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SYNTHESIS OF FUNCTIONAL GROUP CONTAININ CALIX[4]PYRROLES 

SUMMARY 

Calix[4]pyrroles, originally named ―tetrapyrrole-acetone‖ and known as meso-
octaalkylporhyrinogens, are macrocycles consisting of four pyrrole rings connected 

to each other from  or meso-like positions via sp3 hybridized carbon atoms. 
Calix[4]pyrroles cannot be  readily oxidized to porphyrin-like structures as in 
pophyrinogens. This is the main difference between calixpyrroles and porphyrin 
precursors. Consequently, all of pyrrole units of calix[4]pyrroles are in their N-H-
bearing, neutral forms without electron delocalization within the macrocyclic system 
as a whole. 

In this dissertation, the study was focused on five main parts as summarized below. 

(i) Synthesis of calix[4]pyrroles with long alkyl chains: This part of the dissertation 
was motivated by a desire to obtain calixpyrroles that would not partition significantly 
into water when studied under potential interfacial conditions. As a first step, it was 

sought to develop long chain n-alkyl ester modified, meso- and -pyrrole 

functionalized calix[4]pyrroles bearing either hydrogen or bromine atoms in the -
pyrrolic positions that would prove soluble in nonpolar organic solvents. It was also 

tested whether the modifications in question, including -pyrrole bromination, 
affected the inherent anion recognition properties of the parent calix[4]pyrrole core. 
Towards this end, the new ester-substituted systems have been prepared and their 
chloride and acetate anion binding properties have been analyzed by ITC in 1,2-
dichloroethane. Single crystal X-ray structures for some calix[4]pyrrole derivatives 
were also reported. 

(ii) Tetrabenzocalix[4]pyrrole: The synthesis of the bicyclo[2.2.2]-oct-2-ene fused 
calix[4]pyrrole with deep ―walls‖ was performed starting from a masked pyrrole 
derivative. Conversion reaction of this precursor to the corresponding calix[4]pyrrole 

derivative that contains benzo units fused to the -positions of the pyrrole rings was 
also investigated. 

(iii) Polymers with pendant calix[4]pyrrole units: In this part, the synthesis and 
characterization of polymers and copolymers containing calixpyrrole and methyl 
methacrylate (MMA) units were detailed.  In addition, it was demonstrated that 
organic solutions of the calixpyrrole-functionalized copolymers are capable of 
extracting tetrabutylammonium chloride (TBACl) and tetrabutylammonium fluoride 
(TBAF) from aqueous solutions significantly better than octamethylcalix[4]pyrrole 
and poly(methyl methacrylate) (PMMA). Additionally, the synthesis, characterization, 
and extraction properties of mixed MMA copolymers containing pendant 
calix[4]pyrrole subunits known to bind halide anions in a 1:1 ratio in organic media 
and benzo-15-crown-5 subunits capable of forming 2:1 sandwich complexes with 
potassium cations have been investigated. It was thus expected that strong, 
potentially mutually enhancing, interactions would enable these polymeric materials 
to extract selectively potassium halide salts, such as KCl and KF, from aqueous 
solutions. 

(iv) Dendrimeric calix[4]pyrroles: In this part of the thesis, design synthesis and 
characterization of four different calixpyrrole based dendrimeric compounds were 
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studied. The target dendrimeric structures have been prepared starting from simple 
organic compounds. Although dendrimeric calixpyrrole systems could be accessed 
via various synthetic strategies, so called ―click chemistry‖ would provide an easy 
and convenient synthetic approach. Therefore, synthesis of final dendrimeric 
compounds has been carried out using click chemistry. 

(v): Calix[4]pyrrole on silica solid supports: Literature reports show that the 
attachment of a calixpyrrole receptor on to a silica based solid support was achieved 
via using commercially available or specially designed aminopropyl functional silica 
gels. In this junction, a calixpyrrole compound having siloxane functional group 
seems to be a convenient idea for the modification of silica solid supports. 
Therefore, in this part of the dissertation, synthesis of siloxane functionalized 
calix[4]pyrrole and its use in modification of inorganic polymers such as silica gel, 
fume silica, and nano silica have been studied. 
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FONKSĠYONEL GRUP ĠÇEREN KALĠKS[4]PĠROLLERĠN SENTEZĠ 

ÖZET 

Önceleri oktaalkilporfirinojenler olarak bilinen kaliks[4]piroller dört pirol halkasının 

birbirine  veya meso-pozisyonlarından sp3 hibritleşmiş karbon atomları vasıtası ile 
bağlı olduğu makrosiklik bileşiklerdir. Kaliks[4]piroller porfirinojenler gibi direkt olarak 
porfirin ve benzeri yapılara okside olamazlar. Bu özellik porfirin öncü bileşikleri ile 
kaliks[4]piroller arasıdaki ana farklılıktır. Sonuç olarak, halkadaki tüm piroller N-H 
atomarına sahip doğal formlarındadır ve halkanın tamamında herhangi bir elektron 
delokalizasyonu yoktur. 

Bu çalışmada beş ana kalikspirol araştırma alanı üzerinde incelemeler yapılmıştır.  

(i) Uzun alkil zincirleri içeren kaliks[4]pirollerin sentezi: Çalışmanın bu kısmına temel 
teşkil eden ana fikir kalikspirolerin birbirine karışmayan çözücü sistemlerinde 
çalışıldığında bu bileişklerin polar olan su fazına geçmemesinin sağlanmasıdır. Bu 

nedenle meso- ya da -pozisyonlarına uzun n-alkil zincirlerinin ester köprüleri ile 

takıldığı ve -pirolik pozisyonlarının serbest ya da bromlanmış olduğu kaliks[4]pirol 
bileşikleri hazırlandı ve bunların apolar çözücülerde çözünebilir olduğu gösterildi. 
Ayrıca sentezlenen bileşiklerin anyon bağlama özellikleri ITC ile 1,2-dikloroetan 
içerisinde incelendi. Ayrıca sentezlenen bazı bileşiklerin X-ray kristal yapıları da 
aydınlatıldı.  

(ii) Tetrabanzokaliks[4]pirol: Bu bölümde bisiklo[2.2.2]-oct-2-ene üniteleri içeren ve 
derin bir kaviteye sahip kaliks[4]pirol bileşiği bir maskelenmiş pirol türevinden 
çıkılarak sentezlenmiştir. Ayrıca bu kalikspirolün tetrabenzokaliks[4]pirole 
dönüşrütülme reaksiyonu incelenmiştir.  

(iii) Pendan kaliks[4]pirol üniteleri içeren polimerlerin sentezi: Araştırmanın bu 
kısmında metakrilat fonksiyonlandırılmış kaliks[4]pirol bileşiğinin sentezi ve bu 
bileşiğin homopolimeri ve MMA kopolimeri sentezlenmiştir. Ayrıca kaliks[4]pirol-
MMA kopolimerinin organik çözücülerinin TBAF ve TBACl tuzlarını sulu çözeltilerden 
oktametilkaliks[4]pirol ve PMMA‘a göre çok daha iyi ekstrakte edebildiği 
gösterilmiştir. Ayrıca kaliks[4]pirol, benz-15-crown-5 ve MMA monomerlerinin 
kopolimerleri hazırlanmış ve bu anyon ve katyon reseptörü içeren polimerlerin sulu 
çözeltilerden KCl ve KF‘ü anyon ve katyonu ile birlikte seçici olarak ekstrakte 
edebildiği gösterilmiştir.  

(iv) Dendrimerik kaliks[4]piroller: Çalışmanın bu kısmında; dört farklı kalikspirol 
içeren dendrimerik bileşiğin sentez ve karekterizasyonu çalışılmıştır. Hedef 
dendrimerik bileşikler basit organik bileşiklerden yola çıkılarak sentezlenmiştir. Her 
ne kadar hedef dendrimerik sistemlere çeşitli sentetik stratejiler kullanılarak 
ulaşılması mümkünse de, bu bileşikler ―click‖ kimyası olarak adlandırılan ve azidlerle 
alkinler arasında Huisgen 1,3-dipolar siklokatılma reaksiyonuna dayanan yöntem 
temel alınarak sentezlenmiştir.  

(v) Katı desteklere kaliks[4]pirol bağlanması: Özellikle kalikspirol kimyasında; katı 
destek malzemeleri modifiye edilmek istendiğinde öncelikle katı yüzeyin aminopropil 
ile fonksiyonlandırılmış olması gerekmektedir. Bu noktada, siloksan 
fonksiyonlandırılmış kalikspirol bileşikleri herhangi bir katı yüzeyin 
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fonksiyonladırılabilmesi için önemli bir fikir olarak öne çıkmaktadır. Bu nedenle, 
çalışmanın bu kısmında, siloksan fonksiyonlu kaliks[4]pirol bileşiğinin sentezlenmesi 
ve bu bileşik vasıtası ile çeşitli silika jel yüzeylerinin fonksiyonlandırılması 
incelenmiştir. Ayrıca yine bu çıkış bileşiği kullanılarak nano silika partiküllerinin 
sentezi gerçekleştirilmiştir. 
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1. INTRODUCTION 

1.1 Anions 

Anions are ubiquitous in our environment. Chloride anions are present in large 

quantities in the oceans (1.94%), salt lakes (upto 34%), and underground salt 

reservoirs. Bromide present in sea water (65 ppm). Dead Sea (Israel) and 

underground brines contain large quantities of bromide. Nitrate and sulfate are 

present in our environment in the form of their alkaline salts. They are also present 

in acid rains. Carbonates are present in everywhere including biomineralised 

materials in their different salt forms.  

Applications of ionic species are wide spread including cation and anion exchange 

resins. These materials are used to remove unwanted ionic species from drinking or 

industrial water sources. Main principle of working mechanism of these resins is 

exchanging unwanted ionic species during a filtration process with desired harmless 

ones. Unfortunately, up to date, no convenient method has been reported for the 

removal of an anion along with its counter cation at the same time. Several 

applications of ionic species in everyday life can be exemplified here when the 

importance of anions is being considered in environment, biology, medicine and 

nuclear industry. Therefore, anion receptors and recognition of anions became one 

of the important subjects of various research fields including supramolecular 

chemistry. 

The anion recognition represents an emerging area of supramolecular chemistry 

whose impact in such disparate areas as biomedicine [1-3] and environmental 

chemistry [4-6] is becoming increasingly appreciated. In addition, anion receptors 

can be used as ion-selective receptors [7], phase-transfer catalysis, anion-selective 

optical sensors [8, 9]. Moreover, chromatographic separation systems have been 

generated by attaching receptors to an appropriate stationary phase [10]. These and 

other practical considerations have led to spectacular growth within the anion 

recognition field. However, the weak nature of most anion–receptor interactions, 

particularly in the case of neutral anion receptor systems, reflecting the relatively low 

charge density of most anions [11], makes the design of selective and effective 

receptors one of ongoing challenge. Thus, while a number of research groups have 
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designed elegant anion receptors, many of which have proven to be quite effective, 

there remains a need for simple, easy-to-make anion binding systems. In this 

context, the so-called calix[4]pyrroles have emerged as molecules of particular 

interest [10]. This is because the core structure may be accessed in one synthetic 

step and a large number of modifications are readily conceivable. 

1.2 Goal of the Thesis 

The synthesis of novel functional groups containing calix[4]pyrroles is very important 

in terms of the further derivatization. Towards this end, goals of this dissertation can 

be categorized as below. 

• Enhancing the anion binding property of calix[4]pyrroles and procuring the 

solubility in nonpolar  solvents. 

• Development of new calix[4]pyrrole sensors and expanding the range of 

application areas (e.g., tuning the anion binding ability and extraction of 

ions) by appending various functional groups. 

• A new approach for the synthesis of calix[4]pyrrole-modified inorganic 

polymers  by increasing the number of applicable supporting systems (e.g., 

silica gel, fume silica, SiO2 nanoparticles). 

• Using methacrylate containing calix[4]pyrrole as a monomer for polymeric 

materials providing ion extraction. 

• Taking the advantage of ―click chemistry‖ to enlighten the pathway towards 

calix[4]pyrrole based dendrimers.   

In this study we wish to prepare new functional groups containing calix[4]pyrroles 

and fulfill the anion binding studies if necessary. Target molecules of this study can 

be classified as below: 

• Synthesis of long alkyl chain containing calix[4]pyrroles.  

• Synthesis of tetrabenzocalix[4]pyrrole via a masked pyrrole derivative. 

• Preparation of calix[4]pyrrole containing MMA copolymers starting from 

methacrylate functionalized calix[4]pyrrole.  

• A new approach for preparation of calix[4]pyrrole-modified silica gel and 

silica nanoparticles by using a siloxane functionalized calixpyrrole 

derivative. 

• Synthesis of calix[4]pyrrole based dendrimers starting from alkyne and 

azide functional calix[4]pyrroles. 



3 

2. CALIX[4]PYRROLES 

Calix[4]pyrroles (e.g., 2.1), originally named ―tetrapyrrole-acetone‖ and known as 

meso-octaalkylporhyrinogens, are macrocycles consisting of four pyrrole rings 

connected to each other from  or meso-like positions via sp3 hybridized carbon 

atoms. Calix[4]pyrroles cannot be  readily oxidized to porphyrin-like structures (e.g., 

2.2) as in pophyrinogens  (Figure 2.1). This is the main difference between 

calixpyrroles and porphyrin precursors. Consequently, all of pyrrole units of 

calix[4]pyrroles are in their N-H-bearing, neutral forms without electron 

delocalization within the macrocyclic system as a whole. Calix[4]pyrroles cannot be 

directly studied using optical techniques (e.g., UV-vis and fluorescence emission 

spectroscopy) because of the absence of electron delocalization that results no 

visible absorption or fluorescence emission bands. 

 

Figure 2.1 : Different oxidation behaviors of 2.1 and 2.2. 

NMR spectroscopic techniques provide meaningful characterization and study 

opportunity in this class of molecules. These techniques offer not only detailed 

structural elucidation, but also determination of host-guest interactions including 

anion binding. Different convenient estimation methods whose data supplied by 
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NMR spectroscopy provide to calculate anion binding affinities towards various 

anionic species (e.g., fluoride, chloride, phosphate etc.). 

2.1 History of Calix[4]pyrroles 

The first calixpyrrole compound synthesized by Baeyer in 1886 via condensation of 

pyrrole and acetone in the presence of hydrochloric acid. Thirty years later, 

Chelintzev and Toronov repeated the condensation of pyrrole and acetone and 

proposed a cyclic tetrameric structure for a calix[4]pyrrole which later proven to be 

correct [12]. These authors carried out several other reactions including an acid 

catalyzed condensation of pyrrole with methyl ethyl ketone, which afforded a single 

calix[4]pyrrole configurational isomer [13]. Additionally, methyl ethyl ketone and 

acetone were co-condensed with pyrrole forming a mixed meso-

hexamethyldiethylcalix[4]pyrrole of unknown structure. Rothemund and Gage used 

methanesulfonic acid as a catalyst and obtained improved yields in 1950s [14]. In 

1970s, Brown at al. reported a refined procedure that allowed them to obtain 

tetraspirocyclohexyl-calix[4]pyrrole 2.3 [15], a known compound reported earlier by 

Chelintzev, Toronov and Karmanov in 1916 [13] (Figure 2.2.). 

 

Figure 2.2 : Structures of meso-tetraspirocyclohexyl-calix[4]pyrrole and meso-
octaethylcalix[4]pyrrole. 

Calixpyrroles with functional groups (chloroalkyl or cyano) in the meso-positions 

were also reported by Lehn and co-workers.. Beside these important findings, 

calix[4]pyrroles were only studied irregularly over a century following their discovery 

most of which merely focused on the refined synthesis of these compounds and 

their meso-substituted derivatives. No significant studies have been observed during 

this period of time related to their applications. The situation has changed in 1990s 

by exploring the transition metal coordination chemistry of deprotonated 

calix[4]pyrroles, especially meso-octaethylcalix[4]pyrrole 2.4, via an extensive study 

of Floriani and co-workers [16]. In their extensive study, Floriani has reported the 

various metal complexes of octamethylcalix[4]pyrrole. 



5 

In 1996, Sessler and co-workers discovered that this class of macrocycles can bind 

anions both in organic media and in solid state [17]. This finding gave the 

opportunity of exploring calix[4]pyrroles in novel application areas. Sessler and co-

workers introduced the term ―calix[4]pyrrole‖ to underscore the similarity of 

octaalkylporhyrinogens to calix[4]arenes in terms of the conformational behavior and 

not undergoing facile oxidation. Since that significant discovery, several novel 

calixpyrrole-based anion receptors have been prepared and studied by various 

research groups. These studies served to establish this branch of anion coordination 

chemistry. Several reviews and book chapters related to calixpyrrole chemistry have 

been reported, while further new reports about calixpyrrole based anion receptors 

are continuing to appear with an increasing regularity. 

2.2 Anion Binding Properties of Calix[4]pyrroles 

Using calix[4]pyrroles as an anion binding agent was first inspired from sapphyrins 

(Figure 2.3). Sapphyrin is a pentapyrrolic expended porphyrin first synthesized by 

Woodward [18], is an excellent receptor for anions (particularly fluoride) when 

deprotonated. When a crystal structure of the sapphyrin-fluoride anion complex was 

obtained it was observed that NH protons of sapphyrin form hydrogen bonding with 

fluoride anion. This led Sessler and coworkers to seek another pyrrole based anion 

receptor with a question in mind whether neutral non-aromatic pyrrolic macrocycles 

would bind anions. Calix[4]pyrroles were addressed to answer this question 

because of their ease and cheap of synthesis in one synthetic step. 

 

Figure 2.3 : Structure of sapphyrin. 

Single crystal X-ray diffraction analysis of octamethylcalix[4]pyrrole 2.1 for both 

fluoride and chloride anions was carried out (Figure 2.4) [19]. These results revealed 

that calix[4]pyrrole changes its conformation when it was bound to an anion. While 

the compound 2.1 adopts a 1,3-alternate conformation wherein adjacent pyrrole 

rings oriented in opposite directions in the anion free state, it takes cone 

conformation in the presence of both fluoride and chloride anion. These crystal 

structures clearly show the cooperative hydrogen bonding interactions existing in the 

solid state between the four pyrrolic NH protons and the halide anions. While the 
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resulting structures are similar, in the case of the fluoride anion complex, the 

average of NF distance is 2.767 Å, whereas the NCl distance is 3.303 Å in the 

corresponding chloride complex. Thus, fluoride anion appears to be more tightly 

bound in the solid state. In both cases, it is important to appreciate that the cone 

conformation, seen in the presence of anions, is very different from the 1,3-alternate 

form seen in their absence. 

 
 

1,3-alternate conformation Cone conformation 

Figure 2.4 : X-ray crystal structures of calix[4]pyrrole 2.1 in the absence and 
presence of an anion. 

The anion binding properties of calix[4]pyrrole 2.1 was carried out in deuterated 

methylene chloride (CD2Cl2) using 1H-NMR titrations. In this method while keeping 

the concentration of host (in this case the host is octamethylcalix[4]pyrrole), the 

concentration of guest (in this case guests are fluoride and chloride salts of 

tetrabutylammonium) was increased gradually. Then changes in some specific 

peaks are observed. 

Table 2.1 : Stability constants for 2.1 with different anionic substrates (n-Bu4N
+ 

salts) at 25 °C. 

 F Cl Br I H2PO4
 HSO4

 

CD2Cl2 17 170 350 10 <10 97 <10 
CD3CN >10 000 >5 000   1 300  
DMSO-d6 1 060 1 025     

A down field shift in the pyrrolic NH peak and an up field shift in the pyrrolic CH 

signal were observed in the case of 2.1. Association constants were determined 

using the EQNMR computer software and revealed that calix[4]pyrrole 2.1 not only 

binds several anions in organic media but also displays a high selectivity against 

fluoride anion relative to other species studied (Table 2.1) [17, 20, 21]. 

Up to date, several efforts have been devoted to study anion binding properties of 

calix[4]pyrrole. These continuing efforts include a number of analyses carried out in 

various organic solvents using 1H-NMR titration techniques under comparable 
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conditions such as different organic media. It can be concluded from Table 2.1 that 

calix[4]pyrrole 2.1 displays higher anion binding affinities in CD2Cl2 then CD3CN and 

DMSO-d6. The data in the table also leads to the conclusion that calix[4]pyrrole 2.1 

shows lower anion binding affinity and loses the selectivity in the case of DMSO-d6. 

Other than 1H-NMR titration technique to measure anion binding affinity of 

calix[4]pyrroles Schimidtchen applied isothermal titration calorimerty (ITC) to 

highlight further advantages and differences compare to 1H-NMR titration in 

molecular recognition [22]. ITC measurement technique provides higher detection 

limits, increased dynamic range and greater reproducibility as compared to NMR 

spectroscopic methods. It also provides additional thermodynamic parameters (i.e. 

H, TS, and G) in one experiment which cannot be accessed by NMR 

spectroscopic techniques. Table 2.2 summarizes the results obtained by ITC 

measurement technique [22]. 

Table 2.2 : Energetics of binding of various anions to calix[4]pyrrole 2.1 in dry 
acetonitrile (<10 ppm H2O) at 30 °C as determined by ITC. 

 Fa Cl Br H2PO4
 

H [kcal mol1] -8.25 -8.81 -8.34 -11.60 

G [kcal mol1] -7.18 -6.90 -4.77 -5.79 

TS [kcal mol1] -1.05 -1.90 -3.56 -5.81 

Kass[M
1] 153 000 95 400 2 770 15 100 

a
 Fluoride anion was used in the form of [Kcryptand222]

+ 
salt. 

A brief inspection of table reveals that the association constants deduced from ITC 

experiments are higher than those inferred from the NMR titration studies. 

2.3 Theoretical Studies about Calix[4]pyrroles 

Theoretical studies about the conformational behaviors of calix[4]pyrroles predicted 

four different limiting structures. These conformational structures are: 1,3-alternate, 

1,2-alternate, partial cone, and cone (Figure 2.5). 

 

Figure 2.5 : Four limiting conformations of representative calix[4]pyrroles. 

Monte Carlo simulations and energy minimizations (in the gas phase) of the 

compound 2.1 with anion complexes in a methylene chloride milieu were studied by 

Jorgensen [23].1,3-alternate conformation was the most stable state of 2.1 in the 
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absence of a halide anion, while the cone conformation was not stable under the 

conditions applied. On the other hand, cone conformation was the most stable state 

of 2.1 in the presence of halide anions among the various possible conformations 

(Figure 2.6). Solution phase simulations revealed that relative free energies of 

binding of chloride, bromide, and iodide with the compound 2.1 were in outstanding 

agreement with reported data. An exceptional result was observed in the case of the 

simulation of fluoride binding. In this case, the theoretical studies predicted higher 

free energy for fluoride anion binding. This difference was depicted to absence of 

trace water in theoretical calculations. Yet, commercial tetrabutylammonium fluoride 

contains trace amount of water and can never be used in a completely anhydrous 

form during experimental studies. 

 

Figure 2.6 : Cone-like halide complexes of 2.1 energy-minimized in the gas 
phase. 

Wu also studied the conformational preferences and fluoride and chloride anion 

binding properties of calix[4]pyrrole 2.1 by PM3 semiempirical method and density 

functional theory methods in the gas phase and in dichloromethane solution [24]. 

Several conclusions are summarized below.  

 In agreement with experimental observations, the 1,3-alternate conformation 

is calculated as being most stable. The stability sequence is predicted to be 

1,3-alternate > partial cone > 1,2-alternate > cone, either in the gas phase or 

in CH2Cl2 solution. The cone conformation, which is observed in the solid-state 

structure of the calix[4]pyrrole fluoride anion complex, is about 16.0 and 11.4 

kcal/mol less stable in the gas phase and CH2Cl2 solution, respectively. 
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 Anion binding analysis reveals that the 1:1 calix[4]pyrrole fluoride binding 

mode with the cone conformation is more favorable than a possible 1:2 

binding mode involving a 1,2-alternate conformation. 

 A rough estimate of an average FH-N hydrogen bond strength in the cone 

structure resulted values of about 22 and 11 kcal/mol in the gas phase and in 

CH2Cl2 solution, respectively. 

Analysis of the effect of meso substituents, specifically methyl and cyclohexyl 

groups, on the conformational and anion-binding properties revealed that the steric 

hindrance of these groups disfavors the cone conformer more than the 1,3-alternate 

conformer and that it is this difference that accounts for the experimental difference 

in anion affinity. 

2.4 Synthetic Methods for the Preparation of Calixpyrrole Core Macrocycles 

Three general methodologies can be used to synthesize calix[4]pyrroles. A one-pot 

[1+1+1+1] condensation, [2+2] condensation, and [3+1] condensation, where the 

digits refer to the number of pyrrole units in the reactants involved. One-pot 

synthesis is the most popular one for the preparation of simple calix[4]pyrroles. 

2.4.1 One-pot condensation 

As commonly used, a pyrrole and a ketone are condensed in a 1:1 ratio in the 

presence of an acid catalyst in the one-pot synthesis of calix[4]pyrroles. 

Hydrochloric acid, methanesulfonic acid, trifluoroacetic acid, and boron trifluoride 

diethyl etherate are the commonly used acid catalysts. Methanol, ethanol, 

acetonitrile, and dichloromethane are the favorite solvents for carrying out the 

reactions. Stoichiometric ratio of the different type of pyrroles and ketones 

determines whether the one-pot condensation is homo or mixed condensation. 

2.4.1.1 Homo-condensation 

The term homo-condensation is meant to define the reaction of a specific pyrrole 

with a specific ketone. Symmetry of the pyrrole or ketone components defines the 

type of the homo-condensation. 
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Figure 2.7 : Schematic representation of a symmetric homo-condensation. 

If a symmetric pyrrole and a symmetric ketone were reacted to produce a 

calixpyrrole this type of condensation called symmetric homo-condensation. This 

type of homo-condensation generally produces only one easy-to-separate major 

product in good yield. A typical example of symmetric homo-condensation is the 

synthesis of 2.1 via the condensation of pyrrole with acetone in a 1:1 ratio in 

methanol in the presence of an acid catalyst (e.g., methanesulfonic acid) (Figure 

2.7). Chromatographic separation or washing the crude product with methanol 

affords 2.1 in reasonable yields. 

 

Figure 2.8 : Mixed homo-condensation products. 

An asymmetric homo-condensation involves the reaction of a pyrrole with an 

asymmetric ketone. For instance, pyrrole condensed with p-hydroxyacetophenone in 

MeOH by using an acid catalyst [20]. The desired calix[4]pyrrole 2.5 was isolated, as 

a mixture of conformational isomers, via column chromatography in 62% yield. The 

relative yields of these latter isomers, denoted , ,, and  to 

indicate the relative position of the bulky substituted phenyl substituent (Figure 2.8), 

were on the order of <5%, 25%, 30%, and 45%, respectively. 

The conformational difference of isomers is shown in Figure 2.9 [20]. In the specific 

case of the  isomer of 2.5, a deep cavity structure was observed in the solid 

state, wherein the calixpyrrole core is in a so-called cone conformation. Structures of 

lower symmetry are seen in the case of the other isomers, with conformations other 
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than pure cone (e.g., 1,3-alternate, partial cone) being observed in certain instances 

(e.g., the isomer of 2.6). 

 

Figure 2.9 : View of the molecular structures of the ethanol adduct of the  
isomer of 2.5 in the cone conformation (left) and the acetonitrile 

adduct of the isomer (methoxy) of 2.6 in the partial cone 
conformation (right). 

2.4.1.2 Mixed condensation 

In the case of a mixed condensation one type of pyrrole is reacted with more than 

one sort of ketone or one type of ketone is condensed with more than one kind of 

pyrrolic subunit. In general, one type of pyrrole is condensed with two different 

ketones to obtain asymmetric calix[4]pyrroles that can be used as special starting 

materials for further functionalization  or find  diverse application areas.  

 

Figure 2.10 : Synthesis of calix[4]pyrrole monoester 2.7via mixed condensation. 

The disadvantage of mixed condensation involves the lowness of the yields. So, the 

ratio of reactants must be controlled carefully for optimizing the yield of products to 

be synthesized. For example, the calix[4]pyrrole monoester 2.7 was prepared by 

stirring pyrrole, acetone and ethyl pyruvate in a 4:3:1 ratio in methanol in the 

presence of methanesulfonic acid as the catalyst. Chromatographic purification 

(silica gel, DCM/hexanes : 80/20) yielded 2.7 in 16-20% yield (Figure 2.10) [25]. 
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Figure 2.11 : Synthesis of diester functional calix[4]pyrrole 2.8 via mixed 
condensation. 

Another example of mixed condensation was illustrated in the above example 

(Figure 2.11) by means of the same reactants used above example. However a 

2:1:1 ratio was used to obtain diester functional calix[4]pyrrole 2.8 [25]. 

2.4.2  [2+2] Condensation 

[2+2] condensation is used to state acid condensation of two identical 

dipyrromethane units or dipyrromethane derivatives in the presence of a ketone 

under acidic conditions. 

 

Figure 2.12 : [2+2] Condensation of dipyrromethane containing metalloporphyrin to 
obtain metalloporphyrin capped calix[4]pyrrole. 
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This approach represents an important means of constructing a range of 

calix[4]pyrrole macrocycles or strapped type macrocyclic compounds as illustrated 

in Figure 2.12 [26]. This type of capped calix[4]pyrroles could be used for anion 

recognition and ligand fixation.  

The target compound 2.9c is synthesized in two steps. The first step involves the 

preparation of dipyrromethane substituted metalloporphyrin via condensation of 2.9a 

with acetone in the presence of trifluoroacetic acid as an acid catalyst. Second step 

of the synthesis was achieved by the condensation of bis(dipyrromethane) 

containing porphyrin 2.9b with acetone in the presence of borontrifluoride diethyl 

etherate under high dilution conditions (~10 mM). 

2.4.3 [3+1] Condensation 

A tripyrrane or tripyrrane derivative is condensed with a pyrrole or pyrrole derivative 

in the presence of an acid catalyst in a typical [3 + 1] condensation. The restricting 

factors in [3+1] condensation are that the poor stability of tripyrranes in acidic 

medium and proceeding such reactions generally in low yields. In general, [3+1] 

condensation involves the synthesis of elaborated calix[4]pyrrole derivatives. 

 

Figure 2.13 : Synthesis of a cryptand-like calix[4]pyrrole by [3+1] condensation. 

Bucher reported first cryptand-like calixpyrrole [27] using [3+1] condensation (Figure 

2.13). Tripyrranedialdehyde 2.11 was synthesized by formylation of tripyrrane 2.10 

in a TFA, triethylorthoformiate reaction matrix at -10C and followed by the treatment 

of the crude product with aqueous NH3. Then, an acid-catalyzed condensation 

between this diformyl derivative 2.11 and 2 equivalent of 2.10 is used to produce the 
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three-dimensional bicyclic product 2.12, in 15% yield. Anion binding properties of 

this compound were studied by NMR spectroscopic method. The NMR spectral 

studies revealed that 2.12 has been found to bind a wide range of anions in CD2Cl2 

including fluoride, chloride, bromide, nitrate, dihydrogen phosphate, and 

thiocyanate. Although calix[4]pyrroles show 1:1 binding stoichiometry against 

anions, in the case of compound 2.12; 1:1, 1:2, and 1:3 binding stoichiometry was 

observed upon addition of different kind of anions because of the existence of three 

identical binding cavities. 

2.5 Modification of Calix[4]pyrrole Core Macrocycle 

Calix[4]pyrrole macrocycle can be modified/functionalized at -positions (C-rim) or 

meso positions even more at the pyrrolic nitrogen atoms (N-rim). Such modifications 

not only produce useful precursors for further functionalization to obtain special 

calixpyrroles useful for production of transporting agents and solid phase anion 

separation systems, but also affect the anion binding properties of calix[4]pyrroles. 

2.5.1 Modification at C-rim 

2.5.1.1 Lithiation of Octamethylcalix[4]pyrrole 

 

Figure 2.14 : C-rim modification of octamethylcalix[4]pyrrole. 

Modification of pyrrole units of calix[4]pyrroles is attracting considerable attention to 

obtain -modified calixpyrrole derivatives. In particular, treatment of 

octamethylcalix[4]pyrrole with n-butyllithium in THF at -78 °C afforded a 

deprotonated calixpyrrole intermediate, which was then treated with various suitable 
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electrophiles followed by quenching the reaction in water, gave the -mono-

substituted calix[4]pyrroles and -di-substituted derivatives [28]. This method served 

the synthesis of elaborated calixpyrrole derivatives, among which systems 2.16 

have proved particularly useful as building blocks for further derivatization. 

 

Figure 2.15 : Synthesis of alkynyl functionalized calix[4]pyrrole. 

For instance, the monoiodo derivative 2.15 was used to produce the β-mono-

ethynylcalix[4]pyrrole 2.18, a species that , in turn, has served as a versatile building 

block. The synthesis of 2.19 involved first reacting 2.15 with excess TMS acetylene 

in diisopropylamine-DMF at 80 °C in the presence of Pd(PPh3)4-CuI, to give 2.18 

the TMS protected alkynyl derivative in 73% yield. In a second step, this 

intermediate was subject to deprotection using tetrabutylammonium fluoride in THF 

at room temperature; this gave 2.19 in 89% yield [29]. 

2.5.1.2 Bromination of Calix[4]pyrrole 

-Octabromo-meso-octamethylcalix[4]pyrrole 2.20 was synthesized 90% yield by 

refluxing of meso-octamethylcalix[4]pyrrole with N-bromosuccinimide (NBS) in dry 

THF (Figure 2.16) [30]. Since regular one-pot condensation of 3,4-dibromopyrrole 

with acetone provides no product, this method represents an alternative and highly 

effetive for the synthesis of octabromocalix[4]pyrrole. 1H NMR titration revealed that 

the compound 2.20 has two order of magnitude higher anion binding affinity 

compare to octamethylcalix[4]pyrrole. 

 

Figure 2.16 : Bromination of octamethylcalix[4]pyrrole. 
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2.5.2 Modification at N-rim 

2.5.2.1 N-alkylation of meso-octaethylcalix[4]pyrrole 

Production of useful ligands for metal ions in low oxidation state essentially requires 

modification of nitrogen atoms of calix[4]pyrroles. Takata and co-workers reported a 

procedure for modifying the calix[4]pyrrole N-rim [31]. Treatment of octaethyl-

calix[4]pyrrole 2.21 with sodium hydride and methyl iodide in the presence of 18-

crown-6 as a phase transfer catalysis in THF gave a distribution of N-methylated 

calixpyrroles. Chromatographic separation over silica gel yielded N-mono-(2.22), 

neighboring-N-N’-di-(2.23), opposite-N,N’-di-(2.24), N,N’,N’’-tri-(2.25), and N-N’-N’’-

N’’’-tetra-methylated (2.26) meso-octaethylcalix[4]pyrroles (Figure 2.17). 

 

Figure 2.17 : N-rim modified meso-octaethylcalix[4]pyrroles. 

The variation of product distribution was effected by the concentration of MeI used. 

When 1 equivalent of methyl iodide was used, the main product was the mono-N-

methylated calixpyrrole 2.22. On the other hand, when 2 equivalents were used the 

proportion of the bis-, tris- and tetrakis derivatives was obtained. N-ethylation of 2.21 

with ethyl iodide was carried out under the similar conditions used to obtain 2.22-

2.26. However, only N-mono-ethylated calixpyrrole 2.27 was isolated. 
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2.5.2.2 Metallation of octamethylcalix[4]pyrrole 

 

Figure 2.18 : Synthesis of tetrakisruthenocenecalix[4]pyrrole and its copper(II) 
complex. 

Metalloenzymes that contain bi- or multimetallic reactive sites are important in 

chemical transformations such as oxygen reduction, nitrogen fixation, and redox 

reactions. Therefore, the synthesis of model chemical systems containing a large 

number of metal centers within a single ligand system is an incentive research area.   

Recently, Sessler and co-workers reported the design and synthesis of polymetallic 

complexes based on calixpyrrole 2.1 [32]. The ruthenium complex of 2.1 was 

prepared by treating octamethylcalix[4]pyrrole with [RuCp(CH3CN)3]PF6 in THF 

under reflux for four hours. It has been reported that the tetrakisruthenocene 

complex 2.28 was deprotonated during the reaction (Figure 2.18). Sessler and co-

workers speculated that this 1H NMR result confirms the degree of acidity of pyrrolic 

NH protons after the complex formation. 

The reaction of 2.28 with Cu(OTf)2 in the presence of triethylamine afforded the 

pentametallic calix[4]pyrrole complex 2.29. In a latter extend these new systems 
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have been experimented with cyclic voltammetry to investigate reversible oxidation 

states. In the case of 2.29 a reversible one-electron reduction at E1/2 = -0,34 V was 

observed corresponding to Cu(II)/Cu(I) reduction. The reversible nature of this 

reduction is noteworthy because reversible reductions serve crucial roles in several 

biological systems. 

2.6 Calixpyrrole Derivatives 

Since the anion binding ability of calixpyrroles discovered and several modification 

methodologies have been developed, modulating the anion binding properties of 

calixpyrroles requires preparation of novel derivatizations. This would allow not only 

incorporating new functional compounds to the literature but also tuning the 

selectivity of this class of molecules against various anionic species. Another 

important gain of this afford is that opening new aspects in terms of application 

areas and production of commodity materials. Therefore, up to date, several basic 

calixpyrrole derivatives have been reported by various independent research 

groups. 

2.6.1 Derivatization at meso positions 

Although the first calixpyrrole compound octamethylcalix[4]pyrrole was reported by 

Baeyer in 1886, Sessler and co-workers used this class of molecules as an anion 

sensor in 1996. In this study they have prepared the compound 2.1 and 2.3 by 

condensing pyrrole with corresponding ketones acetone and cyclohexanone.  

 

Figure 2.19 : Structures of calix[4]pyrroles 2.1, 2.3, 2.21, and 2.30. 

Solution phase anion binding experiments of 2.1 and 2.3 was carried out in CD2Cl2 

and revealed that both compounds 2.1 and 2.3 are not only effective 1:1 anion 

binding agents, they are also selective binding agents against F relative to putative 

anionic guests e.g. F, Cl, Br, I, H2PO4
, and HSO4

. Table 2.3 shows the stability 

constants of receptors 2.1 and 2.3. 
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Table 2.3 : Stability constants for 2.1 and 2.3 with anionic substrates in CD2Cl2 at 
25 °C. 

Aniona 
Association Constant(M1

) 

2.1 2.3 

Fluoride 17 170 3 600 
Chloride 350 117 
Bromide 10 n/db 
Iodide <10 n/d 
Dihydrogen phosphate 97 <10 
Hydrogen sulfate <10 n/d 

a
 Anions were added as 0.1 M CD2Cl2 solutions of their tetrabutylammonium salts to 10 mM 
solutions of the receptors in CD2Cl2. 

b
 n/d : not determined. 

These findings inspired scientists to investigate the effects of the changes in 

calix[4]pyrrole structure over anion binding property. Towards this end, On the other 

hand, in later experiments it was found that the meso-octaethyl- and meso-octa-n-

propyl-substituted systems (compounds 2.21 and 2.30) displayed anion binding 

affinities that were only slightly diminished as compared to the original meso-

octamethyl system 2.1 [33]. 

In the light of above findings, the introduction of spiro-cycloalkyl substituents has 

been achieved to illuminate the question that if there is a modifying role of different 

substituents. On the other hand, this could affect the ease of the critical 1,3-alternate 

to cone interconversion. To answer these steric and conformational postulations, 

meso-tetraspirocyclopentyl- (2.31) and meso-tetraspirocyclobutyl-calix[4]pyrrole 

(2.32) systems synthesized starting from the acid catalyzed condensation of pyrrole 

with corresponding ketone moiety (Figure 2.20) [33]. 

 

Figure 2.20 : Structures of meso-tetraspirocycloalkylcalix[4]pyrroles. 

After isolation of the receptors 2.31 and 2.32 their anion binding abilities were 

examined using 1H NMR titration in in CD2Cl2 upon various anions. When Table 2.3 

and Table 2.4 were inspected it can be concluded that generalized solution-phase 

anion binding properties decreased in the order Me2>spiro-cyclohexyl>spiro-

cyclopentyl>spiro-cyclobutyl (i.e. 2.1>2.3>2.31>2.32). 
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Table 2.4 : Association constants for the formed between compounds 2.31 and 
2.32 and fluoride, chloride, and dihydrogen phosphate anions. 

Aniona 
Association Constant (M1

) 

2.31 2.32 

Fluoride 3 000 2 300 
Chloride 100 <100 
Dihydrogen phosphate n/db n/d 

a
 Anions were added as CD2Cl2 solutions of their tetrabutylammonium salts to solutions of 
the receptors at 25 °C. 

b
 n/d : not determined. 

These results are consistent with the proposition that the decreased anion binding 

constant exhibited by 2.3, 2.31, and 2.32 relative to parent system 1 is caused by an 

increase in the energetic barrier needed to flip between 1,3-alternate and cone 

conformations. 

Further studies were focused on the preparation of calix[4]pyrroles bearing 

substituted aryl groups in the meso positions to understand the effect of auxiliary 

meso substituents. Such rigid substituents would provide a rigid scaffold around the 

calixpyrrole macrocycle that would not only influence the ease of conformational 

changes but also provide a preorganization for complexation with the anions will be 

studied. For instance, acid catalyzed condensation of pyrrole with p- or m-

substituted acetophenones were carried out [20] in a range of solvents [10]. p-

Bromo and p-hydroxy acetophenones have been utilized and the resulting 

calix[4]pyrrole 2.5 was easily converted to corresponding methoxy derivative 2.6 by 

treatment with iodomethane (Figure 2.21). 

As expected, condensation of pyrrole with acetophenone derivatives yielded a 

mixture of configurational isomers donated as ,,, and to 

indicate the relative positions of bulky aryl substituents or steroidal subunits (Figure 

2.21). All of these isomers were isolated successfully using chromatographic 

methods. X-ray structural analysis of the two aryl systems 2.5 and 2.6 revealed 

receptor-substrate complexes having high walls end well-defined binding cavities 

(see Figure 2.9), at least in the case of the isomers [20]. 
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Figure 2.21 : Calix[4]pyrroles prepared from acetophenone derivatives and 
steroidal compounds. 

The presence of well-defined binding cavity resulted in a greatly enhanced 

selectivity for fluoride anion, relative to chloride and dihydrogen phosphate anions. 

This enhancement reflects the fact that small fluoride anion can fit into the size-

limited binding cavity. 1H NMR spectroscopic anion binding studies supported this 

idea. For example the  and isomers of the receptors 2.5 and 2.6 showed 

relatively significant enhanced association constants against fluoride anion compare 

to the other isomers. It can also be concluded from the data present in Table 2.5, 

the selectivity of the compounds 2.5 and 2.6 is notable compare to parent system 

2.1. 

Table 2.5 : Association constants for the compounds 2.1, 2.5, and 2.6 with anionic 
substrates as determined from 1H NMR spectroscopic titrations carried 
out in acetonitrile-d3 (0.5% v/v D2O) at 22 °C. 

Anion 

Compound 

2.1 
2.5  2.6 

       

F 10 000 10 000 5 000 10 000  460 1 100 10 000 

Cl 5 000 1 400 260 320  100 220 300 

H2PO4
 1 300 520 230 500  100 80 100 

In a more polar solvent then acetonitrile, DMSO-d6, the isomers of the two extended 

cavity receptors 2.6 and 2.33 were found to bind only fluoride anion [21]. However, 

even for this anion, the binding affinities were relatively low. For instance, as 

determined from 1H NMR spectroscopic titrations, the fluoride anion binding affinity 

of 2.33 in DMSO-d6 is about 74 M1. 
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The steroidal calix[4]pyrrole systems 2.35 and 2.36 were reported by Král and 

Sessler in 2002 [34]. Steroid-based compounds were prepared in excellent yields 

from cholic acid derivatives using an efficient synthetic sequence. It was found that 

this calix[4]pyrroles also found to exist in the form of four different configurational 

isomers as in 2.5 and 2.6. In this case, a FAB-MS screening process was used 

whether these systems effect the enantioselective recognition of tartaric acid and 

mandelic acid.  It has been shown that the polyhydroxylated  configurational 

isomer can exhibit enantioselective binding against L-tartaric acid and L-mandelic 

acid. 

 

Figure 2.22 : Calix[4]pyrroles derivatized at meso-positions. 

In another afford to obtain functionalized calix[4]pyrrole derivatives, introduction of 

butanoate group to a calix[4]pyrrole produced as anionic calixpyrrole with interesting 

self-assembly properties [35]. Aforementioned ―meso-hook‖ calix[4]pyrrole 

monoester was prepared via a mixed-condensation of pyrrole with cyclohexanone 

and methyl-4-accetylbutyrate. Chromatographic purification afforded the monoester 

2.37 in 12% yield from a mixture of calixpyrroles containing different number of ester 

functional groups. Consequent hydrolysis of 2.37 yielded the monoacid 2.38 (Figure 

2.22). X-ray crystallographic analysis of 2.37 in the presence of Bu4NF revealed an 

interesting result that the crystals did not contain any fluoride anions bound to NHs 

of calixpyrroles. Instead, this latter was found to be comprised entirely of the 

tetrabutylammonium calix[4]pyrrole carboxylate salt. The X-ray structure of the salt 

revealed that the carboxylate functionality of one calixpyrrole was found to be bound 

to the pyrrolic array of an adjacent calixpyrrole and vice versa. These interactions 

formed a dimeric cyclic structure as shown in Figure 2.23 [35]. 
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Figure 2.23 : X-Ray crystal structure of the calix[4]pyrrole carboxylate dimer. 

Mixed condensation is a powerful method to synthesize asymmetric calix[4]pyrrole 

derivatives. In 2005, our group reported diester and diacid functional calixpyrroles by 

the condensation of pyrrole with both levulinic acid and ethyl pyruvate in the 

presence of HCl as an acid catalyst [25]. Isolation of the products achieved by 

column chromatography yielded   calixpyrroles 2.8 and 2.38 in 48% and 55% 

respectively (Figure 2.22). 

Efforts to obtain functionalized systems as fluorescent anions sensors lead several 

researchers to use mixed condensation as a useful tool. For this purpose various 

calix[4]pyrrole derivatives have been prepared with several functional groups. This 

class of functional or functionalized systems could be named as first generation 

sensors. Intense need for selective sensing of specific anionic species and sensors 

with high affinities towards anions prompted researchers to search for improved 

systems. Towards this end, so called ―second generation‖ calix[4]pyrrole derivatives 

have been synthesized and used as fluorescent  sensors. For instance, 

condensation of Cbz-protected 3-aminoacetophenone, 3-pentanone and pyrrole in 

the presence of BF3Et2O was found to afford the mono functionalized calixpyrrole 

2.39 (Figure 2.22) [36]. 

Once 2.39 was in hand, efforts was then focused on the preparation of second 

generation anion sensors 2.41-2.43. Rigid aromatic spacer units were used so as to 

fix the distance between the receptor and the fluorescence signaling moiety. This 

spacer unit contained either a sulfamide (2.41 and 2.42) or thiourea (2.43) group 

[36]. These spacer units could also provide additional hydrogen bond donor (NHs of 

sulfamide and thiourea) sites to enhance the overall anion binding affinities. Anion 

binding affinities of sensors 2.41-2.43 were calculated via fluorescence quenching 

experiments. 
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Figure 2.24 : Structures of second generation sensors 2.41-2.43. These systems 
contain dansyl (2.41), lissamine-rhodamine B (2.42), and fluorescein 
(2.43) moieties as the fluorescent elements, respectively. 

The results are listed in Table 2.6 revealed that while fluoride anion gave a rise to 

the largest response; sensors 2.41-2.43 are remarkably selective for phosphate and 

pyrophosphate anions relative to Cl. 

Table 2.6 : Affinity constants for sensors 2.41−2.43 and anionic substrates as 
determined in acetonitrile (0.01% v/v water) for sensors 2.41 and 2.42 
and acetonitrile−water (96:4, pH 7.0 ± 0.1) for sensor 2.43. 

Aniona 
Association Constant (M1

) 

2.41 2.42 2.43 

F 222 500 1 000 000 2 200 000 

Cl 10 500 18 200 10 000 

H2PO4
 168 300 446 000 682 000 

HP2O7
3 131 000 170 000 2 000 000 

This selectivity can be explained by the presence of multiple hydrogen bonding 

interactions involving these two nonspherical anions. Such effects, illustrated in 

Figure 2.25 [36], are likely to be particularly pronounced in the case of sensor 2.43 

and pyrophosphate dianion where the coordination of the second anionic center 

within the pyrophosphate by the thiourea moiety is believed to be responsible for the 

dramatic increase in affinity. 
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Figure 2.25 : Schematic representation of the multiple hydrogen bonding 
interactions that are believed to account for the high phosphate and 
pyrophosphate affinities observed for sensors 2.41, 2.42, and 2.43 
respectively. 

Mixed condensation is not the only way to obtain functional calixpyrrole derivatives. 

2+2 condensation was found to be an efficient synthetic methodology to prepare 

difunctional calix[4]pyrrole products. Eichen and co-workers examined a two-step 

synthetic pathway for the preparation of dissymmetric meso-substituted 

calix[4]pyrroles [37].  

 

Figure 2.26 : Difunctional calix[4]pyrroles prepared via 2+2 condensation. 

For instance, acid catalyzed condensation of pyrrole with aromatic ketones such as 

benzophenone, di-(2-pyridyl) ketone, and 9-fluorenone resulted in formation of the 

corresponding dipyrromethanes 2.44-2.46. Once dipyrromethanes of aromatic 

ketones in hand, they were reacted readily with simple aliphatic ketones, such as 
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acetone, in the presence of catalytic amounts of trifluoroacetic acid to yield the 

corresponding difunctional calix[4]pyrroles 2.47-2.49in 56%, 20%, 38% respectively 

(Figure 2.26). 

2.6.2 Derivatization at C-rim 

 

Figure 2.27 : Synthesis of octamethyloctafluorocalix[4]pyrrole. 

The ubiquity of anions in biology has led considerable effort to be devoted to the 

preparation of receptors displaying high binding affinity and selectivity. In this field of 

supramolecular chemistry, much of the emphasis has been on neutral host 

molecules. This is because neutral receptors often show selective recognition than 

charged receptors as the result of more precisely oriented hydrogen bond donors. 

As the so called calixpyrroles is one of the easy to prepare anion receptor their 

powerful analogues could be established via increasing the acidity of pyrrolic NHs. 

Towards this end Sessler and coworkers reported a calix[4]pyrrole derivative having 

fluorine atoms on the -positions of pyrrole rings [38, 39]. Specifically, 3,4-

difluoropyrrole [40] was condensed with acetone in the presence of methanesulfonic 

acid in MeOH. The crude product 2.50 was isolated by flash column 

chromatography and obtained in 55-60% yield (Figure 2.27). 

Table 2.7 : Association constants (Ka, M1) of 2.1 and 2.50 for chloride anion 
(tetrabutylammonium salt) in CH3CN (2% v/v H2O) as obtained from 
ITC analysis and NMR titrations carried out in the corresponding 
deuterated solvents at 22 °C. 

Method 
Association Constant (M1

) 

2.1 2.50 

NMR 7 600 50 000 
ITC 5 400 31 000 

Anion binding studies of the fluorinated calix[4]pyrrole was carried out using both 1H 

NMR and ITC titration experiments. Chloride anion binding studies revealed that 

receptor 2.50 binds chloride anion in around 7 times stronger than the parent 

octamethylcalix[4]pyrrole 2.1 (Table 2.7). Under identical conditions, ITC analysis 
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provide Ka values for 2.1 and 2.50 that matched reasonably well those from the 

NMR titrations. In general, ITC measurements provide relatively higher association 

constants compare to NMR titration techniques [22]. As can be noted, the data 

presented in Table 2.7 reveals lower binding constants than NMR titration results. In 

this study, the anion binding experiments for other anionic species (e.g. bromide, 

iodide, acetate, benzoate etc.) were also inspected  For further detailed anion 

binding results and speculations about the data see reference [38]. 

 

Figure 2.28 : Structure of methoxylatedtetraspirocyclohexyl calix[4]pyrrole. 

In another effort to obtain calix[4]pyrroles with enhanced anion binding ability and 

selectivity -octamethoxy-meso-tetraspirocyclohexylcalix[4]pyrrole (Figure 2.28) has 

been prepared [30]. In this study, the target calixpyrrole 2.51 was synthesized via 

condensation of 3,4-dimethoxypyrrole [41] with cyclohexanone in glacial acetic acid. 

Removal of the acid under vacuum and subsequent purification of crude product by 

column chromatography afforded the compound 2.51 in 8% yield. Solution phase 

anion binding measurements of 2.51 was made using 1H NMR spectroscopic 

titrations in CD2Cl2. The results showed that calix[4]pyrrole 2.51 has lower binding 

affinities when it was compared with the parent system 2.1. In detail, compound 2.51 

binds fluoride and chloride anions with a lower affinity. From these results, it has 

been concluded that this may be due to the electron-donating ability of eight C-rim 

methoxy groups causing a decrease in the acidity of pyrrolic NH protons hence 

reducing anion binding ability of 2.51. 

2.7 Applications of Calix[4]pyrrole Derivatives 

Importance of the anions in various interdisciplinary fields and other practical 

considerations has led to spectacular growth within the anion recognition field. 

However, the weak nature of most anion–receptor interactions, particularly in the 

case of neutral anion receptor systems, reflecting the relatively low charge density of 

most anions [11], makes the design of selective and effective receptors one of 
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ongoing challenge. Thus, while a number of research groups have designed elegant 

anion receptors, many of which have proven to be quite effective, there remains a 

need for simple, easy-to-make anion binding systems. In this context, the so-called 

calix[4]pyrroles have emerged as molecules of particular interest [10]. This is 

because the core structure may be accessed in one synthetic step and a large 

number of modifications are readily conceivable. Thus, several putative practical 

application areas have been developed. 

2.7.1 Calix[4]pyrrole-based chromatographic separation systems 

Selective recognition of guest molecules is closely related to the selective 

separation in chromatography. Host molecules can be added to a mobile phase as 

new additives, or covalently attached to a solid support to form a new stationary 

phase. The covalent attachment of molecular receptors to solid supports provides 

an opportunity to explore receptor-substrate interactions.  

 

Figure 2.29 : Sessler‘s calix[4]pyrrole modified silica gels. 

Up to date, several efforts have been devoted to develop cation separation systems. 

However, it has been less frequently applied in the field of anion recognition and 

separation. Some examples of anion receptor-based stationary phases are 

metallated porphyrin [42] and sapphyrin-modified silica gels [43, 44]. Calix[4]pyrrole-

modified silica gels 2.52 and 2.53 have been reported by Sessler [45] and applied 

as new solid-phase HPLC support for investigating the binding characteristics of 

calix[4]pyrroles with anionic and neutral substrates (Figure 2.29). It also provided 

separation of nucleotides, oligonucleotides, N-protected amino acids and 

perfluorinated biphenyls. 
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Figure 2.30 : Zhou‘s calix[4]pyrrole-modified silica gels. 

Zhou designed -hooked calix[4]pyrroles and attached these compounds on to silica 

gel solid support (Figure 2.30). These modified silica gels 2.54 and 2.55 supported 

on HPLC column and were studied to separate amino acids, phenols, 

benzenecarboxylic acids, and some medicines along with inorganic anions including 

F, Cl, Br, and I. As it can be seen in Figure 2.31 (Peaks; 1: DNP-serine; 2: DNP-

glycine; 3. DNP-alanine; 4: DNP-valine; 5: DNP-leucine; 6: DNP-OH; 7: DNP-

tyrosine; 8: DNP-phenylalanine; 9: DNP-glutamic acid) [46], calix[4]pyrrole-modified 

silica gel 2.55 is able separate dinitrophenyl (DNP) derivatives of amino acids.  

 

Figure 2.31 : HPLC separation of amino acids on gel 2.55 column. 

2.7.2 Calix[4]pyrrole based optical sensors 

The syntheses of novel host devices designed to sense and report the presence of a 

particular guest substrate attracting considerable attention. On the other hand, this 

signaling provides information about not only presence but also specific 

concentration of a particular guest. A response, detectible by visual or fluorescence-
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based means, is produced by the perturbation of the electronic properties of reporter 

groups upon anion complexation. The main approach that has been used in the 

production of calix[4]pyrrole based optical sensors, is based on the covalent 

attachment of a colorimetric or fluorescent reporter unit to the calix[4]pyrrole 

skeleton. Throughout this end, a variety of known calix[4]pyrrole building blocks 

were successfully attached to various chromophores and fluorophores. 

2.7.2.1 Anthracene linked calix[4]pyrroles 

Fluorophore group containing system consisted of anthracene groups covalently 

attached to the core calix[4]pyrrole macrocycle via amide linkage. Mono-acid 

derivative of octamethylcalix[4]pyrrole was reacted with 1-aminoanthracene using 

dicyclohexylcarbodiimide (DCC) and hydroxybenzotriazole (HOBt) in DMF to afford 

a calix[4]pyrrole-anthracene conjugate 2.58. 

 

Figure 2.32 : Synthesis of anthracene linked calix[4]pyrroles. 

Compounds 2.59 and 2.60 was prepared by coupling the calixpyrrole mono-acid 

2.57 with 1-aminoanthracene in DMF in the presence of excess Et3N [8]. Both 

calixpyrrole 2.58 and this system possesses a direct linkage between calix[4]pyrrole 

anion receptor sites and anthracene fluorophores that makes the whole systems 

fluorescent sensors. 

When these systems exposed to titration with different anions (as their 

tetrabutylammonium salts) a fluorescence quenching was observed (Figure 2.33) 
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[47]. This is because that the complexation of the anion and the calix[4]pyrrole site 

of fluorescent receptor causes electron transfer to the anthracene fluorophore via 

amide linkage. Anion binding affinities calculated via fluorescence quenching 

revealed that anthracene linked calixpyrrole 2.58 seems to be the most sensitive 

sensor against anions among the three conjugates. For instance, when 2.58 titrated 

with tetrabutylammonium fluoride a dramatic quenching was observed depending on 

the equivalence of fluoride anion. The high sensitivity of the receptor 2.58reflects the 

direct connection of anthracene group to the calix[4]pyrrole core via an amide bridge 

while other systems having a methylene linker between calixpyrrole and amide 

bridge. 

 

Figure 2.33 : Fluorescence spectra of calix[4]pyrrole 2.58 in CH2Cl2 showing the 
changes induced upon the addition of increasing quantities of 
tetrabutylammonium fluoride. 

2.7.2.2 1,3-Indane-based calix[4]pyrroles 

Calix[4]pyrrole anion sensors showing strong intramolecular charge transfer were 

synthesized via Knoevenagel condensation of 2-formyl-octamethylcalix[4]pyrrole 

2.16 with 1,3-indanone derivatives by Anzenbacher et al [48]. 2-Formyl-

octamethylcalix[4]pyrrole 2.16 was prepared with the Vilsmeyer reagent (POCl3, 

DMF in CH2Cl2 at 0 °C) in 44% yield (Figure 2.34). 
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Figure 2.34 : Synthesis of 1,3-indane based calix[4]pyrroles 

The push−pull nature of the chromophores (indanylidene units) provides here 

amplifying the signaling process. Hence, the hydrogen bonding between an anion 

and the electron-rich pyrrole results in intramolecular charge transfer from pyrrole 

(push) to the electron-poor 1-indanylidene moiety, thus enhancing the color 

transitions (Figure 2.35). 

 

Figure 2.35 : Anion−hydrogen bonding results in partial charge transfer from 
electron-rich pyrrole to electron-poor indanylidene. 

Quantitative absorption spectroscopic analysis of receptors 2.61-2.64 reveals that 

before and after the addition of anion salts showed a dramatic change in color in the 

case of fluoride, acetate, and dihydrogen phosphate. This result is in good 

agreement with the general calix[4]pyrrole behavior against anions bound strongly to 

calix[4]pyrrole. In contrast, weak or no color changes have been observed in the 

case of chloride, bromide, and nitrate anions which octamethylcalix[4]pyrrole has 

lower anion binding affinities. Figure 2.36 shows the different responses of the 

compound 2.61 against fluoride and bromide anions [48]. While 2.61 changes its 

color when treated with fluoride, there is no significant change when it was titrated 

with iodide. 
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Figure 2.36 : Titration of receptor 2.61 with fluoride and iodide anions. 

Another example of 1,3-indane based optical calix[4]pyrrole receptor reported by 

Sessler and co-workers. A strapped calix[4]pyrrole bearing 1,3-indanedione group at 

-pyrrolic position has been synthesized and studied as a ratiomeric cyanide-

selective chemosensor and as an anion sensor [49]. The starting strapped 

calixpyrrole 2.65 was subjected to Vilsmeier-Haack formylation giving two different 

-monoformylated regioisomers 2.66 and 2.67.  Knoevenagel condensation of 

2.66and 2.67 with 1,3-indanedione afforded the isomeric products 2.68 and 2.69 

(Figure 2.37). 

 

Figure 2.37 : Synthesis of receptors 2.68 and 2.69. 

Anion binding properties of receptor 2.68 was studied with both 1H NMR 

spectroscopy and UV-vis spectrophotometer. While receptor 2.68 has a max around 

430 nm when titrated with tetrabutylammonium fluoride significant blue shift has 

been observed. Quantitative absorption spectral analysis of 2.68 revealed an 

association constant for F- corresponding to 1.25 x 106 which as high as 

octamethylcalix[4]pyrrole. During the time dependent UV-vis spectral analysis of 

receptor 2.68 a color bleaching was observed upon addition of CN- anion. 

Experimental efforts revealed that this color bleaching induced by cyanide addition 

to vinyl subunit. 
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2.7.2.3 Tetra-TTF calix[4]pyrrole 

Attaching of redox-active units into the host molecules is one means of enhancing 

the guest recognition process via increased donor-acceptor interactions. This 

enhancement especially needed if the host-guest interaction is constructed through 

weak, non-covalent interactions and if host is a neutral species. Up to date there are 

few examples of neutral substrate binding calix[4]pyrroles [50, 51]. Nielsen et al. 

reported a tetra-TTF calix[4]pyrrole (2.70) acting as an effective receptor for neutral 

electron acceptors, such as 1,3,5-trinitrobenzene (2.71), tetrafluoro-p-bezoquinone, 

tetrachloro-p-benzoquinone, and p-benzo-quinone, in solution [9]. The synthesis of 

tetra-TTF calix[4]pyrrole is achieved by treating the monopyrrole-TTF [52] with an 

excess of TFA in a mixture of CH2Cl2 and acetone. This gave the tetra-TTF 

calix[4]pyrrole as a yellow solid in 18% (Figure 2.38). 

 

Figure 2.38 : Synthesis of tetra-TTF calix[4]pyrrole. 

The interactions between host 2.70 and the electron-deficient guest 1,3,5-

trinitrobenzene (2.71) was studied in CH2Cl2 solution using UV−vis spectroscopy. 

Addition of 2 equivalent of 41 to a CH2Cl2 solution of 2.70 resulted in an fast color 

change from yellow to green and the appearance (Figure 2.39) [9] of a charge 

transfer absorption band centered at λ = 677 nm in the UV−vis spectrum. This 

observation is thought to reflect the presence of charge transfer interactions 

between the donor and the acceptor units present in 2.70 and 2.71, respectively. 

Addition of chloride ions to the solution of the complex 2.70+2.71 resulted in a 

competition between the chloride ions and the electron-deficient guest for hydrogen-
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bonding interactions with the NH protons of 2.70 and therefore a competition 

between the 1,3-alternate conformation and the cone conformation.  

 

Figure 2.39 : Absorption spectra of tetra-TTF calixpyrrole under different 
conditions.. 

However, because of the high binding constant between 2.70 and chloride ions, the 

equilibrium was largely shifted in favor of the cone conformation. This, in turn, led to 

the release (Figure 2.40) [9] of the electron-deficient guest 2.71 since the cavities 

present in 2.70 in its 1,3-alternate conformation were no longer available for binding. 

Removing the TBACl salt from CH2Cl2solution by washing with H2O reestablished 

the charge transfer complex 2.70+ 2.71, and as a consequence, the green color of 

the CH2Cl2 solution was regenerated. 

 

Figure 2.40 : Change in conformation associated with the addition/removal of 
chloride anion to a CH2Cl2 solution of the tetra-TTF calix[4]pyrrole 
2.70 and the electron-deficient guest 2.71 (represented by the 
distorted rectangle). 

2.7.2.4 Dipyrrolylquinoxaline strapped calix[4]pyrrole 

A calixpyrrole having dipyrrolylquinoxaline moiety can be shown as the another 

example of calix[4]pyrrole based anion sensors. It is known that 2,3-dipyrrol-2‗-yl-6-

nitroquinoxaline 2.73 was demonstrated as a colorimetric anion sensor [53]. From 

this point, combining this class of molecules with calixpyrroles could serve novel 

colorimetric anion sensors that generally display affinity and selectivity toward 
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anions that are significantly enhanced relative to simple calix[4]pyrroles. The 

synthesis of receptor 2.75 starts with ketone 2.72, a species that was prepared by 

the reaction of oxalyl chloride with 2 equivalent of 2-(3-oxobutyl)pyrrole. Once in 

hand, 2.72 was reacted with 1,2-diamino-4-nitrobenzene in the presence of acid to 

afford bisketone 2.73 in 24% yield. Treatment of this latter intermediate with neat 

pyrrole in the presence of trifluoroacetic acid afforded the bis-dipyrromethane 2.74 in 

74% yield. Acid-catalyzed condensation of 2.74 with acetone gave the desired 

strapped calix[4]pyrroles 2.75 in 7% yield (Figure 2.41) [54]. 

 

Figure 2.41 : Synthesis of dipyrrolylquinoxaline strapped calix[4]pyrrole. 

Initial studies of the anion binding properties of receptor 2.75 were carried out in 

CD3CN/DMSO-d6 (9:1 v/v) using proton NMR spectroscopy (Figure 2.42). For 

instance, the signals corresponding to the pyrrole NH protons on the calix[4]pyrrole 

moiety, originally appearing at 7.47 ppm, were found to shift to 12.32 ppm and to 

undergo a splitting; such behavior is completely consistent with the presence of a 

centrally bound 19F-containing fluoride anion. Likewise, the pyrrole NH signals on 

the strap, which were found to resonate originally at 9.92 ppm, were seen to shift to 

10.34 ppm but to undergo relatively little, if any, splitting in the process. In addition, 

the β-pyrrole CH signals on the calix[4]pyrrole moiety were seen to shift from 

5.99−5.96 to 5.57−5.54 ppm. Finally, the β-pyrrole CH signals of the strap 

underwent a shift from 6.54−6.49 and 5.80−5.74 to 6.85−6.80 and 5.92−5.90 ppm, 

respectively. 

The strapped calixpyrrole 2.75 undergoes color change upon addition of various 

anions. Especially, it shows significant color change in the case of fluoride anion. 

Quantitative UV-vis absorption analysis of the compound 2.75 and fitting the 

associated changes to a 1:1 binding profile according to the standard methods 

revealed that the strapped calix[4]pyrrole 2.75 binds fluoride anion much more 

stronger than octamethylcalix[4]pyrrole and the other anions inspected. However, 
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the association constants for chloride and bromide anions smaller than those of the 

octamethylcalix[4]pyrrole. 

 

Figure 2.42 : 1H NMR spectral changes of receptor 2.75 seen upon titration with F− 
(as its tetrabutylammonium salt) in CD3CN/DMSO-d6 (9:1 v/v). 

2.7.2.5 Chromogenic units attached N-confused calix[4]pyrroles 

Recently, works on electrophilic aromatic substitution of calixpyrroles have led 

several research groups to investigate various electrophiles, including Vilsmeier–

Haack formylation agent (electrophilic iminium cation), tetracyanoethane, and 

diazonium salts to obtain chromogenic calixpyrrole derivatives. Substitution at the -

position of calix[4]pyrroles is often difficult and separation of the product mixtures is 

very problematic. On the contrary, substitution at the -position of the pyrrole ring is 

easier. Moreover, in a recent work it has been shown that octamethylcalix[4]pyrroles 

and its corresponding N-confused isomers could show unique features stemming 

from a different structure and different pKa of hydrogen-bond donors [55]. 

Anzenbacher and co-workers reported the synthesis, structures, and anion-binding 

properties of chromogenic N-confused calix[4]pyrroles [56]. The structures of the 

isomers 2.76 and 2.77 are shown in Figure 2.43.  

Azo-substituted 2.76 was prepared by electrophilic substitution using 4-

nitrobenzenediazonium tetrafluoroborate in THF in the presence of triethylamine 

yielded 2.76 in 30%. Tricyanoethylene substituted 2.77 was also prepared by 
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electrophilic substitution of N-confused calix[4]pyrrole with tetracyanoethylene in 

36% yield. 

 

Figure 2.43 : Modification of N-confused calix[4]pyrroles. 

Authors reported that 1H NMR spectrum of the compound 2.77 showed only three 

broad pyrrole NH singlet signals instead of four broad pyrrole NH singlets. Absence 

of fourth NH signal indicated a substitution of the -pyrrole position with the 

tricyanoethylene moiety. NMR spectra also suggested that the compound 2.77 

shows an intramolecular cyclization with tricyanoethylene moiety with the confused 

pyrrole nitrogen. They observed a sharp singlet at 11.16 ppm corresponding to and 

imine proton. The intramolecular cyclization product containing bicyclic pyrrolizin-3-

ylideneamine moiety was also supported by single crystal X-ray analysis (Figure 

2.77). 

 

Figure 2.44 : Tautomer form of 2.77. 

Addition of anions to DMSO solutions of receptors 2.76 and 2.77 induced color 

changes which were supported by UV-vis spectrophotometer. For instance, upon 
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addition of 10 equivalents of fluoride and chloride anions, in the form of their 

tetrabutylammonium salts, to 5× 10-5 M solutions of 2.77 resulted dramatic color 

changes. The same trend was also observed for the receptor 2.76 (Figure 2.45) 

[56]. 

 

Figure 2.45 : Absorption spectra of 2.76 and 2.77 upon addition of fluoride and 
chloride anions. Insets: Solutions of 2.76 and 2.77 in the absence and 
presence of anionic species. 

2.7.3 Calix[4]pyrrole based electrochemical sensors 

The development of redox-active receptors containing a guest binding site 

connected to a redox-active reporter group is one of the important filed of 

supramolecular chemistry.  

2.7.3.1 Ferrocene appended calix[4]pyrroles 

 

Figure 2.46 : Ferrocene appended calix[4]pyrrole derivatives. 

As a part of calixpyrrole chemistry, appending anion receptor to a redox-active 

ferrocene group was achieved by Sessler et al [57]. It was thought that this would 

allow the solution phase anion binding properties of calixpyrroles to be studied using 

electrochemical techniques. By this purpose, aminomethyl-ferrocene was coupled to 

calix[4]pyrrole mono-acid derivatives using the BOP amid coupling reagent. Both 



40 

meso-bridged and C-rim bridged calix[4]pyrrole derivatives 2.78 and 2.79 was 

successfully prepared while an alternative system, 2.80, was synthesized via a 

mixed condensation of pyrrole, cyclohexanone, and acetylferrocene [58]. These 

systems are shown in Figure 2.46. 

Table 2.8 : Association constants and Fc/Fc+ redox potentials for compound 2.80 
with various anionic guest species. 

Aniona Ka(M
-1

)
b E1/2(Fc/Fc

+
) (mV) versus Ag/AgCl

c E(mV) 

No anion n/a +444 n/a 

F 3 375 +368 -76 

Cl 3 190 +408 -36 

Br 50 +432 -12 

H2PO4
 304 +350 -100 

HSO4
 n/a +436 <10 

a 
Used in the form of their (n-Bu4N)

+
 salts. 

b
 Errors estimated<20%. Measured in acetonitrile-d3/DMSO-d6 9:1 (v/v). 

c
 E1/2 values obtained from squarewave and cyclic voltammetric techniques. 

Binding studies of the compound 2.80 were carried out using 1H NMR titration 

techniques in DMSO-d6/acetonitrile-d3 (1:9 v/v), and the association constants being 

elucidated using the EQNMR computer program [59]. The results are shown in 

Table 2.8 and reveal that compound 2.80 coordinates fluoride, chloride and 

dihydrogen phosphate in the solvent mixture studied. It was reported that the NH 

proton resonances broadened during the titrations making them unsuitable for the 

calculation of the association constants. However, one ferrocene CH resonance 

shifted downfield allowing for the calculation of Ka and providing evidence for the 

formation of CH···anion hydrogen bonds in solution (Figure 2.47). 

 

Figure 2.47 : Schematic representation of the ferrocene CH and calixpyrrole NH 
hydrogen-bonding interactions of the receptor 2.80. 

Electrochemical studies of the receptor 2.80 were carried out in acetonitrile/DMSO 

(9:1 v/v) and the results are shown in Table 2.9 [47]. Among the halide anions, 

binding of fluoride induces the largest cathodic shift in the ferrocene/ferrocenium 
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couple (76 mV), followed by chloride (36 mV) and bromide (12 mV). Dihydrogen 

phosphate causes to a shift cathodically by approximately 100 mV. 

Table 2.9 : Association constants for compounds 2.78 and 2.79 in DCM and 
electrochemical parameters obtained from CV measurements. 

Aniona 
2.78 2.79 

Ka(mol
1
 dm

3
)
b E1/2(mV)

c E(mV)
d Ka(mol

1
 dm

3
)
b E1/2(mV)

c E(mV)
d 

No anion n/a 511 n/a n/a 503 n/a 

H2PO4
 40e 502 -9 40 534 31 

F n/df 525 14 1496 566 63 

Cl 202 718 207 444 481 -22 

a
 Used in the form of their (n-Bu4N)

+
salts. 

b 
Association constants for anion binding; recorded in dichloromethane-d2 errors <20%; 

determined from () (ppm) NH. 
c
 Determined in dichloromethane containing 0.1 mol dm

−3
 (n-Bu4NPF6) as the supporting 

electrolyte. Solutions of 41/42 were 5×10
−4

mol dm
−3

 and potentials were determined with 
reference to Ag/AgCl. 

d
 Shifts determined by square wave voltammetry. 

e
 This value was determined using the chemical shift of the -CH of the pyrrole since the 
pyrrole-NH signal became too broad to be followed accurately during the titration. 

f
 NMR signals became very broad in this case so that an accurate determination of this 
value was impossible. 

Association constants of 2.78 and 2.79 were also elucidated using 1H NMR 

spectroscopic titration methods. Results showed that the expected affinity series 

inferred to F>Cl> H2PO4
. Both 1H NMR titration and electrochemical experiment 

results for the receptors 2.78 and 2.79 are presented in Table 2.9. 

2.7.3.2 Calix[4]pyrrole modified electrodes 

 

Figure 2.48 : Calix[4]pyrrole appended -free pyrrole derivatives. 

An incentive method to the production of calixpyrrole modified electrode is by the 

production of an electropolymerized matrix formed via a receptor bound 
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electropolymerizable moiety. It is well known that pyrrole rings that do not carry 

substituents in the 2- and 5-positions are polimerizable electrochemically via either 

potential cycling or chronoamperometry. Inspiring from this, chemically modified 

electrodes were prepared from calix[4]pyrrole monomers containing -free pyrrole 

units. -Free pyrrolic compounds 2.81 and 2.82 (Figure 2.48) were synthesized 

using the similar methods those affiliated to prepare 2.78 and 2.79. Precisely, they 

were prepared via coupling the relevant calix[4]pyrrole mono-acid compounds with 

3-aminopropylpyrrole using the BOP amide coupling reagent [60]. 

 

Figure 2.49 : Electrochemical copolymerization of pyrrole and calix[4]pyrrole 

appended -free pyrroles. 

After preparation of the calix[4]pyrrole appended -free pyrrole derivatives 2.81 and 

2.82, efforts were devoted to prepare their conducting polymers via electrochemical 

polymerization techniques. First attempt was made by using cyclic voltammetric 

methods. Unfortunately this process did not produce a conducting polymer, as 

judged from the fact that current waves prior to monomer oxidation did not seen to 

increase with the number of cycles. In contrast, during the forward and backward 

potential scans the current was seen to decrease with each consecutive cycle. 

Controlled potential electrolysis was also utilized to obtain desired polymer films but 

this method was also failed. Authors speculated that this is due to the unfavorable 

steric interactions associated with N-substituents precluding film growth. After 

experiencing an unsuccessful attempt, polymerization of the calixpyrrole monomers 
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was carried out in the presence of pyrrole which thought to act as a spacer unit for 

reducing the potential steric interactions (Figure 2.34). The CV results of 2.81 + 

pyrrole and 2.82 + pyrrole revealed that during potential cycling an increasing 

current was observed indicating the in situ generation of conducting polymers. To 

confirm that co-polymerization of pyrrole and calixpyrroles had indeed occurred, 

CVs of the presumed co-polymers were compared to those obtained from a solution 

containing an equivalent concentration of pyrrole. It was found that both a higher 

initial oxidation current and a faster current increase with the number of cycles were 

observed in the case of the mixed polymer systems, results that are consistent with 

the participation of the calix[4]pyrrole subunits in the polymerization process. 

2.8 Measurement Methods of Anion Binding Constants 

In the field of anion receptor chemistry, a variety of techniques have been employed 

to measure the association constants of hosts (receptors) interacting with guests 

(anions). Before introducing various measurement methods, it is necessary to 

consider a basic question: ―What is an association constant?‖ In terms of the host-

guest terminology, association constants generally expressed as stability, binding, 

and equilibrium constants. Based on the following chemical equilibrium, 

 

(2.1) 

It is generally considered that when the rates of the forward and reverse reactions 

are equal (i.e., equilibrium is attained), the concentration of the host, guest, and 

host-guest complex will remain constant with time. Under these conditions, the 

equilibrium expression can written and the corresponding association constant (Ka) 

can be calculated. For the simple equilibrium given above, the general expression of 

Ka is: 

    
    

      
  

  

  
  

 

  
 (2.2) 

,where [H] is the concentration of the free host, [G] is the concentration of free 

guest, [HG] is concentration of the pure host-guest complex, k1 the rate constant for 

the forward reaction, k2 is the rate constant for the back reaction, and Kd is the 

dissociation constant. To measure quantitative Ka values, so-called titrations are 

often performed. These are carried out by using one or more of a variety of 

spectroscopic or calorimetric tools, including 1H NMR spectroscopy (or spectroscopy 
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involving another NMR detectable nuclei), UV-vis absorption spectroscopy, 

fluorescence emission spectroscopy, or isothermal titration calorimetry (ITC). Each 

of these techniques looks at a different part of the binding process and/or overall 

equilibrium. For instance, titrations involving 1H NMR spectroscopy that involved 

monitoring the NH proton shifts in, e.g., amide- or pyrrole-type receptors, provide 

insights into the direct interaction of the anion with the hydrogen bond donor 

subunits of the receptor. By contrast, UV-vis and fluorescence spectroscopy reflect 

changes in the optical properties of the light absorbing/emitting portions of the 

receptor (including any appended chromophore), whereas ITC provides information 

about the change in the energy of the system as a whole. These techniques often 

operate over different sensitivity ranges, typically 10-3 M for NMR spectroscopy, 10-4 

for ITC, and 10-5 or lower for UV-vis and fluorescence spectroscopy.  

Measurements are often made in a range of different solvents and the polarity of the 

solvent often has a direct effect on the binding affinities, with, in general, the 

affinities being considerably higher in less competitive aprotic organic solvents. In 

such latter solvents, studies involving tetrabutylammonium anion salts are common. 

This is due to the high solubility of these salts in organic solvents. However, these 

salts are difficult to keep dry, being in some cases extremely hygroscopic. In 

addition to concerns involving salt purity, assumptions are made about ion pairing in 

solution that may not be valid. For example, tetrabutylammonium is generally 

regarded as an ‗innocent‘ counter cation with little tendency to form ion pairs in 

solution. This assumption is incorrect and, in fact, it has been suggested that 1 mM 

solutions of tetrabutylammonium chloride in dichloromethane are less than 20% 

dissociated at 22°C [61]. Therefore, going from one solvent to another can change 

not only the strength of the interaction between the anion and receptor, but also the 

degree of ion pairing in solution between the anion and its counter cation. What this 

means is that when comparing data sets of binding constants across a range of 

receptors, it is essential that the binding studies be conducted under identical 

conditions (e.g., temperature, solvent, concentration, and even measurement 

method).  

In this part of the thesis a brief discussion of a few analytical techniques commonly 

used in the area of calix[4]pyrrole-based anion recognition, namely NMR, UV-Vis, 

and fluorescence spectroscopies, as well as ITC measurements is provided, along 

with some of the underlying assumptions inherent to their practical application.  
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2.8.1 Sample preparation 

To achieve accurate association constants, it is very important to choose an 

appropriate concentration range for the sample being subject to analysis. In the 

case of standard 1H NMR spectroscopic titrations, wherein the change in the 

chemical shift of one or more proton signals are monitored as a function of anion 

(actually anion counter cation salt) concentration (vide infra), Wilcox proposed that 

the most reliable titration curves can be obtained when the concentration range of 

the sample is chosen to be in a numeric range of 1 to 10 times the dissociation 

constant Kd; units of M. In other word, Ka × [S] = 1 to 10, where Ka is the association 

constant and [S] is the molar concentration of the sample [62]. However, a 

concentration range given by Ka × [S] = 10 to 50 has been suggested as being the 

best for ITC-based studies. To allow for a correct comparison of results obtained 

from these two methods, it is clear that choosing a proper (i.e., overlapping) sample 

concentration from the outset of the study will be helpful. 

2.8.2 NMR spectroscopy 

NMR spectroscopic titrations constitute one of the techniques most widely used to 

determine the association constants (Ka) for host-guest interactions. The advantage 

of NMR compared to other spectroscopic techniques (i.e., UV-vis and fluorescence) 

is that more extensive structural information is potentially forthcoming with regard to, 

e.g., the nature of the host-guest interaction. On the other hand, its low detection 

limit blocks reliable measurement of strong host-guest interaction cases (i.e., Ka > 

105 M-1). Often, the concentration for NMR titration (i.e., ~ 10-3 M) is too high to 

make the proper host or guest solution.  

Various equations have been developed to facilitate the fitting process that have 

paralleled (or at least taken advantage of) advances in computer technology. For 

instance Wilcox and Cowart reported a curve fitting equation (2.3) in 1986 [62]. This 

equation was designed for calculation of Kd (cj. 1/Ka) values for the interaction 

between a synthetic host and a guest. 
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Here, [H]t is the total concentration of host, which in the experimental set-up for 

which this equation is designed is also the compound whose resonances (one or 

more) are being monitored by NMR spectroscopy; [G]t is the total concentration of 

the guest, and δ is chemical shift. This equation can be only applied to systems 

where a 1:1 host-guest stoichiometry pertains and the establishment of equilibrium 

is fast on the NMR time scale. Usually, both [H]t and [G]t are varied linearly at the 

same time. However, this equation may also be applied if only one of term (i.e., just 

[H]t or just [G]t) is varied and the other kept constant. 

Another equation (2.4) for the calculation of 1:2 host-guest stoichiometry was 

reported by Connors providing a different approach for line fitting [63]. 
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2.8.3 Optical methods 

As one of the most popular methods, optical techniques have broad detection limits 

over 107 M-1 and is easy and quick process to measure association constants. 

However, it is recommended performing many background experiments as much as 

possible. There are many facts having the ability of changing color of host or guest 

solution (i.e., pH, aggregation of host or guest, and so on). Particularly, some of 

anions are basic and most of neutral anion receptors have acidic protons. Even, it is 

small acid-base interaction; their effect toward optical changes during the titration 

cannot be ignored. Additionally, either host or guest molecule must have 

chromophore units; otherwise no spectral change will be detected.  

2.8.3.1 UV-vis spectroscopy 

Spectroscopy in the ultraviolet and visible regions of the spectrum involves 

observing transitions associated with the excitation of electrons. An electron is 

excited if the frequency of the incident electromagnetic radiation matches the 

difference in energy between two electronic states. This energy difference depends 

on the electronic structure and environment of the molecule being investigated. 

Bouguer, Lambert, and Beer discovered a relationship between the concentration of 

sample, the path length of the sample, and the absorbance A [64]. This relationship 

is expressed by the Lambert-Beer-Bouguer law: 

       (2.5) 



47 

, where A is the absorbance,  is absorption coefficient, and c is the concentration of 

studied specie. 

Conors introduced two simple equations (2.6 and 2.7) for equilibriums involved to 

1:1 and 1:2 host-guest binding motifs. 

For a 1:1 host-guest interactions, 

  

 
 

            
        

 (2.6) 

, where A = A – A0 ,  = HG - H - G, [H]t is the total concentration of host, [G]t is 

the total concentration of guest, and   is path length of solution studied in. 

For a 1:2 host-guest case, 
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, where ΔA = A – Ao, Δ1= HG - H - G, and Δ2= HG2 - H - G. 

2.8.3.2 Fluorescence spectroscopy 

In comparison to methods based on absorption spectrometry (i.e. UV-vis), the use of 

corresponding fluorescence techniques offers an enhancement in sensitivity by a 

factor of roughly 100-1000. Ideally, the Lambert-Beer-Bouguer law is fully applicable 

to an understanding of fluorescence titrations. This is because the fluorescence 

intensity (F) is directly related to the concentration of sample (c) of fluorescent 

molecules in solution, at least at low concentrations (                , 

where I0 is the intensity of the excitation source, ε is the molar absorption at the 

excitation wavelength,   is the path length of solution, and ø is the fluorescence 

quantum yield). 

Like UV-vis titration methods, the use of fluorescence quenching to determine Ka 

values has been extensively studied. Among the typical equations used for the 

treatment of typical fluorescence quenching-based titration data is the one 

introduced by Connors (2.8) [63]. 
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, where the ―constant‖ k represents a complicated mix of several factor and F0 is the 

initial fluorescence intensity. 

2.8.4 Isothermal titration calorimetry 

Calorimetry is one of the oldest experimental techniques in chemical science; the 

most familiar example is the ice calorimeter, already in use by the end of 18th 

century and developed further into a precision instrument about 100 years later by 

Bunsen. For the past several decades, basically three different types of 

microcalorimeters, bath, flow, and titration calorimeters, have been developed and 

used. The term ―isothermal titration calorimetry‖ is commonly used for calorimeters 

designed for titrations carried out under essentially isothermal conditions. The 

meaning of ―isothermal‖ is normally an indication that the temperature of the 

calorimeter is precisely constant with aid of electrical compensation and other 

methods. The ITC either measures directly the binding thermodynamics (i.e., ΔH, 

TΔS, ΔG, and Ka) of host-guest interactions or permits their ready calculation by 

detecting the heat absorbed (endothermic process) or released (exothermic 

process) at constant temperature. In fact, it is only ΔH that is obtained directly, with 

ΔG, and Ka coming as the result of modeling the experimental data to a binding 

profile, a process that permits the calculation of TΔS. Thus, the choice of curve fit 

methods and model(s) for the proposed equilibrium events underlying the 

experimental observations is absolutely critical. If this is not done correctly, ITC can 

produce numbers that have little physical meaning. 

Comparing to the other methods, the detection limit of ITC is located between NMR 

and optical method. However, ITC can detect system globally and provide 

thermodynamic parameters with association constants. Therefore, trivial interaction 

or factor can give a rise huge interruption for measuring host-guest interactions. In 

other words, the titrations need to be performed under well-fined conditions. 

Basic schematic illustration of the ITC instrument (A) inset to Figure 2.50 [65], 

showing the two cells (sample and reference) surrounded by the thermostatic jacket, 

the injection syringe that also works as stirring device, and the computer-controlled 

thermostatic and feedback systems (using Peltier and resistor devices as sensor 

and actuator subsystems). (B) Example of a typical ITC experiment. The top panel 

shows the sequence of peaks, each one corresponding to each injection of the 

solution in the syringe. The monitored signal is the additional thermal power needed 

to be supplied or removed at any time to keep a constant temperature in the sample 

cell and as close as possible to the reference cell temperature. This example 
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corresponds to an endothermic binding. The bottom panel shows the integrated heat 

plot. The areas under each peak, calculated and normalized per mole of ligand 

injected in each injection, are plotted against the molar ratio (quotient of the total 

concentrations of ligand and macromolecule in the sample cell). From this plot, and 

applying the appropriate model, the thermodynamic parameters of the binding can 

be obtained: binding affinity, binding enthalpy, and stoichiometry. 

 

Figure 2.50 : Basic schematic illustration of the ITC instrument. 

Although several approaches have been reported for curve fitting to the data 

obtained from an ITC experiments, in this dissertation, following equations provided 

by MicroCal VP-ITC manual have been used to evaluate both the various ITC-based 

Ka values and associated thermodynamic parameters. According to this, total heat 

content Q was calculated by; 
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, where Q is the total heat content, V0 is the active cell volume. Heat content of every 

single injection calculated by; 
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, where ΔVi is the injection volume and ΔQi is the heat content from the ith injection. 



50 

Four steps are required to complete the analysis once experimental data is in hand. 

The first involves in putting initial guesses for the values of Ka, and ΔH into equation 

2.9; the second, is the calculation of ΔQ(i) for each injection and comparison of 

these values with the observed heats (equation 2.10); the third step involves in 

putting improved values of Ka and ΔH to equation 2.9 and the fourth step involves 

repeating these first three steps iteratively until no further significant change in the 

value of the parameters is observed. This process including multiple binding cases 

is now automated and may be done by computer; in the case of the present work, it 

was performed by Origin® software provided by the manufacturer. 

2.8.5 Job Plots 

Job‘s plot also known as continuous variation plot is a well-known and useful tool for 

the determination of stoichiometries for any kind of complexes. This method finds 

application in various analytical techniques including 1H NMR, UV-vis, and 

fluorescence spectroscopy. In each case, the Job plot is based on the spectral 

changes obtained for either host or guest.  

Let assume a generic reaction, 

 
(2.11) 

In this method, the total molar concentration of the two binding partners (e.g. a 

calix[4]pyrrole and an anion) are held constant, but their mole fractions  are varied. 

An observable that is proportional to complex formation (such as absorption signal 

or resonance change in NMR) is plotted against the mole fractions of these two 

components. The maximum at a mole fraction of 0.3, 0.5, and 0.6 indicates 

formation of a 1:2, 1:1, and 2:1 host:guest complex (Figure 10.1).. This method is 

named after P. Job, who first introduced this methodology in 1928 [66]. 
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Figure 2.51 : Example of a Job plot. 
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3. EXPERIMENTAL SECTOIN 

3.1 General 

Melting points were measured on a Mel-Temp II instrument and are uncorrected.  

Proton and 13C-NMR spectra used in the characterization of products were recorded 

on Varian Unity 300, 400 MHz and Bruker 250 MHz spectrometers.  Low-resolution 

FAB and CI mass spectra were obtained on a Finningan MAT TSQ 70 mass 

spectrometer.  High resolution FAB and CI mass spectra were obtained on a VG 

ZAB2-E mass spectrometer. GPC analyses were performed using a Waters HPLC 

system consisting of HR-1, HR-3, and HR-5E Styragel® columns arranged in series, 

a 1515 pump, and a 2414 RI detector; reported molecular weights are relative to 

polystyrene standards in DMF (0.01 M LiBr) at 40 C (column temperature).  

Thermogravimetric analyses were performed using a Mettler Toledo 

TGA/SDTA851e equipped with a TSO801RO sample automated loader.  A Varian 

SpectrAA-40 Atomic Absorption Spectrometer was used in flame emission mode 

with an acetylene/air (18:2) mixture to quantify the extracted potassium salts; the 

samples for these measurements were diluted with ethyl acetate prior to recording 

the emission intensities at 766.5 nm. UV-vis analyses were performed with a 

Chebios Optimum-One UV-vis spectrophotometer. 

3.2 Materials 

Tetrabutylammonium chloride (TBACl) and tetrabutylammonium acetate (TBAOAc) 

were dried under vacuum at 40C for 24 h before use.  All solvents were dried 

before use according to standard literature procedures.  Unless specifically 

indicated, all other chemicals and reagents used in this study were purchased from 

commercial sources and used as received. 

3.3 ITC Titration Studies 

Microcalorimetric titrations were performed using an isothermal titration calorimeter 

(ITC) purchased from Microcal Inc., MA. Experimental temperature is 25 C. The 

ORIGIN software provided by Microcal Inc. was used to calculate the binding 

constants (Ka) and the enthalpy change (H). The solvent, CH2Cl2, was HPLC grade 

(Fisher) but was not further dried or purified before use. 
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3.4 Synthesis of Calix[4]pyrroles with Long Alkyl Chains 

3.4.1 Monoester functional calix[4]pyrrole 

 

(3.1) 

Pyrrole (3 mL, 42 mmol) and ethyl pyruvate (1.15 mL, 10 mmol) were dissolved in 

methanol (50 mL) at 0C and bubbled with Ar for 10 minutes. Acetone (2.34 mL, 30 

mmol) was then added to the mixture. Following this addition, methanesulfonic acid 

(1.95 mL) was added drop-wise over the course of 10 minutes while shielding the 

reaction vessel from light. The mixture was then stirred first at 0C for 3 hours and 

subsequently at room temperature overnight. The white precipitate that formed 

during this time was collected by filtration. Chromatographic purification (silica gel, 

dichloromethane/hexanes: 80/20) yielded calixpyrrole 3.1 as a yellow solid (0.7 g, 

14%). M.p. decomposes over 200C; 1H NMR (300 MHz, CDCl3, 25C): δ 1.28 (t, 

J=7.2Hz, 3H; ester CH3), 1.49–1.51 (m, 18H; meso CH3), 1.72 (s, 3H; meso CH3), 

4.21 (q, J= 7.2 Hz, 2H; ester CH2), 5.89–5.93 (m, 8H, pyrrole-CH), 7.169 (br.s, 2H, 

pyrrole NH), 7.49 ppm (br. s, 2H, pyrrole NH); 13C NMR (75 MHz, CDCl3, 25C): δ= 

14.11, 25.07, 28.26, 29.00, 29.36, 29.68, 35.20, 35.27, 47.31, 61.58, 102.80, 

103.03, 103.12, 104.98, 131.76, 138.20, 138.63, 139.18, 167.12 ppm; LRMS (FAB 

MS): m/z [M]: 486; HRMS (FAB MS): m/z calcd for C30H38N4O2 [M]: 486.2995; 

found: 486.2997. This compound was further characterized by single crystal X-ray 

diffraction analysis. 

3.4.2 Monoesteroctabromocalix[4]pyrrole 

 

(3.2) 
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Calixpyrrole 3.1 (0.46 g, 0.95 mmol) and NBS (1.35 g, 7.6 mmol) were dissolved in 

dry THF (50 mL) under an Ar atmosphere with the reaction vessel shielded from 

light. The mixture was heated at reflux for 5 h and allowed to cool to room 

temperature. The solvent was removed under vacuum and the resulting solid 

purified by flash column chromatography (silica gel, dichloromethane/hexanes: 1/1) 

to afford 3.2 in the form of a white solid (0.96 g, 90%). M.p. decomposes over 160 

ºC; 1H NMR (400 MHz, CDCl3, 25 ºC):  δ = 1.35 (t, J= 7.2 Hz, 3H; ester CH3), 1.69–

2.139 (21H; meso CH3), 4.31 ppm (q, J= 7.2 Hz, 2H; ester CH2), NH protons were 

not observed at room temperature; 13C NMR (100 MHz, CDCl3, 25 ºC): δ= 25.25, 

37.87, 46.41, 49.02, 51.09, 63.02, 64.72, 130.29, 161.07, 192.3 ppm; LRMS (FAB 

MS): m/z [M] 1117; HRMS (FAB MS): m/z calcd for C30H30 Br8N4O2 [M
+]: 1117.5754; 

found: 1117.5762. This compound was further characterized by single crystal X-ray 

diffraction analysis. 

3.4.3 Monocarboxylic acid functionalized calix[4]pyrrole 

 

(3.3) 

Calixpyrrole 3.1 (1.11 g, 2.28 mmol) was dissolved in 80mL EtOH and heated to 

reflux under an Ar atmosphere. Once reflux was established, NaOH (0.3 g, 7.7 

mmol in 50mL H2O) was added drop-wise. Heating at reflux was then continued for 

5 h, after which the mixture was allowed to cool to room temperature. The bulk of 

the volatiles were then removed under vacuum. The remaining, largely aqueous 

solution was acidified with HCl (0.2 M) until a white precipitate was obtained. This 

precipitate, corresponding to product 3.3 (0.95 g, 91%), was collected by filtration 

and dried under reduced pressure. M.p. decomposes over 190 ºC; 1H NMR 

(300MHz, CDCl3, 25 ºC): δ= 1.52–1.54 (m, 18H; meso CH3), 1.76 (s, 3H; meso 

CH3), 5.92–6.01 (m, 8H; pyrrole CH), 7.11 (br. s, 2H, pyrrole NH), 7.42ppm (br. s, 

2H; pyrrole NH); 13C NMR (75 MHz, CDCl3, 25 ºC): δ= 25.00, 28.31, 29.05, 29.37, 

29.51, 35.15, 35.26, 47.23, 102.79, 103.19, 103.33, 105.52, 130.77, 137.96, 138.58, 

139.47, 178.61 ppm; LRMS (FAB MS): m/z [M+] 458; HRMS (FAB MS): m/z calcd 

for C28H34N4O2 [M
+]: 458.2682; found: 458.2690. 
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3.4.4 Octabromomonocarboxylicacid functionalized calix[4]pyrrole 

 

(3.4) 

This compound was prepared from 3.2 (0.86 g, 0.77 mmol) using the same 

procedure used to produce 3.3. The product was a white solid (0.71 g, 85%). M.p. 

decomposes over 170C; 1H NMR (300MHz, CDCl3, 25 ºC): δ = 0.86–2.16ppm 

(21H; meso CH3), NH protons were not observed at room temperature; 13C NMR 

(75MHz, CDCl3, 25 ºC): δ = 14.36, 24.58, 29.47, 35.60, 47.55, 61.83, 63.397, 

103.54, 103.62, 105.31, 132.18, 139.27, 172.94ppm; LRMS (FAB MS): m/z [M+] 

1090; HRMS (FAB MS): m/z calcd for C28H26N4O2 [M+]: 1089.5441; found: 

1089.5450. 

3.4.5 Hydrolysis of C-rim modified calix[4]pyrrole 

 

(3.5) 

This compound was prepared from 2.14 (0.23 g, 0.45mmol) using the same 

procedure used to produce 3.3 [45]. The product was a white solid (0.2 g, 93%). 

M.p. decomposes over 180 ºC; 1H NMR (300 MHz, CDCl3, 25 ºC): δ= 1.48–1.59 

(24H; meso CH3), 3.71 (s, 2H; CH2), 5.75–5.92 (br. m, 7H; pyrrole CH), 6.96 (s, 2H; 

pyrrole NH), 7.16 (s, 1H; pyrrole NH), 7.78ppm (s, 1H; pyrrole NH); 13C NMR 

(75MHz, CDCl3, 25 ºC): δ= 28.81, 29.03, 29.13, 33.35, 34.95, 35.10, 35.20, 36.78, 

101.78, 102.24, 102.58, 102.77, 106.72, 108.67, 133.48, 136.96, 138.02, 138.12, 

138.56, 138.88, 139.43, 178.96 ppm; LRMS (CI): m/z [M] 487; HRMS (FAB MS): 

m/z calcd for C30H38N4O2 [M
+]: 486.6483; found: 486.6492. 
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3.4.6 Bromination of C-rim modified calix[4]pyrrole 

 

(3.6) 

This compound was prepared from 2.14 (0.5 g, 0.97mmol) using the same 

procedure used to produce 3.2. The product was a white solid (0.92 g, 89%). M.p. 

decomposes over 180 ºC; 1H NMR (400 MHz, CDCl3, 25 ºC): δ= 0.88 (t, J= 7.2 Hz, 

3H; ester CH3), 1.24–1.82 (m, 24H; meso CH3), 3.35 (s, 2H; CH2), 4.09 (q, J= 7.2 

Hz, 3H; ester CH2), 6.64 (s, 1H; pyrrole NH), 6.79 (s, 1H; pyrrole NH), 7.95 (s, 1H; 

pyrrole NH), 8.48 ppm (s, 1H; pyrrole NH); 13C NMR (75MHz, CDCl3, 25 ºC): δ= 

14.12, 26.06, 37.48, 37.75, 37.93, 38.28, 49.68, 94.16, 96.08, 99.94, 100.52, 

110.41, 130.41, 190.38 ppm; LRMS (CI): m/z [M+] 1067; HRMS (FAB MS): m/z 

calcd for C32H35Br7N4O2 [M
+]: 1065.6982; found: 1065.6990. 

3.4.7 Attaching long alkyl chains 

3.4.7.1 Octadecyl meso-Calix[4]pyrrole carboxylate 

 

(3.7) 

Acid 3.3 (100 mg, 0.22mmol), 1-octadecanol (65 mg, 0.24mmol), and 4-

dimethylaminopyridine (DMAP) (2.7mg, 0.022mmol) were dissolved in 4mL 

dichloromethane under an Ar atmosphere. At this point, dicyclohexylcarbodiimide 

(DCC) (45.4mg, 0.22 mmol) mixed in 1mL dichloromethane was added to the 

mixture. The reaction mixture stirred for 24 h and the insoluble matter was filtrated 

off. The resulting filtrate was collected and was washed with first 0.5N HCl (10mL), 

followed by saturated NaHCO3 (10mL), and then finally water (10mL). The organic 

layer was then dried over Na2SO4 and the solvent was removed under vacuum. 

Column chromatography (silica gel, dichloromethane/hexanes: 80/20) afforded 3.7 
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in the form of a yellowish solid (79.8mg, 51%). M.p. 65C; 1H NMR (400MHz, CDCl3, 

25 ºC): δ= 0.88 (t, J= 6.9Hz, 3H; long alkyl tail CH3), 1.6 (br. s, 28H; long alkyl tail 

CH2), 1.51–1.53 (br. m, 18H; meso CH3), 1.61–1.65 (br. m, 2H; long alkyl tail CH2), 

1.75 (s, 3H; meso CH3), 2.17 (m, 2H; long alkyl tail CH2), 4.14 (t, J= 6.9Hz, 2H; long 

tail CH2), 5.90–5.94 (m, 8H; pyrrole CH), 7.07 (br. s, 2H; pyrrole NH), 7.42 ppm (br. 

s, 2H; pyrrole NH); 13C NMR (75MHz, CDCl3, 25 ºC): δ= 14.11, 22.68, 25.01, 25.87, 

28.28, 28.50, 28.97, 29.19, 29.30, 29.48, 29.57, 29.69, 31.90, 35.15, 35.23, 47.30, 

54.14, 65.77, 102.82, 103.04, 103.13, 104.98, 131.75, 138.11, 138.49, 139.06, 

172.84 ppm; LRMS (CI): m/z [M+] 711; HRMS (FAB MS):m/z calcd for C46H70N4O2 

[M+]: 711.5499; found: 711.4483. 

3.4.7.2 Octadecyloctabromocalix[4]pyrrolylcarboxylate 

 

(3.8) 

This compound was prepared from 3.4 (180mg, 0.16 mmol) using a procedure 

analogous to that used to prepare 3.7. The product was a white solid (0.16 g, 72%). 

M.p. 75C; 1H NMR (300MHz, CDCl3, 25 ºC): δ= 0.88–5.46 (m, 58H; long alkyl tail 

CH3, CH2 and meso CH3), 6.74 (br. s, 2H; pyrrole NH), 8.04 (br. s, 1H; pyrrole NH), 

11.81 ppm (br. s, 1H; pyrrole NH); 13C NMR (75 MHz, CDCl3, 25 ºC): δ= 14.34, 

23.16, 25.43, 27.18, 28.35, 28.82, 29.32, 29.41, 29.54, 29.65, 29.78, 32.49, 36.14, 

37.46, 49.40, 57.73, 67.12, 103.63, 104.11, 104.19, 105.67, 135.46, 141.13, 143.82, 

144.19, 174.54 ppm; LRMS (FAB): m/z [M+] 1342; HRMS (FAB MS): m/z calcd for 

C46H62Br8N4O2 [M
+]: 1342.24208; found: 1342.24251. 

3.4.7.3 Octadecyl2--calix[4]pyrrolyl acetate 

 

(3.9) 

This compound was prepared from 3.5 (100 mg, 0.2 mmol) using a procedure 

analogous to that used to prepare 3.7. The product was a white solid (110.8 mg, 
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75%). M.p. 70C; 1H NMR (400 MHz, CDCl3, 25 ºC): δ= 0.91 (t, J= 6.8 Hz, 3H; long 

alkyl tail CH3), 1.29 (br. s, 28H; long alkyl tail CH2), 1.49–1.58 (br. m, 24H; meso 

CH3), 1.66–1.69 (br m, 4H; long alkyl tail CH2), 3.64 (s, 2H; CH2), 4.15 (t, J= 6.8 Hz, 

2H; long alkyl tail CH2), 5.71–5.94 (m, 7H; pyrrole CH), 7.96 (d, 2H; pyrrole NH), 

7.09 (br. s, 1H; pyrrole NH), 8.49 ppm (br. s, 1H; pyrrole NH); 13C NMR (100 MHz, 

CDCl3, 25 ºC): δ= 14.10, 22.67, 25.93, 28.55, 28.61, 28.87, 29.24, 29.34, 29.53, 

29.57, 29.63, 29.68, 31.90, 34.86, 35.11, 35.18, 36.72, 38.34, 65.15, 101.02, 

101.94, 102.29, 102.42, 102.72, 103.09, 106.61, 109.42, 133.52, 136.73, 137.35, 

137.88, 138.36, 138.96, 139.47, 139.88 ppm; LRMS (CI): m/z [M] 739; HRMS (FAB 

MS): m/z calcd for C46H70N4O2 [M
] 739.5890; found: 739.5858. 

3.4.7.4 Octadecyl 2--heptabromocalix[4]pyrrolyl acetate 

 

(3.10) 

This compound was prepared from 3.9 (68 mg, 0.09 mmol) using a procedure 

analogous to that used to produce 3.6. The product 3.10 was a white solid (106.9 

mg, 90%). M.p. 92C; 1H NMR (300 MHz, CDCl3, 25 ºC): δ=  0.88 (t, J= 6.9 Hz, 3H; 

long alkyl tail CH3), 1.26 (br. s, 28H; long alkyl tail CH2), 1.59 (br. m, 4H; long alkyl 

tail CH2), 1.71–1.83(br. m, 24H; meso-CH3), 3.35 (s, 2H; CH2), 4.00 (br. t, J= 6.9 Hz, 

2H; long alkyl tail CH2), 6.64 (s, 1H; pyrrole NH), 6.79 (s, 1H; pyrrole NH), 7.95 (s, 

1H; pyrrole NH), 8.48 ppm (s, 1H; pyrrole NH); 13C NMR (75 MHz, CDCl3, 25 ºC): 

δ= 14.12, 22.68, 25.88, 27.28, 28.52, 29.64, 29.69, 31.41, 31.91, 37.48,37.73, 

37.93, 38.28, 65.18, 95.39, 95.87, 96.07, 96.43,99.82, 99.93, 100.51, 129.91, 

129.97, 130.37, 131.10,131.34, 131.85, 171.84 ppm; LRMS (FAB MS): m/z 

[M]1290; HRMS (FAB MS): m/z calcd for C48H67Br7N4O2[M
] 1290.9564; found: 

1290.9576. 
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3.5 Tetrabenzocalix[4]pyrrole 

3.5.1 Synthesis of 2,3-bis(phenylsulfonyl)bicyclo[2.2.2] oct-2-ene 

 

(3.11) 

A mixture of  (E)-1,2-bis(phenylsulfonyl)ethylene (1.78 g, 5.8 mmol) and 1,3-

hexadiene (0.9 g, 11.3 mmol) were dissolved in dry toluene and heated at reflux for 

20 h. After the reaction was deemed complete (TLC), the solvent was removed 

using a rotary evaporator. The crude white solid was filtered and washed with ether 

three times; this afforded 3.11 as a white solid.  1H and 13C NMR spectral data for 

this product proved consistent with literature reports [67]. 

3.5.2 Ethyl 4,7-dihydro-4,7-ethano-2H-isoindole-1-carboxylate 

 

(3.12) 

Compound 3.12 was prepared in analogy to a reported procedure [68-70]. To a 

stirred solution of 3.11 (2 g, 5.15 mmol) and ethyl isocyanoacetate (0.7 g, 6.18 

mmol) in dry THF (70 mL) was added KOtBu (1.39 g, 12.36 mmol) at 0C. The 

resulting reaction mixture was stirred at room temperature for 24 h upon which it 

was poured into water containing dilute hydrochloric acid. After extraction with ethyl 

acetate, work-up and column chromatography over silica gel (methylenechloride–

hexane, eluent) gave 3.12 (1 g, 90%) as colorless needles. 1H and 13C NMR 

spectral data for this product were consistent with the reported literature data [68]. 

3.5.3 Ethyl 4,7-dihydro-4,7-ethano-2H-isoindole-1-carboxylic acid 

 

(3.13) 

Compound 3.12 (0.2 g, 0.92 mmol) was dissolved in 30 mL EtOH and heated to 

reflux. Once reflux was established, NaOH (3.68 g, 147.2 mmol in 30 mL H2O) was 
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added drop-wise. Heating at reflux was then continued for 5 h, after which point the 

mixture was allowed to cool to room temperature. The bulk of the volatiles were then 

removed under vacuum. The remaining, largely aqueous solution was acidified with 

HCl (0.2 M) until a white precipitate was obtained. This precipitate, corresponding to 

product 3.13 (0.17 g, 97%), was collected by filtration and dried under reduced 

pressure. 1H NMR (400 MHz, DMSO-d6): δ = 11.99 (br s, 1 H, NH), 10.72 (s, 1 H, 

COOH), 6.55 (d, J=2.8 Hz, 1 H, pyrrole CH), 6.42 (m, 2 H, CH), 4.24 (m, 1 H, CH), 

3.81 (m, 1 H, CH), 1.46 (m, 2 H, CH2), 1.32 ppm (m, 2 H, CH2); 
13C NMR (100 MHz, 

DMSO-d6): δ = 26.4, 26.9, 113.8, 129.9, 135.7, 162.3 ppm; LRMS: 190 [MH+];  

HRMS: calcd for C11H11NO2 [MH+] 190.0868, found 190.0866. 

3.5.4 Synthesis of 4,7-dihydro-4,7-diethano-2H-isoindole 

 

(3.14) 

Compound 3.13 (0.12 g, 0.62 mmol) was dissolved in freshly distilled and degassed 

TFA (30 mL) at 0 C under an Ar atmosphere and stirred for 30 min while protecting 

from light. TFA was removed under vacuum and the remaining residue was 

dissolved in CH2Cl2 (30 mL) and then washed with saturated NaHCO3 (2 x 30 mL). 

The solution was then dried over Na2SO4 and filtered. Evaporation of the CH2Cl2-

based filtrate afforded 3.14 as a white solid (85 mg, 95%).  1H NMR (400 MHz, 

CDCl3): δ = 7.51 (br s, 1 H, NH), 6.51 (dd, J = 6.5 Hz, 2 H, CH), 6.46 (d, J=6.5 Hz, 2 

H, pyrrole CH), 3.86 (m, 2 H, CH), 1.56 ppm (m, 4 H, CH2); 
13C NMR (100 MHz, 

CDCl3): δ = 27.55, 33.12, 107.95, 129.25, 135.72 ppm; LRMS: 145 [M+]; HRMS: 

calcd for C10H11N [M+] 145.0891, found 145.0886. 

3.5.5 Synthesis of tetra-bicyclo[2.2.2]-oct-2-ene fused calix[4]pyrrole 

Compound 3.14 (70 mg, 0.48 mmol) was dissolved in dry CH2Cl2 (50 mL) at 0 C 

and bubbled with Ar for 10 minutes. Acetone (35.8 L, 0.48 mmol) was then added 

to the solution. Following this addition, TFA (25 L) was added drop-wise over the 

course of 10 minutes while shielding the reaction vessel from light. The mixture was 

then stirred first at 0 C for 3 hours and subsequently at room temperature 

overnight. At this point, the reaction mixture was washed with sat. NaHCO3 dried 

over Na2SO4.  After removing the drying agent by filtration, and removing the 



62 

volatiles, flash chromatography (silica gel, dichloromethane/hexanes:1/1) yielded 

calixpyrrole 3.15 as a white solid (45 mg, 50%). 

 

(3.15) 

1H NMR (400 MHz, CDCl3): δ = 1.25-1.56 (br m, 40 H, CH3 and CH2), 3.92 (br m, 

8H, CH), 5.94-6.04 (br m, 4H, NH), 6.44 ppm (br m, 8H, CH); 13C NMR (100 MHz, 

CDCl3): δ = 27.4, 29.2, 33.8, 37.1, 124.2, 126.0, 136.2 ppm; LRMS: 742 [MH+]; 

HRMS: calcd for C52H60N4 [MH+] 742.4974., found 742.4979. 

3.5.6 Tetrabenzocalix[4]pyrrole 

 

(3.16) 

With compound 3.15 in hand, an effort was made to obtain the corresponding 

tetrabenzocalix[4]pyrrole 3.16.  With goal in mind, compound 3.15 was subject to 

retro Diels-Alder reaction conditions.  Specifically, compound 3.15 was heated to 

200C under vacuum at 10 mmHg for 10 min, with the resulting crude product being 

subject to column chromatography. Unfortunately a quantitative conversion of 

3.15into 3.16 could not be achieved in this work even though similar retro Diels-

Alder reaction conditions have proved effective in creating porphyrin derivatives 

analogous to 3.16 [68]. Moreover, separation of product 3.16 from the starting 

material 3.15using column chromatography was not successful. Therefore, 1H NMR 
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spectroscopic and mass spectrometric analyses of the reaction mixture were 

employed to track the course of the putative conversion. 

3.6 Synthesis of Polymers with Pendant Calix[4]pyrroles 

3.6.1 Mono-hydroxy functionalized calix[4]pyrrole 

 

(3.17) 

In a 25 mL round bottom flask, the respective calix[4]pyrrole ethyl ester 3.1 (500 mg, 

1.027 mmol) was first dissolved in 10 mL THF and placed under an atmosphere of 

Ar. After adding NaBH4 (233 mg, 6.165 mmol) in a single portion, the resulting 

mixture was heated to reflux for 15 min.  To the hot mixture, 10 mL of dry MeOH 

was added dropwise over the course of 15 min.  After 24 h of additional heating at 

reflux, the reaction was cooled to ambient temperature and quenched with 20 mL of 

an aqueous solution saturated with ammonium chloride.  The organic components 

were then extracted with CH2Cl2 (3 x 20 mL) and dried over Na2SO4.  The crude 

product was then purified by column chromatography (silica gel; eluent: 80:20 

CH2Cl2:hexanes gradually changing to 10:90 MeOH:CH2Cl2) which, after removal of 

residual solvent, afforded 343 mg of 3.17 as a yellow solid (75% yield). Rf = 0.15 

(80:20 CH2Cl2:hexanes); 1H NMR (500 MHz, CDCl3): δ=1.42 (s, 3H, meso-CH3), 

1.51-1.55 (m, 18H, meso-CH3), 1.94 (t, 1H, J = 5 Hz, OH), 3.85 (d, 2H, J = 5Hz, 

meso-CH2), 5.90-5.96 (m, 8H, pyrrole CH), 7.11 (br s, 2H, NH), 7.57 ppm (br s, 2H, 

NH); 13C NMR (100 MHz, CDCl3): δ = 24.76, 28.33, 29.45, 41.19, 69.83, 102.65, 

102.91, 103.06, 103.37, 134.36, 138.21, 138.46, 138.82 ppm; HRMS (CI) calcd for 

C28H37N4O [M+H+]: 445.2967, found: 445.2966.  This compound was further 

characterized by single crystal X-ray diffraction analysis. 

3.6.2 Methacrylate functionalized calix[4]pyrrole 

A 25 mL round bottom flask was charged with 250 mg (0.56 mmol) of alcohol 3.17, 

triethylamine (97.5 µL, 0.7 mmol) and 10 mL of dry, degassed THF.  After cooling 

the flask to 0 °C using an ice bath, methacryloyl chloride (60 µL, 0.62 mmol) was 

added dropwise via syringe.  The reaction was then allowed to warm to ambient 

temperature over the course of 24 h.  After 50 mL of water was added, the mixture 
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was extracted with CH2Cl2 (3 x 20 mL).  The organic layer was then dried over 

Na2SO4 and filtered.  The crude product was then purified by column 

chromatography (silica gel; eluent: CH2Cl2) which, after removal of residual solvent, 

afforded 236 mg of 3.18 as a white powder (82% yield). 

 

(3.18) 

Rf = 0.80 (CH2Cl2); 
1H NMR (500 MHz, CD2Cl2): δ = 1.45-1.52 (m, 18H, meso-CH3 

protons), 1.87 (dd, 3H, CH3), 4.34 (s, 2H, CH2), 5.55 (m, 1H, CH), 5.84-5.92 (m, 8H, 

pyrrole CH), 5.97 (m, 1H, CH), 7.03 (br s, 2H, NH), 7.11 ppm (br s, 2H, NH); 13C 

NMR (100 MHz, CDCl3): δ = 18.40, 28.92, 29.27, 33.34, 39.43, 70.59, 102.74, 

102.88, 103.08, 104.18, 133.18, 138.31, 138.51, 138.86, 191.65 ppm; HRMS (CI) 

calcd for C32H41N4O2 [M+H+]: 513.3230, found: 513.3232.  This compound was 

further characterized by single crystal X-ray diffraction analysis. 

3.6.3 Homopolymer of methacryloyl functionalized calix[4]pyrrole 

 

(3.19) 

Homopolymer 3.19 was prepared by dissolving monomer 3.18 in THF (0.3 M) 

followed by treatment with 1 mol% of azoisobutyronitrile (AIBN).  After stirring at 70 

ºC for 17 h under a nitrogen atmosphere, the resulting viscous solution was added 

dropwise into an excess of methanol that rapidly stirred.  This caused precipitation 

of polymer 3.19, which was subsequently isolated via filtration in 66% yield as a 

yellow solid.  Using gel permeation chromatography, the polymer was found to have 

a number-average molecular weight (Mn) of 23,600 Da (relative to PMMA standards) 
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and a polydispersity index (PDI) of 2.3. 1H NMR (500 MHz, CD2Cl2): δ = 0.34-0.95 

(br s, 2H, polymer backbone CH2), 1.25-1.85 (br m, 24H, meso-CH3 and polymer 

backbone CH3), 4.15 (br s, 2H, meso-CH2), 5.89 (br s, 8H, pyrrole CH), 7.12 ppm (br 

s, 4H, NH). 

3.6.4 Copolymerization of monomer 3.18 and MMA 

 

(3.20) 

Using the conventional free radical polymerization conditions described above, a 

77% yield of copolymer 3.20 was obtained as a white solid from a 1:10 mixture of 

3.18 and MMA.  Using GPC, 3.20 was found to possess a Mn of 85,500 Da and a 

PDI of 2.1 (relative to PMMA standards).  1H NMR (500 MHz, CD2Cl2): δ = 0.82 (br 

s, 30H, polymer backbone CH2), 0.99 (br s, 13.21H, polymer backbone CH2), 1.52-

1.55 (br m, 29.13H, calixpyrrole meso-CH3), 1.80-1.88 (br m, 25.76H, MMA CH3), 

3.58 (br s, 43.57H, MMA CH3), 4.11 (br s, 2H, calixpyrrole meso-CH2), 5.89-5.95 (br 

m, 8H, pyrrole CH), 7.11 ppm (br s, 4H, NH). 

3.6.5 Polymerization of monomer 3.18, monomer 3.21 and MMA 

Copolymer 3.22 was prepared by dissolving monomer 3.18, monomer 3.21 and 

MMA in 1:1:10 ratio in THF (total conc.: approx. 0.3 M) followed by treatment with 1 

mol% of azoisobutrylnitrile (AIBN).  After stirring at 70 ºC for 17 h under an 

atmosphere of nitrogen, the resulting viscous solution was added dropwise to 

excess methanol.  This caused precipitation of copolymer 3.22, which was 

subsequently isolated via filtration in 79% yield as a white solid. 1H NMR (500 MHz, 

CD2Cl2) : 0.82 and 0.89 (br singlets, 59.56H, PMMA CH3), 1.51 (br s, 21H, 

calixpyrrole meso-CH3), 1.82 (br m, 48.25H, PMMA CH2), 3.57 (br s, 68H, PMMA 

OCH3), 3.68 (br m, 7.5H, crown ether CH2), 3.84 (br s, 3.75H, crown ether CH2), 

4.08 (br s, 6H, crown ether CH2 and calixpyrrole meso-CH2), 5.89 (b, 8H, pyrrole 

CH), 6,83-7.26 ppm (6H, NH and crown ether aromatic protons).  GPC:  Mn: 50.2 

kDa, PDI: 2.1. 
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(3.21) 

3.6.6 Copolymerization of 3.21 and MMA 

Using conditions analogous to those used to prepare 3.20, a 76% yield of copolymer 

3.23 was obtained as a yellow solid from a 1:10 mixture of 3.21 and MMA. 1H NMR 

(500 MHz, CD2Cl2): δ = 0.81 (br s, 16.86H, polymer backbone CH3), 0.81 (br s, 

10.30H, polymer backbone CH3), 1.80 (br m, 19.12H, polymer backbone CH2), 3.58 

and 3.68 (s and s, 32.96H polymer backbone CH3 and crown ether CH2), 3.84 (br s, 

2H, crown ether CH2), 4.07 (br s, 2H, crown ether CH2), 6.81-7.26 ppm (3H, crown 

ether aromatic protons).  GPC: Mn: 33.2 kDa, PDI: 2.1. 

 

(3.22) 

3.6.7 Copolymerization of 3.18 and 3.21 

Using conditions analogous to those used to prepare 3.20, an 81% yield of 

copolymer 3.24 was obtained as a white solid from a 1:1 mixture of 3.18 and 3.21.  

1H NMR (500 MHz, CD2Cl2): δ = 1.49 (br, 36.1H, polymer backbone CH2 and CH3 
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and calixpyrrole meso-CH3), 3.67-4.07 (br singlets, 18.06H, crown ether CH2), 5.87 

(br s, 8H, pyrrole -protons), 6.82-7.32 ppm (pyrrolic NH and crown ether aromatic 

protons).  GPC: Mn: 38.5 kDa, PDI: 2.3. 

 

(3.23) 

3.6.8 Synthesis of control pseudo dimers 

3.6.8.1 Pseudo dimer I 

Carboxylic acid functionalized calixpyrrole 3.3 (0.22 mmol, 100 mg), 4′-aminobenzo-

15-crown-5 (68 mg, 0.24 mmol), dicyclohexylcarbodiimide (DCC) (0.22 mmol, 46 

mg) and 4-dimethylaminopyridine (DMAP) (0.022 mmol, 2.7 mg) were dissolved in 

dry dichloromethane (4 mL) under an atmosphere of argon. After stirring the 

reaction mixture for 24 h, insoluble material was filtered off. 

 

(3.24) 

The resulting filtrate was collected and was washed with first with 0.1 N HCl (10 

mL), followed by an aqueous solution saturated with NaHCO3 (10 mL), and then 

finally water (10 mL). The organic layer was then dried over Na2SO4 and the solvent 
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was removed under vacuum. Column chromatography (silica gel, first 

dichloromethane/hexanes: 80/20, then 1% MeOH in CH2Cl2) afforded 3.25 in the 

form of a dark yellow solid (110.69 mg, 68%). 1H NMR (250 MHz, CD2Cl2): δ = 1.47 

(br m, 18H, meso-CH3), 1.77 (br s, 3H, meso-CH3), 3.63 (br m, 8H, CH2), 3.78 (br m, 

4H, CH2), 4.01 (br m, 4H, CH2), 5.86 (br s, 8H, pyrrole CH), 6.69 (m, 1H), 7.12 (br 

m, 1H), 7.13-7.32 ppm (6H, calixpyrrole NHs, benzene ring CH, amide NH). 13C 

NMR (60 MHz, CDCl3): δ = 24.70, 26.35, 29.26, 30,79, 32,28, 34,07, 50.28, 57.24, 

68.01, 70.91, 103.63, 106.40, 131.64, 132.09, 138.82, 154.41 ppm. HRMS (CI) 

calcd for C42H53N5O6 [M+H+]: 723.3996, found: 723.3983. 

3.6.8.2 3’Hydroxyphenyl substituted calix[4]pyrrole 

To a mixture of pyrrole (10.2 mL, 146.9 mmol), 3′-hydroxyacetophenone (5.00 g, 

36.7 mmol), acetone (8.10 mL, 110.2 mmol), and methanol (250 mL) was added 

slowly methanesulfonic acid (2.38 mL, 36.7 mmol) at 0 °C.  

 

(3.25) 

After stirring for 2 h at room temperature, the reaction mixture was evaporated in 

vacuo to give brownish sticky oil. Dichloromethane (300 mL), water (300 mL), and 

triethylamine (20 mL) were added to the crude product and the organic phase was 

separated and washed three times with water (300 mL). The organic layer was dried 

over anhydrous MgSO4 and evaporated in vacuo to give yellowish sticky oil. Column 

chromatography over silica gel (eluent: dichloromethane) gave 4.8 g (26% yield) of 

3.26 as a white solid. 1H NMR (400 MHz, CDCl3): δ = 7.25 (broad s, 2H, NH), 7.14 
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(broad s, 2H, NH), 7.13-7.09 (t, 1H, ArH, J = 8.01 & 8.41 Hz), 6.67-6.65 (d, 1H, ArH, 

J = 8.41 Hz), 6.62-6.60 (d, 1H, ArH, J = 8.01 Hz), 6.47 (s, 1H, ArH), 5.94-5.91 (m, 

6H, pyrrole-H), 5.72-5.70 (t, 2H, pyrrole-H, J = 3.02 & 2.40 Hz), 4.85 (broad s, 1H, 

ArOH), 1.87 (s, 3H, ArC(pyrrole)2CH3), 1.60 (s, 6H, pyrrole-C(CH3)2), 1.52 (s, 9H, 

pyrrole-C(CH3)2), 1.27 ppm (s, 3H, pyrrole-C(CH3)2). 
13C NMR (100 MHz, CDCl3): δ 

= 155.3, 149.8, 138.9, 138.8, 138.6, 136.6, 129.1, 120.2, 115.0, 113.6, 106.1, 103.4, 

103.1, 103.0, 44.9, 35.5, 35.4, 30.3, 30.0, 29.9, 28.8, 28.7, 28.4 ppm; HRMS (ESI) 

m/z 507.3125 M+ calcd for C33H38N4O
+, found 507.31184. 

3.6.8.3 3-(2-Bromoethoxy)phenyl substituted calix[4]pyrrole 

Under an atmosphere of argon, compound 3.26 (2.50 g, 4.93 mmol), 1,2-

dibromoethane(27.1 g, 148.0 mmol)and K2CO3 (2.05 g, 14.8 mmol) in acetonitrile 

(125 mL) were heated to reflux. After being heated at reflux for 4 d, the acetonitrile 

was removed in vacuo. The resulting brownish solid was extracted with 

dichloromethane (50 mL) and then water (50 mL) for a three consecutive cycles.  

The organic layer was then separated and dried over anhydrous MgSO4. 

Evaporation of the solvent in vacuo gave a yellowish solid, which was recrystallized 

from methanol to give 2.20 g (73% yield) of 3.27 as a white solid. 1H NMR (400 

MHz, CDCl3): δ = 7.22 (broad s, 2H, NH), 7.18-7.14 (t, 1H, ArH, J = 8.01 & 8.01 Hz), 

7.01 (broad s, 2H, NH), 6.77-6.74 (dd, 1H, ArH, J = 7.61 Hz), 6.68-6.66 (d, 1H, ArH, 

J = 8.80 Hz), 6.52 (s, 1H, ArH), 5.92-5.91 (t, 2H, pyrrole-H, J = 2.80 & 3.20 Hz), 

5.90-5.89 (d, 4H, pyrrole-H, J = 2.40 Hz), 5.68-5.67 (t, 2H, pyrrole-H, J = 3.20 & 2.80 

Hz), 4.19-4.16 (t, 2H, ArOCH2CH2, J = 6.40 & 6.40 Hz), 3.59-3.56 (t, 2H, 

OCH2CH2Br, J = 6.40 & 6.80 Hz), 1.87 (s, 3H, ArC(pyrrole)2CH3), 1.56 (s, 6H, 

pyrrole-C(CH3)2), 1.52-1.51 ppm (m, 12H, pyrrole-C(CH3)2). 
13C NMR (100 MHz, 

CDCl3): δ = 157.9, 149.8, 139.0, 138.8, 138.6, 136.6, 128.9, 120.9, 114.3, 113.0, 

106.1, 103.4, 103.0, 67.9, 51.0, 44.9, 35.5, 35.4, 30.3, 30.0, 29.4, 28.8, 28.6, 28.4 

ppm. HRMS (ESI) m/z 613.2542 M+ calcd for C35H45BrN4O
+, found 613.25365. 

3.6.8.4 Pseudo dimer II 

A mixture of compound 3.27 (0.25 g, 0.41 mmol), benzoaza-15-crown-5 (0.11 g, 

0.41 mmol) and K2CO3 (0.17 g, 1.22 mmol) in acetonitrile (30 mL) was heated at 

reflux for 3 d under an atmosphere of argon. After the reaction solvent was removed 

in vacuo, the resulting sticky oil was extracted with dichloromethane (50 mL) and 

then washed three times with water (50 mL). The organic layer was then separated 

and dried over anhydrous MgSO4. Evaporation of the solvent gave a yellowish sticky 

oil, which was purified by column chromatography over silica gel (eluent: 3% 
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triethylamine solution of ethyl acetate) to afford 0.12 g (36% yield) of 3.28 as a white 

solid. 1H NMR (400 MHz, CD2Cl2): δ = 7.27 (broad s, 2H, NH), 7.14 (broad t, 1H, 

ArH; 2H, NH), 6.75-6.73 (dd, 1H, ArH, J = 7.20 Hz), 6.59-6.57 (d, 1H, ArH, J = 7.61 

Hz), 6.48 (s, 1H, ArH), 5.92 (broad s, 2H, pyrrole-H), 5.88 (broad s, 4H, pyrrole-H), 

5.69 (broad s, 2H, pyrrole-H), 4.01 (broad t, 4H, ArOCH2CH2O), 3.93 (broad t, 2H, 

ArOCH2CH2N), 3.83 (broad t, 4H, ArOCH2CH2O), 3.71 (broad t, 4H, OCH2CH2N), 

2.92 (broad t, 2H, ArOCH2CH2N), 2.84 (broad t, 4H, OCH2CH2N), 1.87 (s, 3H, 

ArC(pyrrole)2CH3), 1.58-1.52 (three singlets, 15H, pyrrole-C(CH3)2), 1.28 (s, 3H, 

pyrrole-C(CH3)2). 
13C NMR (100 MHz, CD2Cl2): δ = 149.4, 139.1, 138.8, 138.6, 

136.7, 128.7, 121.5, 120.1, 114.0, 112.5, 105.9, 102.9, 71.0, 69.6, 55.6, 44.9, 35.2, 

30.0, 28.2, 27.6, 27.4 ppm. HRMS (ESI) m/z 800.4759 [M] calcd for C49H62N5O5
, 

found 800.47455.This compound was further characterized by single crystal X-ray 

diffraction analysis. 

3.7 Synthesis of Dendrimeric Calix[4]pyrroles 

3.7.1 But-3-yn-1-yl 4-oxopentanoate 

 

(3.26) 

Levulinic acid (3 g, 25.8 mmol), 3-butyn-1-ol (1.75 mL, 23.48 mmol), and DMAP (32 

mg, 0.26mmol) were dissolved in 30 mL dichloromethane. At this point, DCC (5.32 

g, 25.8 mmol) was added to the mixture. The reaction mixture stirred for 24 h at 

room temperature and the insoluble matter was filtrated off. The resulting filtrate was 

collected and was washed with first 0.5N HCl (30 mL), followed by saturated 

NaHCO3 (30 mL), and then finally water (30 mL). The organic layer was then dried 

over Na2SO4 and the solvent was removed under vacuum. Flash column 

chromatography (silica gel, dichloromethane) afforded 3.29 in the form of a 

yellowish liquid (3.8 g, 96%). FTIR: 3281, 2964, 2916, 1715, 1408, 1356, 1154, 

1068, 1031, 1001 cm–1 ;1H NMR (250 MHz, CDCl3): δ= 1.99 (t, J=2.4 Hz, 1H, CH), 

2.18 (s, 3H, CH3), 2.51 (td, J=2.4, 6.8 Hz , 2H, CH2), 2.59 (t, J=6.6 Hz ,2H, CH2), 

2.75 (t, J=6.3 Hz , 2H, CH2), 4.17 ppm (t, J=6.8 Hz, 8H, CH2); 
13C NMR (75 MHz, 

CDCl3): δ=18.89, 27.85, 29.74, 37.85, 62.23, 69.85, 79.95, 172.37, 206.32 ppm; 

HRMS (EI-GCMS): m/z [MH+]: 168.98492. 
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3.7.2 Alkyn functionalized calixpyrrole 

 

(3.27) 

Pyrrole (3 mL, 43.2 mmol) and 3.29 (1.82 g, 10.8 mmol) were dissolved in methanol 

(50 mL) at 0C and bubbled with Ar for 10 minutes. Acetone (2.38 mL, 32.4 mmol) 

was then added to the mixture. Following this addition, methanesulfonic acid (1.97 

mL) was added drop-wise over the course of 10 minutes while shielding the reaction 

vessel from light. The mixture was then stirred first at 0C for 3 hours and 

subsequently at room temperature overnight. The yellow precipitate that formed 

during this time was collected by filtration. Chromatographic purification (silica gel, 

dichloromethane/hexanes: 80/20) yielded calixpyrrole 3.30 as a yellow solid (1 g, 

17%). M.p. decomposes over 200C; FTIR: 3421, 3363, 3231, 2968, 1730, 1576, 

1414, 1303, 1273, 1177, 1040, 759, 705 cm-1 ; 1H NMR (250 MHz, CDCl3): δ=1.41 

(br. s, 3H, meso CH3), 1.98 (t, J=2.5 Hz, 1H, CH), 2.17 (br. m, 4H, CH2), 2.46 (td, 

J=6.7, 2.5 Hz, 2H; CH2), 4.10 (t, J=6.7 Hz , 2H, CH2), 5.88 (br. s, 8H; pyrrole CH), 

7.03 ppm (br. s, 4H; pyrrole NH); LRMS (ESI): m/z [M]: 537.29. 

3.7.3 Tetra-1-bromopentyl-tetramethylcalix[4]pyrrole 

 

(3.28) 

Pyrrole (1.74 g, 25.9 mmol) and 7-bromoheptane-2-one [71] (5 g, 25.9 mmol) was 

dissolved in dry methanol (100 mL) at 0C and bubbled with Ar for 10 minutes. 

Following this bubbling methanesulfonic acid (1.18 mL, 18.1 mmol) was added drop-

wise over the course of 10 minutes while shielding the reaction vessel from light. 

The mixture was then stirred first at 0C for 3 hours and subsequently at room 

temperature overnight. The white precipitate was collected by filtration and washed 

with methanol. This yielded the calixpyrrole 3.31 as a white solid (4.9 g, 78.1%). 

FTIR: 3420, 2932, 2857, 1574, 1501, 1414, 1247, 1193, 1037, 756, 711 cm-1; 1H 
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NMR (250 MHz, CDCl3): δ = 1.08 (br m, 8H, CH2), 1.41 (br, 20H, meso-CH3, CH2), 

1.80 (br m, 16H, CH2), 3.35 (br t, J=6.75 Hz, 8H, CH2), 5.88 (8H, pyrrole-CH), 6.96 

ppm (4H, NH); 13C NMR (75 MHz, CDCl3): d=23.63, 26.64, 28.72, 32.71, 33.65, 

38.79, 40.51, 103.84, 137.30 ppm; LRMS (ESI): m/z [M]: 967.05. 

3.7.4 Tetraazidocalix[4]pyrrole 

 

(3.29) 

3.31 (200 mg, 0.2 mmol) and sodium azid (134.2 mg, 2 mmol) was dissolved in dry 

DMF (25 mL) at room temperature and stirred for 2 days. After the completion of the 

reaction DMF was removed under vacuum at 60C. Resulting crude material was 

dissolved in dichloromethane and washed with water 3 times.  The organic layer 

was dried over Na2SO4 and the solvent was removed under vacuum. This yielded 

the calixpyrrole 3.32 as a light yellow solid (166 mg, 98.4%). FTIR: 3415, 3358, 

2968, 2858, 2086, 1680, 1572, 1453, 1415, 1396, 1244, 1038, 756, 711 cm-1; 1H 

NMR (250 MHz, CDCl3): δ= 1.09 (br, 8H, CH2), 1.27 (br, 8H, meso-CH3, CH2), 1.40 

(12H, meso-CH3), 1.53 (16H, CH2), 1.79 (8H, CH2), 3.20 (t, J=6.68 Hz, 8H, CH2), 

5.87 (8H, pyrrole-CH), 7.00 ppm (4H, NH); 13C NMR (75 MHz, CDCl3): δ=137.30, 

103.83, 51.40, 40.56, 38.78, 28.90, 27.25, 26.39, 23.97 ppm. 

3.7.5 4’-Hydroxyphenyl functional calix[4]pyrrole 

 

(3.30) 

Pyrrole (6 mL, 86.7 mmol) and 4-hydroxyacetophenone (2.95 g, 21.7 mmol) were 

dissolved in methanol (250 mL) at 0C and bubbled with Ar for 10 minutes. Acetone 

(4.78 mL, 65.1 mmol) was then added to the mixture. Following this addition, 

methanesulfonic acid (4.22 mL) was added drop-wise over the course of 10 minutes 

while shielding the reaction vessel from light. The mixture was then stirred first at 0 

ºC for 3 hours and subsequently at room temperature overnight. The white 
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precipitate that formed during this time was collected by filtration. Chromatographic 

purification (silica gel, DCM/hexanes: 80/20, DCM/MeOH: 99/1) yielded calixpyrrole 

3.33 as a white solid (1,83 g, 16.6%). 1H NMR (400 MHz, CDCl3): δ = 7.18 (s, 2H, 

NH), 7.07 (s, 2H, NH), 6.86 (d, J=6.85 Hz, ArH),  6.66 (d, J=6.85 Hz, ArH), 5.89 (s, 

6H, pyrrole CH), 5.65 (s, 2H, pyrrole CH), 4.74 (s, 1H, OH), 1.83 (s, 3H, CH3), 1.54-

1.49 (s, 18H, CH3); 
13C NMR (101 MHz, CDCl3) δ = 154.17, 138.95, 138.84, 138.72, 

137.18, 128.79, 114.75, 105.92, 103.31, 103.03, 44.25, 35.45, 29.92, 28.85; LRMS 

(ESI MS): m/z [MH]: 507; HRMS (ESI MS): m/z calcd for C33H38N4O [M]: 506.3046; 

found: 506.2641. 

3.7.6 Propargyl ether of 4’-hydroxyphenyl functional calix[4]pyrrole 

 

(3.31) 

A mixture of compound 3.33 (0.669 g, 1.32 mmol), propargyl bromide (0,294 g, 1,98 

mmol), and potassium carbonate (0,365 g, 2.64 mmol) in DMF (50 mL) was allowed 

to react at 50°C for 24h. After the completion of the reaction DMF was removed 

under vacuum and the resulting crude solid was dissolved in DCM. The DCM 

solution was washed with water and dried over Na2SO4. Chromatographic 

purification (silica gel: methylene chloride) yielded the compound 3.34 in form of a 

white solid (0,650 g, 90%). %). 1H NMR (250 MHz, CDCl3): δ 1.50-1.54 (br m, 

18H; meso CH3), 1.84 (s, 3H; meso CH3), 2.50 (t, 1H; CCH), 4.65 (d, 2H; CH2), 

5.65 (s, 2H, pyrrole-CH),5.89 (s, 6H, pyrrole-CH), 6.81 (d, J=8,5 Hz,  2H, ArH), 6.91 

(d, J=8,5 Hz,  2H, ArH), 7.07 (b s, 2H, NH), 7.19 ppm (b s, 2H, NH); LRMS (ESI): 

m/z [M]: 543.58. 

3.7.7 Dendrimeric structures 

3.7.7.1 Dendrimer I 

In a flask, 3.32 (50 mg, 61 mol), 3.30 (145.05 mg, 269.25 mol) dissolved in 50 mL 

of THF. Freshly prepared aqueous solution of sodium ascorbate (106.7 mg, 0.54 

mmol) was added followed by aqueous solution of copper(II) sulfate pentahydrate 

(64.8 mg, 0.27 mmol. The ratio of azide and alkyne groups was 1/4. The mixture 
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stirred for 2 days of ambient temperature. THF was removed under vacuum and the 

remaining crude mixture was dissolved in DCM and washed with water three times.  

The organic layer was then dried over Na2SO4 and the excess of solvent was 

removed under vacuum. Precipitation in to hexane afforded the 3.35 as white solid 

(95%). FTIR: 3423, 2965, 1730, 1575, 1417, 1224, 1165, 1039, 764 cm-1; 1H 

NMR(250 MHz, CDCl3): δ = 7.39-7.03 (br m, 24H, NH and CH), 5.87 (br s, 40H, 

pyrrole CH), 4.24 (br m, 16h, N-CH2 and O–CH2), 2.96 (br t, 8H, CH2), 2.15-1.40 

ppm (br m, 144H, CH and CH2). 

 

Figure 3.1 : Synthesis of calix[4]pyrrole based dendrimer I. 

3.7.7.2 Dendrimer II 

This compound was prepared via triazole ring formation reaction of 3.32 (50 mg, 

61.19 mol) and 3.34 (146.7 mg, 269.25 mol) using the same procedure used to 

produce 3.35. The product 3.36 was a white solid (169 mg, 92%). FTIR: 3428, 2967, 

2931, 1693, 1575, 1506, 1460, 1416, 1223, 1038, 766 cm-1; 1H NMR (250 MHz, 

CDCl3): δ = 7.64- 7.54 (b m, 4H, CH), 7.24 (br s, 12H, NH), 7.11 (br s, 8H, NH), 6.89 

(br t, 8H, ArH), 6.83 (br t, 8H, ArH), 5.88 (br s, 32H, pyrrole CH), 5.63 (br s, 8H, 

pyrrole CH), 5.13 (br s, 8H, CH2), 4.26 (br t, 8H, CH2), 1.83-1.23 ppm (br m, 128H, 

CH3 and CH2). 
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Figure 3.2 : Synthesis of calixpyrrole based dendrimer II. 

3.7.7.3 Dendrimer III 

 

Figure 3.3 : Synthesis of dendrimer III. 

This compound was prepared via triazole ring formation reaction of 3.30 (219.27 

mg, 407 mol) and 1,3,5-tris(azidomethyl)benzene [72] (30 mg, 123.34 mol) using 

the same procedure used to produce 3.35. The product 3.37 was a white solid (215 

mg, 94%). FTIR: 3424, 2967, 1729, 1577, 1419, 1226, 1166, 1040, 767 cm-1; 1H 

NMR (250 MHz, CDCl3): δ = 7.25 (b s, 6H, CH + ArH), 7.15 (br s, 12H, NH), 5.87 (br 
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s, 24H, pyrrole CH), 5.41 (br m, 6H, CH2), 4.25 (br t, 6H, CH2), 2.97 (br t, 6H, CH2), 

2.13-1.73 (br m, 12H, CH2), 1.48-1.39 ppm (br, 63H, CH3). 

3.7.7.4 Dendrimer IV 

This compound was prepared via triazole ring formation reaction of 3.34 (221.72 

mg, 407 mol) and 1,3,5-tris(azidomethyl)benzene (30 mg, 123.34 mol) which was 

prepared from 1,3,5-tris(bromomethyl)benzene [73],using the same procedure used 

to produce 3.35. The dendrimeric product 3.38 was a white solid (215 mg, 93%). 

FTIR: 3419, 2968, 1605, 1578, 1416, 1223, 1039, 768 cm-1; 1H NMR (250 MHz, 

CDCl3): δ = 7.56 (br s, 3H, CH), 7.25 (br s, 9H, NH + ArH), 7.13 (br s, 6H, NH), 6.92 

(d, J = 6.8Hz, 6H, ArH) , 6.83 (d, J = 6.8Hz, 6H, ArH), 5.88 (d, 18H, pyrrole CH), 

5.62 (s, 6H, pyrrole CH), 5.46 (s, 6H, N-CH2), 5.15 (s, 6H, O-CH2), 1.83 (s, 9H, 

CH3), 1.54-1.49 (br m, 54H, CH3); LRMS (ESI): m/z [M]: 1857.89. 

 

Figure 3.4 : Synthesis of dendrimer IV. 
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3.8 Supporting of Calix[4]pyrrole on Silica 

3.8.1 Siloxane functionalized calix[4]pyrrole 

 

(3.32) 

The compound 3.17 (250 mg, 0.56 mmol) and 3-isocyantotriethoxysilane (153 mg, 

0.62 mmol) was dissolved in dry THF under an Ar atmosphere. 2-3 drops of 

dibutyltindilaurate (T12) was added to the reaction mixture. Resulting solution was 

heated up to reflux temperature and continued for 24 h. Reaction mixture was 

cooled down to room temperature and the excess of THF was removed under 

vacuum. Precipitation of residue in to hexanes was yielded the product 3.39 (95%) 

as a white solid. 1H NMR (500 MHz, CDCl3): d= 0.59 (t, 2H, J= 8.35 Hz, CH2), 1.21 

(t, 9H, J = 7 Hz , CH3), 1.47-1.49 (m, 21H, meso-CH3), 1.55 (br m, 2H, CH2), 3.13 (q, 

2H, J = 6.6 Hz, CH2), 3.81 (q, 6H, J = 7 Hz, CH2), 4.29 (s, 2H, CH2),  4.79 (t, 1H, J = 

5.5 Hz, NH), 5.88-5.90 (m, 8H, pyrrole-CH), 7.04 (2H, NH), 7.17 ppm (2H, NH); 13C 

NMR (100 MHz, CDCl3): d= 156.00, 138.56, 138.48, 138.39, 134.03, 103.99, 

103.07, 102.89, 102.74, 70.48, 43.49, 39.55, 35.22, 35.19, 29.30, 29.09, 29.00, 

28.61, 24.69, 23.33, 18.28, 7.62 ppm. This compound was further characterized by 

single crystal X-ray diffraction analysis. 

3.8.2 Modification reactions 

 

(3.33) 

Modification of silica gels was performed using following procedure [74]. Silica gels 

(1-5 g) were first dried in an oven at 120C for 2 days, was suspended in dry toluene 

(100 mL). 3.39 (350 mg, 0.5 mmol) was added over suspension at rt. Then, the 
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resulting mixture was stirred for 24 h and cooled down to rt. Resulting solid was 

filtered off and washed with toluene, DCM, EtOH, MeOH and DCM respectively and 

dried under vacuum at rt.  

Using this procedure Silica gel (5.8 g, porosity = 60 Å; particle size = 40-63 m; 

surface area = 500-600 m2/g; bulk density = 0.4 g/mL), Fume silica, and SiO2 

nanopowder (10-20 nm particle size) were modified with siloxane functionalized 

calix[4]pyrrole 3.39. Functionalization percentages determined by TGA analysis are 

5%, 16%, and 25% for silica gel 60, fume silica, and SiO2 nanopowder respectively. 

3.8.3 Synthesis of silica nanoparticles 

 

(3.34) 

3.39 (200 mg) and TEOS (3 mL) were added to EtOH (100 mL) solution of NH4OH 

(25%, 7.5 mL) which was first heated up to 60 °C. Resulting reaction mixture was 

stirred at 250 rpm for 24 h. White precipitate was filtered of and washed with 

toluene, DCM, EtOH, MeOH and DCM respectively and dried under vacuum at rt. 

This afforded a calix[4]pyrrole modified silica nanoparticles 3.40. Scanning Electron 

Microscopic (SEM) analysis of the obtained material revealed that the SiO2 

nanoparticles have a 55 nm mean particles size. 
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4. RESULTS AND DISCUSSION 

Anions are omnipresent in the natural world although often neglected in terms of 

their importance. For instance, phosphate and nitrates from agricultural industry, 

pertechnetate a radioactive product of nuclear fuel cycling, cause major pollution 

hazards. Carbonates are key anions of biomineralized materials; nitrate and sulfate 

are present in acid rains, and chloride anion present in large quantities in the 

oceans. Anions also have critical roles in biological systems. They are critical for 

storage and manipulation of genetic information in DNA and RNA. For example, the 

DNA helicase RepA sulfate complex structure was solved by X-ray crystallography 

and the results showed the hydrogen-bonding interactions between the sulfate anion 

and RepA protein scaffold [75]. Anions are also involved in production of electrical 

signals in living organisms, regulating osmotic pressure, and activating signal 

transduction pathways. Therefore, a simple irregulation of anion flux across cell 

membranes is the key constituent of many diseases, including cystic fibrosis [76], 

Dent‘s disease [77], osteopetrosis [78], Pendred‘s syndrome [79], and Bartter‘s 

syndrome [80]. Several examples can be given here in terms of the importance of 

anions in biological systems and nature. But above examples are capable to show 

how anions play critical roles in our life. Therefore, complexation and recognition of 

anions represent a key field of supramolecular chemistry. 

Of course, there are challenges of anion complexation. Number of reasons can be 

given for these challenges. First of all, anions are larger than the equivalent 

isoelectronic cations and hence have a lower charge to radius ratio [11]. 

Electrostatic binding interactions of anions are less effective than the corresponding 

isoelectronic cations because of more diffuse nature of anions. The data presented 

in Table 4.1 underscore the more diffuse nature of anionic species.  

Table 4.1 : Radii differences of typical isoelectronic cations and anions. 

Group I cations  Group 7 anions  r 

Na 1.16 Å F 1.19 Å 0.03 Å 

K 1.52 Å Cl 1.67 Å 0.15 Å 

Rb 1.66 Å Br 1.82 Å 0.16 Å 

Cs 1.81 Å I 2.06 Å 0.25 Å 
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There may be some need to design specific anion receptors functioning within the 

limited pH window. Anions may be protonated at low pH and lose their negative 

charge. This could be a particular problem when working with protonated receptors 

(e.g., ammonium containing receptors) as the protonation window of both receptor 

and anion must be considered. Another aspect of challenges about anion 

complexation is that the designing complementary receptors that are selective for 

particular anionic guests. This is because anionic species have a wide range of 

geometries. Figure 4.1 shows some examples of anions and their geometries. 
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Figure 4.1 : Shapes of some anionic species. 

Molecular recognition is one of the upraising areas of receptor design chemistry for 

a long time. Particularly, anion recognition is a new and growing area in terms of the 

biomedical and environmental importance. Ubiquity of anions in biological systems, 

playing important roles in the areas of medicine and potential application areas in 

nuclear fuel industry make this research area fast grooving. In addition, anion 

receptors can be used as ion-selective receptors, phase-transfer catalysis, anion-

selective optical sensors and chromatographic separation systems when it is 

attached on an appropriate stationary phase. 
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However, low anion-receptor interactions because of low ion charge density of 

anions and necessity of well-designed receptor architecture; make this research 

field hard to work. A number of research groups have designed simple and highly 

sophisticated anion receptor systems. Such receptors bind anions selectively, but 

they often have complicated structures and require multistep synthetic approaches. 

In this junction, calix[4]pyrrole compounds has emerged attentions and became 

readily accessible binding agents for anions, transition metal ions and neutral 

species. 

In this study, synthesis of a variety of functional groups containing calix[4]pyrroles 

was aimed. For this purpose easy-to-prepare starting materials were chosen. The 

classification of research field can be summarized as below. 

 Synthesis of long alkyl chain containing calix[4]pyrrole derivatives. 

 Preparation of tetrabenzocalix[4]pyrrole starting from a masked pyrrole 

derivative. 

 Synthesis of MMA polymers with calix[4]pyrrole pendant groups and their 

use in ion and ion pair extraction. 

 Novel functionalized calix[4]pyrrole derivatives for the synthesis of 

dendrimeric calixpyrroles. 

 And finally, covalently attaching of calixpyrroles to silica solid supports via a 

siloxane functionalized calix[4]pyrrole derivative.  

Investigation of anion binding properties of final products was carried out as well as 

intermediate products if necessary. Structure elucidation of products was examined 

using applicable spectroscopic techniques. 

4.1 Calix[4]pyrroles with Long Alkyl Chains 

In this part of the thesis the subject is involved to detailed synthesis and structural 

characterization of a new set of highly organic solubilized calixpyrroles, along with a 

summary of their chloride and acetate anion binding properties as determined by 

ITC measurements carried out in 1,2-dichloroethane.  

The present part was motivated by a desire to obtain calixpyrroles that would not 

partition significantly into water when studied under potential interfacial conditions. 

Specifically, it grew out of an appreciation that certain calix[4]pyrroles could be used 

to reverse the so-called Hofmeister bias [81-83] and were thus potentially useful as 

anion extractants.  
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Anion extraction is an application that could be of use both in the nuclear processing 

industry [81-83] and in terms of obtaining systems that could be used in such 

recognized environmental applications as minimizing surface water eutrophication 

resulting from agricultural runoff [84].  

Highly organic soluble calixpyrrole derivatives are also potentially useful as through-

membrane chloride anion carriers, an application that might have implications in the 

treatment of cystic fibrosis [85, 86]. As a first step towards these long term goals, we 

sought to develop long chain n-alkyl ester modified, meso- and -pyrrole 

functionalized calix[4]pyrroles bearing either hydrogen or bromine atoms in the -

pyrrolic positions that would prove soluble in nonpolar organic solvents.  

We also felt it necessary to test whether the modifications in question, including -

pyrrole bromination, affected the inherent anion recognition properties of the parent 

calix[4]pyrrole core. Towards this end, we have prepared the new ester-substituted 

systems 8, 9, 12, and 13 (cf. Schemes 2 and 3) and analyzed their chloride and 

acetate anion binding properties, as well as for the first time those of the control 

system 2, by ITC in 1,2-dichloroethane. We also report single crystal X-ray 

structures for the control ester systems 4 and 5. 

4.1.1 Synthesis and crystal structures 

Although a large number of approaches leading to highly organic solvent soluble 

calix[4]pyrroles can be conceived, one of the more attractive strategies involves the 

use of long n-alkyl esters as the key solubilizing substituent. Such systems can be 

obtained from calix[4]pyrroles bearing carboxylic acids and/or smaller ester 

substituents in either the meso- and -positions. Over the last decade, we have 

developed several syntheses of monofunctional calix[4]pyrrole carboxylic acids and 

esters and have recently extended these efforts to prepare polyfunctional 

calix[4]pyrroles containing carboxylic acid and ester functional groups [25]. The 

synthesis of -pyrrole brominated calixpyrroles have been reported, including 2.20, 

generated from the corresponding hydrido systems, but as yet have not extended 

this chemistry into the corresponding ester or carboxylic acid functionalized series. 

Given this, our synthetic goal was not only to produce long n-alkyl chain esters of 

carboxy-functionalized calix pyrroles, but also to develop methods for obtaining the 

corresponding b-pyrrole brominated systems, either by effecting bromination at an 

early stage and carrying the product through the remaining synthetic steps or by 

brominating after the final esterification. In point of fact, both of these latter 

strategies were pursued. 
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Figure 4.2 : Synthesis of n-alkyl ester calix[4]pyrroles over meso positions. 

In this part, we also wish to present long alkyl chain substituted calix[4]pyrroles 

starting from basic and readily available calix[4]pyrrole compounds (e.g., 2.1, 2.14 

and 3.1). Synthesis and binding results of 2.1, 2.14 and 2.20 have been reported in 

previous publications. We have selected the esterification of the carboxylic acid 

containing calix[4]pyrroles (3.3, 3.4 and 3.5) for the synthesis of long alkyl chain 

substituted compounds which are soluble in nonpolar solvents (e.g., hexane and 

pentane). We also wish to report the results of anion binding studies carried out by 

ITC.  

 

Figure 4.3 : Synthesis of n-alkyl ester calix[4]pyrroles over  positions. 



84 

Figures 4.2 and 4.3 provide a summary of the new preparative chemistry presented 

in this report. It reveals that the key organic solubilization step involves the 

esterification of compounds 3.3, 3.4 and 3.5. These systems, in turn, were prepared 

from the simpler ester systems 2.14, 3.1, and 3.2. The synthesis of the key starting 

material 2.14 has been reported earlier [28], whereas the mono ester substituted 

calix[4]pyrrole 3.1 was prepared from the mixed condensation reaction of acetone 

and requisite ketoester using the same strategy used previously to generate 

polyfunctional calix[4]pyrroles [25]. In detail acid catalyzed condensation of pyrrole, 

acetone and ethyl pyruvate afforded a mixture of products including 

octamethylcalix[4]pyrrole 2.1, the monoester 3.1, and diester functional 

calix[4]pyrrole. Chromatographic purification using silica gel (DCM/hexanes : 80/20) 

as stationary phase yielded the monoester starting compound 3.1 in 14%. Structural 

elucidation of this yellowish solid compound was carried out using 1H NMR 

spectroscopy (Figure 4.4). 

 

Figure 4.4 : 1H NMR (CDCl3) spectrum of the compound 3.1. 

NH protons of the compound 3.1 were observed at 7.49 and 7.17 ppm. Pyrrole CH 

protons were observed at 5.91 ppm. Ester CH2 and CH3 gave quartet and triplet 

peaks at 4.21 and 1.28 ppm respectively. Meso CH3 protons of mono ester 3.1 were 

observed at 1.74 and 1.51 ppm respectively. 13C NMR and mass analysis of the 

compound 3.1 were also consistent with the expected cyclic structure. 
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Compound 3.1 was also characterized by X-ray diffraction analysis. Single crystals 

of 3.1 were grown by slow evaporation of a solution of 3.1 in dichloromethane and 

diethyl ether. X-ray structural analysis of this compound revealed that the molecule 

has two crystallographically unique molecules, designated 3.1a and 3.1b, per 

asymmetric unit (Figure 4.5). Both unique molecules adopt 1,3-alternate 

conformations as is true in general for the anion-free forms of simple calix[4]pyrroles 

[17]. The ester group of structure 3.1a is found to be tilted out of the plane defined 

by C15-C5-C21 with a torsion angle of 125.55° while in molecule 3.1b the 

corresponding angle is 136.38° (as defined by C15‘-C5‘-C21‘). 

 
 

3.1a 3.1b 

Figure 4.5 : View of the mono ester calix[4]pyrrole 3.1 in 3.1a and 3.1b showing 
the atom labeling scheme. Displacement ellipsoids are scaled to the 
50% probability level. 

In the case of both structures, the individual calix[4]pyrrole units interact with one 

another via H-bonding (Figure A.30). The geometry of these interactions are: 

N3···H3N···O22;N···O 3.344(6)Å,H···O 2.46Å, NH···O 168; N1H1N···O22, 

N···O 3.068(6) Å, H···O 2.17Å, and NH···O 176. These interactions create a one 

by one continuous crystal series of two unique crystals. 

Solution 1H NMR studies spectroscopic studies of 3.1 were carried out to see if 

these interactions are maintained in CDCl3 solution. Both dilution and low 

temperature measurements were made. However, no appreciable shifts in the NH 

proton (or other) signals were observed in any of these experiments. It is thus 

concluded that the intermolecular interactions observed under the conditions of the 

X-ray diffraction analysis are a particular feature of the solid state. 

Bromination of 3.1 with NBS proved just as effective as in the case of 

2.1[30](yielding 2.20 as the product) and allowed for the isolation of the hepta 

bromine-functionalized calix[4]-pyrrole 3.2 in 90% yield. To a dry THF solution of 3.1 
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was added NBS and the resulting mixture was refluxed for 5 h. Flash column 

chromatographic purification (silica gel, DCM/hexanes: 1/1) of the crude product 

allowed to isolate 3.2 in 90% yield.1H NMR spectrum of 3.2 in CD2Cl2 revealed ester 

CH3 protons at 1.33 ppm, meso-CH3 protons between 1.53 and 2.14 ppm, ester CH2 

protons at 4.30 ppm, and no significant NH protons (Figure 4.6). 

 

Figure 4.6 : 1H NMR spectrum of 3.2 recorded in CD2Cl2. 

In general, it is possible to observe the NH proton signals of calix[4]pyrroles using 

1H-NMR spectroscopy, at least when common deuterated aprotic solvents, such as 

CDCl3, CD2Cl2 and DMSO-d6, are used. However, in the case of compound 3.2, the 

NH proton signals are not seen at room temperature when the spectrum is recorded 

in any of these solvents. Accordingly, efforts were made to record the 1H-NMR 

spectrum under a range of temperatures. The appearance of NH proton signals at –

40 C in CD2Cl2 that are not observable over the temperature range 27 C to -20 C 

(Figure 4.7), leads us to suggest that the electron withdrawing Br subunits make the 

NH protons more acidic, and hence more labile, than is true in the case of the 

corresponding non-brominated calix[4]pyrrole 3.1. This increased acidity was 

expected to be reflected in the anion binding properties of this system, as well as 

those of other brominated derivatives. Included among the latter is 2.20, a 

prototypical compound that has been the subject of previous 1H NMR, but not ITC, 

based binding studies [87].  
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In contrast to what proved true for the pyrrolic NH protons, the ester CH2 protons 

(4.30 ppm) were easily observable in the case of 3.2. These are seen to be split into 

two multiplet peaks with a J = 7Hz at low temperature. This splitting starts with a 

single peak at room temperature that undergoes broadening at 0 C and is fully 

apparent at -40 C. 

 

Figure 4.7 : 1HNMR spectrum of 3.2 in CD2Cl2 recorded at various temperatures. 

Temperatures: 1 = 27 C, 2 = 0 C, 3 = 20 C, 4 = 40 C, 5 = 60 

C. 

Such temperature dependence is consistent with a steric effect at low temperature 

that is sufficient to limit rotation of the pyrrole rings adjacent to the ester unit. As can 

be seen from the X-ray crystal structure of 3.2 (Figure 4.8), one of the pyrrole rings 

adjacent to the ester unit lies almost perpendicular to the core of the compound 

while the other one sits almost parallel. Hence, each ester CH2 protons can exist in 

a different chemical environment, a phenomenon reflected in the splitting seen at 

low temperature. This proposed steric hindrance also affects the meso-CH3 protons 

and results in different chemical shifts being seen for these signals at lower 

temperatures (Figure4.7). 

Diffraction grade crystals of 3.2 were obtained by slow evaporation of a 

dichloromethane/diethyl ether solution. X-ray analysis of 3.2 revealed that 

compound 3.2, in spite of the bulky bromine units on the -positions of pyrrole rings, 

adopts a 1,3-alternate conformation. However, two of the opposing pyrrole units 

(containing N2 and N4, respectively) are found to be tilted more in toward the central 
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ring cavity when compared to the corresponding pyrrole units of 3.1 (Figure 4.8). 

Presumably, this reflects substituent-induced steric effects. In the event, in contrast 

to what proved true for 3.1, there is no evidence for appreciable hydrogen bonding 

based intermolecular interactions in the case of 3.2, as can be inferred from an 

inspection of the unit cell packing diagram of 3.2 shown in Figure A.31. 

 

Figure 4.8 : View of 3.2 showing the atom labeling scheme. Displacement 
ellipsoids are scaled to the 50% probability level. The methyl 
hydrogen atoms have been removed for clarity. The ethyl group was 
disordered as shown. 

After a successful afford to bromination of starting mono ester 3.1, the next step was 

involved to preparation of carboxylic acid functionalized systems (3.3 and 3.4) which 

would have play as key intermediates to establish long alkyl chain substituted 

calixpyrrole derivatives. For this purpose, the compound 3.1 was exposed to 

hydrolysis under basic conditions (Figure 4.2). Specifically, 3.1was refluxed in a 

mixture of EtOH/water containing NaOH. The solution was then acidified with 

concentrated HCl solution. This induced the precipitation of carboxylic acid 

functionalized calix[4]pyrrole 3.3 which was then easily isolated via filtration.1H NMR 

spectrum of the compound 3.3 was raised pyrrolic NH peaks 7.71 and 7.45 ppm, 

pyrrole CH peaks around 5.90 ppm, carboxylic acid proton at 2.85 ppm, and the 

meso-CH3 protons between 1.73 and 1.50 ppm (Figure 4.9). Both 13C NMR and 

mass analysis results of the product were consistent with the expected structure. 
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Figure 4.9 : 1H NMR spectrum of 3.3 recorded in CDCl3. 

Using the same conditions above, the octabromocalix[4]pyrrole mono ester 3.2 was 

successfully hydrolyzed to its corresponding carboxylic acid derivative 3.4. The 

compound 3.4 was not also reveal NH protons at 1H NMR spectrum because of 

more acidic nature of NH protons as observed in the case of 3.2. Carboxylic acid 

OH was observed at 3.88 ppm as a broad peak, meso CH3 protons was also raised 

between 0.88 and 2.16 ppm (Figure 4.10). 

 

Figure 4.10 : 1H NMR spectrum of 3.4 recorded in CDCl3. 

Using the same bromination agent (NBS) and reaction conditions applied to obtain 

3.2, compound 3.6 was synthesized in 89% yield starting from 2.14 which was 

reported earlier [28].1H NMR analysis of isolated pure compound was carried out in 
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CDCl3; revealed that because of the highly asymmetric nature of 3.6, all of the NH 

protons maintained resonances in different regions of the spectrum (8.48, 7.95, 

6.79, and 6.64 ppm). Ester CH2 protons were observed at 4.09 ppm as a broad 

triplet, -CH2 protons at 3.35 ppm as a sharp singlet, meso-CH3 protons between 

1.82 and 1.26 ppm, and the ester CH2 protons at 0.88 ppm in a triplet form as 

expected (Figure 4.11). The disappearance of pyrrole CH protons (5.88-5.69 ppm) 

of 2.14 upon bromination can be judged from Figure 4.11. 

 

Figure 4.11 : 1H NMR spectra of the C-rim modified heptabromocalix[4]pyrrole 3.6 
(up) and 2.14 (down). 

The next effort was dedicated to obtain carboxylic acid derivative (Figure 4.15) of 

the compound 3.6 as a starting material to reach long alkyl ester of this compound. 

Unfortunately, compound 3.6 was found to decompose under the conditions of ester 

hydrolysis circumstances applied to 3.1 and 3.2. But this unsuccessful attempt did 

not cut off the achievement of obtaining corresponding long alkyl ester derivative of 

3.6 as will be detailed in the next pages.  
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The actual attachment of the long n-alkyl ester chains to the carboxylic acid 

substituted calix[4]pyrroles (3.3, 3.4 and 3.5) was carried out using DCC/DMAP in 

dichloromethane. This provided 3.7, 3.8, and 3.9 in good yield. However, as noted 

above, we were able to prepare compound 3.10 via direct bromination of 3.9. Thus, 

both the initial, and ―post synthetic modification‖ bromination strategies had to be 

employed to obtain the final ester functionalized perbrominated products 3.8 and 

3.10. 

For instance, attachment of n-octadecyl unit to the compound 3.3 was achieved via 

esterification of carboxylic acid functional 3.3 and 1-octadecanol in the presence of 

DCC/DMAP at room temperature in CH2Cl2. These smooth conditions afforded a 

reaction mixture containing the product 3.7. Isolation of the product via column 

chromatography yielded 3.7 in 51%. In this case pyrrole NH proton signals was 

observed at 7.42 and 7.07 ppm, pyrrole CH protons at 5.92 ppm as a narrow 

multiplet, and the OCH2 protons at 4.14 ppm as a triplet and the remaining protons 

between 1.75 and 0.86 ppm (Figure 4.12). 

 

Figure 4.12 : 1H NMR spectrum of 3.7. 

After the synthesis of n-alkyl ester substituted calix[4]pyrrole, the next effort was 

focused on the preparation of its octabromo derivative 3.8. The aim of preparation of 

this compound is increasing the anion binding ability via electron withdrawing bromo 

substituents. For this purpose octabromocalix[4]pyrrole mono carboxylic acid 3.4 

was reacted with 1-octadecanol using the same conditions used to prepare 3.7. This 
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gave a white solid in 72% yield. 1HNMR spectroscopic analysis of the product 3.8 

revealed similar results except pyrrole CH proton signals (Figure 4.13). Interestingly, 

one of the pyrrole NH protons was revealed a down field shift at 11.82 ppm. 

 

Figure 4.13 : 1H NMR spectrum of 3.8 recorded in CDCl3. 

Once the synthesis and structural elucidation of the meso-n-alkyl substituted 

calix[4]pyrroles 3.7 and 3.8 were succeeded, the next idea was the enrichment of  n-

alkyl ester substituted calixpyrrole derivatives. The first and convenient candidate 

would be preparation of -substituted calixpyrrole derivatives. This would allow us to 

compare anion binding properties of meso- and -substituted compounds. 

In this junction, -long alkyl chain substituted calix[4]pyrrole derivative 3.9 was 

synthesized starting from its corresponding carboxylic acid derivative 3.5 [45] via 

standard esterification conditions applied to obtain 3.7 and 3.8. 1H NMR 

spectroscopic analysis of the final product revealed that pyrrole NH proton signals 

located at 8.49, 7.10, 6.97, and 6.95 ppm. Pyrrole CH protons were spread between 

5.90 and 5.71 ppm because of asymmetric nature of calixpyrrole. Ester CH2 and -

CH2 proton signals were observed at 4.15 (triplet) and 3.64 ppm, respectively. 

Remaining meso-CH3 and long alkyl chain proton signals was observed between 

1.69 and 1.29 ppm. The end CH2 proton signal of octadecyl substituent was arisen 

at 0.91 ppm in expected triplet form (Figure 4.14).  
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Figure 4.14 : 1H NMR spectrum of 3.9 recorded in CDCl3. 

The next step was involved to preparation of perbrominated derivative of 3.9 for 

enhanced anion binding ability. For this purpose, we thought to prepare carboxylic 

acid derivative of 3.6 (Figure 4.15) using the similar reaction conditions of ester 

hydrolysis applied to obtain 3.3 or 3.4. Unfortunately, as noted above, starting 

material 3.6 was proved to decompose under ester hydrolysis conditions. 

 

Figure 4.15 : Structure of 2-heptabromo--calix[4]pyrrolyl acetic acid. 

While hydrolysis of 3.6 could not be achieved, direct bromination of 3.9 using NBS 

as a bromination agent under the conditions applied to obtain 3.2 and 3.6 afforded 

Octadecyl 2--heptabromocalix[4]pyrrolyl acetate 3.10 as a white solid in 90% yield. 

1H NMR spectroscopic analysis of 3.10 revealed the pyrrole NH proton signals at 

8.48, 7.95, 6.79, and 6.64 ppm. Ester CH2 and -CH2 proton signals was observed 

at 4.00 (broad triplet) and 3.35 ppm, respectively. Meso-CH3 and remaining long 

alkyl chain CH2 proton signals was arisen between 1.83 and 1.25 ppm. The end 
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CH2proton signal of octadecyl substituent was observed at 0.88 ppm as a triplet 

(Figure 4.16). 

 

Figure 4.16 : 1H NMR spectrum of 3.10 recorded in CDCl3. 

Table 4.2 summarizes some structural elucidation data for the compounds prepared 

in this chapter. 

Table 4.2 : Structural specifications of the compounds prepared for long alkyl chain 
substituted calix[4]pyrroles. 

Compound 
1H NMR (δ, ppm)  Mass (m/z) 

NH Pyrrole CH meso-CH3  Calcd. Found 

3.1 7.49, 7.17 5.91 1.74, 1.51  486.2995 486.2997 
3.2 9.01- 6.68a – 2,14 - 1.53  1117.5754 1117.5762 
3.3 7.71, 7.45 5.90 1.73 - 1.50  458.2682 458.2690 
3.4 – – 2.16 - 0.88  1089.5441 1089.5450. 
3.6 8.48 - 6.64 – 1.82 - 1.26  1065.6982 1065.6990 
3.7 7.42, 7.07 5.92 1.75, 1.52  711.5499 711.4483 
3.8 11.82 - 6.75 – 2.27 - 1.88  1342.24208 1342.24251 
3.9 8.49 - 6.65 5.90 - 5.71 1.59 - 1.50  739.5890 739.5858 

3.10 8.48 - 6.64 – 1.79 - 1.25  1290.9564 1290.9576 

a
 Observed at –40 ºC. 

4.1.2 Anion binding studies 

Although the long chain esters of this study proved fully soluble in such apolar 

solvents as pentanes and hexanes, anion binding measurements were carried out in 

1,2-dichloroethane. This relatively apolar solvent was chosen, since 1) the 
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substituted calix[4]pyrroles of interest (i.e., 3.7, 3.8, 3.9, and 3.10) are not soluble in 

more polar solvents commonly used for such analyses, e.g., CH3CN and DMSO, 

and 2) 1,2-dichloroethane was used in a recently published solvent dependence 

analysis of the chloride anion binding properties of 2.1 [88]. Thus, ready reference to 

these benchmark data could be made and, with this goal in mind, the chloride and 

acetate anion binding properties of 3.7, 3.8, 3.9, and 3.10 were analyzed in 1,2-

dichlorethane at room temperature using ITC (In general, 0.4 mM host solution was 

titrated with 8 mM guest solution (Figure 4.17, for other ITC titration curves see 

Figure A.34-A.48). Table 4.3 shows the binding constants for the novel 

calix[4]pyrroles of this study interacting with Cl and CH3CO2
 (studied as the 

corresponding TBA salts). Also included in Table 4.3 are previously reported 

chloride anion affinities of 2.1 [88, 89], as well those for compound 2.20 determined 

using ITC for the first time. The results in Table 4.3 reveal that the unfunctionalized 

and -pyrrole perbrominated calix[4]pyrroles 2.1 and 2.20 bind chloride anion with 

similar affinity, with the brominated species proving to be somewhat less effective as 

a chloride anion receptor. This result is somewhat surprising. Based on previous 

studies involving fluorinated calix[4]pyrroles [38], it was expected that the presence 

of the electron withdrawing substituents on the -positions of the pyrrole rings would 

lead to an enhanced chloride anion affinity. 

Table 4.3 : Chloride and acetate anion-binding affinities measured in 1,2-
dichloroethane (as the tetrabutylammonium salts) using ITC. Estimated 
errors are less than 10%. 

Compound 
Association Constant (M1

) 

Cl CH3CO2
 

 2.1 2.8  104a 4.4  104 

 2.20 1.8  104 3.5  103 

 2.14 2.4  103 1.5  103 

 3.1 9.4  103 5.1  103 

 3.2 2.9  103 1.9  103 

 3.7 5.8  103 6.8  103 

 3.8 1.8  103 n/db 

 3.6 2.8  103 1.5  103 

 3.9 2.0  103 n/d 

 3.10 1.8  103 n/d 

a
 Taken from reference [88]. 

b
 n/d : not determined. 

However, the fact that this is not observed leads us to suggest that conformational 

effects play a critical role. Compound 2.20 possesses considerably bulkier 

substituents (i.e., bromine atoms) in the -pyrrolic positions than does 1; as a result, 

it is unable to adjust its conformation in favor of the cone conformation (dominant in 



96 

the anion bound form) as readily as 2.1. To the extent such an analysis is correct; it 

would lead to a reduction in the chloride anion affinity based on an analysis of 

electronic factors alone. Consistent with this conclusion is the finding that the 

acetate anion affinity of 2.20 is also lower than that of 2.1. This same trend is seen 

in the case of the brominated ester derivatives, with the chloride and acetate anion 

affinities of the ethyl ester system 3.1 being substantially higher than those of the 

corresponding brominated derivative 3.2. Likewise, the chloride anion affinity of the 

long n-alkyl ester 3.7 proved ca. 3 times larger than that of the analogous 

brominated product 3.8. Interestingly, however, the chloride anion affinities of 3.9 

and 3.10, both of which were among the lowest observed for the present study set, 

proved nearly identical. 

 

Figure 4.17 : ITC titration curve obtained from the titration of compound 2.20. 

The other major conclusion supported by the data in Table 4.3 is that 

functionalization of the calix[4]pyrrole core with an acetyl ester group serves to 

reduce the anion binding affinity by a factor of 2–10 depending on the system 

involved (e.g., meso vs. -pyrrole substituted) but that the effect of the long chain n-

alkyl ester per se is small. For instance, the chloride anion affinity of the ethyl ester 

3.1 is roughly 2 times lower than that of 2.1, whereas that of the long chain analogue 

3.7 is lower by only a factor of ca. 3 (again compared to 2.1). The relative effect of 

long chain ester functionalization is even less dramatic in the case of the -pyrrole 

substituted esters. For instance, the chloride anion affinity of 2.14 and 3.9, albeit 
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substantially reduced compared to that of 2.1, are basically the same within error. 

Similar across the board trends are revealed in the case of acetate anion binding, 

although affinity constants for compounds 3.8, 3.9, and 3.10 could not be 

determined because of competing, but as yet unidentified, interactions observed in 

the ITC traces. 

4.1.3 Conclusion 

In conclusion, new mono carboxylic acid and ester functionalized calix[4]pyrroles 

bearing both short and long n-alky chains on the ester positions have been 

synthesized. 1HNMR studies revealed that the brominated derivative 3.2 gives rise 

to nonobservable NH peaks at room temperature (CD2Cl2), but that these signals 

can be readily detected at lower temperatures (i.e., below -20C). These results are 

consistent with the brominated calix[4]pyrroles of this study being endowed with 

more acidic NH protons. However, this presumed greater acidity is not reflected in 

higher chloride or acetate binding affinities relative to the hydrogen atom substituted 

forms, at least as judged from ITC measurements carried out at room temperature in 

1,2-dichloroethane. These same anion binding studies revealed that all the new 

compounds, including the long n-alkyl esters, display relatively good anion binding 

affinities, albeit ones that are somewhat reduced compared to those of the parent 

calix[4]pyrrole (2.1). This combination of decent anion affinity and high solubility in 

nonpolar solvents, such as hexanes, makes the ester systems 3.7, 3.8, 3.9, and 

3.10 potentially attractive for use in further applications including anion extraction 

and transport. 

4.2 Tetrabenzocalix[4]pyrrole 

Calix[4]pyrroles are also emerging as useful elements in the construction of ion-pair 

receptors.  At least in principle, such systems may allow for a higher level of control 

over ion recognition than simpler monotopic receptors.  This enhanced recognition 

capability is expected to correlate with improved sensitivity, something that could be 

particularly useful in the area of extraction-based separations.  Recently, we have 

made some progress in the latter area, demonstrating, for instance, that PMMA 

polymers containing pendant calix[4]pyrrole groups can extract tetrabutylammonium 

salts of fluoride and chloride from aqueous solutions [90]. Subsequently, crown 

ether moieties were incorporated into the basic calix[4]pyrrole-containing PMMA 

structure to create organic soluble polymeric systems capable of extracting KF and 

KCl from neutral aqueous media [91]. This result highlights the potential benefits 

that could accrue from being able to extract concurrently both an anion and a 
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corresponding counter cation.  However, to date, this has proved difficult to do with 

simple (i.e., non-polymerized) neutral receptors.  On the other hand, Sessler and 

coworkers recently demonstrated that octamethylcalix[4]pyrrole (2.1) would extract 

cesium halide salts as ion-pairs [83]. Here, small halide anions were used to 

organize the octamethylcalix[4]pyrrole framework into a cone conformation, thereby 

creating an electron-rich cup that favored Cs cation complexation.  Extending the 

size of this ―cup‖ beyond the simple ―rim‖ provided by the -pyrrolic protons of 

unfunctionalized calix[4]pyrrole 2.1 might allow this approach to work for harder, 

more highly hydrated cations such as K and Na.  This, in turn, is providing an 

incentive to prepare new modified calix[4]pyrrole derivatives. Inspiring from the 

results mentioned above the synthesis of the bicyclo[2.2.2]-oct-2-ene fused 

calix[4]pyrrole 3.15 with deep ―walls‖, as well as the results of efforts to convert this 

precursor to the corresponding calix[4]pyrrole derivative 3.16 that contains benzo 

units fused to the -positions of the pyrrole rings. 

 

Figure 4.18 : Synthesis of 3.11 and 3.12. 

An attractive method to synthesis of calix[4]pyrrole targets 3.15 and 3.16 involves 

the use of 4,7-dihydro-4,7-ethano-2H-isoindole 3.14 as an isoindole equivalent [68].  

This intermediate can be built up from  (E)-1,2-bis(phenylsulfonyl)ethyleneas 

detailed in Figure 4.18 and described briefly below; it was expected to allow access 

to the bicyclo[2.2.2]-oct-2-ene functionalized calix[4]pyrrole 3.15, from which the 

benzo fused system 3.16 could presumably be accessed. 

The synthesis of compound 3.12 is summarized in Figure 4.18. Briefly, (E)-1,2-

bis(phenylsulfonyl)ethylene was heated with 1,3-cyclohexadiene at reflux in toluene 

for 24 h.  After removal of the solvent, the resulting crude product was purified by 

washing with ether; this yielded the Diels-Alder adduct 3.11 in 96% yield. 1H NMR 

spectral data (Figure 4.19) of 3.11 was complementary with the reported literature 

specifications [92]. For full spectrum of 3.11 see Figure A.10. 
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Figure 4.19 : 1H NMR spectrum of 3.11 recorded in CDCl3. Empty baselines were 
removed for clarity.  

Once compound 3.11 was obtained, it was treated with ethyl isocyanoacetate and 

KOtBu in dry THF at 0 C. The reaction vessel was then kept at room temperature 

overnight.  After workup, compound 3.12 was isolated by column chromatography 

over silica gel; it was obtained in 90% yield. 

 

Figure 4.20 : 1H NMR spectrum of 3.12 recorded in CDCl3. 

1HNMR spectrum of 3.12 (Figure 4.20) revealed NH peak at 8.45 ppm, pyrrole ring 

-proton at 6.56 ppm as a doublet, olefin protons between 6.47-6.50 ppm as 

multiplet, bicyclic-ring bridge protons at 3.86 and4.36 ppm as multiplet peaks, ester 

CH2 protons at 4.29 ppm as quartet, bicyclic-ring ethano protons between 1.40-1.60 
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ppm as multiplet peaks and ester CH3 protons at 1.35 ppm as triplets. This proton 

NMR data is in good agreement with the literature data [68]. 

Direct decarboxylation of 3.12, as illustrated in Figure 4.22, via treatment with KOH 

in ethylene glycol at 160 C for 3.5 h proved problematic, giving product 3.14 in only 

low yield[68]. Therefore, we decided to synthesize compound 3.13 through a step-

wise route that involved first saponification of ester 3.12 to give 3.13 then 

decarboxylation in cold TFA. Briefly, 3.12 was hydrolyzed with NaOH in an 

Ethanol/H2O mixture at reflux temperature. The white product 3.13 was precipitated 

by dropwise addition of 0.1 N HCl solution after removal of excess of ethyl alcohol 

under vacuum.1H NMR spectroscopic analysis of 3.13 revealed broad pyrrole NH 

proton signal at 10.72 ppm, pyrrole -CH proton at 6.55 ppm, olephinic CH protons 

at 6.44 ppm, bridge head CH protons at 4.25 and 3.82 ppm, COOH proton at 11.97, 

bridge CH2 protons at 1.46 and 1.31 ppm (Figure 4.21). 13C NMR spectroscopic and 

mass spectrometry analyses of the compound 3.13 are consistent with the expected 

structure. 

 

Figure 4.21 : 1H NMR spectrum of 3.13 recorded in d6-DMSO. 

Once the carboxylic acid derivative 3.13, corresponding to the starting ester, was 

obtained, it was decarboxylated by treating with TFA at 0 C for 30 min under an Ar 

atmosphere. Using this strategy, 4,7-dihydro-4,7-ethano-2H-isoindole 3.14 was 

obtained in 92% overall yield. 
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Figure 4.22 : Saponification pathways of 3.12. 

1H NMR spectroscopic analysis of the masked pyrrole derivative is given in Figure 

4.23. 3.14 raised NH proton signal at 7.51 ppm, olephinic CH protons signals at 6.53 

ppm, pyrrole CH protons at 6.47 ppm, bridge head CH protons at 3.86 ppm, and 

bridge CH2 protons at 1.55 ppm.  

 

Figure 4.23 : 1H NMR spectrum of 3.14 recorded in CDCl3. 

Efforts were then made to prepare the corresponding calix[4]pyrrole derivative 3.15 

by condensing 3.14 with acetone in the presence of an acid catalyst, as shown in 

Figure 4.24. Towards this end, the general calix[4]pyrrole forming condition, 

involving the use of an acid catalyst (e.g., CH3SO3H) in MeOH.  However, the 

desired calix[4]pyrrole compound 3.15 was not obtained in isolable quantities.  
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Figure 4.24 : Synthesis of the compound 3.15 and tetrabenzocalix[4]pyrrole (3.16). 

Therefore, the condensation reaction was carried out in CH2Cl2 using TFA as the 

acid catalyst. In this case, workup and column chromatography gave compound 

3.15 in 50% yield as a white solid. The resonances corresponding to the aliphatic 

CH protons were found to lie between δ = 1.25 and 1.58 ppm,  in the 1H NMR 

spectrum.  This result, considered in concert with the disappearance of the pyrrole 

-proton signals, led to the conclusion that product 3.15 contains and intact 

calix[4]pyrrole structure (Figure 4.25). Furthermore, FAB mass analysis of 

compound 3.15 revealed only one signal at 742 amu, a value corresponding to the 

molecular mass of the compound 3.15 plus one proton (Figure A.64). 

 

Figure 4.25 : 1H NMR spectra of 3.15 recorded in CDCl3. 

With compound 3.15 in hand, an effort was made to obtain the corresponding 

tetrabenzocalix[4]pyrrole 3.16.  With goal in mind, compound 3.15 was subject to 

retro Diels-Alder reaction conditions (Figure 4.24).  Specifically, compound 3.15 was 

heated to 200 C under vacuum at 10 mmHg for 10 min, with the resulting crude 

product being subject to column chromatography. Unfortunately a quantitative 
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conversion of 3.15 into 3.16 could not be achieved in this work even though similar 

retro Diels-Alder reaction conditions have proved effective in creating porphyrin 

derivatives analogous to 3.16 [68]. Moreover, separation of product 3.16 from the 

starting material 3.15 using column chromatography was not successful. Therefore, 

1H NMR spectroscopic and mass spectrometric analyses of the reaction mixture 

were employed to track the course of the putative conversion. 

 

Figure 4.26 : FAB Mass spectrum of 3.16. 

The 1H NMR spectra recorded after heating 3.15 for an extended period revealed 

the appearance of peaks at δ= 6.89 and 7.71 ppm, signals that were ascribed to the 

aromatic CH protons expected for 3.16. Likewise, as shown in Figure 3.16, a mass 

spectrometric analysis of the reaction mixture revealed a signal at 627 amu 

corresponding to the expected tetrabenzocalix[4]pyrrole product 3.16 ([M-]), as well 

as signal corresponding to the molecular mass signal of the compound 3.15.  Taken 

in concert, these two findings provide support for the notion that at least partial 

conversion to 3.16 takes place upon heating 3.15 under vacuum. 

In conclusion, the synthesis of the tetra-bicyclo[2.2.2]-oct-2-ene fused calix[4]pyrrole 

3.15 and its partial conversion to the corresponding tetrabenzocalix[4]pyrrole 3.16 

were studied. Possible efforts would be improving this latter conversion and studying 

system 3.15 as a possible ion-pair receptor and deep-walled ―molecular container‖. 

4.3 Polymers with Pendant Calix[4]pyrrole Units 

The nature of the binding interactions involved, primarily hydrogen bonds, would 

lead to the expectation, generally supported by experiment, that in highly 
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competitive media this and other neutral, pyrrole-derived receptors [21, 22] would 

display anion affinities that are substantially reduced.  However, recent studies 

wherein pyrrolic systems are either embedded in various types of functional 

materials, e.g., ion selective electrodes [93, 94] and colorimetric sensors [95], or 

covalently attached to solid supports to produce anion-selective HPLC packings 

[45], have served to show that ostensibly weak anion binding agents, including 

calix[4]pyrrole and its derivatives, can be highly effective anion receptors under 

mixed organic-aqueous interfacial conditions.  This has led us to consider that 

soluble polymeric materials containing calix[4]pyrrole subunits linked directly to the 

macromolecular backbone (as opposed to covalently attached to a preformed 

polymer support) might prove particularly useful for the purpose of anion-binding 

materials.  These materials could have a role in addressing a variety of current 

challenges, including corrosion prevention (e.g., chloride, carbonate, and sulfate 

control under conditions of combustion [96]), waste remediation (e.g., sulfate 

extraction from tank waste [97, 98]), toxin control (e.g., mitigating the effects of 

overexposure to cyanide [99] or fluoride [100]), and health care (i.e., enhanced 

phosphate removal under conditions of hemodialysis [101]), to name but a few. 

4.3.1 Tetrabutylammonium fluoride and chloride extraction studies 

In this chapter, the synthesis and characterization of polymers and copolymers 

containing calixpyrrole (3.18) and MMA will be detailed.  In addition, it will be 

demonstrated that organic solutions of the calixpyrrole-functionalized copolymer are 

capable of extracting TBACl and TBAF from aqueous solutions significantly better 

than calixpyrrole 2.1 and PMMA.  To the best of our knowledge, this is the first 

example of an anion receptor appended to a PMMA backbone and the first study 

wherein an anion receptor-based polymeric system of any type has been used to 

effect anion extraction under interfacial aqueous-organic conditions (Examples of 

polymeric anion receptor systems are limited, see ref. [102-106]). 

4.3.1.1 Synthesis of methacryloyl functionalized calix[4]pyrrole 

Attachment of methacryloyl functionality was achieved using simple esterification 

reaction of hydroxymethyl calix[4]pyrrole 3.17 and methacryloyl chloride. The 

starting hydroxymethyl calix[4]pyrrole 3.17 was prepared via reduction of respective 

ethyl ester (3.1) using NaBH4/MeOH in THF at reflux temperature. Quenching the 

reaction with NH4Cl and extraction of organic residue with CH2Cl2 followed by 

chromatographic separation afforded 3.17 in 75% yield (Figure 4.27). 
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Figure 4.27 : Synthesis of hydroxymethyl calix[4]pyrrole 3.17. 

NMR spectroscopic analysis of the compound 3.17 was carried out in CDCl3 and 

revealed pyrrole NH proton signals at 7.57 and 7.11 ppm, multiplet pyrrole CH 

proton signals was arisen between 5.96 and 5.91 ppm, CH2 proton signals at 3.86 

ppm as a doublet, OH proton signal at 1.94 ppm as a triplet and meso-CH3 protons 

proton signals between 1.54 and 1.42 ppm. 

 

Figure 4.28 : 1H NMR spectrum of 3.17 recorded in CDCl3. 

Single crystals of 3.17 grew as pale yellow lathes by colorless laths by vapor 

diffusion of hexanes into a dichloromethane solution of the calixpyrrole.  The data 

crystal was a long lathe that had approximate dimensions; 0.34 x 0.13 x 0.04 mm.  

The data were collected on a Nonius Kappa CCD diffractometer using a graphite 

monochromator with MoK radiation ( = 0.71073Å).  A total of 341 frames of data 

were collected using -scans with a scan range of 1.2 and a counting time of 198 
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seconds per frame.  The data were collected at 153 K using an Oxford Cryostream 

low temperature device (Figure 4.29). 

 

Figure 4.29 : View of molecule 3.17 in the atom labeling scheme. Displacement 
ellipsoids are scaled to the 50% probability level (CCDC 668095).  

The functionalized calix[4]pyrrole monomer 3.18 was prepared in 82% yield from the 

hydroxylmethyl calixpyrrole derivative 3.17 through treatment with methacryloyl 

chloride under basic conditions. Briefly, alcohol 3.17 and methacryloyl chloride was 

stirred in cold THF in the presence of Et3N. Quenching of the reaction with water, 

extraction of organic residue with CH2Cl2 and purification with flash column 

chromatography were yielded monomer 3.18 (Figure 4.30). 

 

Figure 4.30 : Synthesis of methacryloyl substituted calix[4]pyrrole. 

After the synthesis of the compound 3.18, its structural elucidation was carried out 

first using 1H NMR spectroscopy (Figure 4.30). 3.18 revealed the NH proton signals 

at 7.14 and 7.05 ppm, methacryloyl CH proton signals at 6.01 and 5.55 ppm, pyrrole 

CH protons between 5.93 and 5.89 ppm, meso-CH2 protons at 4.38 ppm, 

methacryloyl CH3 at 1.90 ppm, and remaining calixpyrrole meso-CH3 protons 

between 1.54 and 1.48 ppm. 
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Figure 4.31 : 1H NMR spectrum of 3.18 recorded in CDCl3. 

Further characterization support about the structure of 3.18 came from single crystal 

X-ray diffraction analysis (Figure 4.32). Single crystals of 3.18 were grown as 

colorless prisms by slow evaporation from dichloromethane.  The data crystal was 

cut from a larger crystal and had approximate dimensions; 0.30 x 0.26 x 0.14 mm.  

The data were collected on a Nonius Kappa CCD diffractometer using a graphite 

monochromator with MoK radiation ( = 0.71073Å). 

 

Figure 4.32 : View of 3.18 showing the atom labeling scheme. Displacement 
ellipsoids are scaled to the 50% probability level. 

Monomer 3.18 contains a methacrylate functionality and proved amenable to 

polymerization using conventional free radical methods [107].  
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4.3.1.2 Synthesis of homopolymer and MMA copolymer 

 

Figure 4.33 : Structures of the homopolymer and MMA copolymer of 3.18. 

In initial studies, homopolymer 3.19 was prepared by dissolving monomer 3.18 in 

THF (0.3 M) followed by treatment wih 1 mol% of AIBN.  After stirring at 70 ºC for 17 

h under an atmosphere of nitrogen, the resulting viscous solution was added 

dropwise into excess methanol with rapid stirring. This caused precipitation of 

polymer 3.19, which was later isolated via filtration in 66% yield.  Using gel 

permeation chromatography (GPC), the polymer was found to have a number-

average molecular weight (Mn) of 23.600 Da (relative to PMMA standards) and a 

polydispersity index (PDI) of 2.3. 1H NMR spectroscopic analysis of the 

homopolymer 3.19 revealed NH proton signal 7.12 ppm, pyrrole CH protons at 5.89 

ppm, meso-CH2 protons at 4.15 ppm, meso-CH3 and polymer backbone CH3 

protons between 1.25 and 1.85 ppm, and polymer backbone CH2 proton signals 

between 0.34 and 0.95 ppm (Figure 4.34). 

 

Figure 4.34 : 1H NMR spectrum of homopolymer 3.19 recorded in CD2Cl2. Solvent 
peaks were removed for clarity. 

To improve the physical properties of the calix[4]pyrrole functionalized PMMAs 

(including their potential ability to serve as anion extractants), a copolymer of 
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methacrylate functionalized calixpyrrole 3.18 and MMA was prepared.  Using the 

conventional free radical polymerization conditions described above, a 77% yield of 

copolymer 3.20 was obtained from a 1:10 mixture of 3.18 and MMA.  Using GPC, 

copolymer 3.20 was found to possess a Mn of 85500 Da and a PDI of 2.1. The 

relatively high molecular weight, compared to 3.19, led us to conclude that the 

incipient and/or growing polymer chains may be negatively influenced by the large 

steric bulk of the calix[4]pyrrole in monomer 3.18. Regardless, polymer 3.20 proved 

to be highly soluble in most common organic solvents, including dichloromethane.  

1H NMR spectroscopic analysis (CD2Cl2) revealed that there were ca. 14 

methacrylate units per calixpyrrole unit within 3.20.  

 

Figure 4.35 : 1H NMR spectrum of calixpyrrole-MMA copolymer 3.20 recorded in 
CDCl3. 

Figure 4.35 shows 1H NMR spectroscopic analysis of copolymer 3.20. Following 

results were concluded from the NMR analysis. Polymer backbone CH2 proton 

signals was observed at 0.82 and 0.99 ppm, calixpyrrole meso-CH3 protons between 

1.50-1.58 ppm, MMA CH3 protons between 1.80-1.88 and 3.57 ppm, calixpyrrole 

meso-CH2 protons at 4.11 ppm, pyrrole CH proton signals between 5.89-5.95 ppm, 

and finally pyrrole NH protons at 7.11 ppm. 

Although the ratio of 3.18:MMA observed (1:14) in copolymer 3.20 was slightly 

higher than the monomer feed ratio (1:10), 1H NMR analysis of 3.20 leads us to 

suggest that the microstructure of this material is largely random and not a block 

copolymer of MMA and polymerized 3.18. Specifically, two signals attributed to the 

methyl ester of MMA were found at δ = 3.3 and 3.4 ppm (C6D6) in relative integrals 

of 2:1. Table 4.3 summarizes the specifications of homopolymer 3.19 and copolymer 

3.20. 
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Table 4.4 : Specifications of polymers 3.19 and 3.20. 

Specification 3.19 3.20 

Monomer ratio (3.18:MMA) 1:0 1:10 
Product Ratio (3.18:MMA) 1:0 1:14 
Mn 23 600 Da 85 500 Da 
PDI 2.3 2.1 
NH poton signal 7.13 ppm 7.11 ppm 
Pyrrole CH proton signal 5.89 ppm 5.89 ppm 
meso-CH2 signal 4.15 ppm 4.11 ppm 

MMA OCH3 signals  3.57 ppm 

For comparison, a sample of PMMA (Mn = 40700; PDI = 1.5) was prepared using a 

procedure analogous to that used to obtain 3.19 and 3.20.  Thermal analysis of 3.20 

revealed a decomposition temperature (Td) at 272 °C (Figure 4.36), which is 

intermediate of respective Tds found for 3.19 (270 °C) and the PMMA homopolymer 

(276 °C) used for comparison (All thermal analyses were performed under an 

atmosphere of nitrogen at a scan rate = 10 °C/min, for thermogravimetric graphics of 

all compounds see Figure A.49-A.63). Collectively, these results provide support for 

the proposal that the physical properties of copolymers prepared from MMA and 

3.18 may be tuned through judicious monomer selection. 

 

Figure 4.36 : Thermogravigram of polymer 3.20 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min. 

4.3.1.3 Extraction Studies 

Once polymer 3.20 was fully characterized, efforts shifted toward exploring its ability 

to bind anions under interfacial conditions.  Extraction studies were carried out in 

NMR tubes using CD2Cl2 solutions of polymers and control compounds. D2O 

solutions of TBA salts were added to polymer solutions and tubes were shaken 
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vigorously. Afterwards, the organic and aqueous phases allowed to separate and 

centrifuged at 5000 rpm to maintain full phase separation. After obtaining a 

separated clear solution 1H NMR spectra of CD2Cl2 phase were recorded to see 

changes in organic phase. 

 

Figure 4.37 : 1H NMR spectra of CD2Cl2 solutions of (1) octamethylcalix[4]pyrrole 
(2.1),  (2) 2.1 + TBAF (29 mM) and, (3) PMMA (125 mM, based on 
the repeat unit) + TBAF, (4) polymer 3.20 (effective concentration of 
the calix[4]pyrrole repeat unit = 6.5 mM), (5) polymer 3.20 + TBAF. 

 As shown in Figure 4.37, addition of a D2O solution of tetrabutylammonium fluoride 

(TBAF, 90 mM) to a CD2Cl2 solution of polymer 3.20 (effective concentration of the 

calix[4]pyrrole repeat unit = 6.5 mM) resulted in a substantial downfield shift in the 

pyrrole NH protons (as typically seen upon anion binding).1  In addition, peaks 

ascribable to the methylene units in the TBA counter cation (at δ = 3.2 ppm) were 

seen, lending support to the notion that both the anion (F) and the cation were 

present in the organic phase.  In contrast, no shifts in the NH resonances and no 

TBA ascribable peaks were observed when a 29 mM solution of 

octamethylcalix[4]pyrrole (2.1) in CD2Cl2 was exposed to aqueous solutions of 

TBAF.  Likewise, no evidence of uptake of TBA into the organic phase (absence of 

any discernible peak at δ = 3.2 ppm) was seen when analogous experiments were 

repeated with the MMA homopolymer. 
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The ability of polymer 3.20 to extract several other TBA+ salts was also tested.  

While no extraction was seen in the case of aqueous solutions of 

tetrabutylammonium dihydrogen phosphate, upon addition of TBACl downfield shifts 

in the NH proton signals were seen to be greater than those observed with TBAF for 

analogous anion concentrations (Figure 4.38).  The numbers at the right side of the 

Figure 4.38 corresponds to CD2Cl2 solutions of (1) octamethylcalix[4]pyrrole (2.1) 

(29 mM), (2) 2.1 (29 mM) after i) adding 0.5 mL of a D2O solution of TBACl (108 

mM), ii) shaking the tube vigorously, and iii) allowing the phases to separate, (3) 

PMMA (125 mM based on the repeat unit) after being subjected to the same 

treatment noted in (1), (4) polymer 3.20 (effective concentration of the calix[4]pyrrole 

repeat unit = 6.5 mM), and (5) after being subjected to the same treatment noted in 

(1). Such findings, which are consistent with an enhanced ability to extract chloride 

relative to fluoride or dihydrogen phosphate, run counter to the relative anion 

affinities seen in dichloromethane [17]. However, they are in accord with what one 

would expect based on the so-called Hofmeister bias [108], namely that a more 

hydrophobic anion, such as chloride (Gh = -340 kJ mol–1), is extracted more easily 

than a highly hydrophilic species, such as dihydrogen phosphate (Gh = -465 kJ 

mol–1), or fluoride (Gh = -465 kJ mol–1) [109].   

 

Figure 4.38 : 1H NMR spectra of CD2Cl2 solutions of 3.20 and other control 
systems. 
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Consistent with this rationale is the finding that both the control MMA homopolymer 

and calixpyrrole 2.1 were able to extract TBACl under the aforementioned interfacial 

conditions, albeit with efficiencies of less than 35% relative to polymer 3.20 (as 

calculated from NMR integrations of the MMA methyl ester, -pyrrolic, and TBA+ 

signals, as appropriate).  On the other hand, the fact that efficient extraction of 

TBAF, was only seen in the case of polymer 6 (and not the PMMA control or free 

2.1) underscores the fact that the calixpyrrole receptor appended to the PMMA 

backbone is playing a critical role in overcoming the Hofmeister bias that would 

militate away from the out-of-water extraction of this highly hydrophilic species.  

Further support that copolymer 3.20 could bind fluoride and chloride anions came 

from thermal analyses.  Specifically, after independently exposing TBAF or TBACl to 

3.20 as described above, these samples as well as PMMA controls were subjected 

to thermogravimetric analysis which was performed under an atmosphere of 

nitrogen at a scan rate = 10 ºC/min.  For the sample of 3.20 exposed to TBAF, a 

10% mass loss was observed upon heating to 230 ºC, a temperature just below the 

Td of the copolymer (262 ºC).  This compares well with the theoretical mass loss of 

11.5% assuming the TBAF became completely volatilized over the aforementioned 

temperature range and was present in a 1:1 stoichiometry relative to each 

calix[4]pyrrole unit in the polymer chain.  In contrast, the sample of 3.20 exposed to 

TBACl exhibited a 19% mass loss (theoretical: 12.1%) upon heating to 230 ºC.  

Considering the relative extraction abilities of 3.20 towards TBACl and TBAF (see 

above), the observed mass loss was considered reasonable.  For comparison, the 

PMMA controls lost  2% of their masses prior to polymer decomposition (277 ºC), 

which leads us to conclude that only minimal amounts TBAF or TBACl were present 

in these samples after extraction. 

In conclusion, the first bona fide polymeric systems containing a calixpyrrole anion 

receptor directly appended to a polymer backbone were prepared.  One main 

advantage of these materials is that, at least in principle, other MMA derivatives 

(e.g., a hydrophilic derivative such as hydroxyethyl methacrylate) could be used to 

control the solubility, water swellability, thermal- and chemical stability, of the 

resulting PMMA-type polymers.  This versatility leads us to believe that polymers 

such as 3.20 could be readily optimized for use in a range of ion binding and 

extraction applications. 
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4.3.2 KCl and KF extraction studies 

The selective separation of alkaline salts from aqueous media is of fundamental 

importance in chemistry. It is, for instance, critical to the production of commodity 

materials (e.g., bromine, potassium, etc.) from high salt sources, such as the Dead 

Sea and the Great Salt Lake [110-112] and, on a very different scale, to the 

regulation of taste [113, 114] and the maintenance of osmotic balance in cells [115, 

116]. Materials that could allow for such separations are thus of potential interest in 

a wide range of applications [21, 94, 96]. Polymeric systems are particularly 

attractive in this regard because they are generally easy to isolate from solutions or 

mixtures. 

 

Figure 4.39 : Structures of calixpyrrole, crown ether monomers and their polymers. 

 In previous chapter, it has been shoved that copolymers of a polymerizable 

derivative of octamethylcalix[4]pyrrole 2.1 (i.e., 3.18) and methyl methacrylate 

(MMA), are effective at extracting tetrabutylammonium chloride or fluoride from 

aqueous media [90]. Unfortunately, these polymeric materials displayed relatively 

low affinities for the corresponding salts containing less organic soluble cations 

(e.g., Na, K, etc.). We envisioned that by appending recognition groups capable of 

binding such ions to modified calixpyrrole-containing polymers, their affinities toward 

common salts would be improved. For example, crown ethers (e.g., 4.1) are well-

known for their ability to complex alkali cations, particularly potassium [117]. This 

has led to their use in phase transfer catalysis [118-120], and as extractants for 

picrate anion salts under organic-aqueous interfacial conditions [121]. In fact, 
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polymeric systems containing crown ethers have been used to extract the potassium 

salts of relatively hydrophobic anions [121]. However, neither these latter systems 

nor any of which we are aware possess the capability of extracting "hard" potassium 

salts, such as KF or KCl, from aqueous media. 

Herein, the synthesis, characterization, and extraction properties of mixed MMA 

copolymers containing pendant calix[4]pyrrole subunits known to bind halide anions 

in a 1:1 ratio in organic media [17] and benzo-15-crown-5 subunits capable of 

forming 2:1 sandwich complexes with potassium cations [117] have been showed. It 

was thus expected that strong, potentially mutually enhancing, interactions would 

enable these polymeric materials to extract potassium halide salts, such as KCl and 

KF, from aqueous solutions.  

 

Figure 4.40 : 1H NMR spectrum of 3.22 recorded in CD2Cl2. 

4.3.2.1 Synthesis of calix[4]pyrrole, crown ether, and MMA copolymers 

Copolymers 3.22 – 3.24 (Figure 4.39) were prepared from MMA, calix[4]pyrrole 

3.18, and crown ether 4.2 [121] using conventional free radical polymerization 

techniques. In general, azoisobutyronitrile (1 mol%) was added to THF solutions of 

these monomers in various ratios. After heating at 70 ºC for 17 h, the solutions were 

independently poured into excess methanol, which caused the polymer to 

precipitate. After collection by filtration, the resulting materials were characterized by 
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NMR spectroscopy (CD2Cl2) and gel permeation chromatography. The molecular 

weights (33 – 90 kDa) and polydispersities (PDI = 2.1 – 2.5) of these copolymers 

were typical of those obtained from free radical polymerizations.  

Copolymer 3.22 was prepared in 79% yield by using general reaction conditions 

described above. 1H NMR spectroscopic analysis of the copolymer 3.22 revealed 

pyrrole CH and aromatic crown ether proton signals between 6.83 and 7.26 ppm, 

pyrrole CH protons at 5.89 ppm, meso-CH2 and crown ether CH2 protons at 4.08 

ppm, crown ether CH2 protons at 3.84 and 3.68 ppm, PMMA OCH3 and CH3 protons 

at 3.57 and 1.82 ppm, respectively, calixpyrrole meso-CH3 protons at 1.51 ppm, and 

finally PMMA polymer backbone CH3 proton signals at 0.82 and 0.89 ppm (Figure 

4.40). GPC analysis of the copolymer 3.22 revealed a molecular weight (Mn) of 50.2 

kDa and PDI of 2.1. 

 

Figure 4.41 : 1H NMR spectrum of 3.23 recorded in CD2Cl2. 

Crown ether and MMA copolymer 3.23 was also synthesized by using conventional 

free radical polymerization technique described above and found to produce desired 

polymer in 76% yield as a yellow solid form. Copolymer 3.23 was also subjected to 

1H NMR analysis in CD2Cl2 and the results revealed that aromatic proton signals of 

crown ether moiety arose between 6.81 and 7.26 ppm, crown ether CH2 protons at 

3.84, 4.07, and 3.68 ppm, polymer backbone CH3 and CH2 protons at 3.58, 0.99, 

and 0.81 ppm (Figure 4.41). Copolymer 3.23 was found to have a molecular weight 

(Mn) of 33.2 kDa and PDI of 2.1 after performing a GPC analysis. 
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Figure 4.42 : 1H NMR spectrum of 3.24 recorded in CD2Cl2. 

The same free radical polymerization technique used to prepare copolymers 3.22 

and 3.23 was utilized to synthesize crown ether and calix[4]pyrrole copolymer. This 

led to obtain 3.24 in 81% yield in the form of a white solid. Elucidation of the 

structure of 3.24 using 1H NMR spectroscopy revealed pyrrolic NH and crown ether 

aromatic proton signals between 6.82 and 7.32 ppm, and broad pyrrole CH protons 

at 5.88 ppm, crown ether CH2 protons between 3.67 and 4.08 ppm, and polymer 

backbone CH2 and CH3 protons at 1.49 ppm (Figure 4.42). GPC analysis of the 

copolymer 3.24 showed a molecular weight (Mn) of 38.5 kDa and PDI of 2.3. 

4.3.2.2 Synthesis of pseudo dimers 

 

Figure 4.43 : Structures of calix[4]pyrrole – crown ether pseudo dimmers. 

After the preparation of copolymers using calix[4]pyrrole (3.18), crown ether (4.2), 

and MMA monomers the next effort was focused on the synthesis of pseudo dimers 

of calixpyrrole and crown ether which were going to be used as control compounds 

in extraction studies. For this purpose two types of calix[4]pyrrole – crown ether 

pseudo dimers (3.25 and 3.28) were designed and synthesized successfully.  
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Figure 4.44 : Synthesis of pseudo dimer I (3.25). 

The first dimer was prepared via a direct amide formation reaction of 4′-

aminobenzo-15-crown-5 and carboxylic acid functionalized calix[4]pyrrole 3.3 in 

DCM at room temperature in the presence of DCC/DMAP. Chromatographic 

purification of the crude product yielded 3.25 in 68% as a yellow solid. 1H NMR 

spectrum of the compound 3.25 revealed amide NH, pyrrole NH and crown ether 

aromatic proton signals between 8.16 and 6.74 ppm, pyrrole CH protons around 

5.32 ppm, crown ether CH2 protons between 4.05 and 3.67 ppm, and finally meso-

CH3 proton signals at 1.83 and 1.50 ppm (Figure 4.45). 

 

Figure 4.45 : 1H NMR spectrum of 3.25 recorded in CD2Cl2. 

Second calixpyrrole – azacrown ether pseudo dimer (3.28) was prepared in a 

stepwise manner. Towards this end, first, 3‘hydoxyphenyl substituted calix[4]pyrrole 

3.26 was prepared via a mixed condensation reaction of  pyrrole, acetone, and 3′-

hydroxyacetophenone in MeOH in the presence of CH3SO3H as an acid catalyst. 

Then, 3.26 was subjected to a substitution reaction with 1,2-dibromoethane in 

CH3CN in the presence of K2CO3. This yielded the product 3.27 in 73% as a white 
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solid after chromatographic purification. Once 3-(2-Bromoethoxy)phenyl substituted 

calix[4]pyrrole 3.27 was obtained it was treated with benzoaza-15-crown-5 using the 

same reaction conditions applied to obtain 3.27. Purification of the product via 

column chromatography afforded calix[4]pyrrole – azacrown ether pseudo dimer II 

(3.28) as a white solid in 36% yield. For detailed structural elucidation of the 

compounds 3.26 – 3.28 see experimental section and for 1H and 13C NMR spectra 

see Figure A.16-A.21. 

4.3.2.3 Extraction studies 

 

Figure 4.46 : Structures of dyes used in extraction studies. 

Initial qualitative evidence that copolymer 3.22, which contains both calix[4]pyrrole 

and crown ether subunits, could extract chloride salts into organic media came from 

a visual test involving 4.3, a water soluble dye that contains a chloride counter 

anion. Treatment of an aqueous solution of 4.3 (25.5 M) with a CH2Cl2 solution of 

copolymer 3.22 (effective concentration of the calix[4]pyrrole and crown ether repeat 

units = 1.56  and 1.22 mM, respectively) resulted in a colored organic phase (Figure 

4.47).  

  

Figure 4.47 : Aqueous solutions (top layers) of 4.3 (left) and 4.4 (right). 

Notations in Figure 4.47 correspond to a) After treatment with CH2Cl2 (bottom layer).  

b) After treatment with a CH2Cl2 solution of 2.1 (bottom layer). c) After treatment with 

a CH2Cl2 solution of 4.1 (bottom layer). d) After treatment with a CH2Cl2 solution of 

2.1 and 4.1 (bottom layer). e) After treatment with a CH2Cl2 solution of polymer 3.22 

(bottom layer). As controls, solutions of the dyes were also exposed to CH2Cl2 

solutions of 2.1 (1.56 mM), 4.1 (1.22 mM), or a mixture of 2.1 and 4.1 (1.56 and 1.22 
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mM, respectively), however no transfer of color was observed. These results were 

quantified using UV-vis spectroscopy as to being presented in Table 4.5.  

Table 4.5 : Summary of extraction data of 4.3 and 4.4. 

 
 

Absorbance (630 
nm) 

Concentration 

(M) 

Remaining 

(M) 

Extracted 

(M) 

Extracted 
(%) 

4.3 

CH2Cl2 0.090 2.06 20.58 4.92 19.29 

3.22 0.030 0.65 6.46 19.04 74.68 

2.1 0.092 2.11 21.05 4.45 17.44 

4.1 0.089 2.03 20.35 5.15 20.21 

2.1+4.1 0.098 2.25 22.46 3.04 11.90 

4.4 

CH2Cl2 0.198 10.83 108.31 108.55 50.05 

3.22 0.127 6.75 67.53 149.33 68.86 

2.1 0.276 15.31 153.11 63.75 29.40 

4.1 0.241 13.30 133.01 83.85 38.67 

2.1+4.1 0.252 13.93 139.33 77.53 35.75 

As shown in Figure 4.48, analysis of the water phases of these extraction 

experiments confirmed that 3.22 was able to extract 4.3 into the organic phase more 

effectively (>54%) than 2.1, 4.1, or their mixture. Similar qualitative and quantitative 

results were observed when aqueous solutions of 4.4 (25.5 M), a water soluble dye 

that contains a potassium counter cation, were tested.  In this case, copolymer 3.22 

(effective concentration of the calix[4]pyrrole and crown ether repeat units = 1.56  

and  1.22 mM, respectively) proved more effective as an extractant (>30 %) than 2.1 

(1.56 mM), 4.1 (1.22 mM), or the same mixture of 2.1 and 4.1 (1.56 and 1.22 mM, 

respectively) used above. Table 4.5 summarizes the extraction data of dye 4.4 with 

copolymer 3.22 and various control compounds.  

 
 

Figure 4.48 : UV-vis spectra of aqueous phases belonging to dye solutions 4.3 
(left) and 4.4 (right) exposed to DCM solutions of copolymer 3.22 and 
the other control systems.  
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Figure 4.48 shows the UV-vis spectra of aqueous phases (top layer) belonging to 

dyes 4.2 and 4.4 after treatment with copolymer 3.22 and the other control systems. 

Quantification of the dyes 4.3 and 4.4 extracted from the aqueous phase was 

determined by measuring the amount of the remaining dye using UV-vis 

spectroscopy. Calibration curves were generated using standardized solutions of 4.3 

and 4.4, independently, in water. The results are summarized in tables and figures 

below. Using this procedure, the error in the concentrations of 4.3 and 4.4 measured 

after extraction described is estimated to be less than 0.02 M. Table 4.7 shows the 

absorbance values of standardized dye solutions at maximum absorbance values 

630 and 430 nm for dyes 4.3 and 4.4, respectively.  

 
 

Figure 4.49 : UV-vis spectra of standardized dye solutions of 4.3 (left) and 4.4 
(rgiht). 

Table 4.6 : Absorbance values (top) and UV-vis spectra (bottom) of standardized 
dye solutions. 

4.3  4.4 

Concentration 

(M) 

Absorbance 
(630 nm) 

 Concentration 

(M) 

Absorbance 
(430 nm) 

0.000 0.000  0.000 0.000 
0.255 0.016  2.082 0.036 
1.020 0.037  2.602 0.053 
2.550 0.105  13.011 0.240 

12.752 0.572  26.023 0.487 
25.504 1.073  86.743 1.512 

Intercept Slope  Intercept Slope 

0.00257 0.04248  0.00943 0.01741 

Encouraged by these initial results, we next sought to address the question of 

whether copolymer 3.22 could extract a salt consisting of two hard anions, namely 

potassium fluoride. In parallel, the extraction properties of 3.20 and 3.23 were 
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examined.  These systems contain either calixpyrrole or crown ether recognition 

subunits, respectively, and were designed to assess the relative importance of each 

individual ion recognition unit on the overall extraction properties of 3.22. As shown 

in Figure 4.50, addition of a 3.4 M D2O solution of KF to a CD2Cl2 solution of 3.22 

(effective concentration of the calix[4]pyrrole and crown ether repeat units = 6.25  

and  4.86 mM, respectively) resulted in the appearance of a signal at δ = -121.7 

ppm in the 19F NMR spectrum of the organic phase. A similar signal, but of reduced 

intensity, was seen in the case of 3.20, whereas very little signal was observed in 

the case of 3.23 (for full 19F NMR spectra of KF see Figure A.25). 

 

Figure 4.50 : 19F NMR spectra of CD2Cl2 solutions of copolymers 3.22 (effective 
[calix[4]pyrrole] = 6.25 mM), 3.20 ([calix[4]pyrrole] = 6.50 mM), and 
3.23 (no calix[4]pyrrole) after adding D2O solutions of KF (3.4 M), 
shaking the tubes vigorously, and then separating the phases with the 
aid of centrifugation (10 min). 

To quantify the amount of fluorine present in the organic phases of the 

aforementioned extraction experiments, fluorobenzene (final concentration: 14.21 

mM) was added to each sample as an internal standard (δ = -114.3 ppm). Based on 

comparative integrations (i.e., comparing total fluoride content in the CD2Cl2 layer 

relative to this standard), copolymer 3.22 was found to be capable of extracting KF 

more efficiently (7.55 ± 0.04 mM) then polymer 3.20 (5.71 ± 0.03 mM) under 

conditions where the effective concentration of the calix[4]pyrrole repeat units in 

both polymers were essentially the same (6.25 mM versus 6.50 mM for 3.22 and 

3.20, respectively). In addition, both of these polymers were found to extract 

significantly more fluoride into the organic phase than 3.23 ([F] = 0.34 ± 0.03 mM in 

the CD2Cl2 layer), a copolymer that does not contain any calix[4]pyrrole subunits, as 
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noted above. As control experiments, extractions were also performed in an 

analogous manner using 2.1, 4.1, MMA homopolymer, an equimolar mixture of 

calixpyrrole 2.1 and crown ether 4.1, and the calixpyrrole-crown ether pseudo dimer 

3.25, which was envisioned as a small molecule analogue of 4. No quantifiable 

fluorine signal was observed in the organic phase when any of these control 

systems were used as extractants [122-124]. 

 

Figure 4.51 : Structure of copolymer 3.24. 

A copolymer of methacrylate functionalized calix[4]pyrrole 3.18 and crown ether 4.2 

(i.e., no MMA) was also prepared (3.24, Figure 4.51) but found to afford an insoluble 

white precipitate upon exposure to aqueous solutions of KF or KCl. This result is 

thought to reflect the formation of strong complexes within the polymer matrix 

involving either the chloride or fluoride anion and the calix[4]pyrrole subunit, or the 

potassium cation and the crown ether subunit, perhaps in a cooperative fashion. 

However, the lack of solubility precluded further analysis of this material. Empirically, 

the presence of methacrylate units in the backbones of these polymeric extractants 

(i.e., 3.20, 3.22, and 3.23) appears necessary to retain solubility in dichloromethane. 

Table 4.7 : Emission intensities of standardized solutions of potassium tetrakis(2-
thienyl)borate.a  

Concentration (ppm) Emission Intensity 

0.0 0.000 
0.5 0.330 
1.0 0.630 
2.0 1.180 

Intercept Slope 

-0.03584 1.70251 

a
 Standard solutions for FES analyses were prepared by dissolving potassium tetrakis(2-
thienyl)borate in an ethyl acetate : CH2Cl2 (9 : 1 v/v) solution. 

Flame emission spectroscopy (FES) was used to confirm the co-extraction of 

potassium in the above experiments [125], The organic phase obtained after 

extracting KF with polymer 3.22 afforded an emission intensity (EI) of 0.401 (at 
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766.5 nm, i.e., the emission wavelength of the excited potassium ion produced by 

the flame source) after dilution with a known amount of ethyl acetate. By way of 

comparison, the organic phases produced EI values of 0.277 and 0.038, 

respectively when polymers 3.20 and 3.23 were used as extractants under 

otherwise identical conditions. Based on quantification with a series of standards 

(Table 4.7), extracted potassium concentrations of 6.84, 4.73, and 0.65 ± 0.05 mM 

were calculated for CH2Cl2 solutions of polymers 3.22, 3.20, and 3.23, respectively 

(at effective crown ether concentrations of 5.60, 0.00, and 5.00 mM, respectively). 

These values are in good agreement with those obtained from the 19F NMR data. A 

summary of the KF extraction data is presented in Table 4.8. 

Table 4.8 : Summary of KF extraction efficiencies.a 

Cmpd. calix : crownc eff. (%) 

(total)d,e 
eff. (%) 

(calix)d,f 
eff. (%) 

(total)e,g 
eff. (%) 

(crown)g,h 

3.22 1.0  :  0.8 67 121 61 137 
3.20 1.0  :  0.0 88 88 73 n.d.i 

3.23 0.0  :  1.0 6 n.d.i 12 12 
4.2 1.0  :  1.0 0 0 0 0 

a 
Extraction efficiencies (eff.) are reported as the percent (%) of extractant populated with KF 
upon exposure to a saturated aqueous solution of KF. 

c
 Relative molar ratios of calixpyrrole (calix) to crown ether (crown) units in the extractant.   

d
 Calculated from total fluoride extracted.   

e 
Based on the total number of ion receptors (calixpyrrole plus crown ether) in the extractant. 

f
 Based on the total number of calixpyrrole units in the extractant.   
g
 Calculated from total potassium extracted.  

h
 Based on the total number of crown ether units in the extractant.   

i
 Not determined. 

Next, the ability of polymers 3.22, 3.20 and 3.23 to extract KCl from aqueous media 

was evaluated using conditions analogous to those employed for the KF studies 

described above. In this case, after exposing the polymers to 3.4 M solutions of KCl 

in D2O, FES was again used to determine the relative amounts of potassium 

extracted. Polymer 3.22 proved to be the most effective extractant, displaying an EI 

value of 0.761, which corresponded to a potassium concentration of 12.97 ± 0.08 

mM in the organic phase, with the exact quantification being based on a series of 

standards (Table 4.7). Polymers 3.20 and 3.23 displayed relatively lower EI values, 

namely 0.507 and 0.081, respectively, values that corresponded to potassium 

concentrations of 8.64 and 1.38 ± 0.08 mM, respectively. The higher overall 

extraction values for KCl compared to KF is consistent with the relative aqueous 

solvation energies (Gh) of chloride and fluoride anions (Gh = -340 kJ mol-1 for Cl 

versus Gh = -465 kJ mol-1 for F).[15] Specifically, the more hydrophobic anion 

(Cl) was extracted more effectively than its more hydrophilic analogue (F). 
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Further support for this conclusion was obtained from 1H NMR analysis of the 

pyrrolic NH signal as a function of KF and KCl concentration, under the extraction 

conditions described in the text. The NH signals shifted downfield and decreased in 

intensity with increasing concentrations of the potassium salts, KCl and KF (Figure 

4.52). In accord with expectations, KCl gave rise to greater downfield shifts in the 

NH peak shift (δ NH = 7.39 ppm for [KCl] ≥ 1.04 mM) than KF (δ = 7.35 ppm for [KF] 

≥ 1.27 mM). For detailed NMR spectra of 3.22 after treatment with KF and KCl 

solutions see Figure A.26-A28. 

 

Figure 4.52 : Plot of NH peak intensities and shifts of copolymer 3.22 in CD2Cl2 as 
recorded by 1H NMR spectroscopy after exposure to different 
aqueous KF concentrations. 

Finally, an effort was made to determine if potassium salts could be selectively 

extracted in the presence of their sodium analogues. Towards this end, a 0.5 mL 

H2O solution of KCl (134.1 mM) and NaNO3 (1.47 M) was treated with polymer 3.22 

(in 0.75 mL CH2Cl2) and analyzed using FES. The EI of the signal corresponding to 

potassium (0.734) was over an order of magnitude greater than the signal 

corresponding to sodium (0.043). On this basis it was concluded that polymer 3.22 

extracts potassium chloride much more effectively than it does sodium chloride. 

NaCl and NaF extractions were also carried out using the same conditions 

employed in the case of the corresponding potassium salts.  However, no evidence 

of efficient extraction was observed in the case of any of the polymeric or control 

systems considered in this report. This finding, which is in accord with the relative 

hydration energies of K+ and Na+ (Gh = -295 kJ mol1 for K+ and Gh = -365 kJ 

mol1 for Na+) [126], suggests to us that these materials may ultimately enable the 
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selective separation of potassium halide salts from complex aqueous mixtures. This 

could be especially valuable in specialty medical applications, such as the control of 

hyperkalemia, where potassium ion exchange resins (e.g., sodiumpolystyrene 

sulfate; Kayexalate) have seen widespread use, in spite of being subject to inherent 

chemical and clinical limitations [127, 128]. 

In conclusion, the first well-defined and homogenous polymeric systems capable of 

extracting potassium fluoride and chloride salts from aqueous media have been 

prepared. These polymers contain pendant calixpyrrole and crown ether subunits, 

key features that permit the concurrent complexation of both halide and potassium 

ions. This, in turn, allows the system as a whole to overcome the relatively high 

hydration energies of KF and KCl and enables their extraction from aqueous media. 

To the best of our knowledge this has not hitherto proved possible with any other 

simple polymeric material. Next efforts would be focused on fine-tuning the choice of 

receptors and investigating the effect of polymer molecular weight and 

microstructure on the overall extraction performance of these materials. 

4.4 Dendrimeric Calix[4]pyrroles 

Initially, dendrimer chemistry was concerned with the development of suitable 

synthetic protocols to produce cascade molecules with a well-defined number of 

generations and, in particular, with the problems associated with the isolation and 

characterization of these monodisperse macromolecules. Recently, the discovery of 

specific functions and novel properties that are a direct consequence of the tree-like 

dendritic architecture has stimulated spectacular growth in this macromolecular field 

of chemistry [129]. Dendrimers make unique biological models owing to their three-

dimensional nanoscale structures, which can be synthesized in a controllable 

manner. Dendrimers contain three topologically different regions (core, branches 

and surface), each of which can be designed to exhibit functional properties 

including the recognition of guest substrates, catalysis and energy transfer [130]. 

Calixpyrroles are macrocyclic molecules that can be designed or modified to bind a 

variety of charged and neutral guest species; however, their integration into dendritic 

structural frameworks remains unexplored. Interestingly, the physical and chemical 

properties of such polycalixpyrrole dendritic materials will be dependent upon the 

nature of calixpyrroles and their anion complexes.  

In this part of the thesis design synthesis and characterization of four different 

calixpyrrole based dendrimeric compounds are being investigated. The target 

dendrimeric structures have been prepared starting from simple organic compounds 
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as will be shown in ongoing paragraphs. Although dendrimeric calixpyrrole systems 

could be accessed via various synthetic strategies so called ―click chemistry‖ would 

provide an easy and high yield synthetic approach. Therefore, synthesis of final 

dendrimeric structures has been carried out using click chemistry.  

The azide/alkyne ‗click‘ reaction [131] (also termed the Sharpless ‗click‘ reaction) is 

a recent re-discovery of a reaction fulfilling many requirements for the formation of 

1,2,3-triazole adducts, which include a) often quantitative yields, b) a high tolerance 

of functional groups, c) an insensitivity of the reaction to solvents, irrespective of 

their protic/aprotic or polar/non-polar character, and d) reactions at various types of 

interfaces, such as solid/liquid, liquid/liquid, or even solid/solid interfaces. The basic 

reaction, which is nowadays summed up under the name ‗Sharpless-type click 

reaction‘, is a variant of the Huisgen 1,3-dipolar cycloaddition reaction [132] between 

C–C triple, C–N triple bonds, and alkyl-/aryl-/sulfonyl azides. 

 

Figure 4.53 : Catalysed Huisgen 1,3-dipolar cycloaddition. 

The basic process of the Huisgen 1,3-dipolar cycloaddition is depicted in Figure 

4.53, generating 1,4- and 1,5-triazoles, respectively. Nearly all functional groups are 

compatible with this process, except those that are a) either self reactive, or b) able 

to yield stable complexes with the CuI metal under catalyst deactivation. Thus the 

alkynes, azides, cyclic alkenes, free thiols are not compatible with the azide/alkyne-

type click reaction, placing the thermal Huisgen 1,3-dipolar cycloaddition process as 

the most important side reaction. The main interfering functional groups are strongly 

activated azides (i.e., acyl- and sulfonyl azides) as well as cyanides, which are able 

to compete in purely thermal cycloaddition processes. 

A mechanistic picture of the copper catalyzed reaction was first proposed by Meldal 

and co-workers [133] and Sharpless and co-workers [134, 135]. However, the 

proposed catalytic mechanism (calculated by density functional theory (DFT) 

calculations) that relied on the initial formation of a Cu acetylide between the Cu(I) 

species and the terminal alkyne which subsequently proceeded by an initial -

complex formation between the Cu(I) and the alkyne, to lead to a lowering of the pKa 
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of the terminal acetylene by up to 9.8 units, thus enabling the attack onto the C–H 

bond, especially in aqueous systems, has been recently revised in favor of a 

binuclear mechanism as shown in Figure 4.54 [133].  

 

Figure 4.54 : Proposed outline of species involved in the catalytic cycle. 

4.4.1 Synthesis of starting materials 

As the alkyne and azide functional calix[4]pyrroles needed for the formation of 

dendrimeric calix[4]pyrroles via click chemistry, initial efforts were devoted to 

preparation of these calixpyrrole derivatives. A [3+1] mixed condensation method 

was chosen as it was proven to be used as a convenient strategy.  

 

Figure 4.55 : Synthesis of But-3-yn-1-yl 4-oxopentanoate and its calix[4]pyrrole. 



129 

First of all, But-3-yn-1-yl 4-oxopentanoate 3.29 has been prepared via esterification 

of levulinic acid and 3-butyn-1-ol in DCM in the presence of DCC/DMAP. Workup 

and purification by flash column chromatography afforded 3.29 in 96% yield (Figure 

4.55). 1H NMR spectroscopic analysis of the compound 3.29 revealed ester CH2 

proton signals at 4.17 ppm as a triplet, CH2 protons between ketone and ester 

groups at 2.75 and 2.59 ppm as triplet forms, CH2 proton neighboring to alkyne 

group at 2.52 ppm as a doublet of triplet, CH3 protons at 2.18 ppm, and alkyne CH 

proton at 2.00 ppm as a triplet (Figure 4.56).  

 

Figure 4.56 : 1H NMR spectrum of 3.29 and 3.30 recorded in CDCl3. Solvent 
residual and water peaks were indicated by a *. 

After the synthesis of starting ketone 3.29 having alkyne functional group, next effort 

was focused on the establishment of a calix[4]pyrrole using this compound. This 

would allow obtaining a calixpyrrole that can be used as one of the components of 

click reaction. For this purpose, 3.29, acetone, and pyrrole was reacted in MeOH in 

the presence of methanesulfonic acid. Chromatographic purification of crude 

product mixture afforded 3.30 in 17% yield as a white solid (Figure 4.55). Structural 

analysis of 3.30 was also carried out similar to other compounds 1H NMR 
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spectroscopy at first. This revealed pyrrole NH and CH proton signals at 7.04 and 

5.89 ppm, respectively. Triplet ester OCH2 protons were observed at 4.10 ppm,CH2 

protons neighboring to alkyne group at 2.47 ppm as doublet of triplet, meso-CH2 and 

the other CH2 protons connected to meso-CH2 carbon, at 2.17 ppm as broad 

multiplet, alkyne CH proton at 1.98 ppm as triplet, and finally remaining meso-CH3 

protons at 1.49 ppm (Figure 4.56). 13C NMR, LCMS, and FTIR (Figure 4.57) 

analyses of the compound 3.30 confirmed the expected cyclic structure. 

 

Figure 4.57 : FTIR spectra of 3.29 and 3.30. 

After preparation of alkyne functional calix[4]pyrrole 3.30 another analogue of alkyn 

functional calixpyrrole 3.34 has been prepared in two steps. This calixpyrrole differs 

from 3.30 in terms of the connecting alkyne group to core calixpyrrole skeleton. 

Phenol derivatives are good candidates for attaching alkyne groups via a 

substitution reaction with propargyl bromide. Therefore, first, a phenol substituted 

calix[4]pyrrole was synthesized via a mixed condensation of pyrrole with acetone 

and 4-hydroxyacetophenone in MeOH in the presence of methanesulfonic acid. 

Chromatographic purification yielded the compound 3.33 in 17% yield as a white 

solid (Figure 4.58).  

Once the compound 3.33 was obtained successfully its structural elucidation was 

carried out using 1H NMR spectroscopy. Results revealed that pyrrole NH proton 

signals at 7.17 and 7.07 ppm, pyrrole CH protons at 5.88 and 5.65 ppm, aromatic 

CH protons at 6.84 and 6.65 ppm as doublets, phenolic OH proton at 4.74 ppm, and 

meso-CH3 protons at 1.82 and 1.49 ppm (Figure 4.59). 
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Figure 4.58 : Synthesis of 3.33 and 3.34. 

The synthesis of propargyl attached calix[4]pyrrole was carried out by reacting 3.33 

and propargyl bromide in DMF in the presence of K2CO3.
 1H NMR spectroscopic 

analysis of 3.34 revealed pyrrole NH proton signals at 7.18 and 7.07 ppm, aromatic 

CH protons at 6.92 and 6.82 ppm as doublets, pyrrole CH protons at 5.88 and 5.65 

ppm, CH2 protons connected to alkyne unit at 4.65 ppm, alkyne CH proton at 2.50 

ppm, and meso-CH3 protons at 1.84 and 1.50 ppm (Figure 4.59). 

 

Figure 4.59 : 1H NMR spectrum of 3.33 (down) and 3.34 (up) recorded in CDCl3. 
Solvent residual peaks were indicated by *. 



132 

 

Azide functional groups are the key constituents of triazol ring formations. Therefore, 

next effort was shifted to preparation of starting materials having azide functional 

groups. These starting materials will also be the cores of dendrimeric calixpyrrole 

compounds. For this purpose, tetraazido functionalized calix[4]pyrrole 3.32 was 

prepared from tetra(bromopentyl) substituted calix[4]pyrrole 3.31. 

 

Figure 4.60 : Synthesis of tetra(pentylbromide) (3.31) and tetraazido (3.32) 
calix[4]pyrroles. 

As shown in Figure 4.60, the synthesis of tetra(1-bromopentytl) substituted 

calix[4]pyrrole 3.31 was achieved via a condensation reaction of pyrrole and 7-

bromoheptane-2-one in MeOH in the presence of methanesulfonic acid. The white 

solid product precipitated out of MeOH and was purified by filtration and washing 

with excess of MeOH in 78% yield. 1H NMR spectroscopic analysis of the compound 

3.31 revealed NH and CH proton signals at 6.99 and 5.87 ppm respectively, CH2Br 

protons at 3.334 ppm as a multiplet, remaining meso-CH3 and other CH2 protons 

between 1.80 and 1.07 ppm (Figure 4.61).  

Transformation of tetrabromo functional calix[4]pyrrole to its tetraazido derivative 

was  achieved via treatment of 3.31 with sodium azide in DMF at room temperature 

(Figure 4.60). Removal of the solvent and workup yielded tetraazido calix[4]pyrrole 

3.32 in 98%. Structural elucidation of 3.32 using 1H NMR spectroscopy revealed 

almost similar results to those of 3.31 but a slightly up field shift (3.20 ppm) on CH2 

protons connected to the azide units (Figure 4.61).  
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Figure 4.61 : 1H NMR spectra of 3.31 and 3.32 recorded in CDCl3. 

FTIR spectroscopic analysis of the compound 3.32 confirmed the expected 

transformation from bromo to azido derivative. NN triple bond stretching band of 

3.32 can be clearly seen at 2082 cm-1 (Figure 4.62). 

 

Figure 4.62 : FTIR spectra of tetrabromo and tetrazido substituted calix[4]pyrroles 
3.31 and 3.32. 

Table 4.9 summarizes some characterization data of starting materials 3.29 – 3.34. 
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Table 4.9 : Some characterization data of starting materials. 

Compound 
Pyr.g NH 

(ppm) 
Pyr. CH 

(ppm) 
Func. Group 

(ppm) 
FTIR (cm1

) Mass (m/z) 

3.29   2.00a 3278, 1740 168.98 

3.30 7.04 5.89 1.98b 3232, 1730 537.29 
3.31 6.99 5.87 3.33c 3420, 756 967.05 

3.32 6.98 5.87 3.20d 3415, 2082  

3.33 
7.18, 7.07 5.88, 5.65 

4.74e  506.26 

3.34 2.50f FTIR 543.58 

a,b
 Alkyne CH2, 

c
 CH2Br, 

d
 Azide CH2, 

e
 Phenol OH, 

f
 Alkyne CH, 

g
 Pyr. = Pyrrole. 

4.4.2 Synthesis of dendrimeric structures 

 

Figure 4.63 : Illustration of strategic pathway of obtaining dendrimeric calixpyrrole 
compounds. 

After the synthesis of starting materials, next effort was dedicated to the preparation 

of dendrimeric calixpyrrole compounds. As illustrated in Figure 4.63, the first 

strategy is involved to using tetraazido calix[4]pyrrole 3.32 as the core of dedrimers 

and the second one is involved to using 1,3,5-tris(azidomethyl)benzene (4.5 can be 

readily obtained from 1,3,5-tris(bromomethyl)benzene) [72] as the core of 

dendrimers for enrichment of product versatility.  

For this purpose, as a beginning, tetraazido functionalized calix[4]pyrrole 3.32 was 

reacted with alkyn functionalized calix[4]pyrrole 3.30 (the ratio of 3.32:3.30 was 1:4) 

in a mixture of THF/H2O in the presence of CuSO4•5H2O and sodium ascorbate at 

room temperature. This reaction conditions afforded the first dendrimeric calixpyrrole 

compound 3.35 (Figure 4.64) with a perfect yield. Since the product is a huge 

molecule its chromatographic purification was not possible using common 

chromatographic techniques. Therefore, another purification method has been 

sought. The first idea was the purification of the compound 3.35 via crystallization 

but this would not allow us to reach a pure form of product. Precipitation of a 
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saturated THF solution of 3.35 into hexanes was successfully utilized to purify 

dendrimeric compound.  

 

Figure 4.64 : Structure of calixpyrrole based dendrimers 3.35 and 3.36. 

1H NMR spectroscopic analysis of the compound 3.35 revealed triazole ring CH and 

pyrrole NH proton signals between 7.39 and 7.03 ppm, pyrrole CH protons at 5.87 

ppm, ester CH2 and NCH2 protons at 4.24 ppm, NC–CH2 protons at 2.96, and 

remaining meso-CH3, meso-CH2, and other CH2 protons between 2.15  and 1.11 

ppm.  

 

Figure 4.65 : 1H NMR spectrum of the compound 3.35 recorded in CDCl3. 

Another support came from comprehensive analysis of the compounds 3.30, 3.32, 

and 3.35 using FTIR spectrophotometer. As it can be seen in Figure 4.66, 
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disappearance of NN stretching band at 2086 cm1 and C=O stretching band at 

1731 cm1 proves the formation of triazole ring and maintenance of the ester bridges 

on the final dendrimeric product 3.35. 

 

Figure 4.66 : FTIR spectra of calixpyrrole based dendrimer 3.35 and its starting 
materials.  

Once the first calixpyrrole based dendrimer 3.35 (Figure 4.64) was successfully 

obtained the next effort was shifted to the synthesis of its another analogue using 

the same core azide functionalized calixpyrrole 3.32 and propargyl ether of phenolic 

calix[4]pyrrole 3.34. Calixpyrrole based dendrimer 3.36 was obtained using the 

same reaction conditions applied to prepare 3.35. Purification via precipitation into 

hexanes afforded 3.36 in perfect yield.  

 

Figure 4.67 : 1H NMR spectrum of the compound 3.36 recorded in CDCl3. 
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Structural elucidation of the compound 3.36 was carried out using 1H NMR 

spectroscopy and revealed triazole ring CH proton signals between 7.64 and 7.54 

ppm, pyrrole NH protons at 7.25 (under the solvent peak) and 7.11 ppm, aromatic 

CH protons at 6.89 and 6.83 ppm, pyrrole CH protons at 5.88 and 5.63 ppm, OCH2 

proton signals at 5.13 ppm, NCH2 protons at 4.26 ppm, and remaining CH2, meso-

CH2, meso-CH3 protons between 1.83 and 1.24 ppm (Figure 4.67). 

 

Figure 4.68 : FTIR spectra of calixpyrrole based dendrimer 3.36 and its starting 
materials.  

FTIR spectra of the calixpyrrole based dendrimeric compound 3.36 was found to 

have a disappearance of azide stretching band at 2086 cm1 that provide 

information about formation of triazole ring. Another band of both 3.34 and 3.36 at 

1612 cm1 shows the presence of aromatic ring in both starting compound and final 

product. 

 

Figure 4.69 : Structures of tripodal dendrimers 3.37 and 3.38. 
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Once the calix[4]pyrrole based dendrimeric compounds 3.35 and 3.36 have been 

successfully prepared focus of the study was directed to synthesis of their 

analogues having different core structures. For this purpose 1,3,5-trimethyl benzene 

based calixpyrrole dendrimeric compounds have been prepared using the same 

conditions applied to synthesize 3.35 and 3.36 (Figure 4.69). 1,3,5-

tris(bromomethyl)benzene was reacted with NaN3 in DMF to obtain 1,3,5-

tris(azidomethyl)benzene (4.5) which was reacted with alkyn functionalized 

calix[4]pyrrole 3.30 to afford tripodal dendrimeric compound 3.37. This compound 

was also purified via precipitation of its saturated THF solution into hexanes.  

  

Figure 4.70 : 1H NMR spectrum of the compound 3.37 recorded in CDCl3. 

1H NMR spectroscopic analysis of the compound 3.37 revealed triazole CH proton 

signals between 7.43 and 7.30 ppm, aromatic CH protons at 7.25 ppm (under the 

solvent peak, see the 1H NMR spectrum of 4.5 inset to Figure 4.70), pyrrole NH and 

CH protons at 7.15 and 5.87 ppm respectively, benzylic CH2 protons at 5.41 ppm, 

ester CH2 protons at 4.25 ppm, CH2 protons connected to triazole ring through 

olephin side at 3.00 ppm, and remaining CH2 and meso-CH3 proton signals 2.13 and 

1.39 ppm. FTIR spectrum of the compound 3.37 was found to have a disappearance 

of azide stretching band 2082 cm1 and keep ester C=O bond stretching band at 

1731 cm1. These results are consistent with the expected triazole ring formation 

between azide units of 4.5 and 3.30 (Figure 4.71).  
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4.5 was reacted with propargyl ether of phenolic calix[4]pyrrole 3.34 to afford 

tripodal dendrimeric compound 3.38 (Figure 4.69). This compound was also purified 

via precipitation of its saturated THF solution into hexanes. 

 

Figure 4.71 : FTIR spectra of calixpyrrole based dendrimer 3.37 and its starting 
materials. 

1H NMR spectroscopic analysis of the compound 3.38 revealed triazole CH proton 

signal at 7.56 ppm, aromatic CH protons at 7.25 ppm, pyrrole NH protons at 7.25 

and 7.12 ppm respectively, pyrrole CH protons at 5.88 and 5.62 ppm, benzylic CH2 

protons at 5.46 ppm, CH2 protons connected to triazole ring through olephin side at 

5.14 ppm, and remaining meso-CH3 proton signals 1.83 and 1.49 ppm (Figure 4.72).  

 

Figure 4.72 : 1H NMR spectrum of the compound 3.38 recorded in CDCl3. 
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FTIR spectrum of the compound 3.38 was found to have a disappearance of azide 

stretching band 2082 cm1 and keep aromatic C-H band at 1612 cm1. These results 

are consistent with the expected triazole ring formation between azide units of 4.5 

and 3.34 (Figure 4.73). 

 

Figure 4.73 : FTIR spectra of calixpyrrole based dendrimer 3.38 and its starting 
materials. 

In conclusion, design, synthesis and characterization of four different calixpyrrole 

based dendrimeric compounds have been successfully carried out. The target 

dendrimeric structures have been prepared starting from simple organic compounds 

having alkyne and azide functional groups. Although dendrimeric calixpyrrole 

systems could be accessed via various synthetic strategies so called ―click 

chemistry‖ provided an easy and high yielded synthetic approach. Using this 

strategy calix[4]pyrrole dendrimers with calix[4]pyrrole and benzene ring cores have 

been prepared. These novel dendrimeric compounds are potential candidates for 

extraction of anions, and recognition of polytopic anions such as di-, tri-, and tetra-

anions of various organic and inorganic salts. 

4.5 Supporting of Calix[4]pyrrole on Silica 

Time-honored means of exploring receptorsubstrate interactions was provided by 

the covalent attachment of molecular receptors to solid supports. For instance, 

azacrown ethers attached to silica gels, have proven useful in the separation of 

mixtures of metal cations [136]. Another pioneering work reported by Cram and co-

workers consists of covalently modified silica gels with chiral crown ethers, that 

proved capable of resolving enantioselectively various amino acid derivatives [137]. 

In these works this approach has allowed binding interactions involving a large 
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number of substrates to be analyzed under identical experimental conditions. As 

such, it provides a convenient and well validated method of quickly testing the 

substrate-binding potential of a new receptor or proposed receptor. The above 

approach has been widely studied in the area of cation recognition and separation; 

however, it has been less commonly applied in the case of anion binding. One such 

approach that appears attractive involves the attachment of a metallated porphyrin 

to either polystyrene or silica gel [42, 138]; these systems have been employed in 

the separation of quite a number of anionic species including benzoic acid 

derivatives, iodide, and thiocyanate.  

Reports on calix[4]pyrrole modified stationary phase are relatively few. The 

important one came from Sessler and Gale [45]. They produced calix[4]pyrrole 

covalently linked silica gels. Under different conditions, they realized the separation 

of some inorganic and organic anions, such as fluoride, chloride, Cbz-protected 

amino acids, phosphorylated derivatives of adenine, oligonucleotides, and some 

small neutral substrates. Through their work, the special separation ability traced to 

the interactions between calix[4]pyrroles and analytes was revealed. 

Most of the above examples relied on the attachment of carboxylic acid functional 

receptors to a aminopropyl functionalized silica gel [74]. Especially in the field of 

calixpyrrole chemistry this approach is the only one that have been used. For 

covalent attachment, this approach requires preparation of a stationary phase with 

aminopropyl functionality and a receptor having appropriate functional group that 

can react with the amino group of solid support. When one needs to attach a 

calixpyrrole receptor to a different solid support, in this case aminopropyl 

functionalization of this solid support is firstly needed. In this junction, the idea of 

preparation of a siloxane functionalized seems to be a convenient method for the 

modification of whatever solid support that can react with siloxane groups. 

Therefore, in this part of the dissertation, synthesis of siloxane functional 

calix[4]pyrrole and modification of various silica gels will be presented along with 

production of silica nanoparticles using this starting material. 

Siloxane functionalized calix[4]pyrrole 3.39 was prepared by the reaction of alcohol 

functionalized calix[4]pyrrole 3.17 with 3-isocyantotriethoxysilane in dry THF in the 

presence of catalytic amount of T12 at reflux temperature. Removal of the solvent 

under reduced pressure and workup followed by washing with hexane afforded 3.39 

in 95% yield as a white solid (Figure 4.74). Structural elucidation of the compound 

3.39 was carried out using both NMR spectroscopic and X-ray crystallographic 

methods. 



142 

 

Figure 4.74 : Synthesis of siloxane functionalized calix[4]pyrrole 3.39. 

Figure 4.75 shows 1H NMR spectroscopic analysis of the compound 3.39 that 

revealed pyrrole NH proton signals at 7.22 and 7.09 ppm, pyrrole CH proton signals 

at 5.90 ppm, amide NH proton at 4.83 ppm, meso-CH2 protons at 4.31 ppm, Si-O-

CH2 protons at 3.81 ppm as a quartet, OC-NH-CH2 protons at 3.12 ppm as a triplet 

of doublet,   

 

Figure 4.75 : 1H NMR spectrum of siloxane functionalized calix[4]pyrrole 3.39 
recorded in CDCl3. 

Single crystals of 3.39 grew as colorless plates by slow evaporation from 

DCM/hexane. The data crystal was cut from a cluster of plates and had approximate 
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dimensions; 0.22 x 0.15 x 0.12 mm.  The data were collected on a Nonius Kappa 

CCD diffractometer using a graphite monochromator with MoK radiation ( = 

0.71073Å).  A total of 204 frames of data were collected using -scans with a scan 

range of 2 and a counting time of 60 seconds per frame.  The data were collected 

at 153 K using an Oxford Cryostream low temperature device.  View of 3.39 

showing the atom labeling scheme can be seen in Figure 4.76.  Displacement 

ellipsoids are scaled to the 50% probability level.  Most hydrogen atoms have been 

removed for clarity. 

 

Figure 4.76 : View of 3.39 showing the atom labeling scheme. 

Once the siloxane functional compound 3.39 was in hand, the next effort was shifted 

to modification of various silica gels. Modifications have been carried out following 

general approach that has been used widely in the literature. For instance, silica gel 

60 (a commercially available silica gel that used for column chromatography) was 

modified with calix[4]pyrrole by reacting this silica gel with the compound 3.39 in dry 

toluene at room temperature for 24 h. After completion of the reaction the modified 

silica gel was filtered off and washed with several solvents as described in 

experimental section. Then, this material was dried under vacuum till no weight 

change was observed.   

When silica gel 60 was modified with siloxane functionalized calix[4]pyrrole 3.39, 

FTIR spectrum of modified silica gel revealed carbamate C=O stretching band at 

1874 cm1 and aliphatic CH stretching bands at 2977 cm1. Contrarily, the 

unmodified silica gel did not reveal any bands in aforementioned wavenumbers 

(Figure 4.77).    
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Figure 4.77 : FTIR spectra of modified and unmodified silica gel 60. 

Another support about the modification of silica gel 60 came from thermal analysis. 

Thermogravimetric analyses of both modified and unmodified silica gel 60 showed 

5% functionalization upon exposure to siloxane functionalized calix[4]pyrrole 3.39. 

 

Figure 4.78 : Thermogravigrams of modified and unmodified silica gel 60. 

Fume silica was also treated with 3.39 under the similar conditions applied to modify 

silica gel 60. Modification evidences were obtained by FTIR spectroscopy and 

thermal analyses. FTIR spectroscopic analyses of the modified and unmodified 

fume silica revealed carbamate C=O stretching band at 1700 cm1 and aliphatic CH 
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stretching band at 2981 cm1. These bands were not observed in the case of 

unmodified fume silica (Figure 4.79). 

 

Figure 4.79 : FTIR spectra of modified and unmodified fume silica. 

Figure 4.80 indicates that thermogravimetric analyses of both modified and 

unmodified fume silica showed 16% functionalization upon exposure to siloxane 

functionalized calix[4]pyrrole 3.39. 

 

Figure 4.80 : Thermogravigrams of modified and unmodified fume silica. 
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SiO2 nanopowder was also modified with siloxane functionalized calix[4]pyrrole 3.39 

using a modification strategy analogues to methods described above. At this time, 

FTIR spectra of fume silica revealed carbamate C=O stretching band at 1689 cm1 

and aliphatic CH stretching band at 2973 cm1. These bands could not be observed 

in the case of unmodified fume silica (Figure 4.81).  

 

Figure 4.81 : FTIR spectra of modified and unmodified SiO2 nanopowder. 

  

Figure 4.82 : Thermogravigrams of modified and unmodified SiO2 nanopowders. 

Another support about the modification of SiO2 nanopowder came from thermal 

analysis. Thermogravimetric analyses of both modified and unmodified SiO2 
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nanopowder showed 25% functionalization upon exposure to siloxane functionalized 

calix[4]pyrrole 3.39. Table 4.10 summarizes the specifications of modified silica gels 

studied in this part of the dissertation.  

Table 4.10 : Specifications of modified silica gels. 

 
FTIR (cm1

) Organic Content  

Carbamate C=O Aliphatic CH (%) 

Silica gel 60 1874 2977 5 
Fume silica 1700 2981 16 

SiO2 nanopowder 1689 2973 25 

Finally an effort was dedicated to preparation of silica nanoparticles via sol-gel 

reaction. For this purpose siloxane functionalized calix[4]pyrrole 3.39 and TEOS was 

reacted in EtOH in the presence of NH4OH at a stirring rate of 250 rpm. After 24 h 

the white precipitate was filtered off and washed with various solvent to get rid of un 

wanted organic residues and unreacted starting materials. Drying the final white 

material afforded calix[4]pyrrole functional silica nanoparticles 3.40 (Figure 4.83). 

 

Figure 4.83 : Synthesis of calix[4]pyrrole functional silica nanoparticles. 

FTIR spectrum of 3.40 revealed carbamate C=O stretching band at 1855 cm1 and 

aliphatic CH stretching band at 2981 cm1 (Figure 4.84). 

 

Figure 4.84 : FTIR spectrum of calix[4]pyrrole functional silica nanoparticle.  
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In conclusion, synthesis of siloxane functionalized calix[4]pyrrole 3.40 have been 

successfully carried out starting from alcohol functional calixpyrrole 3.17. 

Characterization of the compound 3.39 was accomplished by using 1H NMR 

spectroscopy and single crystal X-ray crystallography. Modification of silica gel 60, 

fume silica, and SiO2 nanopowder was also demonstrated supported by both FTIR 

spectroscopy and thermogravimetric analysis. These analyses showed that all the 

materials functionalized with calix[4]pyrrole in a range of 5 – 25% in weight. Further, 

production of silica nanoparticles with calix[4]pyrrole functionality has been 

accomplished via sol-gel reaction of siloxane functional calixpyrrole 3.39 and TEOS. 

Next efforts will be dedicated to increasing the percentage of calix[4]pyrrole units by 

tuning the ratio of 3.39 and TOES. 
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5. CONCLUSIONS 

In conclusion, new mono carboxylic acid and ester functionalized calix[4]pyrroles 

bearing both short and long n-alky chains on the ester positions have been 

synthesized. 1HNMR studies revealed that the brominated derivative 3.2 gives rise 

to nonobservable NH peaks at room temperature (CD2Cl2), but that these signals 

can be readily detected at lower temperatures (i.e., below -20C). These results are 

consistent with the brominated calix[4]pyrroles of this study being endowed with 

more acidic NH protons. However, this presumed greater acidity is not reflected in 

higher chloride or acetate binding affinities relative to the hydrogen atom substituted 

forms, at least as judged from ITC measurements carried out at room temperature in 

1,2-dichloroethane. These same anion binding studies revealed that all the new 

compounds, including the long n-alkyl esters, display relatively good anion binding 

affinities, albeit ones that are somewhat reduced compared to those of the parent 

calix[4]pyrrole (2.1). This combination of decent anion affinity and high solubility in 

nonpolar solvents, such as hexanes, makes the ester systems 3.7, 3.8, 3.9, and 

3.10 potentially attractive for use in further applications including anion extraction 

and transport. 

The synthesis of the tetra-bicyclo[2.2.2]-oct-2-ene fused calix[4]pyrrole 3.15 and its 

partial conversion to the corresponding tetrabenzocalix[4]pyrrole 3.16 were studied. 

Possible efforts would be improving this latter conversion and studying system 3.15 

as a possible ion-pair receptor and deep-walled ―molecular container‖. 

The first well-defined and homogenous polymeric systems capable of extracting 

potassium fluoride and chloride salts from aqueous media have been prepared. 

These polymers contain pendant calixpyrrole and crown ether subunits, key features 

that permit the concurrent complexation of both halide and potassium ions. This, in 

turn, allows the system as a whole to overcome the relatively high hydration 

energies of KF and KCl and enables their extraction from aqueous media. To the 

best of our knowledge this has not hitherto proved possible with any other simple 

polymeric material. Next efforts would be focused on fine-tuning the choice of 

receptors and investigating the effect of polymer molecular weight and 

microstructure on the overall extraction performance of these materials. 
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Synthesis of siloxane functionalized calix[4]pyrrole 3.39 have been successfully 

carried out starting from alcohol functional calixpyrrole 3.17. Characterization of the 

compound 3.39 was accomplished by using 1H NMR spectroscopy and single 

crystal X-ray crystallography. Modification of silica gel 60, fume silica, and SiO2 

nanopowder was also demonstrated supported by both FTIR spectroscopy and 

thermogravimetric analysis. These analyses showed that all the materials 

functionalized with calix[4]pyrrole in a range of 5 – 25% in weight. Further, 

production of silica nanoparticles with calix[4]pyrrole functionality has been 

accomplished via sol-gel reaction of siloxane functional calixpyrrole 3.39 and TOES. 

Next efforts will be dedicated to increasing the percentage of calix[4]pyrrole units by 

tuning the ratio of 3.39 and TOES.  
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APPENDICES 

APPENDIX A :  1H, 13C NMR spectra, ITC curves, X-ray crystal structures and TGA 

graphics of the compounds. 

 

Figure A.1 : 13C NMR spectrum of 3.1 recorded in CDCl3. 
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Figure A.2 : 13C NMR spectrum of 3.2 recorded in CDCl3. 

 

 

Figure A.3 : 13C NMR spectrum of 3.3 recorded in CDCl3. 
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Figure A.4 : 13C NMR spectrum of 3.4 recorded in CDCl3. 

 

Figure A.5 : 13C NMR spectrum of 3.5 recorded in CDCl3. 
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Figure A.6 : 13C NMR spectrum of 3.6 recorded in CDCl3. 

 

Figure A.7 : 13C NMR spectrum of 3.7 recorded in CDCl3. 
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Figure A.8 : 13C NMR spectrum of 3.9 recorded in CDCl3. 

 

Figure A.9 : 13C NMR spectrum of 3.10 recorded in CDCl3. 
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Figure A.10 : 1H NMR spectrum of 3.11 recorded in CDCl3. 

 

Figure A.11 : 13C NMR spectrum of 3.13 recorded in DMSO-d6. 
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Figure A.12 : 13C NMR spectrum of 3.15 recorded in CDCl3. 

 

Figure A.13 : 13C NMR spectrum of 3.17 recorded in CDCl3. 
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Figure A.14 : 13C NMR spectrum of 3.18 recorded in CDCl3. 

 

Figure A.15 : 13C NMR spectrum of 3.25 recorded in CD2Cl2. 
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Figure A.16 : 1H NMR spectrum of 3.26 recorded in CDCl3. 
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Figure A.17 : 13C NMR spectrum of 3.26 recorded in CDCl3. 
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Figure A.18 : 1H NMR spectrum of 3.27 recorded in CDCl3. 
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Figure A.19 : 13C NMR spectrum of 3.27 recorded in CDCl3. 
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Figure A.20 : 1H NMR spectrum of 3.28 recorded in CDCl3. 
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Figure A.21 : 13C NMR spectrum of 3.28 recorded in CDCl3. 
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Figure A.22 : 13C NMR spectrum of 3.29 recorded in CDCl3. 

 

Figure A.23 : 13C NMR spectrum of 3.31 recorded in CDCl3. 
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Figure A.24 : 13C NMR spectrum of 3.32 recorded in CDCl3. 

 

Figure A.25 : 13C NMR spectrum of 3.33 recorded in CDCl3. 
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Figure A.26 : 19F NMR spectrum of fluorobenzene in CD2Cl2. 

 

Figure A.27 : 1H NMR spectra of copolymer 3.22 in CD2Cl2 recorded after exposure 
to different aqueous KF concentrations. 
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Figure A.28 : NH peak intensity and shifts of copolymer 3.22 in CD2Cl2 as recorded 
by 1H NMR spectroscopy after exposure to different aqueous KCl 
concentrations (mM). 

 

Figure A.29 : 1H NMR spectra of copolymer 3.22 in CD2Cl2 recorded after exposure 
to different aqueous KCl concentrations. 
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Figure A.30 : Unit cell packing diagram for 3.1. The view is approximately down the 
a axis. Molecules 3.1a are shown in ball-and-stick format while 
molecules 3.1b are in wireframe display format.  Dashed lines are 
indicative of H-bonding interactions. 
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Figure A.31 : Unit cell packing diagram for 3.2. The view is approximately down the 
a axis. 

 

Figure A.32 : Unit cell packing diagram for 3.17. The view is approximately down 
the a axis. 
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Figure A.33 : Unit cell packing diagram for 3.8. The view is approximately down the 
b axis. 

 

Figure A.34 : ITC titration curves obtained from the titration of compound 2.20 (0.4 

mM) with chloride anion (8 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.35 : ITC titration curves obtained from the titration of compound 2.20 (0.40 

mM) with acetate anion (7.91 mM) in CH2Cl2 at 25 C. The curve 
shows the fit of the experimental data to 1:1 binding profile. 

 

Figure A.36 : ITC titration curves obtained from the titration of compound 2.14 (0.4 

mM) with chloride anion (9 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.37 : ITC titration curves obtained from the titration of compound 2.14 (0.40 

mM) with acetate anion (9.84 mM) in CH2Cl2 at 25 C. The curve 
shows the fit of the experimental data to 1:1 binding profile. 

 

Figure A.38 : ITC titration curves obtained from the titration of compound 3.1 (0.412 

mM) with chloride anion (9 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.39 : ITC titration curves obtained from the titration of compound 3.1 (0.403 

mM) with acetate anion (9.840 mM) in CH2Cl2 at 25 C. The curve 
shows the fit of the experimental data to 1:1 binding profile. 

 

Figure A.40 : ITC titration curves obtained from the titration of compound 3.2 (0.4 

mM) with chloride anion (9 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.41 : ITC titration curves obtained from the titration of compound 3.2 (0.4 

mM) with acetate anion (9 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 

 

Figure A.42 : ITC titration curves obtained from the titration of compound 3.7 (0.4 

mM) with chloride anion (8 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.43 : ITC titration curves obtained from the titration of compound 3.7 (0.5 

mM) with acetate anion (7.5 mM) in CH2Cl2 at 25 C. The curve 
shows the fit of the experimental data to 1:1 binding profile. 

  

Figure A.44 : ITC titration curves obtained from the titration of compound 3.8 (0.5 

mM) with chloride anion (9 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.45 : ITC titration curves obtained from the titration of compound 3.6 (0.5 

mM) with chloride anion (8 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 

 

Figure A.46 : ITC titration curves obtained from the titration of compound 3.6 (0.5 

mM) with acetate anion (9 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.47 : ITC titration curves obtained from the titration of compound 3.9 (0.4 

mM) with chloride anion (8 mM) in CH2Cl2 at 25 C. The curve shows 
the fit of the experimental data to 1:1 binding profile. 

 

Figure A.48 : ITC titration curves obtained from the titration of compound 3.10 (0.5 

mM) with chloride anion (9 mM) in CH2Cl2 at 25 C. The curve shoves 
the fit of the experimental data to 1:1 binding profile. 
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Figure A.49 : Thermogravigram of a PMMA homopolymer taken under an 
atmosphere of nitrogen at a scan rate = 10 °C/min. 

 

Figure A.50 : Thermogravigram of a polymer 3.19 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min. 
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Figure A.51 : Thermogravigram of a PMMA homopolymer (control), after being 
exposed to TBAF as described in the text, taken under an 
atmosphere of nitrogen at a scan rate = 10 °C/min. 

 

Figure A.52 : Thermogravigram of a PMMA homopolymer (control), after being 
exposed to TBACl as described in the text, taken under an 
atmosphere of nitrogen at a scan rate = 10 °C/min. 
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Figure A.53 : Thermogravigram of copolymer 3.20, after being exposed to TBACl 
as described in the text, taken under an atmosphere of nitrogen at a 
scan rate = 10 °C/min. 

 

Figure A.54 : Thermogravigram of copolymer 3.20, after being exposed to TBAF as 
described in the text, taken under an atmosphere of nitrogen at a 
scan rate = 10 °C/min. 
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Figure A.55 : Thermogravigram of polymer 3.20 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min after exposing to KCl. 

 

Figure A.56 : Thermogravigram of polymer 3.20 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min after exposing to KF. 
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Figure A.57 : Thermogravigram of polymer 3.22 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min. 

 

Figure A.58 : Thermogravigram of polymer 3.22 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min after exposing to KCl. 
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Figure A.59 : Thermogravigram of polymer 3.22 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min after exposing to KF. 

 

Figure A.60 : Thermogravigram of polymer 3.23 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min. 
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Figure A.61 : Thermogravigram of polymer 3.23 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min after exposing to KCl. 

 

Figure A.62 : Thermogravigram of polymer 3.23 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min after exposing to KF. 
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Figure A.63 : Thermogravigram of polymer 3.24 taken under an atmosphere of 
nitrogen at a scan rate = 10 °C/min. 

 

Figure A.64 : FAB-MS spectrum of 3.16. 
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