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SEQUENTIAL MONTE CARLO SAMPLERS FOR NONPARAMETRIC
BAYESIAN MIXTURE MODELS

SUMMARY

This thesis deals with the Bayesian model construction and the inference problem
by using Sequential Monte Carlo (SMC) methods. SMC based methods have been
the most promising approach among the recursive numerical Bayesian techniques
in the latest decade. The key idea of the SMC sampler is to estimate the desired
posterior distribution by a set of random samples and associated weights that compute
estimates based on these weights and samples. As the number of samples approaches
infinity, equivalent representation to the usual functional description of the posterior
distribution converges to the optimal Bayesian filter. However due to the computational
complexity it is crucial to design efficient samplers that are able to represent the true
posterior distribution with a reasonable computational load. In this research our aim is
to develop efficient SMC methods for posterior inference and design new probabilistic
models that characterize the engineering problems such as target tracking.

First part of the thesis focuses on recently introduced variable rate particle filter
(VRPF) that achieves to track the maneuvering objects with a small number of
states by imposing a probability distribution on the state arrival times. The variable
rate models represent the target dynamics with a single motion model that hinders
the capability of estimating maneuver parameters as well as the state arrival times
precisely. To overcome this weakness we have incorporated multiple model approach
with the variable rate model structure. The introduced model, referred as multiple
model variable rate particle filter (MM-VRPF), utilizes a parsimonious representation
for smooth regions of trajectory while it adaptively locates frequent state points at
high maneuvering regions, resulting in a much more accurate tracking compared to
conventional methods.

Next, we deal with the sequential inference problem in Dirichlet process mixtures
model (DPM) which is one of the well known nonparametric Bayesian approach to
the model selection problem. We developed a novel online algorithm based on the
sequential Monte Carlo samplers framework for posterior inference in DPM models.
Our method generalizes many sequential importance sampling approaches based on
particle filtering. The proposed method enables us to design sophisticated clustering
update schemes, such as updating past trajectories of the particles in light of recent
observations, and still ensures convergence to the true DPM posterior distribution
asymptotically. It provides a computationally efficient improvement to particle filtering
that is less prone to getting trapped in isolated modes of the target posterior distribution.
Performance improvement over conventional models has been illustrated for Bayesian
infinite Gaussian mixture density estimation problem in terms of estimation variance,
average log-marginal likelihood and classification accuracy.
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In the final section of the thesis, we proposed a novel model for time series clustering
problem based on the DPM model structure by using the semi-Markov model
formalism. The proposed model is able to estimate the number of clusters, parameters
and the sojourn times representing the time series data under a Bayesian framework.
We devised a sampling algorithm for sequential inference in the proposed model that
also enable us to handle large datasets efficiently. We applied the proposed model
to the Markov chain clustering problem and the experimenal results showed that the
algorithm is able to successfully cluster both synthetic and the real audio data even for
large dataset sizes.
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PARAMETRIK OLMAYAN BAYESCI KARISIM MODELLERI ICIN
ARDISIK MONTE CARLO ORNEKLEYICILER

OZET

Bu tezde, son donemde en ilgi ¢ceken numerik Bayesci tekniklerden biri olan ardisik
Monte Carlo (SMC) metodlar ile parametre kestirimi ve model se¢imi problemlerinin
coziimii lizerine ¢alisilmigtir. Ardisik Monte Carlo 6rnekleyicilerin ana fikiri, hedef
sonsal olasilik dagilimini rastgele ornekler ve iligkilendirilmis agirliklar ile temsil
etmek ve kestirimleri bu ornek ve agirliklari kullanarak hesaplamaktir. Hedef sonsal
dagilimini ifade eden 6rnek sayisi arttirildikga kestirilen dagilimin fonksiyonel ifadesi
optimum Bayesci filtreye yaklasacaktir. Ancak limitli hesap giicii nedeniyle, kabul
edilebilir bir islemsel karmagiklikta gercek sonsal dagilimi bagsarili kestirebilen etkin
ornekleyicilerin tasarlanmasi ¢ok 6nemlidir. Bu caligmanin temel amaci etkin SMC
tabanli algoritmalar tasarlamak ve gercek hayat miihendislik problemlerini ifade
edebilen olasiliksal modeller iizerinde bu metodlar1 uygulamaktir. Tezde, hedef takibi
problemlerinin ve Dirichlet siireci karisim modellerinin Onerilen yenilik¢i model ve
algoritmalar ile ¢ozlimil iizerine caligilmistir.

Hedef takibi probleminde amac, hedeften alinan giiriiltiilii 6lctimlerden hedef
kinematiklerini (konum, hiz ve bnz.) kestirmek ve hedefi anlik olarak takip etmektir.
Kullanilan en yaygin ¢oziim tekniklerinin baginda hedef durum ve gozlemlerini
birer rastgele degisken dizisi ile modelleyen ve degiskenler arasi tanimlanan
iliskiden faydalanarak hedef durumlarim1 kestirmeyi amaglayan olasiliksal modeller
gelmektedir. Bu modellerin ¢oziimiinde, hedef hareketlerinin anlik izlenebilmesi igin,
hedef durum degiskenlerini her yeni gézlem alindig1 zaman kestirebilen algoritmalara
ihtiya¢c vardir. Kalman siizgecleri, genisletilmis Kalman siizgecleri ve parcacik
filtreleri hedef takibi probleminin ¢evrimi¢i ¢oziimil i¢in en sik kullanilan kestirim
metodlarinin baginda gelmektedir. Tiim bu algoritmalar durum uzay denklemleriyle
tanimlanmig, sabit oranli bir Markov modelinde hedef kinematiklerini kestirmeyi
amaglamaktadir. Ancak oOzellikle manevra yapan hedeflerin takibi probleminde
hedef hareket parametrelerinin takip dncesi bilinmemesi yiiksek manevra kabiliyetine
sahip hedeflerin takibinde kestirim bagsarimini diisiirmektedir. Bu nedenle hedefe
iligkin farkli hareket rejimlerini tek bir modelde birlestirerek takip edilen hedefin
hareket karakteristigine en uygun hareket rejimini adaptif olarak segen ¢oklu model
yaklasimlar literatiirde kullanilmastir.

Bu tezde, son yillarda manevrali hedeflerin takibinde ortaya atilan en yenilik¢i
modellerden biri olan degisken oranli parcacik siizgegleri (VRPF) ele alinmugtir.
Hedef takibi literatiirdeki son gelismeler, yari-Markov modellerin sabit oranli Markov
model yapisina dayali klasik siizgeclere iyi bir alternatif olabilecegini gdstermektedir.
Markov model yapisindaki durum uzay gosterimlerinde durumlar ve gozlemlerin
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ayni anda olustugu yani durum varig zamanlarinin sabit oldugu varsayilir. Yari-
Markov model yapisinda ise durum varis zamanlar1 gézlem zamanlarindan bagimsiz
varsayilarak bir rastgele degisken olarak tamimlanir ve sabit oranli durum uzay
gosterilimine gore ¢cok daha az sayida durumla farklt manevra karakteristiklerinin
modellenebilmesi amaglanir. Daha az durum sayisi ile gezingenin modellenebilmesi ve
durum varig zamanlarinin bir dagilimla ifade edilmesi, isletilen ¢oziim algoritmasinin
etkinligini arttirmakta, hedef hareketinini siirekli zamanda hedef hareket yapisinin
dogasina daha uygun, az sayida parametre ile modellenebilmesini saglamaktadir.

Bilinmektedir ki, Ozellikle insanli hedefler sert ve kisa zamanli manevralar ile
yeni rotasina ulastiktan sonra yeni hedef noktasina ulagsmak icin uzun siireli diiz
hareketler yapmaktadir. Ancak, degisken oranlt modelin tek bir hedef hareket modeli
kullanmasi, manevra parametreleri ve varis zamanlar1 lizerine sadece tek bir onsel
olasilik dagilimi tanimlanabilmesine olanak vermekte ve farkli hareket kosullarinin
g0z Oniinde bulundurmasi miimkiin olmamaktadir. Biz c¢alismamizda ¢oklu model
yaklagimlarini degisken oranli modeller ile birlestirerek, varis zamanlar1 ve manevra
parametrelerini adaptif bir yapi ile kestirebilen ¢coklu model degisken oranli pargacik
stizgeclerini Onerdik. Onerilen model, adaptif olarak, manevra anlarim sik, diiz
gezingeleri ise az sayida durum ile ifade etmektedir. Onerilen model kerterizden hedef
takibi senaryolarda test edilmis ve literatiirde onerilen modellerden daha yiiksek takip
basarimina sahip oldugu kargsilastirmali olarak gosterilmistir.

Sonrasinda, tezin literatiire temel katkis1 olarak da nitelendirilebilecek, parametrik
olmayan Bayesci model secim teknigi Dirichlet siireci karisim modellerinin
ardistk Monte Carlo metodlar ile ¢oziimii iizerinde ¢aligmalarimizi yogunlastirdik.
Dirichlet siireci karistm modelleri (DPM), verinin parametrik bir aile ile kisith
olmadig1 durumlarda, olasilik dagilim fonksiyonlar1 ve simiflandirma problemlerinin
hiyerarsik modellenebilmesi i¢in temel ¢oziim blogu olmustur. DPM modelin
prensipte etkin olarak ¢oziilebildigi varsayilirsa herhangi bir olasilik dagilimini
istenen dogrulukta modelliyebilme yetenegine sahiptir. Ancak, model sonsalinin
analitik ¢oziimii bulunmamasi nedeniyle model sonsal dagiliminin cesitli yaklasik
coziimlerle kestirilmesi onemli ve popiiler bir arastirma alant olmustur. Bu amacla
literatiirde, cikarsamay1 biitiin veriseti iizerinde gerceklestiren yigin algoritmalari
onerilmekle beraber, gercek hayatta bircok problemlemin anlik ¢6ziime ihtiyac
duymas1 yada veri setlerinin ¢ok biiylik olmasi, yigin algortimalarin ¢oziime ¢ok
uzun siirede ulagsmalarina neden olmus ve cevrim ici algoritmalara olan ilgiyi
arttirmistir.  Ancak literatiirde pargacik filtresi altyapisina dayali olarak Onerilen
cevrimi¢i algoritmalarinin sadece kiiciik veri setlerinde yiiksek basarim gosterdigi,
orta ve biiyiikk veri setlerinde ise ¢ok kisitli basarima sahip oldugu gozlenmistir.
Bunun en temel sebebi olarak parcacik filtrelerinin yeni gozlemler geldikce
parcacik gecmisini giincelleyememeleri, dolayisiyla algoritmanin lokal minumumlara
takilmas1 ve zamanla toplamsal Monte Carlo Hatasinin artmasi olarak gosterilebilir.
Ayrica parcacik filtrelerinde kullanilan tekrar 6rnekleme adiminda diisiik agirlikli
parcaciklarin goz ardi edilmesi ve bu parcaciklarin tekrar degerlendirilememesi
basarimi diisiiren bir diger faktordiir.  Parcacik filtresi tabanli algoritmalarin
zayifliklarim1 gidermek amaciyla, biz calismamizda DPM sonsal dagilimini ardigik
Monte Carlo drnekleyicileri gatis1 altinda etkin olarak kestirebilen yenilik¢i ¢evrimici
cikarsama algoritmalari tasarladik. Onerilen metod yenilikgi yapisinin yanisira, DPM
icin kullanilan diger ardigik ornekleyicileri genelleme 6zelligine de sahiptir. Kullanilan
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yontem, yeni gelen gozlemlerin 1s18inda Orneklere iliskin gecmis gezingeleri
giincelleyerek gercek DPM sonsal dagilimina daha iyi yaklasiklik saglayan etkin
ornekler elde etmekte ve kestirim basarimmm arttirmaktir.  Oneri dagilimlarinin
tasartminda tavlama teknigi kullanilarak karisim 6zelligi yiiksek olan oneri dagilimlari
elde edilmis ve tasarlanan yapilar farkli sinif etiketi giincelleme metodlariyla beraber
kullanilmigtir.  Kullanilan tavlama teknigi ozellikle yi1gin algoritmalarda kullanilan
klasik tavlama tekniginden farkli olarak her yeni gbzlem adiminda cevrimigi kestirim
sonucuna ulagilabilmesini saglamaktadir.

Onerilen algoritmalar parcacik siizgegleri, Gibbs tabanli pargacik filtreleri ve Gibbs
algoritmas1 ile tek ve c¢ok boyutlu yogunluk dagilimi kestirim problemlerinde
karsilastirllmistir. Test amacl olarak sentetik veri setlerinin yanisira ses verilerinden
on isleme adimlariyla elde edilen gercek hayat verileri de kullanilmistir. Onerilen
metodun, 6zellikle sonsal dagilimin izole modlara sahip oldugu durumlarda klasik
metodlara gore ¢cok daha diisiik kestirim sapmasina sahip oldugu, lokal ¢oziimlere
daha diisiik olasilikla takildigi ve dolayisiyla sonuca daha yiiksek dogrulukta
yakinsayabildigi goriilmiistiir.

Tezin son boliimiinde yari-Markov model yapis1 ve Dirichlet karistm modelleri tek
bir c¢ati altinda toplanarak zaman serilerini siniflandirma problemi i¢in yenilik¢i
parametrik olmayan bir model Onerilmistir. Problemde, zaman serisini tanimlayan
smif sayisi, simf parametreleri ve parametre degisim zamanlar1 birer rastgele
degiskenler dizisi olarak tamimlanmistir. Amag, zaman serisini tanimlayan sinif
sayisini, parametereleri ve siniflarin aktif oldugu zamanlar1 Bayesci bir ¢ati altinda
kestirebilmektedir. Tamimlanan yari-Markov model yapisi, her bir gozlemin bir
durum degiskeni ile iliskilendirildigi sabit oranli modellerden farkli olarak durum varis
zamanlarinin Markov siirecine uydugunu varsayarak sinif parametrelerinin degistigi
anlar1 kestirmeyi hedeflemektedir. Durum varig zamanlarinin Markov yapida bir
degisken dizisi olarak kabul edilmesi siirekli yada ayrik zamandaki verinin dogal
yapisinin daha iyi modellenebilmesini ve problemin sabit oranli modellere gore
cok daha az sayida durum degiskeni ile diisiik karmagiklikla ifade edilebilmesini
saglamaktadir. Tasarlanan modelde, ardigitk durum varig zamanlar1 arasi siirenin
herhangi bir dagilimla ifade edilebilmesi, probleme iligkin ©Onsel bilginin ¢ok
daha etkin kullanilabilmesini saglamaktadir. Etkin bir cikarsama algoritmasinin
tasarlanabilmesi icin model parametreleri iizerinde tanimlanan 6nsel dagilim olabilirlik
fonksiyonuna konjuge secilmistir. Problemin yapisi itibar1 ile ¢evrimigi ¢oziim
bulunmasi 6zellikle parametre degisim zamanlarinin kestirimi i¢in ¢ok Onemlidir.
Bu nedenle hesaplanabilir ¢6ziimii bulunmayan modelin sonsal dagilimi ardisik
Monte Carlo teknigi kullanilarak kestirilmistir. Onerilen model, siirekli yada ayrik
zamanda tanimlanan tiim zaman serilerine uygulanabilir niteliktedir. Tasarlanan
model, Markov zincirlerinin siniflandirilmasi problemine uyarlanmig, 7 durumlu bir
zaman serisini olusturan Markov zinciri say1sini, zincirler arasindaki gecis zamanlarin
ve her bir zincirin parametrelerini kestiren bir algoritma gerceklenmistir. Sentetik
veri setleri iizerinde yapilan testlerde parametre kestirim performansi raporlanmistir.
Network analizi ve bioinformatik gibi konularda 6nemli bir uygulama alani bulunan
problemin gercek hayat verilerindeki bagsarimai is ses sinyalleri tizerinde gosterilmistir.
Algoritmanin sentetik verileri ve ses sinyalini bagarili olarak siniflandirdig1 ve biiyiik
veri setlerinde basariyla ¢alistig1 gbzlemlenmistir.
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1. INTRODUCTION

In applied and engineering problems involving analysis of real world datasets,
researchers are often faced with two fundamental and challenging questions about
model construction: what model class and model order to choose, and how to
estimate optimal parameters to predict future observations. Parameter estimation is
perhaps the better understood problem as there is an arsenal of optimization and
integration techniques available. The problem of model construction is more obscure
and considered more art than science. Even if a model class is chosen, it is still far
from obvious what the model order should be. Typically if an overly simple model
is chosen, the predictions are poor. Similarly, if an overly complex model is chosen,
the predictions can be equivalently poor due to the so called ’overfitting’ problem.
While regularization techniques or full Bayesian treatment can remedy the latter, this
may still lead to unnecessary waste of computational resources. It would be desirable
to develop highly adaptive methods, that would tune their complexity and parameters
without resorting to a fixed parametric family.

Modern computational techniques based on Monte Carlo simulation, provide a
practical solution to this key problem. Intuitively, these techniques are able to
adapt both model strength and computational cost, hence such methods potentially
provide significant advantages in real life applications. However, batch methods
are computationally infeasible for inference in dynamic models or when large
datasets has to be processed. Therefore, in contrast to the batch methods, that
apply the inference on the entire dataset, sequential Monte Carlo (SMC) methods
recursively updates the posterior estimate upon arrival of each new observation. SMC
provides a computationally efficient solution that especially suits real-time processing

requirements.



1.1 Problem Statement

In our research we deal with sequential models and algorithms for sequential Bayesian
Inference. First we focus on model construction and parameter estimation for
tracking a maneuvering object under nonlinear and non-Gaussian conditions. Next,
we deal with the sequential Bayesian estimation problem in Dirichlet process mixtures
(DPM) model that has been one of the most widely used and popular approach
to nonparametric probabilistic models (Antoniak, [1974). For both problems we
utilize sequential Monte Carlo methods that allow us to treat any type of probability

distribution and nonlinearity.

1.1.1 Maneuvering target tracking

In a target tracking problem, the aim is to estimate the target location and motion
parameters accurately with the help of received noisy observations. Most widely
used and promising approaches to tracking problem are based on stochastic filtering
theory that was first established in early 1940’s due to the pioneering work by [Wienet
(1949) and KolmogoroV (1941)), and it culminated in 1960 for the publication of classic
Kalman Filter (Kalman, [1960).

The target tracking problem faces two interrelated main challenges , these are target
motion-mode uncertainty and nonlinearity (Liand Jilkovl), 2005). Nonlinearity is
handled by nonlinear filtering methods, and Multiple-model (MM) methods have
been generally considered as the mainstream approach to the maneuvering target
tracking under motion-mode uncertainty (Blom et al., [1998; McGinnity and Irwin,
2000; Doucet et all, 2001b; Kirubarajan et al.,[2001). The performance of the tracking
algorithms hinges in the modeling capability of the tracking model and the quality of
the inference schemes in solving the model.

Conventional probabilistic tracking models define a discrete time state space model
where the state sampling rate is determined by the rate at which the measurements
arrive, thus known as fixed rate models. In fixed rate models, the time between
two consecutive states (sojourn time) is fixed and the timing of the state variables
(state arrival time) are determined under the assumption that a transition may

occur at each observation time (Blom etall, [1998; McGinnity and Irwin, 2000;



Godsill and Vermaak, 2005). However, manned targets commonly execute short
duration of sharp maneuvers following prolonged times of a smooth trajectories.
Therefore, they have limited capability in modeling the sojourn times as well as the
target parameters in a maneuvering target tracking problem. Unlike the fixed rate
standard tracking models, recently introduced variable rate particle filters (VRPF),
which models the state arrival times as a Markovian random process, enables the time
between consecutive target states to be a random variable, hence can be considered as a
more effective technique in target tracking (Godsill and Vermaak, 2005; /Godsill et al.,
2007).

The variable rate model tracks a maneuvering object with a small number of states
by imposing a probability distribution on the sojourn times. In Figurel.1l we show
the localization of the states for fixed and variable rate models on a bearing-only
target tracking scenario. The variable rate model (left figure) is much more efficient
compared to a fixed rate model (right figure) since variable rate scheme allocates more
state points to regions of rapid deviations and fewer points to smooth trajectories.
However conventional variable rate models utilize a single motion model in order to
characterize the state arrival times and the target parameters (Godsill and Vermaak,
2005). This limits the capability of estimating the maneuvering and smooth regions
of the trajectory precisely. Therefore variable rate algorithms suffer from the poor

estimate of the target parameters and the state arrival times.
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Figure 1.1: Localization of states for fixed rate (left side) and the variable rate models.



In order to overcome this drawback, in this thesis we developed a new model structure
for variable rate models that aims to achieve a better characterization of the state
arrival times and the target trajectory. We investigated adaptive tracking methods
based on the multiple model approach and developed a multiple model structure for
the variable rate models (Ulker et all, 2008; Ulker and Gunsel, 2012). The proposed
model allows switching between candidate sojourn and motion parameter sets thus can
precisely model the maneuver parameters as well as the state arrival times. Sequential
inference for the proposed model is accomplished by the particle filtering algorithm
hence named as multiple model variable rate particle filter (MM-VRPF). We evaluated
the performance of the algorithm on several bearing only target tracking scenarios and
improvements over conventional algorithms are reported.

In this thesis we focused on model construction problem for the variable rate
models, therefore we applied conventional particle filtering for sequential inference.
However, more efficient inference schemes based on sequential Monte Carlo samplers
framework has been proposed by Whiteley et al! (2007) for variable rate models and it
is possible to achieve improved results by applying similar sampling strategies to our

model.

1.1.2 Sequential inference for Nonparametric Bayesian mixture models

Recently, Dirichlet process mixtures (DPM) have been widely used as a building
block in hierarchical models for solving density estimation and clustering problems
where the actual form of the data generation process is not constrained to a
particular parametric family (Antoniak, [1974). Sophisticated applications involving
DPM models has been studied in machine learning, signal processing, tracking or
bioinformatics (Teh et all, [2004; Do et al., 2005; |Caron et al., 2008; [Fox et al., 2007).
Provided that inference can be carried out effectively for the DPM, at least in
principle, any density can be approximated with arbitrary precision. However, exact
inference is unfortunately intractable. Yet due to the mentioned potential advantages
of nonparametric approaches, there has been a surge of interest to the DPM model
and efficient inference strategies based on variational techniques (Blei and Jordan,
2004, 2006) and Monte Carlo Markov Chain (MCMC) (S. Walker and Smith, 11999;
MacEachern et al., 1999; Jain and Neal, 2000; Neal, 2000). Though, majority



of these methods perform batch algorithms that apply the inference on the
entire dataset (Blei and Jordan, 2004; Neal, 2000), sequential methods that cluster
each new observation upon its arrival have also been proposed (Quintana, [1996;
MacEachern et al, [1999; [Fearnhead, [2004).

Assuming that conjugacy condition is satisfied, methods that solve Bayesian inference
problem based on sampling deals with sampling from an intractable discrete
distribution. In literature, particle filtering has been proposed as a computationally
efficient sequential sampling method that especially suits real-time processing
requirements of dynamic models (Fearnhead, 2004). It is shown that particle
filtering outperforms batch algorithms such as Gibbs sampler for small datasets
(Fearnhead, 2004). However, it is argued that sequential importance sampling is not
an appropriate method for models with static parameters and especially large datasets
due to the degeneracy phenomenon and accumulated Monte Carlo error over time
(Quintana and Newton, |1998). The sampler becomes ’sticky’, meaning that previously
assigned clusterings can never be updated according to the information provided by the
latest observations. For static problems, degeneracy can be reduced but not avoided via
resampling techniques (MacEachern et all,|1999; [Fearnhead, 2004). Although particle
filtering algorithm can even outperform batch algorithms such as the Gibbs sampler
for small datasets, empirical evidence suggests that sequential methods achieve less
satisfactory results particularly on larger datasets. In a particle filtering framework,
this arises mainly due to the fact that discarded particles can never be reconsidered.
These limitation causes the algorithms to get trapped in local modes of the posterior
distribution and reduce the estimation performance. This is illustrated in Figure [I.2] for
a two dimensional model where the data shown with the red dots is generated from a
mixture of Gaussian distributions with three components. At the left side of Figure
we see that the conventional particle filter gets trapped in the local mode of the solution
and represents the data with two mixture components whereas the true estimation result
is shown at the right.

In this thesis we search for efficient sampling methodologies for posterior inference in
DPM models by using sequential Monte Carlo techniques. We propose new sampling
strategies in order to estimate the time evolving DPM model posterior. We take the

advantaged of using the SMC sampler proposed by [Del Moral et all (2006) that enable
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Figure 1.2: Observations (red dots) on 2-D space, generated from a Gaussian mixture
density with three components. 50% confidence intervals of the Estimated
mixture densities by the (a) Proposed SMC algorithm, (b) Conventional
particle filtering algorithms.

us to design sophisticated particle updating schemes and ensures convergence to the

true target distribution asymptotically.

1.2 Thesis Organization

The thesis is organized as follows: In Chapter 2l the basics of numerical Bayesian
techniques and sequential probabilistic model structures are investigated. Following an
introduction to non-parametric model construction, we seek to investigate the problem
of maneuvering target tracking and parameter estimation in dynamic systems with
numerical Bayesian techniques.

In Chapter[3]we introduce an adaptive tracking method for maneuvering target tracking
of which incorporates multiple model approach with the variable rate model structure
proposed by Godsill et al. (Godsill and Vermaak, 2005). The proposed model is
based on semi-Markovian model structure and referred as multiple model variable
rate particle filter (MM-VRPF) (Ulker et all, 2008; [Ulker and Gunsel, 2008). MM-
VRPF adaptively locates frequent state points to the maneuvering regions resulting in
a much more accurate tracking while preserving the parsimonious representation for
the smooth regions of the trajectory. This is achieved by including a mode variable

into the conventional variable rate state vector which enables us to define a different



sojourn time and motion prior for each target motion mode using the multiple model
structure.

Chapter H] proposes efficient sampling strategies for sampling a time evolving DPM
posterior distribution (Ulker et all, 2010b).  Sequential inference schemes have
limited success in maintaining an accurate approximation to the true target density.
Particularly for large datasets, Monte Carlo error accumulates over time and the
estimation variance increases (Quintana and Newton, [1998). This is due to the fact
that past states of the particle trajectories (i.e., past clusterings) are not updated with
new observations. The problem can be alleviated by a retrospective method that is
able to reassign the previous clusterings at time n according to latest observations
received. The SMC samplers framework enables us to accomplish this in practice and
still ensures convergence to the true target posterior asymptotically. Unlike the existing
methods proposed by |Quintana (1996); MacEachern et all (1999); [Fearnhead (2004),
we propose an efficient sequential Monte Carlo sampler that enables us to update past
trajectories of the particles in the light of recent observations.

Chapter [3 further improves the method proposed in Chapter 4] by using annealing
strategies under the sequential estimation context (Ulker et alJ,[2010a,2011)). Annealed
proposal kernels are defined in order to draw efficient samples from the DPM posterior
distribution that prevent the algorithm to get trapped to the local modes. The proposed
method takes advantage of the SMC sampler framework in order to calculate the
sample weights that ensures convergence to the true DPM posterior distribution. Due
to importance of modeling the multidimensional dependencies in high dimensional
datasets we extended the proposed algorithm to the multidimensional case. The
efficiency of the proposed algorithms is analyzed on several univariate and multivariate
synthetic datasets.

In Chapter |6l we develop a novel model for time series clustering, based on the DPM
model structure under the semi-Markovian model formalism where the number of
clusters and the parameters are priorly unknown. We constructed a Markovian process
for modeling the change points in order to define an arbitrarily selected distribution
on the sojourn times. We proposed a sequential Monte Carlo algorithm for online

inference that can handle large datasets and applied the proposed model to the Markov



Chain clustering problem. We reported the estimation results for both synthetic and
real world data.
The thesis is finalized with the conclusions and future research directions given in

Chapter[7l



2. SEQUENTIAL MODELS AND SEQUENTIAL BAYESIAN INFERENCE

In this section, we give an introduction to the probabilistic filtering methods and basic
numerical Bayesian techniques. After a brief introduction to the optimal filtering, we
give the basics of Monte Carlo integration, importance sampling, particle filtering
and the sequential Monte Carlo samplers framework that underlies the principles of
sequential Bayesian estimation (Del Moral et al., 2006). We also present models and
algorithms for mixture models with unknown number of components and maneuvering

target tracking (Chen, 2003).

2.1 Sequential Bayesian Estimation

Kalman filters are optimal recursive Bayesian filters giving the Minimum Mean Square
error under linear Gaussian conditions (Chen, 2003). However Bayesian techniques
require integration of the product of probability density functions that cannot be
accomplished in closed form for general nonlinear, non-Gaussian multivariate system.
Necessity of linear Gaussian assumptions to execute Kalman filter equations is a
highly restrictive constraint in many applications, thus several different approximations
are to be introduced in literature such as extended Kalman filters (Chen, 1993),
approximate grid based methods (Arulampalam et al., 2002), Monte Carlo Methods
(Hanscomb and Hammersley, [1964) and etc. to solve the problem.

Main idea of extended Kalman filter (EKF) is to linearize the nonlinear equations
around the prediction mean and assuming the posterior distribution as Gaussian. EKF
is well suited for problems which are not highly nonlinear, unfortunately they fail to
represent highly nonlinear environments such as multi modal distributions. Grid based
method is another approximate Bayesian technique which discretizes the posterior
evenly. Discretizing can be implied by constituting finite number of states as posterior.
Hidden Markov Models (HMM) are an application of such approximate grid based

methods and are used extensively. However grid based methods are faced with the



curse of dimensionality particularly in high dimensional state spaces which render
these methods inappropriate for many applications.

Sequential Monte Carlo (SMC) methods, has been the most promising approaches
among numerical recursive Bayesian techniques. The key idea is to represent required
posterior distribution by set of random samples with associated weights and compute
estimates based on these weights and samples. Sequential importance sampling (SIS)
(Doucet et al., 2001a), sequential importance resampling (SIR) (Doucet et al., 2001a)
are well known sequential Monte Carlo methods commonly named as particle filters.
In the last decade several variants of particle filters, auxiliary particle filters (APF)
(Pitt and Shephard, [1999), regularized particle filters (RPF) (Musso et alJ, 2001)), Rao-
Blackwellized particle filters (Doucet et al., 2001b) and etc. have been proposed.
Although they have the capability to represent any posterior distribution, in practice
they suffer from the degeneracy problem particularly in high dimensional spaces.
Therefore, when sampling from a posterior density, they have limited success in
maintaining an accurate approximation to the true target density. For example, a
Rao Blacwellized particle filter based approach has been employed by [Fearnhead
(2004) to approximate the DPM target posterior sequentially as each new observation
arrives. However the algorithm is only effective for small datasets due to accumulated
Monte Carlo error over time because past states of the particle trajectories (i.e.,
past clusterings) are not updated with new observations (Quintana and Newton, [1998;
Fearnhead, 2004). This problem can be alleviated by a retrospective method that is able
to reassign the previous clusterings at time n according to latest observations received.
Unfortunately, such a strategy will be intractable under the standard particle filtering
framework. Yet, the SMC samplers framework proposed by [Del Moral et all (2006)
will be detailed in Section that enables us to update the previous clusterings by

retrospection and still ensures convergence to the true target posterior asymptotically.

2.2 Bayesian Optimal Filters: Kalman Filtering

Kalman filter is an efficient recursive filter that estimates the state of a dynamical
system from a series of incomplete and noisy measurements. The states follow a first-
order Markov process and the observations are independent of the given states. Kalman

filters, developed by [Kalman (1960), are based on linear dynamic systems discretized
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in the time domain as in Eq.(2.1),

Xp = FixXp_1 + Vi (2.1)

yi = Hixp, + 1y,

where x;, is the state vector, F';, and H;, are process and measurement matrices defining
the linear equations at time index k. In Eq.@2.), v,_1, n; are Gaussian random
variables with covariances Qx_; and Ry, respectively. Generally we consider they
are zero mean and independent random variables. Since F';, H; and noise covariance
parameters v;_;, n; shown in Eq.2.1) are allowed to vary with time, Kalman filters
can handle non stationary environments.

Kalman Filter consists of an iterative prediction and correction process. In the
prediction step, the time update is taken where the one-step ahead prediction of
observation is calculated; in the correction step, the measurement update is taken where
the correction to the estimate of current state is calculated. Kalman filter assumes
that posterior density p(x1.x|y1.x) is Gaussian hence parameterized with its mean and
covariance. Recursive Kalman equations are derived by obtaining p(xy|y1.x) from

p(Xk_1|y1:k—1) in a recursive relationship. Define;

p(Xp—1|ytw—1) = N (Xp—1; my_1jp—1, Pro1jp—1) (2.2)
p(xk|y1n-1) = N (55 mpp—1, Prje—1) (2.3)
p(xklyre) = N (xp; My, Prjy) (2.4)

where N(x,m,P) is a Gaussian density with mean m and covariance P. The

prediction step is defined as,

my—1 = Frmyg_q1 (2.5)

Pijp-1= Qeo1 + FrPryp 1 FL (2.6)
and the correction step is,

my, = my_1 + Ky, (yr — Hpmyp_1) (2.7)
Pup = Prp—1 — K Hy Py (2.8)

11



where covariance of the innovation term y;, — Hymy;_; and the Kalman gain are

defined as in Eq.([2.9) and Eq.(2.10), respectively.

Sk = HyPyy 1 H + Ry, (2.9)

K; =Py H.S;" (2.10)

Kalman filter is optimal if the linear Gaussian assumptions hold true. The implication
is that, no algorithm can ever do better than Kalman filter if the model assumptions
exactly fit the problem considered. However, posterior is not necessarily Gaussian
for nonlinear problems and Kalman filter is then not certain to be optimal. However
Bayesian filtering theory is optimal in all conditions independent from the definition
of the density functions (linear or nonlinear) concerning the model. In literature many
approaches have been introduced to approximate the optimum Bayesian solution under
nonlinear conditions. Particle filters and Extended Kalman Filters are good examples

of these.

2.2.1 Extended Kalman filter

The use of Kalman filter is limited with linear problem where the posterior distribution
is represented with a single Gaussian function. However Kalman filter can’t find

solution to a nonlinear system defined as in Eq.(2.11)),

X = fr (Xp—1) + Vi1 (2.11)

Vi = hi (xx) + 1y,

where f() and hy() are known nonlinear functions, and v_1, ny, are Gaussian random
variables with covariances Q;_; and Ry, respectively. As a solution, extended Kalman
filter (EKF) linearizing the nonlinear functions using series expansion is proposed
(Chen, 1993) . EKF approximates the posterior distribution as a Gaussian to handle
nonlinear problems such that p(xy|yi1.x) approximates to Gaussian and following

approximations will be valid,

P(p—1|y1n—1) & N (Xp—1; mp_1j5—1, Pr_15—1) (2.12)
P(Xe|yrr—1) = N (Xk; mk\kflapk\kfl) (2.13)
p(xkyix) = N (xi; myp, Pre) - (2.14)

12



Consequently, recursive EKF equations are defined as,

Mygjg—1 = Fk(mk71|k71) (2.15)
Pip1 = Qu1 + Fy P14 Ff (2.16)
my,, = myp—1 + Ky (yi — He(myp_1)) (2.17)
Py = Py — K H Py (2.18)

where F, H, are local linearizations of the nonlinear functions fi() and hy(),

respectively as defined in Eq.(2.19) and Eq.(2.20).

F, = Y (2.19)
dx X=Mpg_1|k-1

H, — dhi(x) (2.20)
dx

X=My|k—1

Covariance of the innovation term and the Kalman gain are defined as in Eq.(2.21) and

Eq.(2.22).

Sk = Hy Py HY + R, (2.21)

K; = Py H'S; (2.22)

Because EKF always approximates the posterior p(xx|y1.x) as a Gaussian, it works
well for some types of nonlinear problems, but it may provide a poor performance
in some cases when the true posterior is non-Gaussian (Chen, 2003). Bi-modal or
heavily skewed posterior distributions are examples for this situation. In such cases

particle filters yield improvement at performance over EKF.

2.3 Monte Carlo Integration

In literature many methods has been introduced to handle nonlinear filtering problem
using numerical approximate techniques. Monte Carlo sampling approximation,
Gaussian/Laplace approximation, iterative quadrature approximation, moment
approximation, deterministic sampling approximation are some of these approaches.
In this section we will focus our attention particularly on the sequential Monte Carlo
technique which is one of the most promising approach in the field. First we will

explain basics on Monte Carlo integration and probabilistic inference schemes using
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Monte Carlo techniques, later we will describe more sophisticated sequential filtering
schemes.

Monte Carlo methods estimate the integrals or other quantities that can be expressed
as an expectation by averaging the results of a high number of statistical trials
(Hanscomb and Hammersley, [1964). Computers are ideal for performing such trials,
and the appearance of faster computers has driven the wide spread application of Monte

Carlo methods today. The core problem is the computation of an integral,

/ f(z)p(x)dx (2.23)

with x a possibly multi-dimensional variable. Suppose we also have a pdf p(z)
(p(x) > 0) according to which we can draw samples z* using N, independent samples,

the integral can now be estimated as

N,

R 1 < _

In, = N E f(z*). (2.24)
P =1

This is the basic /N, sample Monte Carlo estimator using importance sampling with a

pdf p(x). Expected value and variance of the estimator can be expressed as,

Elfv,] = E|[f] (2.25)

Var(fy,) = Ni Var(f] = — (2.26)

p
where o2 is the variance of f(z) and Eq.(2.25) indicates that the estimate is unbiased.
By the Kolmogorov strong law of large numbers pr converges to F[f] almost surely

and convergence rate assessed by central limit theorem.

VN, (fx, — E[f]) = N(0,0%) 2.27)

One crucial property of Monte Carlo approximation is the estimation accuracy is
independent of the dimensionality of the state space, in contrast to most deterministic
numerical methods. The variance of estimate is inversely proportional to the number

of samples.
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2.4 Importance Sampling

Importance sampling (IS) was first introduced by Marshall (Marshall, [1956). The
objective of importance sampling is aimed to sample the distribution in the region of
“importance” in order to achieve computational efficiency. This is important especially
for the high-dimensional space where the data are usually sparse, and the region of
interest where the target lies in is relatively small in the whole data space. The idea
of importance sampling is to choose a proposal distribution ¢(x) in place of the true
probability distribution p(x), which is hard-to-sample. The support of ¢(z) is assumed
to cover that of p(z). Rewriting the integration in Eq2.23] as,

/ f(x)@q(x)dx (2.28)

. alx)

Monte Carlo importance sampling is to use a number of (say /V,) independent samples

drawn from ¢(z) to obtain a weighted sum to approximate

. 1
I =5 ;w(w“)f () (2.29)

where w(x?) = p(z")/q(2") are called importance weights. If the normalizing factor is

not known, importance weights can be evaluated up to normalizing constant

(2.30)

hence to ensure that 2]1\7” w(x') = 1, importance weight are normalized. Normalized

weights represents the probability density function p(x) as in Eq.(2.31),

Ns
p(z) =~ Z w'o(r — a') (2.31)
i=1

Variance of the importance sampler can be stated as (Chen, 2003),

Var[f] = Nip/ [(%)] dx — (E”[{Vﬂ (2.32)

p

The variance can be reduced when an appropriate ¢(x) is chosen to match the shape
of p(x) so as to approximate the true variance; or match the shape of | f(x)|p(z) so as
to further reduce the true variance. Importance sampling estimate given by (2.31)) is

biased (thus a.k.a. biased sampling) but consistent, namely the bias vanishes rapidly at

arate O(N,). Importance sampling is useful in two ways (Chen, 2003) (i) it provides
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an elegant way to reduce the variance of the estimator (possibly even less than the true
variance); and (ii) it can be used when encountering the difficulty to sample from the
true probability distribution directly.

Although theoretically the bias of importance sampler vanishes at a rate O(N,,), the
accuracy of estimate is not guaranteed even with a large N,. If ¢(z) is not close to
p(z), it can be imagined that the weights are very uneven, thus many samples are
almost useless because of their negligible contributions. In a high dimensional space,
the importance sampling estimate is likely dominated by a few samples with large

importance weights.

2.5 Sequential Importance Sampling (SIS)

Sequential importance sampling forms the bases of all particle filter algorithms derived
over past decades in the literature. SIS is a sequential Monte Carlo approach
known variously as bootstrap filtering, condensation algorithm, particle filtering
(Arulampalam et all, 2002) and survival of the fittest. It is a recursive Bayesian filter
implemented with Monte Carlo technique. Key idea is to represent the posterior
density with random samples and associated weights to compute required estimates.
As given with its name SIS is the sequential version of importance sampler. As the
number of samples approaches infinity samples represent the true posterior density
function and SIS becomes the optimal Bayesian estimator independent of the shape of
the posterior.

Weighted approximation to a density p(x) is given as in Section[2.4l The posterior can

be stated as the weighted approximation

Np
p(Xorlyre) & Y wid(Xox — XG) (2.33)
=1

where samples x}, are drawn from importance density ¢(x},|yo.x). Weights are

defined according to importance sampling as in Eq.(2.34) as,

7 o p(XZOk|YOk‘) ) (2.34)
q(XO:k|y0:k)

To obtain a sequential formulation of Eq.2.33) we need to obtain p(x}.,|yo.x)

recursively from the approximation p(x}, ,|yo.x_1) with a new set of samples. If

16



the importance density is chosen to factorize as,

Q(Xo;k |YO:k> = Q(Xk |X0:k717 YI:k)Q<XO:k71 |YO:k71) (2.35)

then one can obtain samples x{, ~ ¢(Xo.x|yo.x) by augmenting each of the existing
samples X, ; ~ q(Xo.x—1]|y1:k—1) With new state x}, ~ q(Xx|Xo.x—1,¥1.£). To derive
the weight update equation, p(Xo.x|yi1.x) is expressed in terms of p(Xg.x_1|y1.6-1)
p(yr|xx) and p(x*|x;_1). So the resultant equation representing the weight term is
expressed as,

i o PORIXE)P (KK X0 1)P (Xt [Y 101

Q(Xk |X0:k—1Y1:k)Q(XO:k—1 |Y1:k—1)

_ w/ic p(Yk\Xk)p(XHqu) (2.37)

(% [X0k-1, Y1)

(2.36)

If g(xk|X0:k-1, Y1:6) = q(Xk|Xk_1,¥x), which is the conditional independency defined
between states and observations in a Kalman model, importance density becomes only
dependent on x;_jand yy. This is particularly useful in the common case when only
a filtered estimate of p(xy|y1.x) is required at each time step. Consequently weight
update equation is,

wi AW p(Yk‘Xﬁc)P(Xz‘X;ﬁq)
R g(xelxE_y, ye)

(2.38)

and the posterior filtered density p(xx|yi.x) can be approximated as shown in

Eq.(2.39),
Np
P(Xk|yik) o< Z wo(x; — X},) (2.39)
=1

where the weight w? is defined in equation (2.38). The SIS algorithm thus consists of
recursive propagation of weights as each measurement is received sequentially. Pseudo

code for the algorithm is given below.
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SIS PARTICLE FILTER
i i1V i i1V
[{ka wk}i:1] = SIS [{Xka wk}izl 7)’%]

e FORi=1:N,

— Draw x|, ~ q(xx|X}_;, yr)

— Assign the particle a weight, w?, according to (2.38).

e END FOR

2.5.1 Degeneracy problem

A common problem of sequential importance sampler is the degeneracy phenomenon.
At each sequential step it is shown (Doucet, [1998) that variance of importance weights
increase and consequently except one or a few, samples will have negligible weight
after a while. This degeneracy implies that required posterior density is represented
with just a few samples and computational power is wasted to update weight which
have negligible contribution to posterior p(xx|y1.x). An appropriate criterion on

degeneracy is Effective sample size introduced in (Liu and Chen, [1998) as,

N,
Nyjpe——2 2.40
=1 Var(w;) (2.40)
where w}' = p(xt|y1x)/q(xi|x, 1, yx) is referred as true weight. This connot be

evaluated exactly, but an estimate ]Ve? ¢ can be obtained by
—_— 1
Neff ===
i (wy)

where w}, is the normalised weight obtained using (2.38). In equation 2.41) always

(2.41)

N¢sp < Np and small V. ¢, indicates severe degeneracy. Degeneracy is an undesirable
effect in particle filter that is hard to prevent. Brute force approach to reducing its effect
is to use a very large V,,. This is often impractical, and so there are two other methods

to rely on which are good choice of importance density and use of resampling.

2.5.2 Importance density

In (Liu and Chen, 1998) optimal importance density function which minimizes the true

weights, w;}’, has been shown to be as in Eq.(2.42)

q(Xe|Xh_ 1, V) opt = P(XE|XE_1, V1) (2.42)
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However sampling from distribution p(xx|x}, ;,yx) is often impossible, as a
consequence it’s impractical to use optimal importance distribution. In many problems
it is convenient to choose the prior p(x;|x; ) as importance distribution. The weight

update yields
wi, o< wi,_p(yr|xL). (2.43)

Choosing prior as importance function simplifies the implementation however it may
give poor results where prior distributions are wide compared to likelihood. Choice of
importance density is crucial step in particle filter design and many different has been

proposed in literature.

2.5.3 Resampling

Resampling is the second method to reduce the degeneracy problem. Basic idea of
resampling is to eliminate the low weighted particles and concentrate on particles
which have large weight. Resampling is to generate a new set of points {x}c*}fvz”l from

discrete density distribution,

NP
P(Xk|y1:k) X Z w6 (xp — X} (2.44)
i=1

by resampling N, times so that Pr(x}* = x]) = wj]. Resulting sample is an i.id.
sample from the density given by Eq.(2.44) and as a result of resampling weights are
now reset to wj, = 1/N,,. In literature one can find different resampling algorithms
such as systematic sampling, stratified sampling, residual sampling and etc. Systematic
resampling is chosen the scheme for ease of implementation and widely use.
Although the resampling step reduces the effects of degeneracy problem it introduces
new problems. First, it limits the opportunity to parallelize the algorithm and second
particle which have high weights w? are statistically selected many times. This
leads to loss of diversity and the resultant density will contain many repeated points.
This is a severe problem particularly in small process noise and known as sample
impoverishment. Another side effect of resampling is the reduced number of paths
with time. Smoothed estimates based on paths will degenerate.

A pseudocode for generic particle filter with combined sampling and resampling step

is given below.
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GENERIC PARTICLE FILTER
i i1V i i Vi
[{Xka wk}i:p1] = SIS [{ka wk}i:p1 » Yk
e FORi=1:N,
— Draw x}, ~ q(xx|x%_ 1, ¥x)

— Assign the particle a weight, w}, according to Eq.(2.38).

END FOR

Calculate total weight t = SUM [{w,@}fvz”l]

e FORi=1:N,
— Normalise: w} = w} /t
e END FOR

Calculate ]Ve? 7 using Eq.(2.41)

IF N.;; < Ny
— Resample obtained discrete probability distribution.

END IF

2.5.4 Regularization

In standard particle filtering resampling step was suggested to reduce the degeneracy
problem. However resampling introduced new problems such as loss of diversity
among the particles also known as sample impoverishment, that results in poor
representation of posterior density. Sample impoverishment arises due to the fact that,
in the resampling stage samples are drawn from a discrete representation rather than a
continuous one thus unavoidably causes sample replication. This may lead to particle
collapse which is severe case of sample impoverishment where all particles occupy
the same point in the state space. A modified particle filter known as the regularized
particle filter (RPF) was proposed (Musso et all, 2001)) as a potential solution to the

above problem.
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RPF is identical to the SIR particle filter except for the resampling stage. RBF
resamples from an approximated continuous filtering density, whereas the SIR
resamples from discrete approximation. Continuous approximated filtering density
is defined using a kernel function K and weights w; for (i = 1... N,) associated with

samples x} according to Eq.(2.45),

P(Xklyo:) ~ Zw;Khx xL). (2.45)

Kernel density K () is explicitly

Kp(x) = hixK (%) , (2.46)

where h > 0 is the kernel bandwidth, n, is the dimension of the state vector.

Regularization kernel K is chosen to be symmetric probability density function such

that (Silverman, [1986),

K >0, /K(x)dx =1, /XK(x)dx =0, /HXHQK(X)dX <oo.  (2.47)

Kernel bandwidth is chosen to minimize the mean integrated square error between

the true posterior density and corresponding regularized empirical representation in

Eq.([2.45) defined as,

MISE(p [/ [p(xk|yie) — P(Xk|y )] dm] (2.48)

where p() denotes the approximated density given by Eq.(2.43). In the special case
where all samples are equally weighted wj, = 1/N,, (i = 1...N,), optimal choice of

Kernel is Epanechnikov Kernel (Silverman, |1986),

Ko — {”;C:fu_ ) it [ <1 (2.49)

where c¢,,, is the volume of the unit hypersphere. Assuming that underlying density

is Gaussian with a unit covariance matrix, optimal choice for the bandwidth is

(Silverman, 1986)
hopt = A(k)N7a+3, where A(k) = (4/(ny + 2))7ati (2.50)

However when multimodal distributions is in question it is convenient to choose the

bandwidth i = h,;/2. Although results in Eq.(2.49) are optimal under the assumption
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that weights are equally weighted, they can be used in the general case to obtain a
suboptimal filter. One iteration of RPF is described in (Arulampalam et al., 2002) as

described below.

REGULARIZED PARTICLE FILTER
ix 0 Vi ix iV
[{Xk 7wk}i:p1:| = RPF [{Xk 7wk}i:pl a}’k]
e Fori=1:N,
— Draw XZ o q(xk|x}'€_1,yk)

— Assign the particle a weight, w} according to Eq.(2.38).

e End For
e Normalize the weights such that, S~ w! = 1
e Calculate N, s/ using Eq.@2.41)
o If Ny < NN,
— Calculate the empirical covariance matrix Sy, of {z}, w};}f.v:pl
— Compute Dy, such that D, DY = S;,
— Resample
o [ {xir wih | = RESAMPLE | {x}', wj}%
—Fori=1:N,
* Draw €' ~ K () from the Kernel
* X}: = Xf€ + hDyé
— End For
e EndIf

2.6 Sequential Monte Carlo (SMC) Samplers

In sequential Monte Carlo algorithms such as particle filtering given in Section2.5]
we sample from a sequence of target densities evolving with a countable index

n, m(z1)...m(x,), each defined on a common measurable space (E,,E,) where
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rn, € F,. Conventionally the particle filter is defined on the sequence of target
densities 7y (1) . .. m,(z,,) Where corresponding proposal distributions are defined as

ni(z1) . ..M (z,). The importance weight W, at time n can be defined as

W, = Jnlen) (2.51)
N (Tn)

Y is the unnormalized target distribution according to 7, = +,/Z where Z is the
normalizing constant.
In order to derive the importance weights sequentially one needs to calculate the

proposal distribution 7,,(x,,) pointwise which can be explicitly defined fork =1...n
by Eq.(2.52).
n
() = /m (1) H Ki(zg|zr—1)dz)m (2.52)
k=2

As it is shown in Eq.(2.52)), computation of the importance distribution 7, (z,) for
n > 1 requires an integration with respect to z1.,1 = {z1...x,_1} thus a closed
form solution to 7, (x,) is not available except for specifically designed kernels i.e.
independently selected proposal kernels where K (zy|zx_1) = K (). This constitutes
a central limitation of particle filtering.
To appreciate this limitation, we will consider the form of the kernel explicitly. The
particle filtering is a common framework for sampling from a target distribution with
an increasing dimension over time that admits the integration in Eq.([2.52)) to be trivial.
Whenever a new observation arrives at time n, the vector x,,_; needs to be extended to
Tp = {Zn1...%,,} resulting in an increase in the dimension of target distribution by

one. Hence the particle filtering proposal kernel is defined as follows,

Kn(xn—la xn) = 5@‘”,1 (xn,—n) Tin (xn,n|xn,—n) . (2'53)

where the notation x, _, = {%n1...Tnn-1} denotes the components of z,
excluding z,, ,. The dirac delta function d,, , (x, —,) shown in Eq.(2.53) just copies
ZTp—1 = {Tp_11...Tp_1,—1} as it is. Hence the particle filtering proposal given in
Eq.(2.53) only needs to label the latest component x,, while preserving the rest,
Tp—n ={Tn1...Tnn1}. Inother words, the conventional particle filter is not capable
of defining local moves on previous labels. This can be expressed as one of the major
drawback that explains why conventional particle filtering methods are not efficient in

fixed parameter estimation in general, and for DPM models in particular.
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To eliminate this limitation, Del Moral et al. (Del Moral et all, 2006) proposed
an auxiliary variable technique which solves the sequential importance sampling
problem in an extended space K" = {E; x ... x E,}. SMC sampler performs
importance sampling between the joint importance distribution 7, (x1.,) and the
artificial joint target distribution defined by 7, (21.,) = Vn(21.n)/Z, Where Z,, denotes
the normalizing constant. The algorithm enables us to calculate efficient weight update
equations for a given valid proposal kernel K,,(x,_1, x,).

The proposal distribution 7, (1., ) of SMC is defined on extended space E™ as follows,

n

Mo (1) = m1 (1) [ [ B (welky) (2.54)
k=2

Note that here an integration is no longer required. However, this comes with the
expense of a extended artificial target density on the same extended space E™ defined

by
n—1

Fn(@1m) = Yo(@n) [ [ Li(@rsr, i) (2.55)

k=1
Here, we introduced a sequence of backward kernels Ly (g1, 2x), k = {1...n — 1}
to define the artificial target distribution shown in Eq.([2.55). Consequently 7, (x1.,)
defined on extended space E" admits 7, (z,) as a marginal by construction therefore
the resultant weighting function ensures convergence to the true target density.

The generic SMC algorithm which is used to sample from a sequentially evolving
target posterior 7, is presented as follows (Del Moral et al., 2006).

. . : : N
Assume that a set of weighted particles {w!,_,,z},, ,}. "

approximate to 7,_; at
time n — 1. At time n the path of each particle can be extended using a Markov
kernel, 2! ~ K,(z! ,,z,). The unnormalized importance weights associated with

the extended particles are calculated according to Eq.(2.56),

Wn(xl:n) = anl(xl:nfl)vn<xnflu xn) (2'56)
_ :\Y/n(xl:n>
nn(xlzn)

where the incremental term of weight equation, v, (z,_1, x,), is equal to

’Yn(xn)Ln—l(xna xn—l)
’Yn—l(xn—l)Kn(xn—la xn) .

(2.57)

Un(xnflu xn) =

As the discrepancy between 7, and 7, tends to increase with n, variance of the

unnormalized importance weights tends to increase that yields degeneracy. A
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resampling scheme is used if degeneracy is above a certain level as measured by, e.g,

effective sample size (ESS) (Liu and Chenl, [1998).

2.6.1 Backward kernels

Design of efficient sampling schemata hinges on properly choosing L,, with respect
to K, The introduction of the L,, extends the integration domain from £ to £" and
eliminates the necessity of calculating 7, (z,). However increasing the integration
domain also increases the variance of the importance weights. In (Del Moral et al.,
2006) it is shown that the optimal backward Markov kernel L{*" (k = 1,...,n)
minimizing the variance of the unnormalized importance weight w,, (z1.,) is given for

any k by,

(@) K
L9 (g, ) = et Kelny, 1) (2.58)

Nk ()

Replacement of the optimal backward kernel in Eq.(2.58) with the one defined in
Eq.(2.56) yields the importance weight,

W (210) = g”gi"; . (2.59)

Eq.(2.59) states that, using the optimal backward kernel, importance sampling is
performed on F instead of E™. However, the marginal distribution, 7, (z,), shown
in Eq.([2.59) usually does not admit a closed form solution therefore it is almost never
possible to use the optimal backward kernel. The common strategy is to approximate
the optimal kernel as close as possible to provide asymptotically consistent estimates
(Del Moral et all, 2006) . A sensible approximation can be obtained by substituting

mx—1 for n_1, K = 2...n where the approximate kernel L;_; can be expressed as in
Eq.2.60),

7Tk71<xk71)Kk(xkflyxk)
Ly _1) = 2.60
e-1(@k: Te-1) J 1 (1) K (-1, 5 ) dag— (2:60)

yielding the weight update equation,

’Yn(xn)
(o) _ 2.61
Un(Tp—1, Tp) S Y1 (@n—1) K (21, 20 )dy 00

Since +,, is known analytically, it is convenient to use Eq.(2.61)) rather than Eq.(2.59)
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2.6.2 Forward kernels

Another important issue that needs to be discussed is specification of forward kernels.
Gibbs type kernels and MCMC kernels are commonly used kernel type in SMC
sampler. In practice it is often useful to define Gibbs kernels where partial state space is
updated particularly for sequential applications. Let z,, ,, denotes the u*" component z,
of x = (1,...,x;) attime n. It is straightforward to establish the proposal minimizing

the variance of Eq.(2.61) conditional on x,,_; as shown in Eq.(2.62)
Kn(vp_1,drn) = 00,y (dTn,—0) T (A o |20, —u) (2.62)

where , _, = (Tn1,. -, Tnu—1;Tnutls--->Tn ). In this case the backward kernel

can be represented as in Eq.(2.63)
Lnfl(l’nu dxn71> = 5mn,fu(dxn71,fu)ﬂ-n71(dxnfl,u‘xn71,7u> (2-63)

and the incremental weight update equation for a Gibbs type kernel is,

’Yn(xn—l,—ua xn,u)
Yn—1 (xn—l,—u)ﬂ-n (xn,u |xn—1,—u)

(2.64)

wn(xnflu xn) =
Assuming K, is an MCMC kernel of invariant distribution 7,, an approximation of
Eq.(2.60) can be obtained as shown in Eq.(2.65))

T (Tn_1) K (Tn_1, )
Tn(20)

(2.65)

Ln—l (l’n, xn—l) -

Eq.[2.65) is the reversal Markov kernel associated with K,. Therefore a good
approximation to Eq.(2.61) can be derived for 7,_; = m, and the unnormalized
incremental weight equation is,

Tn (xn—l)

2.66
’Yn—l(xn—l) ( )

{En(xn—la xn) -

The inference framework is fairly general and several methods proposed in the
literature appear as special cases of the SMC sampler (Del Moral et all, 2006),
incuding the sequential Monte Carlo algorithms using MCMC kernels are proposed
by Chopin (Chopin, 2002), Jarzynski (Jarzynski, [1997), Neal (Neal, 2001) and
MacEachern (MacEachern et al., [1999).
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2.7 Dirichlet Process Mixture Models

In recent years, Dirichlet Process Mixtures (DPM) model has been one of the most
widely used and popular approach to nonparametrical probabilistic models (Antoniak,
1974). Originally, DPM have been widely used as a building block in hierarchical
models for solving density estimation and clustering problems where the actual form
of the data generation process is not constrained to a particular parametric family such
as mixture problems with unknown number of components (Blei and Jordan, 2004).
Now we will explain the DPM model structure and the notation used throughout the
thesis. Let us first define the notation for a finite mixture model, and then it will be
extended to a DPM model.

In a batch Bayesian setting, the joint distribution corresponding to a finite mixture

model over N observations y = {y;},7 =1... N, can be defined as follows:

k
p(6, 2, y) (Hp 2)9(uilf-,) ) 11265 (2.67)
j=1

Here, fori = 1... N, z; € {1...k} denotes the cluster index of the i th observation
and § = {6;},7 € {1...k} denote the cluster conditional parameters. Here, k denotes
the maximum number of clusters. We will use z = {z;},i = 1...N to refer to
clustering variables, that we also call cluster labels or simply labels. The mixture
density p(y) can be obtained as the marginal by summing over the clustering variables
z and integrating over mixture component parameters 6.

Given a set of observations y, in order to calculate the posterior probability p(z, f|y),
it is necessary to know k, the number of mixture components. However, this is rarely
the case in practice and k needs to be estimated using more sophisticated inference
techniques (Green, [1995). The DPM model introduced by |Antoniak (1974) provides,
among others, an elegant alternative for construction of mixture models with unknown

number of components. In the sequel, we will refer to the target posterior as
m(z) = p(z,0]y) (2.68)

where z = {z, 0}. It is advantageous to construct a mixture model sequentially, where
data arrives one by one. Note that unlike a time series model, the likelihood will be
invariant with respect to the actual order. This will also highlight the connection to

a DPM which is easily constructed as a sequential process. To denote the sequential
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construction, we extend our notation with an explicit 'time’ index n. Note that this
index does no correspond to the wall clock, it just denotes the number of observations
seen so far.

We denote the observation sequence at time n by v, = {yn1...Ynn}. Each
observation y,,;, ¢ = 1,...n, is assigned to a cluster where z,; € {1,...k,} is the
cluster label and, k,, € {1...n} represent the number of clusters at time n. The
vector of cluster variables is defined as z, = {z,1 ... 2, } and corresponding cluster
parameters are represented with the parameter vector 6,, = {0,,1 ... 0, }

The reader may find this notation redundant, as clearly y,,; = yy,; for all
j < min(ny,ny). However, the notation will be justified in the SMC samplers
framework where we will target a joint density on all timesn =1... N.

The DPM model assumes that the cluster parameters are independently drawn from
the prior 7(#) and the observations are independent of each other conditional on the

assignment variable z,, ;. Hence the DPM posterior density 7(z, ) can be expressed as,

kn n

T (Tn) o P(2n) Hp(‘gn,j) H 9(Yn,ilOn.z ) (2.69)

j=1 i=1
where x,, = {z,,0,}. The prior on clustering variable vector z, is formulated by

Eq.@2.70) in a recursive way,

p(onien = il ):{% jzl,...,k:i} 2.70)

ni+1 = J|%n,{1:i} B Y .

where k; is the number of clusters in the assignment z, {1.;. [; is the number of
observations that z, f1.;; assigns to cluster j and « is a 'novelty’ parameter ; when
« is large the process has the tendency to generate new clusters. An interesting
mathematical property of this construction is that it assigns the same prior probability
to similar partitions regardless of the order of observations as /; are clearly independent
of the actual order. For a rigorous development from first principles, see the so called
stick breaking construction (Sethuraman, [1994).
We assume that conjugate prior is chosen for the parameters to ensure the conditions
described in (Fearnhead, 2004). Typically given z,, under conjugacy assumption the
parameter 6,, can be integrated out and the DPM posterior distribution can be calculated

up to a normalizing constant.
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2.8 Models and Algorithms for Maneuvering Target Tracking

In this section, we give basic information on target motion models that defines the
prior structure of the tracking algorithms and introduce well known state of the art
maneuvering target tracking models introduced in the literature. We will present three
models, interacting multiple model (IMM), multiple model particle filter (MMPF) and
jump Markov system particle filter (JMS-PF), that all regard on the multiple model
structure. These models differ in the way they unify the inference scheme with the
multiple model approach. We also explain the variable rate particle filters (VRPF)
which is one of the recent advances in the field of maneuvering target tracking.
Multiple models can be stated as a Hybrid scheme, including continuous and discrete
random variable in a Bayesian framework. In maneuvering Target tracking, discrete
variables represents the hypothesis of target mode sequence. However exponential
increment in the number of hypothesis with time will render the optimum solution
infeasible. Common approach taken is to reduce the number of hypothesis by some
pruning or merging techniques. Final estimate is usually constructed with mixing or
selecting the models.

Although, MM approaches defined in this section have quite different inference
schemes, they try to solve the similar probabilistic structures regarding hybrid Markov
models. A distinct approach proposed recently is Variable Rate Particle filters which
models the maneuvering times as state process independent of observation times
(Godsill and Vermaak, 2005). In contrast to other models state arrival times are
assumed as random processes. The resultant model refers to a semi Markov model for
tracking. The model claims that nature of a maneuvering target motion, particularly

manned vehicles, fits better to the variable rate scheme.

2.8.1 Target dynamic motion models

Model based tracking methods assume that the target motion and its observations can
be represented by some known mathematical models accurately. The most known

models are state space models in the discrete form,

Xp+1 = fr(Xk, ur) + Wy, (2.71)

Y. = hk(Xk) —+ Vi (2.72)
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where f; and h, are time indexed functions which defines the motion and the
observation model. x;, yx, u; are target state vector, observation vector and control
input at discrete time ¢; respectively, and wy, vy are process and measurement noise
sequences.

One of the major challenge for target tracking arises from motion uncertainty
(Li_and Jilkov, 2003). This uncertainty is caused by the lack of accurate knowledge
of the target dynamic model. Although adequate models can be considered in state
space form as in Eq.(2.71)), a tracker has to confront the absence of actual control input
u of the target and possibly actual form of f(), its parameters and statistical properties
of the noise w for the particular target. In the case of maneuvering target tracking a
motion model that accounts well for the true dynamic behavior of the target has to
be considered. Most of the relevant work with the subject focused on 2 main tasks

(Li_and Jilkov, 2003).

e Approximate the actually nonrandom control input u as a random process of

certain properties

e Describe typical target trajectories by some representative motion models with

properly designated parameters.

Target motion can be classified into two major regimes, one is maneuver and the other
is non-maneuver. In the sequel we will give a short introduction on non-maneuver
and maneuver motion models. There are numerous motion models in literature used
for target tracking that aims to describe the target kinematics explicitly to increase
the tracker performance. Models can be clustered into 2 main types of which based
on random processes and the ones based on target kinematics. Appropriate choice
of motion model is highly dependent on the application and the type of the tracking
algorithm. Thus we will just explain a few basic examples of such models and a

sophisticated one which will be used in the presented work.

2.8.1.1 Non maneuvering motion model
Non maneuvering motion is commonly referred as the straight motion at constant

velocity. It is generally expressed in the discrete form as (Bar-Shalom et al., 2001),

Xk+1 = FXk + GWk (2.73)
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where state vector x = [, y, &, 9] constitutes of coordinate positions x, y and velocities
along = and y axis &, y respectively. Likewise, process noise vector wj, constitutes of
[w,, w,] which corresponds to noisy accelerations along the = any y axes. Process
noise vector is commonly chosen as wy, ~ N (0, Q) where covariance matrix is chosen
to be Q = o,I which defines an uncoupled acceleration across x and y directions.
In constant velocity model, parameter o, is selected as a small value to model the

uncertainties. The matrix F also named as transition matrix is,

(1 0 T 0
01 0 T
F = 00 1 0 (2.74)
00 0 1
and matrix G is defined as,
[ T2 /2 0
0 T2 /2
G = T 0 (2.75)
0 T

where 7' is the sampling period. Since constant velocity model assumes independent
constant acceleration values with a very small process noise o, between state
transitions, by increasing the value of process noise o,, it can converted to a
maneuvering target model and is so called constant white acceleration model. However
a maneuver by its nature aims at accomplishing a certain task and thus is rarely
independent with respect to time thus this model can be represented as the simplest
maneuver model and usually used when maneuver is quite small.

A maneuvering motion can be expressed as the motion mode, exempt the straight
constant velocity. Variation of target acceleration is accounted as a state variable in
Maneuvering Target models. They differ in the way they deal with the acceleration. In
the following sections maneuvering motion models of which are used extensively in

the literature will be described.

2.8.1.2 Constant acceleration model (CA)

Constant acceleration model assumes the acceleration is a process with independent
increments (Bar-Shalom et al., 2001)). State vector x = [z,y, &, 9, &, §] also includes
acceleration deviation &,y respectively along = and y axis. This model is most

conveniently expressed in the discrete time given as,

Xk+1 = FXk + GWk (2.76)
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In Eq.(2.76)), the transition matrix F is,

2.77)

S oo oo
o OO o+ O

and the matrix G is,

(2.78)

where 7' is sampling period and w; constitutes the noise vector [w,,w,]. The
assumption of the direct discrete-time CA model, that the acceleration increment
Aap = api1 — ai is independent across different sampling intervals, is hardly
justifiable. However more complex models are proposed by|Singer (1970) that assumes
target acceleration is a zero mean first order stationary Markov process. The process
has autocorrelation R, = Efa(t + 7)a(t)] = o?e" and should be expressed as a
linear time invariant discrete model a;,; = e *Ta; + w{ where w{ is a zero mean

white noise sequence with variance o%(1 — e~ 7).

2.8.1.3 Constant turn model (CT)

Constant Turn model is one of the well known models based on target kinematic unlike
the others we have represented before (Bar-Shalom et all, 2001). CT comprises of
curvilinear motion model from kinematics. This is a constant speed and constant turn

rate model, and defined with the state vector x = [z, y, &, ] as,
Xk+1 = FXk + GWk (2.79)

CT motion transition matrix F is given as a function of sampling time 7" and angular

rate w,
é sin(w(T)%;UT 8 —(1-— gos((wj?)))/w
F= 0 (1—cos(wT))/w 1 sin(wT)/wT (2.80)
0 sin(wT') 0 cos(wT')

and usually matrix G chosen is identical to Eq.(2.78). An important issue we have

to indicate is that CT model is completely linear owing to angular rate w is known
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priorly. However as a practical consideration this assumption is not justifiable. As a
consequence, models are developed assuming angular rate w as a random variable
which is included as a state component to be estimated. Angular rate is defined
by an wiener process or a first order Markov process when interpreted as a random
variable. Note that under this circumstance the model should no longer be linear
thus linearization techniques may be required to reach a solution depending on the

algorithm used.

2.8.1.4 Curvilinear motion models (CL)

Curvilinear motion models is one of the most sophisticated model considered in the
literature (Liand Jilkov, 2003). It accounts for possibly non-zero normal (cross-
track) and tangential (along-track) target maneuver accelerations simultaneously. In
(Li and Jilkov, 2003) continuous and discrete form equations for cuvilinear motion
model in cartesian coordinates has been presented. However we will represent the
curvilinear motion a slightly different way, represented using intrinsic coordinate
system (Godsill and Vermaak, 2005). Note that a special case of curvilinear motion
dynamics for a particular scenario is presented here which is in accord with the model
used in Variable Rate particle filters.

In the intrinsic coordinate system applied forces are represented relative to heading of
the object, distance traveled along the path of motion is denoted by s, while the angle
of the path relative to z axis is denoted by . Dynamics of motion is determined by the
tangential acceleration ar and perpendicular acceleration ap defined as in Eq.(2.81)

as,

2 2
d*s dsdy 1 (ds) (2.81)

S H= 2" _ — (22
w2 YO=ga = r\a

ar(t)
where R is the instantaneous radius of curvature of the path. Piecewise constant
force relative to the direction of heading v is assumed to be applied having tangential
component T, and perpendicular component 7y, over time interval (74, 7x41]. This
model is suitable particularly scenarios where applied forces remains constant relative
to the direction of flight between any two times 7, and 7k + 1. Ones the initial
conditions are set, it is possible to define the target trajectory deterministically. In

the scenario proposed, object being tracked makes discrete changes at random times to

the controls and follows a deterministic path between these change times. To model the
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external effects such as air resistance, a frictional force A(ds/dt) is assumed to apply
in the opposite direction to the path. Applied forces in tangential and perpendicular

direction is represented in Eq.(2.82).

d e ds d
Tro =22 4 mS2 Ty, s dy

£s . t < 2.82
at T PR T Mg RS TS TR (2.82)

where m is the mass of the object and ) the coefficient of resistance. To represent the
speed v(t) along the path at time ¢ = 7, + A7 integration from time 73 to 7, + A7 is

accomplished as in Eq.(2.83),
1
U(Tk -+ AT) = X (TT,k — (CFTJg — )\U(Tk))eiATA/m) (2.83)

Distance along the path is,

o7

A

m

w2 (T — Av(7y,)) (e A™Am — 1), (2.84)

st + A7) = s(m) + —Trp +

Then using equation (2.83) representing v(t), perpendicular equation is rearranged and

integrated as,

d T
d—:i) = mz’j&’;), T <t < Tpr1,0(t) #0 (2.85)
T+AT Tood
(4 AT) = 1(i) + / k njvk( t; (2.86)
= w(Tk) + le,k/CFTJg <A)\/m — lOg % ) . (2.87)

Results representing speed v () and angle of the path () are in closed form however
closed form solution is not available for position in cartesian coordinates which
requires a numerical integration technique to compute. In (Godsill and Vermaak, 2005)
a simple Euler approximation is used on a fine time grid, calculating the changes in z

and y coordinates over a time interval ¢ as shown in Eq.(2.88))

dx =~ v(t)cos(¥(t))ot,

oy ~ v(t)sin(y(t))ot,
z(t + 6t) ~ z(t) + [0z dy]". (2.88)

2.8.2 Interacting multiple models (IMM)

Interacting Multiple Model represented by Blom (Blom et alJ, [1998) is one of the best

known algorithm that deserved this popularity by having satisfactory results with a

34



reasonable complexity. Although it is not mandatory, mode sequence is assumed as
first order Markov process that helps to reveal a tractable algorithm.

Assume S different models at time k are used, denoted by r(l) {i=1...5}, where

probability for each model is 7,2) = p(rk |¥o.x). The posterior density distribution at

time k is given by the total probability theorem using S different models as,
S . .
p(xelyor) = Y (el your) Pr lyow). (2.89)
j=1
Applying Bayes theorem to the first factor in (2.89) using yo.x = {yx, Yo.xr_1} gives

(Xk\rk . Yok) OCP(Yk\Tk , Xp )P (Xk\T;(gj),YO:kfl)- (2.90)

Applying the total probability theorem to the last factor in (2.90) gives

S
Okl you-1) = Y peelr i yon) p i yorn) 29D
i=1

-~

Ye—1)k—1(4:5)

IMM can be integrated with any inference scheme that can represent the distribution,

p(elr? L yonoa). (2.92)

If we assume the state variables as Gaussian distribution conditioned on mode then

Eq.(2.91) can be approximated as,

S
. . . N S
pxalr? you-1) & 3 ploaelri s (K Phogec . )i (i)
i=1 -

(2.93)

Xk|Tk 17Tk; 17}2](;) 1)k— 17P](;zl‘k_l)q/k—ﬂk—l(iaj)' (2'94)

HMC&

Approximation is due to the fact that the models summarize the history through the

estimates and covariances. Mixing probabilities are expressed using Bayes theorem as

Yro1pk-1(i, §) = p(r& 1r you1) (2.95)
X p(rk ‘Tk 1> Y0:k— 1) p(ﬁii) 1 |YO kflz (2.96)
p(::]) ’\/I(;)l

where p(i, ) in practice is used as a design parameter. Eq. (2.93) is defined as a

Gaussian mixture. An approximation is required to define it with a single Gaussian.
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Moreover a similar methodology is adopted to estimate the joint mode distribution.
This situation well defines the algorithm that integrates the EKF with IMM model and
usually referred as IMM-EKEF algorithm. However we wont give further details of the

algorithm in this thesis.

2.8.3 Multiple model particle filter (MMPF)

The MMPF has been used to solve various maneuvering target tracking problems
(McGinnity and Irwin, 2000). MMPF considers an augmented hybrid state vector,
X = |z}, k) where x} is the continuous state vector and the 7y, is the discrete mode
variable. In order to recursively compute PF estimates, the MC representation of
p(Xk|yo.x) has to be propagated in time using posterior pdf p(xx_1|yo.x—1) of which

is approximated by the samples and associated weights {552_17 wy_q }Zz”l according to,

NP
P(X—1]youn-1) = Z wi,10(Ye-1 = Yi-1) (2.97)
i=1
where 0(.) is the dirac delta measure. Posterior pdf at k can be written as in Eq.(2.98).

plalyon) x plyal) [ pGabapbacilyosdao, 299
To represent the posterior given by Eq.(2.98) using particles, importance sampling
is employed. By choosing the importance density to be prior p(xy|xx_1), one can
draw samples from x| ~ p(xg|xi ,), for i = 1,..N,. First sample is drawn
from the discrete probability mass function p(ry|ri_,) which indicates the transition
probabilities between modes defined as an first order markov chain. The samples are

represented as,
ri~ p(rilr ) (2.99)

Next, given the sample 7%, one can easily sample x} ~ p(xx|z}_,,r%) through the
dynamic model with the given process noise. This gives us the sample space {x:}
of the posterior p(xy|yo.x) and the weights associated with the samples are computed

recursively using the measurement equation as,
wi, o< w1 p(yr|xk). (2.100)

The degeneracy phenomenon which is common problem with Particle filters also
arise in MMPF. A conventional resampling step to overcome degeneracy is used as

in particle filters.
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2.8.4 Jump Markov system particle filter (JMS-PF)

The JMS-PF is based on jump Markov linear system proposed in (Doucet et al.,
2001b). Standard particle filtering techniques focused on estimating the pdf of the state
variable x;, as described in MM-PFE. However, idea in the JMS-PF is to emphasize the
estimation of mode sequence ry.;, given the measurements yg.,. The density of latent

variables p(Xo.x, Fo.x|Yo:x) can be factorized into,

p(XO:lm rO:k‘yO:k) = p(Xo:k|1"o;k, yO:k)p(rO:k‘yO:k- (2.101)

Eq. (2.101) indicates that given a specific mode sequence and the measurements,
p(Xo:x|T0:k, Yo ) can be estimated with any conventional nonlinear filtering method.
Therefore mode sequence estimation is considered as the weak spot of the state density
estimation. Methodology is to estimate mode sequence p(ro.x|yo.x) using a PF. Using
Bayes rule, the equation,

p(Yo k|YO k—1,To: k) (Tk‘rkfl)
(ka"O:kfl)

p(Tok|yor) = P(ros—1|Yok—1) (2.102)

provides a useful recursion for the estimation of p(ro.x|yo.x) with the generated N,
particles {rgzk}f\i”l at time k. An importance function of the form ¢(r4|yo.x, ro.x—1) is

. . . , N, )
required. Suppose at time k£ — 1 we have set of particles {rf): h1 }Z:”l that characterizes
the pdf p(ro.x—1|yo.x—1). Drawing N, samples 7} ~ q(rx|yo.x, th.,_,) Will be sufficient
to represent the mode distribution as in Eq.(2.103),

P(rox|Yok) Z wk’y ron — I'o ) (2.103)

where the weight is

wz ~ p(ykb;O:k—la ré;k)p(ri)
C](ka’o:k, ro:k—l)

(2.104)

It shown in (Doucet, [1998) that optimal importance density which minimize the
variance of weights is p(rg|yox, o, ;). Optimal importance density can be
represented as,

P(YrlYosk—1,Ths_1s ) P(rE|TE_1)
p(Yk |y0:k—17 r%]:kfl)

p(relyor, Thi 1) = (2.105)

In this form denominator is independent of 7, and p(rx|rx_1) is the Markov transition

probability defined between modes. The p(r|yo.x, rh.,_; ), featuring the denominator
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is the only term that restricts to sample the optimal distribution. Hopefully, it can be
estimated by one step a head EKF estimator. Weight update equation using Eq.(2.103))

as the proposal distribution is achieved by

wh, o p(YrIYok-1:Thi 1) = Y PYRIYok—1 T 1.7 = J)p(ri = jlrh ). (2.106)
j=1

Since 7, € {1,...,S} S one step a head EKF innovations is required to compute the
importance weights.

The performance of MMPF, IMM-EKF and JMS-PF has been investigated by
Arulampalam et al. (2004). EKF algorithm has been unified with IMM and JMS-PF
to estimate the posterior conditioned on the mode sequence. Comparison of bearing
only single target tracking under non-cluttered environment has been evaluated and for
comparison MMSE of each algorithm is calculated for a certain scenario. They have
reported MMPF is superior compared to JMS-PF and IMM-EKF. Among the other

methods IMM-EKF was inferior to others while JMS-PF has modest performance.

2.8.5 Variable rate particle filters

Variable rate particle filters (VRPF) mostly rely on the semi-Markov model framework.
VRPF introduced by \Godsill and Vermaak (2005) proposes an efficient generalized
nonlinear inference scheme using particle filters in a semi-Markov model.

Standard particle filters assume states are associated each other in a Markov process
and the state sampling rate is determined with the rate measurements arrive. However
in real data sets trajectories are characterized prolonged period of smoothness with
infrequent sharp changes. This is specially true for manned targets which moves along
a course for a while and then change its direction according to intercept new heading.
Thus, this representation makes it is possible to achieve a parsimonious representation
of the target trajectory if the state sampling is adapted to nature of the data. Variable
rate scheme allocates more state points to regions of rapid deviations and fewer points
to smooth trajectories thus models the times when maneuver occurs and the parameter
of this maneuver.

In contrast to the fixed and known sampling rate of standard tracking techniques,
Variable Rate particle filter models the state arrival times as a Markovian random

process. This allows time between consecutive target states to be variable thus number
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of target states and their timings are unknown. Although not necessity in a typical
scenario number of state point will be much lower than the number of observations.
An interpolation function is constructed to match the observation with variable state
sequence and formulate the likelihood. The model assumes likelihood function is
only dependent with the local neighboring state points to lead an efficient recursive

implementation.

2.8.5.1 Variable rate models

In standard state-space models a state variable x; evolves with time index ¢.
Diversely, variable rate state is defined as x; = (7%, 0x) where k is a discrete index,
Tk > Tp—1 > ... > T denotes the state arrival time for state k£ and ;. denotes the vector
of variables necessary to parameterize the target state. In the tracking application state
vector will include variables like position, velocity, heading etc.

Variable state sequence follows a Markovian process such that states are independently

generated according to density function in Eq.(2.107),
Xp, ~ p(Xk[xXp-1) = POk|Ok—1, T, Tk 1)P(Tk|Ok—1, Th—1) (2.107)

where we constraint that 7, > 75 and finite. Measurement vectors y relating to time
t are assumed to occur on a regular time grid and in correct time ordering although
this assumption can be removed for cases of irregular sampling or out of sequence
measurements.

In standard models, timings of the state process and the measurements do match, so
that each measurement y;, is uniquely associated with a state variable x;. However, in
a variable rate model state timing can be asynchronous with the measurement process.
The rate of the measurement arrival will be typically higher than that of the state
process although not necessity. In need, a likelihood is defined with the assumption that
y; is independent of all other data points, conditionally upon the neighborhood of states
Xy, = {Xi; k € Ny(X0.00) }- Note that each neighborhood N; (xo.o.) is constructed as
a deterministic function of the time index ¢ and the state sequence X.,,. Thus it is
a random variable itself, a feature that is not present in standard state space models.
Throughout the document NV;(Xg.o.) Will be denoted by N;. Consequently likelihood

is represented as a density distribution p() for consecutive ¢ as,

Vi ~ p(¥i|X0.00) = P(¥i|XN,) (2.108)
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For practical computational purposes the neighborhood will need to have a local
structure and N; will contain only states whose times 7;, are close to the observation
time t. Neighborhood structure will often be determined directly by logical or
physical considerations of the model. Interpolated state vector 0, = fi(xns,), which
is deterministic function f;() of the states in the neighborhood xy;, is defined that
leads the calculation of the observation density at time index ¢. Observation density is

then expressed as

p(yilxn,) = p(ye|6:) (2.109)

which allows pointwise evaluation of the likelihood p(y:|xx;) and the process. It will
usually be natural to arrange for the neighborhood to be “strictly monotonic” with ¢.

Largest and smallest elements of N; is defined in Eq.(2.110) as,
NF = max (N;) N = min (N) (2.110)
and for monotonicity assumed that,
N ZNLL N2 NG (2.111)

Although the monotonicity assumption is not required for a valid estimation procedure,
it is preferred as it simplifies the notation. Combining the Markovian assumptions it is

possible to represent the joint density of states and observations as follows:
T
p(Xo:x, Yor) = P(Xo Hp Xp|Xp—1 Hp vilxn,), K> N;f (2.112)
k=1 t=0

where the condition X > N;f ensures the “complete” neighborhood for the calculation
of the observation density at the final time index 7'. For simplicity, K will be
considered as a constant “sufficiently” large that N/ can never exceed it. This is
an important concept in construction of a sequential estimation procedure that will be
detailed in subsequent paragraphs. Another requirement to determine neighborhood
properly is that, the neighborhood N will not be modified by addition of future state
points x N Thus for each time ¢ for which an observation y; is available we can
always simulate a sequence of new states from the dynamic model until such a time
as a valid neighborhood M; has been obtained. If k state will be simulated one has to
wait until & = N;". In a target tracking application neighborhood is constructed as

N; = {k, k — 1} of which provides simplicity in update equations.
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2.8.5.2 Variable rate state estimation using particle filters
Purpose in this section is to derive an sequential algorithm that estimates the sequence
of variable rate state points as new measurements become available. The conditional

distribution referred as variable rate filtering distribution, written as

P (%o N you (2.113)
where yo;: = (Yo,---,Y¥:) is the sequence of available measurements up to time ¢
and xg.; = (Xo,-..,X) denotes a sequence of k£ hidden state variables. Variable rate

filtering distribution is interpreted as a joint distribution over the number of state points
N;" and their values x,, -+ N;" is a random variable thus variable rate distribution has

variable dimension support. For recursive state estimation an update rule of the form,

p(XO:Ntt1>-/\/;€t1 Yoit—1) = P(XO:/\@+7/\/;+|Y0¢) (2.114)

is required. As the new measurement is received, variable rate distribution at the
current time step will be updated. Filtering distribution at time ¢ is related to that
at time ¢ — 1 according to the Eq.([2.115) obtained using Bayes rule.

p(xw\/tt1 N You—1)p(ye X )p(XNttIH:Nj |X/\/tt1)
p(yelyo:e-1)

P(Xgp, Ny [yoa) = (2.115)

Note that Eq.@2.113)) is derived under the assumption that, new state points beyond
N;_1 does not alter the neighborhoods from times 0 to ¢ — 1. Sequential update
rule is similar to standard particle filtering except that number of states to represent
the trajectory is an unknown random variable of which is a very important issue
when developing recursive numerical techniques. An important property of variable
rate structure is that neighborhood may not need to increase at every time step,
which implies N;© = N;", for some or many values of ¢. In this case the term
p(x N LN |x N 1) disappears from the update expression.

Variable rate structure is analytically intractable for most models of practical interest
therefore sequential Monte Carlo methods provide an efficient update rule. However
standard particle filtering algorithm can not be applied to the update rule given by
Eq. (@.113) owing to variable dimensionality of the hidden state sequence at each
time index ¢. An intuitive method is applied by the authors (Godsill and Vermaak,

2005) to obtain a fixed dimensional state sequence. They assume that state sequence
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comprise fixed number of state points /, that extend beyond the current time horizon
so that neighborhood including N; can be unambiguously completed. K is chosen as
an arbitrarily large number that satisfies the constraint. Value of K does not affect the
final algorithm and having set up a fixed dimensional problem, sequential importance
sampling can be applied to the variable rate state distribution. Fixed dimensional target

distribution can be factorized as follows,

P(x%0.1¢, Ny [¥0:e) = D(Xgpces Mo 0. ) T (Xt 1 ie [Xoonct) (2.116)

thus by the construction, desired variable rate filtering distribution is the marginal with
respect to X+, The conditional distribution extends the variable state sequence
to the fixed horizon K, and its choice is arbitrary. Now we can define the sequential
importance sampler assuming that we have large number V,, of weighted Monte Carlo

samples approximating the variable rate filtering distribution at the previous time step

as in Eq.@2.117).
EnT Zwt =1 @.117)

and the weight update is,

W — p(Xo:x|yo:t) (2.118)
' q(X0.xyo:t) .
p(yelxn )p(tht1+1:Nt+ |X./\/ttl)p(XO:Ntt1 N |YO:t71)7T<X/\/t++1:K‘X0:Nt+)
p(yelYo:t- 1)Q(X/\/t+_l+1;/vt+ |th+_1 g Yo:t)Q(Xo:Nttl N |y0:t)7T(XNt++1:K|XO:Nt+)
(2.119)

p(yt |Xj\/t >p(x./\/—t+_1Jrl:./\/'t7L |Xj\/ttl)p<X0:/\/'t+_1 ) '/V;ftl ‘yO:t—l)
x + (2.120)
q<XMtl+1:M+ |X,/\/;;t1 ) yO!t)Q(XO:,/\/'ttl ) ./\/;71 |y0:t>

PO )Pt s v ) i (2.121)
q(X/\/{El—H:Nj |X/\/ttla Yoit) Vi1

According to weight update rule in (2.121)) particles are extended to a fix horizon K

by first sampling from proposal distribution,

A(Xpt w1 Xae s Yoi) (2.122)

that generates randomly a new complete neighborhood of state points Xt and
then complete the fixed horizon state space by drawing a sample form extension

distribution,

Q(XM++1:K|XO:M+) = W(X,Aft++1:K|XO:./\/t+)' (2.123)
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However in practice one won’t need to extend the state variables to the fixed horizon K

since marginalization of a sampled joint random variable is utilized just by discarding

the components which are not of interest. Further, weight update can be simplified by

choosing the proposal distribution as prior. Similar to standard particle filter choosing

proposal as in Eq.([2.124),

90N o X Vo) = PO o e ) (2.124)

results the variable rate of the standard bootstrap filter,

Wg—1

Wy X p(ye|xnr,)- (2.125)

t—1

which approximates the variable rate state distribution as,

Np

(o N Iyou) = D wid(x e = Xpuur)- (2.126)

i=1

2.8.5.3 Variable rate particle filtering algorithm

1. Initialize the VRPF state distribution p(x,) at time ¢ = 0 by drawing N,

samples from pre-defined initial distribution. The collection of samples are
obtained sampling from the transition distribution ... p(x3|x;)p(x1|Xp), until
each particle contains a valid neighborhood x,;. Then initialized samples Xj\/o

are equally weighted,

wi_o = 1/N,, for i=1...N,. (2.127)

. Fort = 1...7T where T is the index to last observation, sample from the

proposal distribution defined in Eq.([2.124) which is generated according to
Eq.(2.128) as,
Koo e ~ P (X e X ) o = 100N, (2.128)

to complete the neighborhood of observation y;, and set state index k <— k+ 1.
Note that generation of particles are needed to complete the neighboring N, at
time ¢ thus no particles will be generated when the neighborhood is already
complete. More precisely a single step, where new state k is generated from

the previous state & — 1 is shown as in Eq[3.6]

X ~ P(Xp|xk—1) = P(Ok|Ok—1, Ties Te—1)P(Th|Ok—1, Thm1)- (2.129)
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In the original work, Godsill et al. (Godsill and Vermaak, 2005) adapted
curvilinear model (CL), in VRPF framework and defined target state vector x;

as follows,

X — [jﬁTJC Tp’k U(Tk) Q/}(Tk) Z(Tk) Tk] (2.130)

where T, Tp, are independent tangential and perpendicular forces applied to
target, v(7y), ¥(7) are the target speed and the course, z(7;) = [z y] is the
position vector constituting position in z and y coordinates, and the last variable
is the arrival time 7, for state k that is statistical conditioned on the previous

arrival time 75,_.

Sampling state vector x; according to conditional distribution Eq.([2.129) is
expressed in Eq.(2.131),

Try ~ N(pe,07), Tpp ~ N(070-12)>

Tk — Tk—1 — Tmin ~~ G(aTa BT), Tmin = 0 (2.131)

where N is Gauss, G is Gamma distribution and 7,,;, is an operator to shift
the gamma distributed sojourn time. 77, and Tp; assumed independently
distributed forces applied to target at state index k. Hyperparameters of these
distributions are chosen to match the characteristics of object being tracked.
The rest of required variables which are, position z(7y), speed v(7x), and
course (1) can be determined from the previous state variable x;_; with a

deterministic function defined by curvilinear motion equations.

. Update the weights associated with sample points {wj,x},} " that

approximates the filtering distribution,
p(xnn NiF[you)- (2.132)

Note that Eq.(2.132)) is the marginalized version of the filtering distribution
Eq.@.I13). In Variable Rate particle filtering framework weights w}, for each
particle (i = 1...NN,) are updated according to defined weight update equation
expressed in Eq.(2.133) as,

p(yelxn; )p(XNttIH;Nj \XNj_l)

VYRRV SV (1))

(2.133)

i i
wy o< wy_4
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Similar to standard particle filtering methods, simplest strategy to define the
proposal distribution ¢ is to use the prior distribution defined in Eq.(2.134),
p(XNtt1+1:Nt+|Xj\/tt1) (2.134)

as the proposal density. This results in a simple weight update equation in the

form of Eq.(2.125) as
wy oc wi_p(yelxn;) (2.135)

where we just have to evaluate the likelihood p(y;|x;) to update the particle
weights w;. To express the likelihood in an analytic form, it can be redefined

acorrding to Eq.(2.109) as follows,

p(yexn;) = p(y:l6:) (2.136)

using interpolated continuous time state process 6, at time ¢ which is a
deterministic function of x; where 0; = f,(x,,). The function f;() is defined
by the curvilinear motion equations, obtaining the continuous process at time ¢
from the marked point processes x; = (6x, 7). Resultantly the state vector ét
constitutes the interpolated variables of x A required to evaluate the likelihood
function p(yt\ét). In tracking applications it is suitable to choose 6; as the
interpolated position vector y(¢). New weights for each particle (i = 1...1N,,)

are updated according to the update function
wy o< wi_yp(yel6), (2.137)

and weights are renormalized such that,
NP
> wp=1. (2.138)
i=1

. Following the weight update procedure, calculate the estimate of effective

sample size ]Ve? # (Liu and Chen, [1998) as in Eq.(2.139).

(2.139)

It ]V; ¢ 1s below a pre-specified threshold than resample the approximate filtering

distribution,

i i N
{XNt’ wt}z‘:l X p(XNt7M+|y0:t) (2.140)

45



with a certain resampling scheme to form the replicated samples,

) N ) AN
{Xgnpowi}  — Resample {{XS:M+,w;} } (2.141)

1= i=1

else return to step 2 to evaluate the next observation.
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3. MULTIPLE MODEL TARGET TRACKING WITH VARIABLE RATE
PARTICLE FILTERS

Maneuvering target tracking has taken much attention in the past decade with the
development of numerous numerical techniques. Multiple model (MM) approaches
which characterize target motion dynamics with a set of models, have been the most
widely used techniques in the field (Blom et al., [1998; IMcGinnity and Irwin, 2000;
Doucet et all, 2001b). In MM modeling, a target state posterior at time ¢ can be
represented as the weighted sum of several parallel filter outputs, each representing
a different target mode. However, the number of filters required to obtain the optimal
solution increases exponentially as time evolves, hence it is common to use a MM
structure therefore provides a suboptimal solution (Blom et all, [1998).

Kalman filter based interacting multiple model (IMM) is one of the commonly used
suboptimal solution to the maneuvering target tracking problem (Blom et al., [1998;
Kirubarajan et all, 2001)). IMM approximates the weighted output of each filter with
a single Gaussian distribution thus fixes the number of required filters. However due
to the nature of the maneuvering target tracking problem, it is desirable to represent
the state posterior with multi modal complex density function which reduce the
effectiveness of the suboptimal solutions such as IMM. Therefore, an extension of
the particle filters to the multiple model estimation problem has been proposed and
is referred as multiple model particle filter (MM-PF) (McGinnity and Irwin, 2000).
Since the particle filter solution is not restricted to a particular distribution, the MM-
PF allows approximating to the non-linear posterior distribution of the multiple model
state space and improve the tracking performance when compared to Kalman filter
based IMM filters (Arulampalam et alJ, 2004).

Conventional tracking models, including the particle filter and Kalman filter based
approaches, define a discrete time state space model where the state sampling rate
is determined by the rate at which the measurements arrive, thus known as fixed

rate models. In fixed rate models, the timing of the state variables (state arrival
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time) is deterministically defined by the observation time and the time between two
consecutive states (sojourn time) is fixed. The multiple model structure defined for
fixed rate models denote the target motion mode by a time indexed latent variable
and under the assumption that a transition may occur at each observation time,
mode variables are represented as a first order Markov chain. However it is known
that a manned target often executes straight motion followed by a short duration of
sharp maneuver. Therefore, unlike the fixed rate standard tracking models, recently
introduced variable rate particle filters (VRPF) model the state arrival times as a
Markov random process that enables the time between consecutive target states to
be a random variable. In contrast to the fixed rate modeling of the conventional
methods, the VRPF tracks a maneuvering object with a small number of states by
imposing a probability distribution on the state arrival times. In literature, variable
rate models have been considered as a more effective technique in maneuvering target
tracking problems even when compared to well known particle filter based IMM
models (Godsill and Vermaak, 2005; |Godsill et al.,[2007).

The variable rate structure proposed by |Godsill and Vermaak (2005) utilizes
curvilinear motion dynamics that enable tracking a wide range of motion
characteristics (Liand Jilkov, 2003). However, similar to the conventional models,
depending on its parameterization, the VRPF with its single mode structure suffers
from the poor estimate of the target trajectory and the state arrival times. In order
to overcome this drawback, we introduce a multiple model variable rate particle
filtering (MM-VRPF) scheme that integrates the multiple model structure with the
variable rate filtering. Independent of the observation time, the MM-VRPF allows
switching between candidate sojourn and motion parameter sets thus can precisely
model the maneuver parameters as well as the state arrival times. The introduction of
different sojourn modes enables a parsimonious representation for smooth regions of
the trajectory while it adaptively locates frequent state points at high maneuver regions,
resulting in a much more accurate tracking.

On the other hand, it is possible to construct an autonomous target tracking model
where the number of modes and mode parameters are estimated under the Bayesian
framework. In the literature the Dirichlet Process Mixtures (DPM) model has

been used as a key building block particularly in modeling linear dynamic systems
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with unknown model structure (Caron et all, 2008; Teh et alJ, 2006; [Fox et all, 2007).
Similarly, It is possible to construct a hierarchal Dirichlet process mixture model
that can be considered as a prior for the semi-Markovian structured tracking model
(Teh et al., 2006). However, online inference becomes a complicated task and very
efficient sequential Monte Carlo schemes are required to accomplish the parameter
estimation process for such models (Ulker et all, 2008, 2010bJa). Therefore in this
thesis we particularly focus on multiple model approach that leads to simpler inference
schemes based on conventional particle filters.

In our modeling, we preserve the continuous deterministic process proposed by
Godsill and Vermaak (2005) while adapting the multiple model structure to the
variable rate framework. In order to classify the type of the maneuvering objects, two
sojourn distributions having different driving noise processes are defined by [Maskell
(2004). In our model we are also proposing usage of different sojourn distributions, but
unlike Maskell (2004), our objective is efficiently modeling the parameters and arrival
times of the maneuver rather than the noise.

In order to overcome the degeneracy problem which is a well known drawback of
particle filtering we have also presented a regularization scheme for variable rate
models. In a single target tracking problem, degeneracy is particularly observed if the
unknown parameters are defined in a complex state space or when the parameters of the
model do not fit the actual model, especially under low process noise. Regularization
can be interpreted as sampling from a continuous probability density function instead
of a discrete probability mass space as in the case of a conventional particle filter
resampling mechanism (Musso et all, 2001)). In order to eliminate degeneracy, we
have adapted well known regularized fixed rate particle filtering (R-PF) scheme to
the introduced MM-VRPF structure and named the new filter as regularized multiple
model variable-rate particle filter (RMM-VRPF).

Test results reported for bearings only scenarios demonstrate that the proposed
structure finely locates the target states onto critical maneuver change points thus
improves the VRPF’s trajectory estimation performance. It is shown that regularization
significantly improves the tracking performance when the initial values are specified

as far from the true values thus resulting in degeneracy.

49



This section is organized as follows. In Section 3.1l a summary of variable rate
models is presented. Section[3.2lintroduces the theoretical formulation of the proposed
multiple model variable rate model. Section[3.3]explains the state posterior estimation
of the proposed model and a regularization scheme is described in Section 3.4l The

test results are given in Section

3.1 Variable Rate Tracking

The conventional fixed rate state-space model proposes a state variable x; that
evolves with time index ¢ (Godsill and Vermaak, 2005). Let x; = (7%, 0)) defines
a variable rate state where k£ is a discrete index, 7, denotes the state arrival time
for state k& and 6, denotes the vector of variables that parameterizes the target state.
Variable state sequence follows a Markovian process such that states are independently
generated according to a density function, x; ~ p(xx|x;_1) where 7} is finite and
The > The1, Th—2y - « -

Unlike the fixed rate models, allocation of states in a variable rate model is
asynchronous with the timing of observations. Therefore, tractable solution to
the inference problem can only be obtained if the likelihood function depends
on the local neighborhood of the states. Indeed, under the assumption that an
observation y; is independent of all other data points except the neighborhood states

xn, = {xx; k € Ni(X0.00) }» the likelihood function at time ¢ is defined as,

P(¥ilXo0:00) = P(¥eXN,)- (3.1

Practically, the neighborhood N; comprises the states that are closest to the observation
time ¢. In order to calculate the likelihood function, an interpolated continuous time
state process, 0, , is defined as a deterministic function of XA, as 0, = fi(xn,) where
the function f;() is determined by the selected target motion model. Finally, the
observation density can be rewritten as p(y,|xx;) = p(y:|6;).

The first member of a neighborhood set N, is represented with N;" and the last one is
N,”. For monotonicity assumed that, N;* > A", N;” > N,~,. Under the Markovian

assumptions, the joint density of states and observations can be expressed as in Eq.(3.2)

K T
p(Xo:rc; Yor) = p(Xo) HP(XHXICA) Hp(}’t|XM), K >Ny (3.2)
k=1 t=0
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where the condition X' > ./\f;f ensures the “‘complete” neighborhood for the calculation
of the observation density at the final time index 7". The requirement to determine
neighborhood properly is that, the neighborhood N; will not be modified by addition
of future state points.

Let yo: = (yo,-..,y:) and x,, NF = (x0,.-.,X N;r) denote the observations received
until time instant ¢ and the corresponding target states, respectively. Note that, the
total number of states, /\/'t+, is a random variable in the variable rate model, therefore
the posterior distribution can only be expressed in transdimensional form. At each
time instant ¢, the variable rate optimal filtering distribution can be expressed as a
combination of N,, multi-dimensional Dirac delta functions as shown in Eq.(3.3)),

Np

P(Xg > Ny [you) = Z w%("éwj — Xonit) 3.3)

i=1

where wj is the weight associated to i’th particle x| ..
vt

Approximation to the posterior density given by Eq.(3.3)) is achieved by sampling from

the proposal density ¢(.) and updating the particle weights w;_; according to Eq.(3.4)

whenever a new observation arrives.

p(yt |Xj\/t)p(xj\/’tt1+1:/\/’t+ ‘X'Z/\[ttl)

wh o< w!_ - 3.4)

Q(XMt1+1!M+ |Xj\/tt17 y0:t)
3.2 Multiple Model Variable Rate Model

The conventional variable rate model defines the target motion and state arrival times
with a single motion model. However when a maneuver is undertaken or a straight
motion is in progress, the motion parameters and arrival times always show diversity
due to the nature of maneuvering target tracking problem. Thus it is often not suitable
to estimate the state arrival times and maneuver parameters with a single model. To
overcome the drawbacks of the single motion model, we proposed a multiple model
structured variable rate scheme in which the maneuver parameters and arrival times
are modeled by three different parameter sets. The proposed model combines the
advantage of adaptive motion estimation with variable rate filtering thus is expected
to improve the target tracking performance.

Unlike the conventional variable rate model, the multiple model approach introduces a

new discrete state variable m,, that denotes the mode of the motion dynamics, as shown
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in Eq.(3.3),
X = [Gk,rk,mk], mg € {1,7’} 3.5

where r refers to the total number of modes. In a target tracking scenario it is often
appropriate to specify a set of dynamic modes where each mode is parameterized
to handle different target motion characteristics such as a straight motion or the
maneuvers. Therefore we defined three, » = 3, distinct target motion modes
representing the straight motion and the maneuvers undertaken to each side. In the
expense of computational complexity the number of modes can be increased, however
it is known that increasing the number of modes do not necessarily improve the
algorithm performance in a multiple model structure (Li and Jilkov., 2005).

Proposed structure yields the conditional state distribution expressed in Eq.(3.6),

p(xk|xk—1) = pOk|Or—1, Tk, Th—1, Mp—1, Mg

p(ma|mpg—1)p(Te|Tr1, Me—1). 3.6)

According to the curvilinear motion model it is convenient to define the motion
kinematics vector 6y, by the vector 17y Tpy. v(7x) ¥(7) z(7%)] (Godsill and Vermaak,
2005). The tangential, 77 and perpendicular, T forces applied to target can be

simply modeled with Gauss distributions as given in Eq.(3.7),

Try ~ N(MT,mU:QF,n) 3.7

Tpyr ~ N(O, a;n)

where n = my, my, € {1...r} and the parameters, i, 07,05, are specified to
match the motion characteristics of the object being tracked. Note that the defined
model has the ability to characterize a large set of maneuvers precisely when compared
to a coordinated turn (CT) model driven with a process noise (Li and Jilkov, 2003).
The rest of the state variables, i.e., the position z(7y,), speed v(7; ), and course (7)) are
calculated from the previous state variable x;_; by using motion dynamics equations
given in Section[2.8.1.4]

Manned target often undertakes sharp and short duration turns whereas smooth and
straight motions are maintained for longer periods. Multiple model representation
defines a set of Gamma distributions each parameterized to handle a different motion

character. Thus unlike the single mode conventional variable rate model, the multiple
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model structure allows modeling the sojourn times with 7 different distributions. The
distribution defined on the sojourn time, p(7%|7x_1,my_1), is defined as a Gamma
distribution where the parameters are selected according to the discrete mode variable.
Dependent on the mode variable my,_1, the sojourn times are distributed with a shifted
Gamma distribution as,

Tk — Tk—1 — Tn ™~ G(ana Bn)a (3'8)

where n = my_1, mp_; € {1...r}, is the index to the motion mode, and 7, is the
sojourn time shifting parameter.
Proposed multiple model structure requires the representation of the transition matrix,
more specifically p(my|my_1) shown in Eq.(3.6). Transition matrix represents
the transition from a motion mode to another and the probability of staying at
a particular mode thus it is an important task to define an appropriate transition
matrix. The proposed multiple model structure defines the mode transition probability,
p(my|mg_1), by a time invariant mode transition probability matrix P,
P - Dir
P=1 1 - 3.9)
Pr1 o Drr

where each element, py;, {h,l} € {1,...,r} denotes the transition probability from
mode h to mode /.
In practice, the transition matrix P is intuitively selected according to the maneuver
characteristics of the object being tracked unless it is assumed to be known as a priori.
In our model we determined an appropriate transition matrix considering the properties
of the target motion characteristics.
It is very difficult to determine a suitable transition matrix generalizing all types
of maneuvers. Some techniques to determine the P has been addressed by
Blair and Watson (1992); Bloomer and Gray (2002). However these techniques
assume that target sojourn times are known a priorly. A number of online transition
matrix estimation methods has been proposed by Jilkov and Li (2004).
It is also possible to define a set of transition matrix or randomize it by using a non
informative prior. In this case estimation of the transition matrix can be described as
a parameter estimation problem and can be solved in a particle filter framework in the

expense of model complexity .
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If the target sojourn time 7 of each motion mode are known priorly, diagonal elements
of the transition matrix P can be determined as follows. In a semi-Markov chain where
sojourn time distribution is a Gamma distribution, G(«, (3), the expected sojourn value
is computed as e = .. Consequently, 7, the expected amount of time spent at state

h can be defined as in Eq.(3.10).

7= HGn (3.10)
1 — pun

Since the target sojourn time 7 of each motion mode is known a priori, diagonal
elements of P can be computed by Eq.(3.10). Considering that the summation of each
row should be equal to 1, off-diagonal elements of P can be specified heuristically with
respect to the prior belief on mode transitions. However prior information on sojourn
time is often unavailable in target tracking problems thus this methodology can only
help to determine an appropriate transition matrix intuitively.

Note that the proposed multiple model scheme do not change the constraints that
apply on the neighborhood conditions therefore the likelihood function, as well as
the joint distribution of the states and observations given in Eq.(3.2) is also valid for

the proposed MM-VRPF algorithm.

3.3 Multiple Model Variable Rate State Estimation

In the following we will describe how to generate weighted samples that approximate
to the variable rate model posterior distribution given by Eq.(3.2). Note that the
algorithm given in this section is based on the variable rate particle filtering algorithm
proposed by |Godsill and Vermaak (2005) and valid for both MM-VRPF and VRPF
algorithms.

In the first step all particles are initialized according to a predefined initial distribution.
Next, the propagation step carries the particles forward in time if required. Finally, the
update step calculates the sample weights for each particle that represent the model
posterior distribution. A resampling step is performed if effective sample weights are
below a certain threshold and the algorithm is iterated through step 2 whenever a new
observation arrives. A summary of the algorithm is also described by a pseudo code

given in Algorithm-1.

A. Initialization
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Attime t = 0, N, samples are drawn from a predefined initial state distribution p(xo)
where x, denotes the initial state vector of the target. It is assumed that the initialized

samples x}, 1 = 1... N, are equally weighted.
B. Propagation Step

At time step ¢, whenever a new observation arrives, for ¢ = 1...N,, we generate
N, particles from the proposal distribution, ¢(.), that is chosen as the prior state

distribution,

‘J(X/\/tt1+1:/\/t+ |Xj\[t+_17 Yo:t) =P (X/\/ttﬁl:/\/j |Xj\/t+—1> (3.11)

Note that we just need to generate new particles from the proposal distribution if the
neighborhood N; of an observation y; is not complete. Therefore no particles will be
generated when the neighborhood is already complete. More specifically, assuming
that, k = ./\fttli + 1, the k — 1’th state variable, x% , is propagated forward in time
according to =t ~ p(zg|zi_|) until 7 > t where x;, = [0y, 7, mi] . The target
motion state variable 6, the state arrival time 7;, and the motion mode m,, are sampled

according to the equations defined in Eq.(3.7), Eq.(3.8) and Eq.(3.9) respectively.
C. Updating the Particle Weights

In this step, the particle weights w!, 7 = 1... N, are calculated according to the weight
update equation that can be derived by replacing the selected proposal function in
Eq.@.4). When prior distribution is selected as the proposal, the bootstrap version of

the variable rate particle filtering algorithm can be achieved as given in Eq.(3.12)
wy oc wi_p(yie|xXys)- (3.12)

Finally, the true posterior p(xa;, N; |yo.t), is approximated by the particles and
associated weights, {Xj\/t, w! }Zszl . Following the weight update step, a resampling step
is performed if the effective sample size, N, =1/ SV (wi)?, is below a predefined
threshold value.

In VRPF algorithm, following the resampling, multiple copies of the particles with

identical state arrival times occur. This situation can result in poor estimates of the

state arrival times and reduce the filter performance drastically. Therefore, under the
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variable rate framework, a regeneration step is introduced that augments the latest
arrival time of each particle fixing the past state timings (Godsill and Vermaak, 2005).
However ability of the proposed multiple model scheme in modeling the state arrival
times eliminates the necessity of this regeneration step.

Note that replicated particles with completed neighborhoods undergo the same
weighting procedure for the explained variable rate algorithm. In order to reduce
this redundancy, a modified algorithm is proposed by (Godsill and Vermaak (2005)
and more efficient particle filtering schemes that apply different proposal kernels are
applied by Whiteley et al. (2007). However, for comparison purpose we only applied
the basic variable rate particle filtering algorithm for both VRPF and MM-VRPF in

our work .
Algorithm-1 : The VRPF and MM-VRPF algorithm
1. Initialization

e Sett=0
e For i = 1to N, draw equally weighted samples, =}, ~ p(xp), from the
predefined initial state distribution.

2. Propagation step

[ J Setk:Nttl
e fori =1to N,

— While the neighborhood A} is incomplete

x Set k = k + 1 and draw samples form the proposal distribution,

552 ~ q(Xk|Xk—1,Y¢), until 7, > ¢.

3. Weight update step

e calculate the particle weights according to

p(yt|xj\/t)p<xj\@t1+l:jvt+ ‘Xj\/—tt1>

7 7
Wy X Wy_q ;

Q(XMt1+1!-/\/t+ |Xj\/tt17 y0:t)

e Normalize the weights.
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4. Resampling step

. ; ANy . .
e Resample the particles {Xj\ft,wé}iz”l if effective sample size,

Ness = 1/32% (wf)?, is below a certain threshold.
o sett=t+1

e iterate through step 2

3.4 Regularization

In particle filtering, degeneracy is an essential problem that causes variance of the
particle weights decrease with time and results in a few particles to have non-
zero importance weights. In order to reduce the effects of degeneracy, resampling
is introduced as a solution that eliminates the particles that have small weights
and concentrates on the the particles with large weights (Gordon et all, [1993;
Arulampalam et al., 2002).

However resampling introduces new problems such as sample impoverishment that
arises due to sampling from a discrete posterior distribution rather than a continuous
one. If the problem is not addressed properly, it may lead to collapse of particles
resulting in severe sample impoverishment.

In this section, we propose a regularization scheme for variable rate models in order
to find a potential solution to the described problem. The regularization scheme
guarantees approximation to the continuous filtering distribution with a kernel function
and enables us to generate new samples from the approximated continuous distribution
(Musso et all, 2001). We applied the regularization process for both, single and
multiple model structure, and call the new algorithms as regularized variable rate
particle filter (R-VRPF) and regularized multiple model variable rate particle filter
(RMM-VRPF). Conventional fixed rate models perform the regularization on the
particles approximating the marginal posterior of the latest state variable. However
states are asynchronous in time for the variable rate models, hence we define a time
indexed state variable and perform the regularization process on the defined state
posterior.

In the following we will describe how to perform the regularization step for both

VRPF and MM-VRPF algorithms. Recall that regularized algorithms execute same
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steps with their conventional counterparts, except a regularization step is executed after

resampling.

3.4.1 Regularized variable rate particle filters

Remark that, in variable rate models, states are asynchronous with the observations
time, thus the states are indexed with k whilst ¢ is the time index. Let us define a time

indexed state variable vector r; that is a deterministic function of the neighborhood

X, as expressed in Eq.(3.13),

o= [Tro, T, o(t) 6(2) 2(t) 7] (3.13)

where TT’TN; , TP’TN; are tangential and perpendicular force parameters at
neighborhood N,~, and v(t), ¥ (t), z(t) are velocity, course, position vector at time
t and TN is state arrival time at state ;™. Since we assume neighboring conditions of
the past observations do not change with the arrival of a new observation, the variable
N is not included into the definition of the state vector r;.

In target tracking applications to simplify the algorithm, at each observation time

t only closest variable rate states are assumed as neighboring states according to

Ny = (k,k — 1,71 < t < 71) where k is state index. Therefore r; can be stated

explicitly as in Eq.@3.14),
v = [Try—1 Tpr-1 v(t) ¥(t) z(t) 7] (3.14)

Given the observation vector yy.;, the regularized distribution associated with the state

vector r; is defined as in Eq.(3.13),

NP
p(relyos) = Z wiKb(I' - l"fg) 3.15)
=1
where
1 r
Ky(r) = =K (g) (3.16)

is the rescaled Kernel density K(.).

In Eq.(3.16) b > 0 is the kernel bandwidth, n, is the dimension of the state vector
ry, and wi, i = 1... N, is the normalized particle weights. It is common to chose
the kernel K(.) as a symmetric probability density function. In the special case of

equally weighted samples, w; = 1/N,, i = 1...N,, it is appropriate to choose the
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kernel as Epanechnikov kernel (Silverman, [1986). However due to the simplicity in
generating samples we used Gaussian kernels. Under the assumption that underlying
density is also Gaussian with unit covariance matrix, Eq.(3.17) defines the optimal

kernel bandwidth (Silverman, [1986).
bopt = AN where A = (4/(n, + 2))77 . (3.17)

To cover the case of multimodal distributions, it is convenient to define the kernel
bandwidth as b = b,,;/2 (Musso et all, 2001). To adjust the kernel covariance with
respect to an empirical covariance matrix S; of the state vector r;, we compute the
empirical covariance matrix

S; = Cov [r;r} | (3.18)
where the matrix D; is extracted by decomposing the matrix S; according to
S, = D;DT.
New samples from the regularized distribution given by Eq.(3.15) are obtained as
expressed in Eq.(3.19)

r)' =1, +bDse’, € ~ Ky(r), i=1...N, (3.19)

where ¢’ is a sample of the kernel density estimate Kj(r). Our claim in proposing
a regularized scheme is that samples generated from the regularized distribution
approximate the true posterior in a better way resulting in more accurate estimates.

The regularized samples and associated weights represent the posterior distribution,

{ri7wi}i]\i1 X p<rt|y0:t) (3.20)

Finally the samples that represent the distribution p(xy;|yo.;) can be calculated
deterministically. Since neighboring states x, at time ¢ are deterministic function of
r;, interpolated states can be obtained according to x, = f;(r;), where function f(.)
is specified with the curvilinear motion dynamic model. The interpolated particles Xj\/t

represent the objective posterior distribution given by Eq.(3.21).

i N
{XNt’ wt}izl X p<x./\/t‘y0t) (3.21)
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Algorithm-2 : The regularized VRPF algorithm

1. Apply step 1, 2 and 3 in algorithm-1, respectively. Replace step 4 with the

regularization step given below.

2. Regularization step

° ifNeff < thr

— Calculate the empirical covariance matrix, S;, and decompose, D,
where S; = D;D.
— resample the particles, {ri, wi} ",
—fort=1...N,
* draw a sample from the Gaussian kernel, €’ ~ K;(r)
* 170 = 1! + DDye!

e [terate through step 2 of the Algorithm-1

3.4.2 Regularized multiple model variable rate particle filter

In this section we describe the regularization scheme for multiple model variable rate
models that is a straightforward extension of the R-VRPF described in Section 3.4.1]

Let us define the time indexed multiple model variable rate state vector as,
h, = [TTvTN* Tpyr . v(t) ¥(t) a(t) Ty+ my-]. (3.22)
t t
For simplicity, a more compact representation can be written as,
ht = [I't mj\/;] (3.23)

by using the definition in Eq.(3.13) where r; = [TT’TN_ Tpy, - u(t) ¥(t) 2(t) Tp].
According to the Bayesian rule, the time indexed posterior distribution can be

expressed as in Eq.([3.24),
p(ht‘}’o:t) = p(rt |mj\/; ) YO:t)p(mN; |YO:t) (3.24)

that is often a multimodal mixture density where mixture probabilities are defined
with p(m N |yo.¢) and the mode conditioned posterior is expressed by p(r;|m N Yo:t)-

Note that Kernel bandwidth calculation often assumes unimodal posterior densities
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such as Gaussian pdf that can cause poor bandwidth selection for the mixture posterior
p(h¢|yo.). Therefore, in contrast to R-VRPF that defines the regularized posterior as
p(r¢|yo.), the regularization step in RMM-VRPF is carried out on the mode conditional
posterior p(r;|m N;,y():t). Consequently the regularized distribution conditioned on

mode index in continuous form is given by Eq.(3.23).

NP
il my, You) = Y Wi (6, — 6}). (3.25)
=1

The regularization steps explained in Section [3.4.1] are carried out for each
mode independently where the mode dependent empirical covariance matrix is S},

n € {1...r} and the decomposed matrix is represented with D}.

Algorithm-3 : The regularized MM-VRPF algorithm

1. Apply step 1, 2 and 3 in algorithm-1, respectively. Replace step 4 with the

regularization step given below.

2. Regularization step

o if Neff < thr

—forn=1tor

* calculate the empirical covariance matrix, S}, and decompose, D}

for each motion mode.
— resample the particles, {rt, wi}f\i”l
—fort=1...N,
* draw a sample from the Gaussian kernel, ¢’ ~ K;(r)
* Assignn = mj\/;
* ) =ri + D7

e [terate through step 2 of the Algorithm-1

3.5 Experimental Results

In this section we present experimental results obtained by the proposed MM-VRPF

and compared its tracking performance with the conventional VRPF, MM-PF and
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Figure 3.1: (a) Target and observer trajectories for the scenario-1. Trajectories and
states of a particle generated by (b) the MM-VRPF, and (c) the VRPE.

IMM-EKF for bearings only maneuvering target tracking. We have also evaluated
the improvements achieved in target tracking by integrating a regularization scheme
into single model and multiple model variable rate structures named as regularized
multiple model VRPF (RMM-VRPF) and regularized VRPF (R-VRPF), respectively.
The tracking performances are reported for different scenarios having various turn rates
and sensitivity of the performance to state initialization is also investigated.

Let y, refers to a bearing measurement taken by a passive target tracking sensor at time

instant ¢ and is given by Eq.(3.26).

I — by,
Yy = arctan L lo) 4 (N (3.26)
l2 - l2o
where, z = [I; I5]T refers to the target position vector and v; ~ N(0,07) is the

independently distributed Gaussian sensor noise. [l1, ZQO]T defines the sensor position
which is known by the observer.

Two conventionally used performance metrics defining the instant root mean square
position error (RMSE; ) and time averaged root mean square position error (RMSE) are
used in the evaluation of tracking performance (Arulampalam et all, 2004). Reported

results are obtained by running L. = 100 Monte Carlo simulations for each filter. For
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Figure 3.2: Target and observer trajectories for the scenario-2.

th run, let (I,¢,1,1) and (L4}, 15}) denote the estimated and true positions obtained
at time ¢, respectively. RMSE,; and RMSE values are computed by Eq.([3.27) and

Eq.(3.28), respectively where T is the index to the latest observation.

L
RMSE, = Z;(zlg—zlt)u(zgg—z%y (3.27)
1 L. 4 . 4
RMSE = ﬁz (i = 1H)2 + (Iy) — 1,12 (3.28)
t=1 i=1

We synthesized two bearing-only test scenarios that simulate a maneuvering target for
testing. The first one is illustrated in Figure [3.1(a) which is akin to the one synthesized
by IGodsill and Vermaakl (2005) and the second scenario is shown in Figure In the
first scenario ownship starts moving at the origin of the coordinate plain and travels at
a constant speed of 5 knots for 11 minutes with a course of 140°. Thereafter executes a
maneuver between time intervals (12 — 16) at a constant turn rate 30°/min attaining a
new course of 20°. Ownship maintains this course for 15 minutes and makes a second
maneuver at a constant turn rate of 45°/min to attain a course of 155°. It maintains
this course till the end of the scenario. Target starts moving at the position (5400, 500)

on the coordinate plane and travels at a course of —150° with a constant speed of 4
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knots. It executes a maneuver between minutes (20 — 25) with a constant turn rate of
24° /min to attain a new course of 100°, and maintains the same course for the rest of
observation periods. An observation period is equal to 1 minute and total number of
observations is equal to 40 for the presented scenario.

The second scenario shown in Figure 3.2l considers multiple turns for the target and the
observer to evaluate the long term performance of the algorithms. Observer starting
at the origin travels with a constant speed of 5 knots and executes four consecutive
maneuvers with a rate of 30°/min, —45° /min, 45°/min, and —45°/min within the
time intervals, (12 — 16), (31 — 34), (52 — 55), and (66 — 69). The observation period
is 1 minute where the number of observations is equal to 80 resulting in a 80 minutes
long scenario. Target starts moving at the position (6400, 800m) on the coordinate
plane and travels at a course of —180° with a constant speed of 4 knots and it executes
three maneuvers between the time intervals (20 — 27), (45 — 48), and (60 — 65) with
the rate of 18°/min, —28°/min, and 22°/min consecutively. In both scenarios bearing
measurements are assumed to be perturbed with a zero mean Gaussian noise having a
standard deviation oy = 1.5°.

In order to compare behavior of all methods clearly, two different test cases are
considered. In the first test, performance of the proposed MM-VRPF is compared
to VRPF, MM-PF and IMM-EKF. To evaluate capability of each model in
characterization of the straight and maneuvering target motions, initial conditions are
set to their true values. Therefore, all filters are initialized by a Gaussian distribution
centered on the true mean value and variance, i.e., o, = 100m for the range and
o9 = 1.5° for the bearing. Initial values of heading and velocity are also set to the true
values. To observe the effects of particle size on the tracking performance, simulations
has been carried out for V,, = 2000 and N,, = 8000 particles for both scenarios.

Aim of the second test on bearing only tracking was evaluation of improvement gained
by incorporating a regularization scheme into VRPF and MM-VRPF models, and
evaluation of the tracking performance under erroneous initial conditions. We have
also demonstrated the performance of regularized MM-PF for comparison purposes.
As we have stated before, regularization often improves the performance in case of
degeneracy which is observed when the parameters are not appropriately specified or

the algorithm is badly initiated. Thus we examined the effect of regularization for
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Table 3.1: MM-VRPF and VRPF parameters for the bearing-only scenarios.

MM-VRPF VRPF
mode-1 mode-2,3
W1, 0rn | (0, 100) (0, 100) (0, 100)

1pn,opn | (0,500) | (11000, 3000) | (0, 5000)
O,y Bn (1.5,4) (0.5, 0.35) 0.5, 6.5)
Tn 0) 0.5) 0

erroneous initial data where variations from the true range, course and velocity are
assumed to be Gaussian distributed with standard deviation of 1500m, 10°, and 0.3
m/sn, respectively. Simulations has been carried out for N, = 2000 and NV, = 8000
particles.

Model Parameters for the variable rate models MM-VRPF and VRPF used in tests
are listed in Table MM-PF and IMM-EKEF use nearly constant turn (NCT) model
with 3 possible turn rates where parameters are chosen for each mode as w; = 0,
wy = 0.5, wg = —0.5rad/sn (w € () and state noise covariance matrix is set to
2 x 107°T,. Parameter sets are selected heuristically to make sure that different motion
characteristics can be represented by the same parameter set.

The proposed multiple model variable rate structure defines three modes where the first
mode (n = 1) models the straight target trajectories and the other modes, (n = {2, 3})
are parameterized in order to track the maneuvers performed to each direction. In

our model we have chosen a fixed mode transition probability matrix P as given in

Eq.[3.29).
0.5 0.25 0.25
P=1035 045 0.2 (3.29)
0.35 0.2 0.45

Note that Eq.([3.29) is different than the one shown in Eq.(3.30) which is utilized by
fixed rate models MM-PF and IMM-EKF (Arulampalam et al., 2004).

0.9 0.05 0.05
P=]04 05 0.1 (3.30)
04 01 0.5

We always choose elements of the the matrix P for variable rate models considering
the object motion characteristics such that the model can track maneuvers at different
rates. Roughly estimated values for the transition matrix can be calculated as explained
in Section[3.2] Eq.(3.8) indicates that increasing the value at the diagonal elements of

matrix P also increases expected time spent at a particular motion mode.
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Figure 3.3: RMSE; versus time ¢ for true initials (/V,, = 2000).

In Eq.(3.29) and Eq.(3.30) probabilities of the transitions from maneuvering models
are identical, however in contrast to the fixed rate models, straight motion model
indexed as n = 1 allows switching to either of the adaptive maneuvering models
indexed as n = {2, 3} with higher probabilities.

Figure [3.1l(b) and (c) illustrate the trajectory and state arrival points of a single particle
generated by the VRPF and MM-VRPE, respectively for the Scenario-1. As it is
shown in Figure 3.1[b), the proposed MM-VRPF is capable of locating frequent states
at high maneuvering regions while using a parsimonious state representation for the
smooth regions of the trajectory owing to the sojourn time distribution parameters of
the adaptive models. Note that the continuous representation of the motion dynamics
of a maneuver enables MM-VRPF to locate frequent state points even higher than the
observation period . This yields better characterization of the maneuver parameters
and arrival times independent from the observation time. It can be concluded that the
proposed MM-VRPF, using a more flexible rate estimation procedure, is capable of
estimating the target trajectory precisely.

Figure [3.3] and Figure [3.4] plot the RMSE; versus observation time index ¢ for four
different models: the VRPE, MM-VRPF, MM-PF and IMM-EKF simulated using
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N, = 2000 and N, = 8000 particles, respectively. Results are attained by using
40 observations obtained for the scenario-1 described above. As it is shown in
the figures, the proposed MM-VRPF is able to track the target before and after the
maneuver with lower RMSE, values compared to the other filters for varying size of
particles NV, = 2000 and N, = 8000 while all models are superior to IMM-EKF
utilizing NCT motion model. Experimental results show the capability of MM-VRPF
in characterizing straight as well as maneuvering trajectories with the same set of
parameters.

Fixed rate models such as MM-PF and IMM-EKEF associates each state vector with an
observation received at a particular time ¢. Hence, the total number of states utilized
along the scenario presented in Figure [3.1] is fixed and equal to 40. However, the
number of states that represent the same target trajectory is a random variable for the
variable rate models. The posterior distribution of the number of states, p(N;" |yo.¢), at
time ¢ = 40 is illustrated in Figure It is clear that the distribution of the number
of states for MM-VRPF and VRPF are comparable. This result also shows that MM-
VRPF can reach to a better posterior estimate even by using less than a half of the
number of states used by the fixed rate models.

In order to observe the long term behavior of the algorithms, we evaluated the tracking
performance in the second scenario. Given the true initial conditions, RMSE, error of
each model versus observation index is plotted in Figure[3.6land Figure 3.7 for varying
particle sizes of IV, = 2000 and N, = 8000, respectively. Due to low performance
results obtained by IMM-EKF, we just reported RMSE values for the scenario-2. It
is clear that MM-VRPF outperforms VRPF and MM-PF throughout the scenario for
both particle size setting. This shows that compared to VRPF and MM-PF, MM-VRPF
can better track a target maneuvering at different turn rates. Similarly, the RMSE
values reported in Table [3.3] show that MM-VRPF achieves lower RMSE values when
compared to other filters for each particle size.

Table 3.2: RMSE for varying particle size obtained by using true initials for the
Scenario-1.

MM-VRPF | VRPF | MM-PF | IMM-EKF
N, = 2000 148.9 236.56 | 203.5 367.44
N, = 8000 113.82 234.34 | 180.29 367.44
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We also compared the regularized algorithms RMM-VRPF, R-VRPF and RMM-PF
with MM-VRPE, VRPF and MM-PF. The results are reported in means of RMSE,
and RMSE values for both of the scenarios for varying particle sizes of IV, = 2000
and N, = 8000. We evaluated this test under erroneous initial conditions to show
the effects of the initial value selection to the tracking performance in a bearing only
scenario. Erroneous initial conditions tend the algorithms to suffer from the degeneracy
and regularization process often improves the performance when degeneracy is the
case.

RMSE; error values achieved for erroneous initials for the scenario-1 are plotted in
Figure 3.8 and Figure [3.9]for particle size of N, = 2000 and N,, = 8000, respectively.
Table [3.4] also reports overall RMSE error. Note that in the case erroneous initials
are defined, we calculated the RMSE values starting at time ¢ = 17 to ensure
that the observability condition is valid for the presented scenarios (Song, 1996).
For N, = 2000 and N, = 8000, RMM-VRPF and R-VRPF take the advantage
of regularization and outperforms their non-regularized counterparts however no
improvement could be achieved by the RMM-PF. We concluded that regularization
can significantly improve the filtering performance of variable rate models for the
Scenario-1 when initials are selected erroneously. In this test, MM-VRPF can not
outperform MM-PF, the RMM-VRPF shows comparable performance to MM-PF
and its regularized counterpart. We believe that MM-PF takes advantage of using
noisy NCT dynamic model particularly when erroneous initials are defined whereas
VRPF utilizing a parametric curvilinear motion relatively lacks of modeling large
disturbances.

In Figure and Figure the RMSE; error values versus observation index are
plotted for the Scenario-2 at IV, = 2000 and N, = 8000, respectively and the RMSE
values are reported in Table using erroneous initial conditions. For N, = 2000
regularization improves the performance of both of the variable rate models slightly

Table 3.3: RMSE for varying particle size obtained by using true initials for the
Scenario-2.

MM-VRPF | VRPF | MM-PF
N, = 2000 297.36 625.74 | 422.85
N, = 8000 274.74 588.60 | 388.93
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Table 3.4: RMSE for varying particle size obtained by using erroneous initials for the

Scenario-1.
MM-VRPF | RMM-VRPF | VRPF | R-VRPF | MM-PF | RMM-PF
N, = 2000 442.89 360.42 613.20 | 484.22 368.70 361.68
N, = 8000 368.90 297.27 459.27 | 411.65 295.65 284.07

Table 3.5: RMSE for varying particle size obtained by using erroneous initials for the

Scenario-2.
MM-VRPF | RMM-VRPF | VRPF | R-VRPF | MM-PF | RMM-PF
N, = 2000 523.62 493.53 618.15 | 602.46 | 526.40 | 549.80
N, = 8000 427.52 429.15 622.60 | 606.34 | 505.02 525.16
but no improvement is achieved when the particle size is N, = 8000. However

performance improvement for MM-PF could not be obtained by regularization in either
particle size. When we examine the overall performance at particle size N, = 2000
we see the RMM-VRPF and MM-VRPF are superior to VRPF and R-VRPF whereas
their performance is comparable to MM-PF and RMM-PF. Advantage of MM-VRPF
outcomes when we use N, = 8000 particles as seen in Figure 3.11] and Table
In Figure 3.11] MM-VRPF and RMM-VRPF outperforms VRPF, MM-PF and their
regularized counterparts particularly after the execution of first target maneuver within
the time interval (20-27). It can be concluded that MM-PF performs even better than
MM-VRPF until the execution of first maneuver of the target, however in the remaining
part of the scenario MM-VRPF is the best performing filter particularly when the
particle size is N, = 8000.

As a summary, we concluded that MM-VRPF and its regularized counterpart achieve
lower estimation error compared to the VRPF and IMM-EKF algorithms in various
test conditions. Moreover, MM-VRPF outperforms the MM-PF if the algorithm is
not poorly initiated. However, under poor initial conditions, MM-VRPF can achieve
comparable performance to the MM-PF only if the particle size is increased above
N, = 8000. We also showed that the regularization improves tracking performance of
variable rate models by diversifying the particles particularly when the non regularized

filters suffer from degeneracy.
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4. SEQUENTIAL MONTE CARLO SAMPLERS FOR DIRICHLET PROCESS
MIXTURE MODELS

Exact inference for the DPM model posterior is unfortunately intractable. Therefore
approximate methods are highly desirable for solution of the high dimensional
DPM posterior distribution. The best well known approximate inference techniques
proposed in literature rely on variational (Bleiand Jordan, 2004, 2006) and
Monte Carlo Markov Chain (MCMC) based methods (Escobar and West, [1992;
S. Walker and Smith, [1999; MacEachern et al., [1999; [Neal, 2000). Though, majority
of these methods perform batch algorithms that apply the inference on the entire
dataset (Blei and Jordan, 2004; [Neal, 2000), sequential methods that cluster each
new observation upon its arrival have also been proposed (MacEachern et all, [1999;
Quintana, 11996 [Fearnhead, 2004).

Intuitively, a DPM model is a probability density over disjoint partitions of the
observations. Once a partition is chosen, the parameters of each cluster can be
estimated often very easily. Even better, if the prior density of the parameters is
selected to be conjugate to the observation model, one can integrate out the parameters
analytically and represent the target posterior as a discrete distribution on a collection
of cluster indicators. In this case the Bayesian inference problem based on Monte Carlo
methods deals with sampling from a high dimensional discrete distribution defined on
all possible clusterings of the data.

By construction, the DPM model is exchangable and the ordering of data does not
matter but for inference it is nevertheless beneficial to process data sequentially in
some natural order. Such an approach gives computational advantages especially for
large datasets. In the literature a number of online inference techniques have been
proposed to estimate an artificially time evolving DPM posterior (Quintana, [1996;
MacEachern et all, [1999; Fearnhead, [2004).

However it is also shown that sequential filtering is not an appropriate method

for especially large data sets due to the accumulated Monte Carlo error over time
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(Quintana and Newton, [1998). This problem arises from the sampling procedure of
the particle filtering algorithm in which the discarded particles are never reconsidered
thus previous label assignments can never be updated according to the information
provided by the latest observations.

In order to overcome this drawback, we propose an efficient sequential Monte Carlo
sampler that estimates the sequentially evolving DPM model posterior. Unlike the
existing methods proposed by Quintana (1996); [Fearnhead (2004) our algorithm
enables us to update past trajectories of the particles in the light of recent observations.
Our method takes advantage of the SMC sampler framework to design such
update schemes (Del Moral et all, 2006). The proposed algorithm is evaluated on a
single dimensional Gaussian mixture density estimation problems and performance

improvement over conventional models are shown.

4.1 Revisiting the DPM Model and SCM samplers

Let us denote the observation sequence at time n by ¥, = {Yn1...Ynn}. Each
observation y,,;, ¢ = 1,...n, is assigned to a cluster where z,; € {1,...k,} is the
cluster label and, k,, € {1...n} represent the number of clusters at time n. The
vector of cluster variables is defined as z, = {z,1 ... 2, } and corresponding cluster
parameters are represented with the parameter vector 6,, = {60,,1 ... 0, }

The DPM model assumes that the cluster parameters are independently drawn from
the prior 7(#) and the observations are independent of each other conditional on the
assignment variable z, ;. Hence the DPM posterior density 7, (z,,) can be expressed
as,

kn n

Tn(Tn) < p(2n) Hp(en,j) H g(?/n,iwmzm) 4.1)

j=1 i=1
where x,, = {z,,0,}. The prior on clustering variable vector z, is formulated by

Eq.@.2) in a recursive way,

l; .
| L1k
. e . — itk
p(Zn,H—l ]|Zn,{1.2}) { K ] — k:i +1

i+K7

4.2)

where k; is the number of clusters in the assignment z, {1.;. [; is the number of

observations that z, {1.;3 assigns to cluster j and x is a 'novelty’ parameter.
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In our work, we assume that a conjugate prior is chosen such that given z,, the
parameter 6, can be integrated out and the DPM posterior distribution can be calculated

up to a normalizing constant.

4.1.1 A generic SMC sampler

The SMC sampler samples from a sequence of target densities evolving with a
countable index n, 7 (z1)...m,(x,), each defined on a common measurable space
(E,, E,) where x,, € E,,. The generic SMC algorithm sampling from the sequentially
evolving target posterior 7, is presented as follows:

Assume that a set of weighted particles {W,_;, X 1i:n—1}£\fl approximate 7,_, at time
n — 1. At time n the path of each particle can be extended using a Markov kernel,
K,(z,_1,%,). The unnormalized importance weights associated with the extended

particles are calculated according to Eq.(4.3),

wn(xlzn) = wn—l(xlzn—l)vn(xn—la xn) (4'3)
_ /in(xl:n)
nn(xlzn)

where the incremental term of weight equation, v,,(z,_1, x,), is equal to

’yn<xn)Ln71 (.Tn, SCn,1)
anl(xnfl)Kn(xnfh xn) .

4.4)

Un(xn—la xn) =

The discrepancy between 7,, and 7, tends to grow with n, consequently the variance
of the unnormalized importance weights increases. A resampling step is used if the
variance is above a certain level as measured by, e.g, effective sample size (ESS).

Design of efficient sampling schemata hinges on properly choosing L,, with respect
to K. The introduction of the L,, extends the integration domain from F to E™ and
eliminates the necessity of calculating 7, (z,). However increasing the integration
domain also increases the variance of the importance weights. [Del Moral et al. (2006)
showed that the optimal backward Markov kernel L;”, (k = 2, ..., n) minimizing the

variance of the unnormalized importance weight w,,(x1.,,) is given for any & by,

_1(@p—1) K (-
L () = 21 o1, 7 45)

Nk ()

However, the kernel given by Eq.(d.5) usually does not admit a closed form solution.

Therefore common strategy is to approximate the optimal kernel as close as possible
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to provide asymptotically consistent estimates (Del Moral et al., 2006) . A sensible
approximation at a given time step n can be obtained by substituting 7,,_; for 7,_1,
where the approximate kernel L,,_; can be expressed as in Eq.(d.6),

_ 71-n—l(:L'n—l)[(n(xn—laxn)
f Tn—1 (xnfl)Kn(xnfh xn>dxn71

that can yield a closed form solution to the weight update equation if it is possible

(4.6)

Ln—l (l’n, xn—l)

to calculate the integration. An alternative to approximate backward kernel can be
obtained as in Eq.(4.7) by replacing 7, _1(x,_1) by m,(x,_1) and selecting K,, as a
MCMC kernel targeting 7,, in Eq.(4.6).

T (Tn_1) Kn(Tn_1, )
Tn(20)

Lnfl(xn7 xn71> = (4'7)

Note that, although Eq.(4.6) is a closer approximation to the optimal bakward kernel,

Eq..7) can lead to simpler weight update equations.

4.2 A SMC sampler for the Dirichlet Process Mixtures

In this section we will explain the proposed SMC based algorithm that generates
weighted samples from the DPM model posterior described in Section
Now, assuming conjugacy, we devise an algorithm that approximates the posterior

distribution,

Np
P(zn|yn) = Z WédZ};(zn) (4.8)
i=1

with a set of weighted samples {W? Z! ?21 where each particle Z’ encodes an

assignment vector of all datapoints upto time n, formally represented with a Dirac
delta function d; (zy).

Let us define a forward kernel, K,, generating samples from the sequence of
distributions built according to Eq.(d.1). We first partition an assignment vector
Z2n = {Znr, Znds Znn} Where r is a subset of {1,...,n — 1}, a set of not necessarily
consecutive indicies, and d = {1,...,n — 1} — r. Note that throughout the text
we will call the set z,, as the active block. We define u = r U {n}, and denote
—u = d. Exploiting the conjugacy property, we propose using the following

conditional distribution for K, as given in Eq.(4.9).

Kn(zn—la Zn) :5271,1’7“ (Zn,—u) Tn (Zn,u|2n,—u) (4°9)
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This kernel allows us updating z,, which includes the current and some past
assignments without changing the rest z,, _,,.

By replacing K, in Eq.(d.6) we obtain the straight derivation to the approximate kernel,

Ln—l(zna Zn—l) =0 (Zn—l,—u) (4'10)

Zn,—u

X Tp—1 (Zn—l,r|zn—1,—7") .

Given our choices of the forward and backward kernels, now we are able to write the
expression for the incremental weight function given in Eq.(4.4) as follows,

’Vn(zn,*w

_ 4.11
’yn71<znfl,fr) ( )

Un(znflu zn) =

The proposed scheme can also be seen as a generalization of a conventional particle
filtering weight update scheme. The particle filter simply uses the forward kernel
K, (2n-1,2n) = 02, 1 (#n,—n)Tn(2nn|%n,—n). In this case only the clustering variable
Znn 18 updated upon arrival of the new observation that yields the weighting function

given in Eq.(4.12).

’Yn(zn,—n)

4.12
’Yn—l(zn—l) ( )

Ugf(znflu zn) =

The sequential imputation scheme given by [Liu (1996) and many particle filtering
based methods proposed by IQuintana and Newton (1998); |Chen and Liu (2000) use
the simplified incremental weight update function given by Eq.(4.12). Note that such a
kernel selection strategy is not capable of updating the active set z,, , according to the
new observations, therefore can yield to poor estimation performance.

In order to render our sampling approach more efficient by making more global
moves we wish to change a block of variables, i.e., choose the cardinality of the
index set r as large as possible. However, when the cardinality of r increases, the
time required for the exact computation of the incremental weight in Eq.(d.11) grows
exponentially. In the sequel, we will define MCMC and approximate Gibbs type moves
where the associated weight update equations can be computed efficiently. This leads
to low complexity algorithms for sampling from the time evolving DPM posterior

distribution.
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4.2.1 MCMC Kkernels

We first define the forward kernel as

K, (#n-1,2n) = 5Zn—l,—u (%n,—u)

X Kn(ZnJu zn,r|znfl> (4'13)

where K, (2nn, Znr|2n—1) is a valid MCMC kernel applying a single Gibbs step
targeting the full conditional distribution 7, (2, 5, Znr|2n ). Intuitively, this kernel
updates the active block using a Gibbs sampler and constructs the proposal distribution
using the sequence of full conditional distributions.

A corresponding backward kernel can be obtained by substituting K, (z,_1, z,) into

the Eq.(4.7). This yields in the following incremental weight update equation,

’Yn(zn—l ry Zn —u)
VI (201, 2n) = : -,
" ( nb n) ’Yn—l(zn—l)

(4.14)

Note that as a consequence of the chosen backward kernel, Eq.(.14) is independent
from the initialization of the Gibbs moves. If the active block set is selected as
r = {1...n— 1}, the update equation in Eq.(.13), will be equal to the one introduced
by MacEachern et all (1999) as S4 algorithm.

The above schema depends exclusively on local Gibbs moves. As is the case in the
application of the Gibbs sampler, we may expect to get stuck in local modes due to slow
mixing especially when the posterior distribution is multi modal. In such situations,
annealing is a general strategy to pass through low probability barriers. However, as
one modifies the target density gradually, finding the correct schedule is crucial. On
the other hand, in the SMC framework we don’t have to choose a schedule explicitly.
We are free to choose any forward kernel, provided we compute the corresponding
incremental weight. Here, we propose a forward kernel which targets the modified full
conditional distribution, 7, (2, n, 2n.r| 2n,—u, Pn). Note that bridging is achieved simply
by changing the novelty parameter of the underlying Dirichlet process to p,,. The SMC
theory guarantees that we still target the original target density.

A valid backward kernel can be obtained by replacing 7, with the modified version

of the target distribution 7, (.|p,) in Eq.(.7) and the resulting weight update equation
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can be represented as follows,

Yn(2n)
Yn—1 (zn71>
71-n(zn—l,r|Zn—1,—ra pn)

ﬂn(zn,u | Zn,—ua pn)

(4.15)

'Uam(znflu zn) =

While we are able to escape low probability barriers, the modified full conditional
distribution introduces a further approximation. Thus, we advise still choosing the p,,
converging to the true x with the increasing time index n. Note that this is merely
a choice, not a requirement in contrast to a tempered Gibbs sampler, where the final

density must coincide with the true target.

4.2.2 Sequential approximation

As we rely on a blocked Gibbs sampler, we are constrained by low dimensional blocks.
The key idea in this method is to approximate sequentially to the exact full conditional
distributions given by Eq.(4.9) and Eq.(@.10). As in the previous section, we are free
to choose any approximation to the full conditionals as these are merely used as our
proposal density. Asymptotically, the SMC sampler ensures convergence to true target
posterior even approximations to these full conditional distributions are defined. Note
that the approximations, should be selected as close as possible to the full conditionals
to obtain an efficient sampler.

We assume that there are () clustering variables in the active block and we further

enumerate them

Znr = {znm1 - Z”J‘Q} (4.16)

where 7, denotes the ¢’th index of the block at time n with ¢ = 1...Q . In the
sequel, we will design an approximation that enables us to design kernels where the
computational load increases linearly with (). Hence, we can chose an active block
with size () quite large in practice.

We propose the following approximation to the forward kernel K,

Kn(zn—la Zn) :5zn717,u (Zn,—u) 7c(-n (Zn,u|zn,—u) (4'17)
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where

7Arn(zn,u‘Zn,fu) = 7Tn<zn,n‘zn,r7 Zn,—u» pn> (4-18)
Q
X H anl,fr{iJrl:Q} (zn,ri zn,fua Zn,r{lji,l} ; pn)

i=1
We assume 7y is empty for ¢ > g The rationale beyond this
choice is as follows: we drop all the observations corresponding to the
active block, including the last observation and incorporate them one
by one in a new (possibly random) order. Recall that in Eq.[d.I8),
Tot v (120 00) = D12 Wi} — Wntms 1)) denotes
the modified full conditional distribution given the all observations excluding the
ones indexed by 7(;11.q). Note that approximations of this form are quite common in
approximate inference for state space models, where ¢ corresponds to a time index;
we merely omit the effect of the *future’ observations.

The formulation given by Eq.(4.18) enables us to recursively calculate and sample the
overall kernel density function 7,, (2, .| 2,,—.) efficiently with a reasonable complexity
even for large values of (). Note that the scheme introduced in Eq.(4.18) processes the
observations sequentially in the indexed order {r; ...r,} and finally extends the space
using the proposal function 7, (2|20, Zn,—u, Pn). Clearly, due to exchangability of
the DPM model, there is no need to process the observations in a fixed order. To
diminish the effects of the particular processing order, it is preferred to apply a random
permutation of the indicies in r at each step of the algorithm.

A similar sequential procedure is also required to approximate the backward kernel

given by
Lnfl(znu znfl) :5zn,_u (anl,fu) (4'19)
X 7crn—l (Zn—l,r|2n—1,—r)

where

7c(-n—l(Zn—l,r|2:n—1,—7“) = (4.20)
Q

H Tn—1,—r(i11.) (anl,n

i=1

/
znfl,flu znfl,r{lti,l} ) pn) .

According to the resampling scheme given in Section4.2.3| it is convenient to select

ph = pn in order to construct a good approximation to the optimal backward kernel.
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Note that given the same index order 71 . . . r¢, Eq.(.20) will have the same functional
form with the right most hand side of Eq.(4.18) when p!, = p,,.
Finally, using the given approximations for the forward and backward kernels the
weight update equation can be arranged according to Eq.(d.4) as follows,

_n(zn) (4.21)
Yn— 1(2 1)
7Tn 1(Zn 1 r|Zn 1, 7")

7Tn(2mu|2n,—u)

'Usq(znfh Zn) =

In Monte Carlo computations for solving high dimensional complex problems, it is
common practice to resort to a collection of kernels rather than committing to a fixed

choice. One can define a mixture kernel in the context of a SMC algorithm as follows,

Zn 17271 Z a Zn 1 Zn 1 Zn) (4'22)

where m € {1...M} is the mixture label, o denotes the selection probability of
the mixture component at time n, Z%zl a™(zp—1) = 1, and K" (z,_1, z,) denotes
the forward kernel corresponding to the m’th component. In order to circumvent the
computational burden of Eq.([.22), a backward kernel of the form of a mixture is

proposed in (Del Moral et al., 2006).

M
Ln(zna zn71> = Z ng(zn>[/;n<zna znfl) (4-23)
m=1

where )" is the backward mixture component selection probability at time n,

> %:1 B"(z,—1) = 1. Now, this definition enables us to perform importance sampling

on an extended space Y X E x M by the definition of a latent kernel selector variable

M,,, taking values M = {1... M}, m € M. Consequently the weight function for

each mixture component can be expressed as given in Eq.(4.24).
Vn (%)

Yn-1(Zn-1)

an—l(zna “n— 1)5 (Zn)
K (zn-1, 2n)a(2n-1)

Un(Zn_1, 2n, M) = (4.24)

In our work we define three different algorithms labeled as SMC-1, SMC-2 and SMC-
3 each utilizes a different kernel. The SMC-1 algorithm employs the forward kernel
given by Eq.(.13)) and updates the weights according to Eq.(d.14).
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The SMC-2 algorithm uses a mixture kernel in order to admit the Gibbs sampler to
make global moves in the DPM space. When the selection probabilities o and [ are
chosen equal and independent of the z, and z,_; respectively, the mixture weight
update function for m = 1 and m = 2 can be given by Eq.(d.14) and Eq.(.13)
respectively.

In SMC-3 we use the mixtures of the forward kernel given by Eq.(4.13) and Eq.(d.17)
where the sequential construction enables us to define a backward kernel independent
from the modified forward kernel parameter p,. The associated weight update
functions are calculated according to Eq.(d.14) and Eq.(d.21) respectively when

selection probabilities o and /3 are equal and chosen independent of z.

4.2.3 Algorithmic details

As denoted before, in our work, we propose an active block to be updated as each
new observation arrives. In order to limit the computational cost required at each
time step we determine a constant block size () and index the block with 7, ...7¢.
Similar block update strategies have also been proposed by [Doucet et al. (2006) under
the SMC samplers framework. In our scheme the indexes of the active block r; ... 7¢
are incremented by () as each new observation arrives. Whenever the last index value
isrg > nthenwesetr = {1...Q}. Note that according to the sequential construction
defined in Eq.(.18) the approximations will be less accurate for the algorithm SMC-3
with the increasing size ().

In order to prevent particle degeneracy, in a SMC framework it is required to perform
occasional resampling steps when the effective sample size drops below a predefined
threshold. Intuitively, this step selects the high weighted particles and discards the
low weighted ones. However, discarding the low weighted particles prematurely
may prevent an algorithm to explore promising modes of the time evolving posterior
distribution. It is quite common in practice, that a mode initially less dominant
becomes more pronounced when a larger fraction of the data is processed. Hence
for the DPM model, we found it crucial to apply the resampling step on the modified
target distribution 7(.|p) instead of the true target posterior 7 in order to prevent the

low weighted particles to be discarded too early.
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We calculate the weights as follows: We first calculate the unnormalized weights for
the modified target distribution 7,,(.|p,,) according to w;, = wy, X Yn(2n|pn)/n(2n)-
Assuming that, {W,;(i)} represents the normalized weights, we apply systematic
resampling if effective sample size, N.jr = 1/ Zﬁ\;”l(W,;(i))z is below a predefined
threshold. Following the resampling, a reweighting step, w, = ¥, (2n)/Vn(2n|pn)s is

being carried out, in order to find the weights approximating to the true target posterior.

4.3 Experimental Results

Our goal in this section is to illustrate the effectiveness of the SMC samplers
framework for online inference in DPM models. For this purpose, we compare
performance of SMC samplers each detailed in Section4.2.2] namely; SMC-1, SMC-
2, SMC-3, Particle filter (PF) (MacEachern et al., [1999; |[Fearnhead, 2004) and a batch
algorithm, Gibbs sampler (GS) (MacEachern, 1994). Performance has been reported in
terms of log-marginal likelihoods, mean, variance estimates and respective estimation
variances. Mixture density estimates are also provided for visual comparison.

The problem is the standard Gaussian mixture density estimation problem with
unknown number of components. Our model is standard and assumes that observations
y are drawn from a univariate Gaussian with unknown mean p and variance o2,
0 = {u,o*}, where the number of mixtures are unknown. The distribution of the
parameters £ and o2 are chosen as normal and inverse-gamma, respectively to ensure
the conjugacy condition.

Apart from the resampling threshold and the number of particles, several algorithm
parameters need to be set: The selection probabilities of the forward and the backward
kernels (« and [3), active block size (¢), and the parameter sequence p,,. The selection
probabilities determine the shape of the forward and backward kernels therefore an
appropriate choice is crucial. Selection probabilities of the forward and backward
kernel are set to o™ = {0.9,0.1} and ™ = {0.9, 0.1} respectively. Note that m = 2
corresponds to the modified kernel component and we practically observed that a small
weight is often enough to obtain a good mixing property. Increasing the weighting of
the modified kernel often increase the algorithms ability to explore new modes. Even
a single kernel where o™ = {0, 1} can be used for certain dataset where modes are

highly isolated. The parameter sequence p,, is updated according to a geometric update
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Table 4.1: Mixture model parameters.

Mixture weights | Mean | Std. dev.
Data-1 (D-1) 1/3,1/3,1/3 0,1.5,3 | 0.5,0.5,0.5
Data-2 (D-2) 1/2,1/6,1/3 0,2,4 |0.5,0.5,2.5

(b)
Figure 4.1: Estimated mixture densities by the (a) SMC-1 and (b) SMC-3 algorithm
for 50 Monte Carlo runs.

function where the common parameter is set to 1/150 and the initial value is set to
p1 = 1 (Neal, 2001)). The active block size ¢ is set to 4. This choice seems to balance
well computational burden with inference quality.

To alleviate the degeneracy, we applied systematic resampling scheme. The resampling
scheme for SMC-2 and SMC-3 is applied according to Section For a fair
comparison the particle size is selected as N, = 1000 for particle filter, N, = 200
for SMC algorithms and we performed 1000 iterations by Gibbs sampler where the
first 300 were used for the burn-in period. All the results are reported for 100
independent Monte Carlo runs. We selected two test sets (D-1 and D-2) generated
from a Gaussian mixture model. Each data set has 1000 points, and the results are
reported sequentially for 200, 500 and 1000 observations. Both datasets are generated
from a model comprising of three mixture components with parameters given in Table
4.1l In order to evaluate the performance of the proposed kernels we performed two
tests that aim to assess the mixing property (ability to escape local modes) as well as
the consistency and quality of the estimate (bias and low variance).

Sampling based inference schemes get stuck in local modes of the posterior
distribution, particularly when the novelty parameter is chosen too small for the
given problem. In order to compare the mixing property of the proposed algorithms

we set the novelty parameter to a very low value of x = 0.05 and compare the
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mixture densities estimated by SMC-1 and SMC-3 algorithms, respectively. We
performed the test by generating a total of 1000 observations from the model D-1
which comprise three overlapping mixture components. As a gold standard reference
we performed a very long Gibbs sampler run and observed that the estimated number
of components is 2.16, 3.09 and 3.11 for 200, 500 and 1000 observations consecutively.
Figure 4.1l (a) and (b), respectively illustrate the estimated mixture densities obtained
by SMC-1 and SMC-3 for 50 Monte Carlo runs. It is clear that SMC-3 can represent
all tree components of the mixture density for all runs. However, in nearly half of
the runs, the SMC-1 estimates 2 mixture components because it gets stuck to a local
mode. The mean estimates of log-marginal likelihood and the number of components
are given in Table 4.2] for SMC-1, SMC-2, SMC-3, PF and GS. The results show that
the mean estimate of the SMC-2 and SMC-3 are very close to the long run estimate
of the Gibbs sampler, however SMC-1, PF and GS underestimate the mean value even
when the observation size is 1000 and GS requires a longer burn-in period in order
to converge to the true posterior distribution. SMC-2 and SMC-3 are also superior in
means of marginal log-likelihoods.

In order to measure the consistency of the proposed algorithms, the performance of the
algorithms for different parameter settings are reported in Table for D-1 and D-2,
respectively. The novelty parameter is set to x = 0.5 which avoids the algorithms to
stuck at a local solution. The mean estimate for the long Gibbs sampler run is 3.73
for D-1 and 4.63 for D-2 at n = 1000. As it is shown in Table @4.3] PF, GS and SMC
algorithms provide very close mean estimates to the long run Gibbs sampler for D-1.
Estimation variance of the mean estimate for particle filter gradually increases with the

Table 4.2: Estimated average Log-marginal likelihoods, mean values and respective
estimation variances (in parenthesis) for SMC-1, SMC-2, SMC-3, PF and

GS.
Dataset-1 (D-1), x = 0.05
Estimated Mean

Algo. Log-marg. 200 500 1000
SMC-1 | -723.4 (102.8) | 2.11 (0.014) | 2.51 (0.233) | 2.67 (0.243)
SMC-2 | -711.2(4.41) | 2.15(0.006) | 3.10(0.025) | 3.10 (0.020)
SMC-3 | -711.1(3.22) | 2.15(0.007) | 3.09 (0.011) | 3.09 (0.010)

PF -727.6 (52.9) | 2.10(0.015) | 2.35(0.181) | 2.49 (0.249)

GS 2.69 (0.239)
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Table 4.3: Estimated average Log-marginal likelihoods, mean values and respective
estimation variances (in parenthesis) for SMC-1, SMC-2, SMC-3, PF and

GS.
Dataset-1 (D-1), kK = 0.5
Estimated mean
Algo. | Log-marg. 200 500 1000
SMC-1| -708.9 (1.54) |2.99 (0.038) | 3.61 (0.061) | 3.71 (0.056)
SMC-2 | -708.6 (0.96) | 3.00 (0.025) | 3.61 (0.044) | 3.69 (0.036)
SMC-3 | -708.9 (1.20) |2.96 (0.025) | 3.60 (0.042) | 3.69 (0.038)
PF -712.4 (9.86) |2.98 (0.041) | 3.70 (0.272) | 3.79 (0.293)
GS 3.68 (0.055)
Dataset-2 (D-2), k = 0.5
Estimated mean
Algo. | Log-marg. 200 500 1000
SMC-1 |-1117.3 (0.35) | 4.14 (0.035) | 4.54 (0.068) | 4.65 (0.091)
SMC-2 |-1117.3 (0.31) | 4.14 (0.021) | 4.53 (0.064) | 4.63 (0.129)
SMC-3|-1117.2 (0.29) | 4.13 (0.019) | 4.50 (0.054) | 4.58 (0.086)
PF |-1117.7 (0.98) | 4.14 (0.030) | 4.56 (0.119) | 4.73 (0.281)
GS 4.68 (0.095)

observation size and reaches to a value of 0.293 at n = 1000 whereas all three SMC
samplers achieve approximately 8 times lower estimation variance. It can be concluded
that all SMC algorithms provide a significant performance improvement over PF with
the same computational cost and they are also more reliable. When we compare the
SMC-1, SMC-2 and SMC-3, non of the algorithms outperform the others in means of
estimation variance. The results also show that performance of the SMC algorithms
and GS are comparable for the dataset D-1 when x = 0.5.

A similar performance has also been reported for the dataset D-2. The mean estimate of
PF, GS, SMC and the long run Gibbs sampler are very close. All three SMC algorithms
and GS provide comparable estimation variance for mean estimates while they are
lower for PF. The results obtained for D-1 and D-2 also indicate that, SMC-2 and

SMC-3 achieve reliable estimates at different parameter sets.
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5. ANNEALED SMC SAMPLERS FOR NONPARAMETRIC BAYESIAN
MIXTURE MODELS

In this chapter we aim to further improve the efficiency of the proposed sequential
Monte Carlo sampler in Chapter 4] by utilizing annealing strategies under the SMC
samplers framework (Ulker et al., 2010a, 2011). The key idea of the method is
maintaining an intermediate (annealed) distribution as a surrogate target for the SMC
algorithm where resampling is carried out according to this annealed distribution.
Consequently, we use this surrogate density as a proposal to the true target where
we can calculate the correct weights without any extra computational cost. Intuitively,
we are using the SMC machinery to compute a good proposal density. This strategy
enables us to maintain a diverse particle set that seems to be crucial in obtaining an
efficient sampler.

Due to importance of modeling the multidimensional dependencies in high
dimensional datasets we extended the proposed algorithm to the multidimensional
Bayesian density estimation problem with unknown number of components where the
prior on parameters are conjugate. Conjugate prior on the parameter set is chosen
as Normal-scaled inverse Gamma distribution for the univariate model and Normal-
inverse Wishart prior is utilized for the multivariate case which is the multidimensional
extension of the Normal-scaled inverse Gamma distribution. We applied the proposed
algorithm to the emotion recognition from speech where the DPM model allows to
simultaneously estimate the number of mixture components as well as the parameters
required to represent the emotional class densities.

The proposed algorithm in this section is applied to the emotion recognition from
speech problem that has taken an increasing attention in order to build autonomous
systems particularly for commercial human-machine applications (Ulker and Gunsel,
2011). The model proposed by [Ulker and Gunsel (2011) eliminated the need for
specification of the number of mixture components that represent the data. The real

world speech emotion data is obtained from the EMODB public database and the
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ability of the algorithm to select the model structure that best suits the training data

is illustrated with comparisons.

5.1 SMC Samplers for DPM Models

Let K, denote the forward kernel that will be used to generate samples from the
posterior distribution formulated in Eq.(.1)). We first partition an assignment vector
Zn = {Znr, Znds Znn} Where r is a subset of {1,...,n — 1}, a set of not necessarily
consecutive indices, and d = {1,...,n — 1} — r. Throughout the text we will call the
set 2, as the active block. We define v = r U {n}, and denote —u = d.

Let us define the forward kernel as follows,

Kn(zn—la Zn) = 52,1,1’771 (Zn,—u) Kn(zn,na Zn,r|zn—1) (5°1)

where K,,(zn 5, 2n.r|2n—1) is a valid MCMC kernel applying a single Gibbs iteration
targeting the full conditional distribution 7, (2 5, Zn.r| 20, —u)-
The corresponding backward kernel can be obtained by substituting Eq.(5.1) into

Eq.([2.60) that yields the incremental weight update equation,

Un(zn—la Zn) = ’Yn(zn—l,ra Zn,—u)/’Yn—l(Zn—l) (5°2)

Note that as a consequence of using the MCMC kernel K,,, Eq.(5.2) is independent
from the kernel initialization. When the active block set is selected as r = {1...n—1},
we obtain the update rule Eq.(5.2) introduced by MacEachern et all (1999) as S4
algorithm. Intuitively, the MCMC kernel updates the active block using a Gibbs
sampler and constructs the proposal distribution using the sequence of full conditional
distributions.

In a sequential problem the posterior distribution changes over time and new modes of
the posterior distribution may emerge as new observations are received. The algorithm
must have a good mixing property to explore the modes of the time evolving posterior
distribution and to achieve a good approximation to the true target posterior. However,
conventional sequential and batch algorithms based on the Gibbs sampler may fail to
represent the modes of the true target posterior due to the slow convergence property
of the Gibbs samplers. This is particularly when the posterior distribution has a multi

modal form where the modes are isolated (Neal, 2001)). To deal with this problem, in
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the next subsection we introduce an algorithm that converges to the true DPM posterior

as the new observations are received sequentially.

5.2 Annealed SMC Samplers for DPM Models

The conventional approach presented in Section [5.1] applies Gibbs moves to each
particle in order to obtain weighted samples from a sequence of target distributions
denoted as m(z1),...,m(2,). We propose an annealing scheme to improve the
efficiency of posterior estimation. In the literature annealing schemes have been
widely used to handle isolated modes in batch processing. It is adopted to importance
sampling to construct the proposal distribution suitable to sampling of the true target
distribution (Neal, [2001).

To achieve our goal let us construct an annealed time evolving target posterior as,

m(z1),...m(zn), k = {1...n}, where 7, is the annealed target posterior defined as,
7. (2k) = T (2| Kk = ag). (5.3)

Annealing is achieved by changing the novelty parameter of the underlying Dirichlet
process which is set to a4, in Eq.(5.3). Note that oy is a parameter of the prior
distribution of number of components where a higher value yields higher number
of mixtures. The idea behind constructing a sequence of annealed target posterior
distribution is to obtain a class of intermediate distributions by selecting a oy, value
which is higher than the true model novelty parameter x and provide a well defined
support to the time evolving target posterior. In other words, the annealed distributions
can be interpreted as an underlying DPM model of which the parameters are relaxed
in order to obtain an annealed posterior which is easy to sample.

In order to sample the sequence of annealed target distributions, let us define a forward

kernel as follows,

Kn(znflu Zn) :5zn_1,_u (zn,fu> Kn(zn,nu Zn,r|znfl> (5'4)

where K, (2pn, Znr|#n—1) is an MCMC kernel which targets the conditional

distribution 7/, (2., Zn.r|Zn—u). Using Eq.([2.60), the backward kernel can be written

as in Eq.(5.3),

Ln—l(zna Zn—l) = W;Z(Zn—l)Kn(Zn—la Zn)/ﬂ-;l(zn) (5'5)
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and the incremental weights for the annealed target posterior can be obtained as

follows,
" (o) T (21 0| 21 —u
U;L(Zn_l, Zn) — /’Yn( ) n( ; 1, | 1, ) . (5-6)
’Ynfl(zn—l)ﬂ-n(zna Zn,r|Zn,—u)
where 7/ (z,) = 7.(z.)/Z, and the weights associated with the particles can be

calculated according to w!,(z1.,) = w!,_1(21:n—1) X V), (2n-1, 2n). Assuming {WT’l(i)}
represents the normalized weights approximating to 7/, (z,), we perform a resampling
step if effective sample size, N.;r = 1/ SV (W D)2, is below a predefined threshold.
Finally, in order to approximate the target distribution 7, (2, ), we reweight the particles
according to wy, (21.,) = W, (21:m) X Uy (2,) Where vy, (2,) = Vn(20) /70 (20)-

Specification of the active block size  shown in Eq.(5.6)) is an important issue in the
design of the proposed sampler. In order to limit the computational cost required at
each time step we initially determine a constant block size () and index the block
with 71 ...rg. The indexes of the active block is incremented by () as each new
observation is received. The blocks do not overlap to each other and update scheme is
cycled whenever all the clustering labels up to time n are updated. Note that similar
block update strategies are also used by [Doucet et al! (2006) under the SMC samplers

framework.

5.2.1 The annealing parameter

As denoted above the sequence of annealed posterior distributions, 7 (z1), ..., 7, (2,)
is constructed by updating the annealing parameter «,, of the underlying DPM model
shown in Eq.(5.3). At each time step of the algorithm «, is updated according to a

geometric spacing function
ap = Q1 + Co(k — ay_q) (5.7

where o > 0, a,,—1 > «, and ¢, is the common parameter that determines the
amount of spacing at each time step. Note that, Neal (2001)) reported that to change
the annealing parameter according to geometric spacing of «y is suitable when the 7/,
varies smoothly with time.

In our framework, we construct the sequence of annealed distributions by setting an

initial value oy and updating cv,, as each new observation arrives. Intuitively the initial
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value for o; and the common parameter ¢, are set empirically in order to form the
intermediate distributions that are not too far apart from the true target density m,,. We
note that, in conventional annealing approaches, where one modifies the target density
gradually, finding the correct schedule is a hard but crucial task. In contrast, in the SMC
framework we don’t have to choose a schedule very strictly. We are free to choose any
forward kernel, provided we compute the corresponding incremental weight — we will

be sampling from the correct target at any given time.

5.2.2 Multivariate conjugate prior selection for the DPM model

In this section we derive the posterior distribution of the mixture parameters,
(0|20, yn), given the labeling vector z, and the marginal posterior of the clustering
labels, p(z,|y.), up to a normalizing constant under conjugate settings. We assume
that observations are drawn from a multivariate Gaussian distribution with unknown
mean vector ;. and covariance matrix 3, 6 = {u, >}, where the number of mixtures
are unknown.

In order to ensure the conjugacy property we utilize a Normal-inverse Wishart prior

for the parameter vector 6 = {, 3} where,
NIW (70, w0, Ao, vo) = p(p, 3) = p(E)p(p|%). (5.8)
The covariance matrix X is inverse Wishart distributed as,
Y~ IW(AGY vo). (5.9)

where A, vy is the inverse scale matrix and the degrees of freedom respectively. Given

the covariance matrix X, the mean vector i is normal distributed as shown in Eq.(5.10)
o~ N(19, X /wp). (5.10)

where 79 and ¥ /wy are the mean and covariance parameters. According to Eq.(3.10)
the covariance defined over the mean value is proportional to the covariance of the
Gaussian component and creates a flexible prior structure for the DPM model.

Accordingly, the joint prior distribution, p(u|Y), defined over the parameters can be

expressed as,

1
plp, ) oc | S|t /2D g <—§tT(AOE_1) - %(u —70) TS — 7'0)) (5.11)
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Note that, Normal inverse Wishart distribution is a generalization of the Normal-
inverse Gamma distribution with the parameters 0 = {1, 0}, where 1 and o are scalar
quantities.

Let us denote the j’th mixture component parameters at time index n with,

60; = {u;, X;} where 6; is distributed according to,
0 ~ NIW (7o, wo, Ao, vo), (5.12)

and the overall joint parameter vector is § = {0; ... 0y, }.
The posterior distribution of the j’th cluster parameters {/:;, 2, } is also Normal inverse
Wishart distributed, NIW (p;, ¥;|7j,w;, A;,v;), where the parameters are calculated

as,

wWoTo + 1Y

— 5.13
7 wo + n; ( )
Wj; = Wo + n; (5.14)
_ . - —\T Wony; _ T
Aj=No+ > (i =) — ;)" + y; — 10)([Y; — 10) (5.15)
i=1 Wo + 1
V; = Vo + n;. (5.16)

In the above equations n; is the number of observations, y;; is index to each
observation and ¥, is the mean vector of the observations in the ’j’th cluster. The
marginal of the posterior distributions on the mean vector 1; and the covariance matrix
>; can be computed analytically by the inverse Wishart and student-t distributions

respectively, as shown below,

P31z, yn) = TW (A}, v5) (5.17)
A

120, Yn) = to;— . 5.18
Pl = ot (e s ) .19

Accordingly if the parameters 0; € {;, i}, j = {1...k}, in Eq.(2.69) are integrated
out, the posterior probability p(z,|y,) of the assignment z, can be expressed up to a

proportionality as follows,

kn vo/2 dj2
Ly(v;/2)A;°
P(Zn|yn) OCp(zn) X | | d< J/ ) )
j=1

1 42T (0 /2) AL P

(5.19)

where p(z,) is the prior on clustering assignment vector z,,, 'y is the multidimensional

Gamma function and d is the dimension of the observation space.
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Table 5.1: Mxture model parameters.

P1,D2,P3 | M1, M2, 43 | O01,02,03
Data-1 (D-1) | 1/3,1/3,1/3 0,1.5,3 0.5,0.5,0.5
Data-2 (D-2) | 1/2,1/6,1/3 0,24 0.5,0.5,2.5

5.3 Test Results

Our goal in this section is to illustrate the effectiveness of the annealed SMC samplers

for online inference in DPM models for univariate and multivariate datasets.

5.3.1 Univariate density estimation problem

For this purpose, we compare performance of three samplers namely; the SMC-G
which utilizes conventional Gibbs moves on the DPM space (MacEachern et al.,1999),
the proposed SMC sampler (SMC-A), the SMC-M algorithm that utilize a mixture
of Gibbs moves and approximate Gibbs moves based on sequential approximation
(Ulker et al., 2010b) and the Particle filter (PF) (Fearnhead, 2004). Performance has
been reported in terms of log-marginal likelihoods, mean estimates and respective
standard errors. Mixture density estimates are also provided for visual comparison.
Algorithms are evaluated on a univariate infinite dimensional Gaussian mixture
density estimation problem. Observations are drawn from a univariate Gaussian with
0 = {u,0*} where u is the mean and o? is the variance. The conjugate prior
distributions are chosen as normal and inverse-gamma respectively.

To alleviate the degeneracy, a systematic resampling scheme is applied for sequential
algorithms when N.fy < 3/4N,, . For a fair comparison the number of particles is
selected as N, = 1000 for PF, N, = 100 for SMC-A algorithm and N, = 200
for the SMC-M algorithm where the active block size () is set to 9 and 4 for
the SMC-A and SMC-M algorithms respectively. Note that block size determines
the approximation introduced by the kernels for the SMC-M algorithm (Ulker et al.,
2010b). The results are reported for 100 independent Monte Carlo runs for each model.
The initial annealing parameter for annealed target distribution is set to a; = 1 and it
is geometrically updated according to Eq.(5.7) at each time step where the common
parameter, c,, is set to 1/100.

Two test sets (D-1 and D-2) are generated from a Gaussian mixture model comprising

three mixture components with parameters given in Table [5.1] where ;, 05, and p;, for
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i € {1...3}, denote the mean, standard deviation and the mixture weight for each
component, respectively. In order to evaluate the performance on real data, we also
performed the tests on the speech data set (D-3) publicly available. Reported results are
obtained for the emotional state “sad” where the actual number of mixture components
is priorly unknown. Each test set has a total of 1000 points and the results are reported

sequentially for 200, 500, and 1000 samples.

0.3 0.3

w 0.2 w 0.2
) [m)

P
P

0.1 0.1

o
o

(©) (d)

Figure 5.1: Estimated mixture densities by the (a) PF, (b) SMC-G, (c) SMC-A (d)
SMC-M algorithm for 50 Monte Carlo runs. SMC-A and SMC-M
represent all tree components of the mixture density in all runs.

In order to illustrate the mixing capability of the proposed algorithm we set the novelty
parameter to a very low value of k = 0.05. Note that a low x will probably cause
the posterior to have isolated modes hence this test aims to assess the mixing property
(ability to escape local modes) of the algorithms. We performed the test by generating
a total of 1000 observations from the model D-1 which comprise three overlapping
mixture components. As a gold standard reference we performed a very long Gibbs
sampler run and observed that the estimated number of components is 2.16, 3.09 and

3.11 for 200, 500 and 1000 observations consecutively. In Figure 5.1} the mixture
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Table 5.2: Estimated average Log-marginal likelihoods, mean values and respective

Monte Carlo standard errors (in parenthesis).

D-1

Algo.

K

Log-marg.

Mean Estimate

200

500

1000

SMC-G

SMC-A

SMC-M
PF

0.05
0.05
0.05
0.05

77234 (10.1)
710.8 (1.61)
711.1 (1.78)
727.6 (1.27)

2.11(0.118)
2.15 (0.070)
2.15 (0.083)
2.10 (0.122)

2.51(0.152)
3.07 (0.077)
3.09 (0.104)
2.35(0.425)

2.67 (0.493)
3.07 (0.071)
3.09 (0.115)
2.49 (0.491)

D-2

SMC-G

SMC-A

SMC-M
PF

0.5
0.5
0.5
0.5

1117.3 (0.59)
“1117.3 (0.52)
“1117.2 (0.53)
“1117.7 (0.99)

4.14 (0.187)
4.14 (0.158)
4.13 (0.137)
4.14 (0.173)

4.54 (0.260)
4.53 (0.244)
4.50 (0.232)
4.56 (0.345)

4.65 (0.266)
4.63 (0.330)
4.58 (0.293)
4.73 (0.530)

D-3

SMC-G

SMC-A

SMC-M
PF

0.05
0.05
0.05
0.05

-2052.1 (2.26)
-2050.6 (0.30)
-2051.1 (1.39)
-2052.8 (2.54)

2.50 (0.197)
2.61 (0.424)
2.60 (0.303)
2.48 (0.251)

3.09 (0.447)
3.40 (0.378)
3.35 (0.360)
3.06 (0.500)

3.58 (0.452)
4.04 (0.320)
4.01 (0.401)
3.39(0.573)

densities are plotted for each run of the PF, SMC-G, SMC-A and SMC-M algorithms,
respectively. It is clear that SMC-A and SMC-M can represent all 3 components of the
mixture density in all runs of the algorithms whereas SMC-G and PF commonly gets
stuck at a local mode and fits 2 mixture components to the data for several runs (more
than the half) of the algorithm. We also reported the log-marginal likelihood, mean
estimate of the number of components and respective standard errors (in parenthesis) in
Table[5.2l for SMC-G, SMC-A, SMC-M and PF. The results illustrate that SMC-A and
SMC-M are able to converge to the 3 components for a small number of observations,
however the SMC-G and PF algorithms do not converge to the true posterior even
when the observation size is 1000. It is also clear that SMC-A has much lower standard
error compared to SMC-G and PF in means of log-marginal likelihoods and the mean
estimates whereas a slight improvement is achieved over SMC-M.

In order to examine dependency of the performance of the algorithms on different
datasets and parameter settings, we set the novelty parameter to x = 0.5 and report
the results in Table for dataset D-2.
However, SMC-G, SMC-A and SMC-M can

It is clear that PF and SMC algorithms
provide very close mean estimates.
achieve significantly lower standard error compared to PF at n = 1000. This result

shows that SMC algorithms are more reliable with the same computational cost.
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Moreover SMC-A achieves comparable performance to SMC-G and SMC-M in means
of standard error when x = 0.5 while it provides similar mean estimates.

Finally we compared the performance for dataset D-3, where the novelty, initial
annealing and the common parameter are set to x = 0.05, oy = 0.25 and ¢, = 1/2000
respectively. As a gold standard reference the results of a very long Gibbs sampler
run are found as 2.53, 3.35, 4.10 for 200, 500 and 1000 observations consecutively.
The results given in Table [5.2] shows that the SMC-A and SMC-M provides closer
estimates to the long Gibbs sampler run particularly when n = 1000 whereas SMC-G
and PF underestimates the mean value. Similarly SMC-A outperforms SMC-G and PF
in means of log marginal likelihood and achieves lower standard error compared to the

SMC-M algorithm.

5.3.2 Multivariate density estimation problem

In order to evaluate the performance of the algorithms on the multivariate density
estimation problem we reported the test results of the SMC-G which utilizes
conventional Gibbs moves on the DPM space (MacEachern etall, 1999) and
the proposed multivariate annealed SMC sampler (SMC-MA) for two different
multivariate datasets. These two test sets (M-1 and M-2) are respectively generated
from two and five dimensional multivariate Gaussian mixture that comprise of three
equally weighted ,{p1, p2, ps} = 1/3, mixture components. The mean vectors of each
component are j1 = {0,0}, uo = {—2, —2}, uz = {2, 2} for the two dimensional case
and 1 = {0,0,0,0,0}, 0 = {—2,-2,—-2, -2, -2}, us = {2,2,2,2,2} for the 5
dimensional data. The covariance matrices >J; and X3 are chosen as diagonal matrices
where the diagonal elements equals to one, 0> = 1, and the third matrix ¥ is selected
as a full covariance matrix.

The initial annealing parameter is set to «; = 1 and it is geometrically updated
according to Eq.(8.7) at each time step where the common parameter, c,, is set to
1/1000, for both of the multidimensional test cases.

In order to illustrate the mixing capability of the proposed algorithm for the two
dimensional data, we set the novelty parameter to the value of x = 0.05 and plot
the mixture densities estimated by a single particle generated by the SMC-G and
SMC-MA algorithms in Figure [5.2(a) and Figure [3.2(b) respectively. It is clear that
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Second Dimension of Dataset M—1
Second Dimension of Dataset M—1

-5 : 6 5 -5 E)

(a) First Dimension of Dataset M-1 (b) First Dimension of Dataset M-1
Figure 5.2: Observations (red dots) on 2-D space and 50% confidence intervals of the
Estimated mixture densities by the (a) SMC-G, (b) SMC-MA algorithms

for a single Monte Carlo run. SMC-MA represent all tree components of
the mixture density.

Table 5.3: Estimated average Log-marginal likelihoods, mean values and respective
estimation variances (in parenthesis).

M-1

Mean Estimate

Algo. x |Log-marg. 200 500 1000
SMC-G [0.05(-1421.0 (740.1)|2.15 (0.007)|2.24 (0.105)|2.49 (0.174)
SMC-MA |0.05|-1410.9 (420.6)|2.27 (0.051)|2.71 (0.130)|2.99 (0.103)

SMC-MA can represent all 3 components of the mixture density whereas SMC-G
gets trapped at a local mode and fits 2 mixture components to the data. We also
reported the log-marginal likelihood, mean estimate of the number of components
and respective estimation variances (in parenthesis) in Table [5.3] for SMC-G and
SMC-MA . The results illustrate that SMC-MA is able to converge to the 3 mixture
components, whereas the SMC-G algorithm is not able to converge to the true posterior
even when the observation size is 1000. It is also clear that SMC-MA has lower
estimation variance compared to SMC-G in means of log-marginal likelihoods and
mean estimates.

In order to evaluate the performance of the proposed algorithm for higher dimensional
data we reported log-marginal likelihood and mean estimate of the number of
components as well as the estimation variances (in parenthesis) for the dataset M-

2 in Table 5.4l The results indicate that, similar to the results given for two
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Table 5.4: Estimated average Log-marginal likelihoods, mean values and estimation
variance (in parenthesis).

M-2

Mean Estimate

Algo. k |Log-marg. 200 500 1000
SMC-G {0.05]-2535.8 (3101.2)|2.18 (0.147)|2.18 (0.140){2.22 (0.218)
SMC-MA |0.05|-2434.3 (2432.1)|2.43 (0.204)[2.96 (0.051)|2.97 (0.054)

dimensional data, the proposed algorithm, SMC-MA is able to converge to the 3
mixture components. However the conventional algorithm, SMC-G gets trapped to
2 components even when the observation size is 1000. We also observed that SMC-
MA has higher log marginal likelihood and lower estimation variance compared to

SMC-G.
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6. DIRICHLET PROCESS MIXTURES FOR TIME SERIES CLUSTERING

In this section we construct an infinite dimensional model based on Dirichlet process
mixtures in order to cluster a time series where the number of clusters k£ and the
parameters of each cluster are priorly unknown. Let us consider a toy, time series
clustering problem illustrated in Figure [6.1l(a), where discrete samples are generated
by a two state Markov Chain switching its parameters at certain change points. Given

(@)

Data

1.5 4

0 50 100 150 200 250 300
Observation index

(b)

Clustering Labels
o

1_ I -

0 50 100 150 200 250 300
Observation index

Figure 6.1: (a) Discrete time series generated from a mixture of Markov Chains (b)
Switching labels that select the active Markov chain.

the data in Figure [6.1(a), it is easy to identify that there is a total of two Markov
chains interchanging between each other at the change points 80, 160, 240 and 280
consecutively, and the clustering labels associated with each observation are given in

Figure [6.1(b). Assuming that the clustering labellings are known, it is straightforward
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to estimate the model parameters, such as transition matrix and the initial probability
of each chain.

However in real world problems we encounter with situations where the model
parameters, change point times (arrival times) and the model order is priorly unknown.
In order to alleviate such cases, the given problem can be defined with a model that
switches its parameters within an infinite set of 6 = {6y,...,0;}, kK € {1...00},
selected according to the clustering labellings z; € {1...k} at time intervals 7;,
i = {1,...,n} which are determined according to an arbitrarily selected distribution.
Solution to the given problem can be quite challenging and online algorithms are highly
desired due to real time and large scale data processing requirements.

In order to solve the problem defined above, in our work we propose a Bayesian model
based on Dirichlet process mixtures, that estimates the number of clusters, model
parameters and the arrival times in a time series data under the assumption that there
is no temporal correlation between consecutive clustering labellings and the order of
the labels is not important. The model is not restricted to a certain type of data and
can be applied for online clustering of discrete or continuous time stochastic processes.
Since there is no closed form solution to the proposed model, we solved the proposed
model by an online inference scheme based on the sequential Monte Carlo sampling
methodology.

In the sequel we will explain the proposed model structure and the sampling algorithm
designed for sequential inference of the model posterior distribution. We applied the
algorithm to a time series clustering problem where the data stream is generated from
a mixture of Markov Chains which is an important time series clustering problem
particularly in the area of network traffic analyzing and bio-informatics. We reported
the clustering performance of the algorithm for various synthetic datasets and evaluated

the performance on the audio data.

6.1 Model Construction

Let us denote the observation sequence received until time n by y,, = {yn.1,- - -, Ynn}-
Assuming that m, represent the total number of changepoints and 7, ;,
i € {1,...,m,} is the index to i’th changepoint, the vector of discrete arrival times

until time n can be represented as 7,, = {7,,1... Ty m, }- Note that m,, is a random
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variable by construction and let us characterize the time series clustering problem as a
semi-Markovian structured change point model.

The model associates each clustering variable z,; to the change point 7, ; where
Zni € {1,...k,}, and k, € {1...m,} represent the number of clusters at time
n. The vector of cluster variables is defined as z, = {zu1,...,2nm,} and the
clustering variable z,; selects the model parameter, 0, ., ,, that is active between the
time intervals 7, ; and 7,, ;1 1, from the parameter set 6,, = {6,,1, ..., 6., }-

The proposed model assumes that the arrival times are distributed according to
an arbitrarily selected prior distribution p(7,), and the cluster parameters are
independently drawn from the prior p(6,). The observation groups, ¥ (r:r .}
i € {1,...,m, — 1} are independent of each other conditional on the assignment

variable z,,. Under the given assumptions, DPM posterior density m,(x,) can be

expressed as,

kn mp—1
T (Tn) o p(zn)p(Tn)Hp(en,j) H IWn, tririp i} O,z ) I Yns i} [On 2 ) (6.1)
j=1 i=1

where z,, = {2z, 0, 0}
Since the order of the cluster labellings is not important as in a conventional DPM
model, the prior on clustering variable vector z,, is formulated by Eq.(6.2) in a recursive

way,

1

-_J
p(zn,iJrl = j‘zn,{l:i}> = { r’
H__Ha

=1,...,k;
(P 62
where k; is the number of clusters in the assignment z, {1.;3. [; is the number of
observations that z,, ;1.3 assigns to cluster j and « is a 'novelty’ parameter.

The prior distribution on the arrival times, p(7,), has the Markov property and can be

explicitly expressed in the form,

mp—1

p<7—n7 mn) = p(Tn,mI > 77,) H p<7—n,i+1‘7-n,i)- (6-3)
i=1

where 7, - denotes the arrival time of the m + 1’th change point. The probability,
p(7,, .+ > n) ensures that no change points occur between time 7, ,,, and n.

In order to obtain an efficient inference scheme we selected a conjugate prior model
such that given { z,,, 7,, }, the parameter 6,, can be integrated out and the model posterior,

P(Zn, Tn|yn), can be calculated up to a normalizing constant. In the following section

103



we will design an algorithm that enable us to sample the distribution, p(z,, 7,.|yx»),
and estimate the parameters 6,, in closed form using the set of samples and associated
weights. The designed inference scheme also allow us to select an arbitrary distribution

on the sojourn times, 7,11 — 7; ~ P(Th,it1|Tn)-

6.2 Sequential Monte Carlo Sampler for the Proposed Model

Under the sequential Monte Carlo samplers framework we designed an algorithm that
is able to represent the proposed model posterior distribution with a set of weighted
samples whenever a new observation arrives. For the notation simplicity and clearance,
we use the time evolving representation given in (Del Moral et al., 2006) and in order
to achieve a simpler inference scheme we utilized conventional particle filtering kernels
for sampling the target posterior density.

Our aim is to sample from a sequence of target densities evolving with a countable
index n, m(xy)...m,(z,), each defined on a common measurable space (E,,¢&,)
where z,, € E,,. Let us define the sequence of target densities 7 (1) . . . 7, (x,,) and the
corresponding proposal distributions as 7;(z1) ... 7,(x,). According to importance

sampling theory, the unnormalized importance weight w,, at time n can be defined as,

i, = 2el0) (6.4)
(@)

where 7, is the unnormalized target distribution, 7,, = 7,,/Z, and Z is the normalizing
constant.
Under the conventional particle filtering framework, it is possible to obtain a

incremental weight update equation as
W, =Wh_1 X w, (6.5)

where it is possible to derive the incremental weights as given in Eq.(6.6)

. fYn(xn)nnfl(xnfl)

n = . (6.6)
77n(!7€n)%—1(9€n—1)
The proposal distribution, 7,,(, ), can be explicitly written of the form
nn(xn) = / nn71<xnfl>K(I‘nfla xn)dxnfl- (6'7)

Computation of the importance distribution 7, (z,) for n > 1 requires an integration

with respect to x,,_; thus a closed form solution to weight update equation given by
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Eq.(6.6) is not available except for specifically designed kernels. To appreciate this

limitation, we will consider the form of the kernel explicitly.

6.2.1 Kernel selection

In this section we design a proposal kernel in order to obtain weighted samples
from the posterior distribution of the defined model. As discussed above under the
particle filtering framework it is not possible to calculate the incremental weight update
function for proposal kernels which update the particle history. Though, it is possible
to calculate the weight update function for an arbitrarily selected kernel under the
SMC samplers framework (Del Moral et al., 2006), for simplicity we just utilized the
common particle filtering approach for sequential inference in the proposed model.

In order to obtain an efficient sampler the prior distribution on the model parameters
# and the likelihood function are selected as a conjugate pairs. The conjugate model
enables us to factorize the model posterior as, p(0,|zn, Tn, Yn)P(Zn, Tn|yn) Where the
first factor is calculated in closed form and we just need to sample the clustering
variables z,, and 7,, instead of the whole parameter space. Hence we define the proposal
kernel on the space x,, = {z,, T, }-

The proposal kernel K (x,_1,x,) given in Eq.(6.8) aims to sample the change point
Tn,m as Well as the clustering label, z, ,,, associated with the observations y, -, ,.:n
according to a mixture kernel that comprise two type of moves. The left hand side
of the Eq.(6.8) denotes the proposal of a new change point,7,,, and its associated
clustering variable z,, at time n whereas the right hand side depicts no new change

point to the state variable x,,_;.

K(xn—la xn) =0 (xn—l)ﬂ-(zn,m|zn,—ma Tnom = N, Tn,—m)éarnfl (xn,—m)

+ s (xn—l)dmnfl(l‘n) (6'8)

In Eq.(6.8), the notation x,, _,, denotes the components of z,, excluding the m’th
element, z,, ,,, and {aq, a2} denotes the kernel mixture weights. The kernel mixture

weights, a; and «, that ensures a full conditional proposal kernel , 7,,(.|z,_1), can be
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calculated according to the equation given by Eq.(6.9)),

_ 7n(Tn,m =N, Zn,—m, 7-nfm)
Za

aq

(6.9)

Yo (Zn Tn)

Qg =
Zo

(6.10)

and it is straightforward to calculate the normalizing constant Z, with the help of the

property oy + g = 1.

6.2.2 Weight update function

In order to calculate the unnormalized particle weights W,, at each time step we
calculate the incremental weight w, by replacing Eq.(6.8) in Eq.(6.6) as shown in
the following,

w, = (@) .
’Yn—l(xn—l)

Note that, if no new change point is introduced by the proposal kernel at time step

(6.11)

n, the dimensionality of the model do not change, z,, = x,,_1, hence we just need to
reweigh the particles according to the Eq.(6.11) in a single algorithm iteration.

The designed SMC algorithm for time series clustering can be summarized as follows.

SMC Algorithm for Clustering Time Series
e step 1 : Initializen =1, 77 = 0,2, = 1 where W = 1/Np.
e step2: n = n + 1. Resample the weights W,,_; if Ny < T'hr.
e step 3: Fori = 1to N, draw 2, ~ K (.|z,_1) given by Eq(6.8)

e step 4 : Fori = 1 to N, calculate the incremental weight w’ according to

i Yn(Tn-1)

w,, = .
Yn—1 (xnfl)

e step 5 : Update the partcile wieght according to

Wi =W,y xw,
Normalize the particle weights S"% Wi = 1.

(Iterate through step 2 to step 5 at each time step.)
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6.3 An application: Clustering Mixture of Markov Chains

In this section we apply the proposed model to a time series clustering problem where
the observations are generated from a mixture of finite discrete Markov chains. We
assume that the number of chains and the arrival times that denote the transitions from
one chain to the other are priorly unknown and the rank of the transition matrix is R
and do not change over time. Our aim is to sequentially cluster the data stream and
estimate the arrival times as well as the number of discrete Markov Chains and the
parameters ( Transition matrix, 7', and the initial distribution P ).

In order to define the model we just need to construct the prior structure on the cluster
parameters, 6,,, and the arrival times 7,,. Let 6, ; = {F;, T3}, j = {1, ..., 00} denote
the parameters of the j’th cluster where 7;(p,r), (p,r) € {1,..., R} denotes the
random variable that denotes the p’th row and 7’th column of the transition matrix 7.
Similarly, P;(r) represents the r’th element of the j’th initialization array F;. Since
Dirichlet distribution is conjugate over the multinomial distribution, the initialization
array P; and each row of the transition matrix, 7j(p, {1,..., R}), j = {1,...,00} are

selected independently distributed according to,
P; ~ Dir(kp), Tj(p,{1,...,R}) ~ Dir(kr), j={L,...,00} (6.12)

where xkp and kp are the concentration parameter defined for the initialization array
and transition matrix respectively.

The likelihood function corresponding to the observation model is defined as given in

Eq.(6.13)

R
9nirmsmmeeitlOnzn) = [T (Tons (o) V"7 (P, () (6.13)

p=1r=1
where N, (p,r) denotes the total number of times a transition from p to r occurs
when the Markov Chain labeled z,, ; is active and NV, ,(r) denotes the total number of
times the chain starts with 7.

Further, we define negative binomial prior distribution on the sojourn times that
practically determine the change point times. The negative binomial, N B(a, b), can be
defined as the distribution of random number of successes in a sequence of Bernoulli

trials with a probability of success until a total of b failures occur. In our work prior

on the sojourn times, 7,,; — 7,,-1 ~ NB(a,b), i = {1,...,m, — 1}, are chosen as
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negative binomial distribution that is a well suited discrete distribution to model the
arrival times 7,,;, 1 = {1,...m, — 1}.
According to the defined model the posterior distribution of 7,(z,,7,) can be

calculated up to the normalizing constant as follows,

Tn(Zn, Tn) ocp(zn)p( n) (6.14)

f | Q) Hf:l I'(a; + Nj(p, 7))
11_11;1_[1 Zr 1 N i(p,7) Zle ) Hf:l I'(ar)

H P(Styon)  ILL T(ow + Py(r)
(Zr L By(r )Zr Q) Hf:lr(ar)

where N;(p, r) is the total number of times a transition from p to  occurs in the Markov

Chains indexed with k, and P;(r) is the number of times the chain is initialized with 7.

6.4 Experimental Results

In this section we evaluate the performance of the proposed algorithm on time series
clustering problem where the data is generated from mixture of Markov Chains where
the number of components and corresponding parameters are unknown.

The observations are processed sequentially and the parameter estimates are updated
whenever a new observation is received. The clustering labels associated with each
observation, estimated model parameters and the change point estimation performance
are reported for various synthetic datasets. In order to evaluate the performance of the
proposed algorithm on the real world datasets we also reported the estimation results
for the audio signal clustering.

The first dataset 'DS-1" is a synthetic data generated from mixture of two
Markov chains where the initial state probability of the chains are set to

P, =P, =[1/31/3 1/3] and the transition matrices are selected as,

0.25 0.5 0.25 0.25 0.25 0.5
T,=1 025 025 0.5 To=1| 05 025 0.25
0.5 0.25 0.25 0.25 0.5 0.25

The sojourn time between consecutive change points are generated according to a
negative binomial distribution, 7;,1 — 7; ~ N B(r, p) where the distribution parameters

are determined as r = 3 and p = 0.001. Whenever a new changepoint occurs, the
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Figure 6.2: (a) Synthetically generated data and (b) associated cluster labels.

clustering label is switched between the labels {1,2} in order to select the active
transition matrix, T or Ts.

In order to cluster the data stream, the proposed algorithm sequentially estimate the
number of chains ,k,, , the parameters of each chain ¢, ; = {1}, P;},j € {1...k,} and
the labellings, z,, of the observation received until time n. Non-informative Dirichlet
priors are defined over the parameters, 6, = {F;,1;}, j € {1,...,00} as given in

Eq.(6.15) where all the components of the Dirichlet distribution equal to each other.
Kp = 50, R = 1 (6.15)

Note that non-informative prior do not favor any component of the Dirichlet
distribution over the other and when x = 1 the prior distribution is uniform over all
points in its support. The values greater than one, x > 1, create an evenly distributed
prior and conversely values lower than one, x < 1, the distribution is sparse that allow
the algorithm to overweight some components over the others. In our simulations we
selected the parameter on the transition matrix as, k7 = 1, to design an algorithm that
is able to handle different parameter settings whereas a tight distribution function is

defined over the initialization array by selecting xp = 50.
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Figure 6.3: (a) True cluster labels versus observation index. (b) Estimated cluster
labels versus observation index.

The dataset "DS-1" comprises a total of 5000 observations generated from two Markov
chains that switches between at certain time intervals. In order to achieve a clear
illustration, we draw the first 2000 observations and corresponding labellings of each
observation in Figure [6.2(a) and Figure [6.2(b) respectively.

We processed the synthetic dataset sequentially for n = 1 to n = 5000 and report
the estimated cluster labellings associated with each observation in Figure [6.3((a). For
comparison purposes we also draw the estimated clustering labellings in Figure [6.3(b).
The proposed algorithm achieves a high cluster labeling accuracy of 96.68% and the

estimated mean transition matrix for each Markov chain is,

X 0.21 0.52 0.27 X 0.25 0.24 0.51
T, =1 026 0.25 0.49 Ty =1 052 0.24 0.24
0.52 0.23 0.25 0.23 0.50 0.27
The mean error of the estimates of the matrices, Tl, TQ are ey = 0.0154 and

ey, = 0.0117 respectively. The test results indicate that the algorithm is able to
estimate the number of transition matrix, its parameters, as well as the clustering
labellings accurately for the dataset DS-1.

In order to observe online performance of the algorithm, in Figure we draw

the normalized expected changepoint detection latency calculated for predefined
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Figure 6.4: Normalized expected latency versus changepoint location estimation error.

estimation error. In our work we define the changepoint detection latency as the
time required to estimate a new changepoint within a predefined estimation error.
The calculated latency is normalized according to the mean sojourn time of the
corresponding dataset for easy interpretation of the results. The proposed algorithm
estimates the model posterior distribution sequentially and the clustering performance
gradually increases till an adequate amount of data that represents the actual model is
received. Therefore, for the dataset DS-1, the first 1000 observations are assumed to
be the learning phase of the algorithm and neglected in the calculation of the expected
chagepoint detection latency.

In Figure[6.4] we observe that the algorithm approximately detects a new changepoint
with an expected latency of 0.13 when an accuracy of 12 time steps is required. In
other words this means that the algorithm latency in detecting a changepoint with an
error lower than 12 time steps is expected to be 13% of the mean sojourn time.

Next, we evaluated the performance of the algorithm for clustering Markov chains
that consists of 9 states. The synthetic data ’DS-2’ is generated by three Markov
chains of which the parameters are switched at certain time intervals. The data and
corresponding labelings are illustrated in Figurel6.5(a) and (b) respectively for the first

2000 observations.
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Figure 6.5: (a) Synthetically generated data and (b) associated cluster labels.

The sojourn distribution of the synthetic data is determined by a negative binomial

distribution, N B(r, p), parameterized as, r = 4 and p = 0.0003. The initial values

are defined to be equal probable and the transition matrix of each Markov chain is

randomly defined as follows,
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Figure 6.6: (a) True cluster labels versus observation index. (b) Estimated cluster
labels versus observation index.

where U is an all one matrix and Tz corresponds to a transition matrix that moves to
any state with equal probability.

A total of 20000 observations are processed sequentially and true as well as the
estimated labellings associated with each observation are given in Figure The
proposed algorithm is able to estimate the clustering labellings for the dataset *DS-2’
with a very high accuracy ratio of 0.986%. Note that, a 9 state Markov chain consists
of 81 parameters hence the algorithm estimates a total of k,, x 81 parameters in each
step of the process. In order to avoid a mess of matrices we just reported the mean
estimation error of each transition matrix calculated as e, = 0.0066, ey, = 0.0102
and e, = 0.0109. This result shows that the algorithm is able to estimate the transition
matrices very close to the actual value.

We also showed the expected latency for the detection of the last changepoint in Figure
We observed that the algorithm achieves normalized latency values lower than 0.1
when the changepoint estimation error is set to 10 steps. We can conclude that the
algorithm is able to detect the change points within a reasonable latency time even for

complex dataset where the number of parameters representing the data is above 250.
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Figure 6.7: Normalized expected latency versus changepoint location estimation error.

6.4.1 Clustering audio signal

In this section we evaluated the performance of the proposed algorithm in a the
real world audio signal clustering problem where the audio file comprises of several
different instruments are played at overlapping time intervals.

The selected track given in Figure (a) is a single channel professional record,
sampled at the rate of 44100 kHz and stored in MP3 format. As a preprocessing
step, we calculated the Mel-frequency cepstral coefficients (MFCCs) illustrated in
Figure [6.8(b) in order to approximate the human auditory system. The window size
for MFCC calculation is determined as 0.02 seconds with 0.0045 seconds of overlap.
Next, we perform a k-means clustering algorithm to discretize the MFCC coefficients
where we excluded the most significant MFCC coefficients and obtain a time series
that correspond to a R = 5 state Markov chain shown in Figure [6.8]c).

The Dirichlet prior parameters are set to kp = 50, kK = 1 and the parameters of
the sojourn distribution, N B(r,p), are determined as » = 3 and p = 0.001. We
sequentially processed a total of 7630 observations that corresponds to a 34.6 seconds
of audio signal and report the clustering results obtained at time step n = 7630 in

Figure

114



(@)
T

2
=

s 0 *
£
<<

-0.5— -

_1 I I I I I I I
0 2 4 6 8 10 12 14 16
Observation index x 10°
(b)
T TN T eI T MR T T Tl I
] I [ 1T i il b

i
| | | | “ | | I | \“‘ ‘ \W H" 1 \‘\I‘I II‘II.I)/\I\IH“IHWIH. HIH::‘I“\“‘IN‘HIW

MFCC coef.
N O 0O &N

= [

iy | HF | I‘\
1 I | I LI | LT TR R \h ‘ I M | H
T T I {1 100 Il Wil I | lﬂ |
1 L W I [ I (I (A T MM ‘\ \IHHH L I V (N
1000 2000 3000 4000 5000 6000 7000
Observation index
(©)
6 T
4
s
©
a
2 I
o I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000

Observation index

Figure 6.8: (a) 44100 kHz audio signal. (b) Mel-frequency cepstral coefficients
(MFCCs). (c) MFCC coefficients digitized by using the k-means
algorithm (Input data).

(@)

4 T
gar
<}
©
B 2r U H 7
7]
=
o1 i
o I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000
Observation index
(b)
6
4
=
©
a | ’|
o I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000
Observation index
(c)
1-
05—
2
=]
z i
£
<<
-0.5—
_1 I I I
0 5 10 15

Observation index x 10°

Figure 6.9: (a) Estimated clustering labels versus observation index. (b) Clustered
digitized MFCC coefficients (c) Clustered audio signal.

115



The estimated clustering labels and the arrival times given in Figure[6.9|(a) shows that
the audio signal is clustered into three components. We also draw the clustered Markov
chains and the corresponding audio signal in Figure (b) and (c) by indicating each
cluster with different colors labeled as ‘red=1", ’black=2" and ’green=3’". By examining
the Figure[6.9](b) and (c¢) we can conclude that the algorithm is able to cluster the data
into three main different regimes and can detect the change points where the regimes

switch.
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7. CONCLUSION

In this thesis efficient sequential Monte Carlo Samplers for posterior inference
in Dirichlet process mixture models are proposed and a new model structure for
maneuvering target tracking problem is introduced. The contributions of the thesis

can be summarized as follows.

7.1 Summary and Contributions

Following a brief introduction to the sequential Bayesian models and inference
in Chapter[2l we focused on variable rate particle filtering particularly for highly
maneuvering targets. In Chapter 3 we adapted the multiple model approach to
the variable rate particle filtering structure in order to obtain an adaptive algorithm
which efficiently tracks the motion mode and thus accurately estimates the target
state vector (Ulker et all, 2008; [Ulker and Gunsel, 2008). The proposed algorithm,
MM-VRPE, utilizes a different sojourn and model parameter set for each dynamic
mode, resulting in a finer characterization of the maneuvers while preserving the
parsimonious state representation. It is shown that the proposed multiple model
variable rate structure utilizing a set of dynamic motion models and sojourn parameters
enable efficient characterization of the maneuvers as well as the state arrival times
compared to the conventional single mode variable rate structure (Ulker et al., 2008;
Ulker and Gunsel, 2008). In order to avoid the particle degeneracy, we also proposed
a regularization scheme for variable rate models. We concluded that if degeneracy is
observed, particularly due to the ill defined model parameters, regularization improves
the performance of the variable rate models.

In Chapter 4] we proposed a novel sequential Monte Carlo algorithm for the DPM
model under the conjugate prior settings (Ulker et all, 2010b). In contrast to the
existing sequential importance sampling methods, the local moves are designed to

update clustering labels that enable the introduced algorithms to obtain efficient
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samples from the time evolving posterior even for large dataset sizes. We showed that
previously proposed sequential schemes that apply Gibbs moves to the set of weighted
particles are an instance of the SMC samplers algorithm (MacEachern et al., [1999).
We evaluated the performance of the conventional particle filter, Gibbs sampler and
SMC samplers with different kernel settings, on two different datasets. Test results
showed that SMC sampler based methods provide more reliable estimates compared to
conventional particle filter and proposed kernels can better represent the modes of the
posterior distribution compared to a SMC sampler utilizing Gibbs moves (Ulker et al.,
2010b). We concluded that the SMC samplers framework is a competitive alternative
to the conventional Gibbs sampler for the DPM models (Ulker et al., 2010b).

In Chapter 5l we improved the SMC sampler proposed in Chapter d by using annealing
strategies (Ulker et al., 2010a, 2011). The key idea of the method is maintaining an
intermediate (annealed) distribution as a surrogate target for the SMC algorithm where
resampling is carried out according to this annealed distribution. We use the surrogate
density as a proposal to the true target where we can calculate the correct weights
without any extra computational cost. Intuitively, we are using the SMC machinery to
compute a good proposal density. This strategy enables us to maintain a diverse particle
set that seems to be crucial in obtaining an efficient sampler. The test results show
that proposed algorithm achieves lower estimation variance and higher log-marginal
likelihoods. We also observed that our algorithm is much more efficient compared to
conventional methods particularly when DPM target posterior distribution has isolated
modes (Ulker et al., 20104, [2011).

In Chapter [6l we proposed a novel DPM based model for time series clustering under a
semi Markovian model structure where the number of clusters and the parameters are
unknown. The semi Markovian structure reduces the dimensionality of the model,
hence results in a simpler representation. We applied classical particle filtering
framework for inference in the proposed model and applied the problem to the Markov
Chain clustering problem. We tested the algorithm for synthetic datasets and for
clustering a recorded audio data. We observed that the algorithm is able to cluster
and estimate the parameters of the synthetic datasets and the audio data successfully.
Finally, we envision various applications in hierarchical Bayesian models with a DPM

prior. In this thesis, we have concentrated exclusively on the conjugate setting, however
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we believe that the actual added benefit of the SMC framework can be realized in the

non-conjugate setting where the model parameters need also be sampled.

7.2 Future Work

As future work our objective is to design multi-modal latent variable models for
dynamic systems where state arrival times, model order and the parameters are
unknown. Our aim is to estimate the unknown model parameters and the model order
given the noisy observations. We believe that such models can be easily applied to
several important problems in machine learning, signal processing, bioinformatics,
pattern recognition and econometrics. The models will be covered under two main

sub-topics.

7.2.1 Infinite dimensional hidden semi-Markov models

Conventionally, hidden Markov model assumes that sojourn time between transitions
are exponentially distributed. In contrast, a semi-Markov process models the state
arrival times as a Markovian process and enable us to model the temporal correlation
between the states precisely. However these models usually assume that the model
order and the model parameters are priorly known which is not the case in many real
world applications.

We aim to construct an infinite dimensional hidden semi-Markov model (inf-HSMM)
where a Dirichlet process or a Hierarchal Dirichlet process will be considered as prior
for the model proposed (Teh et all, 2006). We believe that such a non-parametric
approach will lead to a parsimonious representation under the semi-Markov formalism
that will increase the efficiency of the filtering algorithm. Moreover, when transitions
between modes are independent from each other, the model will further simplify and

Dirichlet process will be adequate as a prior.

7.2.2 Dirichlet process mixtures for non-linear dynamic systems

The Dirichlet Process Mixtures (DPM) have been the key building block particularly in
modeling linear dynamic systems with unknown model structure. In order to estimate
the noise density with an unknown functional in a linear dynamic system, the DPM

model is constructed as a prior over the model (Caron et al. (2008). In another work, a
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hierarchal DPM (HDPM) model has been introduced by [Fox et all (2007) that accounts
for the correlation between the input modes of a switching linear dynamic model
however such models can not impose the desired prior over the state arrival times
(Fox et al., 2008). The major drawback of the model proposed by [Fox et al. (2007)
is the tendency of the defined HDPM prior to invent unnecessary modes and sticky
HDPM models are proposed in order to solve this problem in (Fox et al., 2008, 2009).
The models that rely on fixed rate model structure have serious limitations and are
unable to model the nature of the data in real world data. Moreover they cause
complicated models and require complex inference schemes. In literature it is shown
that a semi-Markovian structure can lead to a parsimonious representation in which
simple models and efficient inference mechanisms can be considered (Godsill et al.,
2007; Whiteley et al.,2007). Therefore, we aim to propose a semi-Markovian structure
for non-linear dynamic models where the number of dynamic motion modes and the
parameters will be estimated from the observed data. The main difficulty in such a
model is that observations are no longer available as an input to the DPM model,
therefore marginalization over the dynamic model is required to estimate the model
parameters.

Since exact inference is unavailable for both of the topics addressed above, efficient
sequential Monte Carlo schemes are required to approximate the true target posterior.
Recently, efficient sampling schemes based on the SMC sampler framework proposed
by [Del Moral et all (2006) has been successfully applied for sequential inference
in DPM models (Ulker et all, 2010bja, 2011)) and variable rate target tracking
(Whiteley et all, 2007). Due to significant improvements achieved in both works, we
will consider such methods for statistical inference in the models proposed. We will
also investigate particle Markov Chain Monte Carlo (PMCMC) methods which is a
recent advance on MCMC based sampling techniques in order to design more efficient

inference schemes (Andrieu et all, 2009).
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