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AN IMPROVEMENT OF DOA ESTIMATION IN RFID SYSTEMS 

SUMMARY 

Radio Frequency Identification (RFID) is a concept that identifies an object or a 

human being by using the electromagnetic wave coming from the target. RFID 

technology is used for security, access control and transportation, etc.  Another 

application of RFID technology is estimating the direction of arrival of 

electromagnetic wave transmitter, for instance a passive RFID tag. The estimation of 

Direction of Arrival (DOA) is an important research field due to its application areas, 

for instance radar, sonar, radio astronomy, seismology, remote sensing, etc.  

In this thesis, a set of studies related to 2-D direction finding system which is 

designed for localizing passive RFID tags is included. This system consists of 

antenna array, reader and data collector devices. Because of the tag’s being passive, 

it uses the power of the incoming request signal which is transmitted by the dipole 

antenna connected to the reader to prepare a response and communicate with the 

system. This response is collected by the data collector device and sent to the 

personal computer. It is processed with Direction of Arrival estimation algorithm 

written in MATLAB and the localization of the tag in 2-D is found. The context of 

the thesis can be listed as follows:  recalibration of the array cheaply and easily, 

localization of passive tags in multipath environment and proposition of applying a 

post-processing algorithm which is commonly used in radio astronomy imaging to 

the direction finding system. 
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RFID SİSTEMLERİNDE DOA KESTİRİMİNİN İYİLEŞTİRİLMESİ 

ÖZET 

Radio Frequency Identification (RFID); bir sistemin, kişinin veya objenin yaydığı 

elektromanyetik dalgayı kullanarak kimlik tanımasını açıklayan bir terimdir. RFID 

teknolojisi güvenlik, giriş kontrol ve taşımacılık gibi pek çok sektörde 

kullanılmaktadır. RFID teknolojisinin bir uygulaması da elektromanyetik dalga 

yayan kişi veya objenin yerinin tespit edilmesi çalışmalarıdır. Yer tespit etme 

çalışmalarının (Direction of Arrival Estimation) radar, sonar, radyoastronomi, 

sismoloji ve uzaktan algılama gibi pek çok önemli uygulama alanı olduğu için çok 

önemli bir araştırma alanıdır. 

Bu tez çalışmasında, pasif RFID etiketlerinin 2-boyutta yerlerinin tespit edilmesi için 

geliştirilmiş sistemle yapılan çalışmalara yer verilmektedir. Bu sistem anten dizisi, 

okuyucu ve veri toplama cihazlarından oluşmaktadır. Sistem ve etiketin 

haberleşmesi, çalışmada kullanılan etiket pasif olduğundan okuyucuya bağlı bir dipol 

antenden yayılan işaretle gönderilen sorgu paketine, etiketin kendisine gelen 

dalgadan aldığı güçle cevap hazırlayıp göndermesi şeklinde olur. Cevap işareti anten 

dizisiyle alınıp veri toplama cihazından geçtikten sonra bilgisayara ulaşır. 

Bilgisayarda MATLAB program diliyle yazılmış algoritmayla işlenir ve etiketin yeri 

tespit edilir. Tez kapsamında yapılan çalışmalar anten dizisinin kolay ve ucuz bir 

şekilde tekrar kalibre edilmesi, yansımalı ortamda pasif etiketlerin doğru bir şekilde 

yerlerinin belirlenmesi ve son olarak radyoastronomik görüntülemede kullanılan 

CLEAN algoritmasının yer tespit etme algoritmasında karşılaşılan bazı problemlerin 

çözümü olarak sunulması olarak sıralanabilir. 
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1. INTRODUCTION 

Radio Frequency Identification (RFID) is a concept that identifying an object or a 

human being (target) by using the electromagnetic wave coming from the target. 

RFID is a widely used technology for security, access control, transportation, etc.  

Another application of RFID technology is estimating the direction of arrival of the 

electromagnetic wave transmitter, for instance an RFID tag.  

Estimation of Direction of Arrival (DOA) is an important research field due to its 

application areas, such as radar, sonar, microphone sensors, radio astronomy, 

seismology, remote sensing and wireless communication systems [1-3]. In this work, 

the focus will be on 2-D direction finding system which is composed of transmitter, 

reader and a data collection device. The following questions will be answered in next 

chapters.  

• Can this 2-D direction finding system be easily and cheaply recalibrated in the 

presence of noise outside of the laboratory? 

• Does spatial smoothing technique work in multipath environment for this 

system? 

• Can applying a post-processing algorithm –CLEAN- help to fix MUSIC 

Algorithm’s problems? 

This thesis will be organized as follows: 

• Chapter 2 gives the basic review of Direction of Arrival estimation literature and 

introduces the data model which will be used throughout the thesis. 

• Chapter 3 introduces 2-D direction finding system, calibration techniques for 

antenna arrays and proposes recalibration technique. 

• Chapter 4 explains spatial smoothing technique for 2-D direction finding system 

in multipath environment, presents simulation and measured results for passive 

RFID tags. 

• Chapter 5 presents mathematical link between MUSIC algorithm and 

interferometry and suggests using applying a post-processing method, called 
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CLEAN which is commonly used in interferometry imaging for radio astronomy, 

before the last step of the MUSIC algorithm. 

• Finally, in Chapter 6, the conclusions will be drawn. 
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2. DIRECTION OF ARRIVAL (DOA) ESTIMATION 

This chapter presents background on array processing and DOA estimation 

techniques. The data model, Eigen-structure of the spatial covariance matrix and 

antenna beamforming are the subheads of background on array processing. DOA 

estimation techniques can be classified as classical, subspace methods and Maximum 

Likelihood (ML). The classical DOA techniques: “Delay and Sum method” and 

“Capon algorithm” and the subspace techniques: “Multiple Signal Classification 

(MUSIC)”, “The Root-MUSIC Algorithm”, “The Minimum Norm Method” and 

“Estimation of Signal Parameters via Rotational Invariance Techniques (ESPIRIT)” 

and Maximum Likelihood are briefly explained.  

2.1 Background on Array Processing 

The data model, the spatial covariance matrix, Eigen-structures of covariance matrix 

and antenna beam forming are the subjects of this section. 

2.1.1 Data model 

Assume that N array sensors receive r narrowband plane waves which have the same 

centre frequency (see Figure 2.1). The baseband signal, s(t), reaches each element of 

the array at different time instants or phase delays (see Figure 2.1). Therefore, arrival 

time delay between the first and kth sensor comes out and the propagation delay kt  

is [1]: 

sin
k

kD
t

c


 

                     (2.1) 

where k is the wave number,   is the angle between the sensor and plane wave, c is 

speed of light and D is distance between sensors [meter]. 
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Figure 2.1:  Data model geometry 

The low-pass equivalent of the modulated signal ( )ls t  is down-converted to 

baseband. Received signal by the first sensor s(t) and  the baseband signal  received 

by the kth sensor ( )kx t are as follows [1]: 

2
( ) Re{ ( ) }

j f t

l
cs t s t e


                            

(2.2) 

2
( ) ( )

j f t

k l k

c kx t s t t e
 

 
                            (2.3) 

where 
cf is the centre frequency. 

If the received signal is sampled with sampling period T (symbol period), it can be 

written as: 

2
( ) ( )

j f t

k l k

c kx nT s nT t e
 

 
                            (2.4) 

Each of the propagation delay across the array is much smaller than the sampling 

period kt T in a wireless digital communication system; therefore the new form of 

the received signal is; 

2 2
( ) ( ) ( )

j f t j f t

k l k l

c ck kx nT s nT t e s nT e
    

  
                         (2.5) 

The distance between the elements of the array (D) should be equal or less than half 

wavelength [1]. Let us select / 2D  replace cf with /c  , 
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sin( ) ( ) j k

k lx nT s nT e  
                             (2.6) 

The discrete time form of the signal can be expressed as [1]:  

sin[ ] [ ] [ ] ( )j k

k kx n s n e s n a   
                 (2.7) 

In the presence of r signals which have the same centre frequency: 

 

1

0

[ ] [ ] ( ) [ ]
r

k i k i k

i

x n s n a v n




                                             (2.8) 

where [ ]kv n  is additive noise at kth sensor. 

By using matrix notation, the signal model of whole array can be written as [1]: 

 

0 000 0 0 1 0 1

1 0 1 11 11

1 0 1 1 1 11 11

[ ] [ ][ ]( ) ( ) ( )

( ) ( )[ ] [ ][ ]

( ) ( ) ( )[ ] [ ][ ]

r

r

N N N rN Nr

x n v ns na a a

a ax n v ns n

a a ax n v ns n

  

 

  





    

     
     
      
     
     

      

            (2.9) 

The compact matrix form of the Eq. (2.9) is as follows: 

 0 1 1( ) ( ) ( )n r n n n nx a a a s v As v      
              (2.10) 

The Nx1 column vector of the matrix A ( ( )ia  ) is defined as array response or 

steering vector of the signal ( )is t coming from direction i . There is a direct 

relationship between DOA estimation and steering vector. In case of known steering 

vector for all directions, direction of arrivals can be estimated. 

2.1.2 Eigen-structure of the spatial covariance matrix 

To understand subspace method techniques, the Eigen-structure of the spatial 

covariance matrix of the data model should be known. The NxN spatial covariance 

matrix of received data whose signal and noise vectors assumed to be uncorrelated is 

[1]: 

( )( )H H H H H

xx n n n n n n n n n nR E x x E As v As v AE s s A E v v                     

       2H

ss NxNAR A I                   (2.11) 
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where nv : Gaussian, zero mean white noise and its correlation matrix equals to 2I . 

Note that H

ss n nR E s s     

This correlation matrix consists of two Eigen-spaces, signal subspace and noise 

subspace. These two subspaces are orthogonal to each other.  

N dimensional subspace has r signal subspaces correspond to r incoming signals and 

N-r noise subspaces. The noise subspace is spanned by N-r linear independent 

eigenvectors (any of them= nq ). Each of the eigenvectors of the noise subspace is 

orthogonal to the columns of the matrix A. 

2 2 2( ) 0H

xx n ss n n nR q AR A I q Iq q                     (2.12) 

The Eigen-values of the corresponding Eigen-vectors of the noise subspace 

   where 1,..., -iq i N r are all equal to 2 . The signal subspace is spanned by r 

linear independent Eigen-vectors (any of them= sq ). Each of the Eigen-vectors of the 

signal subspace is also the Eigen-vector of the signal correlation matrix ( ssAR A ). 

2 2 2 2 2( ) ( )H

xx s ss s s s s s sR q AR A I q q Iq q                      (2.13) 

The Eigen-value of the corresponding Eigen-vectors of the signal subspace 

   where 1,...,iq i r  is equal to 2 2( )s  , where 2

s  is the Eigen-value of H

ssAR A . 

The Eigen-decomposition of the correlation matrix is as follows with sQ  whose 

columns consist of  r  eigenvectors of signal subspace, nQ  whose columns consist of  

N-r  eigenvectors of noise subspace,  sD which is a rxr diagonal matrix consists of r 

Eigen-values of signal eigenvectors and 2I  which is a (N-r)x(N-r) diagonal matrix 

consists of (N-r) Eigen-values of noise eigenvectors [1,2]. 
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   2

2

1

2

2

2

2

2

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

HsH

xx s n s n

H

r

D
R QDQ Q Q Q Q

I

Q Q



 

 

 





 
   

 

 
 

 
 
 

  
 
 
 
 
 

            (2.14) 

There is another method to find Eigen-vectors of covariance matrix called Singular 

Value Decomposition (SVD). This method uses data matrix X whose rows consist of 

Hermitian transpose of the data vectors obtained from the antenna array. The basic 

assumptions are that X is formed by taking K snapshots; the array is linear and has N 

sensors. According to SVD, the KxN data matrix can be expressed as product of U, 

D and V matrices [1]. 

HX UDV                   (2.15) 

 where U : KxK matrix, its columns are orthonormal, D : KxN diagonal matrix and 

V: NxN matrix, its columns are orthonormal, too. 

There is a direct relationship between the Eigen-structures of covariance matrix of 

the data and data matrix. The columns of the V matrix are equal to Eigen-vectors and 

diagonal elements of D are equal to square roots of the Eigen-values. In practical 

situation, the covariance matrix is not known exactly and N-r smallest Eigen-values 

are not equal to 2 , but N-r smallest ones denote to noise Eigen-values. The value of 

the spatial covariance matrix should be estimated by using an estimator and the 

common estimator is as follows: 

1

0

1 K
H

xx n n

i

R x x
K





 
                 (2.16) 

where K is the number of snapshots and
 nx :is the received signal obtained by each 

sensor. 
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2.1.3 Antenna beamforming 

Antenna beamforming is directly related to DOA estimation techniques. The antenna 

array is steered in a direction 1  at time 1t  and the output power is measured by 

beamforming techniques. In case of the steering angle’s being DOA of a source, a 

significant peak occurs in the power spectrum.  The array can be steered 

electronically by the knowledge of the array steering vector, but there might be a 

problem if the shape of the array pattern changes. To overcome this problem and 

form a single output signal, a weight vector which combines the data received by the 

sensors and is denoted by w can be designed. The output signal is [3]: 

( ) ( )Hy t w x t                   (2.17) 

The total averaged output power is [3]: 

2

1 1

1 1
( ) ( ) ( ) ( )

ˆ

N N
H H

n n

n n

H

xx

P w y t w x t x t w
N N

w R w

 

 



 

              (2.18) 

where N is the number of snapshots.  

There are two well-known beamformer techniques called Conventional and Capon’s 

Beamformer. 

2.2 Direction of Arrival Estimation Techniques 

2.2.1 Classical methods 

The basic idea of classical DOA estimation methods is to steer the array on a 

particular angle and measure the output power of the system. Delay and Sum method 

and Capon algorithm are presented, respectively [1]. 

2.2.1.1 Delay and sum method 

The Delay-and-Sum method is one of the classical DOA methods. The resolution 

that this algorithm provides can be improved by increasing the number of array 

sensors and this option is not desired because of the cost [1]. 

The Delay-and-Sum method finds the angle of arrival by choosing largest peaks in 

the power spectrum which is computed by measuring the signal power at each 
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possible angle of arrival. To evaluate a steering vector, the power coming from a 

certain direction is measured by generating a beam in that direction and the steering 

vector for corresponding direction equates to the beamformer weights. The output 

power of the beamformer of Delay and Sum method can be expressed as [1]: 

2 2

( ) ( ) ( ) ( )H H H H

n n xxP E y y E w x E a x a R a                    (2.19) 

If w is equal to the steering vector of the incident signal ( ( )w a  ), the peaks come 

off in the power spectrum and the angle of arrival is found. 

2.2.1.2 Capon algorithm 

The other name of the Capon algorithm is Minimum Variance Distortionless 

Response (MVDR) algorithm. This algorithm is like Delay and Sum method which 

measures the signal power at each possible angle of arrival. The goal of this 

algorithm is to minimize the output power  except the one that point the desired 

signal direction with respect to w for each possible angle of arrival while 

constraining the beamformer gain to be 1 to find the real direction of arrival value   

[1, 4]. 

2min ( ) min H

w wE y k w Rw  
 

  subject to ( ) 1Hw a                (2.20) 

The peaks in the power spectrum in Eq. (2.20) are the estimated angles of arrival. 

Solving the above equation by the method of Lagrange Multipliers, its weights are 

found to be: 

1

1

( )

( ) ( )

R a
w

a R a



 






                   (2.21) 

The Capon algorithm provides better resolution than Delay and Sum method and a 

simulation of the algorithms is presented below as a comparative example. In Figure 

2.2, Uniform Linear Array (ULA) with 10 sensors (spacing / 2D  ) is used and all 

of the three sources have the same power level. It is clear that Capon Algorithm 

performs better resolution. 
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Figure 2.2:  DOA estimation of Delay and Sum Method and Capon Algorithm for 

ULA [1]. 

2.2.2 Subspace methods 

The subspace method uses its proven properties below [3]: 

1) The spatial covariance matrix is spanned by its eigenvectors and the 

eigenvectors consist of two subspaces, which are both orthogonal, called signal 

and noise subspaces. 

2)  The steering vectors of the signal subspace 

3) The eigenvectors regarding the smallest Eigen-values of the spatial covariance 

matrix span the noise subspace. 

4) The eigenvectors regarding the largest Eigen-values of the spatial covariance 

matrix span the signal subspace. 

Multiple Signal Classification (MUSIC)”, “The Root-MUSIC Algorithm”, “The 

Minimum Norm Method” and “Estimation of Signal Parameters via Rotational 

Invariance Techniques (ESPIRIT)” are explained, respectively. 
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2.2.2.1 Multiple signal classification (MUSIC) algorithm 

The Multiple Signal Classification Algorithm (MUSIC) is proposed by Schmidt in 

1986 and it uses the feature which the steering vectors of the point sources are 

included in signal subspace and orthogonal to noise subspace. Point sources can be 

estimated by searching through all possible array steering vectors and pick the ones 

orthogonal to the noise subspace [1]. The steps of the MUSIC algorithm which is 

shown in Figure 2.3 can be summarized as follows [5-7]: 

1) Compute the correlation matrix from the raw data                                                                                                                                                                                                                             

2) Perform an Eigen-decomposition of the correlation matrix. The eigenvectors 

corresponding to the largest r Eigen-values form the signal subspace and the rest (N-

r) corresponds to the noise subspace. 

3) Compute the power spectrum 

 Due to the steering vectors of the desired signal’s being orthogonal to the noise 

subspace eigenvectors, ( ) ( ) 0 for H H

n n ia Q Q a     . Therefore the power spectrum 

can be computed by taking the inverse of ( ) ( )H H

n na Q Q a  . 

1
( )

( ) ( )H H

n n

P
a Q Q a


 

                                                     (2.22) 

 

where ( )a  is the array response vector and it can be expressed as [5]: 

 

2 ( / )cos( )

1
2 ( / )cos 2

1
2 ( / )cos 2
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k

k

k

j r

j r
N

k

N
j r

N

e

e
a

e

  

   

   



 
 

 

 
 

 

 
 
 
 
 
 
 
 

                (2.23) 

 

4) Find the location of the D largest peaks in the power spectrum 
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Figure 2.3: Block diagram of MUSIC algorithm. 

Despite its great performance, MUSIC algorithm can’t estimate the location of the 

signal in multipath environment. To defeat this disadvantage of MUSIC algorithm, 

the Spatial Smoothing technique might be used. This technique and this type of 

signals will be presented in the fourth chapter. 

2.2.2.2 The root-MUSIC algorithm 

The root MUSIC algorithm can be applied only to Uniform Linear Arrays (ULAs) 

and uniform array whose grid is regular as in Figure 2.4. This algorithm’s resolution 

is better than the spectral search based MUSIC algorithm in the presence of low 

signal-to-noise ratios (SNRs).   

 

Figure 2.4: An example for root-MUSIC array geometry [8]. 
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Assume that the array is ULA and its grid is on x-axis.  The steering vector is as 

follows [8]: 

( 1) / 2

( 3) / 2

( 1) / 2

1 2
exp sin

2

3 2
exp sin

( ) ( )2

1 2
exp sin

2

x

N

N
x

N

x

N
j D

z
N

j D z
a a z

z
N

j D









 






 

 



   
  
    

    
         

   
      

                 (2.24) 

where N is sensor number of ULA, xD  is the distance between sensors and 

 exp (2 / ) sinxz j D    

The root-MUSIC null-spectrum function can be expressed as follows by using Eq. 

(2.24) [8]: 

( ) ( ) ( ) (1/ ) ( ) ( )H H T H

N N N Nf a Q Q a a z Q Q a z f z                 (2.25) 

The polynomial above has totally 2(N-1) roots consists of (N-1) roots ( iz ) and (N-1) 

reciprocal roots ( *1/ iz )  where * implies complex conjugate. In the absence of noise, 

r signal root pairs (root and its reciprocal) lying on the unit circle correspond to the 

signal roots and the rest sources   2(N-r-1) correspond to noise sources. In the 

presence of noise, the signal roots move a little through inside the unit circle and the 

closest r roots to the circle are estimated as signal roots. 

2.2.2.3 The minimum norm method 

Kumaresan and Tufts proposed the Minimum Norm Method and this method can be 

presented as improved version of MUSIC algorithm [1]. It is applicable for linear 

arrays and uses an arbitrary vector “w” called weight vector which lies on the noise 

subspace [1, 9].  

( ) 0Ha w                    (2.26) 

1

w
w

 
 
 



                  (2.27) 
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The basic principal of this method is searching peaks in the power spectrum like 

MUSIC algorithm. The power spectrum is as follows [1, 9]: 

2

1 1
( )

( ) ( )( )
MN H H HH

N N N N

P
a Q Q WQ Q aa w


 

 

             (2.28)

 

where ( )a  : steering vector and T

I IW p p  ( Ip : the first column of an NxN identity 

matrix)  

If the expression of noise subspace is rewritten [9], 
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                (2.29) 

 

where 
1, 1, 1,.......K Nh q q 

      and    

2, 2, 1

, , 1

,.......

,.......

K N

N K N N

q q

H

q q





 
 
 
 
     

A new noise subspace’s first element should be one for letting the new vector’s norm 

minimum and the new noise subspace consists of linear combination of the MUSIC 

noise subspace, hence it is still orthogonal to signal subspace [9]. 

' 1. .( . )T T

NQ H h h h                                (2.30)  

  
'

1
NN

N

Q
Q

 
  
                     (2.31) 

The new form of the power spectrum can be written as follows [9]: 

1
( )

( ) ( )
MN H H

NN NN

P
a Q Q a


 



                (2.32) 
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2.2.2.4 Estimation of signal parameters via rotational invariance techniques 

(ESPIRIT)  

Most of the DOA estimation algorithms require the array steering matrix knowledge. 

The ways of obtaining array steering matrix are calibration in the field or calculating 

by using position and response information of each sensor of the array. This 

requirement is time-consuming and accuracy degrading because of the possible 

errors in calibration [3]. Since the Estimation of Signal Parameters via Rotational 

Invariance Technique (ESPIRIT) estimates the DOA by exploiting the rotational 

invariance of the signal subspaces of subsets of the array, it defeats these problems. 

ESPIRIT constraints the array having two identical sub-array and each sub-array 

contains n sensors while total number of sensors in the array is N. An antenna pair 

consisting of a sensor in the first sub-array and its identical in the second sub-array is 

called doublet [10-12]. The distance between every matched pairs must be identical 

and the magnitude of the displacement in wavelengths is indicated by  . In Figure 

2.5, antenna array structure of ESPIRIT for multiple sources can be seen. The total 

number of sensors in an array can be less than the total number of sensors in both 

sub-array ( 2N n ), in other words one sensor can take place into both sub-array by 

overlapping. As long as sensors of every doublets have identical sensitivity patterns, 

the individual sensors of both sub-array can have arbitrary polarization, directional 

gain and phase response. 

 

Figure 2.5: Antenna array structure of ESPIRIT Algorithm for multiple source [10]. 
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1( )x t , 2 ( )x t  and 1( )n t , 2 ( )n t are received signals by sub-array and additive noise, 

respectively. The received signals are [3]:  

 1 1 1

1

( ) ( ),...., ( ) ( ) ( )

( ) ( )

dx t a a s t n t

As t n t

  

 
             (2.33a) 

1
2 1 2

2

( ) ( ) ,...., ( ) ( ) ( )

( ) ( )

d
d

jj
x t a e a e s t n t

A s t n t

    

  
            (2.33b) 

where d: number of sources impinging on the array,  1( ),...., ( )dA a a  : nxd 

steering matrix of the sub-array, s(t): the signal received by the first sub-array,  

1 ,...., djj
diag e e

     : rotational operator, refers to the delay between the sub-

array and 
2 2

sin sinc
i i i

f

c

 
  


       

After the combination of Eq. (2.33a) and Eq. (2.33b), total received signal by the 

system can be expressed as: 

1 1

2 2

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

x t n tA
x t s t As t n t

x t A n t

    
        

                  (2.34) 

Estimating DOA by using ESPIRIT relies on determining subspace rotational 

operator and then estimation of i . In the absence of noise, the covariance matrix of 

the received signal can be expressed as:  

( ) ( )H H

xx ssR E x t x t AR A                               

(2.35) 

Assume that there is a matrix sE  spans the signal subspace which is also spanned by 

A . Consequence of this    sRange E Range A  relationship, sE  and A  can be 

related through unique non-singular matrix T. 

sE AT
                             (2.36) 

After the decomposition of sE  into two sub-array:  
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1

2

s

E AT
E

E A T

   
    

                                (2.37) 

Because of their identical configuration, it can be easily said that both sub-array of 

the sE  have the same dimensions and span the same space as follows: 

     1 2Range E Range E Range A 
                          (2.38) 

Based on the feature above, a non-singular dxd matrix  can be associated with sub-

array of sE  as follows [1,3]: 

1 2E E AT A T     
                 (2.39) 

1 1T T T T                       (2.40) 

According to the equations above, it is clear that the Eigen-values of  is equal to 

the diagonal of  and the eigenvectors of   is equal to the columns of T. As a 

result, the angles of arrival can be computed after computation of Eigen-values of 

 .  The summarized algorithm can be seen in Figure 2.6. 

The DOA estimation equations above are available in the absence of noise, but in 

practical situations, an additive noise is received by the system and the covariance 

matrix in Eq. (2.35) takes the form of: 

2

2( ) ( )H H

xx ss N nR E x t x t AR A I                    (2.41) 

Therefore,    sRange E Range A ,    1 2Range E Range E  and 1 2E E  is no 

longer exactly satisfied [3,10,11]. To estimate the accurate value of  , Least Square 

(
1

ˆ H HX AA A B


    ) and Total Least Square (   ˆ
A BA R X B R   ) Techniques are 

generally employed. 
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Figure 2.6: The steps of ESPIRIT Algorithm 

2.2.3 The maximum likelihood techniques 

The Maximum Likelihood (ML) techniques provide better performance than 

subspace algorithms, but they aren’t preferred due to computational complexity. 

These techniques work even in multipath environment [1]. 

The basic principal of the algorithm is the reconstruction of the incident signal vector 

from array output vector [1, 13]. The array output vector of r incident signals is as 

follows: 

( ) ( ) ( ) ( )x t A s t n t                   (2.42) 

where   0 1 1...... r      , ( )A  :  array response , ( )s t : incident signal vector and 

( )n t : an additive noise vector   
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The reconstruction method is that subtraction ( ˆ ˆ( ) iA s ) from the array output 

vector ( )ix t .  The joint probability function of x can be expressed as [6]: 

1
2

2 2
0

1 1
( ) exp( ( ) )

det( )

N

i i i

i

f x x A s
I


  





  
             (2.43) 

where ix : ith column of the array output vector 

Ignoring the constant terms, the log likelihood function is: 

1
22

2
0

1
log ( )

N

i i i

l

L Nr x A s 






   
              (2.44) 

Maximization of L by the unknown parameters s and   equals to minimization 

equation below [1, 6]. 

1
2

,

0

min ( )
k

N

s i i i

i

x A s 




 
 

 


                           

(2.45)

 

The solution of the minimization function only in terms of s by fixing   is[1]: 

 
1

( ) ( ) ( )H H

i i i i is A A A x  



                (2.46) 

2.3 Summary 

This chapter presents background on array processing and direction of arrival 

techniques. Three types of DOA techniques are described in the order; Classical 

methods:  Delay and Sum method and Capon algorithm; Subspace methods: MUSIC, 

The Root-MUSIC Algorithm, The Minimum Norm Method and ESPIRIT; and 

Maximum Likelihood (ML) method.   

The classical methods are inferior to subspace methods and Maximum Likelihood 

technique. The performance of ML is better than subspace methods, but the 

computational complexity is the drawback of this method. A 2D direction finding 

system will be introduced in the next chapter and an alternative version of MUSIC 

algorithm is used for DOA estimation.  
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3. 2D DIRECTION FINDING SYSTEM AND RECALIBRATION OF THE   

ARRAY 

This chapter will describe a 2D direction finding system in detail and a recalibration 

technique for the antenna array of this system will be proposed.  

3.1 2D Direction Finding System 

The 2D direction finding system for backscatter-tag’s identification and localisation 

is designed by the authors of [14]. The system includes Uniform Circular Array 

(UCA) with 8 sensors, commercial reader to communicate with one single tag, 

RF/BF circuits to obtain In-phase and Quadrature (I&Q) signal from the output 

signal of the array and Digital Signal Processing (DSP) where the Direction of 

Arrival technique is applied. The schematic diagram of the system can be seen in 

Figure 3.1 and each block of the system will be briefly examined in the sub-sections. 

3.1.1 Uniform circular array 

The physical characteristic of the antenna array will be explained in this section. The 

array is an 8-sensors Uniform Circular Array and mounted on a hexagonal metal 

plate with 0.3m radial (see Figure 3.2). The frequency band of the array is 

appropriate for European UHF RFID band (868-870 MHz) [15]. 

Each sensor of the array is a miniaturized slot antenna printed on a non-resonating 

metallic box and fed by a thin stripline. The metallic box is chosen because it can be 

reconfigured easily and it both lowers the back radiation and allows keeping an 

acceptable bandwidth at the same time [15]. The total volume of one slot is equal to 

(
0 0 00.25  x 0.25  x 0.03   ). A slotted-box sensor illustration can be seen in Figure 

3.3.
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Figure 3.1: Schematic diagram of 2D direction finding system  

 

 

Figure 3.2:  Uniform Circular Array with 8 slotted-box antennas 
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Figure 3.3:  A slotted-box sensor with parameters: H=10mm, h f=  5mm, 

344.8mm  , L= 86mm, lf1= 36mm,  lf2=39mm, Lslot= 63mm , 

ls1=30mm, ls2= 16.7mm, ls3=14.4 mm, ls4= 12.5 mm, wf=1.5mm, 

ws=0.75mm, Wslot=3mm [15]. 

3.1.2 RF/BF circuits of the direction finding system 

Figure 3.4:  RF/BF Circuits’ block diagram 

The basic concept of the operation shown in Figure 3.4 is as follows. The RF signal 

obtained from the array is filtered in the Band-pass Filter stage, thus the signals 

which are at the undesired frequency band levels are discarded. The filtered signal is 

amplified in the Low Noise Amplifier (LNA). The demodulator converts the signal 

to baseband (down-converted) in I&Q signal, then the signal amplified in the 

Baseband Amplifier (BA) and the output of the Low-pass Filter has only the 

baseband component. At the last stage, the analogue baseband signal is converted to 

digital signal by Analogue/Digital Converter (ADC). 
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3.1.3 Digital signal processing (DSP) 

To communicate with a tag, a commercial reader, dipole antenna which works both 

as a transmitter and also as a receiver and user interface program are needed.  

The reader uses dipole antenna to transmit RF signal which includes the query for all 

tags in dipole’s coverage area. The passive tags receive that signal and respond the 

query by using the power of the received signal.  Then the reader receives this 

responds via dipole and sends another query with respect to given respond. 

Therefore, a query-respond circle and continuous communication between reader and 

tags are occurred.  A communication example between the reader (interrogator) and a 

tag can be seen in Figure 3.5. 

 

Figure 3.5:  A reader-tag communication example [16] 

The list of tags talking to reader at the moment is shown by the user interface 

program. This program allows selecting one tag to track and killing the other tags 

while tracking the selected. The signals coming from the dipole and the selected tag 

are received by the array and after passing RF/BF circuits, I&Q signals arrives at the 

personal computer where the digital signals are going to be processed.  

This digital signals consist of 8x(I&Q) signals, therefore they arrive at the computer 

through 16 channels. Each (I&Q) signal pairs are combined to obtain the data 

received by each array sensor and then passed through high pass filter to avoid the 
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capacitive ramp effect of the signal. Since the dipole is an active and the tag is a 

passive RF source, the received signal level obtained through the dipole is much 

higher than the signal coming from the tag. To isolate the tag’s signal, the filtered 

signal’s continuous lower voltage level blocks are taken as a tag data. The 

continuous signal is searched because the tag responds the query in binary and this 

causes a continuous sequence. The spatial covariance matrix is computed from the 

estimated tag data and MUSIC algorithm is applied as a DOA technique to find the 

position of the tag.  

As mentioned in section 2.2.2.1, the next steps of the MUSIC are performing Eigen 

decomposition of the covariance matrix, forming the steering vector for all possible 

angles in u-v space and computing the power from Eq. 3.1, picking the largest peak 

in the power spectrum and finding the position of the tag. The power equation for 

MUSIC algorithm used in the computer program in terms of k is as follows [17].  

1
( )

( ) ( )H H

N N

P k
e k U U e k

                                                     (3.1) 

where ( )e k : a column vector of phase delay of the antenna array and M=the array’s 

element number, 

1

2

exp( )

exp( )

exp( )M

jkr

jkr
e

jkr

 
 
 


 
 
  

                    (3.2) 

 
H

: Hermitian transpose, 
NU :the matrix of  noise subspace eigenvector  

3.2. Array Recalibration of the Direction Finding System 

This section has two parts. In the first part, the array calibration and calibration 

method used will be explained and then a new recalibration technique will be 

proposed in the second section.   
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3.2.1 Array calibration 

The phase and amplitude mismatch between array sensors and mismatch between 

array cables have a remarkable effect on beamforming and direction finding systems. 

Calibrating the array to overcome this problem is very critical for system accuracy 

[18, 19]. There have been lots of calibration methods proposed over few decades. 

Some of the most preferred methods exploit the signal information coming from 

known direction in order to use it as a calibration data, but in practice, the 

information is sometimes unfavourable. There is another way to calibrate the array 

called self-calibration. The self-calibration methods’ downsides are that they are very 

time-consuming and have varied ambiguity issues although they don’t need any 

calibration sources [20].   

 

The array calibration methods which exploit the signal information coming from 

known direction will be examined and they can be sorted in three groups as [18]: 

 

1) analytical method based on mathematical equations 

2) numerical method based on computer simulations 

3) experimental method based on calibration sources 

The most common method is the third one; two types of experimental array 

calibration method will be described. 

3.2.1.1 Remote transmitter approach 

As it is known, the estimation of steering vector is very important for DOA 

techniques. In the Remote Transmitter Approach, a calibration source is located in a 

known place right in front of the array and the signals coming from this source are 

recorded and normalized while the array is rotating. These signals are used for 

estimating the steering vector [18]. The unpredictable multipath effects are the 

disadvantages of this method [19].  
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Figure 3.6:  Remote Transmitter Approach [18] 

3.2.1.2 Test tone approach 

The Test-Tone approach is the calibration method used by the direction finding 

system described before. Ideally, each sensor of the array receives the same data in 

the presence of a calibration source in front of the array, but there are known 

mismatch effects on the system. Assume that the signal received by the kth sensor is 

kx  and the array consists of M sensors. The array output vector including mismatch 

effects is: 

1 1

2 2

1

( )

( )
( )

( )M M

y t c

y t c
x t

y t c

   
   
   
   
   
   

                   (3.3) 

Let k=1 be the reference element and the relative phase response of the element 1 

with respect to the element k is denoted by 
kr  [18]. 

1 1
k

k k

c y
r

c y
                       (3.4) 

If each element of the output vector is multiplied by the corresponding relative phase 

delay response, the mismatch effects will be compensated [18].  

1 1 1 1 1 1

2 2 2 2 2 2

1

( ) ( )

( ) ( )

( ) ( )M M M M M M

r y t rc x t x

r y t r c x t x
c

r y t r c x t x

     
     
      
     
     
     

                           (3.5) 
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As it is seen in Eq. (3.5), the input signals received by each sensor is normalized by 

the same value: 
1c , therefore the signal received by the each sensor would be the 

same in phase and amplitude.  

In used direction finding system, the multiplier is the first row of the spatial 

covariance matrix ( (1, )xxR i ) which is estimated from the signal coming from the tag. 

This is because the first row of the matrix represents the relationship of the sensors 

with the first (reference) sensor of the array. The steps of the used array calibration 

can be summarized as follows: 

 

1) Placing the calibration tag (in the red circle) towards the antenna array at a 

certain distance as seen in Figure 3.7. 

2) Estimating the spatial covariance matrix from the raw data coming from the 

calibration tag.  

3) Obtaining the “Calibration Vector” from the first row of the covariance matrix. 

 

Figure 3.7: The calibration position of the system. The tag in the red circle is the 

calibration tag. 
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As seen in Figure 3.7, the calibration tag is located at the level of the array centre; 

therefore the signal received by the each sensor must be the same in phase and 

amplitude. Therefore, the calibration vector is all about the mismatch effects. 

To ensure that calibration works, two more tags are placed on different places and 

their positions are estimated. Figure 3.8 which is a contour plot of the MUSIC 

pseudo power spectrum shows the estimated positions of the calibration tag in the red 

circle, the tag on the table (in the green circle) and the tag above the calibration tag 

(in the yellow circle) with respect to the centre of the array. The axes are in u-v space 

and the localisation results are in azimuth and elevation angles, respectively. The 

localization result of the calibration tag is found as [azimuth, elevation] = (10, 

89.820). Let’s consider the elevation angle; we know that the calibration tag is placed 

towards the array at the same height with the centre of array; hence the elevation and 

azimuth angles are expected to be around 90 and 0. Elevation angle is reasonably 

close to the expected value and so elevation is. Because of the elevation angle’s 

being 90 degrees, tiny changes in elevation angle causes big angle differences. For 

the tag above the calibration tag, azimuth angle should be around 90 degrees and 

elevation should be less than 90. Lastly, for the tag on the table azimuth should be 

negative and elevation should be between 70-80 degrees. Therefore it can be said 

that the array is calibrated accurately. 

3.2.2 Array recalibration 

As mentioned in the earlier stage of this chapter, the array calibration with 

calibration source in the field is not always possible because of unpredictable 

multipath effects. An array of a system needs to be accurately, easily and cheaply 

calibrated out of the laboratory in the presence of noise and irrelevant signals.  A 

recalibration method for this system’s array will be proposed in this section.  

The steps of the proposed recalibration method are: 

 

1) Place the dipole antenna, which is used for communication with tag, right in front 

of the array very closely at the level of the array’s centre (see Figure 3.9). This 

position of the dipole had to be accurately known. Save the first row of the 

covariance matrix of the dipole. Note that, all the tags must be killed in this step, 

the only signal source should be the dipole. 
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Figure 3.8: The contour plots of the estimated positions of a) the calibration tag (az: 10, ele: 89.820) b) the tag on the table (az: -37, ele. 

73.211) and c) the tag above the calibration tag (az: 88.37, ele: 79.896)
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2) Calibrate the array like explained before. 

Before next step, the calibration must be destroyed. During the laboratory 

experiments, the calibration was ruined by randomly swapping the coaxial RF cables 

between the array and RF/BF circuits. This process destroys the calibration and the 

estimated positions of the same tags in Figure 3.7 can be seen in Figure 3.10 as a 

proof of ruined calibration. 

 

Figure 3.9: The position of the dipole in front of the array 

3) Replace the dipole in front of the array where exactly it was placed before (see 

Figure 3.9). Save the first row of the covariance matrix of dipole again. 

4) Calculate the new calibration vector as follows: 

 

2

2 1

1

_ _ _ _
*

_ _ _ _

H

DIPOLE

TAG TAG

DIPOLE

state

state state

state

first row of corr mat
C C

first row of corr mat

 
 
 
 

             (3.6) 

where *: element-by-element product of the vectors, 
H

: Hermitian transpose 
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Mathematical proof:  

Figure 3.11 represents the position of the array and the calibrating tag while getting 

the calibration matrix from the tag data. “A1, A2,…, AN ” are the voltages each 

antenna received and N is the number of sensors. “a1, a2, …,aN” are the first row 

elements of the correlation matrix. Let’s separate the mismatch effects vector from 

the first row of the correlation matrix. The first row of the correlation matrix of the 

calibrating tag is: 

 

 

   

1 2 N

1 2 N 1 2 N

1
_ _ _ _ a a a

*

TAGstate
first row of corr mat

x x x  




       (3.7) 

where 

   

2*

1 1 1 1

*

2 1 2

*

1

.

.

.N N

a A A A

a A A

a A A

 





                     

  1 2 N   : mismatch effect vector of the first state 

  1 2 Nx x x : is a constant vector, represents the first row of the 

correlation matrix of the calibrating tag without mismatch effect 

Note that (.) is the dot product of the scalar variables.  
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Figure 3.10: The contour plots of the estimated positions of a) the calibration tag (az: 108.954, ele: 11.868) b) the tag on the table (az:       

98.226 ele: 38.219) and c) the tag above the calibration tag (az: 152.465, ele: 47.935).
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Figure 3.11: The calibrating tag and the antenna array 

Calibration vector of the tag: 

 

* * * *

1 1 1 1

* * * *

2 2 2 2

* * * *

1
* *

H

TAG

N N N N

state

a x x

a x x
C

a x x








       
       
       

  
       
       
                             (3.8) 

Figure 3.12 represents the position of the array and dipole antenna while getting the 

calibration matrix from the dipole data. “M1, M2,…, MN ” are the voltages each 

antenna received. “m1, m2, …, mN” are the first row elements of the correlation 

matrix. The first row of the correlation matrix is as follows: 

 

   

1 2 N

1 2 N 1 2 N

1
_ _ _ _

*

DIPOLEstate
first row of corr mat m m m

y y y  




(3.9)

where  
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 1 2 N   : mismatch effect vector of the first state 
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 1 2 Ny y y : is a constant vector, represents the first row of the correlation 

matrix of the dipole without mismatch effect  

 

 

Figure 3.12: Transmitting dipole and antenna array 

As mentioned before, after the destruction of the array calibration, old calibration 

vector didn’t work anymore. On the other hand, we know the first row of the 

calibration matrix of the tag and dipole at the first state and the first row of the 

calibration matrix of the dipole at the second state; therefore we can find the new 

correlation vector of the tag by using these data sets.  

“ ' ' '

1 2, ,...., NM M M ” are the voltages each antenna received from the dipole at the 

second state. The first row of the correlation matrix after calibration destroys is as 

follows: 

   

' ' '

1 2

1 2 N 1 2 N

2
_ _ _ _

*

DIPOLE Nstate
first row of corr mat m m m

y y y  

   


      (3.10) 

where  
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 1 2 N   : mismatch effect vector of the second state 
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 1 2 Ny y y : is a constant vector, represents the first row of the 

correlation matrix of the dipole without mismatch effect 

The form of the calibration vector of the second state must be as the following 

equation.  

 

*' * * *
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state
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a x x










      
      
      

         
      
                              (3.11)

 

The calibration vector of the second state can be expressed in terms of the calibration 

vector for the first state, the first row of the correlation matrix of the dipole for the 

first and second state as follows:  
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                      (3.12) 

If the Eq. (3.12) is rewritten in terms of Eq. (3.9) and Eq. (3.10), the Eq. (3.11) will 

be obtained. 
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    (3.13)

 

As shown in Figure 13, the recalibrated system works as it should be. The 

localization results of the same three tags with calibrated system in the laboratory 

and with recalibrated system (simulated field case) are very similar; therefore the 
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proposed recalibration method is successful. The localization figures of the tags in 

Figure 3.7 are very sharp and there are no side lobe effects on the graph. The 

localization figures of the tags in Figure 3.13 have slight side lobe effects. Because 

of the fact that recalibration method depends on the dipole data, these are expected 

effects. 
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Figure 3.13: The contour plots of the estimated positions of a) the calibration tag (az: 10, ele: 91.348)  b) the tag on the table (az: -35, 

ele: 73.035) c) the tag above the calibration tag (az: 94.384, ele: 79.222). 
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4. DOA ESTIMATION of PASSIVE RFID TAGS in MULTIPATH 

ENVIRONMENT 

A direction finding system for passive RFID tags is introduced in the previous 

chapter. As mentioned before, MUSIC algorithm which is a subspace DOA 

estimation technique based on Eigen-decomposition is used for signal processing due 

to its computation simplicity. However, subspace based algorithms don’t work when 

the signals are coherent or highly correlated in the multipath environment. To 

overcome this problem, a pre-processing technique called “Spatial Smoothing” 

which essentially “de-correlates” the signals was proposed by Evans et al. [21]. 

This chapter presents an introduction to spatial smoothing technique, an array 

interpolation technique to harmonize the antenna array against the constraints of the 

spatial smoothing and an iterative spatial smoothing algorithm proposed by Hislop 

and Craeye [22]. 

4.1    Spatial Smoothing  

In this section, problem statement and spatial smoothing algorithm will be presented.  

4.1.1 Problem statement 

Assume that DOA system has a uniform linear array with N identical antennas and q 

(N>q) signals coming from  1 2, ,...., q    are received by the array. The signal 

impinged on the sensors is: 

( ) ( ) ( )x t As t n t                                                 (4.1) 

where  
1[ ( ),...., ( )]qA a a  : Nxq matrix whose columns are composed of steering 

vectors in the direction of incoming signals, 
1( ) [ ( ),..., ( )]T

qs t s t s t  : qx1 incoming 

signals vector and ( )n t : qx1 additive noise vector whose elements’ variance are 

considered identical.  
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The additive noises are also considered as uncorrelated with the signals and 

uncorrelated between themselves. The basic condition of the subspace based DOA 

estimation algorithms is that the data covariance matrix must be full rank. The 

covariance matrix is: 

2( ) ( )H H

xx ss NxNR E x t x t AR A I                                                                       (4.2) 

The full rank condition depends on the signal covariance matrix
ssR . If the signals are 

uncorrelated, 
ssR  has full rank q, it is diagonal and non-singular. It is non-diagonal 

and non-singular if the signals are partially correlated; non-diagonal and singular if 

some of the signals are fully correlated (coherent) [23]. When the signals are 

uncorrelated, Eigen-values and corresponding eigenvectors of 
xxR  are as follows [23-

25]: 

   1 2 1 2....  and , ....,N Nv v v                      (4.3) 

the rank properties mean that[23-25]: 

1) N-q minimum Eigen-values of 
ssR are equal to 2  

      2

1 2 ....q q N                          (4.4) 

2) The corresponding eigenvectors of the N-q minimum Eigen-values are 

orthogonal to the matrix A whose columns are composed of the steering 

vectors. 

         1 2 1, ...., ( ),...., ( )q q N qv v v a a                                                               (4.5) 

 

The subspace based DOA estimation algorithms base on these two properties and the 

properties above are provided if only 
ssR is non-singular. Assume that the first two of 

the impinging signals are coherent. The total incoming signal and the relation of the 

coherent signals are as follows [25]:   

2 1( ) ( )s t s t                      (4.6) 

where  : complex scalar  

( ) ( ) ( )x t As t n t                     (4.7) 
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where 1 2 3[ ( ) ( ), ( ),...., ( )]qA a a a a      : Nx(q-1) steering vector matrix and  

1( ) [( 1) ( ),..., ( )]T

qs t s t s t  : (q-1)x1 incoming signal vector. 

In that case Eq. (4.2) becomes: 

2( ) ( )H H

xx ssR E x t x t AR A I                                 (4.8) 

where ( ) ( )H

ssR E s t s t    : the signal correlation matrix 

The signal correlation matrix is still non-singular and has (q-1)x(q-1)rank; the 

steering vector matrix A  is a full column rank. Therefore, the properties above can 

be rewritten as [23-25]: 

1a)  N-(q-1) minimum Eigen-values of 
ssR are equal to 2  

2a) The corresponding eigenvectors of the N-(q-1) minimum Eigen-values are 

orthogonal to the matrix A whose columns are composed of the steering 

vectors. 

Since the first element of the matrix A  related to the first two coherent signals 

is
1 2( ) ( )a a   , only (q-2) angles of arrival can be resolved accurately. In general, 

(q-p) directions of arrival can be estimated if the number of the coherent signals is p.  

4.1.2 Spatial smoothing algorithm  

As mentioned in the previous chapter, the accuracy of the subspace based DOA 

estimation algorithm associated with the non-singularity property of the signal 

correlation matrix. The spatial smoothing technique de-correlates the signals and 

generates a non-singular signal correlation matrix from the raw data.  

Spatial smoothing technique is only applicable to linear uniformly spaced arrays. The 

basic principle of the technique is dividing the array into sub-arrays (see Figure 4.1) 

and computing the non-singular signal correlation matrix by averaging the signal 

correlation matrixes obtained from each sub-arrays.   
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Figure 4.1: Sub-array spatial smoothing [27] 

Assume that a Uniform Linear Array (ULA) composed of N sensors is divided into 

K sub-arrays and the displacement between the sensors is d. The sensor number of 

each overlapping sub-arrays is
0N , such as the elements of the first and second sub-

arrays are  01,2,...., N and 02,3,...., 1N  , respectively. The received signal by the 

kth sub-array is denoted by [25]: 

ˆ( ) ( ) ( )k k kx t AD s t n t                     (4.9) 

where  1
( 1)sin( 1)sin

,....., qj d kj d k

kD diag e e
   

 : qxq diagonal matrix 

The covariance matrix of the kth sub-array is [25]: 

 
2ˆ ˆ( ) ( )H H H

k k k ss kkxxR E x t x t AD R D A I                   (4.10) 

The average of the sub-array covariance matrixes is: 

1

1 K

xx k

k

R R
K 

                               

(4.11) 

where 
0 1K N N   : the number of sub-array  

xxR  is defined as spatially smoothed covariance matrix. Combining Eq. (4.11) with 

Eq. (4.10), the spatially smoothed covariance matrix can be written as: 
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2

1

2

1ˆ ˆ

ˆ ˆ

K
H H

xx k ss k

k

H

ss

R A D R D A I
K

AR A I







 
  

 

 


                          (4.12) 

Where spatially smoothed covariance matrix of the signal: 

 

1

1 K
H

ss k ss k

k

R D R D
K 

                    (4.13) 

 

As long as the number of the sub-array is larger than the signals (e.g. K>q), spatially 

smoothed signal covariance matrix is non-singular and suitable for MUSIC 

algorithm.  

The technique explained above is called forward spatial smoothing. To estimate 

DOA of q signals, each sub-array must have at least (q+1) sensors and the total 

number of the sensors in the array must be 2q. An alternative spatial smoothing 

technique called Forward/Backward Spatial Smoothing which increases the sub-

array size to 2K without changing the array size was proposed by the authors of [26]. 

In this technique, the array is divided into K sub-array in both forward and backward 

directions (see Figure 4.1), thus the required array size decreases to 3q/2.  

 The average covariance matrix consisting of forward and backward covariance 

matrixes is [27]: 

*

*

1 1
( ) ( )

2 2

0 0 1 0 0 1

0 1 0 0 1 01

2

1 0 0 1 0 0

ss ss

ss ss

ave forward backwardss ss ssR R R R JR J

R R

   

    
    
     
    
     

    

                       (4.14) 

The forward-backward covariance matrix is [27]: 

2ˆ ˆfb H

xx avessR AR A I                                                             (4.15) 

The steps of DOA estimation of coherent signals can be seen in Figure 4.2. 
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Figure 4.2: Block diagram of DOA estimation of coherent signals 

4.2 The Interpolated Array Technique 

Spatial smoothing techniques can be applied only linear uniformly spaced arrays 

such as ULAs. Since ULAs’ array response vectors having a Vandermonde form, 

they have received most attention. On the other hand, these types of arrays are not 

preferred in practical applications because provided coverage area in azimuth plane 

is less than 360
0
. In practice, efficient DOA estimation systems should provide both 

360
0 

coverage and accurate resolution of the coherent signals. A planar array such as 

UCA instead of ULA should be used to overcome coverage problem and a pre-

processing technique called array interpolation should be applied to generalize the 

spatial smoothing for planar arrays [28].   

Estimating the array response of the virtual array from that of the real array is the 

main role of the interpolated arrays. Linear array interpolation techniques have been 

used for this purpose. The covariance matrix estimation of the interpolated virtual 

array steps are as follows [25]: 
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1) The coverage area (the field of view) of the array should be separated 

properly. The interval of the each sector can be shown as
1 2,l l    ; for 

instance, the interval of the first sector is  0,45 when the 360
0 

coverage area 

is divided into 8 sectors. 

2) The step size for each interval should be determined to generate a set of 

angles to design the interpolation matrix. 

1 1 1 2, , 2 ,....,l l l l l                          (4.16) 

3) Compute the steering vector matrix from the set of angles generated in the 

previous step. The steering vector matrix below is associated with the real 

array. 

2

1[ ( ),...., ( )]l

l lA a a                  (4.17) 

An array manifold of the virtual array, in other words array response of the 

virtual array is: 

2

1[ ( ),...., ( )]l

l lA a a                                      (4.18) 

4) The key idea of the array interpolation is obtaining the virtual array manifold 

by using the linear interpolation of the real array manifold. 

l l lB A A                   (4.19) 

where lB  is a constant matrix. 

The least square estimation of the constant matrix is [29]: 

1( )H H

l lB AA AA                   (4.20) 

5) This step is a decision step for accommodation of the sector interval. If the 

Frobenious norm of  l l lA B A  is small enough with respect to the 

Frobenious norm of
l

A , a virtual array is interpolated accurately. If not, go 

back to step one and reduce the size of the sector. 
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After obtaining the interpolation matrixes, the covariance matrix of the virtual 

array can be computed as follows [25]:  

H

l l lR B RB                    (4.21) 

4.3 Iterative Spatial Smoothing Algorithm for 2D Direction Finding 

In practical applications of the 2D direction finding system described in Chapter 

3, some problems caused by environment and design might be seen. An iterative 

spatial smoothing algorithm included array interpolation for 2D sensing was 

proposed by Hislop and Craeye as a solution. The steps of the algorithm are [22]: 

 

1) Obtain the steering vector matrix of the virtual array 

Array interpolation technique explained in the previous section is applied and 

virtual circular arrays are formed by shifting the original array (see Figure 

4.3). Each steering vector matrix is computed from Eq. (4.19) and possible 

interpolation errors are minimized by using least square estimation. The 

angular interval called in-sector (see Eq. 4.16) should be as small as possible 

to minimize the errors, but initially whole visibility area is defined as an in-

sector interval, then the in-sector interval will be progressively reduced at 

each iteration.   

2) Obtain spatially smoothed correlation matrix 
xxR  

3) Perform MUSIC algorithm 

4) Narrow down in-sector area 

The angles whose power level is less than aP  are removed from the in-sector 

where P is the maximum point in the MUSIC spectrum and “a” is a 

predetermined constant. Whole sequence might be repeated for a fixed 

number of iterations. 

 

 



 

47 

 

 

Figure 4.3: Array shifting example for planar arrays such as UCAs [22] 

Simulated result of the iterative spatial smoothing algorithm can be seen in Figure 

4.4. The signals source are fully correlated and coming from (45,45), (135,45), (-

45,45) in azimuth and elevation, respectively. The array parameters are matched with 

the UCA of the direction finding system and simulated real array is shifted 9 times to 

generate virtual arrays. White Gaussian noise with 10dB SNR is added to the antenna 

output of the each array [22]. The blue squares on the power spectrum maps are the 

actual positions of the signals and the peaks of the contour plots refer to the 

estimated positions. MUSIC algorithm without spatial smoothing in Fig 4.4a shows 

that MUSIC localizes only approximate positions of the two correlated sources. 

MUSIC with suggested spatial smoothing method after 5 iterations works for all of 

the three correlated sources (see Figure 4.4b). 

The suggested algorithm is applied to the 2D direction finding system with a passive 

RFID tag for an experiment. To generate coherent signals, a rectangular metallic 

plate is placed between the array and the tag. Metallic plate and the system can be 

seen in Figure 4.5.  

The tag receives a query signal which is transmitted by the dipole antenna and 

prepares a response by using the power of the query.  The response of the tag reaches 

the array from both 1) direct path and 2) reflection path. 

The localization results of the tag with and without metal plate can be seen in Figure 

4.6. Figure 4.6.a is the actual location of the tag and in Fig 4.6b, MUSIC algorithm 

doesn’t include spatial smoothing pre-processing algorithm. It is clear that these 

results support the simulated results in Figure 4.4a. MUSIC algorithm finds the 

location of the point, where the tag signal hits the metal plate, by picking the largest 

point in the power spectrum since the signal coming from the reflection path is more 

intense than the direct path signal. 
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Figure 4.4: Results of the MUSIC algorithm for 3 correlated signals a) without spatial smoothing b) with spatial smoothing after 5 

iterations [22] 
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The raw data obtained from multipath case is saved to use the same data with spatial 

smoothing algorithm. Unfortunately, suggested algorithm fails at localization of the 

correlated signals. The result of the MUSIC with spatial smoothing can be seen in 

Figure 4.7.  

 

Figure 4.5: 2D direction finding system with coherent signals 



 

50 

 

 

 

 

Figure 4.6: Results of the MUSIC algorithm a) without metal plate b) with metal plate (correlated signals) 
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Figure 4.7: The result of the MUSIC algorithm with suggested spatial smoothing 

algorithm. 
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5. POST-PROCESSING APPROACH to MUSIC ALGORITHM for 2D    

DIRECTION FINDING SYSTEM: CLEAN ALGORITHM  

A direction finding system for passive RFID tags is explained in Chapter 3 and a new 

spatial smoothing technique to avoid multipath effects and arrange the system for 

practical applications is introduced in Chapter 4.  Besides these regulations, MUSIC 

algorithm might still fail in the presence of noise or when the sources are too close or 

when the source signal is too weak even though the signals are uncorrelated. In this 

chapter, it is suggested applying a post-processing method called Clean Algorithm to 

MUSIC algorithm. Suggested method is commonly used in interferometry imaging 

for radio astronomy. 

A brief introduction to interferometry will be presented as background information. 

Then, mathematical relation of MUSIC algorithm and interferometric imaging, 

CLEAN algorithm, simulated and measured results of proposed approach will appear 

in the next sections.  

5.1 Interferometry 

Radio astronomic imaging is constructing sky map on the map by obtaining each 

pixels.  The voltages received by the antennas are passed through voltage multiplier 

and integrator (see Figure 5.1). The output of the devices is called “visibility 

function” which relates to the aperture of the point source. The complex visibility 

function is [30-32]:  

2 ( )( , ) ( , )
S

i ul vmV u v I l m e dldm                      (5.1) 

where (u,v): is a coordinate system which is used to define the distances between any 

pair of antennas in terms of wavelength, S: denotes whole sky, I(l,m): angular 

distribution of the source intensity, (l,m): x and y components of a unit vector. 
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Figure 5.1: An interferometer with two antennas. B is the distance between 

antennas;   V1 and V2 are antenna output voltages, 
i  is the instrumental 

delay and 
g  is geometric delay [31].  

As seen in Eq. (5.1), the visibility function is Inverse Fourier Transform of the 

intensity function. Therefore, the intensity function can be obtained by applying 

Fourier Transform to visibility function. The intensity coming from a specific part of 

the sky is as follows [31]: 

2 ( )( , ) ( , )
S

i ul vmI l m V u v e dudv                                          (5.2) 

Eq. (5.2) is very time-consuming process; hence Fast Fourier Transform provides 

computational simplicity. However, the visibility function must be obtained on a 

regular grid to apply FFT. The gridded visibility function can be expressed as [30, 

31]:  

   ( , ) ( , ) ( , ) ( , ) ( , ) ( , )meas measgridV u v III u v G u v V u v W u v V u v               (5.3) 

where ( , )G u v : convolving function,  : denotes convolution, ( , )measV u v : measured 

visibility function on irregular grid, the Sha function: 

( )( , ) ( )r r

r

u uIII u v v v 




                              (5.4) 

and the weighting function: 

( )( , ) ( )r r r

r

W u uW u v v v 




                              (5.5) 
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Uniform and Natural weighting are the widely used weighting functions. Natural 

weighting which accepts 1rW   provides best signal-to-noise ratio despite resulting 

in poor beam shape. Uniform weighting provides minimization of the sidelobes of 

the synthesized beam and accepts 1/ ( )rr N kW  where ( )rN k  is the number of data 

points within the kth region [32]. Discrete Fourier Transform (DFT) can be applied 

the gridded visibility function in Eq. (5.3) to get intensity function.  The intensity 

function is [30]: 

2 ( )( , ) ( , ) ( , )D k k k k

k

i ul vm
measl m W u vI V u v e dudv                  (5.6) 

The intensity function ( , )D l mI  is known as “Dirty Map”. Measured visibility 

function has complex, normally distributed random error component 

( , ) ( , ) ( , )measV u v V u v u v  . DFT of the measured visibility is the convolution of 

real intensity function and “Dirty Beam”. Dirty Beam (DB) is the impulse response 

of the system to a point source (see Figure 5.2).  Dirty Beam can be expressed as 

follows: 

2 ( )( , ) ( , )D k k

k

i ul vmB l m W u v e dudv                   (5.7) 

 

Figure 5.2: Schematic demonstration of intensity and dirty beam 

To obtain real intensity, a deconvolution method such as CLEAN or Maximum 

Entropy Deconvolution Method (MEM) can be applied to dirty map.  

5.2 Mathematical Link between Interferometry and MUSIC Algorithm 

As mentioned in Chapter 3, an alternative version of MUSIC power equation is used 

by the direction finding system. Remember Eq. (3.1): 

1
( )

( ) ( )H H

N N

P k
e k U U e k

                                                     (5.8) 

where ( )e k : a column vector of phase delay of the antenna array and ith element is : 
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i
iikr

e e                     (5.9) 

where k : propagation vector, 
ir : the position of ith antenna 

By using following relation of the signal and noise subspaces of the correlation 

matrix and inverting Eq. (5.8) [22], 

H H

S S N NI U U U U                    (5.10) 

DOA might be estimated by finding the minimum in the power spectrum. Inverted 

power is [22]:  

 1( ) ( ) ( ) ( ) ( )H

S S

H HU UP k e k e k e k e kI                  (5.11) 

The first part of Eq. (5.11) is equal to a constant N which is the number of antenna in 

this case. If this constant is ignored and the negative sign is removed, a MUSIC 

variant is obtained and DOA can be estimated by finding the maximum in the new 

power spectrum the MUSIC variant power is [22]: 

1 2

'

*

1 2 1 2

( ) ( ) ( )H

S S

i i

H

i i i i

U UP k e k e k

a e e



                  (5.12) 

where H

S SU U can be defined as the filtered version of the correlation matrix 
xxR with 

elements 
1i

a and 
2i

a , 
1i : rows of filtered correlation matrix  and 

2i : columns of 

filtered correlation matrix.   

The power spectrum of the alternative and original MUSIC definitions give exactly 

the same source directions and for this reason the result of the original distribution 

have not been plotted in this chapter.  

Hislop and Craeye suggested calling the visibility function in interferometric 

imaging as correlation matrix. Next step is showing the similarity of MUSIC variant 

and dirty map.  

The propagation vector in terms of (l,m) and antenna positions in terms of (u,v) are 

respectively [22]: 

2 22
ˆ ˆ ˆ( 1 )lx my l m zk




                     (5.13) 



 

57 

 

1 2
ˆ ˆ ˆ( )0i i ux vy zr r                      (5.14) 

By using Eq. (5.13) and (5.14) to rewrite Eq. (5.6), 

1 2 1

1 2

*

2
( , )D i i i

i i
il m bI e e                  (5.15) 

where 
1 2i ib : elements of correlation matrix (visibility function) 

Note that the weight function is assumed to be natural for simplicity. It is clear that 

there is a direct mathematical relation between Eq. (5.12) which represents MUSIC 

power spectrum and Eq. (5.15) which represents the dirty map. Therefore, a post-

processing algorithm such as CLEAN to avoid sidelobe effects can be applied to the 

MUSIC variant. 

5.3 The CLEAN Algorithm 

Clean algorithm was proposed by Högbom in 1978 to reconstruct Clean Map from 

Dirty Map in order to reduce sidelobe effects [34, 35]. Clark and Cotton-Schwab 

algorithms are the variant of Högbom’s CLEAN algorithm. The basic assumption of 

CLEAN and CLEAN variant algorithms is that the presence of noise and sidelobes 

don’t make significant difference on magnitude and position of the point source [35].  

CLEAN algorithm is an iterative post-processing method and defines two new 

concepts: Clean Map (CM) and Clean Beam (CB) besides Dirty Map and Dirty 

Beam. Clean Map is used for constructing the noise free map at each step of this 

algorithm and it is initialized with zero. It has been shown that Dirty Map, in other 

words intensity, is DFT of visibility function. Clean Beam is an ideal impulse 

response which consists of only one main lobe, usually Gaussian, where DB is the 

real impulse response of the system to a point source. The components of Dirty 

Beam are a main lobe and several sidelobes. 

The steps of the CLEAN algorithm are as follows [32-35]: 

1) Compute the Dirty Map and Dirty Beam  

For direction finding system, the first of this step is computing the power 

spectrum because as mathematically proven in the previous section, Dirty Map 

context in radio astronomy corresponds to power spectrum context in direction 

finding. If there is only one point source in the environment, the signal received 
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by the direction finding system will be Dirty Beam which is the impulse response 

of the system. The signal received by the data collector is a convolution of the 

original signal and impulse response. The power spectrum is: 

1 2

' *

1 2 1 2
( , ) ( )D

i i

i i i il mI P k a e e                            (5.16) 

By considering the relation of DM and DB in Eq. (5.6) and (5.7) and 

corresponding context in direction finding, DB can be expressed as follows for 

direction finding system. 

1 2

1 2

*( , )D

i i

i il mB e e                                       (5.17) 

2) Find the maximum absolute value on the map
0I .  Shift the DB to that point and 

normalize DB to 
0I  at the beam centre. Subtract normalized and shifted DB 

from DM to get the residual.  is a damping factor and called loop gain ( 0 1  ) .  

3) Shift the Clean Beam to the position of the maximum, normalize it to 
0I  at the 

beam centre and add it to the residual map. 

4) Return to step 2 until there is no significant intensity left on the Dirty Map. 

5) Add the last residuals to Clean Map which is formed at step 4 (this step is 

optional). If the residuals aren’t added, the Clean Map will be cleaner (see Figure 

5.4). 

The main purpose of this method is finding each significant peak in the power 

spectrum and removing side lobes for each peak which most probably signs the DOA 

of the source by swapping the Dirty Beam with Clean Beam.  

5.4 Simulated Results 

For simulations, UCA with eight sensors is assumed to have 0.3m radius. “ns” 

(number of sources) and the positions of the sources have to be known. Identically 

distributed white Gaussian noise might be added optionally while generating ns 

uncorrelated signals. The blue crosses, circles and squares represent the real source 

positions and the green stars, crosses and squares are the estimated positions of the 

point sources for all simulated and measured results. 
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In Figure 5.3, there are two uncorrelated signals located at Cartesian coordinates  

(x,y,z) = [-10, 0,100] and [10, 0,100] (metres) with an operating frequency of 

868MHz in the absence of noise (Figure 5.3a) and in the presence of noise (Figure 

5.3b, 5.3c). For these two close sources, MUSIC variant finds the locations of the 

sources correctly in noise free space. However, when independent identically 

distributed white Gaussian noise was added at each antenna output with SNR=0dB, 

MUSIC variant fails. After adding Gaussian noise, the weakest signal Eigen-value 

dropped to below the strongest of the noise Eigen-values leading to an incorrect 

representation of the signal subspace. Therefore MUSIC finds one of the sources and 

locates the other one in the valley of spectrum. CLEAN algorithm fixes sidelobe 

effect problem and after three iterations, the exact locations of both of the sources 

were found. The last step of the CLEAN algorithm, adding the residuals to Clean 

Map is applied in this example. If not, the iteration number had to be increased to 

twelve to choose two significant peaks in the power spectrum (see Figure 5.4).  

As seen in Figure 5.4, the final map of the power spectrum by ignoring the fifth step 

is cleaner despite more iteration requirement.  

In Figure 5.5, there are two uncorrelated signals located very close to each other 

((x,y,z) = [-7,0,100] and [7,0,100] (metres)) with same operating frequency. Because 

of the sources being too close, the significant peaks in the power spectrum formed 

together as one peak and there was only one significant peak in the spectrum, thus 

MUSIC algorithm fails even in noise free space. On the other hand, CLEAN 

algorithm separated these two peaks after 3 iterations both noisy and noise free 

space. The results of the MUSIC and CLEAN can be seen in Figure 5.5.  
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Figure 5.3: Two uncorrelated sources located at (x,y,z) = [-10,0,100] and [10,0,100] (metres) a) MUSIC algo. result in the absence of noise b) 

MUSIC algo. result in the presence of noise (SNR=0dB) c) CLEAN algo. result after three iterations in the presence of noise 

(SNR=0dB)
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Figure 5.4: The final map of the power spectrum without adding residuals 

Another example is that three uncorrelated signals coming from Cartesian 

coordinates (x,y,z) = [-40,0,100], [40,0,100] and [1,0,100]  (metres). MUSIC worked 

for three point sources at these locations when there was no noise and failed when 

SNR=-10dB (see Figure 5.6). The reason of the failure of MUSIC in Figure 5.6b is 

similar to failure in Figure 5.3b: replacement of signal and noise-subspaces.  

In the next example, the locations of the sources are  (x,y,z) = [-20,40,100], 

[20,40,100] and [1,0,100]  (metres). MUSIC algorithm fails in both noisy and noise 

free space because of the sidelobe effects and CLEAN works in both (see Figure 

5.7).  

As seen in the simulated results that CLEAN post-processing algorithm fixes 

sidelobes effects, peak overlapping in the power spectrum and signal and noise 

subspace replacement. The main reason for MUSIC’s failure is that it doesn’t take 

into account the impulse response of the array to a point source as does CLEAN. 
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Figure 5.5: Two uncorrelated sources located at (x,y,z) = [-7,0,100] and [7,0,100] a) MUSIC algo. result in noise free space b) CLEAN 

algo result in noise free space c) MUSIC algo. result in noisy space(SNR=10dB) d) CLEAN algo. result after three iterations 

in noisy space(SNR=10dB). 
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Figure 5.6: Three uncorrelated sources located at (x,y,z) = [-40,0,100], [40,0,100] and [1,0,100] a) MUSIC algo. result in the absence of 

noise b) MUSIC algo. result in noisy space (SNR=-10dB) c) CLEAN algo. result after ten iterations in noisy space (SNR=-

10dB)
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Figure 5.7: Two uncorrelated sources located at (x,y,z) == [-20,40,100], [20,40,100] and [1,0,100] a) MUSIC algo. result in noise free 

space b) CLEAN algo result in noise free space c) MUSIC algo. result in noisy space(SNR=10dB) d) CLEAN algo. result 

after three iterations in noisy space(SNR=10dB). 
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5.5 Measured Results 

The direction finding system for passive RFID tags is explained in Chapter 3 in 

detail and this system can localize only one source because the reader can 

communicate with one tag at each time. To prove CLEAN algorithm works with 

direction finding system besides simulations, dipole antenna is fed by oscillator with 

desired amplitude to obtain fake tag and the reader was removed from the system. 

Locating the dipoles vertically was preferred to minimize mutual coupling effect 

between antennas. 

Figure 5.8a and 5.8b are the power spectrums of two vertical sources after MUSIC 

and CLEAN, respectively. The upper one is located at (u,v) =[0.3607 0.3549] and -

15dBm; the lower one is located at [0.4021 0.0190] and its amplitude is -30dBm. The 

amplitudes and positions of the sources in Figure 5.8c and 5.8d are amplitudes=-

15dBm and (u,v) =[0.3607 0.3549] and [0.3993 0.0613]. 

For three sources case, three dipole antennas were connected to the oscillators and 

the generated signals were that signal showed with blue square had -15dBm 

amplitude and coming from (u,v)=[-0.4322 0.3838]; blue cross’ amplitude and 

location were -15dBm and (u,v)=[ 0.6068 0.5225] respectively. The blue circle 

represented the signal coming from (u,v)=[ 6.3093e-004 6.5960e-005] and had -

5dBm amplitude level. DOA estimation results after MUSIC and CLEAN algorithms 

can be seen in Figure 5.9.   

The effectiveness of post-processing deconvolution algorithm is just proved with 

both simulated and measured results. In Figure 5.8, MUSIC can only find one of the 

signal sources, but CLEAN finds both. Similarly, CLEAN finds all three sources in 

Figure 5.9, but MUSIC finds only two. Measured results indicate that CLEAN 

algorithm fixes the encountered problems in practical applications.
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Figure 5.8: The measured results of MUSIC and CLEAN algorithms for two different amplitude and position conditions  
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Figure 5.9: The measured results of MUSIC and CLEAN algorithms for three sources located at (u,v) = [-0.4322 0.3838], [ 0.6068 

0.5225] and [6.3093e-004 6.5960e-005] and the corresponding amplitudes are -15dBm, -15dBm and -5dBm. 
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6. CONCLUSION  

In this thesis, DOA estimation literature is summarized, 2-D direction finding system 

is introduced, cheap and easy array recalibration technique is suggested for this 

system, measured results of spatial smoothing pre-processing  application on this 

system is presented and finally applying a post-processing algorithm on this system 

to discard sidelobe effects is proposed. The main purpose of this work is calibrating 

the system out of the laboratory and improving the accuracy of localization process. 

Array calibration is very important process to estimate the direction of the source for 

direction finding systems. The used 2D direction finding system should be calibrated 

in the field easily and accurately in the case of it become a commercial product. 

Instead of using a self calibration technique which is a time-consuming process, a 

recalibration technique is proposed to calibrate the system the system out of the 

laboratory. The new technique is used the first row of the correlation matrix of the 

tag in the first state and the first row of the correlation matrix of the dipole both in 

the first state and in the second state to calculate the calibration vector for the second 

state. If the localization results of the recalibrated system (see Figure 3.13) are 

compared with the localization results of the calibrated system (with calibration tag, 

see 3.7), it can be easily said that the proposed method works successfully although 

the direction estimates of the recalibrated system have slight sidelobe effects.  These 

effects are expected because the raw data of the dipole antenna is also used to 

recalibrate the system besides the raw data of the tag. 

The DOA estimation algorithm of the used system is MUSIC. The major drawback 

of this algorithm is that it doesn’t work in the presence of correlated signals. 

Anechoic environment experiments of a new spatial smoothing algorithm which is 

proposed by the designers of the 2D direction finding system are made and the 

results of the experiment are presented in the forth chapter. The algorithm provides 

to overcome the multipath effect problems for used direction finding system. It is 

seen in measured results that the suggested pre-processing algorithm doesn’t solve 

the multipath effect problems although it works reliably on simulated data. 
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The problem with the measured results is that the antenna patterns are not correctly 

accounted for. More precisely the patterns are different for each antenna due to 

their differing positions relative to the edge of the ground plane and due to mutual 

coupling. This should cause problems with the interpolation of the array. As 

mentioned before, the array calibration technique discards the phase-amplitude 

mismatch effects of the sensors and cable mismatch effects, but not mutual coupling 

effect. Actually, the mutual coupling effect isn’t a big deal in the absence of 

multipath. In multipath environment, mutual coupling effect increases the array 

interpolation errors while generating virtual antenna arrays. The phase response of 

the antennas may not be the same for all the antennas and will probably vary more 

significantly at small elevations than large ones. As reflections are typically at 

smaller elevations, they are more susceptible for this problem. Measure the antenna 

patterns and including them in the steering vectors of the MUSIC implementation or 

simulating the steering vectors might be the possible solutions for this problem.  

MUSIC algorithm does not into account the non-ideal impulse response of typical 

direction finding arrays. In the fifth chapter, applying a post-processing approach to 

MUSIC algorithm is suggested to improve the localization accuracy of direction 

finding system. Suggested post-processing method- CLEAN is commonly used in 

interferometric imaging to account for the effects of the non-ideal impulse response 

on images of the celestial sphere. On the basis of the mathematical link between 

MUSIC and interferometry, applying the CLEAN algorithm rectifies this problem. 

According to the simulated and measured results in chapter five, MUSIC and 

CLEAN combination provides better results than MUSIC for two important cases: 

closely spaced sources and weak sources. The CLEAN algorithm swaps each 

significant peak -Dirty Beam in MUSIC power spectrum with ideal impulse response 

-Clean Beam. For this reason, proposed provides noise filtering and better resolution.   
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    APPENDIX A.1 : MATLAB Computer Programme 
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