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Dr. İbrahim Akduman, for his guidance and support during my PhD studies. He has
been an inspiring advisor who profoundly influenced my research.

I would like to express my appreciation to Assoc. Prof. Dr. Ali Yapar for his valuable
contributions and guidance.

During my studies, I had the opportunity to collaborate with several researchers.
Particular thanks are given to Dr. Lorenzo Crocco, Prof. Dr. Fioralba Cakoni, Prof.
Dr. David Colton and Prof. Dr. Sungkwon Kang whom affected my research either
directly or indirectly.

I would like to thank to members of Electromagnetic Research Group (ERG) for the
great environment. Also I would like to thank to Dr. Serkan Şimşek and Dr. Fatih
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NOVEL ANALYTICAL CONTINUATION BASED SHAPE
RECONSTRUCTION METHODS FOR PERFECT ELECTRIC
CONDUCTING TARGETS

SUMMARY

In this thesis, the inverse scattering problem of which the aim is to remotely retrieve
the shape of an inaccessible, perfect electric conducting target through the use of
electromagnetic waves is studied. This is one of the fundamental questions in inverse
scattering theory and from the theoretical perspective; it is a nonlinear ill-posed
problem. Thus the existence and the uniqueness of a stable solution cannot be
anticipated initially. Within this framework, two new shape reconstruction methods
are developed in this thesis. These methods can be classified as analytical continuation
(or decomposition) methods in which the nonlinearity and the ill-posedness of the
underlying problem are handled separately.
The first method is based on the analytical continuation of the scattered field by means
of Taylor series expansion. In particular, the measured far-field data which is corrupted
with inevitable measurement noise first backpropagated to a circular domain enclosing
the inaccessible object in terms of regularized inversion of a single layer potential.
The reconstructed single layer potential density enables to approximate scattered field
outside of the encircled object quite accurately, while a Taylor series expansion in the
radial direction is exploited to represent the field in the vicinity of the target. From the
boundary condition, the problem is then recast as a polynomial equation containing the
contour of the object as an unknown. Later this nonlinear equation is iteratively solved
via the Gauss-Newton algorithm to retrieve the unknown shape.
The second method introduced in this thesis is based on creating an equivalent
scattering problem by means of standard impedance boundary condition (SIBC).
More precisely, the inaccessible perfectly conducting target is modeled as a circular
impedance cylinder having inhomogeneous surface impedance. By virtue of
equivalence, the impedance cylinder generates the same field distribution on whole
space outside of the inaccessible object, as long as the latter is enclosed by the
inaccessible target. In order to determine the equivalent surface impedance, first
the measured far-field data which is corrupted with noise is backpropagated to the
surface of the impedance cylinder, through the regularized inversion of the single-layer
potential. Then, the surface impedance is recovered by exploiting the SIBC imposed
over the impedance cylinder. Since the reconstructed surface impedance enables to
represent scattered field outside of the unknown target, the retrieval of the unknown
shape turns out to be the solution of a nonlinear optimization problem, which is solved
iteratively through the Gauss-Newton algorithm.
Several numerical simulations are performed to validate and to expose both capabilities
and the limitations of the presented methods. As a result, it is concluded that
both methods provide quite accurate reconstructions for the objects having starlike
boundaries with both convex and concave parts. It is observed that the size of the
object should be comparable to the wavelength when only a single illumination is

xvii



employed. However this limitation can be overcome in multiview configuration where
several plane waves with different incidence directions are employed. Moreover the
multiview data improves the robustness against to noise such that it becomes possible
to reconstruct with lower signal-to-noise ratios (SNR).
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MÜKEMMEL ELEKTRİK İLETEN HEDEFLER İÇİN ANALİTİK DEVAM
TEMELLİ YENİ ŞEKİL BELİRLEME YÖNTEMLERİ

ÖZET

Bu tez çalışması kapsamında yanına erişilemeyen, mükemmel elektrik ileten cisimlerin
elektromagnetik dalgalar aracılığıyla şekillerinin uzaktan belirlenmesi konulu ters
saçılma problemi incelenmiştir. Bu konu ters saçılma teorisindeki temel sorulardan
biridir ve teorik açıdan doğrusal olmayan, kötü kurulmuş bir problemdir. Bu nedenle
baştan kararlı bir çözümün varlığı ve tekliği öngörülemez. Bu çerçevede, bu tez
çalısmasında iki adet yeni şekil belirleme yöntemi geliştirilmiştir. Bu yöntemler
problemin doğrusal olmayan ve kötü kurulmuş parçalarının ayrı ayrı kotarıldığı
analitik devam (veya ayrıştırma) yöntemleri olarak sınıflandırılabilirler.
Geliştirilen ilk yöntem saçılan alanın Taylor serisi açılımıyla analitik olarak devamına
dayanmaktadır. Ölçüm gürültüsüyle bozulmuş olan uzak alan verisi öncelikle cismi
çevreleyen dairesel bir bölgeye, bir tek-katman potansiyelinin regülerize edilmiş
biçimde tersi alınarak devam ettirilir. Elde edilen bu tek-katman potansiyel yoğunluğu
erişilemeyen cisim dışındaki bölgede alanı yeterince iyi biçimde ifade etmeye
olanak verirken, Taylor serisi açılımı radyal dogrultuda içe doğru olan bölgede
alanı ifade etmek için kullanılmıştır. Cismin üzerindeki sınır koşulu yardımıyla,
problem cismin sınırının bilinmeyen olarak gözüktüğü polinom yapısındaki bir eşitliğe
dönüştürülür. Ardından bu doğrusal olmayan eşitlik Gauss-Newton algoritması
aracılığıyla yinelemeli olarak çözülerek, bilinmeyen şekil belirlenir.
Geliştirilen ikinci yöntemse standart empedans sınır koşulu (SIBC) anlamında
eşdeğer bir saçılma probleminin oluşturulmasına dayanmaktadır. Daha ayrıntılı
belirtmek gerekirse, yanına erişilemeyen iletken hedef, üzerinde homojen olmayan
bir yüzey empedansına sahip dairesel bir empedans silindiri olarak modellenir.
Eşdeğer problem anlamında, empedans silindiri cismin içinde kaldığı sürece, yanına
erişilemeyen cismin dışındaki bölgede cisimle aynı alan dağılımı yaratacaktır. Eşdeğer
yüzey empedansının belirlenmesi için, ilk yöntemdekine benzer olarak gürültülü
uzak alan verisi, bir tek-katman potansiyelinin regülerize edilmiş tersi aracılığıyla
empedans silindirinin yüzeyine kadar devam ettirilir. Ardından, yüzey empedansı
empedans silindiri üzerinde tanımlanan SIBC kullanılarak bulunur. Bulunan bu
yüzey empedansı cismin dışındaki bölgede alanı ifade etmeye imkan verdiğinden
cismin yüzeyindeki sınır koşulu yardımıyla, bilinmeyen yüzeyin bulunması problemi
Gauss-Newton algoritmasıyla yinelemeli olarak çözülen doğrusal olmayan bir
optimizasyon problemine dönüştürülür.
Tanıtılan yöntemleri hem sayısal olarak doğrulamak hem de yöntemlerin
sınırlamalarını ortaya çıkarmak amacıyla çesitli simülasyonlar gerçekleştirilmiştir.
Sonuç olarak, her iki metodunda hem konveks hem de konkav tarafları olan
yıldız-biçimi sınıra sahip cisimler için oldukça iyi sonuçlar verdiği sonucuna
varılmıştır. Tek bir aydınlatmanın kullanılması durumunda cismin boyutlarının
dalgaboyu mertebesinde olması gerektiği gözlemlenmiştir. Öte yandan bu sınırlama,
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farklı geliş açılarına sahip birden çok düzlem dalganın kullanıldığı çoklu aydınlatma
kullanımıyla aşılabilmektedir. Dahası çoklu aydınlatma kullanımı gürültüye
olan duyarlılığı iyileştirerek daha düşük işaret-gürültü-oranlarında da şekillerin
belirlenebilmesine olanak vermektedir.
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1. INTRODUCTION

The inverse scattering problems are encountered in many areas of engineering and

applied sciences such as medical imaging, microwave remote sensing, geophysical

exploration, or non-destructive testing, etc. In these inverse problems, the basic

aim is to identify the desired features of inaccessible objects (or mediums) remotely,

through the use of electromagnetic, acoustical or elastic waves, depending on the

physical requirements of the applications. The scattered wave which is the result of

the interaction between the obstacles and the incident wave is exploited in order to

extract physical and geometrical properties of the scatterers such as shape, location or

electrical constitutive parameters.

The material properties of the objects to be reconstructed mainly determine the solution

approaches of the related inverse scattering problems. If the object is impenetrable

such as sound soft targets for acoustical case and perfect electric conductors for

the electromagnetic case etc.; the problem becomes a shape reconstruction problem

[1, 2]. On the other hand, for penetrable objects such as dielectric materials in

electromagnetics, one has to establish a solution approach in order to recover shape

and/or electrical constitutive parameters [1, 2]. Although these two major groups in

inverse scattering problems have been extensively studied in the open literature, fast

and effective solution approaches are still required. In this thesis, we will present two

novel shape reconstruction methods for perfect electric conducting targets which is in

the first group.

Beside their significance in many engineering areas, these inverse problems have a

remarkable theoretical aspect that they are mostly ill-posed [2] and nonlinear thus

solution approaches have to handle these properties in an appropriate way. In the sense

of Hadamard’s postulates, well-posedness of a problem is defined by the following

conditions:

1. Existence of the solution

1



2. Uniqueness of the solution

3. Continuous dependence of the solution on the input data

If a problem inherently does not have one of these crucial properties, it is classified as

ill-posed or improperly-posed. Mathematically, it is possible to enforce the existence

of a solution by enlarging the solution space and the uniqueness can be cured by

introducing additional constraints on the solution [1]. Among these criteria, continuous

dependence to the input data is most restrictive. As the solution exhibits strong

sensitivity to small perturbations on the input data, it becomes practically impossible

to calculate a solution when the input data is provided through measurements of a

physical process where the noise is inevitable. Therefore the solution of an ill-posed

problem requires imposing certain constraints on the problem, and in most cases only

an approximate solution can be achieved. The procedure of getting an approximate

but stable solution for an ill-posed problem is called regularization. Well known

methods include Tikhonov regularization and truncated singular value decomposition

(TSVD). These regularization methods are function of a regularization parameter

whose selection provides a trade-off between accuracy and stability of the solution.

Optimal selection of the regularization parameter generally requires a priori knowledge

on the expected noise level of the measured data. If there is no a priori information

available, then only choice for selecting the regularization parameter becomes trial and

error such that the inverse problem is solved for a set of regularization parameters and

the most reasonable solution is selected [2].

1.1 Reconstructing the Shape of Inaccessible Objects

As mentioned, retrieving the shape and the location of inaccessible objects from

a set of far field measurements constitutes one of the basic problems in inverse

scattering theory. Accordingly, such problems have been extensively investigated

in the open literature. Since the very first attempts for the solution [3, 4],

many methods based on different approaches such as physical optics theory [5–

7], Newton-Kantorovich method [8], equivalent source method [9], analytical

continuation methods (decomposition methods) [10–15], linear sampling method [16–

21], factorization method [22,23], probe method [24], singular source method [25,26],

no response test [27], range-test method [28], level set method [29], metaheuristic

2



optimization based methods [30, 31] have been developed. Most of these methods can

be roughly classified into three major groups:

a) Iterative Methods:

These methods require a priori knowledge of the boundary conditions which is

employed on the surface of inaccessible objects. By using the boundary conditions,

the shape reconstruction method is formulated as a minimization of a nonlinear

ill-posed operator equation, then iterative schemes such as regularized Newton

methods, Landweber iterations or conjugate gradient methods are applied for its

solution. These methods work with minimum amount of singleview data at a fixed

frequency and provide reasonable reconstructions when the noise level of measured

data is sufficiently low. However these methods generally requires to solve forward

problem at least once at each iteration step which makes them impractical in most

cases. As a minimization problem, these methods also suffer from local minimums

depending on selection of initial guesses. Examples of iterative methods include

Newton-Kantorovich method [8], metaheuristic optimization based methods [30, 31].

b) Sampling and Probe Methods:

The sampling methods do not model directly the physical scattering phenomena. On

the other hand this conceptional difference provides their major advantage over other

methods. In theory, sampling methods does not require any a-priori knowledge about

boundary conditions. The sampling methods based on the numerical evaluation of an

indicator function over a domain where the objects are searched. Major disadvantage

of sampling methods is that they need large amount of multiview data and do not

provide sharp reconstructions as compared to other methods. Well known sampling

methods include the linear sampling method [16–20], the factorization method [22,32]

which is related to linear sampling method, probe method [24], singular source method

[25, 26], no response test [27] and range-test method [28].

c) Decomposition or Analytical Continuation Methods:

The decomposition or analytical continuation methods handles the ill-posedness and

the nonlinearity of the underlying inverse scattering problem separately [10–15].

Initially, an ill-posed linear operator is used to reconstruct the scattered field in the

vicinity of the obstacle from its measured far field. To this aim regularized single-,

double- or mixed layer potential approaches are generally employed. Then by using the

3



boundary conditions, the shape reconstruction problem is formulated as a minimization

of nonlinear equation of the shape. These methods share similar characteristics with

iterative methods however their major advantage over iterative methods that they do

not require to solve forward problem at each iteration. Thus they can be considered as

improved versions of iterative methods.

1.2 The Aim of the Study

Although the shape reconstruction methods mentioned in section 1.1 had made

important contributions to solution of inverse obstacle scattering problem, the problem

of accurately retrieving geometrical properties of the unknown objects with a limited

amount of far field data is still a very active research area due to importance of possible

applications.

Within this framework, the objective of this thesis is to develop new and efficient

methods to reconstruct the shape of inaccessible, electrically conducting structures

by utilizing the scattered field measurements performed in the far-field region.

Consequently, two new shape reconstruction schemes which are in the class of

analytical continuation methods are developed for imaging perfect electric conducting

targets.

The first method is based on the analytical continuation of the scattered field by means

of single layer potential representation and Taylor series expansion. In particular,

the measured far-field data which is corrupted with inevitable measurement noise,

first backpropagated to a circular domain enclosing the inaccessible object in terms

of regularized inversion of a single layer potential. The reconstructed single layer

potential density enables to approximate scattered field outside of the encircled object

quite accurately, while a Taylor series expansion in the radial direction is exploited to

represent the field in the vicinity of the target. From the boundary condition that the

total electric field vanishes on the surface of the target, the problem is then recast as

a polynomial equation containing the contour of the object as an unknown. Later this

nonlinear equation is iteratively solved via the Gauss-Newton algorithm to retrieve the

unknown shape.

The second method introduced in this thesis is based on creating an equivalent

scattering problem in terms of standard impedance boundary condition (SIBC). More
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precisely, the unknown perfectly conducting target is equivalently modeled as a

circular impedance cylinder, having inhomogeneous surface impedance. By virtue

of equivalence, the impedance cylinder generates the same field distribution on whole

space outside of the unknown object, as long as the latter is enclosed by the unknown

target to be reconstructed. In order to determine the equivalent surface impedance,

first the noise corrupted measured far-field data is backpropagated to the surface of the

equivalent impedance cylinder, through the regularized inversion of the single-layer

potential. Then, the surface impedance is recovered by exploiting the SIBC imposed

over the impedance cylinder which requires the total electric and magnetic field values

on the boundary. Since the reconstructed surface impedance enables to represent

scattered field outside of the unknown target, the retrieval of the unknown shape turns

out to be the solution of a nonlinear optimization problem, which is solved iteratively

through the Gauss-Newton algorithm.

The organization of thesis is as follows: In chapter 2 details of the shape reconstruction

problem and preliminary definitions required to formulate the solutions are described.

Then, the shape reconstruction algorithm for conducting objects which is based on

the analytical continuation of scattered field in terms of Taylor series expansions is

introduced in chapter 3. The concept of the modeling unknown scatterer by means

of inhomogeneous surface impedance, and the usage of this equivalent impedance

in shape reconstruction is addressed in chapter 4. In chapter 5 several numerical

results are demonstrated to show the validity and the capabilities of the both shape

reconstruction methods. The results achieved are concluded in chapter 6. Through the

thesis, time factor e−iωt is assumed and factored out.
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2. SHAPE RECONSTRUCTION PROBLEM FOR INACCESSIBLE,

PERFECT ELECTRIC CONDUCTING TARGETS

In this chapter, the details of the inverse scattering problem which is investigated

through this thesis and the associated assumptions which are necessary to formulate the

shape reconstruction methods, later presented in chapter 3 and chapter 4, are explained.

2.1 Inverse Obstacle Scattering Problem for 2D Case

Through the thesis, only two dimensional scattering problem illustrated in figure 2.1 is

considered, hence it is assumed that the shape of the scatterer does not change at Ox3

direction and the scatterer is infinitely long at that direction in terms of the operating

wavelength λ . In this configuration, D is a perfectly conducting cylindrical body

whose boundary ∂D is assumed to be starlike shape, i.e., an arbitrary point on ∂D

can be represented in polar coordinates as ( f (φ),φ) where f (φ) is a real single-valued

function of φ ∈ [0,2π). The body D is located in a homogeneous infinite space whose

electromagnetic constitutive parameters are ε , µ and σ .

The inverse scattering problem considered here consists in recovering the boundary

of the object ∂D, i.e., the function f (φ), from a set of far field measurements of the

scattered wave. To this aim, the body D is illuminated with a time-harmonic plane

wave whose electric field vector Ei is always parallel to the Ox3 axis. This field is

given by:

Ei =
(
0,0,ui(x)

)
(2.1)

with

ui(x) = e−ikx¦d, x ∈ R2 (2.2)

where d = (cosθ ,sinθ) is the propagation direction with incidence angle θ and

wavenumber k which is the square root of k2 = ω2εµ + iωσ µ . Due to the homogeneity

in the Ox3 direction, the total and scattered electric field vectors will have only x3

components, thus the problem is reduced to a scalar case.
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Figure 2.1: 2D cross section of the problem geometry which is considered for shape
reconstruction of PEC objects.

Let u(x) denote the total electric field then the scattered field, us(x), is defined as the

difference between total field and the incident field

us(x) = u(x)−ui(x) (2.3)

and satisfies the Helmholtz equation

∆us(x)+ k2us(x) = 0, x ∈ R2 \D (2.4)

with the boundary condition

u(x) = 0, x ∈ ∂D. (2.5)

In addition us(x) satisfies the Sommerfeld radiation condition

lim
r→∞

√
r
(

∂us

∂ r
− ikus

)
= 0, r = |x| (2.6)

and has an asymptotic behavior of the form

lim
|x|→∞

us(x) =
eik|x|
√
|x|

{
u∞(x̂)+O

(
1
|x|

)}
, x̂ =

x
|x| (2.7)
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uniformly in all directions. The function u∞(x̂) is known as far field pattern of the

scattered field.

Here the direct scattering problem is defined as the determination of the scattered field

us(x) or its asymptotic form u∞(x̂) provided that the boundary ∂D and the incident field

ui(x) is known. This problem is well-posed and the uniqueness of the solution can be

proven under the assumption that Im(k) > 0 [33]. To solve the direct problem related

to arbitrary shaped obstacles, several numerical methods such as boundary integral

equations, finite element method are applicable.

The corresponding inverse scattering problem is defined as the retrieval of the

boundary ∂D from a given set of far field u∞(x̂) data. This is a well-known ill-posed

problem and as pointed out in the introduction, several methods based on quite

different approaches have already been established. However due to the nature of the

inverse problem, there is no general solver which can handle all kind of configurations.

The uniqueness of the solution is proven under quite restrictive assumptions on the size

of the obstacle and on the variation of its boundary [2].

2.2 Surface Potentials

Through the thesis, surface potentials [33] have been extensively used. Thus basic

definitions are summarized here.

The Green’s function G(x,y) for the Helmholtz equation is the solutions of

∆G(x,y)+ k2G(x,y) =−δ (x−y), x 6= y, (2.8)

and is given by

G(x,y) =
i
4

H(1)
0 (k|x−y|), x ∈ R2 \{y} (2.9)

where H(1)
0 (.) denotes the zero order Hankel function of the first kind. It has an

asymptotic form as |x−y| → ∞

lim
|x−y|→∞

G(x,y) =
eiπ/4

√
8πk|x−y| eik|x−y|

{
1+O

(
1

|x−y|
)}

(2.10)

and has a logarithmic singularity when source and observer points coincide

lim
|x−y|→0

G(x,y) =
1

2π
ln

(
1

|x−y|
)

+
i
4
− 1

2π
ln

(
k
2

)
− C

2π
+O

(
|x−y|2 ln

1
|x−y|

)

(2.11)
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where C = 0.577215... is an irrational number known as Euler-Mascheroni constant.

In the numerical evaluation of the Green’s function, a special treatment is required to

avoid this singularity.

The single-layer potential and the double-layer potential are defined as

u(x) :=
∫

∂D

G(x,y)ψ(y)ds(y), x ∈ R2 \∂D (2.12)

and

v(x) :=
∫

∂D

∂G(x,y)
∂n(y)

ϕ(y)ds(y), x ∈ R2 \∂D (2.13)

respectively, where ψ(x) and ϕ(y) are called single- and double-layer potential

densities respectively and n(y) denotes outward surface normal. It is proved that

any solution to Helmholtz equation can be represented as a combination of single-

and double-layer potentials [33] and these potentials satisfy the Sommerfeld radiation

condition (2.6) as well. The single- and double-layer potentials can be extended to the

boundary by means of jump relations [33] and one has

u±(x) =
∫

∂ D

G(x,y)ψ(y)ds(y), x ∈ ∂D (2.14)

∂u±
∂n

(x) =
∫

∂D

∂G(x,y)
∂n(x)

ψ(y)ds(y)∓ 1
2

ψ(x), x ∈ ∂D (2.15)

v±(x) =
∫

∂D

∂G(x,y)
∂n(y)

ϕ(y)ds(y)± 1
2

ϕ(x), x ∈ ∂D (2.16)

where subscripts + and − denotes to the limits obtained by approaching the boundary

∂D from outside of D and inside of D, respectively.
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3. SHAPE RECONSTRUCTION BY ANALYTICAL CONTINUATION OF

THE SCATTERED FIELD THROUGH TAYLOR SERIES EXPANSION

In this section, a new shape reconstruction method for inaccessible PEC targets is

presented. The method basically consists of two steps. The first step aims to obtain

an approximate scattered field variation in the vicinity of the target to be reconstructed

from the given, noise corrupted far field pattern of the scattered wave, while the second

step is to reduce the problem into solution of a nonlinear system of equations through

the use of boundary condition on the surface of the unknown object.

In the first step, by utilizing the single-layer potential representation (2.12), the far

field pattern is modeled as if it is generated by an unknown potential density on the

boundary of a circular cylinder which is assumed to cover the unknown target with

a preferably minimum radius. The resulting Fredholm integral equation of first kind

is ill-posed. Thus it is inverted in a regularized fashion via truncated singular value

decomposition in order to solve the unknown single-layer potential density. With the

reconstructed potential density, it possible to calculate the approximate scattered field

in whole space outside of the minimum circle, while a Taylor series expansion of the

scattered field is exploited inside the minimum circle in the radial direction to get the

scattered field in the vicinity of the target.

At the final step, the Taylor series expansion together with the boundary condition

that the total field on boundary of the unknown target must vanish, is used to get

a polynomial equation which contains the shape of the target as unknown. This

nonlinear equation is solved iteratively with Gauss-Newton algorithm with the initial

guess chosen as the minimum circle. As demonstrated in chapter 5, the presented

method provides accurate reconstructions for both convex and concave obstacles even

when signal-to-noise ratio (SNR) is low. With a careful implementation, the method is

quite fast since the nonlinear equation is in a polynomial form and the coefficients

containing the derivatives of the scattered field become constants in the iteration
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procedure. Moreover only a few terms in the Taylor series expansion are enough when

the variation of the boundary is small in terms of the operating wavelength.

3.1 Backpropagation of the Scattered Field by Single-Layer Potential

Representation

As mentioned earlier, it is first considered a circle with radius ρ = α which separates

the space outside of the object into two parts i.e ρ > α and f (φ) < ρ < α . In the

exterior domain ρ > α , the scattered wave is expressed as a single-layer potential of

the form

us(ρ ,φ) =
i
4

2π∫

0

H(1)
0

(
k
√

ρ2 +α2−2ρα cos(φ − τ)
)

Ψ(τ)αdτ, ρ > α (3.1)

with an unknown potential density function Ψ(τ) on the circle ρ = α . For the sake of

simplicity, it is assumed that k2 is not at interior resonance, that is, k2 is not a Dirichlet

eigenvalue for the negative Laplacian in D. In this case, any solution to the Helmholtz

equation in the exterior of D that satisfies the radiation condition (2.6) can be indeed

represented as a single-layer potential [2]. Note that, in order to avoid the mentioned

restriction, one would need to replace the single-layer potential by a combined single-

and double-layer potentials [2]. In the inverse scattering problem considered here, the

scattered field is known in the far field region and (3.1) can be written in compact form

as follows:

SΨ = u∞ (3.2)

for the unknown density Ψ. By using the asymptotic form of Hankel function of the

first kind [34], the integral operator S is represented by

(SΨ)(φ) =
eiπ/4
√

8πk

2π∫

0

e−ik cos(φ−τ)Ψ(τ)αdτ. (3.3)

Since S is a linear compact operator, (3.2) is severely ill-posed [2]. For this reason,

a kind of regularization has to be applied and only an approximation of the sought

function Ψ can be achieved [2, 35].

A convenient tool to solve (3.2) is provided by the Singular Value Decomposition

(SVD) [35]. For a linear compact operator S, the SVD is defined as the triple
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Figure 3.1: The problem geometry for the shape reconstruction method based on
Taylor series expansion. α : radius of the minimum circle, β : radius of
the circle where the scattered field is expanded to Taylor series.

{σr,ϕr,vr} such that:

SΨ =
∞

∑
r=1

σr〈Ψ,ϕr〉vr (3.4)

which provides the explicit inversion formula

Ψ =
∞

∑
r=1

1
σr
〈u∞,vr〉ϕr (3.5)

where 〈,〉 denotes the inner product in the proper space. Due to the properties of

the kernel of the operator S, the singular values σr accumulate to zero exponentially

fast as r → ∞ [35, 36]. In presence of uncertainties on data, this behavior leads to

unstable solutions, as contributions related to high order singular values are completely

overwhelmed by noise [35]. A possible way to overcome this instability is given by

the regularized solution provided by truncated SVD (TSVD) inversion formula:

Ψ(R) = ∑
σr≥σR

1
σr
〈u∞,vr〉ϕr (3.6)

in which the truncation index R acts as regularization parameter. In particular, accuracy

of the approximation introduced in (3.6) requires R to be large enough, whereas in
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order to restore stability and reduce the effects of noise R is needed to be small enough.

Consequently, selecting a proper regularization parameter is crucial on the accuracy of

the reconstructed scattered field. In order to tackle this tradeoff, one can exploit the

Morozov’s discrepancy principle [37]

||SΨ(R)− ũ∞||2 ≤ δ , (3.7)

which provides a practical strategy to select a proper regularization parameter when a

priori knowledge is available for expected noise power δ .

By applying TSVD inversion (3.6) to (3.3), one can reconstruct the single-layer density

Ψ(y) which yields to obtain the scattered field and consequently the total field u(ρ ,φ)

in the region ρ > α from the measured values of the far field pattern u∞(φ). However,

due to the above mentioned “smoothing” properties of the kernel of the operator S,

this reconstructed field would actually be a low-pass version of the actual one. In

particular, as the field in the vicinity to the boundary ∂D is expected to have a larger

high-frequency spectral content [38], the accuracy of this approximation worsens as

ρ → α . As it will be shown in the following, this circumstance has also to be taken

into account in the choice of R. Interestingly, as this undesired and unavoidable loss

of accuracy in the reconstruction of the close-proximity scattered field is less critical

for scatterers whose size is comparable or lower than the working wavelength [38], in

the following only this class of scatterers is considered. Numerical implementation of

TSVD inversion is later discussed in Appendix A.

3.2 Analytical Continuation of the Scattered Field through Taylor Series

Expansion

Let us now turn to the interior region f (φ) < ρ < α . Within the approximation

introduced by the TSVD inversion and the above recalled limitations concerning the

size of the body, the total field in this region can be obtained by using the field us(ρ,φ)

given by (3.1). In particular, u(ρ,φ) is expanded into a Taylor series in terms of ρ

around the circle ρ = β , where α ≤ β , see figure 3.1, as follows [39, 40]:

u(ρ,φ) = e−ikρ cos(φ−θ) +
M

∑
m=0

cm (ρ−β )m +RM(ρ ,φ), ρ ∈ ( f (φ),β ] (3.8)

with coefficients

cm =
1

m!
∂ mus(β ,φ)

∂ρm (3.9)
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and remainder term

RM(ρ,φ) =
1

M!

ρ∫

β

(ρ−ρ ′)M ∂ M+1us(ρ ′,φ)
∂ρ ′M+1 dρ ′. (3.10)

The m’th order derivatives of us(ρ,φ) at ρ = β appearing in the right hand side of

(3.9) can be obtained from (3.1) and one has

∂ mus(β ,φ)
∂ρm =

iα
4

2π∫

0

∂ m

∂ρm

[
H(1)

0 (k
√

ρ2 +α2−2ρα cos(φ − τ)
]∣∣∣∣

ρ=β
Ψ(τ)dτ (3.11)

Although u(ρ,φ) is a regular function of ρ , in general, the remainder term in (3.8)

does not necessarily tend to zero for all ρ ∈ ( f (φ),β ], that is, the corresponding Taylor

series does not always converge down to the surface ∂D. Nevertheless, by neglecting

the remainder, the Taylor formula is exploited as an approximation within the inverse

algorithm described later.

It should be noted that u(ρ,φ) could also be expanded into a Taylor series around

the minimum circle ρ = α . However, in such a case, the integral appearing in the

right hand side of (3.11) becomes singular due to logarithmic singularity of the Hankel

function (2.11) as its argument goes to zero. Thus it becomes quite difficult to evaluate,

especially for higher order derivatives of u(α,φ). Hence, to avoid this difficulty, the

scattered field is expanded to the Taylor series around the circle ρ = β > α .

3.3 Reconstruction Algorithm for Singleview Case

Since the total field u(ρ,φ) in the whole region ρ > f (φ) can be estimated through

(3.1) and (3.8), the reconstruction of the boundary ∂D can now be achieved by

searching those points where the total field vanishes. Substituting (3.8) in (2.5) and

neglecting the remainder term (3.10) yields

FM( f ) = 0 (3.12)

where FM is the nonlinear operator given by

FM( f ) = e−ik f cos(φ−θ) +
M

∑
m=0

cm ( f −β )m . (3.13)

Note that, for given data, the coefficients cm in (3.13) are all known through the

relation (3.11). Thus the reconstruction problem is reduced to the solution of nonlinear

equation (3.12) for the unknown function f .
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The accuracy of the Taylor series in (3.8) (neglecting the remainder for ρ = f (φ)) is

related to |ρ−β |
λ , which is the distance between the surface ∂D and the circle ρ = β for a

certain φ . If the circle ρ = β is close to the surface (with respect to the wavelength) and

the surface function f (φ) is a slightly varying one, the distance | f (φ)−β | becomes

small. Therefore, provided that the above condition (which entails some limitations

on the angular variability of the unknown profiles) is fulfilled, the number M which is

the truncation number of the series (3.8) can be small. To select the appropriate M, a

threshold value δ is chosen and the series (3.8) is truncated at the smallest M satisfying

∣∣∣cM (min[ f (φ)]−β )M
∣∣∣ < δ . (3.14)

As this expression requires a knowledge of f (φ), which is the unknown of the problem,

from a practical point of view an estimate of M can be achieved by substituting

min[ f (φ)] = α/2 into (3.14).

The nonlinear equation (4.32) is solved iteratively via Newton method [40]. Hence, for

an initial guess f0, the nonlinear equation (3.12) is replaced by the linearized equation

FM( f0)+F ′M( f0)∆ f = 0 (3.15)

where ∆ f = f− f0, which needs to be solved for ∆ f in order to improve an approximate

boundary ∂D given by the function f0 into a new approximation with surface function

f0 +∆ f . In (3.15) F ′M denotes the Fréchet derivative of the operator FM with respect to

f [2]. It can be shown that F ′M reduces to the ordinary derivative of FM with respect to

f .

The Newton method consists in iterating this procedure, i.e.: solving

F ′M( fi)∆ fi+1 =−FM( fi), i = 0,1,2, ... (3.16)

for ∆ fi+1 to obtain a sequence of approximations through fi+1 = fi + ∆ fi+1. As this

solution will be sensitive to errors in the derivative of FM in the vicinity of zeros, a finite

dimensional approximation of ∆ f is looked for in order to obtain a stable procedure.

In particular, the approximated solution is expressed in terms of a linear combination

of some basis functions ϑp(φ), p = 1, . . . ,P, as

∆ f (φ) =
P

∑
p=1

apϑp(φ). (3.17)
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Then (3.15) is satisfied in the least squares sense, that is, the coefficients a1, . . . ,aP in

(3.17) are determined so that for a set of grid points φ 1, . . . ,φ J the sum of squares

J

∑
j=1

∣∣∣∣∣F
′
M( f (φ j))

P

∑
p=1

apϑp(φ j)+FM( f (φ j))

∣∣∣∣∣
2

(3.18)

is minimized.

The number of basis functions P in (3.17) can be considered as a further regularization

parameter. As a matter of fact, choosing P too large may lead to instabilities due to

the ill-posedness of the underlying inverse problem, while choosing P too small would

result in poor approximation quality. On the other hand, a reduction of the number P of

unknown coefficients has a beneficial effect in reducing occurrence of false solutions,

which may arise due to the nonlinearity of the problem. Hence, one has to compromise

between stability and accuracy and in this sense P serves as a regularization parameter.

3.4 Reconstruction Algorithm for Multiview Case

The reconstruction algorithm explained in section 3.3 is designed to exploit singleview

data corresponding to a single illumination at a fixed frequency but it cannot utilize

multiview data when more than one illumination is employed. In such a case, one may

attempt to solve the inverse scattering problem for each illumination, then averaging

the reconstructions to achieve a final solution. Although it may provide a reasonable

reconstruction depending on the noise level, the improvement of the reconstruction

quality is limited [41]. Instead here a global solution which can utilize all the available

data simultaneously is searched for. This is quite important since the unknown

boundary ∂D is actually independent from the source excitation. Moreover as it

will be demonstrated later in chapter 5, by exploiting multiview data, it becomes

possible to reconstruct larger targets in terms of wavelength, which are not possible

with singleview data.

Let un(x) denote the total field corresponding to n’th illumination with incidence angle

θn. For each illumination, the procedure explained in section 3.3 provides a complete

characterization of the field in whole region exterior to the target. Therefore, since

the total field un(ρ,φ) for any ρ > f (φ) can be estimated through (3.1) and (3.8), the

reconstruction of the boundary ∂D can be achieved by searching those points where,

according to the boundary condition, this latter field vanishes.
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As given in the previous section, for a single illumination θn, the above can be

formulated as the solution of the nonlinear equation which arises from the Taylor series

expansion (3.8) by neglecting the remainder term:

Fn( f ) = e−ik f cos(φ−θn) +
M

∑
m=0

c(n)
m ( f −β )m . (3.19)

where the truncation index M can be small provided the unknown shape is sufficiently

smooth [13]. As the operator in (3.19) changes with the incidence direction, for each

illumination, a different solution for the surface function f , say fn, is solved. On the

other hand, the function f is actually independent of the illumination direction, so that

one can simultaneously exploit all the multiview data by simply recasting the problem

as the system of nonlinear equations:

F1( f ) = 0
.
.

FN( f ) = 0

(3.20)

for the unknown surface function f .

The nonlinear system (3.19) is solved iteratively via Gauss-Newton algorithm [42]. In

particular, given an initial guess f0, at each iteration one has to solve the system arising

from linearization of (3.19) in the Newton sense [13]:



F ′1( fi)
.
.
.

F ′N( fi)




∆ fi+1 =−




F1( fi)
.
.
.

FN( fi)




(3.21)

where fi is the estimated shape at the i-th iteration and ∆ fi+1 provides the updated

shape fi+1 = fi +∆ fi+1. In (3.21) the term F ′n denotes the Fréchet derivative of Fn with

respect to fi, which reduces to the ordinary derivatives since in the present cases the

operators are the polynomials of fi.

In a similar manner to the reconstruction algorithm in singleview case, the solution of

the linear system (3.21) is sensitive to errors in the derivative of F ′N in the vicinity of

zeros. Thus a finite dimensional solution is sought by expanding ∆ f to a series as in

(3.17). Then, by substituting (3.17) into (3.21) and discretizing φ into Q collocation

points φ1, . . .φQ, the system is recasted 3.21 in a matrix form as:

JF( fi)xi+1 =−V( fi), (3.22)
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which leads to the least squares solution

xi+1 =− [J∗F( fi)JF( fi)]
−1 J∗F( fi)V( fi). (3.23)

In (3.22) and (3.23), the column vector xi+1 contains the P coefficients of the expansion

(3.17), the (N×Q)×P matrix JF denotes the projection of the matrix F ′ over the basis

functions, the (N×Q)×1 column vector V corresponds to the value of F at collocation

points and J∗F is the adjoint of the matrix JF . For a fixed threshold δ , the iterative

process is stopped when the condition ||xi+1− xi||< δ is satisfied.
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4. SHAPE RECONSTRUCTION BY INHOMOGENEOUS SURFACE

IMPEDANCE MODELING

The impedance boundary conditions (IBC) provide a relation between the electric

and the magnetic field vectors on a given structure in terms of surface impedances

[43, 44]. In general, the surface impedance is a tensor which can be reduced to

an inhomogeneous scalar under certain assumptions. In scattering theory, IBCs are

essential tools to model electromagnetic characteristics of complex materials in order

to simplify the formulations and reduce computational costs [45,46]. To determine the

surface impedance for a given scatterer, the general approach consist of first solving

direct electromagnetic scattering problem and then obtaining the surface impedance

from the electric and the magnetic field vectors on a given surface. To this aim, various

analytical and approximate methods for canonical geometries have been established in

the open literature [43, 44]. On the other hand, the surface impedance of a scatterer

can also be obtained by using the scattered field collected through measurements on a

certain domain. In such a case, it is considered as an inverse scattering problem whose

aim is to get the electric and the magnetic fields on the boundary of the object in terms

of the measured data [47–49].

Within this framework, here the aim is to develop a new shape reconstruction method

based on creating an equivalent scattering problem in terms of standard impedance

boundary condition (SIBC). In particular, the unknown perfect conducting target is

modeled as a circular impedance cylinder, having inhomogeneous surface impedance.

As a matter of fact, as long as the impedance cylinder is enclosed inside the unknown

target, by virtue of equivalence, the two scatterers generate same field distribution in

the whole space outside of the unknown target. In order to determine the equivalent

surface impedance, first the measured far-field data which are corrupted with noise,

are backpropagated to the surface of the equivalent impedance cylinder through the

regularized inversion of the single-layer potential [48]. Then, the surface impedance is

recovered by exploiting the SIBC imposed over the impedance cylinder. Since the
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reconstructed surface impedance enables to represent scattered field outside of the

unknown target, the retrieval of the unknown shape turns out to be the solution of

a nonlinear optimization problem, which is solved iteratively via the Gauss-Newton

algorithm [14].

4.1 Equivalent Representation of the Unknown Target in Terms of

Inhomogeneous Surface Impedance

This section is devoted to discussion of creating an equivalent direct scattering problem

in terms of inhomogeneous surface impedance modeling. As illustrated in figure 4.1

the problem configuration is same with the previous configuration explained in section

2.1.

Let u∞
n (x̂) denote the far field pattern of the scattering wave from the PEC target D,

corresponding to n’th illumination (n = 1,2, ...,N) with an incidence angle θn. Here

the main focus is to determine the normalized surface impedance ηn(x) from u∞
n (x̂) on

an impedance cylinder with radius |x|= γ which generates the same field distribution

in the region outside of ∂D. To this aim, the impedance reconstruction algorithm [48],

which is briefly summarized below, is exploited.

It is assumed that on the surface of the equivalent object the standard impedance

boundary condition [50],

−n̂× (n̂×E) = Z(x) n̂×H, (4.1)

is satisfied, where E and H are the total electric and magnetic field vectors and n̂ is the

outward unit normal vector. In (4.1) Z(x) is the surface impedance to be determined

which is assumed to be a function of the location. It can be proven that (refer to

appendix B) in the problem configuration (4.1) is reduced to a scalar relationship

∂u
∂n

(x)+
ik

η(x)
u(x) = 0, (4.2)

where η(x) is the normalized surface impedance defined by

η(x) =
Z(x)
Z0

, (4.3)

and Z0 =
√

µ
ε ′ denotes the intrinsic impedance of the background medium with ε ′

being the complex dielectric permittivity. Since both problems have the same field
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Figure 4.1: The problem geometry for the shape reconstruction method based on
equivalent surface impedance modeling. γ : radius of the equivalent
impedance circle.

distributions outside of D, the unknown surface impedance η(x) can be determined

from the measured far field of the actual scatterer.

It proves convenient to divide the problem into two parts. In the first part, a proper

representation of the scattered field in the region external to the auxiliary object

is determined. Later, the equivalent impedance which is obtained through such

representation is exploited to retrieve the unknown surface. It should be noted that,

in the first part the scattered waves are handled separately for each incidence, whereas

in the second one they are exploited simultaneously.

As far as the first step is concerned, the single layer-potential representation provides

a convenient way to model the scattered field from PEC target. In a similar way to

the shape reconstruction method explained in chapter 3, a regularized single-layer

potential inversion is exploited to determine an unknown surface potential density

Ψn(x) on the impedance circle. When the potential density on |x|= γ is reconstructed,

the total field and the normal derivative of the total field can be evaluated by using the
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jump conditions for single-layer potential (2.14) and (2.15).

un(x) = ui
n(x)+

∫

∂Γ

G(x,y)Ψn(y)ds(y), x ∈ ∂Γ (4.4)

∂un

∂n
(x) =

∂ui
n

∂n
(x)+

∫

∂Γ

∂G(x,y)
∂n(x)

Ψn(y)ds(y)− 1
2

Ψn(x), x ∈ ∂Γ (4.5)

In principle, in view of (4.2) the surface impedance can be obtained from the values of

the total field un and its normal derivative ∂un/∂n on |x|= γ via

ηn(x) =−ik
un(x)

∂un

∂n
(x)

(4.6)

Possible zeros of the denominator on the right hand side of (4.6) are eliminated in the

least squares sense and here and in the sequel, it is assumed that ηn(x) 6= 0 for all

|x|= γ [48, 51].

For the numerical evaluation of these singular integrals in (4.4) and (4.5), first they are

parameterized as:

un(φ) = e−ikγ cos(φ−θn) +
iγ
4

2π∫

0

H(1)
0

(
2kγ

∣∣∣∣sin
φ − τ

2

∣∣∣∣
)

Ψ(τ)dτ, (4.7)

∂un

∂ρ
(φ) =− ik cos(φ −θn)e−ikγ cos(φ−θn)

− ikγ
2

2π∫

0

∣∣∣∣sin
φ − τ

2

∣∣∣∣H(1)
1

(
2kγ

∣∣∣∣sin
φ − τ

2

∣∣∣∣
)

Ψ(τ)dτ− 1
2

Ψ(φ)
(4.8)

then Nyström method which is later discussed in the next section is applied.

4.2 Reconstruction Algorithm

Since the surface impedance is determined through (4.6), the direct scattering problem

related to the equivalent configuration in figure 4.1 can be solved in order to get the

field in the exterior region |x| > γ . The field calculated in the region between the

impedance circle and the boundary of the unknown obstacle, is not physical, but it is

identical to the one created by the original object in the region outside of the unknown

object R2 \D.

The direct scattering problem related to the equivalent problem can be solved by

applying Green’s representation theorem [2]. The scattered field us has the following
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representation in region |x|> γ

us(x) =
∫

∂Γ

{
us(y)

∂G(x,y)
∂n(y)

+
∂us

∂n
(y)G(x,y)

}
us(y)ds(y), x ∈ R2 \Γ. (4.9)

Similarly, the incident field ui is represented with [2, 48]

0 =
∫

∂Γ

{
ui(y)

∂G(x,y)
∂n(y)

+
∂ui

∂n
(y)G(x,y)

}
ui(y)ds(y), x ∈ R2 \Γ. (4.10)

By combining (4.9) and (4.10) together with (4.2), the following representation for the

scattered field in term of single- and double-layer potentials is obtained

us(x) =
∫

∂Γ

{
∂G(x,y)

∂n(y)
+

ik
η(y)

G(x,y)
}

u(y)ds(y), x ∈ R2 \Γ. (4.11)

Extending the representation to the boundary ∂Γ by using the jump conditions given

in (2.14) and (2.16) yields to the following singular integral equation.

u(x)−2
∫

∂Γ

{
∂G(x,y)

∂n(y)
+

ik
η(y)

G(x,y)
}

u(y)ds(y) = 2ui(x), x ∈ ∂Γ (4.12)

For the numerical treatment of this singular integral equation (4.12) and the integrals

appearing in (4.4) and (4.5), Nyström method which takes proper care of the

logarithmic singularity of the fundamental solution is used [52,53]. In particular, with

Nyström method a singular integral equation is divided into singular and non-singular

parts. While the non-singular part is simply calculated with trapezoidal rule, the

singular part is approximated with a special quadrature rule. Since the singular

integrals in (4.12) are all defined on the boundary ∂Γ which is a circle with radius

γ , the required calculations are greatly simplified. Hence here the Nyström method is

summarized in a form as it is applied to the integral equations in (4.12). Parameterizing

x as

x(φ) = (γ cosφ ,γ sinφ), φ ∈ [0,2π) (4.13)

yields the following parameterized integral equation for (4.12)

v(φ)−
2π∫

0

K(φ ,τ)v(τ)dτ = g(φ), (4.14)

where v(φ) = u(x(φ)) and g(φ) =−2ui (x(φ)). The kernel of (4.14) can be written as

K(φ ,τ) = L(φ ,τ)+
i

η(τ)
M(φ ,τ) (4.15)
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where L(φ ,τ) and M(φ ,τ) is given by

L(φ ,τ) =
ikγ
2

∣∣∣∣sin
φ − τ

2

∣∣∣∣H(1)
1

(
2kγ

∣∣∣∣sin
φ − τ

2

∣∣∣∣
)

(4.16)

M(φ ,τ) =
ikγ
2

H(1)
0

(
2kγ

∣∣∣∣sin
φ − τ

2

∣∣∣∣
)

(4.17)

Both L(φ ,τ) and M(φ ,τ) can be separated into singular and non-singular parts as such

L(φ ,τ) = L1(φ ,τ) ln
(

4sin2 φ − τ
2

)
+L2(φ ,τ) (4.18)

M(φ ,τ) = M1(φ ,τ) ln
(

4sin2 φ − τ
2

)
+M2(φ ,τ) (4.19)

where

L1(φ ,τ) =− k
2π

∣∣∣∣sin
φ − τ

2

∣∣∣∣J1

(
2kγ

∣∣∣∣sin
φ − τ

2

∣∣∣∣
)

(4.20)

L2(φ ,τ) =L(φ ,τ)−L1(φ ,τ) ln
(

4sin2 φ − τ
2

)
(4.21)

M1(φ ,τ) =− γ
2π

J0

(
2kγ

∣∣∣∣sin
φ − τ

2

∣∣∣∣
)

(4.22)

M2(φ ,τ) =M(φ ,τ)−M1(φ ,τ) ln
(

4sin2 φ − τ
2

)
(4.23)

The diagonal terms further simplifies to:

L2(φ ,φ) = L(t, t) =
1

2π
(4.24)

M2(φ ,φ) =
γ
π

{
iπ
2
−C− ln

(
kα
2

)}
(4.25)

As seen in above equations, the logarithmic singularity of the fundamental solution is

separated as in the form of ln
(

4sin2 φ−τ
2

)
. Later integrals regarding to this singular

part is approximated with the quadrature rule for an equidistant set of nodes φn =
π
N n, n = 0, ...,2N−1

2π∫

0

ln
(

4sin2 φ − τ
2

)
f (τ)dτ ≈

2N−1

∑
n=0

R(N)
n (φ) f (φn), 0≤ φ ≤ 2π (4.26)

with the quadrature weights given as [2]:

R(N)
n (φ) =−2π

N

N−1

∑
m=1

1
m

cos(m(φ −φn))− π
N2 cos(N(φ −φn)), n = 0, ...,2N−1

(4.27)
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and the non-singular parts are calculated through trapezoidal rule:

2π∫

0

f (τ)dτ =
π
N

2N−1

∑
n=0

f (φn) (4.28)

Consequently, the integral equation (4.14) is replaced with the approximating equation

v(N)(φ)−
2N−1

∑
n=0

{
R(N)

n (φ)K1(φ ,φn)+
π
N

K2(φ ,φn)
}

v(N)(φn) = g(t) (4.29)

By further discretizing v(N)
m = v(N)(φm), m = 0,1, ...,2N− 1, the solution of (4.29) is

reduced to finite dimensional linear system of equations

v(N)
m −

2N−1

∑
n=0

{
R(N)
|m−n|K1(φm,φn)+

π
N

K2(φm,φn)
}

v(N)
n = g(φm), m = 0,1, ...,2N−1

(4.30)

where

R(N)
x =−2π

N

N−1

∑
n=1

1
n

cos(
nxπ
N

)− (−1)xπ
N2 , x = 0,1, ...,2N−1 (4.31)

Once the resulting system of linear equation is solved, the scattered field us
n for each

illumination is calculated through (4.11). With the knowledge of the total field, the

unknown shape ∂D can be reconstructed by searching the points where the total field

for each experiment vanishes according to the boundary condition (2.5), which yields:

F1( f ) = 0
...

FN( f ) = 0
(4.32)

where Fn( f ) are the nonlinear operator corresponding to n’th measurement and is

explicitly given by

Fn( f (φ)) = e−ik f (φ)cos(φ−θn)

+
ikγ
4

2π∫

0

{
f (φ)− γ cos(φ − τ)

|R| H(1)
1 (k|R|)+

i
η(τ)

H(1)
0 (k|R|)

}
un(τ)dτ

(4.33)

where

R =
√

f 2(φ)+ γ2−2 f (φ)γ cos(φ − τ). (4.34)

Thus the shape reconstruction problem is reduced to the solution of a set of nonlinear

equations (4.32) for the unknown function f (φ). To solve (4.32), the Gauss-Newton
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algorithm which is previously explained in section 3.4 is exploited. Briefly, (4.32) is

first linearized in Newton sense as in (3.15) where the Fréchet derivative F ′ is explicitly

given by:

F ′n( f (φ)) =− ik cos(φ −θn)e−ik f (φ)cos(φ−θn)+

ikγ
4

2π∫

0

(
A0H(1)

0 (kR)+A1H(1)
1 (kR)

)
Ψ(τ)dτ

(4.35)

where

A0 =
k(−ρ + γ cos(τ−φ))(γ−ρ cos(τ−φ))

R2 (4.36)

and

A1 = i

(−kR2(ρ− γ cos(τ−φ))+ i
(−2γρ +

(
γ2 +ρ2)cos(τ−φ)

)
η(τ)

)

R3η(τ)
(4.37)

The difference ∆ f which updates the reconstructed shape at each iteration is expanded

into a series (3.17) to search for a finite dimensional solution in order to reduce

instabilities. Thus the resulting system of linear equations are given as



F ′1ϑ1(φ) F ′1ϑ2(φ) · · · F ′1ϑP(φ)
F ′2ϑ1(φ) F ′2ϑ2(φ) · · · F ′2ϑP(φ)

...
...

...
F ′Nϑ1(φ) F ′Nϑ2(φ) · · · F ′NϑP(φ)







a1
a2
...

aP


 =−




F1
F2
...

FN


 (4.38)

which can be written in a compact form as follows:

JF( fi)xi+1 =−V( fi), (4.39)

Later the least squares solution is achieved by iterating

xi+1 =− [J∗F( fi)JF( fi)]
−1 J∗F( fi)V( fi). (4.40)

until the inequality ||xi+1− xi||< δ is satisfied for a predefined threshold δ .
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5. NUMERICAL RESULTS

Two analytical continuation based shape reconstruction methods for inaccessible,

perfect electric conductors are presented in chapter 3 and chapter 4. Here, numerical

validations of the presented methods are addressed. To this aim, several numerical

simulations are performed in order to reveal both capabilities and the limitations of

the methods. Moreover, by using the same problem configurations, methods are

compared by means of the accuracy and the numerical efficiency. The quality of the

reconstructions is quantified with the reconstruction error err defined as:

err =
|| f − f̃ ||
|| f || =

√
∑n | f (φn)− f̃ (φn)|2

∑n | f (φn)|2 (5.1)

where f̃ denotes the estimated shape.

As noted before, only starlike, smooth boundaries with parametric representations

∂D := {(x1(φ),x2(φ)) : φ ∈ [0,2π)} (5.2)

are considered for the numerical simulations. The far field data is synthetically

generated by solving the associated direct scattering problem through a mixed

representation of single- and double-layer potentials [33]. By using the jump

conditions on the boundary, the direct problem is transformed into the solution of a

singular integral equation which is again handled with the Nyström method outlined

in section 4.2. In all simulations, the far field pattern is sampled at total T = 60

equiangular points and a random noise term is added to the sampled far field data

as:

ũ∞(x̂) = u∞(x̂)+ξ |u∞(x̂)|ei2πru, (5.3)

where ξ > 0 is noise level and ru is uniformly distributed random variable between

[0,1), to assure the stability of the reconstructions. In this case, the corresponding

signal-to-noise ration is SNR =−20log10 ξ .

In the application of the least square solution (3.17), the basis functions are chosen as

ϑp(φ) = e−ipφ , p = 0,±1, ...±P, (5.4)

29



which in turn, means the expansion of the unknown function to a Fourier series. As

the Fourier series is truncated for numerical evaluation, the estimated shape becomes

smoothed replica of the exact shape.

5.1 Numerical Result for the Method Based on Analytical Continuation of the

Scattered Field Through Taylor Series Expansion

Before advancing into numerical result, here the details of numerical implementation

will be discussed. The method is quite suitable for vectorization, thus it is possible to

write quite fast programs implementing the method. In fact, each of the simulations

performed in rest of this section took less than 5 seconds on a standard PC. One major

problem in numerical implementation is calculation of the derivatives in (3.11). It is

not possible to simplify them in a straightforward manner, thus symbolic computation

techniques are used for numerical evaluation. The complexity of the derivatives

increases nonlinearly as the order M increases. Since it is not proven that the Taylor

series expansion of the scattered field (3.8) is always convergent to the surface,

for practical purposes, the order M of the derivatives is limited to 5 or less in the

simulations. It should be noted that one can attempt to take advantage of the addition

theorem

H(1)
0

(
k
√

ρ2 +α2−2αρ cos(φ − τ)
)

=
∞

∑
n=−∞

Jn(kρ)H(1)
n (kα)ein(φ−τ), ρ < α

(5.5)

by truncating the series for the numerical evaluation. In this case it is possible to take

the derivatives in a simple manner [34]

∂ MJn(kρ)
∂ρM = (

k
2
)M

M

∑
m=0

(−1)m
(

M
m

)
Jn−M−2m(kρ). (5.6)

Although this approach approximates lower order terms with a reasonable accuracy, it

does not converge sufficiently fast to higher order derivatives. Thus it is not suitable

for numerical evaluation of the derivatives in (3.11).

As a first example, an object whose boundary ∂D1 is given by the normalized

parametric equation

x1/λ = 0.2(cosφ +0.2cos3φ)

x2/λ = 0.2(sinφ +0.2cos3φ),
(5.7)
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is considered. The object is illuminated by a time harmonic, plane wave with incidence

angle θ1 = 0 at f = 300MHz. A random noise with ξ = 0.01 is added to the far field

pattern, thus SNR = 40dB. In order to demonstrate how the proposed approach works,

in this example it is assumed that the radius of the minimum circle α = 0.25λ is known

a priori.

The first part of the method is concerned with the reconstruction of the scattered field

in the vicinity of the object from the knowledge of the noisy far field pattern. To

apply the TSVD inversion method described in section 3.2, it is needed to choose a

proper regularization parameter R. Before advancing into details of the method, here

the selection of regularization parameter is discussed. In figure 5.1 general behavior

of singular values is shown. As it can be observed, the singular values of the far field

equation (3.3) are grouped as pairs and rapidly decays. As a result of the ill-posedness

of the underlying problem, the discretized version of (3.2) becomes ill-conditioned.

For this example the condition number is κ = 5.9244× 1016 and it is not possible to

calculate the correct inversion of the system of linear equations without improving its

condition number. By truncating the singular values and their corresponding singular
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10

−20

10
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Figure 5.1: Variation of the normalized singular values in the TSVD inversion of the
far field equation
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vectors, the higher order singular values are discarded. As a result, the regularized

matrix shares the same characteristics such as having the same matrix norm but it is

better conditioned so that it is possible to numerically evaluate the inversion. Moreover

by discarding the higher order singular values, the noise on the data is filtered to some

extent since the higher order singular values are more likely to be corrupted.

To select a proper regularization parameter R, as described in section 3.2, the

Morozov’s discrepancy principle is utilized [37]. Figure 5.2 depicts how the optimal

parameter is selected. By plotting ||SΨ(r)−u∞|| in logarithmic scale, the index of the

first singular value of which the values is smaller than the predetermined threshold

is selected. For this example R is selected as 9. The major disadvantage of this

approach is that in order to determine the threshold, an estimate of the noise power is

needed, but such an estimate may not be available in practical cases. Another possible

method which does not require the estimate of noise power is so called “L-curve”

approach [54]. By plotting ||SΨ(r)−u∞|| vs ||Ψ(r)|| in a logarithmic scale, generally a

L-shaped plot appears. The regularization parameter is the index of the singular value

which is on the corner of the L-curve. In figure 5.3, the plot of L-curve is shown. Here

again the truncation index is chosen as R = 9.

When the regularization parameter is fixed, by inverting (3.2) the single layer potential

density is solved. In figure 5.4 the variation of the amplitude and the phase of the

reconstructed single-layer potential density Ψ(R)(τ) are shown. As a result of the

symmetry in the problem configuration, Ψ(R)(τ) is symmetrical as well. To confirm

the effectiveness of the single-layer potential inversion, the scattered field on the circle

β = 0.3λ is calculated by the use of reconstructed single-layer potential density.

Figure 5.5 shows the comparisons between the amplitudes and the phases of the exact

and the reconstructed scattered field values, respectively. As it can be observed, the

regularized analytical continuation through single-layer potential approach yields a

very accurate result for the phase, while the reconstructed amplitude is slightly affected

by the approximation introduced by the TSVD. In any case, it appears that the method

provides a good approximation of the scattered field, even in presence of noise on data.

This is a very important point, as the reconstruction algorithm given in section 3.3

exploits the knowledge of the scattered field and its derivatives on the circle ρ = β .

As these required values are calculated through the analytical continuation of the
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Figure 5.4: The amplitude and the phase of the reconstructed single-layer potential
density

measured data to the minimum circle, the overall performance of the method is closely

related to the accuracy of the reconstructed field.

In the second step of the method, the estimated field is used to build the nonlinear

functional (3.13) and the Newton minimization is performed. Figure 5.6 illustrates

the exact and reconstructed shapes. As it can be observed, it yields to be a very

accurate reconstruction. Here, the number of terms in the Taylor expansion is M = 3,

the minimum circle is used as the starting guess and the number of basis functions is

P = 9.

The shape of the target in the first example is simple and only single illumination is

enough to achieve satisfactory reconstruction. In order to reveal the behavior of the

method in the case of complex shapes, an object with parametric boundary ∂D2 given
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Figure 5.5: Comparison of the reconstructed and the actual scattered fields on a circle
with radius ρ = β = 0.3λ .

by

x1/λ = 0.48cosφ +0.20cos2φ −0.12

x2/λ = 0.48sinφ , φ ∈ [0,2π].
(5.8)

which has quite apparent convex and concave regions is considered. The object is

illuminated with a set of plane waves with incident angles θ1 = 0,θ2 = π
2 ,θ3 = π and

θ4 = 3π
2 at f = 600MHz. A random term with ξ = 0.0316 (SNR = 30dB) is added

to the simulated data. Here it is assumed that a good estimate about the size of the

target is available so the radius of the minimum circle is selected as α = 0.64λ while

β = 0.80λ . Other simulation parameters are M = 4 and P = 9. The reconstructed

shapes are shown in figure 5.7(a), figure 5.7(b) and figure 5.7(c) for the incidence

directions θ1 = 0, θ2 = π
2 and θ3 = π , respectively. It is observed that the method

provides quite accurate reconstructions on the illuminated side but the quality of the
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Figure 5.6: Comparison of exact and reconstructed shapes of the object given by the
boundary ∂D1 with a single illumination.

reconstructions degrades gradually on the unilluminated side depending on the noise

level and the complexity of the unknown shape. In order to demonstrate the effects of

the multiview configuration on the quality of reconstructions, two illuminations in the

opposite directions are considered and successful reconstructions are obtained for the

illuminations with θ1 = 0 and θ3 = π in figure 5.7(d), and for the illuminations with

θ2 = π
2 and θ4 = 3π

2 in figure 5.7(e). The last simulation for this example is performed

for the case the object is illuminated in four directions and the result is shown in figure

5.7(f). As the reconstruction in figure 5.7(f) is not superior as compared to simulations

with two opposite incidence directions, it is concluded that there is an upper limit on

how much the reconstruction quality can be improved by introducing multiview data.

The third example is dedicated to show how the selection of minimum circle affects

the quality of the reconstructions. Since the method uses Taylor series expansion
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Figure 5.7: Comparison of the exact and the reconstructed shapes of the object with
the boundary ∂D2 for different incidence directions θ1 = 0,θ2 = π

2 ,θ3 = π
and θ4 = 3π

2 . (a) θ1, (b) θ2, (c) θ3, (d) θ1 and θ3 (e) θ2 and θ4 (f) θ1,θ2,θ3
and θ4
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Figure 5.8: Comparison of the exact and reconstructed shapes of the object with the
boundary ∂D3 for different estimation of the radius of the minimum circle.
(a) α = 0.48λ (exact) (b) α = 0.6λ (c) α = 0.672λ (d) α = 0.24λ

of the reconstructed field, the distance | f (φ)−β |
λ should be small so proper selection

of the radius of minimum circle α is important for computational purposes. In

the open literature, there are proposed method for estimating the convex hull of the

target [55, 56]. The method presented in [56] estimates the radius of minimum circle

as ∆W = 2kα where the spatial bandwidth ∆W is determined through the Fourier

analysis of the scattered field. However it is reported that the approach works better for

electrically large objects [56] while the estimate is generally larger than actual radius

for electrically small objects [13]. Instead of attempting to estimate the minimum

circle, here the main focus is to determine the limitations of the method depending

on the radius of minimum circle. To this aim, a rounded square whose parametric
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boundary ∂D3 is given by

x1/λ = 0.24(cos3 φ + cosφ)

x2/λ = 0.24(sin3 φ + sinφ)
(5.9)

is considered. The object is illuminated with four different incident angles θ1 =

0,θ2 = π
2 ,θ3 = π and θ4 = 3π

2 at f = 1200MHz. Other simulation parameters are

P = 5, f0 = α,M = 5 and ξ = 0.0316 (SNR = 30dB). The reconstructed shape with

a correct minimum circle α = 0.48λ is shown in figure 5.8(a). Other parameters are

β = 0.72λ ,R1 = 11,R2 = 10,R3 = 11,R4 = 10. Although the method is unable to

catch the corners exactly, the reconstruction is very successful. The reconstruction

shown in figure 5.8(b) is produced for the parameters α = 0.6λ ,β = 0.8λ ,R1 =

12,R2 = 13,R3 = 12,R4 = 13. In this case, while the estimated minimum circle is

25% larger than previous simulation, the reconstruction is still very accurate. The

same simulation was repeated for larger estimates of the minimum circle and it

was observed that, for this example, the reconstructions become unreliable when

the estimates are around 50% or larger than the exact radius. In figure 5.8(c) the

simulation with a 40% larger minimum circle is shown. The simulation parameters

are α = 0.672λ ,β = 0.84λ ,R1,2,3,4 = 11 and the reconstruction error is comparable

to previous results. The last simulation for this example is performed when the radius

is underestimated. The reconstruction in figure 5.8(d) is produced for the parameters

α = 0.24λ ,β = 0.44λ ,R1 = 11,R2 = 10,R3 = 11,R4 = 10. From these figures, it

is concluded that the method can tolerate the variation of the radius of the minimum

circle.

The sizes of the targets in previous examples are all smaller or comparable to the

wavelength. Hence, as a last example, a larger object in terms of the wavelength whose

boundary is given with the parametric equation

x1/λ = (1.74+0.3cos2φ)cosφ

x2/λ = (1.74+0.3sin6φ)sinφ
(5.10)

is considered. The object is illuminated at f = 1800MHz with six different incidence

angles θ1 = 0, θ2 = π
3 , θ3 = 2π

3 , θ4 = π , θ5 = 4π
3 and θ6 = 5π

3 . The simulated data is

corrupted with a higher noise level ξ = 0.316 (SNR = 10dB) as compared to previous

examples. The simulation parameters are α = 2.1λ , β = 2.22λ , R1,2..,6 = 19 and

P = 11. The reconstructed shape is shown in figure 5.9. For this simulation selecting
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Figure 5.9: Comparison of the exact and reconstructed shapes of the object given by
the boundary ∂D4.

initial guess equal to the estimated minimum circle does not work, so the initial guess

is chosen as f0 = 1.74λ . Here it should be noted that since the method is quite fast, it

is possible to repeat the simulation with different initial guesses to check the validity of

the reconstruction. With this example, it is concluded that the usage of multiview data

enables to reconstruct larger shapes in terms of wavelength. Besides, angle diversity

enhances the robustness against noise.

As a final remark, let us note that, in order to avoid the solution of the nonlinear

equation (3.20), one could consider to “directly” obtain the reconstruction of the

unknown shape by simply plotting the total field as given by (3.8) inside the minimum

circle and observing points where this field vanishes. Unfortunately, such a simple

40



strategy is not effective as it is not able to provide any reconstruction of the boundary

of the object in the shadow region.

5.2 Numerical Results for the Method Based on Inhomogeneous Surface

Impedance Modeling

Here, the simulations performed in the previous section are repeated with same noisy

far field pattern for the method based on inhomogeneous surface impedance modeling,

explained in chapter 4. This enables direct comparison of the methods as well as

numerical validation of the impedance modeling based method.

Analogously, the first example is devoted to demonstrate how the surface impedance

modeling based method works. Here the boundary defined in (5.7) is considered with

the same source configuration. The real and the imaginary parts of the reconstructed

0 30 60 90 120 150 180 210 240 270 300 330 360
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

φ (degrees)

R
e 

η(
φ)

0 30 60 90 120 150 180 210 240 270 300 330 360
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

φ (degrees)

Im
 η

(φ
)

Figure 5.10: Real and imaginary parts of the reconstructed, normalized surface
impedance
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surface impedance η(φ) on a circle with radius γ = 0.15λ are shown in figure

5.10. Due to the symmetry in the problem geometry in the illumination direction,

a symmetry in the reconstructed η(φ) is apparent as well. Later in figure 5.11 the

amplitude and the phase of the reconstructed scattered field on a circle with radius

0.3λ is shown. This result is quite similar to what is achieved with the first method in

figure 5.5.

To validate the reasoning of modeling the unknown target with an inhomogeneous

surface impedance, the 2D spatial variations of the total field is plotted in figure 5.12.

As it is observed the variation of the total field which is calculated by using the

reconstructed surface impedance discloses a rough sketch of the unknown target but

the sketch becomes indistinguishable at the unilluminated side. However the sketch
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Figure 5.11: Comparison between the exact scattered field and the reconstructed
scattered field calculated through the equivalent surface impedance η(φ)
on a circle with radius ρ = 0.3λ .
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Figure 5.12: 2D variation of the amplitude of total field outside of the equivalent
impedance cylinder.

may be used to choose a better initial guess for the non linear inversion. Nevertheless,

being interested in assessing the performance of the method as it is, this approach is

not considered in this thesis. By exploiting the reconstructed impedance and taking a

circular cylinder with radius f0 = 0.25λ as initial guess, the shape obtained through

the proposed method is shown in figure 5.13. As it can be observed, it yields to a

very accurate reconstruction and the quality of the reconstruction is comparable to the

previous method. The parameters adopted in the inversion are R = 8 and P = 9.

As a second example, the object given in (5.8) is considered. Here the aim is to

reveal the performance of the object with a concave shape. The comparisons of the

reconstructed shapes and the exact shapes are shown in figure 5.14(a), figure 5.14(b)

and figure 5.14(c) for incidence angles θ1 = 0, θ2 = π
2 and θ3 = π respectively. Here

the simulation parameters are γ = 0.36λ , f0 = 0.48λ ,P = 9 and the regularization

parameter R = 12 for the simulations with incidence angles θ1,θ3 and R = 13 for
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Figure 5.13: Comparison of the exact and the reconstructed shapes of the object given
by the boundary ∂D1 with a single illumination.

the simulation with θ2 = π
2 . From these three figures, a similar performance has been

observed as compared to previous method. The method achieves better quality at the

illuminated side however quality gets worse at the unilluminated side. Later multiview

simulations are performed and the comparisons of the reconstructed shapes and the

exact shape are shown in figure 5.14(d) corresponding to illuminations θ1,θ3 and in

figure 5.14(e) for the illuminations θ2,θ4 and finally for the illuminations θ1,θ2,θ3,θ4

in figure 5.14(f). Similar to the first method, the method achieved better reconstructions

when more than one illumination is employed. Although overall quality of the

reconstructions is quite similar to the first method, the reconstructions have more

ripples in the convex part. Finally it is concluded that the diversity of illuminations

are crucial on the accuracy of the reconstructions for both methods but the quality does

not improve linearly with each additional illuminations.
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Figure 5.14: Comparison of the exact and the reconstructed shapes of the object with
the boundary ∂D2 for different incidence directions θ1 = 0,θ2 = π

2 ,θ3 =
π and θ4 = 3π

2 . (a) θ1, (b) θ2, (c) θ3, (d) θ1 and θ3 (e) θ2 and θ4 (f)
θ1,θ2,θ3 and θ4
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Figure 5.15: Comparison of the exact and reconstructed shapes of the object with
the boundary ∂D3 for different selection of the radius of the equivalent
impedance circle. (a) γ = 0.34λ (b) γ = 0.27λ (c) γ = 0.216λ (d)
γ = 0.4λ

In the first method selection of the minimum circle covering the object affects the

quality of reconstructions. Analogously for the second method selection of the radius

of impedance circle is effective on the quality of the method. Thus here the effects

of selection of the radius of the impedance circle are investigated by performing the

simulation with same parameters but with different radius of impedance circles. To this

aim the object whose boundary given by (5.9) is considered and simulation parameters

are chosen as P = 0, f0 = 0.48λ . The comparison between the reconstructed shape and

the exact shape is shown in figure 5.15(a) when the radius γ = 0.48λ which is the inner

circle with maximum radius. Later the simulations are performed for the radius γ =

0.27λ and the reconstructed shape is shown in figure 5.15(b). As it is clear the quality
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of the reconstruction is similar to the previous simulation. The same simulation is

repeated for a smaller γ = 0.216λ in figure 5.15(c). Although the reconstruction is still

acceptable the quality reduces as the radius of the impedance cylinder becomes smaller.

Finally the reconstruction becomes completely useless for very small radii as nonlinear

equation does not converge to the boundary due to increasing distance between the

surface and impedance cylinder in terms of wavelength. The last simulation for this

example is performed for γ = 0.4λ when the impedance cylinder intersects with the

unknown surface. It should be clear that there is no theoretical justification in this

situation as the surface impedance is not applicable to represent the field inside but it is

still interesting to see the behavior of numerical scheme when the impedance cylinder

selected wrongly. The resulting reconstruction is shown in figure 5.15(d). However
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Figure 5.16: Comparison of the exact and reconstructed shapes of the object given by
the boundary ∂D4.
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when the impedance cylinder completely covers the object, as expected there is no

solution. The reconstruction in figure 5.15(d) is interpreted as that the method can

tolerate small intersections between the target and the equivalent impedance cylinder.

Finally the last example is devoted to demonstrated behavior of the method for object

which are large in terms of wavelength. The object given in (5.10) is considered and

simulation parameters are P = 11, f0 = 1.74λ and γ = 1.2λ . The reconstruction is

shown in figure 5.16 which is a better reconstruction than the reconstruction shown in

figure 5.9.

5.3 Comparison of the Shape Reconstruction Methods

In previous two sections, both methods are tested with same noisy far field patterns at

each simulations to make a direct comparisons of the methods in the sense of accuracy

and computation times. In table 5.1 the achieved results are summarized. Here err1

and err2 denote the associated reconstruction errors given by (5.1) while t1 and t2

Table 5.1: Comparison of the methods in terms of reconstruction errors and simulation
times.

Boundary Frequency Incidence angle(s) err1 t1 err2 t2

(MHz) (rad) (%) (s.) (%) (s.)

∂D1 300 0 3.023 0.70 2.642 3.58

∂D2 600 0 13.139 2.09 9.795 11.73

∂D2 600 π
2 15.362 2.24 28.008 13.28

∂D2 600 π 17.578 2.05 18.376 12.67

∂D2 600 0,π 4.707 2.50 5.049 7.53

∂D2 1200 π
2 , 3π

2 7.451 2.45 7.955 6.78

∂D2 1200 0, π
2 ,π, 3π

2 5.564 3.06 4.608 11.33

∂D3 1200 0, π
2 ,π, 3π

2 3.404 3.92 4.175 8.09

∂D3 1200 0, π
2 ,π, 3π

2 2.793 5.20 3.323 7.92

∂D3 1200 0, π
2 ,π, 3π

2 3.777 4.81 8.039 7.55

∂D3 1200 0, π
2 ,π, 3π

2 4.195 4.19 2.666 22.72

∂D4 1800 0, π
3 , 2π

3 ,π, 4π
3 , 5π

3 5.787 4.86 3.063 14.89
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shows the simulation times in seconds for the Taylor series based method and surface

impedance modeling based method, respectively. As it can be concluded from the

results, both methods provide similar reconstructions, thus there is no preference over

the methods in the sense of accuracy. However it is clear that the surface impedance

modeling based method is slower then Taylor series based method in all cases. This is

due to the fact that the second method requires to solve forward problem as compared

to the first method which does not. Although this may be seen as a drawback, it should

be noted that in any case simulations generally took less than 20s. on a regular PC.

Thus both methods are quite fast as compared to sampling based methods and other

iterative methods. Another important conclusion is that introduction of Gauss-Newton

algorithm for multiview data increased the quality of reconstructions while adding less

computational effort.
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6. CONCLUSIONS

Inverse scattering problems whose aim is to retrieve the requested physical properties

of inaccessible objects appear in many areas of engineering and applied sciences.

Within this framework, the shape reconstruction problem for inaccessible, perfect

electric conducting targets is studied in this thesis. Consequently, two different shape

reconstruction methods which can be considered in the class of analytical continuation

methods are developed. Both methods handle the ill-posedness and the nonlinearity of

the underlying inverse scattering problem separately. These methods are numerically

validated through the simulations and certain capabilities and limitations of the

methods are demonstrated.

Both of the presented methods provide quite accurate reconstructions for objects

having starlike boundaries with convex and concave parts. With an identical

configuration, the simulation results for the each method are comparable, thus there is

no preference over methods in terms of accuracy. It is observed that accuracy of both

methods improves when the variation of the boundary is slow. Both methods produce

better reconstructions at illuminated part of the object. When a single illumination

at a fixed frequency is employed, it is observed that the size of the object should

be comparable or smaller than the wavelength for both methods to get satisfactory

reconstructions. This limitation regarding to the size of targets is improved by

extending the methods via Gauss - Newton algorithm so that both methods can exploit

all the available far field data simultaneously when multiple illuminations are used.

With the introduction of multiview data, both methods can reconstruct objects larger

than wavelength and the robustness against noise is increased which means that the

methods are capable of reconstructing objects of larger size with data having low

SNR. Even in the multiview configuration only a few illuminations are enough as

long as the diversity of incidence angles are not in a limited aperture. As a result the

data requirement is quite low as compared to sampling based methods such as linear

sampling which is not a viable as long as the target is illuminated in many directions.
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Selection of regularization parameter greatly affects the quality of reconstructions.

Since both methods handles ill-posedness of the problem in a single step, only

one regularization parameter is required. This simplicity is an important advantage

over other optimization based reconstruction methods which require choosing a

regularization parameter at each iteration.

The computational requirements of the method based of Taylor series representation

of the scattered field are lower than the method based on inhomogeneous surface

impedance modeling since the latter requires to solve the associated the direct

scattering problem as a part of reconstruction algorithm. But still both methods

perform generally less than 20s with a regular PC configuration.

Although the shape reconstruction methods are presented in the context of

electromagnetic waves, these methods are valid for acoustical waves with sound soft

obstacles as well. The future research will focus on extending the methods to 3D

problems of electromagnetic and acoustical waves.
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A. NUMERICAL EVALUATION OF TSVD INVERSION

The theoretical background of the TSVD inversion is discussed in section 3.1. As both
of the presented shape reconstruction methods require the integral equation

u∞(φ) =
eiπ/4
√

8πk

2π∫

0

e−ik cos(φ−τ)Ψ(τ)αdτ (A.1)

to be inverted to solve the unknown single-layer potential density Ψ, here numerical
aspects of the TSVD inversion are addressed.
The far field pattern is only known at total T discreet measurements points, thus
(A.1) is reduced to a system of linear equation. The integral appearing in (A.1) is
approximated with trapezoidal rule

2π∫

0

f (τ)dτ ∼= 2π
L

L−1

∑̀
=0

f (`
2π
L

). (A.2)

It is possible to use different quadrature rules, however the trapezoidal rule is
intentionally selected because of its simplicity and its fast convergence for this kind
of integrals [57]. The resulting system of linear equations is in the form of

S Ψ = u∞ (A.3)

where S is an T ×L matrix of whose elements st,` are given by

st,l =

√
iπ
2k

α
L

e−ik cos(φt−τ`), φt = t
2π
T

, τl = l
2π
L

(A.4)

and column vectors Ψ and u∞ given accordingly

Ψ = [Ψ1,Ψ2, · · · ,ΨL]
T , Ψl = Ψ(τ`) (A.5)

and

u∞ = [u∞
1 ,u∞

2 , · · · ,u∞
T ]T , u∞

t = u∞(φt). (A.6)

The SVD of (A.3) consist of three matrices

S = U ΣV ∗ (A.7)

where U and V are unitary matrices and Σ is a diagonal matrix

Σ = diag(σ1,σ2, . . . ,σP), P = min(L,T ), σ1 > σ2, . . . ,σP. (A.8)
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which contains the singular values σp in decreasing order and σ1 = ||S||. Since U and
V are unitary matrices, (A.7) provides the following generalized inversion formula

S−1 = V Σ+U∗ (A.9)

where

Σ+ = diag
(

1
σ1

,
1

σ2
, . . . ,

1
σP

)
. (A.10)

As explained above (A.9) provides a convenient formula to solve unknown Ψ.
However as a result of ill-posedness of the integral equation in (A.1), the linear
system (A.3) turns out to be ill-conditioned which is defined as the ratio of maximum
singular value to minimum singular value κ = σmax

σmin
, to be very large. Inversion

of the ill-conditioned linear system (A.3) leads to instabilities which means small
perturbations on u∞ cause extremely large variations in Ψ. Moreover the noise on
u∞ completely overwhelms higher order singular values as their values are lower than
the noise level thus their inclusion in the calculations increases the instability.
Consequently, by omitting the higher order singular values and their corresponding
vectors, it is possible to achieve a better conditioned linear system

Ψ(R) = Ṽ ∗ Σ̃+ Ũ u∞ (A.11)

which has a same matrix norm with the original system. Here R denotes the
regularization parameter which is actually the total number of significant singular
values and Ṽ ∗, Σ̃+,Ũ correspond the truncated versions of associated matrices. Now
the issue becomes how to select which singular values are significant. To this aim it is
possible to use Morozov’s discrepancy principle which requires to calculate (3.6) with
an increasing number of R until it satisfies the condition in (3.7).
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B. REDUCTION OF SIBC TO SCALAR CASE

The standard impedance boundary condition is given by

−n̂× (n̂×E) = Zn̂×H. (B.1)

where E and H are respectively the total electric field and magnetic field vectors on
a given boundary on which the surface impedance Z and the outward unit normal
vector n̂ are defined [43, 44]. E is polarized towards Ox3 direction in the problem
configuration described in section 2.1

E = ux̂3. (B.2)

Substituting (B.2) together with Faraday’s Law for the time harmonic case

∇×E =−iωµH (B.3)

into (B.1) results the following equation after straightforward calculations

ux̂3 =−i
Z

ωµ
n̂× (∇×E). (B.4)

The right hand side of (B.4) is simplified as

n̂× (∇×ux̂3) =−(n̂.∇)ux̂3 =−∂u
∂n

x̂3 (B.5)

by using the following vector calculus identity

A× (∇×B) = ∇B(A×B)− (A.∇)B (B.6)

where ∇B means the gradient operates on only B. The resulting equation

ux̂3− i
Z

ωµ
∂u
∂n

= 0 (B.7)

Consequently, by combining

k = ω
√

ε ′µ (B.8)

Z0 =
√

µ
ε ′

(B.9)

and

η =
Z
Z0

(B.10)

into (B.7) gives the the final equation after straightforward arrangements

∂u
∂n

(x)+
ik

η(x)
u(x) = 0. (B.11)
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