 

lx = [635.5000  635.5000  630.6900  630.6900  636.0000  626.4800 626.4800] 

ly = [539.5000  539.5000  537.5300  537.5300  537.1500  535.6400 535.6400] 

It is seen that, two pairs in lx and ly are at the same location. This situation causes 

the collinearity problem. In these arrays, there are four keypoints that can be used to 

find the transformation matrix. After lx and ly arrays are given to the “noncollinear” 

function, the outputs will be as: 

lxn = [635.5000  630.6900  636.0000  626.4800] 

lyn = [539.5000  537.5300  537.1500  535.6400] 

Moreover, three points are said to be collinear if they lie on the same line. It means 

that these three points can not generate a plane or simply a triangle. In this case; the 

collinearity of points (��,	"�), (��,	"�), (��,	"�)  can be checked like that: 

4�� "� 1�� "� 1�� "� 1
4 = 0                                                   (4.4) 

or it can be expressed as: 

��
"� − "�� − 	 ��
"� − "��+ 	��
"� − "�� = 0                          (4.3) 

 

4.2.2.2 Obtaining the transform matrix 

After noncollinear points are obtained, they are used to find transformation of blocks 

from current frame to the previous one. The most general transformation model is 

affine model which contains all transformations (translation, expantion, rotation and 

similarity translations). It means that, if affine transformation in blocks of  

consequtive frames can be found and corrected, it will cause a better reconstruction 

than correcting just rotation. However, to find affine transformation matrix at least 

three control points are needed as it is explained in Case 1. Behind that, non-

reflective similarity transformation that supports translation, rotation and isotropic 

scaling can be calculated with two control points as it is also explained in Case 2. 

In this thesis, after matched keypoints are obtained, possible transformations are 

found with the cp2tform function of MATLAB. Keypoint locations are given as 

inputs to the cp2tform function. tform = cp2tform(input_points, base_points, 

transformtype) takes pairs of control points and uses them to infer a spatial 



27 

transformation [7]. input_points is an m-by-2 double matrix containing the x- and y-

coordinates of control points in the image that will be transformed. base_points is an 

m-by-2 double matrix containing the x- and y-coordinates of control points specified 

in the base image. transformtype specifies the type of spatial transformation to infer 

[7]. Here, “image that will be transformed” is the reference (previous) block and 

“base image” is the current block. 

transformtype depends on the number of keypoints in the related block. In this 

algorithm three different cases are investigated; 

Case 1: Three or more matched keypoints in a block: 

If there are three or more matches for a 16x16 block in target image, it means that 

“affine” transformation parameters can be obtained. Affine transformation of a point 

1�	"2� to the point 15	�2� can be shown as  

65�7 = 6�� ���� ��
7 6�"7+ %*�*�&                                       (4.4) 

Here, (x, y) represents the location of keypoint in current block where (u, v) 

represents its match in target block. Affine rotation, scale and stretch parameters are 

represented by �� parameters and translation is represented by *� parameters in (4.4). 

It can be seen that, �� and *� parameters should be known to solve an affine 

transformation. Then six equations are needed. (4.4) can be rewritten with two 

equations: 

5 = ��� + 	��" + *�                                           (4.5) 

� = ��� + 	��" + *�                                           (4.6) 

There are two equations but six unknowns in equations (4.5) and (4.6). It is clear that 

a single match is not enough and at least three matches are needed to provide a 

solution for affine parameters.  

As a result, transformtype in cp2tform function will be “affine” if there are three or 

more matches in a block. 

Case 2: Two matched keypoint in a block: 

Two matches are not enough to solve affine transformation, so the transformtype is 

set to “nonreflective similarity” here. Because this transformation comes up with 

translation, rotation and scaling but shapes are unchanged. Straight lines remain 



28 

straight and parallel lines are still parallel [7]. Non-reflective similarity 

transformation of a point 1�	"2� to the point 15	�2� can be shown as: 

65�7 = 6 �� ��
−�� ��

7 6�"7+ %*�*�&                                     (4.7) 

It is clear that there are four parameters (��, ��, *�, *�) that are needed to be 

calculated for this transformation. It is known that two independent equations can be 

written with one control point pair, than the transformation can be calculated with 

two control points. Since non-reflective similarity is supports rotation and 

translation, it is already applicable to the aim of this thesis. 

Case 3: One keypoint in a block: 

One match is not enough to solve any transformation type. Therefore, algorithm 

behaves here such as the stage 1 operations of Chapter 4.2. It accepts x- and y-

coordinates of keypoint as center of MxM region in current image where M can be 

calculated from (4.1). Then rotates the region and cuts the 16x16-pixel center block 

predicted block if its SAD is lower than BMA prediction. 

4.2.2.3 Determination of region that will be transformed 

The decision for the type of the transformation is explained in 4.2.2.2. In this part, 

the region in reference image will be determined to apply transformation. This region 

should be selected so that the region will include 16x16-pixel predicted block after 

translation. To achieve this, the region center is set as the location which is the 

minimum of x-and y-coordinates of the key-points in block. For example, there are 

three keypoints in a block and their coordinates are given in Table 4.1. Here, the 

center of the region should be chosen as (308.66, 326.4). Then the 30x30-pixel 

square region is selected around this point to apply translation. 

Table 4.1: Coordinates of keypoints in a block. 

 x-coordinate y-coordinate 

keypoint 1 315.3600 332.1500 

keypoint 2 311.2000 326.4000 

keypoint 3 308.6600 337.7100 



29 

a b c d 

Figure 4.4 : a: original block from current frame, b: selected region from reference 
image , c: the region after transformation of (b), d: candidate predicted 
block which is selected from (c). 

4.2.2.4 Finding predicted block in transformed region 

The original block, which is depicted as (a) in Figure 4.4 is searched in transformed 

image (c) with an algorithm that checks each 16x16 overlapped blocks of (c) and the 

block that gives minimum SAD is accepted as candidate predicted block. Under this 

condition, candidate block is compared with the predicted block through BMA and 

the best one is used as the predicted block. This is how (d) is obtained from (c) in 

Figure 4.4. 

Improved Motion Compensation algorithm that is explained in 4.2.2 is denoted in 

Figure 4.5. 

  

  



30 

 

Figure 4.5 : Flow chart of IMC. 



31 

5.  RESULTS 

The algorithm used in Stage 1 (Chapter 4.2.1) and improved motion compensation 

(IMC in Chapter 4.2.2) algoritms are applied on both test frames and real video 

frames. In Chapter 5.1, test frame results are exhibited for these new algorithms and 

in Chapter 5.2, only real video results are exhibited for IMC. All tests are achived on 

grayscale images in this thesis. If an RGB image is used as an input, it will be 

automatically converted to grayscale image by all algorithms; BMA, Stage 1 and 

IMC. For real applications, IMC can be applied to Y components of video frames 

and the obtained reconstruction information can be applied for all components Y, Cb 

and Cr. 

5.1 Test Frame Results 

In this part, a reference and current frame pair are created to test algorithms.They can 

be seen in Figure 5.1. Size of test frames are both 576x768x3. Current frame is 

created by rotating the distinctive object in reference frame by 30 degrees towards 

right. Reconstructed frames that are obtained by the classical BMA algorithm, Stage 

1 algorithm and the proposed IMC algorithm are shown in Figure 5.2, Figure 5.3, 

and Figure 5.4 respectively. Moreover, PSNR values are calculated to measure the 

performance of algorithms and they are denoted on the Table 5.1. The calculated 

PSNR values are for the entire frame, not for the rotated section only. 

Table 5.1: Test frame results. 

 PSNR # of blocks 
checked for rotation 

# of blocks 
applied enhancement 

BMA 42.7554 No check No enhancement 

Stage 1 42.8159 61 10 

IMC 44.1504 61 50 



32 

It is obvious that PSNR improvement of IMC algorithm is ~1.4 dB as compared to 

BMA for test frames. “# of blocks checked for rotation” column on the table 

represents number of unsucessful blocks of BMA. It can be seen that 61 blocks are 

needed to be improved to eliminate distortions of rotation for created test frames. “# 

of blocks applied enhancement” column on the table represents the blocks on which 

Stage 1 and IMC algorithms are applied and gives lower SAD than BMA algorithm. 

While 10 over 61 unsuccessful blocks could be improved through Stage 1 algorithm, 

this rate is 50 over 61 blocks through IMC algorithm. To see this improvement 

visually, Figure 5.4 should be compared with Figure 5. 

 

 

Figure 5.1 : Reference test frame 

 



33 

 

Figure 5.2 : Current test frame 

 

Figure 5.3 : Reconstructed frame with BMA motion vectors. 



34 

 

Figure 5.4 : Reconstructed frame with Stage 1. 

 

Figure 5.5 : Reconstructed frame with IMC. 



35 

5.2 Real Video Frame Results 

Test video frames are obtained from the sample video which can be downloaded 

from; ftp://ftp.tek.com/tv/test/streams/Element/MPEG-Video/625/. Several test 

videos are available at this site, however the selected one contains more rotational 

motion than the others. Properties for this video is given in Table 5.2. 

Table 5.2: Video properties 

Video Properties  

Name bbc3_400.m2v  

Size 71.5MB  

Total # of frames 375  

Duration 15s  

FPS 25  

Width 704  

Height 576  

Compression MPEG-2  

Encoding type interlaced  

 

By decoding the video file, yuv files (.y, .u, .v) are obtained. Both yuv frames and 

rgb frames are generated from obtained seperate files. However, algorithms are 

aplied only on odd fields to eliminate interlace artifacts. This is why reference, 

current and predicted frame sizes are 288x704. 

In this part, consequtive frames (81, 82, 83, 84, 85) are reconstructed from a 

reference frame (80) to see the effect of the algorithm on both B-(bi-directional) and 

P-(predicted) frames. 

At this point, it may be useful to give some information on GOP. The GOP is a group 

of pictures (frames) within an MPEG coded video stream. There are three types of 

compressed frames that are organized in a GOP to generate interframe compression. 

These compressed frames are: 

• I-frames: Intra frames, also known as reference frames, contain all data to re-

create a complete image. It does not require data from other frames in the 

GOP.  



36 

• P-frames: Predicted frames contain motion-compensated difference 

information from the closest preceeding I- or P-frame. 

• B-frames: Bidirectional interpolated (bi-directional) frames are encoded 

based on an interpolation from I and P frames that come before and after 

them. 

GOP begins with an I-frame. Afterwards several P-frames follow, in each case with 

some frames distance. The remaining gaps contain B-frames. An example for this 

explanation is given in Figure 5.6. As the interframe separation increases between 

consecutively coded frames, such as when there are several B-frames in between, the 

prediction suffers. 

 

Figure 5.6 : An example of GOP structure 

 

For reconstructed frames (81, 82, 83, 84, 85), PSNR values are given on Table 5.3, 

computation times are given on Table 5.4 for comparison. Moreover, reconstructed 

frames of both BMA and IMC are exhibited from Figure 5.7 to 5.23. 

Table 5.3: Real video results 

Reconstructed 
Frame 

BMA 
PSNR 

IMC 
PSNR 

# of blocks 
checked for 

rotation 

# of blocks 
applied 

enhancement 

81 35.1961 35.2023 206 7 

82 32.8725 33.1946 195 59 

83 31.4469 31.9038 166 81 

84 30.7037 30.9523 164 75 

85 30.7105    31.0117 155 74 



37 

PSNR results in Table 5.3 are calculated for whole images. Therefore, improvement 

of IMC is repressed in these results. To see the difference of algorithms on blocks, 

enhancement amount of blocks are investigated and given as SAD values in 

Appendixes A1. 

Table 5.4: Computation Time of algorithms (in seconds) 

Reconstructed 
Frame 

BMA 
time 

IMC 
time 

 

81 15.424923 17.983291 
 

82 14.188610 18.051247 
 

83 14.175006 17.942229 
 

84 14.336778 17.849704 
 

85 14.271704 17.813706 
 

 

 

Figure 5.7 : 80th odd field 

  



38 

 

 

Figure 5.8 : 81th odd field 

 

Figure 5.9 : Reconstracted 81th odd field through BMA 

 

Figure 5.10 : Reconstructed 81th odd field through IMC 



39 

 

Figure 5.11 : 82th odd field 

 

Figure 5.12 : Reconstructed 82th odd field through BMA 

 

Figure 5.13 : Reconstructed 82th odd field through IMC 



40 

 

Figure 5.14 : 83th odd field 

 

Figure 5.15 : Reconstructed 83th odd field through BMA 

 

Figure 5.16 : Reconstructed 83th odd field through IMC 

 

As it can be seen from the figures above and Table 5.3, the improvement is better for 

B-frame and/or P-frame. 



41 

 

Figure 5.17 : 84 th odd field 

 

Figure 5.18 : Reconstructed 84th odd field through BMA 

 

Figure 5.19 : Reconstructed 84th odd field through IMC 



42 

 

Figure 5.20 : 85 th odd field 

 

Figure 5.21 : Reconstructed 85th odd field through BMA 

 

Figure 5.22 : Reconstructed 85th odd field through IMC 

  



43 

6.  CONCLUSION  

This thesis focused on the utilization of Scale Invariant Feature Transform (SIFT) to 

achieve a better motion compensation than BMA. Proposed algorithm is called 

Improved Motion Compensation (IMC) that aims to yield higher PSNR values for 

reconstructed frames. It tries to detect especially rotated objects/regions between 

reference and current frames and then corrects it. MATLAB experiments showed 

that IMC yields ~1.4 dB higher in PSNRs for test frames and ~0.5 dB higher for real 

video frames as compared to the BMA. Number of SIFT key-points in the rotated 

region directly effects the performance of IMC. Therefore, it can be said that IMC 

will be more successful if video frames consists of complex patterns. 



44 

  



45 

REFERENCES 

[1] Wang, Y., Osterman, J., Zhang, Y., 2001: Video Processing and 
Communications, Prentice Hall, ISBN:0-13017547-1 

[2] Lowe, D. G., 1999: Object Recognition from Local Scale Invarinat Features, 
International Conference on Computer Vision Corfu Greece, pp. 
1150-1157 

[3]  Lowe, D. G., 2004: Distinctive Image Features from Scale-Invariant Keypoints, 
International Journal of Computer Vision, Vol. 60, no. 2, pp. 91-110. 

[4] Lowe, D. G., 2004: Method and Apparatus for Identifying Scale Invariant Features 
in an Image and Use of Same for Locating an Object in an Image, US 
Patent, No: 6,711,293 dated 23.3.2004. 

[5] SIFT. (n.d.). In Wikipedia. Date Retrieved: 03.03.2012, address: 
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform  

[6] Lowe, D. G., 2005: Demo Software: SIFT Keypoint Detector V4, address: 
http://www.cs.ubc.ca/~lowe/keypoints/ 

[7] cp2tform. MATLAB - Spatial Transformation and Image Registration functions 

www.mathworks.com/help/toolbox/images/ref/cp2tform.html 

[8] imrotate. MATLAB - Spatial Transformation and Image Registration functions 

www.mathworks.com/help/toolbox/images/ref/imrotate.html 

[9] imtransform  MATLAB  -Spatial Transformation and Image Registration 

functions 

www.mathworks.com/help/toolbox/images/ref/imtransform.html 

[10] Marques, O., 2011: Practical Image and Video Processing Using MATLAB, 
Wiley, ISBN: 978-1-1180-9347-4 

[11]  Pan, X., Swei, L., 2010: Region Duplication Detection Using Image Feature 
Matching, IEEE Transactions on Information Forensics and Security, 
Vol. 5, no. 4, pp. 857-867. 

[12]  Guo, S., Qui, C., Ye X., 2009: A Kind of Global Motion Estimation Algorithm 
Based on Feature Matching, International Conference on 
Mechatronics and Automation, pp. 107-111. 

[13]  Chen, C., Lee, S., Chen, J., 2011: An Improved Block Matching Algorithm for 
Multi-view Video with Distributed Video Codec,  IEEE International 
Conference on Multimedia and Expo (ICME), pp. 1-6. 

 



46 

  



47 

APPENDICES 

APPENDIX A.1 : Amount of (SAD) enhancements for blocks 
APPENDIX A.2 : Affine Transformations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



48 

APPENDIX A.1  

 

Table A.3: SAD enhancements of example blocks (cont.) 

 80th  to 85th  fields 
Block BMA SAD IMC SAD 

1 22037 5834 
2 21983 4873 
3 18339 5542 
4 14561 5136 
5 11435 5780 
6 16523 4979 
7 6021 1559 
8 6779 5106 
9 7253 2775 
10 4893 1435 

Table A.1:  SAD enhancements of example blocks. 

 80th  to 81th  fields 80th  to 82th  fields 
Block BMA SAD IMC SAD BMA SAD IMC SAD 

1 1931 1856 5479 4403 
2 1734 1500 6018 3854 
3 2281 2183 4028 2540 
4 1068 1057 8182 1680 
5 1138 1090 10223 2334 
6 2758 2529 4200 960 
7 3200 3030 10486 2458 
8   2485 1443 
9   9644 1046 
10   5087 1391 

 

Table A.2: SAD enhancements of example blocks (cont.) 

 80th  to 83th  fields 80th  to 84th  fields 
Block BMA SAD IMC SAD BMA SAD IMC SAD 

1 18501 4100 14292 9859 
2 1734 1726 9129 2665 
3 9353 2183 7673 2393 
4 4675 2040 13951 3268 
5 6698 2969 17943 4401 
6 7974 1915 16330 3799 
7 4548 1237 22961 5495 
8 7259 1404 15573 5774 
9 10723 2377 4179 1013 
10 11083 3725 13074 5530 

 
 



49 

 
 

APPENDIX A.2  

 

To represent affine transformations with matrices, homogeneous coordinates can be 

used. This means representing a 2D (x, y) as a 3D (x, y, 1), and similarly for higher 

dimensions. Using this system, translation can be expressed with matrix 

multiplication. The functional form 5 = � + *�;  � = " + *�  becomes: 

���
1

� = 	 �1 0 ��
0 1 ��
0 0 1

� �	

1

�                                        (A 2.1) 

 

All ordinary linear transformations are included in the set of affine transformations, 

and can be described as a simplified form of affine transformations. Therefore, any 

linear transformation can be also represented by a general transformation matrix. The 

latter is obtained by expanding the corresponding linear transformation matrix by one 

row and column, filling the extra space with zeros except for the lower-right corner, 

which must be set to 1. For example, the anti-clockwise rotation matrix from 

above becomes: 

�cos� −sin� 0

cos� cos� 0

0 0 1

�                                        (A 2.2) 

 
   



50 

  



51 

CURRICULUM VITAE  

Name Surname: Kevser BOZOĞLU   

Place and Date of Birth:  Gönen/Balıkesir 22.04.1986 

E-Mail:  kevser.bozoglu@gmail.com 

B.Sc.: T.C. Yeditepe University-Electrical and Electronics 
Engineering, 2009 


