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SEQUENTIAL MONTE CARLO SAMPLERS FOR NONPARAMETRIC
BAYESIAN MIXTURE MODELS

SUMMARY

This thesis deals with the Bayesian model construction and the inference problem
by using Sequential Monte Carlo (SMC) methods. SMC based methods have been
the most promising approach among the recursive numerical Bayesian techniques
in the latest decade. The key idea of the SMC sampler is to estimate the desired
posterior distribution by a set of random samples and associated weights that compute
estimates based on these weights and samples. As the number of samples approaches
infinity, equivalent representation to the usual functional description of the posterior
distribution converges to the optimal Bayesian filter. However due to the computational
complexity it is crucial to design efficient samplers that are able to represent the true
posterior distribution with a reasonable computational load. In this research our aim is
to develop efficient SMC methods for posterior inference and design new probabilistic
models that characterize the engineering problems such as target tracking.

First part of the thesis focuses on recently introduced variable rate particle filter
(VRPF) that achieves to track the maneuvering objects with a small number of
states by imposing a probability distribution on the state arrival times. The variable
rate models represent the target dynamics with a single motion model that hinders
the capability of estimating maneuver parameters as well as the state arrival times
precisely. To overcome this weakness we have incorporated multiple model approach
with the variable rate model structure. The introduced model, referred as multiple
model variable rate particle filter (MM-VRPF), utilizes a parsimonious representation
for smooth regions of trajectory while it adaptively locates frequent state points at
high maneuvering regions, resulting in a much more accurate tracking compared to
conventional methods.

Next, we deal with the sequential inference problem in Dirichlet process mixtures
model (DPM) which is one of the well known nonparametric Bayesian approach to
the model selection problem. We developed a novel online algorithm based on the
sequential Monte Carlo samplers framework for posterior inference in DPM models.
Our method generalizes many sequential importance sampling approaches based on
particle filtering. The proposed method enables us to design sophisticated clustering
update schemes, such as updating past trajectories of the particles in light of recent
observations, and still ensures convergence to the true DPM posterior distribution
asymptotically. It provides a computationally efficient improvement to particle filtering
that is less prone to getting trapped in isolated modes of the target posterior distribution.
Performance improvement over conventional models has been illustrated for Bayesian
infinite Gaussian mixture density estimation problem in terms of estimation variance,
average log-marginal likelihood and classification accuracy.

xvii



In the final section of the thesis, we proposed a novel model for time series clustering
problem based on the DPM model structure by using the semi-Markov model
formalism. The proposed model is able to estimate the number of clusters, parameters
and the sojourn times representing the time series data under a Bayesian framework.
We devised a sampling algorithm for sequential inference in the proposed model that
also enable us to handle large datasets efficiently. We applied the proposed model
to the Markov chain clustering problem and the experimenal results showed that the
algorithm is able to successfully cluster both synthetic and the real audio data even for
large dataset sizes.

xviii



PARAMETRİK OLMAYAN BAYESÇİ KARIŞIM MODELLERİ İÇİN
ARDIŞIK MONTE CARLO ÖRNEKLEYİCİLER

ÖZET

Bu tezde, son dönemde en ilgi çeken numerik Bayesçi tekniklerden biri olan ardışık
Monte Carlo (SMC) metodları ile parametre kestirimi ve model seçimi problemlerinin
çözümü üzerine çalışılmıştır. Ardışık Monte Carlo örnekleyicilerin ana fikiri, hedef
sonsal olasılık dağılımını rastgele örnekler ve ilişkilendirilmiş ağırlıkları ile temsil
etmek ve kestirimleri bu örnek ve ağırlıkları kullanarak hesaplamaktır. Hedef sonsal
dağılımını ifade eden örnek sayısı arttırıldıkça kestirilen dağılımın fonksiyonel ifadesi
optimum Bayesçi filtreye yaklaşacaktır. Ancak limitli hesap gücü nedeniyle, kabul
edilebilir bir işlemsel karmaşıklıkta gerçek sonsal dağılımı başarılı kestirebilen etkin
örnekleyicilerin tasarlanması çok önemlidir. Bu çalışmanın temel amacı etkin SMC
tabanlı algoritmalar tasarlamak ve gerçek hayat mühendislik problemlerini ifade
edebilen olasılıksal modeller üzerinde bu metodları uygulamaktır. Tezde, hedef takibi
problemlerinin ve Dirichlet süreci karışım modellerinin önerilen yenilikçi model ve
algoritmalar ile çözümü üzerine çalışılmıştır.

Hedef takibi probleminde amac, hedeften alınan gürültülü ölçümlerden hedef
kinematiklerini (konum, hız ve bnz.) kestirmek ve hedefi anlık olarak takip etmektir.
Kullanılan en yaygın çözüm tekniklerinin başında hedef durum ve gözlemlerini
birer rastgele değişken dizisi ile modelleyen ve değişkenler arası tanımlanan
ilişkiden faydalanarak hedef durumlarını kestirmeyi amaçlayan olasılıksal modeller
gelmektedir. Bu modellerin çözümünde, hedef hareketlerinin anlık izlenebilmesi için,
hedef durum değişkenlerini her yeni gözlem alındığı zaman kestirebilen algoritmalara
ihtiyaç vardır. Kalman süzgeçleri, genişletilmiş Kalman süzgeçleri ve parçacık
filtreleri hedef takibi probleminin çevrimiçi çözümü için en sık kullanılan kestirim
metodlarının başında gelmektedir. Tüm bu algoritmalar durum uzay denklemleriyle
tanımlanmış, sabit oranlı bir Markov modelinde hedef kinematiklerini kestirmeyi
amaçlamaktadır. Ancak özellikle manevra yapan hedeflerin takibi probleminde
hedef hareket parametrelerinin takip öncesi bilinmemesi yüksek manevra kabiliyetine
sahip hedeflerin takibinde kestirim başarımını düşürmektedir. Bu nedenle hedefe
ilişkin farklı hareket rejimlerini tek bir modelde birleştirerek takip edilen hedefin
hareket karakteristiğine en uygun hareket rejimini adaptif olarak seçen çoklu model
yaklaşımları literatürde kullanılmıştır.

Bu tezde, son yıllarda manevralı hedeflerin takibinde ortaya atılan en yenilikçi
modellerden biri olan değişken oranlı parçacık süzgeçleri (VRPF) ele alınmıştır.
Hedef takibi literatürdeki son gelişmeler, yarı-Markov modellerin sabit oranlı Markov
model yapısına dayalı klasik süzgeçlere iyi bir alternatif olabileceğini göstermektedir.
Markov model yapısındaki durum uzay gösterimlerinde durumlar ve gözlemlerin
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aynı anda oluştuğu yani durum varış zamanlarının sabit olduğu varsayılır. Yarı-
Markov model yapısında ise durum varış zamanları gözlem zamanlarından bağımsız
varsayılarak bir rastgele değişken olarak tanımlanır ve sabit oranlı durum uzay
gösterilimine göre çok daha az sayıda durumla farklı manevra karakteristiklerinin
modellenebilmesi amaçlanır. Daha az durum sayısı ile gezingenin modellenebilmesi ve
durum varış zamanlarının bir dağılımla ifade edilmesi, işletilen çözüm algoritmasının
etkinliğini arttırmakta, hedef hareketinini sürekli zamanda hedef hareket yapısının
doğasına daha uygun, az sayıda parametre ile modellenebilmesini sağlamaktadır.

Bilinmektedir ki, özellikle insanlı hedefler sert ve kısa zamanlı manevralar ile
yeni rotasına ulaştıktan sonra yeni hedef noktasına ulaşmak için uzun süreli düz
hareketler yapmaktadır. Ancak, değişken oranlı modelin tek bir hedef hareket modeli
kullanması, manevra parametreleri ve varış zamanları üzerine sadece tek bir önsel
olasılık dağılımı tanımlanabilmesine olanak vermekte ve farklı hareket koşullarının
göz önünde bulundurması mümkün olmamaktadır. Biz çalışmamızda çoklu model
yaklaşımlarını değişken oranlı modeller ile birleştirerek, varış zamanları ve manevra
parametrelerini adaptif bir yapı ile kestirebilen çoklu model değişken oranlı parçacık
süzgeçlerini önerdik. Önerilen model, adaptif olarak, manevra anlarını sık, düz
gezingeleri ise az sayıda durum ile ifade etmektedir. Önerilen model kerterizden hedef
takibi senaryolarda test edilmiş ve literatürde önerilen modellerden daha yüksek takip
başarımına sahip olduğu karşılaştırmalı olarak gösterilmiştir.

Sonrasında, tezin literatüre temel katkısı olarak da nitelendirilebilecek, parametrik
olmayan Bayesçi model seçim tekniği Dirichlet süreci karışım modellerinin
ardışık Monte Carlo metodları ile çözümü üzerinde çalışmalarımızı yoğunlaştırdık.
Dirichlet süreci karışım modelleri (DPM), verinin parametrik bir aile ile kısıtlı
olmadığı durumlarda, olasılık dağılım fonksiyonları ve sınıflandırma problemlerinin
hiyerarşik modellenebilmesi için temel çözüm bloğu olmuştur. DPM modelin
prensipte etkin olarak çözülebildiği varsayılırsa herhangi bir olasılık dağılımını
istenen doğrulukta modelliyebilme yeteneğine sahiptir. Ancak, model sonsalının
analitik çözümü bulunmaması nedeniyle model sonsal dağılımının çeşitli yaklaşık
çözümlerle kestirilmesi önemli ve popüler bir araştırma alanı olmuştur. Bu amaçla
literatürde, çıkarsamayı bütün veriseti üzerinde gerçekleştiren yığın algoritmaları
önerilmekle beraber, gerçek hayatta birçok problemlemin anlık çözüme ihtiyaç
duyması yada veri setlerinin çok büyük olması, yığın algortimaların çözüme çok
uzun sürede ulaşmalarına neden olmuş ve çevrim içi algoritmalara olan ilgiyi
arttırmıştır. Ancak literatürde parçacık filtresi altyapısına dayalı olarak önerilen
çevrimiçi algoritmalarının sadece küçük veri setlerinde yüksek başarım gösterdiği,
orta ve büyük veri setlerinde ise çok kısıtlı başarıma sahip olduğu gözlenmiştir.
Bunun en temel sebebi olarak parçacık filtrelerinin yeni gözlemler geldikçe
parçacık geçmişini güncelleyememeleri, dolayısıyla algoritmanın lokal minumumlara
takılması ve zamanla toplamsal Monte Carlo Hatasının artması olarak gösterilebilir.
Ayrıca parçacık filtrelerinde kullanılan tekrar örnekleme adımında düşük ağırlıklı
parçacıkların göz ardı edilmesi ve bu parçacıkların tekrar değerlendirilememesi
başarımı düşüren bir diğer faktördür. Parçacık filtresi tabanlı algoritmaların
zayıflıklarını gidermek amacıyla, biz çalışmamızda DPM sonsal dağılımını ardışık
Monte Carlo örnekleyicileri çatısı altında etkin olarak kestirebilen yenilikçi çevrimiçi
çıkarsama algoritmaları tasarladık. Önerilen metod yenilikçi yapısının yanısıra, DPM
için kullanılan diğer ardışık örnekleyicileri genelleme özelliğine de sahiptir. Kullanılan
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yöntem, yeni gelen gözlemlerin ışığında örneklere ilişkin geçmiş gezingeleri
güncelleyerek gerçek DPM sonsal dağılımına daha iyi yaklaşıklık sağlayan etkin
örnekler elde etmekte ve kestirim başarımını arttırmaktır. Öneri dağılımlarının
tasarımında tavlama tekniği kullanılarak karışım özelliği yüksek olan öneri dağılımları
elde edilmiş ve tasarlanan yapılar farklı sınıf etiketi güncelleme metodlarıyla beraber
kullanılmıştır. Kullanılan tavlama tekniği özellikle yığın algoritmalarda kullanılan
klasik tavlama tekniğinden farklı olarak her yeni gözlem adımında çevrimiçi kestirim
sonucuna ulaşılabilmesini sağlamaktadır.

Önerilen algoritmalar parçacık süzgeçleri, Gibbs tabanlı parçacık filtreleri ve Gibbs
algoritması ile tek ve çok boyutlu yoğunluk dağılımı kestirim problemlerinde
karşılaştırılmıştır. Test amaçlı olarak sentetik veri setlerinin yanısıra ses verilerinden
ön işleme adımlarıyla elde edilen gerçek hayat verileri de kullanılmıştır. Önerilen
metodun, özellikle sonsal dağılımın izole modlara sahip olduğu durumlarda klasik
metodlara göre çok daha düşük kestirim sapmasına sahip olduğu, lokal çözümlere
daha düşük olasılıkla takıldığı ve dolayısıyla sonuca daha yüksek doğrulukta
yakınsayabildiği görülmüştür.

Tezin son bölümünde yarı-Markov model yapısı ve Dirichlet karışım modelleri tek
bir çatı altında toplanarak zaman serilerini sınıflandırma problemi için yenilikçi
parametrik olmayan bir model önerilmiştir. Problemde, zaman serisini tanımlayan
sınıf sayısı, sınıf parametreleri ve parametre değişim zamanları birer rastgele
değişkenler dizisi olarak tanımlanmıştır. Amaç, zaman serisini tanımlayan sınıf
sayısını, parametereleri ve sınıfların aktif olduğu zamanları Bayesçi bir çatı altında
kestirebilmektedir. Tanımlanan yarı-Markov model yapısı, her bir gözlemin bir
durum değişkeni ile ilişkilendirildiği sabit oranlı modellerden farklı olarak durum varış
zamanlarının Markov sürecine uyduğunu varsayarak sınıf parametrelerinin değiştiği
anları kestirmeyi hedeflemektedir. Durum varış zamanlarının Markov yapıda bir
değişken dizisi olarak kabul edilmesi sürekli yada ayrık zamandaki verinin doğal
yapısının daha iyi modellenebilmesini ve problemin sabit oranlı modellere göre
çok daha az sayıda durum değişkeni ile düşük karmaşıklıkla ifade edilebilmesini
sağlamaktadır. Tasarlanan modelde, ardışık durum varış zamanları arası sürenin
herhangi bir dağılımla ifade edilebilmesi, probleme ilişkin önsel bilginin çok
daha etkin kullanılabilmesini sağlamaktadır. Etkin bir çıkarsama algoritmasının
tasarlanabilmesi için model parametreleri üzerinde tanımlanan önsel dağılım olabilirlik
fonksiyonuna konjuge seçilmiştir. Problemin yapısı itibarı ile çevrimiçi çözüm
bulunması özellikle parametre değişim zamanlarının kestirimi için çok önemlidir.
Bu nedenle hesaplanabilir çözümü bulunmayan modelin sonsal dağılımı ardışık
Monte Carlo tekniği kullanılarak kestirilmiştir. Önerilen model, sürekli yada ayrık
zamanda tanımlanan tüm zaman serilerine uygulanabilir niteliktedir. Tasarlanan
model, Markov zincirlerinin sınıflandırılması problemine uyarlanmış, n durumlu bir
zaman serisini oluşturan Markov zinciri sayısını, zincirler arasındaki geçiş zamanlarını
ve her bir zincirin parametrelerini kestiren bir algoritma gerçeklenmiştir. Sentetik
veri setleri üzerinde yapılan testlerde parametre kestirim performansı raporlanmıştır.
Network analizi ve bioinformatik gibi konularda önemli bir uygulama alanı bulunan
problemin gerçek hayat verilerindeki başarımı is ses sinyalleri üzerinde gösterilmiştir.
Algoritmanın sentetik verileri ve ses sinyalini başarılı olarak sınıflandırdığı ve büyük
veri setlerinde başarıyla çalıştığı gözlemlenmiştir.
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1. INTRODUCTION

In applied and engineering problems involving analysis of real world datasets,

researchers are often faced with two fundamental and challenging questions about

model construction: what model class and model order to choose, and how to

estimate optimal parameters to predict future observations. Parameter estimation is

perhaps the better understood problem as there is an arsenal of optimization and

integration techniques available. The problem of model construction is more obscure

and considered more art than science. Even if a model class is chosen, it is still far

from obvious what the model order should be. Typically if an overly simple model

is chosen, the predictions are poor. Similarly, if an overly complex model is chosen,

the predictions can be equivalently poor due to the so called ’overfitting’ problem.

While regularization techniques or full Bayesian treatment can remedy the latter, this

may still lead to unnecessary waste of computational resources. It would be desirable

to develop highly adaptive methods, that would tune their complexity and parameters

without resorting to a fixed parametric family.

Modern computational techniques based on Monte Carlo simulation, provide a

practical solution to this key problem. Intuitively, these techniques are able to

adapt both model strength and computational cost, hence such methods potentially

provide significant advantages in real life applications. However, batch methods

are computationally infeasible for inference in dynamic models or when large

datasets has to be processed. Therefore, in contrast to the batch methods, that

apply the inference on the entire dataset, sequential Monte Carlo (SMC) methods

recursively updates the posterior estimate upon arrival of each new observation. SMC

provides a computationally efficient solution that especially suits real-time processing

requirements.
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1.1 Problem Statement

In our research we deal with sequential models and algorithms for sequential Bayesian

Inference. First we focus on model construction and parameter estimation for

tracking a maneuvering object under nonlinear and non-Gaussian conditions. Next,

we deal with the sequential Bayesian estimation problem in Dirichlet process mixtures

(DPM) model that has been one of the most widely used and popular approach

to nonparametric probabilistic models (Antoniak, 1974). For both problems we

utilize sequential Monte Carlo methods that allow us to treat any type of probability

distribution and nonlinearity.

1.1.1 Maneuvering target tracking

In a target tracking problem, the aim is to estimate the target location and motion

parameters accurately with the help of received noisy observations. Most widely

used and promising approaches to tracking problem are based on stochastic filtering

theory that was first established in early 1940’s due to the pioneering work by Wiener

(1949) and Kolmogorov (1941), and it culminated in 1960 for the publication of classic

Kalman Filter (Kalman, 1960).

The target tracking problem faces two interrelated main challenges , these are target

motion-mode uncertainty and nonlinearity (Li and Jilkov., 2005). Nonlinearity is

handled by nonlinear filtering methods, and Multiple-model (MM) methods have

been generally considered as the mainstream approach to the maneuvering target

tracking under motion-mode uncertainty (Blom et al., 1998; McGinnity and Irwin,

2000; Doucet et al., 2001b; Kirubarajan et al., 2001). The performance of the tracking

algorithms hinges in the modeling capability of the tracking model and the quality of

the inference schemes in solving the model.

Conventional probabilistic tracking models define a discrete time state space model

where the state sampling rate is determined by the rate at which the measurements

arrive, thus known as fixed rate models. In fixed rate models, the time between

two consecutive states (sojourn time) is fixed and the timing of the state variables

(state arrival time) are determined under the assumption that a transition may

occur at each observation time (Blom et al., 1998; McGinnity and Irwin, 2000;
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Godsill and Vermaak, 2005). However, manned targets commonly execute short

duration of sharp maneuvers following prolonged times of a smooth trajectories.

Therefore, they have limited capability in modeling the sojourn times as well as the

target parameters in a maneuvering target tracking problem. Unlike the fixed rate

standard tracking models, recently introduced variable rate particle filters (VRPF),

which models the state arrival times as a Markovian random process, enables the time

between consecutive target states to be a random variable, hence can be considered as a

more effective technique in target tracking (Godsill and Vermaak, 2005; Godsill et al.,

2007).

The variable rate model tracks a maneuvering object with a small number of states

by imposing a probability distribution on the sojourn times. In Figure1.1 we show

the localization of the states for fixed and variable rate models on a bearing-only

target tracking scenario. The variable rate model (left figure) is much more efficient

compared to a fixed rate model (right figure) since variable rate scheme allocates more

state points to regions of rapid deviations and fewer points to smooth trajectories.

However conventional variable rate models utilize a single motion model in order to

characterize the state arrival times and the target parameters (Godsill and Vermaak,

2005). This limits the capability of estimating the maneuvering and smooth regions

of the trajectory precisely. Therefore variable rate algorithms suffer from the poor

estimate of the target parameters and the state arrival times.
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Figure 1.1: Localization of states for fixed rate (left side) and the variable rate models.
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In order to overcome this drawback, in this thesis we developed a new model structure

for variable rate models that aims to achieve a better characterization of the state

arrival times and the target trajectory. We investigated adaptive tracking methods

based on the multiple model approach and developed a multiple model structure for

the variable rate models (Ulker et al., 2008; Ulker and Gunsel, 2012). The proposed

model allows switching between candidate sojourn and motion parameter sets thus can

precisely model the maneuver parameters as well as the state arrival times. Sequential

inference for the proposed model is accomplished by the particle filtering algorithm

hence named as multiple model variable rate particle filter (MM-VRPF). We evaluated

the performance of the algorithm on several bearing only target tracking scenarios and

improvements over conventional algorithms are reported.

In this thesis we focused on model construction problem for the variable rate

models, therefore we applied conventional particle filtering for sequential inference.

However, more efficient inference schemes based on sequential Monte Carlo samplers

framework has been proposed by Whiteley et al. (2007) for variable rate models and it

is possible to achieve improved results by applying similar sampling strategies to our

model.

1.1.2 Sequential inference for Nonparametric Bayesian mixture models

Recently, Dirichlet process mixtures (DPM) have been widely used as a building

block in hierarchical models for solving density estimation and clustering problems

where the actual form of the data generation process is not constrained to a

particular parametric family (Antoniak, 1974). Sophisticated applications involving

DPM models has been studied in machine learning, signal processing, tracking or

bioinformatics (Teh et al., 2004; Do et al., 2005; Caron et al., 2008; Fox et al., 2007).

Provided that inference can be carried out effectively for the DPM, at least in

principle, any density can be approximated with arbitrary precision. However, exact

inference is unfortunately intractable. Yet due to the mentioned potential advantages

of nonparametric approaches, there has been a surge of interest to the DPM model

and efficient inference strategies based on variational techniques (Blei and Jordan,

2004, 2006) and Monte Carlo Markov Chain (MCMC) (S. Walker and Smith, 1999;

MacEachern et al., 1999; Jain and Neal, 2000; Neal, 2000). Though, majority
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of these methods perform batch algorithms that apply the inference on the

entire dataset (Blei and Jordan, 2004; Neal, 2000), sequential methods that cluster

each new observation upon its arrival have also been proposed (Quintana, 1996;

MacEachern et al., 1999; Fearnhead, 2004).

Assuming that conjugacy condition is satisfied, methods that solve Bayesian inference

problem based on sampling deals with sampling from an intractable discrete

distribution. In literature, particle filtering has been proposed as a computationally

efficient sequential sampling method that especially suits real-time processing

requirements of dynamic models (Fearnhead, 2004). It is shown that particle

filtering outperforms batch algorithms such as Gibbs sampler for small datasets

(Fearnhead, 2004). However, it is argued that sequential importance sampling is not

an appropriate method for models with static parameters and especially large datasets

due to the degeneracy phenomenon and accumulated Monte Carlo error over time

(Quintana and Newton, 1998). The sampler becomes ’sticky’, meaning that previously

assigned clusterings can never be updated according to the information provided by the

latest observations. For static problems, degeneracy can be reduced but not avoided via

resampling techniques (MacEachern et al., 1999; Fearnhead, 2004). Although particle

filtering algorithm can even outperform batch algorithms such as the Gibbs sampler

for small datasets, empirical evidence suggests that sequential methods achieve less

satisfactory results particularly on larger datasets. In a particle filtering framework,

this arises mainly due to the fact that discarded particles can never be reconsidered.

These limitation causes the algorithms to get trapped in local modes of the posterior

distribution and reduce the estimation performance. This is illustrated in Figure 1.2 for

a two dimensional model where the data shown with the red dots is generated from a

mixture of Gaussian distributions with three components. At the left side of Figure 1.2

we see that the conventional particle filter gets trapped in the local mode of the solution

and represents the data with two mixture components whereas the true estimation result

is shown at the right.

In this thesis we search for efficient sampling methodologies for posterior inference in

DPM models by using sequential Monte Carlo techniques. We propose new sampling

strategies in order to estimate the time evolving DPM model posterior. We take the

advantaged of using the SMC sampler proposed by Del Moral et al. (2006) that enable
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Figure 1.2: Observations (red dots) on 2-D space, generated from a Gaussian mixture
density with three components. 50% confidence intervals of the Estimated
mixture densities by the (a) Proposed SMC algorithm, (b) Conventional
particle filtering algorithms.

us to design sophisticated particle updating schemes and ensures convergence to the

true target distribution asymptotically.

1.2 Thesis Organization

The thesis is organized as follows: In Chapter 2, the basics of numerical Bayesian

techniques and sequential probabilistic model structures are investigated. Following an

introduction to non-parametric model construction, we seek to investigate the problem

of maneuvering target tracking and parameter estimation in dynamic systems with

numerical Bayesian techniques.

In Chapter 3 we introduce an adaptive tracking method for maneuvering target tracking

of which incorporates multiple model approach with the variable rate model structure

proposed by Godsill et al. (Godsill and Vermaak, 2005). The proposed model is

based on semi-Markovian model structure and referred as multiple model variable

rate particle filter (MM-VRPF) (Ulker et al., 2008; Ulker and Gunsel, 2008). MM-

VRPF adaptively locates frequent state points to the maneuvering regions resulting in

a much more accurate tracking while preserving the parsimonious representation for

the smooth regions of the trajectory. This is achieved by including a mode variable

into the conventional variable rate state vector which enables us to define a different
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sojourn time and motion prior for each target motion mode using the multiple model

structure.

Chapter 4 proposes efficient sampling strategies for sampling a time evolving DPM

posterior distribution (Ulker et al., 2010b). Sequential inference schemes have

limited success in maintaining an accurate approximation to the true target density.

Particularly for large datasets, Monte Carlo error accumulates over time and the

estimation variance increases (Quintana and Newton, 1998). This is due to the fact

that past states of the particle trajectories (i.e., past clusterings) are not updated with

new observations. The problem can be alleviated by a retrospective method that is

able to reassign the previous clusterings at time n according to latest observations

received. The SMC samplers framework enables us to accomplish this in practice and

still ensures convergence to the true target posterior asymptotically. Unlike the existing

methods proposed by Quintana (1996); MacEachern et al. (1999); Fearnhead (2004),

we propose an efficient sequential Monte Carlo sampler that enables us to update past

trajectories of the particles in the light of recent observations.

Chapter 5 further improves the method proposed in Chapter 4 by using annealing

strategies under the sequential estimation context (Ulker et al., 2010a, 2011). Annealed

proposal kernels are defined in order to draw efficient samples from the DPM posterior

distribution that prevent the algorithm to get trapped to the local modes. The proposed

method takes advantage of the SMC sampler framework in order to calculate the

sample weights that ensures convergence to the true DPM posterior distribution. Due

to importance of modeling the multidimensional dependencies in high dimensional

datasets we extended the proposed algorithm to the multidimensional case. The

efficiency of the proposed algorithms is analyzed on several univariate and multivariate

synthetic datasets.

In Chapter 6 we develop a novel model for time series clustering, based on the DPM

model structure under the semi-Markovian model formalism where the number of

clusters and the parameters are priorly unknown. We constructed a Markovian process

for modeling the change points in order to define an arbitrarily selected distribution

on the sojourn times. We proposed a sequential Monte Carlo algorithm for online

inference that can handle large datasets and applied the proposed model to the Markov

7



Chain clustering problem. We reported the estimation results for both synthetic and

real world data.

The thesis is finalized with the conclusions and future research directions given in

Chapter 7.
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2. SEQUENTIAL MODELS AND SEQUENTIAL BAYESIAN INFERENCE

In this section, we give an introduction to the probabilistic filtering methods and basic

numerical Bayesian techniques. After a brief introduction to the optimal filtering, we

give the basics of Monte Carlo integration, importance sampling, particle filtering

and the sequential Monte Carlo samplers framework that underlies the principles of

sequential Bayesian estimation (Del Moral et al., 2006). We also present models and

algorithms for mixture models with unknown number of components and maneuvering

target tracking (Chen, 2003).

2.1 Sequential Bayesian Estimation

Kalman filters are optimal recursive Bayesian filters giving the Minimum Mean Square

error under linear Gaussian conditions (Chen, 2003). However Bayesian techniques

require integration of the product of probability density functions that cannot be

accomplished in closed form for general nonlinear, non-Gaussian multivariate system.

Necessity of linear Gaussian assumptions to execute Kalman filter equations is a

highly restrictive constraint in many applications, thus several different approximations

are to be introduced in literature such as extended Kalman filters (Chen, 1993),

approximate grid based methods (Arulampalam et al., 2002), Monte Carlo Methods

(Hanscomb and Hammersley, 1964) and etc. to solve the problem.

Main idea of extended Kalman filter (EKF) is to linearize the nonlinear equations

around the prediction mean and assuming the posterior distribution as Gaussian. EKF

is well suited for problems which are not highly nonlinear, unfortunately they fail to

represent highly nonlinear environments such as multi modal distributions. Grid based

method is another approximate Bayesian technique which discretizes the posterior

evenly. Discretizing can be implied by constituting finite number of states as posterior.

Hidden Markov Models (HMM) are an application of such approximate grid based

methods and are used extensively. However grid based methods are faced with the
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curse of dimensionality particularly in high dimensional state spaces which render

these methods inappropriate for many applications.

Sequential Monte Carlo (SMC) methods, has been the most promising approaches

among numerical recursive Bayesian techniques. The key idea is to represent required

posterior distribution by set of random samples with associated weights and compute

estimates based on these weights and samples. Sequential importance sampling (SIS)

(Doucet et al., 2001a), sequential importance resampling (SIR) (Doucet et al., 2001a)

are well known sequential Monte Carlo methods commonly named as particle filters.

In the last decade several variants of particle filters, auxiliary particle filters (APF)

(Pitt and Shephard, 1999), regularized particle filters (RPF) (Musso et al., 2001), Rao-

Blackwellized particle filters (Doucet et al., 2001b) and etc. have been proposed.

Although they have the capability to represent any posterior distribution, in practice

they suffer from the degeneracy problem particularly in high dimensional spaces.

Therefore, when sampling from a posterior density, they have limited success in

maintaining an accurate approximation to the true target density. For example, a

Rao Blacwellized particle filter based approach has been employed by Fearnhead

(2004) to approximate the DPM target posterior sequentially as each new observation

arrives. However the algorithm is only effective for small datasets due to accumulated

Monte Carlo error over time because past states of the particle trajectories (i.e.,

past clusterings) are not updated with new observations (Quintana and Newton, 1998;

Fearnhead, 2004). This problem can be alleviated by a retrospective method that is able

to reassign the previous clusterings at time n according to latest observations received.

Unfortunately, such a strategy will be intractable under the standard particle filtering

framework. Yet, the SMC samplers framework proposed by Del Moral et al. (2006)

will be detailed in Section 2.6 that enables us to update the previous clusterings by

retrospection and still ensures convergence to the true target posterior asymptotically.

2.2 Bayesian Optimal Filters: Kalman Filtering

Kalman filter is an efficient recursive filter that estimates the state of a dynamical

system from a series of incomplete and noisy measurements. The states follow a first-

order Markov process and the observations are independent of the given states. Kalman

filters, developed by Kalman (1960), are based on linear dynamic systems discretized
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in the time domain as in Eq.(2.1),

xk = Fkxk−1 + vk−1 (2.1)

yk = Hkxk + nk

where xk is the state vector, Fk and Hk are process and measurement matrices defining

the linear equations at time index k. In Eq.(2.1), vk−1, nk are Gaussian random

variables with covariances Qk−1 and Rk, respectively. Generally we consider they

are zero mean and independent random variables. Since Fk, Hk and noise covariance

parameters vk−1, nk shown in Eq.(2.1) are allowed to vary with time, Kalman filters

can handle non stationary environments.

Kalman Filter consists of an iterative prediction and correction process. In the

prediction step, the time update is taken where the one-step ahead prediction of

observation is calculated; in the correction step, the measurement update is taken where

the correction to the estimate of current state is calculated. Kalman filter assumes

that posterior density p(x1:k|y1:k) is Gaussian hence parameterized with its mean and

covariance. Recursive Kalman equations are derived by obtaining p(xk|y1:k) from

p(xk−1|y1:k−1) in a recursive relationship. Define;

p(xk−1|y1:k−1) = N
(
xk−1;mk−1|k−1,Pk−1|k−1

)
(2.2)

p(xk|y1:k−1) = N
(
xk;mk|k−1,Pk|k−1

)
(2.3)

p(xk|y1:k) = N
(
xk;mk|k,Pk|k

)
(2.4)

where N(x,m,P) is a Gaussian density with mean m and covariance P. The

prediction step is defined as,

mk|k−1 = Fkmk−1|k−1 (2.5)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k (2.6)

and the correction step is,

mk|k = mk|k−1 +Kk

(
yk −Hkmk|k−1

)
(2.7)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.8)
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where covariance of the innovation term yk − Hkmk|k−1 and the Kalman gain are

defined as in Eq.(2.9) and Eq.(2.10), respectively.

Sk = HkPk|k−1H
T
k +Rk (2.9)

Kk = Pk|k−1H
T
kS

−1
k (2.10)

Kalman filter is optimal if the linear Gaussian assumptions hold true. The implication

is that, no algorithm can ever do better than Kalman filter if the model assumptions

exactly fit the problem considered. However, posterior is not necessarily Gaussian

for nonlinear problems and Kalman filter is then not certain to be optimal. However

Bayesian filtering theory is optimal in all conditions independent from the definition

of the density functions (linear or nonlinear) concerning the model. In literature many

approaches have been introduced to approximate the optimum Bayesian solution under

nonlinear conditions. Particle filters and Extended Kalman Filters are good examples

of these.

2.2.1 Extended Kalman filter

The use of Kalman filter is limited with linear problem where the posterior distribution

is represented with a single Gaussian function. However Kalman filter can’t find

solution to a nonlinear system defined as in Eq.(2.11),

xk = fk (xk−1) + vk−1 (2.11)

yk = hk (xk) + nk

where fk() and hk() are known nonlinear functions, and vk−1, nk are Gaussian random

variables with covariances Qk−1 and Rk respectively. As a solution, extended Kalman

filter (EKF) linearizing the nonlinear functions using series expansion is proposed

(Chen, 1993) . EKF approximates the posterior distribution as a Gaussian to handle

nonlinear problems such that p(xk|y1:k) approximates to Gaussian and following

approximations will be valid,

p(xk−1|y1:k−1) ≈ N
(
xk−1;mk−1|k−1,Pk−1|k−1

)
(2.12)

p(xk|y1:k−1) ≈ N
(
xk;mk|k−1,Pk|k−1

)
(2.13)

p(xk|y1:k) ≈ N
(
xk;mk|k,Pk|k

)
. (2.14)
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Consequently, recursive EKF equations are defined as,

mk|k−1 = Fk(mk−1|k−1) (2.15)

Pk|k−1 = Qk−1 + F̂kPk−1:k−1F̂
T
k (2.16)

mk|k = mk|k−1 +Kk

(
yk −Hk(mk|k−1)

)
(2.17)

Pk|k = Pk|k−1 −KkĤkPk|k−1 (2.18)

where F̂k, Ĥk are local linearizations of the nonlinear functions fk() and hk(),

respectively as defined in Eq.(2.19) and Eq.(2.20).

F̂k =
dfk(x)

dx

∣∣∣∣
x=mk−1|k−1

(2.19)

Ĥk =
dhk(x)

dx

∣∣∣∣
x=mk|k−1

(2.20)

Covariance of the innovation term and the Kalman gain are defined as in Eq.(2.21) and

Eq.(2.22).

Sk = ĤkPk|k−1Ĥ
T
k +Rk (2.21)

Kk = Pk|k−1Ĥ
T
kS

−1
k (2.22)

Because EKF always approximates the posterior p(xk|y1:k) as a Gaussian, it works

well for some types of nonlinear problems, but it may provide a poor performance

in some cases when the true posterior is non-Gaussian (Chen, 2003). Bi-modal or

heavily skewed posterior distributions are examples for this situation. In such cases

particle filters yield improvement at performance over EKF.

2.3 Monte Carlo Integration

In literature many methods has been introduced to handle nonlinear filtering problem

using numerical approximate techniques. Monte Carlo sampling approximation,

Gaussian/Laplace approximation, iterative quadrature approximation, moment

approximation, deterministic sampling approximation are some of these approaches.

In this section we will focus our attention particularly on the sequential Monte Carlo

technique which is one of the most promising approach in the field. First we will

explain basics on Monte Carlo integration and probabilistic inference schemes using
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Monte Carlo techniques, later we will describe more sophisticated sequential filtering

schemes.

Monte Carlo methods estimate the integrals or other quantities that can be expressed

as an expectation by averaging the results of a high number of statistical trials

(Hanscomb and Hammersley, 1964). Computers are ideal for performing such trials,

and the appearance of faster computers has driven the wide spread application of Monte

Carlo methods today. The core problem is the computation of an integral,

∫

x

f(x)p(x)dx (2.23)

with x a possibly multi-dimensional variable. Suppose we also have a pdf p(x)

(p(x) > 0) according to which we can draw samples xi usingNp independent samples,

the integral can now be estimated as

f̂Np
=

1

Np

Np∑

i=1

f(xi). (2.24)

This is the basic Np sample Monte Carlo estimator using importance sampling with a

pdf p(x). Expected value and variance of the estimator can be expressed as,

E[f̂Np
] = E[f ] (2.25)

V ar[f̂Np
] =

1

Np

V ar[f ] =
σ2

Np

(2.26)

where σ2 is the variance of f(x) and Eq.(2.25) indicates that the estimate is unbiased.

By the Kolmogorov strong law of large numbers f̂Np
converges to E[f ] almost surely

and convergence rate assessed by central limit theorem.

√
Np(f̂Np

− E[f ]) = N(0, σ2) (2.27)

One crucial property of Monte Carlo approximation is the estimation accuracy is

independent of the dimensionality of the state space, in contrast to most deterministic

numerical methods. The variance of estimate is inversely proportional to the number

of samples.
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2.4 Importance Sampling

Importance sampling (IS) was first introduced by Marshall (Marshall, 1956). The

objective of importance sampling is aimed to sample the distribution in the region of

“importance” in order to achieve computational efficiency. This is important especially

for the high-dimensional space where the data are usually sparse, and the region of

interest where the target lies in is relatively small in the whole data space. The idea

of importance sampling is to choose a proposal distribution q(x) in place of the true

probability distribution p(x), which is hard-to-sample. The support of q(x) is assumed

to cover that of p(x). Rewriting the integration in Eq.2.23 as,

∫

x

f(x)
p(x)

q(x)
q(x)dx. (2.28)

Monte Carlo importance sampling is to use a number of (say Np) independent samples

drawn from q(x) to obtain a weighted sum to approximate

f̂Np
=

1

Np

Np∑

i=1

w(xi)f(xi) (2.29)

where w(xi) = p(xi)/q(xi) are called importance weights. If the normalizing factor is

not known, importance weights can be evaluated up to normalizing constant

w(xi) ∝
p(xi)

q(xi)
(2.30)

hence to ensure that
∑Np

1 w(xi) = 1, importance weight are normalized. Normalized

weights represents the probability density function p(x) as in Eq.(2.31),

p(x) ≈
Ns∑

i=1

wiδ(x− xi) (2.31)

Variance of the importance sampler can be stated as (Chen, 2003),

V ar[f̂ ] =
1

Np

∫ [(
(f(x)p(x))2

q(x)

)]
dx−

(Ep[f(x)])
2

Np
. (2.32)

The variance can be reduced when an appropriate q(x) is chosen to match the shape

of p(x) so as to approximate the true variance; or match the shape of |f(x)|p(x) so as

to further reduce the true variance. Importance sampling estimate given by (2.31) is

biased (thus a.k.a. biased sampling) but consistent, namely the bias vanishes rapidly at

a rate O(Np). Importance sampling is useful in two ways (Chen, 2003) (i) it provides
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an elegant way to reduce the variance of the estimator (possibly even less than the true

variance); and (ii) it can be used when encountering the difficulty to sample from the

true probability distribution directly.

Although theoretically the bias of importance sampler vanishes at a rate O(Np), the

accuracy of estimate is not guaranteed even with a large Np. If q(x) is not close to

p(x), it can be imagined that the weights are very uneven, thus many samples are

almost useless because of their negligible contributions. In a high dimensional space,

the importance sampling estimate is likely dominated by a few samples with large

importance weights.

2.5 Sequential Importance Sampling (SIS)

Sequential importance sampling forms the bases of all particle filter algorithms derived

over past decades in the literature. SIS is a sequential Monte Carlo approach

known variously as bootstrap filtering, condensation algorithm, particle filtering

(Arulampalam et al., 2002) and survival of the fittest. It is a recursive Bayesian filter

implemented with Monte Carlo technique. Key idea is to represent the posterior

density with random samples and associated weights to compute required estimates.

As given with its name SIS is the sequential version of importance sampler. As the

number of samples approaches infinity samples represent the true posterior density

function and SIS becomes the optimal Bayesian estimator independent of the shape of

the posterior.

Weighted approximation to a density p(x) is given as in Section 2.4. The posterior can

be stated as the weighted approximation

p(x0:k|y1:k) ≈

Np∑

i=1

wi
kδ(x0:k − xi

0:k) (2.33)

where samples xi
0:k are drawn from importance density q(xi

0:k|y0:k). Weights are

defined according to importance sampling as in Eq.(2.34) as,

wi
k ∝

p(xi
0:k|y0:k)

q(xi
0:k|y0:k)

. (2.34)

To obtain a sequential formulation of Eq.(2.33) we need to obtain p(xi
0:k|y0:k)

recursively from the approximation p(xi
0:k−1|y0:k−1) with a new set of samples. If
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the importance density is chosen to factorize as,

q(x0:k|y0:k) = q(xk|x0:k−1,y1:k)q(x0:k−1|y0:k−1) (2.35)

then one can obtain samples xi
0:k ∼ q(x0:k|y0:k) by augmenting each of the existing

samples xi
0:k−1 ∼ q(x0:k−1|y1:k−1) with new state xi

k ∼ q(xk|x0:k−1,y1:k). To derive

the weight update equation, p(x0:k|y1:k) is expressed in terms of p(x0:k−1|y1:k−1),

p(yk|xk) and p(xk|xk−1). So the resultant equation representing the weight term is

expressed as,

wi
k ∝

p(yk|xk)p(xk|xk−1)p(x
i
0:k−1|y1:k−1)

q(xk|x0:k−1y1:k)q(x0:k−1|y1:k−1)
(2.36)

= wi
k−1

p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1,y1:k)
(2.37)

If q(xk|x0:k−1,y1:k) = q(xk|xk−1,yk), which is the conditional independency defined

between states and observations in a Kalman model, importance density becomes only

dependent on xk−1and yk. This is particularly useful in the common case when only

a filtered estimate of p(xk|y1:k) is required at each time step. Consequently weight

update equation is,

wi
k ≈ wi

k−1

p(yk|xi
k)p(x

i
k|x

i
k−1)

q(xk|xi
k−1,yk)

(2.38)

and the posterior filtered density p(xk|y1:k) can be approximated as shown in

Eq.(2.39),

p(xk|y1:k) ∝

Np∑

i=1

wi
kδ(xk − xi

k) (2.39)

where the weight wi
k is defined in equation (2.38). The SIS algorithm thus consists of

recursive propagation of weights as each measurement is received sequentially. Pseudo

code for the algorithm is given below.
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SIS PARTICLE FILTER[
{xi

k, w
i
k}

Np

i=1

]
= SIS

[
{xi

k, w
i
k}

Np

i=1 ,yk

]

• FOR i = 1 : Np

– Draw xi
k ∼ q(xk|xi

k−1,yk)

– Assign the particle a weight, wi
k, according to (2.38).

• END FOR

2.5.1 Degeneracy problem

A common problem of sequential importance sampler is the degeneracy phenomenon.

At each sequential step it is shown (Doucet, 1998) that variance of importance weights

increase and consequently except one or a few, samples will have negligible weight

after a while. This degeneracy implies that required posterior density is represented

with just a few samples and computational power is wasted to update weight which

have negligible contribution to posterior p(xk|y1:k). An appropriate criterion on

degeneracy is Effective sample size introduced in (Liu and Chen, 1998) as,

Neff =
Np

1 + V ar(w∗i
k )
, (2.40)

where w∗i
k = p(xi

k|y1:k)/q(x
i
k|x

i
k−1,yk) is referred as true weight. This connot be

evaluated exactly, but an estimate N̂eff can be obtained by

N̂eff =
1

∑Np

i=1 (w
i
k)

2
(2.41)

where wi
k is the normalised weight obtained using (2.38). In equation (2.41) always

Neff ≤ Np and small Neff indicates severe degeneracy. Degeneracy is an undesirable

effect in particle filter that is hard to prevent. Brute force approach to reducing its effect

is to use a very large Np. This is often impractical, and so there are two other methods

to rely on which are good choice of importance density and use of resampling.

2.5.2 Importance density

In (Liu and Chen, 1998) optimal importance density function which minimizes the true

weights, w∗i
k , has been shown to be as in Eq.(2.42)

q(xk|x
i
k−1,yk)opt = p(xk|x

i
k−1,yk). (2.42)
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However sampling from distribution p(xk|xi
k−1,yk) is often impossible, as a

consequence it’s impractical to use optimal importance distribution. In many problems

it is convenient to choose the prior p(xk|xi
k−1) as importance distribution. The weight

update yields

wi
k ∝ wi

k−1p(yk|x
i
k). (2.43)

Choosing prior as importance function simplifies the implementation however it may

give poor results where prior distributions are wide compared to likelihood. Choice of

importance density is crucial step in particle filter design and many different has been

proposed in literature.

2.5.3 Resampling

Resampling is the second method to reduce the degeneracy problem. Basic idea of

resampling is to eliminate the low weighted particles and concentrate on particles

which have large weight. Resampling is to generate a new set of points {xi∗
k }

Np

i=1 from

discrete density distribution,

p(xk|y1:k) ∝

Np∑

i=1

wi
kδ(xk − xi

k) (2.44)

by resampling Np times so that Pr(xi∗
k = x

j
k) = wj

k. Resulting sample is an i.id.

sample from the density given by Eq.(2.44) and as a result of resampling weights are

now reset to wi
k = 1/Np. In literature one can find different resampling algorithms

such as systematic sampling, stratified sampling, residual sampling and etc. Systematic

resampling is chosen the scheme for ease of implementation and widely use.

Although the resampling step reduces the effects of degeneracy problem it introduces

new problems. First, it limits the opportunity to parallelize the algorithm and second

particle which have high weights wi
k are statistically selected many times. This

leads to loss of diversity and the resultant density will contain many repeated points.

This is a severe problem particularly in small process noise and known as sample

impoverishment. Another side effect of resampling is the reduced number of paths

with time. Smoothed estimates based on paths will degenerate.

A pseudocode for generic particle filter with combined sampling and resampling step

is given below.
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GENERIC PARTICLE FILTER[
{xi

k, w
i
k}

Np

i=1

]
= SIS[

[
{xi

k, w
i
k}

Np

i=1 ,yk

]

• FOR i = 1 : Np

– Draw xi
k ∼ q(xk|xi

k−1,yk)

– Assign the particle a weight, wi
k, according to Eq.(2.38).

• END FOR

• Calculate total weight t = SUM [{wi
k}

Np

i=1]

• FOR i = 1 : Np

– Normalise: wi
k = wi

k/t

• END FOR

• Calculate N̂eff using Eq.(2.41)

• IF N̂eff < NT

– Resample obtained discrete probability distribution.

• END IF

2.5.4 Regularization

In standard particle filtering resampling step was suggested to reduce the degeneracy

problem. However resampling introduced new problems such as loss of diversity

among the particles also known as sample impoverishment, that results in poor

representation of posterior density. Sample impoverishment arises due to the fact that,

in the resampling stage samples are drawn from a discrete representation rather than a

continuous one thus unavoidably causes sample replication. This may lead to particle

collapse which is severe case of sample impoverishment where all particles occupy

the same point in the state space. A modified particle filter known as the regularized

particle filter (RPF) was proposed (Musso et al., 2001) as a potential solution to the

above problem.
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RPF is identical to the SIR particle filter except for the resampling stage. RBF

resamples from an approximated continuous filtering density, whereas the SIR

resamples from discrete approximation. Continuous approximated filtering density

is defined using a kernel function K and weights wi
t for (i = 1 . . .Np) associated with

samples xi
k according to Eq.(2.45),

p(xk|y0:t) ≈

Np∑

i=1

wi
tKh(x− xi

k). (2.45)

Kernel density K() is explicitly

Kh(x) =
1

hnx

K
(x
h

)
, (2.46)

where h > 0 is the kernel bandwidth, nx is the dimension of the state vector.

Regularization kernel K is chosen to be symmetric probability density function such

that (Silverman, 1986),

K ≥ 0,

∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
‖x‖2K(x)dx <∞. (2.47)

Kernel bandwidth is chosen to minimize the mean integrated square error between

the true posterior density and corresponding regularized empirical representation in

Eq.(2.45) defined as,

MISE(p̂) = E

[∫
[p̂(xk|y1:k)− p(xk|y1:k)]

2 dxk

]
(2.48)

where p̂() denotes the approximated density given by Eq.(2.45). In the special case

where all samples are equally weighted wi
k = 1/Np, (i = 1 . . .Np), optimal choice of

Kernel is Epanechnikov Kernel (Silverman, 1986),

Kopt =

{
nx + 2

2cnx

(1−
∥∥x2
∥∥) if

∥∥x2
∥∥ < 1 (2.49)

where cnx
is the volume of the unit hypersphere. Assuming that underlying density

is Gaussian with a unit covariance matrix, optimal choice for the bandwidth is

(Silverman, 1986)

hopt = A(k)N
−1

nx+4 , where A(k) = (4/(nx + 2))
1

nx+4 (2.50)

However when multimodal distributions is in question it is convenient to choose the

bandwidth h = hopt/2. Although results in Eq.(2.49) are optimal under the assumption
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that weights are equally weighted, they can be used in the general case to obtain a

suboptimal filter. One iteration of RPF is described in (Arulampalam et al., 2002) as

described below.

REGULARIZED PARTICLE FILTER[
{xi∗

k , w
i
k}

Np

i=1

]
= RPF

[
{xi∗

k , w
i
k}

Np

i=1 ,yk

]

• For i = 1 : Np

– Draw xi
k ∝ q(xk|xi

k−1,yk)

– Assign the particle a weight, wi
k according to Eq.(2.38).

• End For

• Normalize the weights such that,
∑Np

i=1w
i
t = 1

• Calculate N̂eff using Eq.(2.41)

• If N̂eff < Nt

– Calculate the empirical covariance matrix Sk of {xik, w
i
k}

Np

i=1

– Compute Dk such that DkD
T
k = Sk

– Resample

∗
[
{xi∗

k , w
i
k}

Np

i=1

]
= RESAMPLE

[
{xi∗

k , w
i
k}

Np

i=1

]

– For i = 1 : Np

∗ Draw ǫi ∼ K() from the Kernel

∗ xi∗
k = xi

k + hDkǫ
i

– End For

• End If

2.6 Sequential Monte Carlo (SMC) Samplers

In sequential Monte Carlo algorithms such as particle filtering given in Section.2.5,

we sample from a sequence of target densities evolving with a countable index

n, π1(x1) . . . πn(xn), each defined on a common measurable space (En, En) where
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xn ∈ En. Conventionally the particle filter is defined on the sequence of target

densities π1(x1) . . . πn(xn) where corresponding proposal distributions are defined as

η1(x1) . . . ηn(xn). The importance weight Wn at time n can be defined as

Wn =
γn(xn)

ηn(xn)
(2.51)

γn is the unnormalized target distribution according to πn = γn/Z where Z is the

normalizing constant.

In order to derive the importance weights sequentially one needs to calculate the

proposal distribution ηn(xn) pointwise which can be explicitly defined for k = 1 . . . n

by Eq.(2.52).

ηn(xn) =

∫
η1(x1)

n∏

k=2

Kk(xk|xk−1)dx1:n−1 (2.52)

As it is shown in Eq.(2.52), computation of the importance distribution ηn(xn) for

n > 1 requires an integration with respect to x1:n−1 = {x1 . . . xn−1} thus a closed

form solution to ηn(xn) is not available except for specifically designed kernels i.e.

independently selected proposal kernels whereK(xk|xk−1) = K(xk). This constitutes

a central limitation of particle filtering.

To appreciate this limitation, we will consider the form of the kernel explicitly. The

particle filtering is a common framework for sampling from a target distribution with

an increasing dimension over time that admits the integration in Eq.(2.52) to be trivial.

Whenever a new observation arrives at time n, the vector xn−1 needs to be extended to

xn = {xn,1 . . . xn,n} resulting in an increase in the dimension of target distribution by

one. Hence the particle filtering proposal kernel is defined as follows,

Kn(xn−1, xn) = δxn−1 (xn,−n) ηn (xn,n|xn,−n) . (2.53)

where the notation xn,−n = {xn,1 . . . xn,n−1} denotes the components of xn

excluding xn,n. The dirac delta function δxn−1 (xn,−n) shown in Eq.(2.53) just copies

xn−1 = {xn−1,1 . . . xn−1,n−1} as it is. Hence the particle filtering proposal given in

Eq.(2.53) only needs to label the latest component xn,n while preserving the rest,

xn,−n = {xn,1 . . . xn,n−1}. In other words, the conventional particle filter is not capable

of defining local moves on previous labels. This can be expressed as one of the major

drawback that explains why conventional particle filtering methods are not efficient in

fixed parameter estimation in general, and for DPM models in particular.
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To eliminate this limitation, Del Moral et al. (Del Moral et al., 2006) proposed

an auxiliary variable technique which solves the sequential importance sampling

problem in an extended space En = {E1 × . . . × En}. SMC sampler performs

importance sampling between the joint importance distribution ηn(x1:n) and the

artificial joint target distribution defined by π̃n(x1:n) = γ̃n(x1:n)/Zn where Zn denotes

the normalizing constant. The algorithm enables us to calculate efficient weight update

equations for a given valid proposal kernel Kn(xn−1, xn).

The proposal distribution ηn(x1:n) of SMC is defined on extended space En as follows,

ηn(x1:n) = η1(x1)
n∏

k=2

K(xk|xk−1) (2.54)

Note that here an integration is no longer required. However, this comes with the

expense of a extended artificial target density on the same extended space En defined

by

γ̃n(x1:n) = γn(xn)

n−1∏

k=1

Lk(xk+1, xk). (2.55)

Here, we introduced a sequence of backward kernels Lk(xk+1, xk), k = {1 . . . n − 1}

to define the artificial target distribution shown in Eq.(2.55). Consequently π̃n(x1:n)

defined on extended space En admits πn(xn) as a marginal by construction therefore

the resultant weighting function ensures convergence to the true target density.

The generic SMC algorithm which is used to sample from a sequentially evolving

target posterior π̃n is presented as follows (Del Moral et al., 2006).

Assume that a set of weighted particles
{
wi

n−1, x
i
1:n−1

}Np

i=1
approximate to π̃n−1 at

time n − 1. At time n the path of each particle can be extended using a Markov

kernel, xin ∼ Kn(x
i
n−1, xn). The unnormalized importance weights associated with

the extended particles are calculated according to Eq.(2.56),

Wn(x1:n) = Wn−1(x1:n−1)vn(xn−1, xn) (2.56)

=
γ̃n(x1:n)

ηn(x1:n)

where the incremental term of weight equation, vn(xn−1, xn), is equal to

vn(xn−1, xn) =
γn(xn)Ln−1(xn, xn−1)

γn−1(xn−1)Kn(xn−1, xn)
. (2.57)

As the discrepancy between ηn and γ̃n tends to increase with n, variance of the

unnormalized importance weights tends to increase that yields degeneracy. A
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resampling scheme is used if degeneracy is above a certain level as measured by, e.g,

effective sample size (ESS) (Liu and Chen, 1998).

2.6.1 Backward kernels

Design of efficient sampling schemata hinges on properly choosing Ln with respect

to Kn The introduction of the Ln extends the integration domain from E to En and

eliminates the necessity of calculating ηn(xn). However increasing the integration

domain also increases the variance of the importance weights. In (Del Moral et al.,

2006) it is shown that the optimal backward Markov kernel Lopt
k (k = 1, . . . , n)

minimizing the variance of the unnormalized importance weight wn(x1:n) is given for

any k by,

Lopt
k−1(xk, xk−1) =

ηk−1(xk−1)Kk(xk−1, xk)

ηk(xk)
(2.58)

Replacement of the optimal backward kernel in Eq.(2.58) with the one defined in

Eq.(2.56) yields the importance weight,

Wn(x1:n) =
γn(xn)

ηn(xn)
. (2.59)

Eq.(2.59) states that, using the optimal backward kernel, importance sampling is

performed on E instead of En. However, the marginal distribution, ηn(xn), shown

in Eq.(2.59) usually does not admit a closed form solution therefore it is almost never

possible to use the optimal backward kernel. The common strategy is to approximate

the optimal kernel as close as possible to provide asymptotically consistent estimates

(Del Moral et al., 2006) . A sensible approximation can be obtained by substituting

πk−1 for ηk−1, k = 2 . . . n where the approximate kernel Lk−1 can be expressed as in

Eq.(2.60),

Lk−1(xk, xk−1) =
πk−1(xk−1)Kk(xk−1, xk)∫

πk−1(xk−1)Kk(xk−1, xk)dxk−1

(2.60)

yielding the weight update equation,

vn(xn−1, xn) =
γn(xn)∫

E
γn−1(xn−1)Kn(xn−1, xn)dxn−1

. (2.61)

Since γn is known analytically, it is convenient to use Eq.(2.61) rather than Eq.(2.59)
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2.6.2 Forward kernels

Another important issue that needs to be discussed is specification of forward kernels.

Gibbs type kernels and MCMC kernels are commonly used kernel type in SMC

sampler. In practice it is often useful to define Gibbs kernels where partial state space is

updated particularly for sequential applications. Let xn,u denotes the uth component xu

of x = (x1, . . . , xj) at time n. It is straightforward to establish the proposal minimizing

the variance of Eq.(2.61) conditional on xn−1 as shown in Eq.(2.62)

Kn(xn−1, dxn) = δxn−1,−u
(dxn,−u)πn(dxn,u|xn,−u) (2.62)

where xn,−u = (xn,1, . . . , xn,u−1, xn,u+1, . . . , xn,j). In this case the backward kernel

can be represented as in Eq.(2.63)

Ln−1(xn, dxn−1) = δxn,−u(dxn−1,−u)πn−1(dxn−1,u|xn−1,−u) (2.63)

and the incremental weight update equation for a Gibbs type kernel is,

w̃n(xn−1, xn) =
γn(xn−1,−u, xn,u)

γn−1(xn−1,−u)πn(xn,u|xn−1,−u)
(2.64)

Assuming Kn is an MCMC kernel of invariant distribution πn, an approximation of

Eq.(2.60) can be obtained as shown in Eq.(2.65)

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
(2.65)

Eq.(2.65) is the reversal Markov kernel associated with Kn. Therefore a good

approximation to Eq.(2.61) can be derived for πn−1 ≈ πn and the unnormalized

incremental weight equation is,

w̃n(xn−1, xn) =
γn(xn−1)

γn−1(xn−1)
(2.66)

The inference framework is fairly general and several methods proposed in the

literature appear as special cases of the SMC sampler (Del Moral et al., 2006),

incuding the sequential Monte Carlo algorithms using MCMC kernels are proposed

by Chopin (Chopin, 2002), Jarzynski (Jarzynski, 1997), Neal (Neal, 2001) and

MacEachern (MacEachern et al., 1999).
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2.7 Dirichlet Process Mixture Models

In recent years, Dirichlet Process Mixtures (DPM) model has been one of the most

widely used and popular approach to nonparametrical probabilistic models (Antoniak,

1974). Originally, DPM have been widely used as a building block in hierarchical

models for solving density estimation and clustering problems where the actual form

of the data generation process is not constrained to a particular parametric family such

as mixture problems with unknown number of components (Blei and Jordan, 2004).

Now we will explain the DPM model structure and the notation used throughout the

thesis. Let us first define the notation for a finite mixture model, and then it will be

extended to a DPM model.

In a batch Bayesian setting, the joint distribution corresponding to a finite mixture

model over N observations y = {yi}, i = 1 . . . N , can be defined as follows:

p(θ, z, y) =

(
N∏

i=1

p(zi)g(yi|θzi)

)
k∏

j=1

p(θj) (2.67)

Here, for i = 1 . . . N , zi ∈ {1 . . . k} denotes the cluster index of the i th observation

and θ = {θj}, j ∈ {1 . . . k} denote the cluster conditional parameters. Here, k denotes

the maximum number of clusters. We will use z = {zi}, i = 1 . . . N to refer to

clustering variables, that we also call cluster labels or simply labels. The mixture

density p(y) can be obtained as the marginal by summing over the clustering variables

z and integrating over mixture component parameters θ.

Given a set of observations y, in order to calculate the posterior probability p(z, θ|y),

it is necessary to know k, the number of mixture components. However, this is rarely

the case in practice and k needs to be estimated using more sophisticated inference

techniques (Green, 1995). The DPM model introduced by Antoniak (1974) provides,

among others, an elegant alternative for construction of mixture models with unknown

number of components. In the sequel, we will refer to the target posterior as

π(x) ≡ p(z, θ|y) (2.68)

where x = {z, θ}. It is advantageous to construct a mixture model sequentially, where

data arrives one by one. Note that unlike a time series model, the likelihood will be

invariant with respect to the actual order. This will also highlight the connection to

a DPM which is easily constructed as a sequential process. To denote the sequential
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construction, we extend our notation with an explicit ’time’ index n. Note that this

index does no correspond to the wall clock, it just denotes the number of observations

seen so far.

We denote the observation sequence at time n by yn = {yn,1 . . . yn,n}. Each

observation yn,i, i = 1, . . . n, is assigned to a cluster where zn,i ∈ {1, . . . kn} is the

cluster label and, kn ∈ {1 . . . n} represent the number of clusters at time n. The

vector of cluster variables is defined as zn = {zn,1 . . . zn,n} and corresponding cluster

parameters are represented with the parameter vector θn = {θn,1 . . . θn,kn}.

The reader may find this notation redundant, as clearly yn1,j = yn2,j for all

j ≤ min(n1, n2). However, the notation will be justified in the SMC samplers

framework where we will target a joint density on all times n = 1 . . .N .

The DPM model assumes that the cluster parameters are independently drawn from

the prior π(θ) and the observations are independent of each other conditional on the

assignment variable zn,i. Hence the DPM posterior density π(xn) can be expressed as,

πn(xn) ∝ p(zn)

kn∏

j=1

p(θn,j)

n∏

i=1

g(yn,i|θn,zn,i
) (2.69)

where xn = {zn, θn}. The prior on clustering variable vector zn is formulated by

Eq.(2.70) in a recursive way,

p(zn,i+1 = j|zn,{1:i}) =

{ lj
i+α

, j = 1, . . . , ki
α

i+α
, j = ki + 1

}
(2.70)

where ki is the number of clusters in the assignment zn,{1:i}. lj is the number of

observations that zn,{1:i} assigns to cluster j and α is a ’novelty’ parameter ; when

α is large the process has the tendency to generate new clusters. An interesting

mathematical property of this construction is that it assigns the same prior probability

to similar partitions regardless of the order of observations as lj are clearly independent

of the actual order. For a rigorous development from first principles, see the so called

stick breaking construction (Sethuraman, 1994).

We assume that conjugate prior is chosen for the parameters to ensure the conditions

described in (Fearnhead, 2004). Typically given zn, under conjugacy assumption the

parameter θn can be integrated out and the DPM posterior distribution can be calculated

up to a normalizing constant.
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2.8 Models and Algorithms for Maneuvering Target Tracking

In this section, we give basic information on target motion models that defines the

prior structure of the tracking algorithms and introduce well known state of the art

maneuvering target tracking models introduced in the literature. We will present three

models, interacting multiple model (IMM), multiple model particle filter (MMPF) and

jump Markov system particle filter (JMS-PF), that all regard on the multiple model

structure. These models differ in the way they unify the inference scheme with the

multiple model approach. We also explain the variable rate particle filters (VRPF)

which is one of the recent advances in the field of maneuvering target tracking.

Multiple models can be stated as a Hybrid scheme, including continuous and discrete

random variable in a Bayesian framework. In maneuvering Target tracking, discrete

variables represents the hypothesis of target mode sequence. However exponential

increment in the number of hypothesis with time will render the optimum solution

infeasible. Common approach taken is to reduce the number of hypothesis by some

pruning or merging techniques. Final estimate is usually constructed with mixing or

selecting the models.

Although, MM approaches defined in this section have quite different inference

schemes, they try to solve the similar probabilistic structures regarding hybrid Markov

models. A distinct approach proposed recently is Variable Rate Particle filters which

models the maneuvering times as state process independent of observation times

(Godsill and Vermaak, 2005). In contrast to other models state arrival times are

assumed as random processes. The resultant model refers to a semi Markov model for

tracking. The model claims that nature of a maneuvering target motion, particularly

manned vehicles, fits better to the variable rate scheme.

2.8.1 Target dynamic motion models

Model based tracking methods assume that the target motion and its observations can

be represented by some known mathematical models accurately. The most known

models are state space models in the discrete form,

xk+1 = fk(xk, uk) +wk (2.71)

yk = hk(xk) + vk (2.72)
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where fk and hk are time indexed functions which defines the motion and the

observation model. xk, yk, uk are target state vector, observation vector and control

input at discrete time tk respectively, and wk, vk are process and measurement noise

sequences.

One of the major challenge for target tracking arises from motion uncertainty

(Li and Jilkov, 2003). This uncertainty is caused by the lack of accurate knowledge

of the target dynamic model. Although adequate models can be considered in state

space form as in Eq.(2.71), a tracker has to confront the absence of actual control input

u of the target and possibly actual form of f(), its parameters and statistical properties

of the noise w for the particular target. In the case of maneuvering target tracking a

motion model that accounts well for the true dynamic behavior of the target has to

be considered. Most of the relevant work with the subject focused on 2 main tasks

(Li and Jilkov, 2003).

• Approximate the actually nonrandom control input u as a random process of

certain properties

• Describe typical target trajectories by some representative motion models with

properly designated parameters.

Target motion can be classified into two major regimes, one is maneuver and the other

is non-maneuver. In the sequel we will give a short introduction on non-maneuver

and maneuver motion models. There are numerous motion models in literature used

for target tracking that aims to describe the target kinematics explicitly to increase

the tracker performance. Models can be clustered into 2 main types of which based

on random processes and the ones based on target kinematics. Appropriate choice

of motion model is highly dependent on the application and the type of the tracking

algorithm. Thus we will just explain a few basic examples of such models and a

sophisticated one which will be used in the presented work.

2.8.1.1 Non maneuvering motion model

Non maneuvering motion is commonly referred as the straight motion at constant

velocity. It is generally expressed in the discrete form as (Bar-Shalom et al., 2001),

xk+1 = Fxk +Gwk (2.73)
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where state vector x = [x, y, ẋ, ẏ] constitutes of coordinate positions x, y and velocities

along x and y axis ẋ, ẏ respectively. Likewise, process noise vector wk constitutes of

[wx, wy] which corresponds to noisy accelerations along the x any y axes. Process

noise vector is commonly chosen as wk ∼ N(0,Q) where covariance matrix is chosen

to be Q = σwI which defines an uncoupled acceleration across x and y directions.

In constant velocity model, parameter σw is selected as a small value to model the

uncertainties. The matrix F also named as transition matrix is,

F =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 (2.74)

and matrix G is defined as,

G =




T 2/2 0
0 T 2/2
T 0
0 T


 (2.75)

where T is the sampling period. Since constant velocity model assumes independent

constant acceleration values with a very small process noise σw between state

transitions, by increasing the value of process noise σw, it can converted to a

maneuvering target model and is so called constant white acceleration model. However

a maneuver by its nature aims at accomplishing a certain task and thus is rarely

independent with respect to time thus this model can be represented as the simplest

maneuver model and usually used when maneuver is quite small.

A maneuvering motion can be expressed as the motion mode, exempt the straight

constant velocity. Variation of target acceleration is accounted as a state variable in

Maneuvering Target models. They differ in the way they deal with the acceleration. In

the following sections maneuvering motion models of which are used extensively in

the literature will be described.

2.8.1.2 Constant acceleration model (CA)

Constant acceleration model assumes the acceleration is a process with independent

increments (Bar-Shalom et al., 2001). State vector x = [x, y, ẋ, ẏ, ẍ, ÿ] also includes

acceleration deviation ẍ, ÿ respectively along x and y axis. This model is most

conveniently expressed in the discrete time given as,

xk+1 = Fxk +Gwk (2.76)
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In Eq.(2.76), the transition matrix F is,

F =




1 0 T 0 T 2/2 0
0 1 0 T 0 T 2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1




(2.77)

and the matrix G is,

G =




T 2/2 0
0 T 2/2
T 0
0 T
0 1
1 0




(2.78)

where T is sampling period and wk constitutes the noise vector [wx, wy]. The

assumption of the direct discrete-time CA model, that the acceleration increment

∆ak = ak+1 − ak is independent across different sampling intervals, is hardly

justifiable. However more complex models are proposed by Singer (1970) that assumes

target acceleration is a zero mean first order stationary Markov process. The process

has autocorrelation Ra = E[a(t + τ)a(t)] = σ2eα|τ | and should be expressed as a

linear time invariant discrete model ak+1 = e−αTak + wa
k where wa

k is a zero mean

white noise sequence with variance σ2(1− e−α2T ).

2.8.1.3 Constant turn model (CT)

Constant Turn model is one of the well known models based on target kinematic unlike

the others we have represented before (Bar-Shalom et al., 2001). CT comprises of

curvilinear motion model from kinematics. This is a constant speed and constant turn

rate model, and defined with the state vector x = [x, y, ẋ, ẏ] as,

xk+1 = Fxk +Gwk (2.79)

CT motion transition matrix F is given as a function of sampling time T and angular

rate w,

F =




1 sin(wT )/wT 0 −(1− cos(wT ))/w
0 cos(wT ) 0 −sin(wT )
0 (1− cos(wT ))/w 1 sin(wT )/wT
0 sin(wT ) 0 cos(wT )


 (2.80)

and usually matrix G chosen is identical to Eq.(2.78). An important issue we have

to indicate is that CT model is completely linear owing to angular rate w is known
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priorly. However as a practical consideration this assumption is not justifiable. As a

consequence, models are developed assuming angular rate w as a random variable

which is included as a state component to be estimated. Angular rate is defined

by an wiener process or a first order Markov process when interpreted as a random

variable. Note that under this circumstance the model should no longer be linear

thus linearization techniques may be required to reach a solution depending on the

algorithm used.

2.8.1.4 Curvilinear motion models (CL)

Curvilinear motion models is one of the most sophisticated model considered in the

literature (Li and Jilkov, 2003). It accounts for possibly non-zero normal (cross-

track) and tangential (along-track) target maneuver accelerations simultaneously. In

(Li and Jilkov, 2003) continuous and discrete form equations for cuvilinear motion

model in cartesian coordinates has been presented. However we will represent the

curvilinear motion a slightly different way, represented using intrinsic coordinate

system (Godsill and Vermaak, 2005). Note that a special case of curvilinear motion

dynamics for a particular scenario is presented here which is in accord with the model

used in Variable Rate particle filters.

In the intrinsic coordinate system applied forces are represented relative to heading of

the object, distance traveled along the path of motion is denoted by s, while the angle

of the path relative to x axis is denoted by ψ. Dynamics of motion is determined by the

tangential acceleration aT and perpendicular acceleration aP defined as in Eq.(2.81)

as,

aT (t) =
d2s

dt2
, ap(t) =

ds

dt

dψ

dt
=

1

R

(
ds

dt

)2

(2.81)

where R is the instantaneous radius of curvature of the path. Piecewise constant

force relative to the direction of heading ψ is assumed to be applied having tangential

component TT,k and perpendicular component TP,k over time interval (τk, τk+1]. This

model is suitable particularly scenarios where applied forces remains constant relative

to the direction of flight between any two times τk and τk + 1. Ones the initial

conditions are set, it is possible to define the target trajectory deterministically. In

the scenario proposed, object being tracked makes discrete changes at random times to

the controls and follows a deterministic path between these change times. To model the
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external effects such as air resistance, a frictional force λ(ds/dt) is assumed to apply

in the opposite direction to the path. Applied forces in tangential and perpendicular

direction is represented in Eq.(2.82).

TT,k = λ
ds

dt
+m

d2s

dt2
, TP,k = m

ds

dt

dψ

dt
, τk < t ≤ τk+1 (2.82)

where m is the mass of the object and λ the coefficient of resistance. To represent the

speed v(t) along the path at time t = τk + ∆τ integration from time τk to τk + ∆τ is

accomplished as in Eq.(2.83),

v(τk +∆τ) =
1

λ

(
TT,k − (TT,k − λv(τk))e

−∆τλ/m
)

(2.83)

Distance along the path is,

s(τk +∆τ) = s(τk) +
δτ

λ
TT,k +

m

λ2
(TT,k − λv(τk))(e

−∆τλ/m − 1). (2.84)

Then using equation (2.83) representing v(t), perpendicular equation is rearranged and

integrated as,

dψ

dt
=

TP,k
mv(t)

, τk < t ≤ τk+1, v(t) 6= 0 (2.85)

ψ(τk +∆τ) = ψ(τk) +

∫ τk+∆τ

τk

TP,kdt

mv(t)
(2.86)

= ψ(τk) + TP,k/TT,k

(
∆λ/m− log

∣∣∣∣
v(τk)

v(τk +∆τ)

∣∣∣∣
)
. (2.87)

Results representing speed v(t) and angle of the path ψ(t) are in closed form however

closed form solution is not available for position in cartesian coordinates which

requires a numerical integration technique to compute. In (Godsill and Vermaak, 2005)

a simple Euler approximation is used on a fine time grid, calculating the changes in x

and y coordinates over a time interval δt as shown in Eq.(2.88)

δx ≈ v(t)cos(ψ(t))δt,

δy ≈ v(t)sin(ψ(t))δt,

z(t+ δt) ≈ z(t) + [δx δy]T . (2.88)

2.8.2 Interacting multiple models (IMM)

Interacting Multiple Model represented by Blom (Blom et al., 1998) is one of the best

known algorithm that deserved this popularity by having satisfactory results with a
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reasonable complexity. Although it is not mandatory, mode sequence is assumed as

first order Markov process that helps to reveal a tractable algorithm.

Assume S different models at time k are used, denoted by r(i)k , {i = 1 . . . S}, where

probability for each model is γ(i)k = p(r
(i)
k |y0:k). The posterior density distribution at

time k is given by the total probability theorem using S different models as,

p(xk|y0:k) =
S∑

j=1

p(xk|r
(j)
k ,y0:k)P (r

(j)
k |y0:k). (2.89)

Applying Bayes theorem to the first factor in (2.89) using y0:k = {yk,y0:k−1} gives

p(xk|r
(j)
k ,y0:k) ∝ p(yk|r

(j)
k ,xk)p(xk|r

(j)
k ,y0:k−1). (2.90)

Applying the total probability theorem to the last factor in (2.90) gives

p(xk|r
(j)
k ,y0:k−1) =

S∑

i=1

p(xk|r
(j)
k−1, r

(i)
k−1,y0:k−1) p(r

(i)
k−1|r

(i)
k ,y0:k−1)︸ ︷︷ ︸

γk−1|k−1(i,j)

(2.91)

IMM can be integrated with any inference scheme that can represent the distribution,

p(xk|r
(j)
k−1, r

(i)
k−1,y0:k−1). (2.92)

If we assume the state variables as Gaussian distribution conditioned on mode then

Eq.(2.91) can be approximated as,

p(xk|r
(j)
k ,y0:k−1) ≈

S∑

i=1

p(xk|r
(j)
k−1, r

(i)
k−1,

{
x̂l
k−1|k−1, P̂

l
k−1|k−1

}S

l=1
)γk−1|k−1(i, j)

(2.93)

=

S∑

i=1

p(xk|r
(j)
k−1, r

(i)
k−1, x̂

(i)
k−1|k−1, P̂

(i)
k−1|k−1)γk−1|k−1(i, j). (2.94)

Approximation is due to the fact that the models summarize the history through the

estimates and covariances. Mixing probabilities are expressed using Bayes theorem as

γk−1|k−1(i, j) = p(r
(i)
k−1|r

(j)
k ,y0:k−1) (2.95)

∝ p(r
(j)
k |r

(i)
k−1,y0:k−1)︸ ︷︷ ︸
p(i,j)

p(r
(i)
k−1|y0:k−1)︸ ︷︷ ︸

γ
(i)
k−1

(2.96)

where p(i, j) in practice is used as a design parameter. Eq. (2.93) is defined as a

Gaussian mixture. An approximation is required to define it with a single Gaussian.
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Moreover a similar methodology is adopted to estimate the joint mode distribution.

This situation well defines the algorithm that integrates the EKF with IMM model and

usually referred as IMM-EKF algorithm. However we wont give further details of the

algorithm in this thesis.

2.8.3 Multiple model particle filter (MMPF)

The MMPF has been used to solve various maneuvering target tracking problems

(McGinnity and Irwin, 2000). MMPF considers an augmented hybrid state vector,

xk = [x∗k, rk] where x∗k is the continuous state vector and the rk is the discrete mode

variable. In order to recursively compute PF estimates, the MC representation of

p(xk|y0:k) has to be propagated in time using posterior pdf p(xk−1|y0:k−1) of which

is approximated by the samples and associated weights
{
xik−1, w

i
k−1

}Np

i=1
according to,

p(xk−1|y0:k−1) ≈

Np∑

i=1

wi
k−1δ(yk−1 − yi

k−1) (2.97)

where δ(.) is the dirac delta measure. Posterior pdf at k can be written as in Eq.(2.98).

p(xk|y0:k) ∝ p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1 (2.98)

To represent the posterior given by Eq.(2.98) using particles, importance sampling

is employed. By choosing the importance density to be prior p(xk|xk−1), one can

draw samples from xi
k ∼ p(xk|xi

k−1), for i = 1, ...Np. First sample is drawn

from the discrete probability mass function p(rk|rik−1) which indicates the transition

probabilities between modes defined as an first order markov chain. The samples are

represented as,

rik ∼ p(rk|r
i
k−1) (2.99)

Next, given the sample rik, one can easily sample xi
k ∼ p(xk|xik−1, r

i
k) through the

dynamic model with the given process noise. This gives us the sample space {xi
k}

of the posterior p(xk|y0:k) and the weights associated with the samples are computed

recursively using the measurement equation as,

wi
k ∝ wi

k−1p(yk|x
i
k). (2.100)

The degeneracy phenomenon which is common problem with Particle filters also

arise in MMPF. A conventional resampling step to overcome degeneracy is used as

in particle filters.
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2.8.4 Jump Markov system particle filter (JMS-PF)

The JMS-PF is based on jump Markov linear system proposed in (Doucet et al.,

2001b). Standard particle filtering techniques focused on estimating the pdf of the state

variable xk as described in MM-PF. However, idea in the JMS-PF is to emphasize the

estimation of mode sequence r0:k, given the measurements y0:k. The density of latent

variables p(x0:k, r0:k|y0:k) can be factorized into,

p(x0:k, r0:k|y0:k) = p(x0:k|r0:k,y0:k)p(r0:k|y0:k. (2.101)

Eq. (2.101) indicates that given a specific mode sequence and the measurements,

p(x0:k|r0:k,y0:k) can be estimated with any conventional nonlinear filtering method.

Therefore mode sequence estimation is considered as the weak spot of the state density

estimation. Methodology is to estimate mode sequence p(r0:k|y0:k) using a PF. Using

Bayes rule, the equation,

p(r0:k|y0:k) =
p(y0:k|y0:k−1, r0:k)p(rk|rk−1)

p(yk|y0:k−1)
p(r0:k−1|y0:k−1) (2.102)

provides a useful recursion for the estimation of p(r0:k|y0:k) with the generated Np

particles {ri0:k}
Np

i=1 at time k. An importance function of the form q(rk|y0:k, r0:k−1) is

required. Suppose at time k− 1 we have set of particles
{
ri0:k−1

}Np

i=1
that characterizes

the pdf p(r0:k−1|y0:k−1). Drawing Np samples rik ∼ q(rk|y0:k, r
i
0:k−1) will be sufficient

to represent the mode distribution as in Eq.(2.103),

p(r0:k|y0:k) ≈

Np∑

i=1

wi
kγ(r0:k − ri0:k), (2.103)

where the weight is

wi
k ∝

p(yk|y0:k−1, r
i
0:k)p(r

i
k)

q(rik|y0:k, r
i
0:k−1)

(2.104)

It shown in (Doucet, 1998) that optimal importance density which minimize the

variance of weights is p(rk|y0:k, r
i
0:k−1). Optimal importance density can be

represented as,

p(rk|y0:k, r
i
0:k−1) =

p(yk|y0:k−1, r
i
0:k−1, rk)p(rk|r

i
k−1)

p(yk|y0:k−1, ri0:k−1)
. (2.105)

In this form denominator is independent of rk and p(rk|rk−1) is the Markov transition

probability defined between modes. The p(rk|y0:k, r
i
0:k−1), featuring the denominator
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is the only term that restricts to sample the optimal distribution. Hopefully, it can be

estimated by one step a head EKF estimator. Weight update equation using Eq.(2.105)

as the proposal distribution is achieved by

wi
k ∝ p(yk|y0:k−1, r

i
0:k−1) =

s∑

j=1

p(yk|y0:k−1, r
i
0:k−1, rk = j)p(rk = j|rik−1). (2.106)

Since rk ∈ {1, ..., S} S one step a head EKF innovations is required to compute the

importance weights.

The performance of MMPF, IMM-EKF and JMS-PF has been investigated by

Arulampalam et al. (2004). EKF algorithm has been unified with IMM and JMS-PF

to estimate the posterior conditioned on the mode sequence. Comparison of bearing

only single target tracking under non-cluttered environment has been evaluated and for

comparison MMSE of each algorithm is calculated for a certain scenario. They have

reported MMPF is superior compared to JMS-PF and IMM-EKF. Among the other

methods IMM-EKF was inferior to others while JMS-PF has modest performance.

2.8.5 Variable rate particle filters

Variable rate particle filters (VRPF) mostly rely on the semi-Markov model framework.

VRPF introduced by Godsill and Vermaak (2005) proposes an efficient generalized

nonlinear inference scheme using particle filters in a semi-Markov model.

Standard particle filters assume states are associated each other in a Markov process

and the state sampling rate is determined with the rate measurements arrive. However

in real data sets trajectories are characterized prolonged period of smoothness with

infrequent sharp changes. This is specially true for manned targets which moves along

a course for a while and then change its direction according to intercept new heading.

Thus, this representation makes it is possible to achieve a parsimonious representation

of the target trajectory if the state sampling is adapted to nature of the data. Variable

rate scheme allocates more state points to regions of rapid deviations and fewer points

to smooth trajectories thus models the times when maneuver occurs and the parameter

of this maneuver.

In contrast to the fixed and known sampling rate of standard tracking techniques,

Variable Rate particle filter models the state arrival times as a Markovian random

process. This allows time between consecutive target states to be variable thus number
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of target states and their timings are unknown. Although not necessity in a typical

scenario number of state point will be much lower than the number of observations.

An interpolation function is constructed to match the observation with variable state

sequence and formulate the likelihood. The model assumes likelihood function is

only dependent with the local neighboring state points to lead an efficient recursive

implementation.

2.8.5.1 Variable rate models

In standard state-space models a state variable xt evolves with time index t.

Diversely, variable rate state is defined as xk = (τk, θk) where k is a discrete index,

τk > τk−1 > . . . > τ0 denotes the state arrival time for state k and θk denotes the vector

of variables necessary to parameterize the target state. In the tracking application state

vector will include variables like position, velocity, heading etc.

Variable state sequence follows a Markovian process such that states are independently

generated according to density function in Eq.(2.107),

xk ∼ p(xk|xk−1) = p(θk|θk−1, τk, τk−1)p(τk|θk−1, τk−1) (2.107)

where we constraint that τk > τk−1 and finite. Measurement vectors yt relating to time

t are assumed to occur on a regular time grid and in correct time ordering although

this assumption can be removed for cases of irregular sampling or out of sequence

measurements.

In standard models, timings of the state process and the measurements do match, so

that each measurement yt is uniquely associated with a state variable xt. However, in

a variable rate model state timing can be asynchronous with the measurement process.

The rate of the measurement arrival will be typically higher than that of the state

process although not necessity. In need, a likelihood is defined with the assumption that

yt is independent of all other data points, conditionally upon the neighborhood of states

xNt
= {xk; k ∈ Nt(x0:∞)}. Note that each neighborhood Nt (x0:∞) is constructed as

a deterministic function of the time index t and the state sequence x0:∞. Thus it is

a random variable itself, a feature that is not present in standard state space models.

Throughout the document Nt(x0:∞) will be denoted by Nt. Consequently likelihood

is represented as a density distribution p() for consecutive t as,

yt ∼ p(yt|x0:∞) = p(yt|xNt
) (2.108)
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For practical computational purposes the neighborhood will need to have a local

structure and Nt will contain only states whose times τk are close to the observation

time t. Neighborhood structure will often be determined directly by logical or

physical considerations of the model. Interpolated state vector θ̂t = ft(xNt
), which

is deterministic function ft() of the states in the neighborhood xNt
, is defined that

leads the calculation of the observation density at time index t. Observation density is

then expressed as

p(yt|xNt
) = p(yt|θ̂t) (2.109)

which allows pointwise evaluation of the likelihood p(yt|xNt
) and the process. It will

usually be natural to arrange for the neighborhood to be “strictly monotonic” with t.

Largest and smallest elements of Nt is defined in Eq.(2.110) as,

N+
t = max (Nt) N−

t = min (Nt) (2.110)

and for monotonicity assumed that,

N+
t ≥ N

+
t−1, N−

t ≥ N
−
t−1 (2.111)

Although the monotonicity assumption is not required for a valid estimation procedure,

it is preferred as it simplifies the notation. Combining the Markovian assumptions it is

possible to represent the joint density of states and observations as follows:

p(x0:K ,y0:T ) = p(x0)

K∏

k=1

p(xk|xk−1)

T∏

t=0

p(yt|xNt
), K ≥ N+

T (2.112)

where the conditionK ≥ N+
T ensures the “complete” neighborhood for the calculation

of the observation density at the final time index T . For simplicity, K will be

considered as a constant “sufficiently” large that N+
T can never exceed it. This is

an important concept in construction of a sequential estimation procedure that will be

detailed in subsequent paragraphs. Another requirement to determine neighborhood

properly is that, the neighborhood N will not be modified by addition of future state

points xN+
t

. Thus for each time t for which an observation yt is available we can

always simulate a sequence of new states from the dynamic model until such a time

as a valid neighborhood Nt has been obtained. If k state will be simulated one has to

wait until k = N+
t . In a target tracking application neighborhood is constructed as

Nt = {k, k − 1} of which provides simplicity in update equations.
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2.8.5.2 Variable rate state estimation using particle filters

Purpose in this section is to derive an sequential algorithm that estimates the sequence

of variable rate state points as new measurements become available. The conditional

distribution referred as variable rate filtering distribution, written as

p
(
x0:N+

t
,N+

t |y0:t

)
(2.113)

where y0:t = (y0, . . . ,yt) is the sequence of available measurements up to time t

and x0:k = (x0, . . . ,xk) denotes a sequence of k hidden state variables. Variable rate

filtering distribution is interpreted as a joint distribution over the number of state points

N+
t and their values x0:N+

t
. N+

t is a random variable thus variable rate distribution has

variable dimension support. For recursive state estimation an update rule of the form,

p(x0:N+
t−1
,N+

t−1|y0:t−1)→ p(x0:N+
t
,N+

t |y0:t) (2.114)

is required. As the new measurement is received, variable rate distribution at the

current time step will be updated. Filtering distribution at time t is related to that

at time t− 1 according to the Eq.(2.115) obtained using Bayes rule.

p(x0:N+
t
,N+

t |y0:t) =
p(x0:N+

t−1
,N+

t−1|y0:t−1)p(yt|xNt
)p(xN+

t−1+1:N+
t
|xN+

t−1
)

p(yt|y0:t−1)
(2.115)

Note that Eq.(2.115) is derived under the assumption that, new state points beyond

Nt−1 does not alter the neighborhoods from times 0 to t − 1. Sequential update

rule is similar to standard particle filtering except that number of states to represent

the trajectory is an unknown random variable of which is a very important issue

when developing recursive numerical techniques. An important property of variable

rate structure is that neighborhood may not need to increase at every time step,

which implies N+
t = N+

t−1 for some or many values of t. In this case the term

p(xN+
t−1+1:N+

t
|xN+

t−1
) disappears from the update expression.

Variable rate structure is analytically intractable for most models of practical interest

therefore sequential Monte Carlo methods provide an efficient update rule. However

standard particle filtering algorithm can not be applied to the update rule given by

Eq. (2.115) owing to variable dimensionality of the hidden state sequence at each

time index t. An intuitive method is applied by the authors (Godsill and Vermaak,

2005) to obtain a fixed dimensional state sequence. They assume that state sequence
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comprise fixed number of state points K, that extend beyond the current time horizon

so that neighborhood including Nt can be unambiguously completed. K is chosen as

an arbitrarily large number that satisfies the constraint. Value of K does not affect the

final algorithm and having set up a fixed dimensional problem, sequential importance

sampling can be applied to the variable rate state distribution. Fixed dimensional target

distribution can be factorized as follows,

p(x0:K ,N
+
t |y0:t) = p(x0:N+

t
,N+

t |y0:t)π(xN+
t +1:K |x0:N+

t
) (2.116)

thus by the construction, desired variable rate filtering distribution is the marginal with

respect to xN+
t +1:K . The conditional distribution extends the variable state sequence

to the fixed horizon K, and its choice is arbitrary. Now we can define the sequential

importance sampler assuming that we have large number Np of weighted Monte Carlo

samples approximating the variable rate filtering distribution at the previous time step

as in Eq.(2.117).

{
x
(i)

0:N+
t−1

, w
(i)
t−1

}N

i=1
,

Np∑

i=1

w
(i)
t−1 = 1 (2.117)

and the weight update is,

wt =
p(x0:K |y0:t)

q(x0:K |y0:t)
(2.118)

=
p(yt|xNt

)p(xN+
t−1+1:N+

t
|xN+

t−1
)p(x0:N+

t−1
,N+

t−1|y0:t−1)π(xN+
t +1:K |x0:N+

t
)

p(yt|y0:t−1)q(xN+
t−1+1:N+

t
|xN+

t−1
,y0:t)q(x0:N+

t−1
,N+

t−1|y0:t)π(xN+
t +1:K |x0:N+

t
)

(2.119)

∝
p(yt|xNt

)p(xN+
t−1+1:N+

t
|xN+

t−1
)p(x0:N+

t−1
,N+

t−1|y0:t−1)

q(xN+
t−1+1:N+

t
|xN+

t−1
,y0:t)q(x0:N+

t−1
,N+

t−1|y0:t)
(2.120)

=
p(yt|xNt

)p(xN+
t−1+1:N+

t
|xN+

t−1
)

q(xN+
t−1+1:N+

t
|xN+

t−1
,y0:t)

wt−1

vt−1
(2.121)

According to weight update rule in (2.121) particles are extended to a fix horizon K

by first sampling from proposal distribution,

q(xN+
t−1+1:N+

t
|xN+

t−1
,y0:t) (2.122)

that generates randomly a new complete neighborhood of state points xN+
t

and

then complete the fixed horizon state space by drawing a sample form extension

distribution,

q(xN+
t +1:K |x0:N+

t
) = π(xN+

t +1:K |x0:N+
t
). (2.123)
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However in practice one won’t need to extend the state variables to the fixed horizonK

since marginalization of a sampled joint random variable is utilized just by discarding

the components which are not of interest. Further, weight update can be simplified by

choosing the proposal distribution as prior. Similar to standard particle filter choosing

proposal as in Eq.(2.124),

q(xN+
t−1+1:N+

t
|xN+

t−1
,y0:t) = p(xN+

t−1+1:N+
t
|xN+

t−1
) (2.124)

results the variable rate of the standard bootstrap filter,

wt ∝
wt−1

vt−1
p(yt|xNn

). (2.125)

which approximates the variable rate state distribution as,

p(x0:N+
t
,N+

t |y0:t) =

Np∑

i=1

wi
tδ(x

i
0:N+

t
− x0:N+

t
). (2.126)

2.8.5.3 Variable rate particle filtering algorithm

1. Initialize the VRPF state distribution p(x0) at time t = 0 by drawing Np

samples from pre-defined initial distribution. The collection of samples are

obtained sampling from the transition distribution . . . p(x2|x1)p(x1|x0), until

each particle contains a valid neighborhood xN0 . Then initialized samples xi
N0

are equally weighted,

wi
t=0 = 1/Np, for i = 1 . . . Np. (2.127)

2. For t = 1 . . . T where T is the index to last observation, sample from the

proposal distribution defined in Eq.(2.124) which is generated according to

Eq.(2.128) as,

xi
N+

t−1+1:N+
t

∼ p
(
xN+

t−1+1:N+
t
|xi

N+
t−1

)
, i = 1 . . . Np (2.128)

to complete the neighborhood of observation yt, and set state index k ←− k+1.

Note that generation of particles are needed to complete the neighboring Nt at

time t thus no particles will be generated when the neighborhood is already

complete. More precisely a single step, where new state k is generated from

the previous state k − 1 is shown as in Eq.3.6,

xk ∼ p(xk|xk−1) = p(θk|θk−1, τk, τk−1)p(τk|θk−1, τk−1). (2.129)
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In the original work, Godsill et al. (Godsill and Vermaak, 2005) adapted

curvilinear model (CL), in VRPF framework and defined target state vector xk

as follows,

xk = [TT,k TP,k v(τk) ψ(τk) z(τk) τk] (2.130)

where TT,k, TP,k are independent tangential and perpendicular forces applied to

target, v(τk), ψ(τk) are the target speed and the course, z(τk) = [x y] is the

position vector constituting position in x and y coordinates, and the last variable

is the arrival time τk for state k that is statistical conditioned on the previous

arrival time τk−1.

Sampling state vector xk according to conditional distribution Eq.(2.129) is

expressed in Eq.(2.131),

TT,k ∼ N(µt, σ
2
t ), TP,k ∼ N(0, σ2

p)

τk − τk−1 − τmin ∼ G(ατ , βτ ), τmin > 0 (2.131)

where N is Gauss, G is Gamma distribution and τmin is an operator to shift

the gamma distributed sojourn time. TT,k and TP,k assumed independently

distributed forces applied to target at state index k. Hyperparameters of these

distributions are chosen to match the characteristics of object being tracked.

The rest of required variables which are, position z(τk), speed v(τk), and

course ψ(τk) can be determined from the previous state variable xk−1 with a

deterministic function defined by curvilinear motion equations.

3. Update the weights associated with sample points
{
wi

t,x
i
Nt

}Np

i=1
that

approximates the filtering distribution,

p(xNt
,N+

t |y0:t). (2.132)

Note that Eq.(2.132) is the marginalized version of the filtering distribution

Eq.(2.113). In Variable Rate particle filtering framework weights wi
k for each

particle (i = 1 . . .Np) are updated according to defined weight update equation

expressed in Eq.(2.133) as,

wi
t ∝ wi

t−1

p(yt|xNt
)p(xN+

t−1+1:N+
t
|xN+

t−1
)

q(xN+
t−1+1:N+

t
|xN+

t−1
,y0:t)

. (2.133)
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Similar to standard particle filtering methods, simplest strategy to define the

proposal distribution q is to use the prior distribution defined in Eq.(2.134),

p(xN+
t−1+1:N+

t
|xN+

t−1
) (2.134)

as the proposal density. This results in a simple weight update equation in the

form of Eq.(2.125) as

wi
t ∝ wi

t−1p(yt|xNt
) (2.135)

where we just have to evaluate the likelihood p(yt|xNt
) to update the particle

weights wt. To express the likelihood in an analytic form, it can be redefined

acorrding to Eq.(2.109) as follows,

p(yt|xNt
) = p(yt|θ̂t) (2.136)

using interpolated continuous time state process θ̂t at time t which is a

deterministic function of xNt
where θ̂t = ft(xNt

). The function ft() is defined

by the curvilinear motion equations, obtaining the continuous process at time t

from the marked point processes xk = (θk, τk). Resultantly the state vector θ̂t

constitutes the interpolated variables of xN+
t

required to evaluate the likelihood

function p(yt|θ̂t). In tracking applications it is suitable to choose θ̂t as the

interpolated position vector y(t). New weights for each particle (i = 1 . . .Np)

are updated according to the update function

wi
t ∝ wi

t−1p(yt|θ̂t), (2.137)

and weights are renormalized such that,

Np∑

i=1

wi
t = 1. (2.138)

4. Following the weight update procedure, calculate the estimate of effective

sample size N̂eff (Liu and Chen, 1998) as in Eq.(2.139).

N̂eff =
1

∑Np

i=1 (w
i
t)

2
(2.139)

If N̂eff is below a pre-specified threshold than resample the approximate filtering

distribution,

{
xi
Nt
, wi

t

}N
i=1
∝ p(xNt

,N+
t |y0:t) (2.140)
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with a certain resampling scheme to form the replicated samples,

{
xi
0:N+

t
, wi

t

}N

i=1
←− Resample

[{
xi
0:N+

t
, wi

t

}N

i=1

]
(2.141)

else return to step 2 to evaluate the next observation.
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3. MULTIPLE MODEL TARGET TRACKING WITH VARIABLE RATE

PARTICLE FILTERS

Maneuvering target tracking has taken much attention in the past decade with the

development of numerous numerical techniques. Multiple model (MM) approaches

which characterize target motion dynamics with a set of models, have been the most

widely used techniques in the field (Blom et al., 1998; McGinnity and Irwin, 2000;

Doucet et al., 2001b). In MM modeling, a target state posterior at time t can be

represented as the weighted sum of several parallel filter outputs, each representing

a different target mode. However, the number of filters required to obtain the optimal

solution increases exponentially as time evolves, hence it is common to use a MM

structure therefore provides a suboptimal solution (Blom et al., 1998).

Kalman filter based interacting multiple model (IMM) is one of the commonly used

suboptimal solution to the maneuvering target tracking problem (Blom et al., 1998;

Kirubarajan et al., 2001). IMM approximates the weighted output of each filter with

a single Gaussian distribution thus fixes the number of required filters. However due

to the nature of the maneuvering target tracking problem, it is desirable to represent

the state posterior with multi modal complex density function which reduce the

effectiveness of the suboptimal solutions such as IMM. Therefore, an extension of

the particle filters to the multiple model estimation problem has been proposed and

is referred as multiple model particle filter (MM-PF) (McGinnity and Irwin, 2000).

Since the particle filter solution is not restricted to a particular distribution, the MM-

PF allows approximating to the non-linear posterior distribution of the multiple model

state space and improve the tracking performance when compared to Kalman filter

based IMM filters (Arulampalam et al., 2004).

Conventional tracking models, including the particle filter and Kalman filter based

approaches, define a discrete time state space model where the state sampling rate

is determined by the rate at which the measurements arrive, thus known as fixed

rate models. In fixed rate models, the timing of the state variables (state arrival

47



time) is deterministically defined by the observation time and the time between two

consecutive states (sojourn time) is fixed. The multiple model structure defined for

fixed rate models denote the target motion mode by a time indexed latent variable

and under the assumption that a transition may occur at each observation time,

mode variables are represented as a first order Markov chain. However it is known

that a manned target often executes straight motion followed by a short duration of

sharp maneuver. Therefore, unlike the fixed rate standard tracking models, recently

introduced variable rate particle filters (VRPF) model the state arrival times as a

Markov random process that enables the time between consecutive target states to

be a random variable. In contrast to the fixed rate modeling of the conventional

methods, the VRPF tracks a maneuvering object with a small number of states by

imposing a probability distribution on the state arrival times. In literature, variable

rate models have been considered as a more effective technique in maneuvering target

tracking problems even when compared to well known particle filter based IMM

models (Godsill and Vermaak, 2005; Godsill et al., 2007).

The variable rate structure proposed by Godsill and Vermaak (2005) utilizes

curvilinear motion dynamics that enable tracking a wide range of motion

characteristics (Li and Jilkov, 2003). However, similar to the conventional models,

depending on its parameterization, the VRPF with its single mode structure suffers

from the poor estimate of the target trajectory and the state arrival times. In order

to overcome this drawback, we introduce a multiple model variable rate particle

filtering (MM-VRPF) scheme that integrates the multiple model structure with the

variable rate filtering. Independent of the observation time, the MM-VRPF allows

switching between candidate sojourn and motion parameter sets thus can precisely

model the maneuver parameters as well as the state arrival times. The introduction of

different sojourn modes enables a parsimonious representation for smooth regions of

the trajectory while it adaptively locates frequent state points at high maneuver regions,

resulting in a much more accurate tracking.

On the other hand, it is possible to construct an autonomous target tracking model

where the number of modes and mode parameters are estimated under the Bayesian

framework. In the literature the Dirichlet Process Mixtures (DPM) model has

been used as a key building block particularly in modeling linear dynamic systems
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with unknown model structure (Caron et al., 2008; Teh et al., 2006; Fox et al., 2007).

Similarly, It is possible to construct a hierarchal Dirichlet process mixture model

that can be considered as a prior for the semi-Markovian structured tracking model

(Teh et al., 2006). However, online inference becomes a complicated task and very

efficient sequential Monte Carlo schemes are required to accomplish the parameter

estimation process for such models (Ulker et al., 2008, 2010b,a). Therefore in this

thesis we particularly focus on multiple model approach that leads to simpler inference

schemes based on conventional particle filters.

In our modeling, we preserve the continuous deterministic process proposed by

Godsill and Vermaak (2005) while adapting the multiple model structure to the

variable rate framework. In order to classify the type of the maneuvering objects, two

sojourn distributions having different driving noise processes are defined by Maskell

(2004). In our model we are also proposing usage of different sojourn distributions, but

unlike Maskell (2004), our objective is efficiently modeling the parameters and arrival

times of the maneuver rather than the noise.

In order to overcome the degeneracy problem which is a well known drawback of

particle filtering we have also presented a regularization scheme for variable rate

models. In a single target tracking problem, degeneracy is particularly observed if the

unknown parameters are defined in a complex state space or when the parameters of the

model do not fit the actual model, especially under low process noise. Regularization

can be interpreted as sampling from a continuous probability density function instead

of a discrete probability mass space as in the case of a conventional particle filter

resampling mechanism (Musso et al., 2001). In order to eliminate degeneracy, we

have adapted well known regularized fixed rate particle filtering (R-PF) scheme to

the introduced MM-VRPF structure and named the new filter as regularized multiple

model variable-rate particle filter (RMM-VRPF).

Test results reported for bearings only scenarios demonstrate that the proposed

structure finely locates the target states onto critical maneuver change points thus

improves the VRPF’s trajectory estimation performance. It is shown that regularization

significantly improves the tracking performance when the initial values are specified

as far from the true values thus resulting in degeneracy.
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This section is organized as follows. In Section 3.1 a summary of variable rate

models is presented. Section 3.2 introduces the theoretical formulation of the proposed

multiple model variable rate model. Section 3.3 explains the state posterior estimation

of the proposed model and a regularization scheme is described in Section 3.4. The

test results are given in Section 3.5.

3.1 Variable Rate Tracking

The conventional fixed rate state-space model proposes a state variable xt that

evolves with time index t (Godsill and Vermaak, 2005). Let xk = (τk, θk) defines

a variable rate state where k is a discrete index, τk denotes the state arrival time

for state k and θk denotes the vector of variables that parameterizes the target state.

Variable state sequence follows a Markovian process such that states are independently

generated according to a density function, xk ∼ p(xk|xk−1) where τk is finite and

τk > τk−1, τk−2, . . ..

Unlike the fixed rate models, allocation of states in a variable rate model is

asynchronous with the timing of observations. Therefore, tractable solution to

the inference problem can only be obtained if the likelihood function depends

on the local neighborhood of the states. Indeed, under the assumption that an

observation yt is independent of all other data points except the neighborhood states

xNt
= {xk; k ∈ Nt(x0:∞)}, the likelihood function at time t is defined as,

p(yt|x0:∞) = p(yt|xNt
). (3.1)

Practically, the neighborhoodNt comprises the states that are closest to the observation

time t. In order to calculate the likelihood function, an interpolated continuous time

state process, θ̂t , is defined as a deterministic function of xNt
as θ̂t = ft(xNt

) where

the function ft() is determined by the selected target motion model. Finally, the

observation density can be rewritten as p(yt|xNt
) = p(yt|θ̂t).

The first member of a neighborhood set Nt is represented with N+
t and the last one is

N−
t . For monotonicity assumed that,N+

t ≥ N
+
t−1,N−

t ≥ N
−
t−1. Under the Markovian

assumptions, the joint density of states and observations can be expressed as in Eq.(3.2)

p(x0:K ,y0:T ) = p(x0)
K∏

k=1

p(xk|xk−1)
T∏

t=0

p(yt|xNt
), K ≥ N+

T (3.2)
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where the conditionK ≥ N+
T ensures the “complete” neighborhood for the calculation

of the observation density at the final time index T . The requirement to determine

neighborhood properly is that, the neighborhood Nt will not be modified by addition

of future state points.

Let y0:t = (y0, . . . ,yt) and x0:N+
t
= (x0, . . . ,xN+

t
) denote the observations received

until time instant t and the corresponding target states, respectively. Note that, the

total number of states, N+
t , is a random variable in the variable rate model, therefore

the posterior distribution can only be expressed in transdimensional form. At each

time instant t, the variable rate optimal filtering distribution can be expressed as a

combination of Np multi-dimensional Dirac delta functions as shown in Eq.(3.3),

p(x0:N+
t
,N+

t |y0:t) ≈

Np∑

i=1

wi
tδ(x

i
0:N+

t

− x0:N+
t
) (3.3)

where wi
t is the weight associated to i’th particle xi

0:N+
t

.

Approximation to the posterior density given by Eq.(3.3) is achieved by sampling from

the proposal density q(.) and updating the particle weights wi
t−1 according to Eq.(3.4)

whenever a new observation arrives.

wi
t ∝ wi

t−1

p(yt|xi
Nt
)p(xi

N+
t−1+1:N+

t

|xi
N+

t−1
)

q(xi
N+

t−1+1:N+
t

|xi
N+

t−1

,y0:t)
(3.4)

3.2 Multiple Model Variable Rate Model

The conventional variable rate model defines the target motion and state arrival times

with a single motion model. However when a maneuver is undertaken or a straight

motion is in progress, the motion parameters and arrival times always show diversity

due to the nature of maneuvering target tracking problem. Thus it is often not suitable

to estimate the state arrival times and maneuver parameters with a single model. To

overcome the drawbacks of the single motion model, we proposed a multiple model

structured variable rate scheme in which the maneuver parameters and arrival times

are modeled by three different parameter sets. The proposed model combines the

advantage of adaptive motion estimation with variable rate filtering thus is expected

to improve the target tracking performance.

Unlike the conventional variable rate model, the multiple model approach introduces a

new discrete state variablemk that denotes the mode of the motion dynamics, as shown
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in Eq.(3.5),

xk = [θk, τk, mk] , mk ∈ {1, . . . r} (3.5)

where r refers to the total number of modes. In a target tracking scenario it is often

appropriate to specify a set of dynamic modes where each mode is parameterized

to handle different target motion characteristics such as a straight motion or the

maneuvers. Therefore we defined three, r = 3, distinct target motion modes

representing the straight motion and the maneuvers undertaken to each side. In the

expense of computational complexity the number of modes can be increased, however

it is known that increasing the number of modes do not necessarily improve the

algorithm performance in a multiple model structure (Li and Jilkov., 2005).

Proposed structure yields the conditional state distribution expressed in Eq.(3.6),

p(xk|xk−1) = p(θk|θk−1, τk, τk−1, mk−1, mk)

p(mk|mk−1)p(τk|τk−1, mk−1). (3.6)

According to the curvilinear motion model it is convenient to define the motion

kinematics vector θk by the vector [TT,k TP,k v(τk) ψ(τk) z(τk)] (Godsill and Vermaak,

2005). The tangential, TT,k and perpendicular, TP,k forces applied to target can be

simply modeled with Gauss distributions as given in Eq.(3.7),

TT,k ∼ N(µT,n, σ
2
T,n) (3.7)

TP,k ∼ N(0, σ2
P,n)

where n = mk, mk ∈ {1 . . . r} and the parameters, µT,n, σ
2
T,n, σ

2
P,n are specified to

match the motion characteristics of the object being tracked. Note that the defined

model has the ability to characterize a large set of maneuvers precisely when compared

to a coordinated turn (CT) model driven with a process noise (Li and Jilkov, 2003).

The rest of the state variables, i.e., the position z(τk), speed v(τk), and course ψ(τk) are

calculated from the previous state variable xk−1 by using motion dynamics equations

given in Section 2.8.1.4.

Manned target often undertakes sharp and short duration turns whereas smooth and

straight motions are maintained for longer periods. Multiple model representation

defines a set of Gamma distributions each parameterized to handle a different motion

character. Thus unlike the single mode conventional variable rate model, the multiple
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model structure allows modeling the sojourn times with r different distributions. The

distribution defined on the sojourn time, p(τk|τk−1, mk−1), is defined as a Gamma

distribution where the parameters are selected according to the discrete mode variable.

Dependent on the mode variable mk−1, the sojourn times are distributed with a shifted

Gamma distribution as,

τk − τk−1 − τn ∼ G(αn, βn), (3.8)

where n = mk−1, mk−1 ∈ {1 . . . r}, is the index to the motion mode, and τn is the

sojourn time shifting parameter.

Proposed multiple model structure requires the representation of the transition matrix,

more specifically p(mk|mk−1) shown in Eq.(3.6). Transition matrix represents

the transition from a motion mode to another and the probability of staying at

a particular mode thus it is an important task to define an appropriate transition

matrix. The proposed multiple model structure defines the mode transition probability,

p(mk|mk−1), by a time invariant mode transition probability matrix P,

P =



p11 . . . p1r

...
. . .

...
pr1 . . . prr


 (3.9)

where each element, phl, {h, l} ∈ {1, . . . , r} denotes the transition probability from

mode h to mode l.

In practice, the transition matrix P is intuitively selected according to the maneuver

characteristics of the object being tracked unless it is assumed to be known as a priori.

In our model we determined an appropriate transition matrix considering the properties

of the target motion characteristics.

It is very difficult to determine a suitable transition matrix generalizing all types

of maneuvers. Some techniques to determine the P has been addressed by

Blair and Watson (1992); Bloomer and Gray (2002). However these techniques

assume that target sojourn times are known a priorly. A number of online transition

matrix estimation methods has been proposed by Jilkov and Li (2004).

It is also possible to define a set of transition matrix or randomize it by using a non

informative prior. In this case estimation of the transition matrix can be described as

a parameter estimation problem and can be solved in a particle filter framework in the

expense of model complexity .
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If the target sojourn time τ of each motion mode are known priorly, diagonal elements

of the transition matrix P can be determined as follows. In a semi-Markov chain where

sojourn time distribution is a Gamma distribution,G(α, β), the expected sojourn value

is computed as µG = α.β. Consequently, τ , the expected amount of time spent at state

h can be defined as in Eq.(3.10).

τ =
µGn

1− phh
. (3.10)

Since the target sojourn time τ of each motion mode is known a priori, diagonal

elements of P can be computed by Eq.(3.10). Considering that the summation of each

row should be equal to 1, off-diagonal elements of P can be specified heuristically with

respect to the prior belief on mode transitions. However prior information on sojourn

time is often unavailable in target tracking problems thus this methodology can only

help to determine an appropriate transition matrix intuitively.

Note that the proposed multiple model scheme do not change the constraints that

apply on the neighborhood conditions therefore the likelihood function, as well as

the joint distribution of the states and observations given in Eq.(3.2) is also valid for

the proposed MM-VRPF algorithm.

3.3 Multiple Model Variable Rate State Estimation

In the following we will describe how to generate weighted samples that approximate

to the variable rate model posterior distribution given by Eq.(3.2). Note that the

algorithm given in this section is based on the variable rate particle filtering algorithm

proposed by Godsill and Vermaak (2005) and valid for both MM-VRPF and VRPF

algorithms.

In the first step all particles are initialized according to a predefined initial distribution.

Next, the propagation step carries the particles forward in time if required. Finally, the

update step calculates the sample weights for each particle that represent the model

posterior distribution. A resampling step is performed if effective sample weights are

below a certain threshold and the algorithm is iterated through step 2 whenever a new

observation arrives. A summary of the algorithm is also described by a pseudo code

given in Algorithm-1.

A. Initialization
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At time t = 0, Np samples are drawn from a predefined initial state distribution p(x0)

where x0 denotes the initial state vector of the target. It is assumed that the initialized

samples xi
0, i = 1 . . .Np, are equally weighted.

B. Propagation Step

At time step t, whenever a new observation arrives, for i = 1 . . .Np, we generate

Np particles from the proposal distribution, q(.), that is chosen as the prior state

distribution,

q(xN+
t−1+1:N+

t
|xi

N+
t−1
,y0:t) = p

(
xN+

t−1+1:N+
t
|xi

N+
t−1

)
(3.11)

Note that we just need to generate new particles from the proposal distribution if the

neighborhood Nt of an observation yt is not complete. Therefore no particles will be

generated when the neighborhood is already complete. More specifically, assuming

that, k = N+
t−1

i
+ 1, the k − 1’th state variable, xik−1 is propagated forward in time

according to xik ∼ p(xk|xik−1) until τ ik > t where xk = [θk, τk, mk] . The target

motion state variable θik, the state arrival time τ ik, and the motion modemi
k, are sampled

according to the equations defined in Eq.(3.7), Eq.(3.8) and Eq.(3.9) respectively.

C. Updating the Particle Weights

In this step, the particle weightswi
t, i = 1 . . . Np, are calculated according to the weight

update equation that can be derived by replacing the selected proposal function in

Eq.(3.4). When prior distribution is selected as the proposal, the bootstrap version of

the variable rate particle filtering algorithm can be achieved as given in Eq.(3.12)

wi
t ∝ wi

t−1p(yt|x
i
Nt
). (3.12)

Finally, the true posterior p(xNt
,N+

t |y0:t), is approximated by the particles and

associated weights,
{
xi
Nt
, wi

t

}Np

i=1
. Following the weight update step, a resampling step

is performed if the effective sample size, N̂eff = 1/
∑Np

i=1 (w
i
t)

2
, is below a predefined

threshold value.

In VRPF algorithm, following the resampling, multiple copies of the particles with

identical state arrival times occur. This situation can result in poor estimates of the

state arrival times and reduce the filter performance drastically. Therefore, under the
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variable rate framework, a regeneration step is introduced that augments the latest

arrival time of each particle fixing the past state timings (Godsill and Vermaak, 2005).

However ability of the proposed multiple model scheme in modeling the state arrival

times eliminates the necessity of this regeneration step.

Note that replicated particles with completed neighborhoods undergo the same

weighting procedure for the explained variable rate algorithm. In order to reduce

this redundancy, a modified algorithm is proposed by Godsill and Vermaak (2005)

and more efficient particle filtering schemes that apply different proposal kernels are

applied by Whiteley et al. (2007). However, for comparison purpose we only applied

the basic variable rate particle filtering algorithm for both VRPF and MM-VRPF in

our work .

Algorithm-1 : The VRPF and MM-VRPF algorithm

1. Initialization

• Set t=0

• For i = 1 to Np, draw equally weighted samples, xi0 ∼ p(x0), from the

predefined initial state distribution.

2. Propagation step

• set k = N+
t−1

• for i = 1 to Np

– While the neighborhoodN i
t is incomplete

∗ Set k = k + 1 and draw samples form the proposal distribution,

xik ∼ q(xk|xk−1, yt), until τk ≥ t.

3. Weight update step

• calculate the particle weights according to

wi
t ∝ wi

t−1

p(yt|xi
Nt
)p(xi

N+
t−1+1:N+

t

|xi
N+

t−1

)

q(xi
N+

t−1+1:N+
t

|xi
N+

t−1

,y0:t)

• Normalize the weights.
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4. Resampling step

• Resample the particles
{
xi
Nt
, wi

t

}Np

i=1
if effective sample size,

N̂eff = 1/
∑Np

i=1 (w
i
t)

2
, is below a certain threshold.

• set t = t + 1

• iterate through step 2

3.4 Regularization

In particle filtering, degeneracy is an essential problem that causes variance of the

particle weights decrease with time and results in a few particles to have non-

zero importance weights. In order to reduce the effects of degeneracy, resampling

is introduced as a solution that eliminates the particles that have small weights

and concentrates on the the particles with large weights (Gordon et al., 1993;

Arulampalam et al., 2002).

However resampling introduces new problems such as sample impoverishment that

arises due to sampling from a discrete posterior distribution rather than a continuous

one. If the problem is not addressed properly, it may lead to collapse of particles

resulting in severe sample impoverishment.

In this section, we propose a regularization scheme for variable rate models in order

to find a potential solution to the described problem. The regularization scheme

guarantees approximation to the continuous filtering distribution with a kernel function

and enables us to generate new samples from the approximated continuous distribution

(Musso et al., 2001). We applied the regularization process for both, single and

multiple model structure, and call the new algorithms as regularized variable rate

particle filter (R-VRPF) and regularized multiple model variable rate particle filter

(RMM-VRPF). Conventional fixed rate models perform the regularization on the

particles approximating the marginal posterior of the latest state variable. However

states are asynchronous in time for the variable rate models, hence we define a time

indexed state variable and perform the regularization process on the defined state

posterior.

In the following we will describe how to perform the regularization step for both

VRPF and MM-VRPF algorithms. Recall that regularized algorithms execute same
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steps with their conventional counterparts, except a regularization step is executed after

resampling.

3.4.1 Regularized variable rate particle filters

Remark that, in variable rate models, states are asynchronous with the observations

time, thus the states are indexed with k whilst t is the time index. Let us define a time

indexed state variable vector rt that is a deterministic function of the neighborhood

xNt
as expressed in Eq.(3.13),

rt = [TT,τ
N−

t

TP,τ
N−

t

v(t) ψ(t) z(t) τN+
t
] (3.13)

where TT,τ
N−

t

, TP,τ
N−

t

are tangential and perpendicular force parameters at

neighborhood N−
t , and v(t), ψ(t), z(t) are velocity, course, position vector at time

t and τN+
t

is state arrival time at stateN+
t . Since we assume neighboring conditions of

the past observations do not change with the arrival of a new observation, the variable

τN−
t

is not included into the definition of the state vector rt.

In target tracking applications to simplify the algorithm, at each observation time

t only closest variable rate states are assumed as neighboring states according to

Nt = (k, k − 1, τk−1 < t ≤ τk) where k is state index. Therefore rt can be stated

explicitly as in Eq.(3.14),

rt = [TT,k−1 TP,k−1 v(t) ψ(t) z(t) τk] (3.14)

Given the observation vector y0:t, the regularized distribution associated with the state

vector rt is defined as in Eq.(3.15),

p(rt|y0:t) ≈

Np∑

i=1

wi
tKb(r− rit) (3.15)

where

Kb(r) =
1

bnr

K
(r
b

)
(3.16)

is the rescaled Kernel density K(.).

In Eq.(3.16) b > 0 is the kernel bandwidth, nr is the dimension of the state vector

rt, and wi
t, i = 1 . . . Np, is the normalized particle weights. It is common to chose

the kernel K(.) as a symmetric probability density function. In the special case of

equally weighted samples, wi
t = 1/Np, i = 1 . . .Np, it is appropriate to choose the
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kernel as Epanechnikov kernel (Silverman, 1986). However due to the simplicity in

generating samples we used Gaussian kernels. Under the assumption that underlying

density is also Gaussian with unit covariance matrix, Eq.(3.17) defines the optimal

kernel bandwidth (Silverman, 1986).

bopt = AN
−1

nr+4
p , where A = (4/(nr + 2))

1
nr+4 . (3.17)

To cover the case of multimodal distributions, it is convenient to define the kernel

bandwidth as b = bopt/2 (Musso et al., 2001). To adjust the kernel covariance with

respect to an empirical covariance matrix St of the state vector rt, we compute the

empirical covariance matrix

St = Cov
[
rtr

T
t

]
(3.18)

where the matrix Dt is extracted by decomposing the matrix St according to

St = DtD
T
t .

New samples from the regularized distribution given by Eq.(3.15) are obtained as

expressed in Eq.(3.19)

r∗it = rit + bDtǫ
i, ǫi ∼ Kb(r), i = 1 . . .Np (3.19)

where ǫi is a sample of the kernel density estimate Kb(r). Our claim in proposing

a regularized scheme is that samples generated from the regularized distribution

approximate the true posterior in a better way resulting in more accurate estimates.

The regularized samples and associated weights represent the posterior distribution,

{
rit, w

i
t

}N
i=1
∝ p(rt|y0:t) (3.20)

Finally the samples that represent the distribution p(xNt
|y0:t) can be calculated

deterministically. Since neighboring states xNt
at time t are deterministic function of

rt, interpolated states can be obtained according to xNt
= ft(rt), where function ft(.)

is specified with the curvilinear motion dynamic model. The interpolated particles xi
Nt

represent the objective posterior distribution given by Eq.(3.21).

{
xi
Nt
, wi

t

}N
i=1
∝ p(xNt

|y0:t) (3.21)
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Algorithm-2 : The regularized VRPF algorithm

1. Apply step 1, 2 and 3 in algorithm-1, respectively. Replace step 4 with the

regularization step given below.

2. Regularization step

• if Neff < thr

– Calculate the empirical covariance matrix, St, and decompose, Dt

where St = DtD
T
t .

– resample the particles, {rit, w
i
t}

Np

i=1

– for i = 1 . . . Np

∗ draw a sample from the Gaussian kernel, ǫi ∼ Kb(r)

∗ r∗it = rit + bDtǫ
i

• Iterate through step 2 of the Algorithm-1

3.4.2 Regularized multiple model variable rate particle filter

In this section we describe the regularization scheme for multiple model variable rate

models that is a straightforward extension of the R-VRPF described in Section 3.4.1.

Let us define the time indexed multiple model variable rate state vector as,

ht = [TT,τ
N−

t

TP,τ
N−

t

v(t) ψ(t) z(t) τN+
t
mN−

t
]. (3.22)

For simplicity, a more compact representation can be written as,

ht = [rt mN−
t
] (3.23)

by using the definition in Eq.(3.13) where rt = [TT,τ
N−

t

TP,τ
N−

t

v(t) ψ(t) z(t) τN+
t
].

According to the Bayesian rule, the time indexed posterior distribution can be

expressed as in Eq.(3.24),

p(ht|y0:t) = p(rt|mN−
t
,y0:t)p(mN−

t
|y0:t) (3.24)

that is often a multimodal mixture density where mixture probabilities are defined

with p(mN−
t
|y0:t) and the mode conditioned posterior is expressed by p(rt|mN−

t
,y0:t).

Note that Kernel bandwidth calculation often assumes unimodal posterior densities
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such as Gaussian pdf that can cause poor bandwidth selection for the mixture posterior

p(ht|y0:t). Therefore, in contrast to R-VRPF that defines the regularized posterior as

p(rt|y0:t), the regularization step in RMM-VRPF is carried out on the mode conditional

posterior p(rt|mN−
t
,y0:t). Consequently the regularized distribution conditioned on

mode index in continuous form is given by Eq.(3.25).

p(rt|, mN−
t
,y0:t) ≈

Np∑

i=1

wi
tKb(θt − θ

i
t). (3.25)

The regularization steps explained in Section 3.4.1 are carried out for each

mode independently where the mode dependent empirical covariance matrix is Sn
k ,

n ∈ {1 . . . r} and the decomposed matrix is represented with Dn
k .

Algorithm-3 : The regularized MM-VRPF algorithm

1. Apply step 1, 2 and 3 in algorithm-1, respectively. Replace step 4 with the

regularization step given below.

2. Regularization step

• if Neff < thr

– for n = 1 to r

∗ calculate the empirical covariance matrix, Sn
k , and decompose, Dn

k

for each motion mode.

– resample the particles, {rit, w
i
t}

Np

i=1

– for i = 1 . . . Np

∗ draw a sample from the Gaussian kernel, ǫi ∼ Kb(r)

∗ Assign n = mi
N−

t

∗ r∗it = rit + bDn
kǫ

i

• Iterate through step 2 of the Algorithm-1

3.5 Experimental Results

In this section we present experimental results obtained by the proposed MM-VRPF

and compared its tracking performance with the conventional VRPF, MM-PF and
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Figure 3.1: (a) Target and observer trajectories for the scenario-1. Trajectories and
states of a particle generated by (b) the MM-VRPF, and (c) the VRPF.

IMM-EKF for bearings only maneuvering target tracking. We have also evaluated

the improvements achieved in target tracking by integrating a regularization scheme

into single model and multiple model variable rate structures named as regularized

multiple model VRPF (RMM-VRPF) and regularized VRPF (R-VRPF), respectively.

The tracking performances are reported for different scenarios having various turn rates

and sensitivity of the performance to state initialization is also investigated.

Let yt refers to a bearing measurement taken by a passive target tracking sensor at time

instant t and is given by Eq.(3.26).

yt = arctan

(
l1 − l1o
l2 − l2o

)
+ vt (3.26)

where, z = [l1 l2]
T refers to the target position vector and vt ∼ N(0, σ2

θ) is the

independently distributed Gaussian sensor noise. [l1o l2o]T defines the sensor position

which is known by the observer.

Two conventionally used performance metrics defining the instant root mean square

position error (RMSEt) and time averaged root mean square position error (RMSE) are

used in the evaluation of tracking performance (Arulampalam et al., 2004). Reported

results are obtained by running L = 100 Monte Carlo simulations for each filter. For
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Figure 3.2: Target and observer trajectories for the scenario-2.

i’th run, let (l̂1it, l̂2
i
t) and (l1

i
t, l2

i
t) denote the estimated and true positions obtained

at time t, respectively. RMSEt and RMSE values are computed by Eq.(3.27) and

Eq.(3.28), respectively where T is the index to the latest observation.

RMSEt =

√√√√ 1

L

L∑

i=1

(l̂1it − l1
i
t)

2 + (l̂2it − l2
i
t)

2 (3.27)

RMSE =

√√√√ 1

TL

T∑

t=1

L∑

i=1

(l̂1it − l1
i
t)

2 + (l̂2it − l2
i
t)

2 (3.28)

We synthesized two bearing-only test scenarios that simulate a maneuvering target for

testing. The first one is illustrated in Figure 3.1(a) which is akin to the one synthesized

by Godsill and Vermaak (2005) and the second scenario is shown in Figure 3.2. In the

first scenario ownship starts moving at the origin of the coordinate plain and travels at

a constant speed of 5 knots for 11 minutes with a course of 140◦. Thereafter executes a

maneuver between time intervals (12− 16) at a constant turn rate 30◦/min attaining a

new course of 20◦. Ownship maintains this course for 15 minutes and makes a second

maneuver at a constant turn rate of 45◦/min to attain a course of 155◦. It maintains

this course till the end of the scenario. Target starts moving at the position (5400, 500)

on the coordinate plane and travels at a course of −150◦ with a constant speed of 4
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knots. It executes a maneuver between minutes (20 − 25) with a constant turn rate of

24◦/min to attain a new course of 100◦, and maintains the same course for the rest of

observation periods. An observation period is equal to 1 minute and total number of

observations is equal to 40 for the presented scenario.

The second scenario shown in Figure 3.2 considers multiple turns for the target and the

observer to evaluate the long term performance of the algorithms. Observer starting

at the origin travels with a constant speed of 5 knots and executes four consecutive

maneuvers with a rate of 30◦/min, −45◦/min, 45◦/min, and −45◦/min within the

time intervals, (12− 16), (31− 34), (52− 55), and (66− 69). The observation period

is 1 minute where the number of observations is equal to 80 resulting in a 80 minutes

long scenario. Target starts moving at the position (6400m, 800m) on the coordinate

plane and travels at a course of −180◦ with a constant speed of 4 knots and it executes

three maneuvers between the time intervals (20 − 27), (45 − 48), and (60 − 65) with

the rate of 18◦/min, −28◦/min, and 22◦/min consecutively. In both scenarios bearing

measurements are assumed to be perturbed with a zero mean Gaussian noise having a

standard deviation σθ = 1.5◦.

In order to compare behavior of all methods clearly, two different test cases are

considered. In the first test, performance of the proposed MM-VRPF is compared

to VRPF, MM-PF and IMM-EKF. To evaluate capability of each model in

characterization of the straight and maneuvering target motions, initial conditions are

set to their true values. Therefore, all filters are initialized by a Gaussian distribution

centered on the true mean value and variance, i.e., σr = 100m for the range and

σθ = 1.5◦ for the bearing. Initial values of heading and velocity are also set to the true

values. To observe the effects of particle size on the tracking performance, simulations

has been carried out for Np = 2000 and Np = 8000 particles for both scenarios.

Aim of the second test on bearing only tracking was evaluation of improvement gained

by incorporating a regularization scheme into VRPF and MM-VRPF models, and

evaluation of the tracking performance under erroneous initial conditions. We have

also demonstrated the performance of regularized MM-PF for comparison purposes.

As we have stated before, regularization often improves the performance in case of

degeneracy which is observed when the parameters are not appropriately specified or

the algorithm is badly initiated. Thus we examined the effect of regularization for
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Table 3.1: MM-VRPF and VRPF parameters for the bearing-only scenarios.

MM-VRPF VRPF
mode-1 mode-2,3

µT,n, σT,n (0, 100) (0, 100) (0, 100)
µP,n, σP,n (0, 500) (±11000, 3000) (0, 5000)
αn, βn (1.5, 4) (0.5, 0.35) (0.5, 6.5)
τn (0) (0.5) 0

erroneous initial data where variations from the true range, course and velocity are

assumed to be Gaussian distributed with standard deviation of 1500m, 10◦, and 0.3

m/sn, respectively. Simulations has been carried out for Np = 2000 and Np = 8000

particles.

Model Parameters for the variable rate models MM-VRPF and VRPF used in tests

are listed in Table 3.1. MM-PF and IMM-EKF use nearly constant turn (NCT) model

with 3 possible turn rates where parameters are chosen for each mode as w1 = 0,

w2 = 0.5, w3 = −0.5rad/sn (w ∈ Ω) and state noise covariance matrix is set to

2×10−6I2. Parameter sets are selected heuristically to make sure that different motion

characteristics can be represented by the same parameter set.

The proposed multiple model variable rate structure defines three modes where the first

mode (n = 1) models the straight target trajectories and the other modes, (n = {2, 3})

are parameterized in order to track the maneuvers performed to each direction. In

our model we have chosen a fixed mode transition probability matrix P as given in

Eq.(3.29).

P =




0.5 0.25 0.25
0.35 0.45 0.2
0.35 0.2 0.45


 (3.29)

Note that Eq.(3.29) is different than the one shown in Eq.(3.30) which is utilized by

fixed rate models MM-PF and IMM-EKF (Arulampalam et al., 2004).

P =




0.9 0.05 0.05
0.4 0.5 0.1
0.4 0.1 0.5


 (3.30)

We always choose elements of the the matrix P for variable rate models considering

the object motion characteristics such that the model can track maneuvers at different

rates. Roughly estimated values for the transition matrix can be calculated as explained

in Section 3.2. Eq.(3.8) indicates that increasing the value at the diagonal elements of

matrix P also increases expected time spent at a particular motion mode.
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Figure 3.3: RMSEt versus time t for true initials (Np = 2000).

In Eq.(3.29) and Eq.(3.30) probabilities of the transitions from maneuvering models

are identical, however in contrast to the fixed rate models, straight motion model

indexed as n = 1 allows switching to either of the adaptive maneuvering models

indexed as n = {2, 3} with higher probabilities.

Figure 3.1(b) and (c) illustrate the trajectory and state arrival points of a single particle

generated by the VRPF and MM-VRPF, respectively for the Scenario-1. As it is

shown in Figure 3.1(b), the proposed MM-VRPF is capable of locating frequent states

at high maneuvering regions while using a parsimonious state representation for the

smooth regions of the trajectory owing to the sojourn time distribution parameters of

the adaptive models. Note that the continuous representation of the motion dynamics

of a maneuver enables MM-VRPF to locate frequent state points even higher than the

observation period . This yields better characterization of the maneuver parameters

and arrival times independent from the observation time. It can be concluded that the

proposed MM-VRPF, using a more flexible rate estimation procedure, is capable of

estimating the target trajectory precisely.

Figure 3.3 and Figure 3.4 plot the RMSEt versus observation time index t for four

different models: the VRPF, MM-VRPF, MM-PF and IMM-EKF simulated using
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Figure 3.4: RMSEt versus time t for true initials (Np = 8000).
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Figure 3.5: Posterior distribution of number of states p(N+
t |y0:t) where t = 40.
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Np = 2000 and Np = 8000 particles, respectively. Results are attained by using

40 observations obtained for the scenario-1 described above. As it is shown in

the figures, the proposed MM-VRPF is able to track the target before and after the

maneuver with lower RMSEt values compared to the other filters for varying size of

particles Np = 2000 and Np = 8000 while all models are superior to IMM-EKF

utilizing NCT motion model. Experimental results show the capability of MM-VRPF

in characterizing straight as well as maneuvering trajectories with the same set of

parameters.

Fixed rate models such as MM-PF and IMM-EKF associates each state vector with an

observation received at a particular time t. Hence, the total number of states utilized

along the scenario presented in Figure 3.1 is fixed and equal to 40. However, the

number of states that represent the same target trajectory is a random variable for the

variable rate models. The posterior distribution of the number of states, p(N+
t |y0:t), at

time t = 40 is illustrated in Figure 3.5. It is clear that the distribution of the number

of states for MM-VRPF and VRPF are comparable. This result also shows that MM-

VRPF can reach to a better posterior estimate even by using less than a half of the

number of states used by the fixed rate models.

In order to observe the long term behavior of the algorithms, we evaluated the tracking

performance in the second scenario. Given the true initial conditions, RMSEt error of

each model versus observation index is plotted in Figure 3.6 and Figure 3.7 for varying

particle sizes of Np = 2000 and Np = 8000, respectively. Due to low performance

results obtained by IMM-EKF, we just reported RMSE values for the scenario-2. It

is clear that MM-VRPF outperforms VRPF and MM-PF throughout the scenario for

both particle size setting. This shows that compared to VRPF and MM-PF, MM-VRPF

can better track a target maneuvering at different turn rates. Similarly, the RMSE

values reported in Table 3.3 show that MM-VRPF achieves lower RMSE values when

compared to other filters for each particle size.

Table 3.2: RMSE for varying particle size obtained by using true initials for the
Scenario-1.

MM-VRPF VRPF MM-PF IMM-EKF
Np = 2000 148.9 236.56 203.5 367.44
Np = 8000 113.82 234.34 180.29 367.44
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Figure 3.6: RMSEt versus time t for true initials (Np = 2000).
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Figure 3.7: RMSEt versus time t for true initials (Np = 8000).
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Figure 3.8: RMSEt versus time t for erroneous initial conditions (Np = 2000).
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Figure 3.9: RMSEt versus time t for erroneous initial conditions (Np = 8000).
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We also compared the regularized algorithms RMM-VRPF, R-VRPF and RMM-PF

with MM-VRPF, VRPF and MM-PF. The results are reported in means of RMSEt

and RMSE values for both of the scenarios for varying particle sizes of Np = 2000

and Np = 8000. We evaluated this test under erroneous initial conditions to show

the effects of the initial value selection to the tracking performance in a bearing only

scenario. Erroneous initial conditions tend the algorithms to suffer from the degeneracy

and regularization process often improves the performance when degeneracy is the

case.

RMSEt error values achieved for erroneous initials for the scenario-1 are plotted in

Figure 3.8 and Figure 3.9 for particle size of Np = 2000 and Np = 8000, respectively.

Table 3.4 also reports overall RMSE error. Note that in the case erroneous initials

are defined, we calculated the RMSE values starting at time t = 17 to ensure

that the observability condition is valid for the presented scenarios (Song, 1996).

For Np = 2000 and Np = 8000, RMM-VRPF and R-VRPF take the advantage

of regularization and outperforms their non-regularized counterparts however no

improvement could be achieved by the RMM-PF. We concluded that regularization

can significantly improve the filtering performance of variable rate models for the

Scenario-1 when initials are selected erroneously. In this test, MM-VRPF can not

outperform MM-PF, the RMM-VRPF shows comparable performance to MM-PF

and its regularized counterpart. We believe that MM-PF takes advantage of using

noisy NCT dynamic model particularly when erroneous initials are defined whereas

VRPF utilizing a parametric curvilinear motion relatively lacks of modeling large

disturbances.

In Figure 3.10 and Figure 3.11 the RMSEt error values versus observation index are

plotted for the Scenario-2 at Np = 2000 and Np = 8000, respectively and the RMSE

values are reported in Table 3.5 using erroneous initial conditions. For Np = 2000

regularization improves the performance of both of the variable rate models slightly

Table 3.3: RMSE for varying particle size obtained by using true initials for the
Scenario-2.

MM-VRPF VRPF MM-PF
Np = 2000 297.36 625.74 422.85
Np = 8000 274.74 588.60 388.93
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Figure 3.10: RMSEt versus time t for erroneous initial conditions (Np = 2000).
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Figure 3.11: RMSEt versus time t for erroneous initial conditions (Np = 8000).
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Table 3.4: RMSE for varying particle size obtained by using erroneous initials for the
Scenario-1.

MM-VRPF RMM-VRPF VRPF R-VRPF MM-PF RMM-PF
Np = 2000 442.89 360.42 613.20 484.22 368.70 361.68
Np = 8000 368.90 297.27 459.27 411.65 295.65 284.07

Table 3.5: RMSE for varying particle size obtained by using erroneous initials for the
Scenario-2.

MM-VRPF RMM-VRPF VRPF R-VRPF MM-PF RMM-PF
Np = 2000 523.62 493.53 618.15 602.46 526.40 549.80
Np = 8000 427.52 429.15 622.60 606.34 505.02 525.16

but no improvement is achieved when the particle size is Np = 8000. However

performance improvement for MM-PF could not be obtained by regularization in either

particle size. When we examine the overall performance at particle size Np = 2000

we see the RMM-VRPF and MM-VRPF are superior to VRPF and R-VRPF whereas

their performance is comparable to MM-PF and RMM-PF. Advantage of MM-VRPF

outcomes when we use Np = 8000 particles as seen in Figure 3.11 and Table 3.5.

In Figure 3.11 MM-VRPF and RMM-VRPF outperforms VRPF, MM-PF and their

regularized counterparts particularly after the execution of first target maneuver within

the time interval (20-27). It can be concluded that MM-PF performs even better than

MM-VRPF until the execution of first maneuver of the target, however in the remaining

part of the scenario MM-VRPF is the best performing filter particularly when the

particle size is Np = 8000.

As a summary, we concluded that MM-VRPF and its regularized counterpart achieve

lower estimation error compared to the VRPF and IMM-EKF algorithms in various

test conditions. Moreover, MM-VRPF outperforms the MM-PF if the algorithm is

not poorly initiated. However, under poor initial conditions, MM-VRPF can achieve

comparable performance to the MM-PF only if the particle size is increased above

Np = 8000. We also showed that the regularization improves tracking performance of

variable rate models by diversifying the particles particularly when the non regularized

filters suffer from degeneracy.
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4. SEQUENTIAL MONTE CARLO SAMPLERS FOR DIRICHLET PROCESS

MIXTURE MODELS

Exact inference for the DPM model posterior is unfortunately intractable. Therefore

approximate methods are highly desirable for solution of the high dimensional

DPM posterior distribution. The best well known approximate inference techniques

proposed in literature rely on variational (Blei and Jordan, 2004, 2006) and

Monte Carlo Markov Chain (MCMC) based methods (Escobar and West, 1992;

S. Walker and Smith, 1999; MacEachern et al., 1999; Neal, 2000). Though, majority

of these methods perform batch algorithms that apply the inference on the entire

dataset (Blei and Jordan, 2004; Neal, 2000), sequential methods that cluster each

new observation upon its arrival have also been proposed (MacEachern et al., 1999;

Quintana, 1996; Fearnhead, 2004).

Intuitively, a DPM model is a probability density over disjoint partitions of the

observations. Once a partition is chosen, the parameters of each cluster can be

estimated often very easily. Even better, if the prior density of the parameters is

selected to be conjugate to the observation model, one can integrate out the parameters

analytically and represent the target posterior as a discrete distribution on a collection

of cluster indicators. In this case the Bayesian inference problem based on Monte Carlo

methods deals with sampling from a high dimensional discrete distribution defined on

all possible clusterings of the data.

By construction, the DPM model is exchangable and the ordering of data does not

matter but for inference it is nevertheless beneficial to process data sequentially in

some natural order. Such an approach gives computational advantages especially for

large datasets. In the literature a number of online inference techniques have been

proposed to estimate an artificially time evolving DPM posterior (Quintana, 1996;

MacEachern et al., 1999; Fearnhead, 2004).

However it is also shown that sequential filtering is not an appropriate method

for especially large data sets due to the accumulated Monte Carlo error over time
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(Quintana and Newton, 1998). This problem arises from the sampling procedure of

the particle filtering algorithm in which the discarded particles are never reconsidered

thus previous label assignments can never be updated according to the information

provided by the latest observations.

In order to overcome this drawback, we propose an efficient sequential Monte Carlo

sampler that estimates the sequentially evolving DPM model posterior. Unlike the

existing methods proposed by Quintana (1996); Fearnhead (2004) our algorithm

enables us to update past trajectories of the particles in the light of recent observations.

Our method takes advantage of the SMC sampler framework to design such

update schemes (Del Moral et al., 2006). The proposed algorithm is evaluated on a

single dimensional Gaussian mixture density estimation problems and performance

improvement over conventional models are shown.

4.1 Revisiting the DPM Model and SCM samplers

Let us denote the observation sequence at time n by yn = {yn,1 . . . yn,n}. Each

observation yn,i, i = 1, . . . n, is assigned to a cluster where zn,i ∈ {1, . . . kn} is the

cluster label and, kn ∈ {1 . . . n} represent the number of clusters at time n. The

vector of cluster variables is defined as zn = {zn,1 . . . zn,n} and corresponding cluster

parameters are represented with the parameter vector θn = {θn,1 . . . θn,kn}.

The DPM model assumes that the cluster parameters are independently drawn from

the prior π(θ) and the observations are independent of each other conditional on the

assignment variable zn,i. Hence the DPM posterior density πn(xn) can be expressed

as,

πn(xn) ∝ p(zn)
kn∏

j=1

p(θn,j)
n∏

i=1

g(yn,i|θn,zn,i
) (4.1)

where xn = {zn, θn}. The prior on clustering variable vector zn is formulated by

Eq.(4.2) in a recursive way,

p(zn,i+1 = j|zn,{1:i}) =

{ lj
i+κ

, j = 1, . . . , ki
κ

i+κ
, j = ki + 1

(4.2)

where ki is the number of clusters in the assignment zn,{1:i}. lj is the number of

observations that zn,{1:i} assigns to cluster j and κ is a ’novelty’ parameter.
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In our work, we assume that a conjugate prior is chosen such that given zn, the

parameter θn can be integrated out and the DPM posterior distribution can be calculated

up to a normalizing constant.

4.1.1 A generic SMC sampler

The SMC sampler samples from a sequence of target densities evolving with a

countable index n, π1(x1) . . . πn(xn), each defined on a common measurable space

(En, En) where xn ∈ En. The generic SMC algorithm sampling from the sequentially

evolving target posterior π̃n is presented as follows:

Assume that a set of weighted particles
{
W i

n−1, X
i
1:n−1

}Np

i=1
approximate π̃n−1 at time

n − 1. At time n the path of each particle can be extended using a Markov kernel,

Kn(xn−1, xn). The unnormalized importance weights associated with the extended

particles are calculated according to Eq.(4.3),

wn(x1:n) = wn−1(x1:n−1)vn(xn−1, xn) (4.3)

=
γ̃n(x1:n)

ηn(x1:n)

where the incremental term of weight equation, vn(xn−1, xn), is equal to

vn(xn−1, xn) =
γn(xn)Ln−1(xn, xn−1)

γn−1(xn−1)Kn(xn−1, xn)
. (4.4)

The discrepancy between ηn and γ̃n tends to grow with n, consequently the variance

of the unnormalized importance weights increases. A resampling step is used if the

variance is above a certain level as measured by, e.g, effective sample size (ESS).

Design of efficient sampling schemata hinges on properly choosing Ln with respect

to Kn. The introduction of the Ln extends the integration domain from E to En and

eliminates the necessity of calculating ηn(xn). However increasing the integration

domain also increases the variance of the importance weights. Del Moral et al. (2006)

showed that the optimal backward Markov kernel Lopt
k−1 (k = 2, . . . , n) minimizing the

variance of the unnormalized importance weight wn(x1:n) is given for any k by,

Lopt
k−1(xk, xk−1) =

ηk−1(xk−1)Kk(xk−1, xk)

ηk(xk)
(4.5)

However, the kernel given by Eq.(4.5) usually does not admit a closed form solution.

Therefore common strategy is to approximate the optimal kernel as close as possible
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to provide asymptotically consistent estimates (Del Moral et al., 2006) . A sensible

approximation at a given time step n can be obtained by substituting πn−1 for ηn−1,

where the approximate kernel Ln−1 can be expressed as in Eq.(4.6),

Ln−1(xn, xn−1) =
πn−1(xn−1)Kn(xn−1, xn)∫

πn−1(xn−1)Kn(xn−1, xn)dxn−1

(4.6)

that can yield a closed form solution to the weight update equation if it is possible

to calculate the integration. An alternative to approximate backward kernel can be

obtained as in Eq.(4.7) by replacing πn−1(xn−1) by πn(xn−1) and selecting Kn as a

MCMC kernel targeting πn in Eq.(4.6).

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
(4.7)

Note that, although Eq.(4.6) is a closer approximation to the optimal bakward kernel,

Eq.(4.7) can lead to simpler weight update equations.

4.2 A SMC sampler for the Dirichlet Process Mixtures

In this section we will explain the proposed SMC based algorithm that generates

weighted samples from the DPM model posterior described in Section 4.1.

Now, assuming conjugacy, we devise an algorithm that approximates the posterior

distribution,

P (zn|yn) ≈

Np∑

i=1

W i
nδZi

n
(zn) (4.8)

with a set of weighted samples {W i
n, Z

i
n}

Np

i=1 where each particle Z i
n encodes an

assignment vector of all datapoints upto time n, formally represented with a Dirac

delta function δZi
n
(zn).

Let us define a forward kernel, Kn, generating samples from the sequence of

distributions built according to Eq.(4.1). We first partition an assignment vector

zn = {zn,r, zn,d, zn,n} where r is a subset of {1, . . . , n − 1}, a set of not necessarily

consecutive indicies, and d = {1, . . . , n − 1} − r. Note that throughout the text

we will call the set zn,r as the active block. We define u = r ∪ {n}, and denote

−u ≡ d. Exploiting the conjugacy property, we propose using the following

conditional distribution for Kn as given in Eq.(4.9).

Kn(zn−1, zn) =δzn−1,−u
(zn,−u) πn (zn,u|zn,−u) (4.9)
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This kernel allows us updating zn,u which includes the current and some past

assignments without changing the rest zn,−u.

By replacingKn in Eq.(4.6) we obtain the straight derivation to the approximate kernel,

Ln−1(zn, zn−1) =δzn,−u
(zn−1,−u) (4.10)

× πn−1 (zn−1,r|zn−1,−r) .

Given our choices of the forward and backward kernels, now we are able to write the

expression for the incremental weight function given in Eq.(4.4) as follows,

vn(zn−1, zn) =
γn(zn,−u)

γn−1(zn−1,−r)
. (4.11)

The proposed scheme can also be seen as a generalization of a conventional particle

filtering weight update scheme. The particle filter simply uses the forward kernel

Kn(zn−1, zn) = δzn−1(zn,−n)πn(zn,n|zn,−n). In this case only the clustering variable

zn,n is updated upon arrival of the new observation that yields the weighting function

given in Eq.(4.12).

vpf
n (zn−1, zn) =

γn(zn,−n)

γn−1(zn−1)
(4.12)

The sequential imputation scheme given by Liu (1996) and many particle filtering

based methods proposed by Quintana and Newton (1998); Chen and Liu (2000) use

the simplified incremental weight update function given by Eq.(4.12). Note that such a

kernel selection strategy is not capable of updating the active set zn,r according to the

new observations, therefore can yield to poor estimation performance.

In order to render our sampling approach more efficient by making more global

moves we wish to change a block of variables, i.e., choose the cardinality of the

index set r as large as possible. However, when the cardinality of r increases, the

time required for the exact computation of the incremental weight in Eq.(4.11) grows

exponentially. In the sequel, we will define MCMC and approximate Gibbs type moves

where the associated weight update equations can be computed efficiently. This leads

to low complexity algorithms for sampling from the time evolving DPM posterior

distribution.
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4.2.1 MCMC kernels

We first define the forward kernel as

Kn(zn−1, zn) = δzn−1,−u
(zn,−u)

×Kn(zn,n, zn,r|zn−1) (4.13)

where Kn(zn,n, zn,r|zn−1) is a valid MCMC kernel applying a single Gibbs step

targeting the full conditional distribution πn(zn,n, zn,r|zn,−u). Intuitively, this kernel

updates the active block using a Gibbs sampler and constructs the proposal distribution

using the sequence of full conditional distributions.

A corresponding backward kernel can be obtained by substituting Kn(zn−1, zn) into

the Eq.(4.7). This yields in the following incremental weight update equation,

vgbn (zn−1, zn) =
γn(zn−1,r, zn,−u)

γn−1(zn−1)
. (4.14)

Note that as a consequence of the chosen backward kernel, Eq.(4.14) is independent

from the initialization of the Gibbs moves. If the active block set is selected as

r = {1 . . . n−1}, the update equation in Eq.(4.13), will be equal to the one introduced

by MacEachern et al. (1999) as S4 algorithm.

The above schema depends exclusively on local Gibbs moves. As is the case in the

application of the Gibbs sampler, we may expect to get stuck in local modes due to slow

mixing especially when the posterior distribution is multi modal. In such situations,

annealing is a general strategy to pass through low probability barriers. However, as

one modifies the target density gradually, finding the correct schedule is crucial. On

the other hand, in the SMC framework we don’t have to choose a schedule explicitly.

We are free to choose any forward kernel, provided we compute the corresponding

incremental weight. Here, we propose a forward kernel which targets the modified full

conditional distribution, πn(zn,n, zn,r|zn,−u, ρn). Note that bridging is achieved simply

by changing the novelty parameter of the underlying Dirichlet process to ρn. The SMC

theory guarantees that we still target the original target density.

A valid backward kernel can be obtained by replacing πn with the modified version

of the target distribution πn(.|ρn) in Eq.(4.7) and the resulting weight update equation
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can be represented as follows,

van(zn−1, zn) =
γn(zn)

γn−1(zn−1)
(4.15)

×
πn(zn−1,r|zn−1,−r, ρn)

πn(zn,u|zn,−u, ρn)
.

While we are able to escape low probability barriers, the modified full conditional

distribution introduces a further approximation. Thus, we advise still choosing the ρn

converging to the true κ with the increasing time index n. Note that this is merely

a choice, not a requirement in contrast to a tempered Gibbs sampler, where the final

density must coincide with the true target.

4.2.2 Sequential approximation

As we rely on a blocked Gibbs sampler, we are constrained by low dimensional blocks.

The key idea in this method is to approximate sequentially to the exact full conditional

distributions given by Eq.(4.9) and Eq.(4.10). As in the previous section, we are free

to choose any approximation to the full conditionals as these are merely used as our

proposal density. Asymptotically, the SMC sampler ensures convergence to true target

posterior even approximations to these full conditional distributions are defined. Note

that the approximations, should be selected as close as possible to the full conditionals

to obtain an efficient sampler.

We assume that there are Q clustering variables in the active block and we further

enumerate them

zn,r =
{
zn,r1 . . . zn,rQ

}
(4.16)

where rq denotes the q’th index of the block at time n with q = 1 . . .Q . In the

sequel, we will design an approximation that enables us to design kernels where the

computational load increases linearly with Q. Hence, we can chose an active block

with size Q quite large in practice.

We propose the following approximation to the forward kernel Kn,

Kn(zn−1, zn) =δzn−1,−u
(zn,−u) π̂n (zn,u|zn,−u) (4.17)
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where

π̂n(zn,u|zn,−u) = πn(zn,n|zn,r, zn,−u, ρn) (4.18)

×

Q∏

i=1

πn−1,−r{i+1:Q}
(zn,ri|zn,−u, zn,r{1:i−1}

, ρn).

We assume r{i:j} is empty for i > j. The rationale beyond this

choice is as follows: we drop all the observations corresponding to the

active block, including the last observation and incorporate them one

by one in a new (possibly random) order. Recall that in Eq.(4.18),

πn−1,−r{i+1:Q}
(z|z′, ρn) = p(z|z′, {yn−1,1:n−1} − {yn−1,ri+1

. . . yn−1,rQ}) denotes

the modified full conditional distribution given the all observations excluding the

ones indexed by r{i+1:Q}. Note that approximations of this form are quite common in

approximate inference for state space models, where q corresponds to a time index;

we merely omit the effect of the ’future’ observations.

The formulation given by Eq.(4.18) enables us to recursively calculate and sample the

overall kernel density function π̂n(zn,u|zn,−u) efficiently with a reasonable complexity

even for large values of Q. Note that the scheme introduced in Eq.(4.18) processes the

observations sequentially in the indexed order {r1 . . . rq} and finally extends the space

using the proposal function πn(zn,n|zn,r, zn,−u, ρn). Clearly, due to exchangability of

the DPM model, there is no need to process the observations in a fixed order. To

diminish the effects of the particular processing order, it is preferred to apply a random

permutation of the indicies in r at each step of the algorithm.

A similar sequential procedure is also required to approximate the backward kernel

given by

Ln−1(zn, zn−1) =δzn,−u
(zn−1,−u) (4.19)

× π̂n−1 (zn−1,r|zn−1,−r)

where

π̂n−1(zn−1,r|zn−1,−r) = (4.20)
Q∏

i=1

πn−1,−r{i+1:Q}
(zn−1,ri|zn−1,−u, zn−1,r{1:i−1}

, ρ′n).

According to the resampling scheme given in Section.4.2.3 it is convenient to select

ρ′n = ρn in order to construct a good approximation to the optimal backward kernel.
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Note that given the same index order r1 . . . rQ, Eq.(4.20) will have the same functional

form with the right most hand side of Eq.(4.18) when ρ′n = ρn.

Finally, using the given approximations for the forward and backward kernels the

weight update equation can be arranged according to Eq.(4.4) as follows,

vsq(zn−1, zn) =
γn(zn)

γn−1(zn−1)
(4.21)

×
π̂n−1(zn−1,r|zn−1,−r)

π̂n(zn,u|zn,−u)
.

In Monte Carlo computations for solving high dimensional complex problems, it is

common practice to resort to a collection of kernels rather than committing to a fixed

choice. One can define a mixture kernel in the context of a SMC algorithm as follows,

Kn(zn−1, zn) =

M∑

m=1

αm
n (zn−1)K

m
n (zn−1, zn) (4.22)

where m ∈ {1 . . .M} is the mixture label, αm
n denotes the selection probability of

the mixture component at time n,
∑M

m=1 α
m
n (zn−1) = 1, and Km

n (zn−1, zn) denotes

the forward kernel corresponding to the m’th component. In order to circumvent the

computational burden of Eq.(4.22), a backward kernel of the form of a mixture is

proposed in (Del Moral et al., 2006).

Ln(zn, zn−1) =

M∑

m=1

βm
n (zn)L

m
n (zn, zn−1) (4.23)

where βm
n is the backward mixture component selection probability at time n,

∑M
m=1 β

m
n (zn−1) = 1. Now, this definition enables us to perform importance sampling

on an extended space E ×E ×M by the definition of a latent kernel selector variable

Mn, taking valuesM = {1 . . .M}, m ∈ M. Consequently the weight function for

each mixture component can be expressed as given in Eq.(4.24).

vn(zn−1, zn, m) =
γn(zn)

γn−1(zn−1)
(4.24)

×
Lm
n−1(zn, zn−1)β

m
n (zn)

Km
n (zn−1, zn)αm

n (zn−1)

In our work we define three different algorithms labeled as SMC-1, SMC-2 and SMC-

3 each utilizes a different kernel. The SMC-1 algorithm employs the forward kernel

given by Eq.(4.13) and updates the weights according to Eq.(4.14).
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The SMC-2 algorithm uses a mixture kernel in order to admit the Gibbs sampler to

make global moves in the DPM space. When the selection probabilities α and β are

chosen equal and independent of the zn and zn−1 respectively, the mixture weight

update function for m = 1 and m = 2 can be given by Eq.(4.14) and Eq.(4.15)

respectively.

In SMC-3 we use the mixtures of the forward kernel given by Eq.(4.13) and Eq.(4.17)

where the sequential construction enables us to define a backward kernel independent

from the modified forward kernel parameter ρn. The associated weight update

functions are calculated according to Eq.(4.14) and Eq.(4.21) respectively when

selection probabilities α and β are equal and chosen independent of z.

4.2.3 Algorithmic details

As denoted before, in our work, we propose an active block to be updated as each

new observation arrives. In order to limit the computational cost required at each

time step we determine a constant block size Q and index the block with r1 . . . rQ.

Similar block update strategies have also been proposed by Doucet et al. (2006) under

the SMC samplers framework. In our scheme the indexes of the active block r1 . . . rQ

are incremented by Q as each new observation arrives. Whenever the last index value

is rQ > n then we set r = {1 . . . Q}. Note that according to the sequential construction

defined in Eq.(4.18) the approximations will be less accurate for the algorithm SMC-3

with the increasing size Q.

In order to prevent particle degeneracy, in a SMC framework it is required to perform

occasional resampling steps when the effective sample size drops below a predefined

threshold. Intuitively, this step selects the high weighted particles and discards the

low weighted ones. However, discarding the low weighted particles prematurely

may prevent an algorithm to explore promising modes of the time evolving posterior

distribution. It is quite common in practice, that a mode initially less dominant

becomes more pronounced when a larger fraction of the data is processed. Hence

for the DPM model, we found it crucial to apply the resampling step on the modified

target distribution π(.|ρ) instead of the true target posterior π in order to prevent the

low weighted particles to be discarded too early.
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We calculate the weights as follows: We first calculate the unnormalized weights for

the modified target distribution πn(.|ρn) according to w
′

n = wn × γn(zn|ρn)/γn(zn).

Assuming that, {W
′(i)
n } represents the normalized weights, we apply systematic

resampling if effective sample size, Neff = 1/
∑Np

i=1(W
′(i)
n )2 is below a predefined

threshold. Following the resampling, a reweighting step, wn = γn(zn)/γn(zn|ρn), is

being carried out, in order to find the weights approximating to the true target posterior.

4.3 Experimental Results

Our goal in this section is to illustrate the effectiveness of the SMC samplers

framework for online inference in DPM models. For this purpose, we compare

performance of SMC samplers each detailed in Section.4.2.2, namely; SMC-1, SMC-

2, SMC-3, Particle filter (PF) (MacEachern et al., 1999; Fearnhead, 2004) and a batch

algorithm, Gibbs sampler (GS) (MacEachern, 1994). Performance has been reported in

terms of log-marginal likelihoods, mean, variance estimates and respective estimation

variances. Mixture density estimates are also provided for visual comparison.

The problem is the standard Gaussian mixture density estimation problem with

unknown number of components. Our model is standard and assumes that observations

y are drawn from a univariate Gaussian with unknown mean µ and variance σ2,

θ = {µ, σ2}, where the number of mixtures are unknown. The distribution of the

parameters µ and σ2 are chosen as normal and inverse-gamma, respectively to ensure

the conjugacy condition.

Apart from the resampling threshold and the number of particles, several algorithm

parameters need to be set: The selection probabilities of the forward and the backward

kernels (α and β), active block size (q), and the parameter sequence ρn. The selection

probabilities determine the shape of the forward and backward kernels therefore an

appropriate choice is crucial. Selection probabilities of the forward and backward

kernel are set to αm = {0.9, 0.1} and βm = {0.9, 0.1} respectively. Note that m = 2

corresponds to the modified kernel component and we practically observed that a small

weight is often enough to obtain a good mixing property. Increasing the weighting of

the modified kernel often increase the algorithms ability to explore new modes. Even

a single kernel where αm = {0, 1} can be used for certain dataset where modes are

highly isolated. The parameter sequence ρn is updated according to a geometric update
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Table 4.1: Mixture model parameters.

Mixture weights Mean Std. dev.
Data-1 (D-1) 1/3,1/3,1/3 0,1.5,3 0.5,0.5,0.5
Data-2 (D-2) 1/2,1/6,1/3 0,2,4 0.5,0.5,2.5
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Figure 4.1: Estimated mixture densities by the (a) SMC-1 and (b) SMC-3 algorithm
for 50 Monte Carlo runs.

function where the common parameter is set to 1/150 and the initial value is set to

ρ1 = 1 (Neal, 2001). The active block size q is set to 4. This choice seems to balance

well computational burden with inference quality.

To alleviate the degeneracy, we applied systematic resampling scheme. The resampling

scheme for SMC-2 and SMC-3 is applied according to Section 4.2.3. For a fair

comparison the particle size is selected as Np = 1000 for particle filter, Np = 200

for SMC algorithms and we performed 1000 iterations by Gibbs sampler where the

first 300 were used for the burn-in period. All the results are reported for 100

independent Monte Carlo runs. We selected two test sets (D-1 and D-2) generated

from a Gaussian mixture model. Each data set has 1000 points, and the results are

reported sequentially for 200, 500 and 1000 observations. Both datasets are generated

from a model comprising of three mixture components with parameters given in Table

4.1. In order to evaluate the performance of the proposed kernels we performed two

tests that aim to assess the mixing property (ability to escape local modes) as well as

the consistency and quality of the estimate (bias and low variance).

Sampling based inference schemes get stuck in local modes of the posterior

distribution, particularly when the novelty parameter is chosen too small for the

given problem. In order to compare the mixing property of the proposed algorithms

we set the novelty parameter to a very low value of κ = 0.05 and compare the
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mixture densities estimated by SMC-1 and SMC-3 algorithms, respectively. We

performed the test by generating a total of 1000 observations from the model D-1

which comprise three overlapping mixture components. As a gold standard reference

we performed a very long Gibbs sampler run and observed that the estimated number

of components is 2.16, 3.09 and 3.11 for 200, 500 and 1000 observations consecutively.

Figure 4.1 (a) and (b), respectively illustrate the estimated mixture densities obtained

by SMC-1 and SMC-3 for 50 Monte Carlo runs. It is clear that SMC-3 can represent

all tree components of the mixture density for all runs. However, in nearly half of

the runs, the SMC-1 estimates 2 mixture components because it gets stuck to a local

mode. The mean estimates of log-marginal likelihood and the number of components

are given in Table 4.2 for SMC-1, SMC-2, SMC-3, PF and GS. The results show that

the mean estimate of the SMC-2 and SMC-3 are very close to the long run estimate

of the Gibbs sampler, however SMC-1, PF and GS underestimate the mean value even

when the observation size is 1000 and GS requires a longer burn-in period in order

to converge to the true posterior distribution. SMC-2 and SMC-3 are also superior in

means of marginal log-likelihoods.

In order to measure the consistency of the proposed algorithms, the performance of the

algorithms for different parameter settings are reported in Table 4.3 for D-1 and D-2,

respectively. The novelty parameter is set to κ = 0.5 which avoids the algorithms to

stuck at a local solution. The mean estimate for the long Gibbs sampler run is 3.73

for D-1 and 4.63 for D-2 at n = 1000. As it is shown in Table 4.3, PF, GS and SMC

algorithms provide very close mean estimates to the long run Gibbs sampler for D-1.

Estimation variance of the mean estimate for particle filter gradually increases with the

Table 4.2: Estimated average Log-marginal likelihoods, mean values and respective
estimation variances (in parenthesis) for SMC-1, SMC-2, SMC-3, PF and
GS.

Dataset-1 (D-1), κ = 0.05
Estimated Mean

Algo. Log-marg. 200 500 1000
SMC-1 -723.4 (102.8) 2.11 (0.014) 2.51 (0.233) 2.67 (0.243)
SMC-2 -711.2 (4.41) 2.15 (0.006) 3.10 (0.025) 3.10 (0.020)
SMC-3 -711.1 (3.22) 2.15 (0.007) 3.09 (0.011) 3.09 (0.010)

PF -727.6 (52.9) 2.10 (0.015) 2.35 (0.181) 2.49 (0.249)
GS 2.69 (0.239)
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Table 4.3: Estimated average Log-marginal likelihoods, mean values and respective
estimation variances (in parenthesis) for SMC-1, SMC-2, SMC-3, PF and
GS.

Dataset-1 (D-1), κ = 0.5
Estimated mean

Algo. Log-marg. 200 500 1000
SMC-1 -708.9 (1.54) 2.99 (0.038) 3.61 (0.061) 3.71 (0.056)
SMC-2 -708.6 (0.96) 3.00 (0.025) 3.61 (0.044) 3.69 (0.036)
SMC-3 -708.9 (1.20) 2.96 (0.025) 3.60 (0.042) 3.69 (0.038)

PF -712.4 (9.86) 2.98 (0.041) 3.70 (0.272) 3.79 (0.293)
GS 3.68 (0.055)

Dataset-2 (D-2), κ = 0.5
Estimated mean

Algo. Log-marg. 200 500 1000
SMC-1 -1117.3 (0.35) 4.14 (0.035) 4.54 (0.068) 4.65 (0.091)
SMC-2 -1117.3 (0.31) 4.14 (0.021) 4.53 (0.064) 4.63 (0.129)
SMC-3 -1117.2 (0.29) 4.13 (0.019) 4.50 (0.054) 4.58 (0.086)

PF -1117.7 (0.98) 4.14 (0.030) 4.56 (0.119) 4.73 (0.281)
GS 4.68 (0.095)

observation size and reaches to a value of 0.293 at n = 1000 whereas all three SMC

samplers achieve approximately 8 times lower estimation variance. It can be concluded

that all SMC algorithms provide a significant performance improvement over PF with

the same computational cost and they are also more reliable. When we compare the

SMC-1, SMC-2 and SMC-3, non of the algorithms outperform the others in means of

estimation variance. The results also show that performance of the SMC algorithms

and GS are comparable for the dataset D-1 when κ = 0.5.

A similar performance has also been reported for the dataset D-2. The mean estimate of

PF, GS, SMC and the long run Gibbs sampler are very close. All three SMC algorithms

and GS provide comparable estimation variance for mean estimates while they are

lower for PF. The results obtained for D-1 and D-2 also indicate that, SMC-2 and

SMC-3 achieve reliable estimates at different parameter sets.
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5. ANNEALED SMC SAMPLERS FOR NONPARAMETRIC BAYESIAN

MIXTURE MODELS

In this chapter we aim to further improve the efficiency of the proposed sequential

Monte Carlo sampler in Chapter 4 by utilizing annealing strategies under the SMC

samplers framework (Ulker et al., 2010a, 2011). The key idea of the method is

maintaining an intermediate (annealed) distribution as a surrogate target for the SMC

algorithm where resampling is carried out according to this annealed distribution.

Consequently, we use this surrogate density as a proposal to the true target where

we can calculate the correct weights without any extra computational cost. Intuitively,

we are using the SMC machinery to compute a good proposal density. This strategy

enables us to maintain a diverse particle set that seems to be crucial in obtaining an

efficient sampler.

Due to importance of modeling the multidimensional dependencies in high

dimensional datasets we extended the proposed algorithm to the multidimensional

Bayesian density estimation problem with unknown number of components where the

prior on parameters are conjugate. Conjugate prior on the parameter set is chosen

as Normal-scaled inverse Gamma distribution for the univariate model and Normal-

inverse Wishart prior is utilized for the multivariate case which is the multidimensional

extension of the Normal-scaled inverse Gamma distribution. We applied the proposed

algorithm to the emotion recognition from speech where the DPM model allows to

simultaneously estimate the number of mixture components as well as the parameters

required to represent the emotional class densities.

The proposed algorithm in this section is applied to the emotion recognition from

speech problem that has taken an increasing attention in order to build autonomous

systems particularly for commercial human-machine applications (Ulker and Gunsel,

2011). The model proposed by Ulker and Gunsel (2011) eliminated the need for

specification of the number of mixture components that represent the data. The real

world speech emotion data is obtained from the EMODB public database and the
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ability of the algorithm to select the model structure that best suits the training data

is illustrated with comparisons.

5.1 SMC Samplers for DPM Models

Let Kn denote the forward kernel that will be used to generate samples from the

posterior distribution formulated in Eq.(4.1). We first partition an assignment vector

zn = {zn,r, zn,d, zn,n} where r is a subset of {1, . . . , n − 1}, a set of not necessarily

consecutive indices, and d = {1, . . . , n− 1} − r. Throughout the text we will call the

set zn,r as the active block. We define u = r ∪ {n}, and denote −u ≡ d.

Let us define the forward kernel as follows,

Kn(zn−1, zn) = δzn−1,−u
(zn,−u)Kn(zn,n, zn,r|zn−1) (5.1)

where Kn(zn,n, zn,r|zn−1) is a valid MCMC kernel applying a single Gibbs iteration

targeting the full conditional distribution πn(zn,n, zn,r|zn,−u).

The corresponding backward kernel can be obtained by substituting Eq.(5.1) into

Eq.(2.60) that yields the incremental weight update equation,

vn(zn−1, zn) = γn(zn−1,r, zn,−u)/γn−1(zn−1). (5.2)

Note that as a consequence of using the MCMC kernel Kn, Eq.(5.2) is independent

from the kernel initialization. When the active block set is selected as r = {1 . . . n−1},

we obtain the update rule Eq.(5.2) introduced by MacEachern et al. (1999) as S4

algorithm. Intuitively, the MCMC kernel updates the active block using a Gibbs

sampler and constructs the proposal distribution using the sequence of full conditional

distributions.

In a sequential problem the posterior distribution changes over time and new modes of

the posterior distribution may emerge as new observations are received. The algorithm

must have a good mixing property to explore the modes of the time evolving posterior

distribution and to achieve a good approximation to the true target posterior. However,

conventional sequential and batch algorithms based on the Gibbs sampler may fail to

represent the modes of the true target posterior due to the slow convergence property

of the Gibbs samplers. This is particularly when the posterior distribution has a multi

modal form where the modes are isolated (Neal, 2001). To deal with this problem, in
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the next subsection we introduce an algorithm that converges to the true DPM posterior

as the new observations are received sequentially.

5.2 Annealed SMC Samplers for DPM Models

The conventional approach presented in Section 5.1 applies Gibbs moves to each

particle in order to obtain weighted samples from a sequence of target distributions

denoted as π1(z1), . . . , πn(zn). We propose an annealing scheme to improve the

efficiency of posterior estimation. In the literature annealing schemes have been

widely used to handle isolated modes in batch processing. It is adopted to importance

sampling to construct the proposal distribution suitable to sampling of the true target

distribution (Neal, 2001).

To achieve our goal let us construct an annealed time evolving target posterior as,

π′
1(z1), . . . π

′
n(zn), k = {1 . . . n}, where π′

k is the annealed target posterior defined as,

π′
k(zk) = πk(zk|κ = αk). (5.3)

Annealing is achieved by changing the novelty parameter of the underlying Dirichlet

process which is set to αk in Eq.(5.3). Note that αk is a parameter of the prior

distribution of number of components where a higher value yields higher number

of mixtures. The idea behind constructing a sequence of annealed target posterior

distribution is to obtain a class of intermediate distributions by selecting a αk value

which is higher than the true model novelty parameter κ and provide a well defined

support to the time evolving target posterior. In other words, the annealed distributions

can be interpreted as an underlying DPM model of which the parameters are relaxed

in order to obtain an annealed posterior which is easy to sample.

In order to sample the sequence of annealed target distributions, let us define a forward

kernel as follows,

Kn(zn−1, zn) =δzn−1,−u
(zn,−u)Kn(zn,n, zn,r|zn−1) (5.4)

where Kn(zn,n, zn,r|zn−1) is an MCMC kernel which targets the conditional

distribution π′
n(zn,n, zn,r|zn,−u). Using Eq.(2.60), the backward kernel can be written

as in Eq.(5.5),

Ln−1(zn, zn−1) = π′
n(zn−1)Kn(zn−1, zn)/π

′
n(zn) (5.5)
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and the incremental weights for the annealed target posterior can be obtained as

follows,

v′n(zn−1, zn) =
γ′n(zn)π

′
n(zn−1,r|zn−1,−u)

γ′n−1(zn−1)π′
n(zn, zn,r|zn,−u)

. (5.6)

where π′
n(zn) = γ′n(zn)/Zn and the weights associated with the particles can be

calculated according to w′
n(z1:n) = w′

n−1(z1:n−1) × v′n(zn−1, zn). Assuming
{
W ′

n
(i)
}

represents the normalized weights approximating to π′
n(zn), we perform a resampling

step if effective sample size, Neff = 1/
∑Np

i=1(W
′
n
(i))2, is below a predefined threshold.

Finally, in order to approximate the target distribution πn(zn), we reweight the particles

according to wn(z1:n) = w′
n(z1:n)× vn(zn) where vn(zn) = γn(zn)/γ

′
n(zn).

Specification of the active block size r shown in Eq.(5.6) is an important issue in the

design of the proposed sampler. In order to limit the computational cost required at

each time step we initially determine a constant block size Q and index the block

with r1 . . . rQ. The indexes of the active block is incremented by Q as each new

observation is received. The blocks do not overlap to each other and update scheme is

cycled whenever all the clustering labels up to time n are updated. Note that similar

block update strategies are also used by Doucet et al. (2006) under the SMC samplers

framework.

5.2.1 The annealing parameter

As denoted above the sequence of annealed posterior distributions, π′
1(z1), . . . , π

′
n(zn)

is constructed by updating the annealing parameter αn of the underlying DPM model

shown in Eq.(5.3). At each time step of the algorithm αn is updated according to a

geometric spacing function

αn = αn−1 + cα(κ− αn−1) (5.7)

where α1 > 0, αn−1 > αn and cα is the common parameter that determines the

amount of spacing at each time step. Note that, Neal (2001) reported that to change

the annealing parameter according to geometric spacing of αk is suitable when the π′
n

varies smoothly with time.

In our framework, we construct the sequence of annealed distributions by setting an

initial value α1 and updating αn as each new observation arrives. Intuitively the initial
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value for α1 and the common parameter cα are set empirically in order to form the

intermediate distributions that are not too far apart from the true target density πn. We

note that, in conventional annealing approaches, where one modifies the target density

gradually, finding the correct schedule is a hard but crucial task. In contrast, in the SMC

framework we don’t have to choose a schedule very strictly. We are free to choose any

forward kernel, provided we compute the corresponding incremental weight – we will

be sampling from the correct target at any given time.

5.2.2 Multivariate conjugate prior selection for the DPM model

In this section we derive the posterior distribution of the mixture parameters,

p(θn|zn, yn), given the labeling vector zn and the marginal posterior of the clustering

labels, p(zn|yn), up to a normalizing constant under conjugate settings. We assume

that observations are drawn from a multivariate Gaussian distribution with unknown

mean vector µ and covariance matrix Σ, θ = {µ,Σ}, where the number of mixtures

are unknown.

In order to ensure the conjugacy property we utilize a Normal-inverse Wishart prior

for the parameter vector θ = {µ,Σ} where,

NIW (τ0, ω0,Λ0, υ0) ≡ p(µ,Σ) = p(Σ)p(µ|Σ). (5.8)

The covariance matrix Σ is inverse Wishart distributed as,

Σ ∼ IW (Λ−1
0 , υ0). (5.9)

where Λ0, υ0 is the inverse scale matrix and the degrees of freedom respectively. Given

the covariance matrix Σ, the mean vector µ is normal distributed as shown in Eq.(5.10)

µ ∼ N(τ0,Σ/ω0). (5.10)

where τ0 and Σ/ω0 are the mean and covariance parameters. According to Eq.(5.10)

the covariance defined over the mean value is proportional to the covariance of the

Gaussian component and creates a flexible prior structure for the DPM model.

Accordingly, the joint prior distribution, p(µ|Σ), defined over the parameters can be

expressed as,

p(µ,Σ) ∝ |Σ|((υo+d)/2+1)exp

(
−
1

2
tr(Λ0Σ

−1)−
ω0

2
(µ− τ0)

TΣ−1(µ− τ0)

)
(5.11)
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Note that, Normal inverse Wishart distribution is a generalization of the Normal-

inverse Gamma distribution with the parameters θ = {µ, σ}, where µ and σ are scalar

quantities.

Let us denote the j’th mixture component parameters at time index n with,

θj = {µj,Σj} where θj is distributed according to,

θj ∼ NIW (τ0, ω0,Λ0, υ0), (5.12)

and the overall joint parameter vector is θ = {θ1 . . . θkn}.

The posterior distribution of the j’th cluster parameters {µj,Σj} is also Normal inverse

Wishart distributed, NIW (µj,Σj |τj , ωj,Λj, υj), where the parameters are calculated

as,

τj =
ω0τ0 + njyj
ω0 + nj

(5.13)

ωj = ω0 + nj (5.14)

Λj = Λ0 +

nj∑

i=1

(yj,i − yj)(yj,i − yj)
T +

ω0nj

ω0 + nj
(yj − τ0)(yj − τ0)

T (5.15)

υj = υ0 + nj. (5.16)

In the above equations nj is the number of observations, yj,i is index to each

observation and yj is the mean vector of the observations in the ’j’th cluster. The

marginal of the posterior distributions on the mean vector µj and the covariance matrix

Σj can be computed analytically by the inverse Wishart and student-t distributions

respectively, as shown below,

p(Σj |zn, yn) = IW (Λ−1
j , vj) (5.17)

p(µj|zn, yn) = tvj−d+1

(
τj ,

Λj

ωj(vj − d+ 1)

)
. (5.18)

Accordingly if the parameters θj ∈ {Σj , µj}, j = {1 . . . k}, in Eq.(2.69) are integrated

out, the posterior probability p(zn|yn) of the assignment zn can be expressed up to a

proportionality as follows,

p(zn|yn) ∝ p(zn)×
kn∏

j=1

Γd(υj/2)Λ
υ0/2
0 ω

d/2
0

πnjd/2Γd(υ0/2)Λ
υj/2
j ω

d/2
j

(5.19)

where p(zn) is the prior on clustering assignment vector zn, Γd is the multidimensional

Gamma function and d is the dimension of the observation space.
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Table 5.1: Mxture model parameters.

p1, p2, p3 µ1, µ2, µ3 σ1, σ2, σ3
Data-1 (D-1) 1/3,1/3,1/3 0,1.5,3 0.5,0.5,0.5
Data-2 (D-2) 1/2,1/6,1/3 0,2,4 0.5,0.5,2.5

5.3 Test Results

Our goal in this section is to illustrate the effectiveness of the annealed SMC samplers

for online inference in DPM models for univariate and multivariate datasets.

5.3.1 Univariate density estimation problem

For this purpose, we compare performance of three samplers namely; the SMC-G

which utilizes conventional Gibbs moves on the DPM space (MacEachern et al., 1999),

the proposed SMC sampler (SMC-A), the SMC-M algorithm that utilize a mixture

of Gibbs moves and approximate Gibbs moves based on sequential approximation

(Ulker et al., 2010b) and the Particle filter (PF) (Fearnhead, 2004). Performance has

been reported in terms of log-marginal likelihoods, mean estimates and respective

standard errors. Mixture density estimates are also provided for visual comparison.

Algorithms are evaluated on a univariate infinite dimensional Gaussian mixture

density estimation problem. Observations are drawn from a univariate Gaussian with

θ = {µ, σ2} where µ is the mean and σ2 is the variance. The conjugate prior

distributions are chosen as normal and inverse-gamma respectively.

To alleviate the degeneracy, a systematic resampling scheme is applied for sequential

algorithms when Neff < 3/4Np . For a fair comparison the number of particles is

selected as Np = 1000 for PF, Np = 100 for SMC-A algorithm and Np = 200

for the SMC-M algorithm where the active block size Q is set to 9 and 4 for

the SMC-A and SMC-M algorithms respectively. Note that block size determines

the approximation introduced by the kernels for the SMC-M algorithm (Ulker et al.,

2010b). The results are reported for 100 independent Monte Carlo runs for each model.

The initial annealing parameter for annealed target distribution is set to α1 = 1 and it

is geometrically updated according to Eq.(5.7) at each time step where the common

parameter, cα, is set to 1/100.

Two test sets (D-1 and D-2) are generated from a Gaussian mixture model comprising

three mixture components with parameters given in Table 5.1 where µi, σi, and pi, for
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i ∈ {1 . . . 3}, denote the mean, standard deviation and the mixture weight for each

component, respectively. In order to evaluate the performance on real data, we also

performed the tests on the speech data set (D-3) publicly available. Reported results are

obtained for the emotional state “sad” where the actual number of mixture components

is priorly unknown. Each test set has a total of 1000 points and the results are reported

sequentially for 200, 500, and 1000 samples.
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Figure 5.1: Estimated mixture densities by the (a) PF, (b) SMC-G, (c) SMC-A (d)
SMC-M algorithm for 50 Monte Carlo runs. SMC-A and SMC-M
represent all tree components of the mixture density in all runs.

In order to illustrate the mixing capability of the proposed algorithm we set the novelty

parameter to a very low value of κ = 0.05. Note that a low κ will probably cause

the posterior to have isolated modes hence this test aims to assess the mixing property

(ability to escape local modes) of the algorithms. We performed the test by generating

a total of 1000 observations from the model D-1 which comprise three overlapping

mixture components. As a gold standard reference we performed a very long Gibbs

sampler run and observed that the estimated number of components is 2.16, 3.09 and

3.11 for 200, 500 and 1000 observations consecutively. In Figure 5.1, the mixture
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Table 5.2: Estimated average Log-marginal likelihoods, mean values and respective
Monte Carlo standard errors (in parenthesis).

D-1
Mean Estimate

Algo. κ Log-marg. 200 500 1000
SMC-G 0.05 -723.4 (10.1) 2.11 (0.118) 2.51 (0.152) 2.67 (0.493)
SMC-A 0.05 -710.8 (1.61) 2.15 (0.070) 3.07 (0.077) 3.07 (0.071)
SMC-M 0.05 -711.1 (1.78) 2.15 (0.083) 3.09 (0.104) 3.09 (0.115)

PF 0.05 -727.6 (7.27) 2.10 (0.122) 2.35 (0.425) 2.49 (0.491)
D-2

SMC-G 0.5 -1117.3 (0.59) 4.14 (0.187) 4.54 (0.260) 4.65 (0.266)
SMC-A 0.5 -1117.3 (0.52) 4.14 (0.158) 4.53 (0.244) 4.63 (0.330)
SMC-M 0.5 -1117.2 (0.53) 4.13 (0.137) 4.50 (0.232) 4.58 (0.293)

PF 0.5 -1117.7 (0.99) 4.14 (0.173) 4.56 (0.345) 4.73 (0.530)
D-3

SMC-G 0.05 -2052.1 (2.26) 2.50 (0.197) 3.09 (0.447) 3.58 (0.452)
SMC-A 0.05 -2050.6 (0.30) 2.61 (0.424) 3.40 (0.378) 4.04 (0.320)
SMC-M 0.05 -2051.1 (1.39) 2.60 (0.303) 3.35 (0.360) 4.01 (0.401)

PF 0.05 -2052.8 (2.54) 2.48 (0.251) 3.06 (0.500) 3.39 (0.573)

densities are plotted for each run of the PF, SMC-G, SMC-A and SMC-M algorithms,

respectively. It is clear that SMC-A and SMC-M can represent all 3 components of the

mixture density in all runs of the algorithms whereas SMC-G and PF commonly gets

stuck at a local mode and fits 2 mixture components to the data for several runs (more

than the half) of the algorithm. We also reported the log-marginal likelihood, mean

estimate of the number of components and respective standard errors (in parenthesis) in

Table 5.2 for SMC-G, SMC-A, SMC-M and PF. The results illustrate that SMC-A and

SMC-M are able to converge to the 3 components for a small number of observations,

however the SMC-G and PF algorithms do not converge to the true posterior even

when the observation size is 1000. It is also clear that SMC-A has much lower standard

error compared to SMC-G and PF in means of log-marginal likelihoods and the mean

estimates whereas a slight improvement is achieved over SMC-M.

In order to examine dependency of the performance of the algorithms on different

datasets and parameter settings, we set the novelty parameter to κ = 0.5 and report

the results in Table 5.2 for dataset D-2. It is clear that PF and SMC algorithms

provide very close mean estimates. However, SMC-G, SMC-A and SMC-M can

achieve significantly lower standard error compared to PF at n = 1000. This result

shows that SMC algorithms are more reliable with the same computational cost.
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Moreover SMC-A achieves comparable performance to SMC-G and SMC-M in means

of standard error when κ = 0.5 while it provides similar mean estimates.

Finally we compared the performance for dataset D-3, where the novelty, initial

annealing and the common parameter are set to κ = 0.05, α1 = 0.25 and cα = 1/2000

respectively. As a gold standard reference the results of a very long Gibbs sampler

run are found as 2.53, 3.35, 4.10 for 200, 500 and 1000 observations consecutively.

The results given in Table 5.2 shows that the SMC-A and SMC-M provides closer

estimates to the long Gibbs sampler run particularly when n = 1000 whereas SMC-G

and PF underestimates the mean value. Similarly SMC-A outperforms SMC-G and PF

in means of log marginal likelihood and achieves lower standard error compared to the

SMC-M algorithm.

5.3.2 Multivariate density estimation problem

In order to evaluate the performance of the algorithms on the multivariate density

estimation problem we reported the test results of the SMC-G which utilizes

conventional Gibbs moves on the DPM space (MacEachern et al., 1999) and

the proposed multivariate annealed SMC sampler (SMC-MA) for two different

multivariate datasets. These two test sets (M-1 and M-2) are respectively generated

from two and five dimensional multivariate Gaussian mixture that comprise of three

equally weighted ,{p1, p2, p3} = 1/3, mixture components. The mean vectors of each

component are µ1 = {0, 0}, µ2 = {−2,−2}, µ3 = {2, 2} for the two dimensional case

and µ1 = {0, 0, 0, 0, 0}, µ2 = {−2,−2,−2,−2,−2}, µ3 = {2, 2, 2, 2, 2} for the 5

dimensional data. The covariance matrices Σ1 and Σ3 are chosen as diagonal matrices

where the diagonal elements equals to one, σ2 = 1, and the third matrix Σ2 is selected

as a full covariance matrix.

The initial annealing parameter is set to α1 = 1 and it is geometrically updated

according to Eq.(5.7) at each time step where the common parameter, cα, is set to

1/1000, for both of the multidimensional test cases.

In order to illustrate the mixing capability of the proposed algorithm for the two

dimensional data, we set the novelty parameter to the value of κ = 0.05 and plot

the mixture densities estimated by a single particle generated by the SMC-G and

SMC-MA algorithms in Figure 5.2(a) and Figure 5.2(b) respectively. It is clear that
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Figure 5.2: Observations (red dots) on 2-D space and 50% confidence intervals of the
Estimated mixture densities by the (a) SMC-G, (b) SMC-MA algorithms
for a single Monte Carlo run. SMC-MA represent all tree components of
the mixture density.

Table 5.3: Estimated average Log-marginal likelihoods, mean values and respective
estimation variances (in parenthesis).

M-1
Mean Estimate

Algo. κ Log-marg. 200 500 1000
SMC-G 0.05 -1421.0 (740.1) 2.15 (0.007) 2.24 (0.105) 2.49 (0.174)

SMC-MA 0.05 -1410.9 (420.6) 2.27 (0.051) 2.71 (0.130) 2.99 (0.103)

SMC-MA can represent all 3 components of the mixture density whereas SMC-G

gets trapped at a local mode and fits 2 mixture components to the data. We also

reported the log-marginal likelihood, mean estimate of the number of components

and respective estimation variances (in parenthesis) in Table 5.3 for SMC-G and

SMC-MA . The results illustrate that SMC-MA is able to converge to the 3 mixture

components, whereas the SMC-G algorithm is not able to converge to the true posterior

even when the observation size is 1000. It is also clear that SMC-MA has lower

estimation variance compared to SMC-G in means of log-marginal likelihoods and

mean estimates.

In order to evaluate the performance of the proposed algorithm for higher dimensional

data we reported log-marginal likelihood and mean estimate of the number of

components as well as the estimation variances (in parenthesis) for the dataset M-

2 in Table 5.4. The results indicate that, similar to the results given for two
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Table 5.4: Estimated average Log-marginal likelihoods, mean values and estimation
variance (in parenthesis).

M-2
Mean Estimate

Algo. κ Log-marg. 200 500 1000
SMC-G 0.05 -2535.8 (3101.2) 2.18 (0.147) 2.18 (0.140) 2.22 (0.218)

SMC-MA 0.05 -2434.3 (2432.1) 2.43 (0.204) 2.96 (0.051) 2.97 (0.054)

dimensional data, the proposed algorithm, SMC-MA is able to converge to the 3

mixture components. However the conventional algorithm, SMC-G gets trapped to

2 components even when the observation size is 1000. We also observed that SMC-

MA has higher log marginal likelihood and lower estimation variance compared to

SMC-G.

100



6. DIRICHLET PROCESS MIXTURES FOR TIME SERIES CLUSTERING

In this section we construct an infinite dimensional model based on Dirichlet process

mixtures in order to cluster a time series where the number of clusters k and the

parameters of each cluster are priorly unknown. Let us consider a toy, time series

clustering problem illustrated in Figure 6.1(a), where discrete samples are generated

by a two state Markov Chain switching its parameters at certain change points. Given
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Figure 6.1: (a) Discrete time series generated from a mixture of Markov Chains (b)
Switching labels that select the active Markov chain.

the data in Figure 6.1(a), it is easy to identify that there is a total of two Markov

chains interchanging between each other at the change points 80, 160, 240 and 280

consecutively, and the clustering labels associated with each observation are given in

Figure 6.1(b). Assuming that the clustering labellings are known, it is straightforward
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to estimate the model parameters, such as transition matrix and the initial probability

of each chain.

However in real world problems we encounter with situations where the model

parameters, change point times (arrival times) and the model order is priorly unknown.

In order to alleviate such cases, the given problem can be defined with a model that

switches its parameters within an infinite set of θ = {θ1, . . . , θk}, k ∈ {1 . . .∞},

selected according to the clustering labellings zi ∈ {1 . . . k} at time intervals τi,

i = {1, . . . , n} which are determined according to an arbitrarily selected distribution.

Solution to the given problem can be quite challenging and online algorithms are highly

desired due to real time and large scale data processing requirements.

In order to solve the problem defined above, in our work we propose a Bayesian model

based on Dirichlet process mixtures, that estimates the number of clusters, model

parameters and the arrival times in a time series data under the assumption that there

is no temporal correlation between consecutive clustering labellings and the order of

the labels is not important. The model is not restricted to a certain type of data and

can be applied for online clustering of discrete or continuous time stochastic processes.

Since there is no closed form solution to the proposed model, we solved the proposed

model by an online inference scheme based on the sequential Monte Carlo sampling

methodology.

In the sequel we will explain the proposed model structure and the sampling algorithm

designed for sequential inference of the model posterior distribution. We applied the

algorithm to a time series clustering problem where the data stream is generated from

a mixture of Markov Chains which is an important time series clustering problem

particularly in the area of network traffic analyzing and bio-informatics. We reported

the clustering performance of the algorithm for various synthetic datasets and evaluated

the performance on the audio data.

6.1 Model Construction

Let us denote the observation sequence received until time n by yn = {yn,1, . . . , yn,n}.

Assuming that mn represent the total number of changepoints and τn,i,

i ∈ {1, . . . , mn} is the index to i’th changepoint, the vector of discrete arrival times

until time n can be represented as τn = {τn,1 . . . τn,mn
}. Note that mn is a random
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variable by construction and let us characterize the time series clustering problem as a

semi-Markovian structured change point model.

The model associates each clustering variable zn,i to the change point τn,i where

zn,i ∈ {1, . . . kn}, and kn ∈ {1 . . .mn} represent the number of clusters at time

n. The vector of cluster variables is defined as zn = {zn,1, . . . , zn,mn
} and the

clustering variable zn,i selects the model parameter, θn,zn,i
, that is active between the

time intervals τn,i and τn,i+1, from the parameter set θn = {θn,1, . . . , θn,kn}.

The proposed model assumes that the arrival times are distributed according to

an arbitrarily selected prior distribution p(τn), and the cluster parameters are

independently drawn from the prior p(θn). The observation groups, yn,{τi:τi+1},

i ∈ {1, . . . , mn − 1} are independent of each other conditional on the assignment

variable zn,i. Under the given assumptions, DPM posterior density πn(xn) can be

expressed as,

πn(xn) ∝ p(zn)p(τn)

kn∏

j=1

p(θn,j)

mn−1∏

i=1

g(yn,{τi:τi+1}|θn,zn,i
)g(yn,{τmn :n}|θn,zn,m

) (6.1)

where xn = {zn, θn, τn}.

Since the order of the cluster labellings is not important as in a conventional DPM

model, the prior on clustering variable vector zn is formulated by Eq.(6.2) in a recursive

way,

p(zn,i+1 = j|zn,{1:i}) =

{ lj
i+κ

, j = 1, . . . , ki
κ

i+κ
, j = ki + 1

(6.2)

where ki is the number of clusters in the assignment zn,{1:i}. lj is the number of

observations that zn,{1:i} assigns to cluster j and κ is a ’novelty’ parameter.

The prior distribution on the arrival times, p(τn), has the Markov property and can be

explicitly expressed in the form,

p(τn, mn) = p(τn,m+
n
> n)

mn−1∏

i=1

p(τn,i+1|τn,i). (6.3)

where τn,m+
n

denotes the arrival time of the m + 1’th change point. The probability,

p(τn,m+
n
> n) ensures that no change points occur between time τn,mn

and n.

In order to obtain an efficient inference scheme we selected a conjugate prior model

such that given {zn, τn}, the parameter θn can be integrated out and the model posterior,

p(zn, τn|yn), can be calculated up to a normalizing constant. In the following section
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we will design an algorithm that enable us to sample the distribution, p(zn, τn|yn),

and estimate the parameters θn in closed form using the set of samples and associated

weights. The designed inference scheme also allow us to select an arbitrary distribution

on the sojourn times, τi+1 − τi ∼ p(τn,i+1|τn,i).

6.2 Sequential Monte Carlo Sampler for the Proposed Model

Under the sequential Monte Carlo samplers framework we designed an algorithm that

is able to represent the proposed model posterior distribution with a set of weighted

samples whenever a new observation arrives. For the notation simplicity and clearance,

we use the time evolving representation given in (Del Moral et al., 2006) and in order

to achieve a simpler inference scheme we utilized conventional particle filtering kernels

for sampling the target posterior density.

Our aim is to sample from a sequence of target densities evolving with a countable

index n, π1(x1) . . . πn(xn), each defined on a common measurable space (En, En)

where xn ∈ En. Let us define the sequence of target densities π1(x1) . . . πn(xn) and the

corresponding proposal distributions as η1(x1) . . . ηn(xn). According to importance

sampling theory, the unnormalized importance weight wn at time n can be defined as,

Wn =
γn(xn)

ηn(xn)
(6.4)

where γn is the unnormalized target distribution, πn = γn/Z, and Z is the normalizing

constant.

Under the conventional particle filtering framework, it is possible to obtain a

incremental weight update equation as

Wn = Wn−1 × wn (6.5)

where it is possible to derive the incremental weights as given in Eq.(6.6)

wn =
γn(xn)ηn−1(xn−1)

ηn(xn)γn−1(xn−1)
. (6.6)

The proposal distribution, ηn(xn), can be explicitly written of the form

ηn(xn) =

∫
ηn−1(xn−1)K(xn−1, xn)dxn−1. (6.7)

Computation of the importance distribution ηn(xn) for n > 1 requires an integration

with respect to xn−1 thus a closed form solution to weight update equation given by
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Eq.(6.6) is not available except for specifically designed kernels. To appreciate this

limitation, we will consider the form of the kernel explicitly.

6.2.1 Kernel selection

In this section we design a proposal kernel in order to obtain weighted samples

from the posterior distribution of the defined model. As discussed above under the

particle filtering framework it is not possible to calculate the incremental weight update

function for proposal kernels which update the particle history. Though, it is possible

to calculate the weight update function for an arbitrarily selected kernel under the

SMC samplers framework (Del Moral et al., 2006), for simplicity we just utilized the

common particle filtering approach for sequential inference in the proposed model.

In order to obtain an efficient sampler the prior distribution on the model parameters

θ and the likelihood function are selected as a conjugate pairs. The conjugate model

enables us to factorize the model posterior as, p(θn|zn, τn, yn)p(zn, τn|yn) where the

first factor is calculated in closed form and we just need to sample the clustering

variables zn and τn instead of the whole parameter space. Hence we define the proposal

kernel on the space xn = {zn, τn}.

The proposal kernel K(xn−1, xn) given in Eq.(6.8) aims to sample the change point

τn,m as well as the clustering label, zn,m, associated with the observations yn,τn,m:n

according to a mixture kernel that comprise two type of moves. The left hand side

of the Eq.(6.8) denotes the proposal of a new change point,τm, and its associated

clustering variable zm at time n whereas the right hand side depicts no new change

point to the state variable xn−1.

K(xn−1, xn) =α1(xn−1)π(zn,m|zn,−m, τn,m = n, τn,−m)δxn−1(xn,−m)

+ α2(xn−1)δxn−1(xn) (6.8)

In Eq.(6.8), the notation xn,−m denotes the components of xn excluding the m’th

element, xn,m, and {α1, α2} denotes the kernel mixture weights. The kernel mixture

weights, α1 and α2, that ensures a full conditional proposal kernel , πn(.|xn−1), can be
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calculated according to the equation given by Eq.(6.9),

α1 =
γn(τn,m = n, zn,−m, τn−m)

Zα

(6.9)

α2 =
γn(zn, τn)

Zα
(6.10)

and it is straightforward to calculate the normalizing constant Zα with the help of the

property α1 + α2 = 1.

6.2.2 Weight update function

In order to calculate the unnormalized particle weights Wn at each time step we

calculate the incremental weight wn by replacing Eq.(6.8) in Eq.(6.6) as shown in

the following,

wn =
γn(xn−1)

γn−1(xn−1)
. (6.11)

Note that, if no new change point is introduced by the proposal kernel at time step

n, the dimensionality of the model do not change, xn ≡ xn−1, hence we just need to

reweigh the particles according to the Eq.(6.11) in a single algorithm iteration.

The designed SMC algorithm for time series clustering can be summarized as follows.

SMC Algorithm for Clustering Time Series

• step 1 : Initialize n = 1, τ1 = 0, z1 = 1 where W i
n = 1/Np.

• step 2 : n = n+ 1. Resample the weights Wn−1 if Neff < Thr.

• step 3 : For i = 1 to Np draw xin ∼ K(.|xn−1) given by Eq(6.8)

• step 4 : For i = 1 to Np calculate the incremental weight wi according to

wi
n =

γn(xn−1)

γn−1(xn−1)
.

• step 5 : Update the partcile wieght according to

W i
n = W i

n−1 × w
i
n

Normalize the particle weights
∑Np

i=1W
i
n = 1.

(Iterate through step 2 to step 5 at each time step.)

106



6.3 An application: Clustering Mixture of Markov Chains

In this section we apply the proposed model to a time series clustering problem where

the observations are generated from a mixture of finite discrete Markov chains. We

assume that the number of chains and the arrival times that denote the transitions from

one chain to the other are priorly unknown and the rank of the transition matrix is R

and do not change over time. Our aim is to sequentially cluster the data stream and

estimate the arrival times as well as the number of discrete Markov Chains and the

parameters ( Transition matrix, T , and the initial distribution P ).

In order to define the model we just need to construct the prior structure on the cluster

parameters, θn, and the arrival times τn. Let θn,j = {Pj, Tj}, j = {1, . . . ,∞} denote

the parameters of the j’th cluster where Tj(p, r), (p, r) ∈ {1, . . . , R} denotes the

random variable that denotes the p’th row and r’th column of the transition matrix Tj .

Similarly, Pj(r) represents the r’th element of the j’th initialization array Pj . Since

Dirichlet distribution is conjugate over the multinomial distribution, the initialization

array Pj and each row of the transition matrix, Tj(p, {1, . . . , R}), j = {1, . . . ,∞} are

selected independently distributed according to,

Pj ∼ Dir(κP ), Tj(p, {1, . . . , R}) ∼ Dir(κT ), j = {1, . . . ,∞} (6.12)

where κP and κT are the concentration parameter defined for the initialization array

and transition matrix respectively.

The likelihood function corresponding to the observation model is defined as given in

Eq.(6.13)

g(yn,{τn,i:τn,i+1}|θn,zn,i
) =

R∏

p=1

R∏

r=1

(
Tzn,i

(p, r)
)Nzn,i

(p,r) (
Pzn,i

(r)
)Nzn,i

(r)
(6.13)

where Nzn,i
(p, r) denotes the total number of times a transition from p to r occurs

when the Markov Chain labeled zn,i is active and Nzn,i
(r) denotes the total number of

times the chain starts with r.

Further, we define negative binomial prior distribution on the sojourn times that

practically determine the change point times. The negative binomial,NB(a, b), can be

defined as the distribution of random number of successes in a sequence of Bernoulli

trials with a probability of success until a total of b failures occur. In our work prior

on the sojourn times, τn,i − τn,i−1 ∼ NB(a, b), i = {1, . . . , mn − 1}, are chosen as

107



negative binomial distribution that is a well suited discrete distribution to model the

arrival times τn,i, i = {1, . . .mn − 1}.

According to the defined model the posterior distribution of πn(zn, τn) can be

calculated up to the normalizing constant as follows,

πn(zn, τn) ∝p(zn)p(τn) (6.14)

×
kn∏

j=1

R∏

p=1

Γ(
∑R

r=1 αr)

Γ(
∑R

r=1Nj(p, r)
∑R

r=1 αr)

∏R
r=1 Γ(αj +Nj(p, r))∏R

r=1 Γ(αr)

×
kn∏

j=1

Γ(
∑R

r=1 αr)

Γ(
∑R

r=1 Pj(r)
∑R

r=1 αr)

∏R
r=1 Γ(αr + Pj(r))∏R

r=1 Γ(αr)

whereNj(p, r) is the total number of times a transition from p to r occurs in the Markov

Chains indexed with k, and Pj(r) is the number of times the chain is initialized with r.

6.4 Experimental Results

In this section we evaluate the performance of the proposed algorithm on time series

clustering problem where the data is generated from mixture of Markov Chains where

the number of components and corresponding parameters are unknown.

The observations are processed sequentially and the parameter estimates are updated

whenever a new observation is received. The clustering labels associated with each

observation, estimated model parameters and the change point estimation performance

are reported for various synthetic datasets. In order to evaluate the performance of the

proposed algorithm on the real world datasets we also reported the estimation results

for the audio signal clustering.

The first dataset ’DS-1’ is a synthetic data generated from mixture of two

Markov chains where the initial state probability of the chains are set to

P1 = P2 = [1/3 1/3 1/3] and the transition matrices are selected as,

T1 =




0.25 0.5 0.25
0.25 0.25 0.5
0.5 0.25 0.25


 T2 =




0.25 0.25 0.5
0.5 0.25 0.25
0.25 0.5 0.25




The sojourn time between consecutive change points are generated according to a

negative binomial distribution, τi+1−τi ∼ NB(r, p) where the distribution parameters

are determined as r = 3 and p = 0.001. Whenever a new changepoint occurs, the
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Figure 6.2: (a) Synthetically generated data and (b) associated cluster labels.

clustering label is switched between the labels {1, 2} in order to select the active

transition matrix, T1 or T2.

In order to cluster the data stream, the proposed algorithm sequentially estimate the

number of chains ,kn , the parameters of each chain θn,j = {Tj, Pj}, j ∈ {1 . . . kn} and

the labellings, zn, of the observation received until time n. Non-informative Dirichlet

priors are defined over the parameters, θj = {Pj, Tj}, j ∈ {1, . . . ,∞} as given in

Eq.(6.15) where all the components of the Dirichlet distribution equal to each other.

κP = 50, κT = 1 (6.15)

Note that non-informative prior do not favor any component of the Dirichlet

distribution over the other and when κ = 1 the prior distribution is uniform over all

points in its support. The values greater than one, κ > 1, create an evenly distributed

prior and conversely values lower than one, κ < 1, the distribution is sparse that allow

the algorithm to overweight some components over the others. In our simulations we

selected the parameter on the transition matrix as, κT = 1, to design an algorithm that

is able to handle different parameter settings whereas a tight distribution function is

defined over the initialization array by selecting κP = 50.
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Figure 6.3: (a) True cluster labels versus observation index. (b) Estimated cluster
labels versus observation index.

The dataset ’DS-1’ comprises a total of 5000 observations generated from two Markov

chains that switches between at certain time intervals. In order to achieve a clear

illustration, we draw the first 2000 observations and corresponding labellings of each

observation in Figure 6.2(a) and Figure 6.2(b) respectively.

We processed the synthetic dataset sequentially for n = 1 to n = 5000 and report

the estimated cluster labellings associated with each observation in Figure 6.3(a). For

comparison purposes we also draw the estimated clustering labellings in Figure 6.3(b).

The proposed algorithm achieves a high cluster labeling accuracy of 96.68% and the

estimated mean transition matrix for each Markov chain is,

T̂1 =




0.21 0.52 0.27
0.26 0.25 0.49
0.52 0.23 0.25


 T̂2 =




0.25 0.24 0.51
0.52 0.24 0.24
0.23 0.50 0.27


 .

The mean error of the estimates of the matrices, T̂1, T̂2 are eT̂1
= 0.0154 and

eT̂2
= 0.0117 respectively. The test results indicate that the algorithm is able to

estimate the number of transition matrix, its parameters, as well as the clustering

labellings accurately for the dataset DS-1.

In order to observe online performance of the algorithm, in Figure 6.4 we draw

the normalized expected changepoint detection latency calculated for predefined
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Figure 6.4: Normalized expected latency versus changepoint location estimation error.

estimation error. In our work we define the changepoint detection latency as the

time required to estimate a new changepoint within a predefined estimation error.

The calculated latency is normalized according to the mean sojourn time of the

corresponding dataset for easy interpretation of the results. The proposed algorithm

estimates the model posterior distribution sequentially and the clustering performance

gradually increases till an adequate amount of data that represents the actual model is

received. Therefore, for the dataset DS-1, the first 1000 observations are assumed to

be the learning phase of the algorithm and neglected in the calculation of the expected

chagepoint detection latency.

In Figure 6.4, we observe that the algorithm approximately detects a new changepoint

with an expected latency of 0.13 when an accuracy of 12 time steps is required. In

other words this means that the algorithm latency in detecting a changepoint with an

error lower than 12 time steps is expected to be 13% of the mean sojourn time.

Next, we evaluated the performance of the algorithm for clustering Markov chains

that consists of 9 states. The synthetic data ’DS-2’ is generated by three Markov

chains of which the parameters are switched at certain time intervals. The data and

corresponding labelings are illustrated in Figure 6.5(a) and (b) respectively for the first

2000 observations.
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Figure 6.5: (a) Synthetically generated data and (b) associated cluster labels.

The sojourn distribution of the synthetic data is determined by a negative binomial

distribution, NB(r, p), parameterized as, r = 4 and p = 0.0003. The initial values

are defined to be equal probable and the transition matrix of each Markov chain is

randomly defined as follows,

T1 =




0.103 0.155 0.069 0.086 0.155 0.172 0.103 0.138 0.017
0.114 0.068 0.023 0.068 0.114 0.023 0.227 0.136 0.227
0.088 0.140 0.053 0.123 0.088 0.070 0.158 0.105 0.175
0.170 0.189 0.132 0.094 0.151 0.019 0.113 0.113 0.019
0.170 0.106 0.043 0.021 0.213 0.149 0.191 0.064 0.043
0.093 0.185 0.167 0.093 0.111 0.019 0.148 0.167 0.019
0.021 0.170 0.021 0.170 0.170 0.191 0.106 0.043 0.106
0.160 0.100 0.020 0.120 0.040 0.080 0.200 0.100 0.180
0.115 0.033 0.148 0.164 0.049 0.148 0.131 0.066 0.148




T2 =




0.063 0.083 0.063 0.083 0.083 0.188 0.188 0.167 0.083
0.172 0.069 0.034 0.138 0.034 0.241 0.103 0.138 0.069
0.043 0.170 0.191 0.021 0.064 0.085 0.191 0.021 0.213
0.125 0.125 0.050 0.150 0.075 0.150 0.200 0.100 0.025
0.182 0.109 0.018 0.164 0.018 0.073 0.182 0.091 0.164
0.109 0.109 0.130 0.043 0.174 0.022 0.130 0.152 0.130
0.096 0.154 0.115 0.019 0.173 0.115 0.115 0.192 0.019
0.018 0.073 0.109 0.145 0.127 0.055 0.182 0.182 0.109
0.020 0.180 0.020 0.180 0.080 0.180 0.180 0.020 0.140




T3 = 0.11×U
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Figure 6.6: (a) True cluster labels versus observation index. (b) Estimated cluster
labels versus observation index.

where U is an all one matrix and T3 corresponds to a transition matrix that moves to

any state with equal probability.

A total of 20000 observations are processed sequentially and true as well as the

estimated labellings associated with each observation are given in Figure 6.6. The

proposed algorithm is able to estimate the clustering labellings for the dataset ’DS-2’

with a very high accuracy ratio of 0.986%. Note that, a 9 state Markov chain consists

of 81 parameters hence the algorithm estimates a total of kn × 81 parameters in each

step of the process. In order to avoid a mess of matrices we just reported the mean

estimation error of each transition matrix calculated as eT̂1
= 0.0066, eT̂2

= 0.0102

and eT̂2
= 0.0109. This result shows that the algorithm is able to estimate the transition

matrices very close to the actual value.

We also showed the expected latency for the detection of the last changepoint in Figure

6.7. We observed that the algorithm achieves normalized latency values lower than 0.1

when the changepoint estimation error is set to 10 steps. We can conclude that the

algorithm is able to detect the change points within a reasonable latency time even for

complex dataset where the number of parameters representing the data is above 250.
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Figure 6.7: Normalized expected latency versus changepoint location estimation error.

6.4.1 Clustering audio signal

In this section we evaluated the performance of the proposed algorithm in a the

real world audio signal clustering problem where the audio file comprises of several

different instruments are played at overlapping time intervals.

The selected track given in Figure 6.8 (a) is a single channel professional record,

sampled at the rate of 44100 kHz and stored in MP3 format. As a preprocessing

step, we calculated the Mel-frequency cepstral coefficients (MFCCs) illustrated in

Figure 6.8(b) in order to approximate the human auditory system. The window size

for MFCC calculation is determined as 0.02 seconds with 0.0045 seconds of overlap.

Next, we perform a k-means clustering algorithm to discretize the MFCC coefficients

where we excluded the most significant MFCC coefficients and obtain a time series

that correspond to a R = 5 state Markov chain shown in Figure 6.8(c).

The Dirichlet prior parameters are set to κP = 50, κT = 1 and the parameters of

the sojourn distribution, NB(r, p), are determined as r = 3 and p = 0.001. We

sequentially processed a total of 7630 observations that corresponds to a 34.6 seconds

of audio signal and report the clustering results obtained at time step n = 7630 in

Figure 6.9.

114



.

0 2 4 6 8 10 12 14 16

x 10
5

−1

−0.5

0

0.5

1
(a)

Observation index

A
m

pl
itu

te

(b)

Observation index

M
F

C
C

 c
oe

f.

1000 2000 3000 4000 5000 6000 7000

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6
(c)

Observation index

D
at

a
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(MFCCs). (c) MFCC coefficients digitized by using the k-means
algorithm (Input data).
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The estimated clustering labels and the arrival times given in Figure 6.9 (a) shows that

the audio signal is clustered into three components. We also draw the clustered Markov

chains and the corresponding audio signal in Figure 6.9 (b) and (c) by indicating each

cluster with different colors labeled as ’red=1’, ’black=2’ and ’green=3’. By examining

the Figure 6.9 (b) and (c) we can conclude that the algorithm is able to cluster the data

into three main different regimes and can detect the change points where the regimes

switch.
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7. CONCLUSION

In this thesis efficient sequential Monte Carlo Samplers for posterior inference

in Dirichlet process mixture models are proposed and a new model structure for

maneuvering target tracking problem is introduced. The contributions of the thesis

can be summarized as follows.

7.1 Summary and Contributions

Following a brief introduction to the sequential Bayesian models and inference

in Chapter 2, we focused on variable rate particle filtering particularly for highly

maneuvering targets. In Chapter 3, we adapted the multiple model approach to

the variable rate particle filtering structure in order to obtain an adaptive algorithm

which efficiently tracks the motion mode and thus accurately estimates the target

state vector (Ulker et al., 2008; Ulker and Gunsel, 2008). The proposed algorithm,

MM-VRPF, utilizes a different sojourn and model parameter set for each dynamic

mode, resulting in a finer characterization of the maneuvers while preserving the

parsimonious state representation. It is shown that the proposed multiple model

variable rate structure utilizing a set of dynamic motion models and sojourn parameters

enable efficient characterization of the maneuvers as well as the state arrival times

compared to the conventional single mode variable rate structure (Ulker et al., 2008;

Ulker and Gunsel, 2008). In order to avoid the particle degeneracy, we also proposed

a regularization scheme for variable rate models. We concluded that if degeneracy is

observed, particularly due to the ill defined model parameters, regularization improves

the performance of the variable rate models.

In Chapter 4 we proposed a novel sequential Monte Carlo algorithm for the DPM

model under the conjugate prior settings (Ulker et al., 2010b). In contrast to the

existing sequential importance sampling methods, the local moves are designed to

update clustering labels that enable the introduced algorithms to obtain efficient
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samples from the time evolving posterior even for large dataset sizes. We showed that

previously proposed sequential schemes that apply Gibbs moves to the set of weighted

particles are an instance of the SMC samplers algorithm (MacEachern et al., 1999).

We evaluated the performance of the conventional particle filter, Gibbs sampler and

SMC samplers with different kernel settings, on two different datasets. Test results

showed that SMC sampler based methods provide more reliable estimates compared to

conventional particle filter and proposed kernels can better represent the modes of the

posterior distribution compared to a SMC sampler utilizing Gibbs moves (Ulker et al.,

2010b). We concluded that the SMC samplers framework is a competitive alternative

to the conventional Gibbs sampler for the DPM models (Ulker et al., 2010b).

In Chapter 5 we improved the SMC sampler proposed in Chapter 4 by using annealing

strategies (Ulker et al., 2010a, 2011). The key idea of the method is maintaining an

intermediate (annealed) distribution as a surrogate target for the SMC algorithm where

resampling is carried out according to this annealed distribution. We use the surrogate

density as a proposal to the true target where we can calculate the correct weights

without any extra computational cost. Intuitively, we are using the SMC machinery to

compute a good proposal density. This strategy enables us to maintain a diverse particle

set that seems to be crucial in obtaining an efficient sampler. The test results show

that proposed algorithm achieves lower estimation variance and higher log-marginal

likelihoods. We also observed that our algorithm is much more efficient compared to

conventional methods particularly when DPM target posterior distribution has isolated

modes (Ulker et al., 2010a, 2011).

In Chapter 6 we proposed a novel DPM based model for time series clustering under a

semi Markovian model structure where the number of clusters and the parameters are

unknown. The semi Markovian structure reduces the dimensionality of the model,

hence results in a simpler representation. We applied classical particle filtering

framework for inference in the proposed model and applied the problem to the Markov

Chain clustering problem. We tested the algorithm for synthetic datasets and for

clustering a recorded audio data. We observed that the algorithm is able to cluster

and estimate the parameters of the synthetic datasets and the audio data successfully.

Finally, we envision various applications in hierarchical Bayesian models with a DPM

prior. In this thesis, we have concentrated exclusively on the conjugate setting, however
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we believe that the actual added benefit of the SMC framework can be realized in the

non-conjugate setting where the model parameters need also be sampled.

7.2 Future Work

As future work our objective is to design multi-modal latent variable models for

dynamic systems where state arrival times, model order and the parameters are

unknown. Our aim is to estimate the unknown model parameters and the model order

given the noisy observations. We believe that such models can be easily applied to

several important problems in machine learning, signal processing, bioinformatics,

pattern recognition and econometrics. The models will be covered under two main

sub-topics.

7.2.1 Infinite dimensional hidden semi-Markov models

Conventionally, hidden Markov model assumes that sojourn time between transitions

are exponentially distributed. In contrast, a semi-Markov process models the state

arrival times as a Markovian process and enable us to model the temporal correlation

between the states precisely. However these models usually assume that the model

order and the model parameters are priorly known which is not the case in many real

world applications.

We aim to construct an infinite dimensional hidden semi-Markov model (inf-HSMM)

where a Dirichlet process or a Hierarchal Dirichlet process will be considered as prior

for the model proposed (Teh et al., 2006). We believe that such a non-parametric

approach will lead to a parsimonious representation under the semi-Markov formalism

that will increase the efficiency of the filtering algorithm. Moreover, when transitions

between modes are independent from each other, the model will further simplify and

Dirichlet process will be adequate as a prior.

7.2.2 Dirichlet process mixtures for non-linear dynamic systems

The Dirichlet Process Mixtures (DPM) have been the key building block particularly in

modeling linear dynamic systems with unknown model structure. In order to estimate

the noise density with an unknown functional in a linear dynamic system, the DPM

model is constructed as a prior over the model Caron et al. (2008). In another work, a
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hierarchal DPM (HDPM) model has been introduced by Fox et al. (2007) that accounts

for the correlation between the input modes of a switching linear dynamic model

however such models can not impose the desired prior over the state arrival times

(Fox et al., 2008). The major drawback of the model proposed by Fox et al. (2007)

is the tendency of the defined HDPM prior to invent unnecessary modes and sticky

HDPM models are proposed in order to solve this problem in (Fox et al., 2008, 2009).

The models that rely on fixed rate model structure have serious limitations and are

unable to model the nature of the data in real world data. Moreover they cause

complicated models and require complex inference schemes. In literature it is shown

that a semi-Markovian structure can lead to a parsimonious representation in which

simple models and efficient inference mechanisms can be considered (Godsill et al.,

2007; Whiteley et al., 2007). Therefore, we aim to propose a semi-Markovian structure

for non-linear dynamic models where the number of dynamic motion modes and the

parameters will be estimated from the observed data. The main difficulty in such a

model is that observations are no longer available as an input to the DPM model,

therefore marginalization over the dynamic model is required to estimate the model

parameters.

Since exact inference is unavailable for both of the topics addressed above, efficient

sequential Monte Carlo schemes are required to approximate the true target posterior.

Recently, efficient sampling schemes based on the SMC sampler framework proposed

by Del Moral et al. (2006) has been successfully applied for sequential inference

in DPM models (Ulker et al., 2010b,a, 2011) and variable rate target tracking

(Whiteley et al., 2007). Due to significant improvements achieved in both works, we

will consider such methods for statistical inference in the models proposed. We will

also investigate particle Markov Chain Monte Carlo (PMCMC) methods which is a

recent advance on MCMC based sampling techniques in order to design more efficient

inference schemes (Andrieu et al., 2009).
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