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DEPOSITION OF NANOCRYSTALLIZED AMORPHOUS SILICON THIN 

FILMS BY MAGNETRON SPUTTERING 

SUMMARY 

In this work, nanocrystallized amorphous silicon thin films were synthesized and it 

was aimed to apply this to solar cell applications which are accepted as one of the 

most important alternative for renewable energy sources. In accordance with this 

purpose, by using DC Magnetron Sputtering and RF Magnetron Sputtering, 

observations were made comparatively. Primarily amorphous silicon thin film was 

obtained and then by the help of X - Ray Photoelectron Spectroscopy (XPS), Raman 

Spectroscopy, X - Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and 

Scanning Electron Microscopy (SEM), thin film samples were investigated. Behind 

this, annealing was performed on samples at fixed temperature and certain times and 

nanocrystallized silicon particles were obtained. 

At first, by using DC Magnetron Sputtering, samples were deposited on titanium 

deposited silicon substrates under 1 Watt, 4 Watt, 10 Watt and 15 Watt, at 18 
o
C 

temperature. Thickness was 300 Å for all samples. After that thin film depositions 

were done for 1 Watt at 2 sccm and 20 sccm and for 15 Watt at 0.8 sccm and 20 

sccm argon flow rate. Later on, RF power source started to be used and at that time 

addition to the powder silicon target, single crystalline silicon substrate was started to 

be used as target. For each target, thin film depositions were done at 10 Watt, 15 

Watt and 150 Watt. After all these, two samples were deposited by RF power and 

annealed at 800 °C for 1 hour. After all deposition procedure, X - Ray Photoelectros 

Spectroscopy (XPS) characterization was made without taking samples outside. 

Behind all of these, samples were characterized by Atomic Force Microscopy 

(AFM), Raman Spectroscopy, X - Ray Diffraction (XRD) and Scanning Electron 

Microscopy (SEM). As a result of these, by the investigation of characterization 

results, it is understood that amorphous silicon was obtained at first and then 

nanocrystalline silicon particles were acquired by annealing. 
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NANOKRİSTALİZE EDİLMİŞ AMORF SİLİSYUM İNCE FİLMLERİN 

MAGNETRON SAÇTIRMA YÖNTEMİ İLE BÜYÜTÜLMESİ 

ÖZET 

Fosil yakıtların tükeniyor oluşu bilim adamlarını alternatif enerji kaynağı bulma 

konusunda harekete geçirmiştir. Bu amaç ile birçok alternatif enerji kaynağı 

geliştirilmiştir. Bunların en önemlilerinden ve en çok kullanılanlarından biri güneş 

pilleridir. Güneş pillerinin kaynağının yeryüzündeki canlılar için tükenmez bir enerji 

kaynağı olan güneş oluşu, hareketli bir parçası olmaması sebebiyle bakım 

gerektirmemesi, uzun ömürlü olması ve çevreye zararlı olmaması sebebiyle 

kullanımı oldukça avantajlıdır. 

Güneş pilleri üzerlerine düşen güneş ışığını doğrudan elektrik enerjisine çeviren 

aygıtlardır. Yapımında yarıiletken malzemeler kullanılmaktadır. Yapısı en basit 

haliyle p-i-n eklemi şeklindedir. Güneş pilindeki yarıiletken üzerine güneş ışığı 

düştüğünde eğer gelen ışığın enerjisi kullanılan yarıiletkenin bant aralığına eşit ya da 

ondan büyük ise yarıiletkenden elektron koparabilir. Kopan bu elektron ardında bir 

boşluk bırakır. Elektron ve boşluğun bu şekilde birbirine ters hareketi sayesinde dış 

devrede bir elektrik akımı oluşur. Böylece elektrik enerjisi elde edilmiş olur. 

Güneş pilleri, geliştirilme sıralarına göre üçe ayrılabilir: kristal silisyum güneş pilleri, 

ince film güneş pilleri ve çok katlı (tandem) güneş pilleri. Kristal silisyum ve ince 

film güneş pilleri tek eklemli, çok katlı güneş pilleri ise çok eklemlidir. Tek 

eklemliler arasında en yüksek verime sahip olan güneş pili kristal silisyum güneş 

pilleridir ve verimleri % 25 civarındadır. Ancak kristal silisyumun pahalı oluşu ve 

güneş pilinin üretimi sırasında kullanılmakta olan kristal silisyumun kaybının çok 

fazla oluşu kullanımlarını kısıtlamaktadır. Bu sebeple kristal silisyum güneş pillerine 

alternatif olarak ince film güneş pilleri geliştirilmiştir. İnce olmaları ve üretimlerinin 

ucuz olması sebepleriyle ince film güneş pilleri son zamanlarda oldukça öne 

çıkmaktadır.  İnce film güneş pilleri arasında en ilgi çekeni amorf silisyum güneş 

pilleridir. Verimleri % 13 civarındadır, yani pek yüksek değildir. Ancak üretimlerinin 

çok ucuz olması sebebiyle amorf silisyum güneş pilleri en çok tercih edilen ince film 

güneş pili olmaktadır. Çok katlı güneş pillerinde ise birden fazla yarıiletken 

kullanılarak absorbe edilebilen foton sayısı arttırılarak, güneş pilinin veriminin 

arttırılması amaçlanmıştır. Bu güneş pillerinin verimi % 44’ lere ulaşmaktadır. 

Bu çalışmada ince film güneş pili uygulamalarında çokça kullanılan amorf silisyum 

ve nanokristal silisyum güneş pillerinin verimlerini arttırmaya yönelik çalışmalar 

yapılmıştır. Amorf silisyum güneş pilleri daha çok Plazma Destekli Kimyasal Buhar 

Biriktirme (Plasma Enhanced Chemical Vapor Deposition - PECVD) yöntemi ile 

üretilmektedir. Ancak PECVD yönteminde kullanılan silan gazının (SiH4) oldukça 

zararlı olması ve bu yöntemde hidrojen gazının yapıya kontrollü verilemiyor oluşu 

büyük bir dezavantaj teşkil etmektedir. Bu sebeple son yıllarda amorf silisyum ince 

filmlerini elde etmek için Magnetron Saçtırma yöntemi kullanılmaya başlanmıştır. 

Bu yöntemde sistemdeki parametrelerin kontrol edilebiliyor oluşu sebebiyle arzu 

edilen tarzda kaplamalar yapılabilmektedir. Ayrıca sistemin ultra yüksek vakum 
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şartlarında çalışıyor olması sayesinde çok temiz filmler elde edilebilmektedir. Bunun 

yanında düşük sıcaklıkta amorf silisyum kaplamalarının yapılabiliyor olması ve 

sistemde çevreye zararlı gazların kullanılmıyor olması da sistemin bir diğer 

avantajıdır. Bu yönleriyle Magnetron Saçtırma yönteminin kullanımının PECVD 

yöntemine göre daha avantajlı olduğu söylenilebilir. Bu nedenle bu çalışmada 

Magnetron Saçtırma yöntemi kullanılarak öncelikle kontrollü bir şekilde amorf 

silisyum kaplamasının yapılması ve ardından belirli bir sıcaklıkta, belirli bir süre 

tavlama işlemi yapılarak amorf silisyum matrisi içerisinde nanokristal silisyum 

parçacıklarının oluşturulması amaçlanmıştır. 

Çalışmalar boyunca Doğru Akım (DC) ve Radyofrekans (RF) olmak üzere iki farklı 

güç kaynağı kullanılmıştır. Çalışmalara öncelikle DC güç kaynağı kullanılarak 

başlanmıştır, ardından RF güç kaynağına geçilmiştir. İki tip hedef malzemesi 

kullanılmıştır, bunlar preslenmiş ve düşük sıcaklıkta sinterlenmiş toz silisyum ve 

altlık olarak kullanılan (111) yönlenmeli tek kristal silisyumdur. Altlık olarak doğal 

oksitlenmiş (111) yönünde tek kristal silisyum ve kuvars cam kullanılmıştır. 

Çalışmalarda hidrojen gazı kullanılmamıştır, saf amorf silisyum eldesi 

amaçlanmıştır. Amorf silisyum elde etmek için yapılacak olan her bir kaplama 

öncesinde tek kristal silisyum altlık üzerine 150 Å kalınlığında titanyum kaplama 

yapılmıştır. Bunun ilk sebebi, silisyum altlık üzerine silisyum kaplama yapılacağı 

için epitaksiyel oluşum ihtimalinin önüne geçilmek istenmesidir. İkinci sebebi ise 

titanyumun silisyumu kolay bir şekilde tutmasından dolayı hedef malzemeden gelen 

silisyum parçacıklarının kolaylıkla silisyum üzerine tutunabilecek olmasıdır. 

Yapılan her bir kaplamanın ardından numuneler XPS’ te incelenmiştir. Ayrıca 

numuneler Atomik Kuvvet Mikroskobu (AFM), Raman Spektroskopisi, X-Işını 

Difraksiyonu (XRD) ve Taramalı Elektron Mikroskobu (SEM) cihazlarında 

incelenmiştir. 

Deneysel çalışmaya DC gücünde kaplama yapılarak başlanmıştır. DC güç 

kaynağında sadece toz silisyum hedef malzemesi kullanılmıştır. Öncelikle 1 Watt, 4 

Watt, 10 Watt ve 15 Watt güçlerinde, 2.7 sccm argon akış hızında ve 18 ºC sıcaklıkta 

kaplama yapılması hedeflenmiştir. Başlangıçta kaplama hızları XPS desteği ile 

atomik hassasiyette hesaplanmış, ardından kaplamalar yapılmıştır. Yapılan hesaplar 

sonucunda uygulanan gücün artışı ile beraber kaplama hızının arttığı 

gözlemlenmiştir. Bunun sebebi, güç artışı ile beraber argon gazını oluşturan argon 

atomlarının kaynak malzeme yüzeyine aktardığı momentumdaki artıştır ve bunun 

sonucunda hedef malzemenin yüzeyinden daha çok partikül kopmaktadır. Bu 

numunelerin AFM’ den alınan görüntülerinde yuvarlak şekilde partiküller 

gözlemlenmiştir. Bunun üzerine bu partiküllerin davranışını incelemek için çalışılan 

en düşük ve en yüksek güç değerleri olan 1 Watt ve 15 Watt’ ta plazmanın tuttuğu en 

düşük ve en yüksek argon akış hızları belirlenerek, bu değerlerde kaplama 

yapılmasına karar verilmiştir. Yapılan çalışmalarda 1 Watt için plazmanın tuttuğu en 

düşük akış hızı 2 sccm, 15 Watt için ise 0.8 sccm olarak tespit edilmiştir. Diğer 

yandan sisteme verilebilecek en yüksek argon akış hızı 20 sccm olduğu için bu değer 

her iki güç için de en yüksek değer olarak belirlenmiştir. Bu sonuçlar ışığında 

yapılan kaplamalardan elde edilen AFM görüntülerinde en düşük argon akış hızında 

her iki güç değerinde de önceki çalışmada görülen yuvarlak şekilli partiküller 

neredeyse hiç gözlenmemiş, en yüksek argon akış hızında ise yuvarlak şekilli 

partiküllerin yoğunluğunun arttığı görülmüştür. Toz silisyum hedef malzemesi 

sinterlenme işlemine tabi tutulmadan, sadece preslenmiş olduğu için partiküllerin 

hedef malzemesinden kolay ayrıldığı düşünülmüştür ve bundan dolayı argon akış 
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hızı arttıkça hedef malzemesinden kopan partikül sayısı artış göstermiştir. Bu 

çalışmanın sonucunda partiküllerin altlık üzerine düşüş yoğunluğunun argon akış 

hızının değişimiyle nasıl kontrol edilebileceği belirlenmiştir. 

Bu iki çalışmadan elde edilen XRD sonuçlarına göre elde edilen filmlerin amorf 

olduğu hem düşük açılarda gözlemlenen kamburluktan, hem de yeni bir pikin 

oluşmayışından anlaşılmıştır. Yine de amorfluğu teyit etmek amacıyla 15 Watt 

gücünde ve 2.7 sccm argon akış hızında lamel cam altlık üzerine silisyum kaplaması 

yapılmıştır. Bu numuneden elde edilen XRD sonucunda oluşturulan ince filmin 

amorfluğu ispatlanmıştır, çünkü sadece altlıktan gelen kambur bir pik haricinde 

spektrumda yeni bir pik gözlemlenmemiştir.  

Daha sonra RF gücüne geçilmiştir. Bu güçte toz silisyum hedef malzemesi haricinde 

bir de altlık olarak kullanılan (111) yönünde yönlenmiş tek kristal silisyum altlık 

hedef malzemesi olarak kullanılmıştır. Bu sette 10 Watt, 15 Watt ve 150 Watt 

güçlerinde, 2.7 sccm akış hızında ve 18 ºC sıcaklıkta kaplamalar yapılmıştır. DC 

gücü ile karşılaştırma yapılabilmesi açısından 1 Watt ve 4 Watt değerlerinde de 

kaplama yapılması düşünülmüştür, ancak bu değerlerde 2.7 sccm argon akış hızında 

plazma tutmadığı için 1 Watt ve 4 Watt kaplamaları yapılmamıştır. Önce toz 

silisyum hedef malzemesi ile, ardından silisyum altlık hedef malzemesi ile kaplama 

işlemleri yapılmıştır. AFM’ den elde edilen sonuçlarda her iki hedef malzemesi için 

de, güç arttıkça pürüzlülüğün arttığı gözlemlenmiştir. Görüntülerin her iki hedef 

malzemesi için karşılaştırması yapıldığında toz silisyum hedef malzemesinde daha 

fazla yuvarlak partiküllerin görüldüğü, silisyum altlık hedef malzemesinde ise 

yüzeyin oldukça düzgün olduğu görülmüştür.  

DC ve RF gücünde toz hedef malzemesi kullanılarak yapılan kaplamaların 

karşılaştırılması yapılırsa, RF gücünde yüzeyin daha düzgün ve homojen olduğu 

görülmektedir. Bu sebeple RF’ in silisyum kaplamaları için daha uygun olduğu 

söylenebilir. 

RF gücünde yapılan silisyum kaplamalar için ayrıca Raman Spektroskopisi cihazında 

ve XRD’ de incelenmiştir. Raman spektroskopisinde amorf silisyuma ait olan 470 

cm
-1

’ de bir pik oluşumu gözlemlenmiştir, dolayısıyla amorf yapı kanıtlanmıştır.  

Bu çalışmaların ardından nanokristal silisyum partiküllerinin elde edilmesi amacıyla 

öncelikle RF gücünde, toz silisyum hedef malzemesi ve silisyum altlık hedef 

malzemesi ile kuvars ve tek kristal silisyum altlık üzerine eşzamanlı kaplamalar 

yapılmıştır. Kuvars altlığın kullanılmasının sebebi hem yüksek sıcaklığa dayanıklı 

olmasından, hem de kuvarsın amorf olmasından dolayı Raman Spektroskopi 

cihazında kristal silisyum piklerinin çakışmasının önlenmek istenmesindendir. Her 

iki hedef malzeme için kaplamalar 15 Watt gücünde, 2.7 sccm argon akış hızında ve 

18 ºC sıcaklıkta yapılmıştır. Ardından numuneler 800 ºC’ de birer saat 

tavlanmışlardır. Yapılan Raman Spektroskopi karakterizasyonu sonucunda, her iki 

hedef malzemesinde elde edilen kaplama için kristal silisyuma ait olan 520 cm
-1

’deki 

pik spektrumlarda gözlemlenmiştir. Spektrumlarda ayrıca tek kristale ait olan pikte 

gözlemlenen kamburluğun amorf silisyuma ait olduğu düşünülmüştür. Dolayısıyla 

amorf silisyum matrisinde nanokristal silisyum parçacıklarının elde edildiği 

ispatlanmıştır. 

Bütün bu çalışmaların sonucunda amorf silisyum elde etmek için RF gücünün daha 

uygun olduğu anlaşılmıştır. Ayrıca daha temiz ve düzgün bir yüzey elde etmek için 

silisyum altlık hedef malzemesinin kullanımının, toz silisyum hedef malzemesinden 

daha uygun olduğu düşünülmektedir. 
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Sonuç olarak amorf silisyum üretiminde Magnetron Saçtırma yönteminin PECVD 

kadar başarılı bir yöntem olduğu bu çalışma ile anlaşılmaktadır. 
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1. INTRODUCTION 

Depletion of fossil fuels makes researchers searching new ways to find alternative 

sources. One of those alternatives is solar cells. Because solar cells are eco-friendly, 

not having motion parts, working at low temperatures, having long lifetime and the 

source is sun which is inexhaustible. 

Silicon is the most used material in solar cells, because of their abundance in the 

world, semiconductor properties, cheapness.. etc. It is the second element in the 

world that found to be most [36]. In addition to this, because of being good 

semiconductor, it has common usage area one of which is photovoltaic systems. We 

can say that silicon is the most used material in photovoltaic industry with 88 % 

usage [37,3]. Because silicon is a very cheap material, 43 % of this ratio is comprised 

of monocrystalline silicon, 43 % of this is comprised of polycrystalline silicon and 2 

% of this is comprised of amorphous/nanocrystalline silicon. 

In fact GaAs is the most suitable one for solar cells with the ratio of % 24 in 

efficiency, but it is very expensive material. Because of this reason, it can not be 

used extensively [4]. CdTe can be used for solar cells preparation, but because of the 

fact that Cd is very toxic, its usage becomes limited too [5]. Based on these reasons, 

silicon becomes the most suitable material for solar cells. 

Among the solar cells which are prepared with silicon, amorphous silicon becomes 

very attractive for scientists, because of its properties that  

 Its cheapness due to producing thin films with large surface easily. 

 Being able to keep low angle beams and for this reason efficiency is 

relatively high. 

 Efficiency drop is very low, even at low air temperature. 

By reason of the fact that pure silicon has a lot of defects, it is insulator [5]. This 

situation prevents using amorphous silicon in electronic applications [4]. The main 

reason of this problem is the dangling bonds in silicon structure. If the dangling 

bonds in silicon structure are passivated by hydrogen, defects can be eliminated. 
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Thus, the conductivity of silicon can be enhanced substantially and dopping can be 

done. In addition, hydrogen can prevent formation of columnar structure. 

There are several ways to produce hydrogenated amorphous silicon. These are 

Plasma Enhanced Chemical Vapor Deposition (PECVD), Hot-Wire Chemical Vapor 

Deposition (HW-CVD) Very High Frequency Glow Discharge and Reactive 

Magnetron Sputtering (RMS). Among these, PECVD is the most used one. But 

because of the disadvantage, such as using of silane (SiH4) gases which is very toxic, 

scientists have started to pay attention to Reactive Magnetron Sputtering. In 

Magnetron Sputtering system Ar+H2 are used instead of silane gases. The other 

advantages of this system with respect to PECVD are 

 Higher production rate. 

 Production of higher efficiency amorphous silicon solar panels. 

 Synthesis can be done at low temperatures. 

 Production cost is relatively low. 

 It is more controllable system. 

The only one problem in this system comes up because of parameters abundance. 

In literature, there is a lot of study handled about nanocrystalline silicon structure 

formed in amorphous silicon matrix. This formation increases efficiency. This is 

because of being held photons with low energy [7]. Besides that because of 

hydrogenated amorphous silicon may degrade due to light, using in electronic 

applications is limited. So creating nanocrystals in amorphous silicon matrix makes 

structure more stable and increases efficiency [7]. Formation of nanocrystals occurs 

with annealing after deposition on sample. The size and number of nanocrystals 

effect keeping sun beams. Hydrogenated nanocrystalline silicon has high dopping 

efficiency and mobility capability [8]. 

There are several parameters that effect formation of nanocrystals. These are 

annealing temperature, pressure, reactive gases, duration under plasma conditions 

and bias field. 

Annealing temperature is a significant effect on formation of nanocrystals. In 

unannealed sample, there is no formation of nanocrystal [9]. By increasing of 

temperature, the number of crystal particles increases. 
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90 % of ratio of nanocrystalline formation is obtained in literature [10]. This ratio of 

nanocrystalline is obtained by changing pressure. In a study, for thin film samples 

deposited at 2, 3 and 4 Pa pressure, the silicon thin film deposited at 2 Pa is totally 

amorphous, but on the other hand, there is formation of nanocrystals on the samples 

deposited at 3 and 4 Pa [7, 10]. Again in the same study, 90 % of nanocrystalline 

formation is achieved at 4 Pa and 100 
o
C. Although crystalline formation enhances 

by increasing of pressure, percentage of pores increases [12]. So, pressure has an 

important effect on structure.  

Another parameter that effects crystalline formation is reactive gas ratio. As is 

known, in Magnetron Sputtering technique argon and hydrogen gases are used as 

reactive gases at various ratio. It is the hydrogen that provides hydrogenation of 

amorphous silicon. Hydrogen has a great effect on crystallization. In a study that 

investigate this effect, it was found that optimum ratio of Ar/H2 is %40/%60 [11]. 

When hydrogen ratio is 100 %, there is not any formation of film observed on 

substrate. This is because of etching effect of hydrogen [14]. Also at low 

temperature, experiment done in the environment of 70 % of H2 and 30 % of Ar 

gases, it was seen that the highest crystallization degree is achieved. In this serial it is 

indicated that grains are small [12].  

Bias field applied to substrate effects microstructure of films [19]. Increasing of 

negative bias field decreases holes in film, crystal size and provides formation of a 

denser structure. Formation of denser structure and decreasing of crystal size is 

because of ion bombardment. Increasing of negative bias enhances total stress and 

intrinsic stress in structure. On the other hand, deposition rate decreases and band 

gap becomes narrower, crystal ratio in structure increases together with that. Because 

band gap becomes narrower, crystal ratio increases. 

In this thesis, obtaining of amorphous silicon without hydrogen dilution and then 

creating of nanocrystalline silicon in amorphous matrix are aimed. In accordance 

with this purpose, by using of DC-Magnetron Sputtering and RF-Magnetron 

Sputtering amorphous silicon thin films were deposited and then some of the samples 

were annealed for observing nanocrystallization. X-Ray Photoelectron Spectroscopy 

(XPS) was used for identifying which elements thin film has and its chemical 

proportion, Atomic Force Microscopy (AFM) was used for scanning surface 

topography, X-Ray Diffraction (XRD) was used for determining of phases and 
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crystallinity in thin films, Raman Spectroscopy was done for observing amorphousity 

and crystallinity of thin film and Scanning Electron Microscopy was done for 

observing thin film laterally. 
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2. ELECTRONIC STRUCTURE OF MATERIALS 

The smallest structure in material is atom. Atom is formed of core and electrons. 

Electrons determine the electrical and optical properties of materials.  

Materials can be classified in terms of their electronic structure as three main groups 

which are conductors, semiconductors and insulators. Electrons determine which 

character they will have. 

2.1.  Band Structure of Solids 

If identical atoms are far away from each other that will not affect, their electronic 

energy levels are the same. When they approach each other, they start to interact. It 

means that Pauli Exclusion Principle which is used for settlement of electrons in 

atoms begins to take effect. According to this principle, two electrons having the 

same quantum number can not be side by side at the same time in solids. This rule is 

valid, even if solid is too big.  

The electrons in atoms occupy fixed and discrete energy levels. Electrons are settled 

beginning from the bottom of band, while keeping two electrons at each energy 

levels. Internal bands are completely full, but valence band may not be completely 

filled depending on solid. For example, a solid which composed of silicon atoms 

(Si), valence band is completely filled. Allowed and forbidden energy regions for 

electrons in a solid can be seen from Figure 2.1. 

In solids, there is one more empty band which is above valence band and sometimes 

overlapped with valence band. This band is named as conduction band. This band 

has very important role for conduction. 

There is a need for an empty state that moving of charged particles (electrons) in 

solids. In other words, if there is an empty state, electrons can move. If there is not, 

electrons can not move. Even, a voltage is applied, electrons will not move. 
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Figure 2.1 : Allowed and forbidden energy regions for electrons in a solid. 

According to Figure 2.2 (a), band is not full and there is an energy state in the band 

that electron can move. In this case, there is not an obstacle for moving of electrons 

and even at small potential differences, no matter what temperature is, current can be 

measured. This type of material is known as metal and metals conduct electricity 

well. 

 

Figure 2.2 : T= 0 
o
K, conduction and valence band conditions, (a) metal, (b) 

semiconductor, (c) insulator. 
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In Figure 2.2 (b), semiconductor is represented. This type of materials has the energy 

band gap below 3 eV. In this situation, valence band is full and conduction band is 

empty. 

In Figure 2.2 (c), insulator is represented. In fact there is not a difference between 

semiconductors and insulators except energy band gap value. The energy band gap is 

above the value of 3 eV. We can say that both insulators and semiconductors can not 

conduct electricity, because valence band is completely full and conduction band is 

empty. This can be said for the condition which is at absolute temperature. It is 

different at room temperature. Electrons which obtain enough energy (Eg) from 

environment can jump into conduction band from valence band. This behaviour can 

be seen in semiconductors, not in insulators. 

2.2.  Semiconductors 

Semiconductor material shows insulator character at absolute zero temperature. But 

when temperature is increased, it becomes conductor. The typical characteristic of 

semiconductors is the band gap between valence band and conduction band. At T= 

0
o
K, as valence band is full of electrons, conduction band is empty. To be electrically 

conductive, charge carriers must move from a state in energy band to another. So 

under this circumstance, which is that all energy levels are full or empty, conduction 

can not happen. When temperature is increased or photon which has higher energy 

than energy band gap of semiconductor is sent to semiconductor, energy which is 

needed for passing from valence to conduction band is transferred to electrons. 

Electron leaving from valence band forms a hole behind. When this hole is filled by 

another electron, it forms a hole behind too. As a result, there can be seen a hole 

movement because of the electron which leaves valence band. 

2.3.  Doping of Semiconductors 

2.3.1. n-type Semiconductors (Donors) 

In silicon crystal, silicon atoms make covalent bonds with each other. So that, each 

silicon atoms consist of four neighbour atoms. Instead of silicon atom in silicon 

crystal when phosphorus (P) atom which is one of the element of fifth group in the 

periodic table is doped, four of the five atoms in phosphorus is used in making 

covalent bond and fifth electron adhere to phosphorus with small energy (0.04 eV). 
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When this electron has this much energy, it jumps into conduction band. When this 

energy is compared with energy band gap of silicon (1.1 eV), it can be seen that this 

value is much smaller than silicon band gap [28]. As a result of giving fifth electrons 

of phosphorus, number of electrons increase and there is not any hole formation in 

valence band. By virtue of this, electron density in semiconductor will be higher than 

hole density. This type of semiconductors is named as n-type semiconductors and 

dopant material is named as donor. Conduction increases according to density of 

dopant in n-type semiconductors. For example, if dopant density increases, 

conduction will increase too. 

2.3.2. p-type Semiconductors (Acceptor) 

Instead of a silicon atom in silicon crystal, when boron which is one of the element 

of third group in periodic table is doped, one empty state remains in one of the Si-B 

bonds because boron takes three electrons. Lower boron concentration is not enough 

for doping [1]. This missing electron is filled with an electron which is taken from 

valence band (Si-Si covalent bond). Required energy is very low (0.04 eV). In this 

case, boron (B) is named as acceptor. As hole forms in valence band, electrons do 

not jump into the conduction band. Conduction increases with doping concentration. 

2.4.  P-N Junctions 

When two semiconductors which are dopped n-type and p-type piece together, p-n 

junction is formed.  

Electron deficiency in p-type semiconductor and redundancy of electrons in n- type 

semiconductor take place. The movement of electrons and holes are opposite to each 

other. When n-type and p-type piece together, free electrons in n-type and holes in p-

type combine. In that case, p-side gains net (-) charge and n-side gains net (+) 

charge. Because p-side has (-) charge, it pushes electrons of n-type. Similarly, n-side 

has (+) charge and it pushes holes of p-type. So they prevent flowing of electrons and 

holes between p-side and n-side. Consequently, a region which is called as “potential 

barrier” is formed between p-n junction. 

Before the application of any potential across the p–n specimen, holes will be the 

dominant carriers on the p-side, and electrons will predominate in the n-region, as 

illustrated in Figure 2.3. An external electric potential may be established across a p–
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n junction with two different polarities. When a battery is used, the positive terminal 

may be connected to the p-side and the negative terminal to the n-side; this is 

referred to as a forward bias. The opposite polarity (minus to p and plus to n) is 

termed reverse bias [20].  

 

Figure 2.3 : For a p–n rectifying junction, representations of electron and hole 

distributions for (a) no electrical potential, (b) forward bias and (c) reverse bias [20].



10 

 



11 

 

3. SOLAR CELLS 

3.1.  Solar Energy 

Sun which is the source of life provides the most of the energy of natural system. Its 

diameter is approximately 1.4 million kilometer and it has very dense gases in its 

internal environment. It is the main source of all fuels used in the world except 

nuclear energy. Hydrogen is converted to Helium within the Sun continuously, which 

is named as Fusion. The mass difference formed of this reaction converts to heat 

energy and spread to the space. The amount of radiation emitted from Sun and 

reaching the World is approximately 70 %.  

Radiation has electromagnetic property. Most of radiation which comes to the World 

is in visible region. It can be seen from Figure 3.1 that in visible region, red has the 

lowest energy. On the other hand, purple has the largest energy. 

 

Figure 3.1 : Electromagnetic spectrum [40]. 
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In all over the world there is a necessity for searching renewable energy sources, 

because of the shortage of fossil fuels. Renewable energy sources can be described 

as: 

 Solar Energy 

 Wind Energy 

 Hydroelectrical Energy 

 Geothermal Energy 

 Biomass 

 Wave Energy 

 Hydrogen Energy 

Turkey has more advantages than other countries to enhance solar energy 

technologies in terms of sunlight potential, because of its location.  

3.2.  Solar Cells 

Solar cells are devices that convert solar energy directly to electrical energy. Cell 

generates electrical energy as long as sunlight falls on cell. It is not necessary to 

charge solar cells like others, because source of solar cells is sunlight which is 

inexhaustible. In addition, solar cells are environmental friendly and they have not 

any moving part. Their application field are increasing day by day. Nowadays solar 

cells are used in traffic lights, street lights, agricultural irrigations, spacecrafts ... etc. 

3.2.1. Working Principle of Solar Cells 

When sunlight comes to solar cell, it charges the valence electron in the last orbit 

negatively. Light is formed of energy particles which are named as photon. When 

photons crash to an atom, all atoms become energized and the valence electron in the 

last orbit ruptures. In this electron which is released, potential energy emerges. This 

energy can be used for charging a power supply or running an electrical motor. The 

important point is that taking these free electrons out of cell. During production, 

there is constituted an internal electrostatic region which is near the front of cell and 

electrons are provided to become free. Other elements are inserted to silicon crystal. 

The presence of these elements in crystal prevents being in electrical balance. In 

material which encounters with light, these atoms break balance and they push free 
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electrons to other cell or surface of cell for going to charge. While millions of 

photons flow into the cell, they gain energy and jump into higher level. Electrons 

flow to electrostatic region in cell and then out of cell. This flow is electrical current. 

3.2.2. Light Absorption 

Electron-hole formation takes place via either increasing of temperature or 

absorption of photon which has higher energy than hυ > Eg, because electron jumps 

into conduction band from valence band. 

The energy of photon which has the frequency of υ is 

                                                      E = hυ = 
  

 
                                                  (Eq. 3.1) 

h: Planck’s constant 

c: Speed of light 

υ: Frequency 

λ: Wavelength 

If speed of light and Planck’s constant put into equation, then it becomes 

                                                           
    

 
(eV)                                                   (Eq. 3.2) 

To absorb incident photon, photon must have the energy which is equal to the band 

gap of semiconductor (Eg) or higher than the band gap of semiconductor. If the 

energy of photon is very high, solar cell will heat up. This effect disrupts structure of 

solar cell. Because of that, semiconductor to be used in preparation of solar cell must 

have convenient energy band gap. 

As said before, the band gap is the difference in energy between the lowest point of 

conduction band (conduction band edge) and the highest point of the valence band 

(valence band edge). 

In the direct absorption process, a photon is absorbed by the crystal with the creation 

of an electron hole pair. Semiconductors using the phenomena have their valence 

band maxima and their conduction band minima corresponding to the same 

momentum and are called direct-gap materials.  
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In the indirect absorption process, the band gap involves electron and holes separated 

by a wave vector kc i.e. the maximum of valence band and minimum of conduction 

band do not correspond to the same momentum. Such materials are called indirect 

gap materials [21]. Direct and indirect band gap models can be seen from Figure 3.2. 

 

Figure 3.2 : Approximately the E-k diagram at the bottm of the conduction band and 

at the top of the valence band of Si and GaAs by parabolas [21]. 

3.2.3. Types of Solar Cells 

Solar cells can be classified into three main groups in terms of development process: 

1) First Generation: Crystalline Solar Cells (Monocrystalline silicon solar cells 

and polycrystalline silicon solar cells) 

2) Second Generation: Thin Film Solar Cells (Amorphous silicon, Cadmium 

telluride, Copper Indium/Indium Gallium Diselenide) 

3) Third Generation: Tandem Solar Cells 

3.2.3.1 First Generation: Crystalline Solar Cells 

Silicon which shows semiconductor character completely is used production of solar 

cell mostly. Silicon is preferred not only for its technological supremacy, but also for 

economic reasons. Crystalline solar cells constitute the large part of marketshare, its 

usage reaches 85 %. 
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a) Monocrystalline Silicon Solar Cells 

The production method used for monocrystalline silicon is Czochralski growth 

technique mostly. Its yield is up to 25 % [39]. This type of silicon is the most 

efficient one. But due to its expensiveness and lots of material loss, different 

alternatives are investigated. 

b) Polycrystalline Silicon Solar Cells 

Because production of monocrystalline silicon is very expensive, polycrystalline 

silicon solar cells was thought to be as a good alternative. However, its yield is lower 

than monocrystalline solar cells due to material quality. Enhancing of material 

quality studies provide a little increment. Nowadays, yield of polycrystalline solar 

cell reaches 20 %. 

The main obstacle in usage of monocrystalline solar cells is material loss. On the 

purpose of reduction of material loss, these cells are produced from silicon layers in 

plaque form.  

3.2.3.2. Second Generation: Thin Film Solar Cells 

Materials which have better absorbent property are used in this technique with one in 

five hundred thickness. For example; absorbent coefficient of amorphous silicon 

solar cells is higher than absorbent coefficient of monocrystalline solar cells. While 

the sun radiation whose coefficient of wave length is smaller than 0.7 micron can be 

absorbed with 1 micron thickness of amorphous silicon, it takes 500 micron 

thickness of crystal silicon to create the same effect. Because of that, less material is 

used in thin film solar cells and installation is easier. 

a) Amorphous Silicon (a-Si) 

Amorphous silicon solar cells (a-Si) are at the forefront of thin film solar cell 

technology. The first one of amorphous silicon cells were in Schottky form, 

afterwards p-i-n structures were made. Although amorphous silicon solar cells have 

lower yield than others, they are commonly used because of low production cost. 

They are eco-friendly and produced from silicon which is a lot in nature.  
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b) Cadmium Telluride Solar Cells (CdTe) 

Thin-film cadmium telluride (CdTe) solar cells are the basis of a significant 

technology with major commercial impact on solar energy production. Large-area 

monolithic thin film modules demonstrate long-term stability, competitive 

performance, and the ability to attract production-scale capital investments [41]. But 

the usage of this type of solar cell is limited, because cadmium is a toxic material. 

The yield of CdTe solar cell is up to 17 % [39]. 

c) Copper Indium/Indium Gallium Diselenid Solar Cells(CIS/CIGS) 

It is composed of copper, indium, selenium and sometimes gallium. In the thin film 

group, CIS/CIGS technology has demonstrated the highest efficiency rating, high 

stability in (kwh) output, little or no degradation and excellent performance in low 

light conditions [42]. Its efficiency reaches 20.3 % [39]. The disadvantage of this 

type is that production is hard and complicated because of using multiple elements. 

3.2.3.3. Third Generation: Tandem Solar Cells 

The obstacle in front of single layer solar cells is residual heat that because of photon 

with higher band gap. A way to decrease this heat is bunching different solar cells 

having different energy band gap together. On the other hand, multiple junction 

(tandem) solar cells are used to get higher efficiency than possible with a single 

junction solar cell. By virtue of this way, efficiency reaches 42.4 %. 

3.3.  Silicon Thin Film Solar Cells 

3.3.1. Amorphous Silicon 

Silicon atoms in amorphous silicon nearly resemble the structure of crystalline 

silicon, except being short range order. Amorphous silicon does not exhibit long 

range order, but there is a similarity in atomic configuration on an atomic scale like 

seen in crystalline silicon. All silicon atoms in amorphous silicon are connected to 

the other four silicon atoms as a tetrahedron by covalent bond. Though amorphous 

silicon lacks the long range order, it has some short range order like crystalline 

silicon. The structure of amorphous silicon is known as “random continuous 

network”.  
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In fact, all atoms in amorphous silicon are not fourfold coordinated, some atoms may 

be threefold coordinated. This means that a silicon atom has one unpaired electron. 

This is called as “dangling bond”. Physically, these dangling bonds behave as defect 

in continuous random network and they may cause abnormal electrical behaviour. 

For amorphous silicon, hydrogen solves this problem. While some of the silicon 

atoms make covalent bonds with three neighbours, fourth valence electron of silicon 

bonds to hydrogen atom. 

To understand the electronic and optical properties of amorphous silicon, it is 

necessary to know its band structure. Normally, an ideal crystal has well defined 

band gap between valence and conduction band. Since not having long range order, 

in other words because bond length and bond angle is different and amorphous 

silicon has dangling bonds, there are lots of localized defect states in band gap of 

amorphous silicon as distinct from crystals. Since dangling bonds are saturated with 

hydrogen atoms in hydrogenized amorphous silicon, number of defect states 

decreases prominently as it is seen from Figure 3.3 [22]. 

 

Figure 3.3 : a) Crystalline Silicon, b) Amorphous Silicon, c) Hydrogenated 

Amorphous Silicon atomic arrangement and band structure [22]. 

Defect concentration of pure amorphous silicon is about ~10
19

 cm
-3

 which is very 

high value. This level decreases electronic conductivity dramatically. Due to disorder 

in amorphous silicon, there are lots of unsaturated dangling bonds in structure. This 
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remains as defect states in energy band gap of amorphous silicon. But when H2 

atoms are added to structure, electronic conductivity of amorphous silicon enhances. 

Lots of dangling bonds are passivated with hydrogen atoms. Thus, defect density 

decreases ~10
15

 cm
-3

 degree. 

The atomic arrangement and microstructure of a-Si:H is shown in Figure 3.4. As it is 

said before, the atomic arrangement of a-Si:H is characterized by the same local 

order as crystalline silicon. Each Si atoms are bonded to four neighbour silicon 

atoms. But atoms do not have long range order which is seen in crystalline silicon 

that bond length and bond angle are same along the structure. In amorphous silicon, 

bond length and bond angle may vary through arrangement. Si-Si bonds can be 

stretched or compressed, or the angle between Si atoms can be affected by the 

amorphous matrix [36]. Variation of bond length and angle effects electronic 

properties that tail states comprise between conduction and valence band. Lack of 

bonding of four silicon neighbour atoms cause creating of unsaturated dangling 

bonds of Si-H bonds. 

 

. 

Figure 3.4 : Schematic drawing of the atomic structure and microstructure of 

hydrogenated amorphous silicon [38]. 

As a result of hydrogenization of amorphous silicon, structure becomes relaxed. 

Because of that, electronic properties of a-Si:H is different from crystalline silicon. 

In c-Si the periodic arrangement of Si atoms leads to sharply defined valence and 

conduction band edges as can be seen in Figure 3.5 (a). The gap between these two 

edges is defined as the band gap. In a-Si:H the amorphous arrangement of Si atoms 
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leads to continuous distribution of electronic states with tail states and defect states 

located energetically in between the extended band states, as can be seen in Figure 

3.5 (b). The mobility gap is indicated in the figure, which represents the energy gap 

which must be overcome by electrons to get from one delocalized extended state in 

the valence band to another delocalized state in the conduction band. Electronic 

states in the band tails are considered to be localized states [36]. The band gap of 

amorphous silicon is larger than crystalline silicon. The band gap of amorphous 

silicon is 1.8 eV.  

 

Figure 3.5 : Schematic densities of states for (a) crystalline silicon and (b) 

hydrogenated amorphous silicon [36]. 

3.3.1.1. Staebler-Wronski Effect 

It is the light-induced degradation seen in amorphous silicon solar cells. Its name 

belongs to researchers Staebler and Wronski who observed this effect at first in 1977. 

They synthesized amorphous silicon via Glow Discharge and under prolonged 

illumination, they observed that dark conductivity and photoconductivity decreased 

significantly. These changes could be reversible by the help of annealing at elevated 

temperatures (>150 
°
C) and were attributed to a reversible increase in density of gap 

states acting as recombination centers for photoexcited carriers and leading to a shift 

of the dark Fermi level EF toward mid gap [23]. 

There are lots of models suggested for metastable illumination defect. The most 

acceptable one is recombination of photocarriers. It is a model that recombination of 

photocarriers break weak Si-Si bonds and metastable defects arise. In this model, 
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during recombination of photocarriers, non-radiative energy release accompanied 

and it is enough to break the bond. A hydrogen atom which is back-bonded to silicon 

prevents rebuilding of breaking bonds by bond switching. Staebler-Wronski Effect 

effects efficiency of solar cells produced using amorphous silicon significantly. 

3.3.2. Nanocrystalline Silicon 

Even though amorphous silicon has many advantages, it has some disadvantages that 

effect usage of amorphous silicon. These disadvantages are Staebler-Wronski effect 

and low efficiency. The advantages of nc-Si:H are stability against light-induced 

degradation and the extension of its spectral response to the near infrared light 

region. When amorphous silicon samples are annealed at proper temperature, 

nanocrystallized particles are obtained. 

Nanocrystallized silicon is formed of a mixed phase material which is composed of 

amorphous silicon matrix, nanocrystalline particles and voids. Deposition techniques 

and substrate material effect microstructure. Nanocrystalline silicon shows similar 

behaviour with amorphous silicon about optical properties. By comparison, nc-Si:H 

has lower absorption coefficient than a-Si:H at the region of short wavelength 

spectral region (>1.7 eV). But nc-Si:H can absorb energy from photon in the region 

between 1.1-1.7 eV where amorphous silicon shows reduced response. It can be said 

that this higher absorption effect is related with combined effect of amorphous 

silicon and nanocrystallized silicon. The absorption as a function of wavelength of 

nanocrystalline silicon compared with a-Si:H can be seen from Figure 3.6. 

As said before, deposition conditions and substrate material effect microstructure. 

The size and number of nanocrystalline particles effect properties of structure. Size 

and number of nanocrystals depend on level of hydrogen dilution during deposition. 

Grain sizes increase directly as the hydrogen dilution increases. Increasing hydrogen 

dilution beyond the amorphous to nanocrystalline transition results in large grain 

sizes with the associated voids and grain boundaries [25]. 

Structure of nc-Si:H is heterogeneous. It has nanocrystalline particles, amorphous 

component and voids. Randomly oriented crystallites are embedded in columns. Just 

like a-Si:H, nc-Si:H has defects which effect efficiency of solar cells significantly. 

Defects in nc-Si:H may exist in grain boundaries between crystallites, in amorphous 

matrix or at surface. 
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Figure 3.6 : The absorption as a function of wavelength of thin film nanocrystalline 

silicon compared to that of a-Si:H. The band gaps, Eg, of the two materials are shown 

[24]. 

The crystalline mass fraction (f) of nc-Si:H is an important issue for application of 

solar cell. This effects optical properties as well as electrical properties. Certain 

amount of increment of crystal mass fraction is favourable but extreme increase is 

not good for performance of solar cells.  With increasing of crystallinity, density of 

grain boundaries and voids increase too, which cause constituting of defect and 

deteriorate solar cell efficiency. Optimized proportion of crystallinity is above 50 % 

[26].  
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4.  MAGNETRON SPUTTERING 

It is a type of physical vapour deposition (PVD) technique that obtain thin films in 

nanometer range. Sputtering is a process whereby atoms are ejected from a solid 

target material due to bombardment of the target by energetic particles [27]. Particles 

used in surface bombardment are generally heavy noble gas. If gas is light, 

bombardment will not be effective. Argon is the most used gas in sputtering. 

Sputtering is not only used for deposition, but also for etching. But it is mostly used 

for sputtering. 

In general manner, sputtering happens when cathode surface is bombarded by high 

energy ions. During sputtering, particles leaving from surface or sputtered atoms are 

the atoms that have energy which vary between 1-10 eV and constitutes cathode. 

These high energy range is the most important property of magnetron sputtering. 

When energy range of magnetron sputtering is compared with the energy created by 

evaporation, it is much higher. Another reason to choose magnetron sputtering is that 

magnetron sputtering is a high vacuumed system. Because of that in this system very 

clean thin films can be obtained. It is important to acquire thin films without 

impurity. 

Another advantage of magnetron sputtering systems is that sputtering yield is higher 

than conventional sputtering systems. In conventional sputtering system, sputtering 

yield is increased by the help of increasing operating power. Because operating 

power increases, ion flow towards to target surface increases too and sputtering 

yields enhance. But in magnetron sputtering system, increasing of sputtering yield is 

provided by magnet which is located back of the target. It enables trapping of 

electrons, which come out during ionization, in magnetic field. By this means, ion 

density rises near the target and this increases the amount of Ar
+
 ions, so sputtering 

yields enhances considerably. 

In magnetron sputtering system, target material is placed on a holder which consists 

of water cooled magnet or electromagnet. While centreline of target constitutes one 
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pole of magnet, second pole is constituted from magnets which is placed edge of 

target shaped like circle. This way of design provides that magnetic field and electric 

field are orthogonal to each other. Magnetic fields can be designed shaped like 

circular or rectangular. Shape of magnetic field and motion path in circular shaped 

magnetic fields are shown in Figure 4.1. 

 

Figure 4.1 : Circular magnetic field [2]. 

In ExB which expresses motion path, E and B represent electric field and magnetic 

field, respectively. ExB motion path is parallel to target surface and constitutes 

closed circle. Thus, secondary electrons leaving from cathode via ion bombardment 

cause increasing of ionization and making plasma denser [2]. 

By the help of increasing of ionization effect, magnetic field which creates plasma at 

lower working pressure can be generated. With decreasing working pressure, 

because sputtered target atoms are less at gas phase, it is provided that number of 

particles reaching at substrate increases and so deposition rate increases too. 

Factors that effect deposition rate are target material, distance between target and 

substrate, power applied to target, area of target and working pressure. 
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5.  X-RAY PHOTOELECTRON SPECTROSCOPY 

Photoelectron Spectroscopy used for getting information about electronic structure is 

based on photoelectric effect. This method is based on the principal that 

photoelectrons, which are emitted from surface illuminated by monochromatic light 

source, are detected by the help of electron energy analyzer according to their kinetic 

energies. 

                                              Ek = hʋ - Eb – Φ                                        (Eq. 5.1) 

In this equation hʋ is “sending photon energy”, Φ is “working function”, Eb is 

“binding energy” and Ek is “kinetic energy which electron has at vacuum level”. 

Working function, Φ is the energy which is necessary for the electron to jump from 

Fermi level to vacuum level. Binding energy, Eb is the position of electron according 

to Fermi level. 

Photoelectron Spectroscopy is named differently, according to photon energy which 

is used. If photon energy is hʋ between 200 and 2000 eV, it is named as X-Ray 

Photoelectron Spectroscopy (XPS). If energy is between 10-60 eV, the method is 

named as Ultraviolet Photoelectron Spectroscopy (UPS). 

XPS, which is used for surface characterization research, is a spectroscopic analysis 

technique with high sensitivity based on electron-energy analysis. It is possible to 

obtain information about chemical composition and chemical states of surface 

component by the help of XPS. 

In XPS method, sample is settled in high vacuumed system and exposed to X-ray. As 

X-ray source, generally monochromatic Al-Kα-1486.6 eV or Mg-Kα-1253.6 eV are 

used. Incident X-rays stimulate electrons at core levels. Photoelectron energy emitted 

from core levels is a function of binding energy and photoelectron energy represents 

the element that they break from. 

The hole which is created by the stimulation of core electrons from incident X-ray is 

filled up by an incident electron existing at the outer shell or which comes from 
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valence band. Energy of this transition is balanced with emitting of characteristic X-

ray or Auger electron.  

Auger electrons and photoelectrons emitting from sample are detected by the help of 

electron energy analyzer. Thus, density spectrum of photoelectrons and Auger 

electrons are obtained as a function of kinetic energy. Owing to acquired spectrum 

elemental analysis, chemical stoichiometry and chemical bonds of the sample can be 

identified. 

In XPS technique, spectrums are saved by making two different surveys. These can 

be identified as the Survey Spectrum and the high resolution XPS spectrum. Survey 

Spectrum is carried out generally at energy ranges between (-5)-1100 eV for Mg-Kα 

and (-5)-1300 eV for Al- Kα depending on used X-ray source in steps of 1 eV. 

Because electron distribution of each element in core orbits is characteristic, a 

characteristic peak distribution can be acquired in XPS measurements. So, elemental 

composition (except hydrogen and helium, because they are so small) can be 

identified until 100 Å by the help of XPS graphics. 

High resolution XPS spectrum is made in steps of 0.1 eV to main core peaks of 

elements identified from extensive survey. Concentration of elements (chemical 

stoichiometry) identified from extensive survey is determined by fitting of high 

resolution spectra taken from main core peaks of elements. Area under main core 

peaks are measured by the fitting operation and it is divided by Atomic Sensitivity 

Factor (ASF) which takes characteristic values depending on the angle between 

analyzer and X-ray source for each element. Proportion of found values is measured 

and chemical stoichiometry is identified. 

Result of fit operation made for high resolution spectra, binding energies of 

peak/peaks located under main core peak and chemical bond/bonds in sample are 

identified. Slipping (comparing with binding energy of pure state) which takes place 

in binding energy may happen as a result of the atom making a chemical bond or its 

oxidization. 
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6.  EXPERIMENTAL STUDY 

Experimental section was studied at Nanotechnology Research Center in Gebze 

Institute of Technology. At this section Magnetron Sputtering was used for 

deposition and X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), 

Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were 

used for characterization. On the other hand, Raman Spectroscopy was used and 

these measurements were done in Sabancı University Nanotechnology Research and 

Application Center. 

Magnetron sputtering and XPS integrated system which were used during this study 

is shown in Figure 6.1. The integrated system which is composed of sample loading, 

magnetron sputtering and surface analysis chambers are seen in this figure. This 

system has high vacuum (<10
-10

 mbar) and connects with ion pump and 

turbomolecular pump. 

 

Figure 6.1 : Magnetron Sputtering and XPS integrated system. 
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6.1. Thin Film Deposition by Magnetron Sputtering 

6.1.1. Deposition of Amorphous Silicon by DC Power Supply 

It is the first part of the study. In this part, amorphous silicon was deposited with DC 

power supply and characterized. 

Deposition rate is a very important parameter for the process and it is determined by 

thickness calibration. For obtaining a reliable deposition rate, the thickness value 

which is obtained from QCM and the thickness value which is got from XPS must 

cohere with each other. If the value read from QCM is confirmed by the value read 

from XPS, QCM will continue to be used. 

In this work, (111) oriented native oxidized silicon substrate was used as substrate 

and because depositing material was silicon too, it was decided that it needs a buffer 

region between these. Titanium was decided to be the buffer, since titanium sticks 

silicon splendidly. Titanium was deposited on each sample before silicon deposition 

with 150 Å thickness. 

At first, deposition process was done in four series by using 1 Watt, 4 Watt, 10 Watt 

and 15 Watt power and argon flow rate was 2.7 sccm for each power value. After 

getting characterization results, observations were done at 1 Watt and at 15 Watt and 

at lowest-highest argon flow rates. Then, an extra deposition was done on glass 

substrate to confirm crystallinity. Since glass is amorphous, there is not any peak that 

overlaps on silicon peaks in XRD pattern. 

Depositions were carried out periodically and for every time intervals, XPS spectrum 

was taken separately. As a result of obtained XPS datas, deposition rates were 

calculated for each power value by using the formula which is shown under. 

                                                    I = Io.e 
–(d/λ)

                                         (Eq. 6.1) 

Deposition rates were calculated by this formula, but there was a huge difference 

between the values of QCM and XPS. This is because of plasma shape which was 

different from ordinary shape. Because the number of atoms which left from target 

and fell on substrate surface as a result of bombardment was more than the number 

of atoms which fell on QCM. 

After calculating deposition rate, all the samples were deposited until 300 Å 

thickness achieved. After these, for determining of homogeneity of coating XPS 
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spectrum analysis was carried out on surface of the samples with certain distance 

interval. So, it was identified that all coatings were homogenous. 

6.1.1.1. Deposition of Substrate with Titanium 

In the first step, calibration process which is needed for determining of deposition 

rate and deposition process were carried out together. The deposition rate is 

calculated as 0.0058 Å/s. Titanium deposition was made on native oxidized single 

crystalline silicon (Float Zone, (111)). For depositing titanium, substrate was located 

in the chamber which had ~2x10
-8

 mbar base pressure and sent under the titanium 

target. The distance between substrate and target was adjusted to 70 mm. Pulsed DC 

power source which was connected to the titanium target was adjusted to 5 V and 

argon flow rate was adjusted to 2.7 sccm. Temperature was 18 
o
C. All the samples 

were deposited with titanium 150 Å thick. These settings were the same for all the 

samples. After deposition procedure, XPS analysis was carried out. 

6.1.1.2. Deposition of Amorphous Silicon 

Samples which were deposited with titanium were entered the vacuumed chamber 

separately for depositing at 1 Watt, 4 Watt, 10 Watt and 15 Watt. Base pressure was 

~2x10
-8

 mbar. The distance between target and substrate was adjusted to 70 mm. 

Temperature was 18 
o
C. Samples were deposited at fixed time intervals and after all 

deposition procedure, XPS analysis was carried out for understanding whether 

substrate is deposited or not.  

Deposition rates were calculated by the help of XPS analysis. All parameters that 

used in deposition procedures and results are shown in Table 6.1. 

Table 6.1 Deposition conditions of films which were prepared with different power 

values. 

Power (Watt) Time (sec) Argon Flow Rate 

(sccm) 

Thickness (Å) 

1 600 2.7 12 

4 150 2.7 22.5 

10 60 2.7 23.4 

15 40 2.7 28 
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In the aspect of such informations, deposition rates were calculated for all samples 

by Eq. 6.1. The calculated values are shown in Table 6.2. 

Table 6.2 Calculated deposition rates for all samples. 

Power (Watt) Deposition Rate (Å/s) 

1 0.02 

4 0.15 

10 0.39 

15 0.706 

According to calculated values, it is clearly seen that while power increases, 

deposition rate increases. Because when power is increased, argon gases accelerate 

and they bombard the surface of target faster. So the number of atoms broken from 

target surface increase and substrate is deposited faster. 

After this calculation step, deposition was continued until reaching 300 Å thick for 

every sample. The times needed for reaching 300 Å thicknesses are shown in Table 

6.3.  

Table 6.3 Total time required for deposition. 

Power (Watt) Time (sec) 

1 15000 

4 2000 

10 769 

15 425 

After depositions, characterizations were done. In the view of such informations, it 

was decided that for lowest and highest power values used before, depositions were 

done at lowest and highest argon flow rates that plasma can be formed. Then 1 Watt 

and 15 Watt were chosen. The lowest argon flow rates were determined according to 
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the lowest values that plasma can be generated. The lowest and the highest power 

and argon flow rates are shown in Table 6.4. 

Table 6.4 The lowest and the highest power and argon flow rates. 

Power (Watt) The Lowest Argon Flow 

Rate (sccm) 

The Highest Argon Flow 

Rate (sccm) 

1 2 20 

15 0.8 20 

So the deposition rates were calculated and samples were deposited until thickness 

reached 300 Å. The deposition rates and total time required for obtaining 300 Å 

thicknesses are shown in Table 6.5. 

Table 6.5 Calculated deposition rates and deposition time for the lowest and the 

highest power and argon flow rate. 

 1 Watt-2 

sccm 

1 Watt-20 

sccm 

15 Watt-0.8 

sccm 

15 Watt-20 

sccm 

Deposition Rate 

(Å/s) 

0.02 0.009 0.49 0.26 

Deposition Time 

(sec) 

15000 33334 612 1154 

For the proof of amorphousity of thin films, deposition was done on lamellae glass 

substrate in similar cases. The parameters are shown in Table 6.6. 

Table 6.6 Deposition on glass. 

Substrate Power (W) Argon Flow Rate 

(sccm) 

Temperature (
o
C) 

Glass 15 2.7 18 

For comparison with silicon coated substrates, a single crystalline substrate was also 

deposited with titanium with 150 Å thickness. The deposition parameters are shown 

in Table 6.7. 
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Table 6.7 Parameters of deposition of titanium. 

Substrate Volt (V) Argon Flow Rate 

(sccm) 

Temperature 

Single crystalline 

silicon 

5 2.7 18 

6.1.2. Deposition of Amorphous Silicon by RF Power Supply 

At this section two targets were used. One of them is powder target and the other one 

is single crystalline silicon substrate. Both of them are connected to RF power 

supply. 

6.1.2.1. Depositions by Powder Target  

At first, depositions were done with powder target. Substrates were (111) oriented 

single crystalline silicon. Samples were deposited at 10 Watt and 15 Watt. In 

addition, a sample was deposited at 150 Watt to observe coating at higher power 

values. Like done in DC power, all samples were deposited with titanium before 

coating with silicon. The thickness of titanium thin film is 150 Å and silicon thin 

film thickness is 300 Å for every samples. Deposition rates for every power values 

were calculated. Because plasma of RF did not behave like DC plasma, deposition 

rate which was shown by QCM was compatible with the deposition rate calculated 

from XPS. Parameters are shown in Table 6.8. 

Table 6.8 Parameters of deposition of samples with powder target. 

Power (Watt) Argon Flow 

Rate (sccm) 

Deposition Rate 

(Å/s) 

Time (sec) Temperature 

(
o
C) 

10 2.7 0.046 6522 18 

15 2.7 0.096 3125 18 

150 2.7 3.7 81 18 

It can be understood from the calculation why the deposition rate of RF power is 

slower than DC power. 
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6.1.2.2. Depositions by Substrate Target 

After depositing substrates with powder target, single crystalline substrate was 

started to be used as target. Substrates were again (111) oriented single crystalline 

silicon. Samples were deposited at 10 Watt and 15 Watt. Again all samples were 

deposited with titanium before coating with silicon. The thickness of titanium thin 

film is 150 Å and silicon thin film thickness is 300 Å for every samples. Deposition 

rates for every power values were calculated. Parameters are shown in Table 6.9. 

Table 6.9 Parameters of deposition of samples with substrate target. 

Power (Watt) Argon Flow 

Rate (sccm) 

Deposition Rate 

(Å/s) 

Time (sec) Temperature 

(
o
C) 

10 2.7 0.029 10345 18 

15 2.7 0.055 5455 18 

150 2.7 2.6 115 18 

If a comparison is done, the deposition rate of substrate target is slower that powder 

target. It can be because of the structure of powder target that it was not sintered 

when it was prepared. So atoms are broken easily from surface of powder target. 

6.1.3. Formation of Nanocrystalline Silicon 

After deposition of amorphous silicon by different power sources and targets, 

nanocrystallization process was started. At that time, quartz was also used besides 

native oxidized single crystalline silicon substrate, because quartz is amorphous. So 

crystalline silicon peaks in Raman Spectroscopy analysis does not overlap. The 

second reason for using quartz is that it has high melting temperature.  

Depositions were done by RF power and with substrate target and powder target. At 

this time titanium was not used, because deposited silicon and titanium interact with 

each other with the effect of increasing temperature. All samples were deposited at 

15 Watt power and 2.7 sccm argon with 300 Å thickness. They were annealed at 800 

°C temperature for 1 hour. The parameters of this deposition are shown in Table 

6.10. 
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Quartz and silicon substrates were deposited simultaneously. Quartz substrates were 

deposited for Raman Spectroscopy characterization and single crystalline silicon 

substrates were deposited for XPS, X-Ray Diffraction and AFM characterizations of 

thin films. 

Table 6.10 Deposition parameters of annealed substrates. 

Substrate Power (Watt) Argon Flow 

Rate (sccm) 

Target Annealing 

Temperature 

(°C) 

Quartz&Silicon 15 2.7 Powder Silicon 800 

Quartz&Silicon 15 2.7 Substrate 

Silicon 

800 

6.2. Characterization of Thin Films 

6.2.1. X-Ray Photoelectron Spectroscopy (XPS) Analysis 

Surface analysis of samples was made at vacuum room of system as seen in Fig. 6.2. 

For identifying elemental analysis, chemical stoichiometry and bonds of samples 

prepared by Magnetron Sputtering, XPS analysis was made. Main components in 

XPS are shown in Fig 6.2. The appearance of sample in XPS chamber is shown in 

Fig. 6.3. 

 

Fig. 6.2. The main components of XPS. 
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Fig. 6.3. The appearance of sample in XPS analysis chamber. 

During the study, as X-Ray source Al Kα (15 kV, 20 mA) with 300 W is used. 

Kinetic energies of photoelectrons emitted from film surface was analysed by an 

electron energy analyzer, SPECS GmbH PHOIBOS 150. XPS spectrums were 

carried out in two ways which are survey spectrum and extensive survey.  

6.2.2. Raman Spectroscopy Analysis 

For finding out of crystallinity or amorphousity of thin films, Raman Spectroscopy 

characterization was made. The characterizations were done at Sabancı University 

Nanotechnology Research and Application Center. The Raman spectra was obtained 

using Renishaw inVia Reflex Microscope and Spectrometer equipped with an Ar+ 

laser beam (532 nm) excitation. 

6.2.3. X-Ray Diffraction (XRD) Analysis 

In order to investigate structural features, phase analysis and obtain particle size, 

XRD analysis was carried out. This also gives information orientation. For this study, 

XRD measurements were carried out at Gebze Institute of Technology, 

Nanotechnology Research Center, Nanomagnetism and Spintronic Laboratory. 

Rigaku Smartlab XRD was used. Cu-Kα characteristic radiation (λ=0.154 nm) was 

used. The angle of incidence was fixed to 0.01 deg and the detector moved with a 

constant step of 0.01 degree from 3 to 80 degree on the 2ϑ scale. 
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6.2.4. Atomic Force Microscopy (AFM) Analysis 

Atomic Force Microscopy (AFM) is a high resolution surface scanning microscopy 

is used to investigate the morphology of surfaces. The system consists of a cantilever 

to which a point probe or scanning tip is attached. For this study, Digital Instrument 

Veeco Nanoscope IV AFM device, which is at Gebze Institute of Technology, 

Material Science and Engineering, was used in contact mode for measurements. 

Datas were obtained from scanning of 2μmx2μm, 5μm x 5μm and 10μmx10μm area 

by using Si3N4 tip. 

6.2.5. Scanning Electron Microscopy (SEM) Analysis 

Scanning Electron Microscopy (SEM) is a high resolution microscopy that used to 

analyse microstructure of samples. For this study, Philips XL30 SFEG Scanning 

Electron Microscopy, which is at Gebze Institute of Technology, Material Science 

and Engineering, was used. In this study images from surface could not be taken, 

because the resolution of device is inadequate for the thickness of thin films which 

were 300 Å. But for lateral observation of thin film, cross-sectional images were 

taken. For this purpose, two samples from each power supply were broken into two 

pieces by the help of diamond pencil and they sticked to a holder. 
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7.  RESULTS 

7.1. X-Ray Photoelectron Spectroscopy 

XPS characterizations were done for all samples after depositions. The impurities in 

thin films were observed in some cases and the proportion of them in thin films was 

calculated by CASA XPS programme.  

At first, substrate which is wanted to be used was characterized by XPS for 

comparison. After that, because every samples were deposited by titanium before 

deposition of silicon, titanium deposited samples were characterized by XPS. These 

XPS images are shown in Figure 7.1 and Figure 7.2. 

 

Figure 7.1 : XPS spectrum of native oxidized (111) oriented single crystalline 

silicon substrate. 
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As seen from Figure 7.1, silicon, carbon, oxygen and their Auger peaks are found in 

XPS spectrum of native oxidized single crystalline silicon. Carbon and oxygen are 

contaminations which are because of keeping substrates in environment, when they 

were not used. The chemical proportion of native oxidized single crystalline silicon 

substrate is shown in Table 7.1. 

Table 7.1 Chemical proportion of native oxidized single crystalline silicon substrate. 

Substrate Silicon (%) Oxygen (%) Carbon (%) 

Silicon 53.4 26.7 19.9 

From Figure 7.2, titanium deposited silicon surface has titanium and oxygen. The 

reason of being oxygen at surface is due to oxidation of titanium easily. Even if there 

is small amount of oxygen in environment, titanium pulls toward oxygen itself. The 

oxygen content in thin film is 14.3 %. 

 

Figure 7.2 : XPS spectrum of titanium deposited silicon substrate. 
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7.1.1. Deposition of Thin Films by DC Power 

7.1.1.1. Study of 1 Watt, 4 Watt, 10 Watt and 15 Watt 

As seen from Figure 7.3, it can be only seen silicon and its Auger peaks in high 

resolution XPS spectrum of silicon films. Before silicon deposition, titanium 

deposition was done on silicon substrate. Titanium peaks do not appear in this 

spectrum. Thus, it can be said that silicon films were formed for all power ranges.  

By looking Figure 7.3, it can be said that all the films have not any impurity such as 

oxygen.  

 

Figure 7.3 : XPS spectrum of samples deposited at 1 W, 4 W, 10 W and 15 W. 

7.1.1.2. Study of The Lowest - The Highest Power and Argon Flow Rate 

After applying several ranges of power, it was decided that at the lowest and the 

highest power, which were applied before, the minimum and the maximum argon 

flow rate were determined. The applied lowest and highest powers were 1 Watt and 

15 Watt. In the aspect of such informations, the minimum and the maximum argon 
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flow rates which can form plasma were determined for 1 Watt and 15 Watt. These 

are 2 sccm and 20 sccm for 1 Watt, 0.8 sccm and 20 sccm for 15 Watt. By the result 

of these studies, spectrums obtained from XPS are shown in Figure 7.4. 

 

Figure 7.4 : XPS spectrum of silicon deposited sample at 1 Watt & 15 Watt and with 

lowest and highest argon flow rates. 

As seen from Figure 7.4, silicon deposition was done, but oxygen content is observed 

in all films. The oxygen existence is because of argon line that its filter is out of date. 

If the calculations are investigated carefully, it can be understood that when argon 

flow rate increases, oxygen content increases too. The content of oxygen in all films 

is shown in Table 7.2. 

Table 7.2 The chemical proportion of silicon thin films. 

Content 1 Watt-2 

sccm 

1 Watt-20 sccm 15 Watt-0.8 

sccm 

15 Watt-20 sccm 

Silicon (%) 97.3 92.5 97.6 93.8 

Oxygen (%) 2.7 7.5 2.4 6.2 
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7.1.2. Deposition of Thin Films by RF Power 

7.1.2.1. Deposition of Thin Films by Powder Target 

The XPS results of the depositions done with RF power are shown in Figure 7.5. 

 

Figure 7.5 : XPS spectrum of silicon deposited sample at 10Watt, 15 Watt, 150 Watt 

and 2.7 argon flow rate. 

As seen from Fig. 7.5, silicon films were obtained. But there can be seen argon main 

peaks resided in 242 eV. The argon content can be because of RF power. In as much 

as it was not seen in DC power. The argon content in all films is calculated and it is 

shown in Table 7.3. 

Table 7.3 Argon content in silicon thin films. 

Power – Argon Flow Rate Argon (%) Silicon (%) 

10 Watt-2.7 sccm 4.21 95.79 

15 Watt-2.7 sccm 5.24 94.76 

150 Watt-2.7 sccm 4.46 95.54 
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7.1.2.2. Deposition of Thin Films by Substrate Target 

As seen from Figure 7.6, silicon films were obtained. But there can be seen argon 

main peaks resided in 242 eV. The argon content can be because of RF power. On 

the other hand, oxygen which is not seen in samples deposited by powder target is 

found in thin films. 

 

Figure 7.6 : XPS spectrum of silicon deposited sample at 10 Watt, 15 Watt, 150 

Watt and 2.7 sccm argon flow rate. 

It can be seen from Table 7.4 that when power increases, argon content increases too. 

It is understood that increase of argon content is related to RF power. Since argon is 

not seen in samples deposited by DC power. 

Table 7.4 Argon and oxygen content of silicon thin films. 

Watt - sccm Argon (%) Oxygen (%) Silicon (%) 

10 Watt-2.7 sccm 3.53 1.50 94.97 

15 Watt-2.7 sccm 4.44 1.94 93.62 

150 Watt-2.7 sccm 5.61 1.62 92.70 
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7.1.3. Annealed Samples 

XPS spectrum of samples which were annealed at 800 °C for an hour is shown in 

Figure 7.7. 

 

Figure 7.7 : XPS spectrum of annealed samples deposited by powder and substrate 

target. 

As seen from figure, there is small amount of oxygen in thin films. The proportion of 

oxygen in silicon thin films is shown in Table 7.5. 

Table 7.5 The oxygen content in silicon thin films. 

Target Oxygen (%) Silicon (%) 

Powder 2.45 97.55 

Substrate 2.77 97.23 

As seen from Table 7.5, oxygen content is higher in sample deposited by powder 

target than sample deposited by substrate target. 
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7.2. Raman Spectroscopy 

Three samples were characterized by Raman Spectroscopy. One of them was 

deposited by silicon substrate target at 15 Watt and 2.7 sccm with 300 Å. The 

substrate was native oxidized single crystalline silicon. The Raman spectrum of 

native oxidized silicon substrate is shown in Figure 7.8.  
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Figure 7.8 : The Raman spectra of native oxidized silicon substrate. 

The substrate temperature was 18°C during deposition. Titanium was deposited on 

silicon substrate with 150 Å thickness before silicon deposition. The Raman 

spectrum of this sample is shown in Figure 7.9. As seen from this figure, there are 

two peaks which are resided in 470 cm
-1

 and 520 cm
-1

. A broad band centred at ~470 

cm
-1 

is the typical peak of amorphous silicon and this observation can be related to 

existence of amorphous silicon in the film [32]. A band peaked at 520 cm
-1

, which is 

the characteristic of crystalline silicon, belongs to single crystalline substrate [32, 

10].  
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Figure 7.9 : The Raman spectra of the sample deposited by substrate target at 15 

Watt and 2.7 sccm argon flow rate. 

The other two are annealed samples. Substrates which were used at this time are 

quartz. This is because it is not desired that any peak comes from substrate. The 

Raman spectrum of quartz substrate is shown in Figure 7.10.  
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Figure 7.10 : The Raman spectra of quartz substrate. 
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As seen from Figure 7.10, broad peaks are seen in 440 cm
-1

 and 800 cm
-1

 which are 

attributed to SiO2 bonds [34]. And a peak at 488 cm
-1

 belongs to amorphous silicon. 

The maximum position of the narrow line corresponds to D1 line and D2 line resided 

in 605 cm
-1

 reported in the literature [34, 35]. These lines are assigned to defects in 

the structure of bulk silica. 

One of the quartz samples was deposited by powder target and the other one was 

deposited by substrate target and each of them was deposited at 15 Watt and 2.7 

sccm argon flow rate with 300 Å thickness. Then each of them annealed at 800 °C 

for 1 hour. They were not deposited with titanium, because high temperature was 

applied to the samples and at that time titanium and silicon interact with each other. 

The Raman spectra of annealed samples are shown in Figure 7.11. 
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 Figure 7.11 : The Raman spectra of the annealed samples deposited by a) powder 

target b)  substrate target at 15 Watt and 2.7 sccm argon flow rate. 

As seen from Figure 7.11, bands peaked at 517 cm
-1

 and 519 cm
-1

 which are 

attributed to the formation of crystalline silicon are observed. In fact, the crystalline 

silicon peak is observed at 520 cm
-1

, but depending of annealing temperatures and a 
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slight shift of the 520 cm
-1

 peak towards lower wavenumbers is observed and it is 

ascribed to crystalline size and/or stress effects in thin films [10, 32, 33]. 

7.3. Atomic Force Microscopy (AFM) 

Before presenting the images which belong to deposited samples, single crystalline 

silicon substrate and titanium deposited silicon substrate are shown in Figure 7.12. 

 

Figure 7.12 : The 10μmx10μm AFM images of samples a) native oxidized single 

crystalline silicon, b) titanium deposited silicon. 

The images shown above represent the single crystalline silicon and titanium 

deposited silicon which are seen on the Figure 7.12.a and Figure 7.12.b, respectively. 

In the image belongs to single crystalline silicon, there is some conglomeration 

which are on the top right and down right of the image that is thought to be oxidized 

regions of substrate. This can be because silicon was kept in environment, while 

substrate was not used. 

The root mean square (rms) values for single crystalline silicon and titanium 

deposited silicon substrate are 0.215 nm and 0.693 nm, respectively. Their lateral 

displays are shown in Figure 7.13 and Figure 7.14. 

a) b) 
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Figure 7.13 : The 10μmx10μm lateral AFM image of native oxidized single 

crystalline silicon substrate. 

 

Figure 7.14 : The 10μmx10μm lateral AFM image of titanium deposited silicon 

substrate. 
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7.3.1. Deposition by DC Power Supply 

7.3.1.1. Study of 1 Watt, 4 Watt, 10 Watt and 15 Watt 

Figure 7.15 represents the AFM images of the a-Si:H thin films, which shows a root-

mean-square (rms) surface roughness in the range of 0.655-2.082 nm. The surface 

roughness was measured by atomic force microscopy (AFM) (Digital Instruments 

Veeco Nanoscope IV system). Contact mode was used in this AFM analysis and it 

was only made on samples prepared at different power values. The images of 

depositions at 1 Watt, 4 Watt, 10 Watt and 15 Watt are shown in Figure 7.15. 

 

 

Figure 7.15 : The 10μmx10μm AFM images of the samples a) 1 Watt, b) 4 Watt, c) 

10 Watt and d)15 Watt. 

From the AFM images obtained, it is obviously seen that the shape of the grains on 

the surfaces is spherical. It is thought that these spherical grains are coming from 

target which is formed of silicon powder. This can be because the silicon powder 

a) b) 

c) d) 
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target is not sintered, only pressed. For surely understanding this effect, “Study of the 

lowest- the highest power and argon flow rate” was done.  

On the other hand, it can be seen from images that while power increases, size of 

particles broken from target increases too. The particles are arranged in an order in 

all films, in other words it can be said that films are homogeneous. As at lower 

power values films are smoother, higher power values films become rougher. 

Frankly speaking, while at 1 Watt the rms is 0.655 nm, at 4 Watt and 10 Watt the rms 

are 0.552 nm and 0.663 nm, respectively. At 15 Watt, the rms is 2.082 nm. In other 

words, it can be said that if power increases, film becomes rougher. 

After this study, for understanding of behavior of the particles present on the films, it 

was decided that the minimum and the maximum argon flow rates were determined 

according to the maximum and the minimum power. By virtue of this study, it can be 

understood how the particles form. 

7.3.1.2. Study of The Lowest - The Highest Power and Argon Flow Rate 

During this part of the thesis at first 1 Watt and 15 Watt, which are the lowest and 

highest power used before, were chosen. The maximum argon flow rate giving to the 

system is 20 sccm. Then the minimum argon flow rates which can form plasma were 

determined. The minimum argon flow rates are 0.8 sccm for 15 Watt and 2 sccm for 

1 Watt. Images for 1 Watt are shown in Figure 7.16. 

 

Figure 7.16 : 10μmx10μm AFM images of the samples a) 1 Watt and 2 sccm, b) 1 

Watt and 20 sccm. 

(a) (b) 
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The images shown in Figure 7.16 demonstrate the films that 1 Watt and 2 sccm on 

the left and 1 Watt and 20 sccm on the right. It can be inferred from these images that 

while argon flow rate increases, the size of particles broken from target increases too. 

The rms value of 2 sccm is 0.727 nm and the rms value of 20 sccm is 1.783 nm. In 

other words, while argon flow rate increases, film becomes rougher. This is because 

target is powder and it is not sintered. It is just pressed. So particles tend to leave 

easily from target surface, when particles with high energy crash to it. When argon 

flow rate increases, mean free path of argon particles decreases and collisions 

increase. So particles reaching to substrate increase, too. The lateral images of 1 Watt 

are shown in Figure 7.17 and Figure 7.18. 

 

Figure 7.17 : The 10μmx10μm lateral AFM images of the sample deposited at 1 

Watt and 2 sccm argon flow rate. 
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Figure 7.18 : The 10μmx10μm lateral AFM images of the sample deposited at 1 

Watt and 20 sccm argon flow rate. 

The images of 15 Watt-0.8 sccm and 15 Watt 20 sccm are shown in Figure 7.19. 

 

Figure 7.19 : The 2μmx2μm AFM images of the samples a) 15 Watt and 0.8 sccm, 

b) 15 Watt and 20 sccm argon flow rate. 

In Figure 7.19, it is demonstrated that the films deposited at 15 Watt-0.8 sccm which 

is on the left and 15 Watt-2 sccm which is on the right. It can be inferred from 

images that, while argon flow rate increases, the film becomes rougher. The rms 

value of 0.8 sccm is 0.318 nm and the rms value of 20 sccm is 2.039 nm. The lateral 

images of this set are shown in Figure 7.20 and Figure 7.21. 

a) b) 
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Figure 7.20 : The 10μmx10μm lateral AFM image of sample deposited at 15 Watt 

and 0.8 sccm argon flow rate. 

 

Figure 7.21 : The 10μmx10μm lateral AFM image of sample deposited at 15 Watt 

and 20 sccm argon flow rate. 
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As seen from Figure 7.21, the surface of 15 W-0.8 sccm is very smooth. On the other 

hand, the surface of 15 Watt-20 sccm is rougher.  

From all these depositions, it can be said that the cleanest surface is obtained from 15 

Watt-0.8 sccm argon flow rate. The dirtiest surface is 15 Watt-20 sccm which is 

understood from rms values. 

In the light of these informations, it is thought that when annealing process starts, the 

particles on the surface arise from powder target can be turned into an advantage. 

The fallen particles can be crystallized easily by the help of increasing temperature. 

It will be shown in further studies. 

7.3.2. Deposition by RF Power Supply 

7.3.2.1. Deposition by Powder Silicon Target 

  

 

Figure 7.22 : The 10μmx10μm AFM images of samples a) 10 Watt and 2.7 sccm, b) 

15 Watt and 2.7 sccm, c) 150 Watt and 2.7 sccm. 

b) a) 

c) 
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It can be understood from Figure 7.22 that while power increases, rms value increase 

too. The rms values of 10 Watt, 15 Watt and 150 Watt are 0.240 nm, 0.291 nm and 

0.396 nm, respectively.  

The lateral images of this set are shown in Figure 7.23, Figure 7.24 and Figure 7.25. 

 

Figure 7.23 : The 2μmx2μm lateral AFM image of sample deposited at 10 Watt and 

2.7 sccm argon flow rate. 
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Figure 7.24 : The 2μmx2μm lateral AFM image of sample deposited at 15 Watt and 

2.7 sccm argon flow rate. 

 

Figure 7.25 : The 2μmx2μm lateral AFM image of sample deposited at 150 Watt 

and 2.7 sccm argon flow rate. 
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7.3.2.2. Deposition by Substrate Target 

The AFM images of samples deposited by substrate target are shown in Figure 7.26. 

 

 

Figure 7.26 : The 5μmx5μm AFM image of sample deposited at  a) 10 Watt and 2.7 

argon flow rate b) 15 Watt and 2.7 sccm argon flow rate c) 150 Watt and 2.7 sccm 

argon flow rate. 

It can be seen from this image that when power increases, roughness increases too. 

The rms values of 10 Watt, 15 Watt and 150 Watt are 0.250 nm, 0.345 nm and 3.057 

nm, respectively. 

If a comparison between powder target and substrate target is made, it can be said 

that deposition with powder target is faster than substrate target. It can be because 

a) b) 

c) 
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powder target is not sintered. By this means, particles are broken easily and 

deposition rate increases.  

The lateral images of this set are shown in Figure 7.27, Figure 7.28 and Figure 7.29. 

 

Figure 7.27 : The 5μmx5μm lateral AFM image of sample deposited at 10 Watt and 

2.7 sccm argon flow rate. 

 

Figure 7.28 : The 5μmx5μm lateral AFM image of sample deposited at 15 Watt and 

2.7 sccm argon flow rate. 
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Figure 7.29 : The 5μmx5μm lateral AFM image of sample deposited at 150 Watt 

and 2.7 sccm argon flow rate. 

7.3.3. The Annealed Samples 

The AFM images of annealed samples are ahown in Figure 7.30. 

 

Figure 7.30 : The 10μmx10μm AFM image of sample deposited by a) substrate 

target b) powder target. 

By looking Figure 7.30, it can be said that nanocrystalline silicon particles are 

obtained. The darker field in image is attributed to the amorphous silicon matrix, 

a) b) 
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while the brighter spherical particles correspond to the crystalline silicon [30]. 

Spherical nanocrystalline particles were formed by the effect of increasing 

temperature. Rms roughness of samples is 13.540 nm for substrate target and 10.803 

nm for powder target. In the light of these results, it can be said that rms roughness of 

sample deposited by substrate target is higher than that of powder target. On the 

other hand, it can be seen from figures that the number of particles formed by 

powder target is more than the number of particles formed by substrate target. If it is 

remembered that the AFM images of previous samples which were not annealed, the 

number of particles fell on samples deposited by powder target are higher than that 

of substrate target. This is because of particles which are easily broken from powder 

target. The reason of breaking easily is that powder target was not sintered. Even 

though at first sight the breakage of particles from target easily is a disadvantage 

because of increasing of dirtiness of thin films, it is turned to an advantage in 

annealing process. 

The lateral images of annealed samples are shown in Figure 7.31 and Figure 7.32. 

 

Figure 7.31 : The 10μmx10μm AFM image of sample deposited by substrate target. 
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Figure 7.32 : The 10μmx10μm lateral AFM image of sample deposited by powder 

target. 

7.4. X-Ray Diffraction (XRD) 

X-Ray Diffraction was carried out on the samples which were deposited at 1 Watt, 4 

Watt, 10 Watt and 15 Watt on native oxidized silicon substrate. Firstly, native 

oxidized single crystalline silicon substrate was characterized and then deposited 

samples were characterized. An additional deposition on glass with the same 

parameters was also done for confirmation of amorphism. According to the analysis, 

formation of amorphous silicon was confirmed. The XRD spectrum of native 

oxidized single crystalline silicon (111) substrate is shown in Figure 7.33. 
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Figure 7.33 : The X-Ray Diffraction pattern of native oxidized silicon substrate. 

As seen from Figure 7.33, native oxidized silicon substrate has a strong (111) 

orientation that it is the finger prints of silicon and it is observed at 2ϑ~28°. In 

addition, it has silicon dioxide (SiO2) peak that observed at 2ϑ~25°. This is because 

silicon was not kept in a vacuumed environment. The other peak that observed in the 

spectrum is attributed to silicon (101) orientation and it exists at 2ϑ~58.6°.Since all 

of the films were deposited with titanium, which had 150 Å thickness, before silicon 

deposition, a titanium deposited silicon substrate was also characterized by XRD. It 

is shown in Figure 7.34. 
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Figure 7.34 : The X-Ray Diffraction patterns of titanium deposited silicon substrate. 

In Figure 7.34, there are the same peaks as seen from native oxidized silicon 

substrate except one peak which is resided at 2ϑ~38°. This peak belongs to anatase 

titanium dioxide. 

7.4.1. Deposition of Thin Films by DC Power 

7.4.1.1. Study of 1 Watt, 4 Watt, 10 Watt and 15 Watt 

The samples were deposited in the same conditions except power value. They were 

deposited at 1 Watt, 4 Watt, 10 Watt and 15 Watt. The argon flow rate is 2.7 sccm 

for all samples. XRD patterns of these samples are shown in Figure 7.35, Figure 

7.36, Figure 7.37 and Figure 7.38. The spectra that taken from all samples have the 

same peaks that attributed to silicon dioxide (2ϑ~14, 2ϑ~26°), silicon (111) (2ϑ~28°), 

titanium dioxide (2ϑ~38.5°) and silicon (101) (2ϑ~58.6°). The peak observed at 

2ϑ~38.5° which is attributed to titanium dioxide formation is because of the 

depositon of titanium before silicon deposition. The reason of oxidation is due to 

tendency of titanium which is oxidized easily. On the other hand, it can be said that 

the deposited silicon thin films are amorphous, because it is not seen any peak that 

different from XRD peaks of single crystalline silicon substrate. In addition, this can 

be also understood from hump which is seen at low angles. 
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Figure 7.35 : The X-Ray diffraction patterns of silicon deposited substrate at 1 W.   

0 10 20 30 40 50 60 70 80

0,0000

0,0005

0,0010

0,0015

0,8

1,0

S
i 
(1

0
1

)

T
iO

2

S
i 
(1

1
1

)

S
iO

2

In
te

n
s
it
y

2Theta

Figure 7.36 : The X-Ray diffraction pattern of silicon deposited substrate at 4 W. 
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Figure 7.37 : The X-Ray Diffraction patterns of silicon deposited substrate at 10 W. 
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Figure 7.38 : The X-Ray diffraction pattern of silicon deposited substrate at 15 W. 
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As seen from all figures shown above, it can be said that SiO2 decreases when power 

is increased. While the intensity of SiO2 is 0.0023 for 1 Watt, the intensity of SiO2 is 

0.0017 for 15 Watt. On the other hand, the intensity of Si (101) increases when 

power increases. While the intensity of Si (101) is 0.0011 for 1 Watt, the intensity of 

Si (101) increases to 0.0015 for 15 Watt. The rise in intensity can be because of the 

increasing of roughness with increasing power. When roughness increases, scattering 

increases too and intensity rises. In addition, intensity of TiO2 decreases with 

increasing of power.  

The amorphousity can be also understood from the XRD pattern which belongs to 

silicon deposition of glass which is shown in Figure 7.39. There is not an apparent 

peak that belongs to any phase. So, it can be said that all the films are amorphous. 
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 Figure 7.39 : The X-Ray diffraction pattern of silicon deposited glass substrate. 

7.4.1.2. Study of The Lowest – The Highest Power and Argon Flow Rate 

After 1 W, 4 W, 10 W and 15 W, in the light of result of previous study it was 

decided that samples were deposited at 1 and 15 W with the lowest and the highest 

argon flow rate for each power. The XRD patterns of this set are shown in Figure 

7.40, Figure 7.41, Figure 7.42 and Figure 7.43. 
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 Figure 7.40 : The X-Ray diffraction pattern of silicon deposited sample at 1 Watt 

and 2 sccm argon flow rate. 
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 Figure 7.41 : The X-Ray diffraction pattern of silicon deposited sample at 1 Watt 

and 20 sccm argon flow rate. 
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 Figure 7.42 : The X-Ray diffraction pattern of silicon deposited sample at 15 Watt 

and 0.8 sccm argon flow rate. 

It can be said for all films obtained from these studies that all films demonstrate the 

same peaks as obtained previous study. So it can be said that all films are amorphous.  

For 1 Watt-2 sccm and 1 Watt-20 sccm argon flow rate, it can be said that the 

intensity of SiO2 decreases with increasing argon flow rates. While the intensity of 

SiO2 is 0.0033 for 2 sccm, the intensity decreases to 0.0026 for 20 sccm. On the 

other hand, intensity of Si (101) increases with increasing argon flow rate. Intensity 

of Si (101) is 8.6x10
-4

 for 2 sccm, but the intensity increases to 12x10
-4

 for 20 sccm. 

Intensity of TiO2 decreases with increasing of argon flow rate. 

For 15 Watt-0.8 sccm and 15 Watt-20 sccm argon flow rate, intensity of SiO2 

increases with argon flow rate. The intensity was 0.0012 for 0.8 sccm, but it 

increases to 0.0014 for 20 sccm. The intensity of Si (101) increases with increasing 

argon flow rate. The intensity is 0.0016 for 0.8 sccm, it increases to 0.0019 for 20 

sccm. On the other hand, the intensity of TiO2 also decreases with increasing argon 

flow rate. 
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Figure 7.43 : The X-Ray diffraction patterns of silicon deposited sample at 15 Watt 

and 20 sccm argon flow rate. 

7.4.2. Deposition of Thin Films by RF Power 

7.4.2.1. Deposition by Powder Target 

At first, powder target was used. Samples were deposited at 10 Watt, 15 Watt and 

150 Watt with constant argon flow rate which is 2.7 sccm. XRD results are shown in 

Figure 7.44, Figure 7.45 and Figure 7.46. 

It can be understood from figures, all the peaks obtained from this study is same as 

previous studies. Silicon dioxide (2ϑ~26°), silicon (111) (2ϑ~28°), titanium dioxide 

(2ϑ~38.5°) and silicon (101) (2ϑ~58.6°) can be seen from figures. 
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Figure 7.44 : The X-Ray diffraction pattern of silicon deposited sample at 10 Watt 

and 2.7 sccm argon flow rate. 
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Figure 7.45 : X-Ray diffraction pattern of silicon deposited sample at 15 Watt and 

2.7 sccm argon flow rate. 
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Figure 7.46 : X-Ray diffraction pattern of silicon deposited sample at 150 Watt and 

2.7 sccm argon flow rate. 

7.4.2.2. Deposition by Substrate Target 

After deposition by powder target, deposition by substrate target was started. 

Samples were deposited at 10 Watt, 15 Watt and 150 Watt with constant argon flow 

rate which is 2.7 sccm. XRD results are shown in Figure 7.47, Figure 7.48 and 

Figure 7.49. 

As seen from figures, everything is the same as previous results for deposition at 10 

Watt and 15 Watt. But on the other hand, at 150 Watt Si (101) peak resided in 

2ϑ~58º is not seen. It can be because of the thin film thickness. Deposition rate is 

very high at 150 Watt and silicon could be deposited thicker than done in previous 

studies. It can be understood from intensity of SiO2 which is at 2ϑ~25º. Intensity of 

SiO2 decreased. 
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Figure 7.47 : The X-Ray diffraction pattern of silicon deposited sample at 10 Watt 

and 2.7 sccm argon flow rate. 
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Figure 7.48 : The X-Ray diffraction pattern of silicon deposited sample at 15 Watt 

and 2.7 sccm argon flow rate. 
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Figure 7.49 : The X-Ray diffraction pattern of silicon deposited sample at 150 Watt 

and 2.7 argon flow rate. 

7.4.3. Annealed Samples 

After amorphous silicon deposition was finished, annealing of deposited samples for 

nanocrystallization was started. Silicon deposition was done on native oxidized 

silicon substrate. XRD result is shown in Figure 7.50. 

As seen from Figure 7.50, there are more peaks seen in annealed samples than not 

annealed samples. Addition to the peaks seen in not annealed samples, there are lots 

of additional peaks that observed. Silicon dioxide crystals are mostly formed. They 

are seen at 2ϑ~14º, 2ϑ~20º, 2ϑ~34º, 2ϑ~39º, 2ϑ~45º, 2ϑ~50º, 2ϑ~53º and 2ϑ~73º. On 

the other hand, there are several peaks that belong to silicon crystals. Si (100) is seen 

at 2ϑ~42º and Si (220) can be seen at 2ϑ~47º. So it can be said that nanocrystalline 

silicon particles are obtained. 
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Figure 7.50 : X-Ray Diffraction patterns of sample deposited by powder silicon 

target and annealed at 800 °C for 1 hour. 

7.5. Scanning Electron Microscopy (SEM) 

For this system,  two samples were chosen from each set and they were broken into 

two pieces by the help of a diamond pencil. Then, the broken pieces were located to 

a holder and images were taken from broken parts of the samples. The images can be 

seen from Figure 7.51 and Figure 7.52. 

 

Figure 7.51 : The SEM image of sample which was deposited by DC power, 4 Watt-

2.7 sccm. 
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As seen from Figure 7.51 and Figure 7.52 that deposition occured which is 

understood from color difference. The thickness of coating is 40.9 nm. In fact, the 

thickness of coating would have been 45 nm, because 15 nm titanium and 30 nm 

silicon were deposited on the samples. And for the sample is shown in Figure 7.52, 

the thickness of thin film is 43.7 nm which is close to desired thickness. It can be 

because of the uniformity of plasma in RF power, while in DC it is not . 

 

Figure 7.52 : The SEM image of sample which was deposited by RF power and 

powder target, 150 Watt-2.7 sccm. 
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8.  DISCUSSION 

In this study, the growth and characterization of nanocrystalline silicon thin films are 

concentrated. The main idea is to make feasibility of magnetron sputtering towards 

photovoltaic applications such as nc-Si:H single junction and multi-junctions with 

poly or single silicon photovoltaic cells. The hydrogenated nanocrystalline silicon 

(nc-Si:H) films are subjected only in solar cell applications, they also find wide 

applications in optoelectronic devices such as flat panel displays, image sensors and 

printer heads. However, as well known they have complex morphology consisting of 

a multilayered structure along the growth direction. In this structure, there are small 

crystalline in an a-Si:H matrix. Of course, this structure is strictly related to growth 

mechanism and techniques since during growth process, there is possibility to make 

disordered partial tissues and/or clustered between the different silicon phases 

instead of well defined and embedded crystallites particles called quantum dots in 

amorphous silicon environment. Other then techniques, the RF Magnetron Sputtering 

(RFMS) deposition technique has been used less to synthesis nc-Si:H, but it is 

proven as a well applicable technique for many industrial areas and as laboratory for 

basic science researches such as growth of magnetic thin films materials and 

catalysis surfaces successfully.  In this study, the pure amorphous silicon films and 

amorphous silicon films having embedded crystallites were growth on quartz and 

naturally oxidized single crystal Si (111) substrates successfully by using Magnetron 

Sputtering. DC magnetron sputtering technique was also used to grow amorphous 

silicon films, but it was success limited unlike RF Magnetron Sputtering did.  

Especially, the power and argon plasma dilution effect distribution and size of 

crystallites. Less power introduces well defined small size “nanocrystal” in 

amorphous matrix.  AFM pictures show silicon crystallites among amorphous 

environment with well size distributions. Also, Raman spectroscopy investigations 

prove the formation of only amorphous films and existence of silicon crystallites in 

amorphous films. By supporting literature support, the annealing temperature of 800 

o
C is successful to make distribution of nanocrystals in amorphous films from pure 

http://tureng.com/search/feasibility
http://tureng.com/search/quartz
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amorphous phase. Although XRD was used to investigate of nano crystallites 

formations, the number of crystallites formation was not enough for good 

investigations. Under these observations, RF Magnetron Sputtering technique is 

approved successes to synthesis nanocrystalline silicon with homogeneous 

thicknesses (30 nm) and with well size distributions of nanocrystals.   

Near future, some electrical and photoconductivity properties will be investigated on 

these samples to complete these preliminary work. As it is mentioned before, 

nanocrystalline silicon thin films will be developed for photovoltaic application. The 

nanocrystal size and distribution effect directly electronic and optical properties since 

nanocrystals act like quantum dots (SQD).  The morphology of SQD has tune-up 

effect on light absorption and emission. The introducing hydrogen with argon in the 

growth chamber will help to control size and distribution of nanocrystals; at the same 

time the optical and electronic structure will be tune-up. That’s why future work will 

be with pure argon gas diluted by certain amount hydrogen molecule to produce 30 

nm of nc-Sí:H as intrinsic thin film layer towards photovoltaic applications.             
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9.  CONCLUSIONS 

In this study, amorphous silicon was deposited by DC and RF power supplies 

without using hydrogen and nanocrystalline silicon particles can be obtained by 

annealing samples at 800 ºC for 1 hour. Characterizations were done for every 

sample. In the light of characterization results, these conclusions are found. 

 Magnetron Sputtering can be used for depositing amorphous silicon thin 

films as well as Plasma Enhanced Chemical Vapor Deposition (PECVD). 

 RF power is more suitable for depositing amorphous silicon, because film 

deposited from RF is more homogeneous and cleaner than deposited by DC 

power. 

 Films deposited by substrate target are cleaner than deposited by powder 

target. So it can be said that substrate target is more suitable. In addition, the 

crystalline formation of thin films deposited by substrate target is higher than 

powder target as it is understood from Raman Spectroscopy analysis. 

 When power increases, deposition rate increases, too. But if deposition is 

slower, quality of thin film becomes much better. 

 Increasing of argon flow rate causes increasing of deposition rate. 
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