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THE COUPLINGS OF ELECTROMAGNETIC AND DIRAC SPINOR
FIELDS TO GRAVITY

SUMMARY

In order to obtain new insights into gravity, we investigate the couplings of
electromagnetic and spinor fields to gravity.

Firstly, after we summarized Einstein-Cartan Gravity in d-dimensions using the
algebra of exterior differential forms, we investigate couplings of electromagnetism
to gravity in four dimensions. We obtain the field equations of the non-minimal
couplings described by a Lagrangian that involves generic RF’-terms. We
consider both theories without torsion, which is called non-minimally coupled
Einstein-Maxwell theory and with torsion which is called non-minimally coupled
Einstein-Cartan-Maxwell theory. In particular, we give a class of exact plane
wave solutions and static, spherically symmetric magnetic monopole solutions. The
solutions verify the predictions of the classical laws of electrodynamics up to high
levels of accuracy. These are the laws that are usually extrapolated to describe
astrophysical phenomena under extreme conditions of temperature, pressure and
density. Any departures from these laws under such extreme conditions may be
ascribed to new types of interactions between the electromagnetic fields and gravity.

Since major part of the known universe consists of fermions, it is important to know
the effects of the fermions coupled to gravity. But it is not easy to determine the
behavior of spinor fields in four dimensions. Nevertheless, in three dimensions, the
system is simplified partly. Therefore, secondly, we formulate Einstein-Cartan-Dirac
theory in (142)-dimensions using the algebra of exterior differential forms. That is,
we couple a Dirac spinor to gravity and obtain the field equations by a variational
principle. We determine the space-time torsion to be given algebraically in terms of
the Dirac condensate field. We give circularly symmetric, stationary, exact solutions
that collapse to static AdS3 geometry in the absence of a Dirac spinor.
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ELEKTROMANYETIK VE  DIRAC SPINOR  ALANLARININ
GRAVITASYONA BAGLANMASI

OZET

Gravitasyon teorisiyle ilgili yeni ongoriiler elde edebilmek icin, elektromanyetik ve
spindr alanlarinin gravitasyona baglanmalarini inceliyoruz.

Ik olarak, d-boyutta Einstein-Cartan gravitasyon teorisini Ozetledikten sonra
diferansiyel formlarin dis cebirini kullanarak dort boyutta elektromanyetik alanlarin
gravitasyona minimal olmayan baglanmalarin1 diisiiniiyoruz. Genel RF? formunda
terimler iceren Lagrangian tarafindan tariflenen minimal olmayan baglanmalar i¢in
alan denklemlerini elde ediyoruz. Minimal olmayacak sekilde baglanmis burulmasiz
olan Einstein-Maxwell teorisi ile birlikte minimal olmayacak sekilde baglanmis
burulma da igerebilen Einstein-Cartan-Maxwell teorisini de hesaba katiyoruz. Ozel
olarak, bu teorilere analitik, diizlem yiizlii dalga ve kiiresel simetrik, durgun manyetik
tek-kutup ¢oziimleri buluyoruz. Bu ¢oziimler klasik elektrodinamik yasalarini yiiksek
hassasiyetlere kadar dogrulamaktadir. Bu yasalar sicaklik basin¢ ve yogunlugun
baz1 u¢ kosullarda oldugu astrofiziksel olaylari tariflemek i¢in kullanilabilir. Bu
uc kosullar altinda, bu yasalardan sapmalar elektromanyetik alanlar ve gravitasyon
arasinda yeni etkilesim tiirlerine atfedilebilir.

Bilinen evrenin biiyiikk bir kismi fermiyonlardan olustugu i¢in fermiyonlarin
gravitasyona baglanmalarinin etkilerini bilmek onemlidir. Fakat, dort boyutta spinor
alanlarinin bu davranmisimi bilmek kolay degildir. Uc boyutta bu sistem kismen
basitlesir. Bii yiizden, ikinci olarak, (1+2)-boyutta Einstein-Cartan-Dirac teorisinin
formalizmini dis diferensiyel form hesabini kullanarak veriyoruz. Yani gravitasyona
Dirac spindr alanini baglayarak varyasyon yontemiyle alan denklemlerini elde
ediyoruz. Uzay-zaman burulmasini Dirac yogunlagsmis alanlar1 cinsinden elde
ediyoruz. Dirac spindriiniin yoklugunda AdS3; durgun metrigine doniisen duragan
cembersel simetrik tam ¢oziimleri belirliyoruz.
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1. INTRODUCTION

The predictions of the classical laws of electrodynamics have been verified to high
levels of accuracy. These are the laws that are usually extrapolated to describe
astrophysical phenomena under extreme conditions of temperature, pressure and
density. Any departures from these laws under such extreme conditions may be

ascribed to new types of interactions between the electromagnetic fields and gravity.

In this thesis, we firstly consider non-minimal couplings of gravitational and
electromagnetic fields described by a Lagrangian density that involves generic
RF?-terms. Such a coupling term was first considered by Prasanna and classified
by Horndeski to gain more insight into the relationship between space-time curvature
and electric charge conservation. It is remarkable that a calculation in QED of the
photon effective action from 1-loop vacuum polarization on a curved background

contribute similar non-minimal coupling terms.

After we present required fundamental concepts for our research in the second
section, in the third section we give an outline of the Einstein-Cartan theories of

Gravitation in any number of dimensions considering the presence of the other fields.

In the fourth section, in order to gain more insight to the observations, we formulate
non-minimally coupled Einstein-Maxwell theory which is non-minimally coupled the
curvature and Maxwell tensor in form of RF? in four dimensions using the algebra of
exterior differential forms. We derive the field equations by a first order variational
principle. We will be working with the unique metric-compatible, torsion-free
Levi-Civita connection at first. We impose this choice of the connection through
constrained variations by the method of Lagrange multipliers. That is, we add to
the Lagrangian density of the theory Lagrange multiplier 2-forms whose variation
imposes the zero-torsion constraint. We also use a first order variational principle
for the electromagnetic field 2-form F to impose the homogeneous Maxwell equation

as a constraint. Secondly, we consider the variational field equations without the



zero-torsion constraint. The resulting field equations are highly non-linear in both
cases. The case with a connection with zero torsion and the case with a connection
with non-zero torsion give rise to inequivalent systems of field equations. Intense
gravitational fields that will be found near black holes behave as a specific kind
of non-linear medium in the presence of non-minimal couplings. Conversely, one
should expect new gravitational effects induced by non-minimal couplings in the
vicinity of the neutron stars or magnetars where there are intense electromagnetic
fields. Such new effects, if there are any, can be discussed in terms of exact solutions
of the coupled field equations with appropriate isometries. Finding spherically
symmetric solutions is not an easy task for such theories. Furthermore, any arbitrary
non-minimal coupling may not give rise to solutions satisfying physical asymptotic
conditions and observations in solar and cosmological scales. RF?-coupled terms
in the Lagrangian lead to modifications both in the Maxwell and Einstein field
equations. The modifications in the Maxwell equations can be related with the
polarization and magnetization in a specific medium. The non-minimal couplings
also give rise important modifications to the structure of a charged black hole.
These may shed light on some problems of gravity such as dark matter and dark
energy without introducing a cosmological constant or any other type of scalar
fields. This means that, if dark matter is not some strange matter, but, for instance
the non-minimal couplings produce such effects, then the electromagnetic fields
get modified at large (astrophysical) scales and thus contribute to the conventional
electromagnetic energy density which may then be interpreted as the effects of
dark matter. In particular, we look for static, spherical symmetric, electric and
magnetic monopole solutions and plane fronted wave (pp-wave) solutions. Then, we
obtain a class of asymptotically flat solutions that include new black hole candidate
configurations, except for the parameter values when there is a naked essential
singularity at the origin. There are two different solutions with magnetic monopole
potential for non-minimally coupled Einstein-Maxwell theory; one of them has
central singularity and the other has no central singularity. On the other hand, in
the case of non-minimally coupled Einstein-Cartan-Maxwell theory with torsion for
the same magnetic monopole potential, only one of these solutions which does not

have a central singularity is allowed. This solution does not correspond to a black



hole in general. We discuss the structure of these solutions. Also, we find that a class
of pp-wave solutions, which is solution of both the field equations obtained from
the non-minimally coupled Einstein-Maxwell theory and the non-minimally coupled

Einstein-Cartan-Maxwell theory.

Even if it is considered that the matter couplings to gravity have a small effect on
test particles, under some extreme conditions such as high density, small scales and
near black holes, it can cause important effects. Moreover, it can be a new insight
to consider the couplings in the context of astrophysical and quantum field theory.
For this aim, lastly, we investigate Einstein-Cartan-Dirac theory in 1+2 dimensions

differently from the theories in 1+3 dimensions.






2. THE GEOMETRY OF SPACETIME

2.1 Preliminaries

In this thesis, the space-time is denoted by {M,g,V} where M is a d-dimensional
smooth and differentiable manifold, diffeomorfic to R?, equipped with a Lorentzian
metric g which is a second rank, covariant, symmetric, non-degenerate tensor and V
is a linear connection which defines parallel transport of vectors (or more generally

tensors and spinors).

The coordinate system which is given by {x*(p)}, constitutes such a coordinate
reference frame { %(p)} or {du} at any point p € M. This reference frame is a
set of base vectors of T,,(M) tangent space. Analogously, {dx*(p)} is a coordinate
reference co-frame of the cotangent space 7,,*(M). On the manifold M, functions are
(0,0) type tensors, vectors are (1,0) type contravariant tensors and co-vectors are (0,1)

type covariant tensors.

2.1.1 Exterior algebra and differential forms

We will use exterior algebra throughout this thesis [1-3]. In the exterior algebra
space, the basis of cotangent bundle 7),*(M) are called 1-forms. Any p-forms space
which is denoted by A”(M) can be obtained from the antisymmetric tensor product

space as 7, (M) x ... x T,"(M). Therefore, the exterior algebra space is consist of

. /

g

p-times
the sum of the p-forms spaces; EB?,ZOAP (M).
Any p form @ € AP (M) can be written in closed 1-forms ( closed means that d(dx") =

0) as:

1
= Ea)ulupdxul /\---/\d)C‘u”. (2.1)
In this exterior algebra space, let’s consider a real constant &, @; € AP (M), w; €

A4(M) and w3 € A"(M). They satisfy the following properties:



l. (o) ANoy = o) A (o) =a(o) Awy)
2. (0 + ) N3 =0 A3+ oy A @3
3. o AN(ap Aan) = (o Aan) Ao

4. oy ANap = (—1)P9mm N o

After the definitions, we can look at some fundamental operators in the exterior

algebra.

2.1.2 Exterior derivative operator

Exterior derivative operator d is an exact derivative and maps p-forms to (p+1) forms
d: NP(M) — APTL(M) (2.2)

The operator satisfies

l. dloy+ @) =do+dw

2 d _ 1 aw‘ul/\“pd IJ, d “l d ,u'p

. w—FT X NANAXPYN - dx

3. dloyANw3) =do AN+ (—1)P oy ANdws
4. d(dw) =0.

2.1.3 Interior product operator

Interior product operator or contraction operator iz, is an antiderivative operator for

each ¢, € T,M and maps p-forms to (p-1) forms.
1, = 1g = Napt” := AP (M) — AP~V (M) (2.3)

let’s consider @ € AP (M) and scalar function f, the operator satisfies

l. 1,f=0
2. 1540 = f1,0
3. N0 = pw

4. 1,10 = —1p1,O



5. (0 AN@y) = 1,01 ANy + (—1)P oy A iy;.

The interior product of base vectors of tangent space wand base co-vectors of

cotangent space is determined by Kronecker delta.

dx“(i) =1, d* =6, (2.4)

JoxV PR

One can choose a set of linearly independent orthonormal frames on tangent space
T,(M) which is denoted by {e,}, a =0,1,2,3..,d — 1 and is called orthonormal
reference frame. The dual basis of the orthonormal reference frame will be denoted

by {e“}. Similarly to the (2.4), the interior product of {e,} and {e“} satisfy
e'-ep =15 (e") =0y (2.5)

where 15, = 14 is the interior product. In this research, the first half of Greek alphabet

o, B,...= 0, i,ﬁ, ..,ci— 1 and the second half w,v,...= i,@, ..,ci— 1 are coordinate
(holonomic) indices. The first half of Latin alphabet a,b,... = 0,1,2,..d — 1 and
the second half i,j,... = 1,2,3,..,d — 1 are frame (anholonomic) indices. The

orthonormal frame ¢,(p) is related to the coordinate frame dy (p) via h%*,(p) vielbein

or tedrad;
ea(p) = h%4(p)da(p) (2.6)

If h%,(p) is nondegenerate or deth®,(p) # 0, then e, is an anholonomic base.

Analogously, the co-frame 1-forms can be written in the form of exact 1-forms as
¢’ (p) = h"o(p)dx*(p) 2.7)
Moreover, the tedrad satisfy
1a€” = h®a(p)h’a(p) = &7 (2.8)

In this thesis, we will use mostly the shorthand notations for exterior product of

ab--

co-frames e? Ae? A --- = ¢ and interior product operators 1,1 - -+ = lgp... One can

show that although d,, and 8[3 commute, ¢, and ¢;, may not commute

[€ase5) = h*a9pey — hP pduea. 2.9)



2.1.4 Hodge star operator

Hodge star operator * is a linear mapping from p-forms to (d-p) forms for a
d-dimensional manifold:

w1 AP(M) — ATP(M) (2.10)

The volume d-form is defined by

1
xl=e’ne NP NP = Eeabcmdea/\eb/\ec... Ae (2.11)

and the completely antisymmetric Levi-Civita tensor density is fixed by choosing

€012..d—1 = +1. The star operator has the following properties for o, € A?(M):

. aA*f =B Axa and xBAa=x*t AP
2. x(aNeg) = 1%

3. xx0 =+o

Using the above definitions and properties, we can introduce a spacetime metric. The
metric which is related to the distance between two infinitesimally near points x* and

x* 4 dx* can be written via reference frames and orthonormal reference co-frames as
_ o B __ 3 ap b o B _ a b
g = 8apdx” ®@dx" = hg"hg Napdx” @dx" = Ngpe® Qe (2.12)
Here g(ey,ep) = Nap is Minkowski metric which is diag(—1,1,1,..,1).

2.1.5 Connection 1- forms

Let us take two observers each using their own reference frame to measure spacetime

intervals on the manifold M. The observer O fixes {¢,} and the observer O’ fixes {¢,}
. b .

reference frames at the same point p € M. One can find L~!", a local Lorentz matrix

satisfying the transformation,

2(p) =2y (p)L " a(p). (2.13)

Similarly, the transformation of orthonormal reference co-frames is defined by

¢"“(p) = L(p)e’(p) (2.14)



Then, the local Lorentz transformation of interior product of the frames and co-frames
are

() = e L7 (L) = €,8ge? = G.e¢ = eye. (2.15)

Lorentz invariant. Let us see the local Lorentz transformation of exterior derivative

of the covariant e basis.
de'* = d(e’L%,) = dLe” + L% de” (2.16)

Because of dL“beb term, the transformation of de“ is not Lorentz covariant. That is;
it does not transform as a tensor. We need to use connection 1-forms in order to make

it Lorentz covariant and the local Lorentz transformation of the connections must be

defined as

1/

A =LA LY 4 10 d LY, (2.17)

2.1.6 Covariant exterior derivative

For any general (p,q) type tensor Rg,..q,”"" ", the covariant exterior derivative

operator defined as follow;

by-b bi-b b boeeib b by
DRgy.a)”" = ARy, P+ AP Ryyg) PP 4+ AP R )

A Reaya,” 07—+ — Aq Rayaye” 0. (2.18)

We have shown that de?’ # L%,(de”) does not transform as a tensor. But now we can

show that the covariant exterior derivative of ¢? transforms as a tensor.

De” = de” + A% A e’

VL 10dL ") AL

1f

= d(L%e") + (LA fL™
= dLY AP+ L%de” + LA LY Lo Nk + L dL L A e
= dL%Ne’ +L%de® + L4 A N ek —dL N éF

= LY%(de® + APy N eF)

De” = L%De’ (2.19)

and it is called local Lorentz covariant. After the fundamental definitions, we can look
at the covariant exterior derivative of the metric 7, ¢* orthonormal basis 1-forms and
A%, connection 1-forms. They are known as Cartan Structure equations. In the gauge

approach to gravity n,,, e, A%, are interpreted as the generalized gauge potentials,

9



while the nonmetricity 1-forms, torsion 2-forms and curvature 2-forms correspond to

field strengths.

2.2 Nonmetricity

The covariant exterior derivative of the 7,, metric gives us first Cartan structure
equation [4].

1
Qab = —5DMNab- (2.20)

The symmetric 1-forms Q,, are (1,2)-type tensor and called nonmetricity tensor. The

Q.p tensor is the symmetric part of Agp:
Dnab = dnab - Aca Neb — Acbnac (2-21)
because of 1, has real constant elements, dn,;, = 0 and so,

Dnay = —Aap—Apa (2.22)

1
Qab - 5 (Aba + Aab) (2°23)

Thus, if we compare these two equations (2.22) and (2.23), we reach the equation

(2.20). If Q. = 0, it is said that the connection is metric compatible.

Geometrically the nonmetricity tensor measures the deformation of length and
angle standards under parallel transport. Technically speaking it is a measure
of compatibility of the affine connection with the metric. The scalar product of
vectors is, in general, not preserved under parallel transport due to the appearance
of nonmetricity. Einstein’s general relativity theory is formulated in spacetimes with
metric compatible connection (vanishing nonmetricity tensor). But, the solutions
which are symmetric teleparallelly equivalent to Einstein’s general relativity (giving
the same solutions with Einstein’s relativity and more in the framework of symmetric

teleparallel gravity) can be found considering only the nonmetricity tensor [8,9].

2.3 Torsion

The covariant exterior derivative of e“ orthonormal basis 1-forms gives T torsion

tensor, or second Cartan structure equation [4]:
T%:=De® = de” + A% Neéb. (2.24)

10



T 2-forms are called (1,2)-type torsion tensor. Torsion can be obtained from
contortion 1-forms as

K ne’ =T7. (2.25)
The full connection 1-forms can be decomposed by [5-7],

Aab = (bab + Kab +Gap + Qab (2'26)

where @9 are the zero-torsion Levi-Civita connection 1-forms satisfying

de’ +@% ne® =0 (2.27)

and the antisymmetric connection ¢q,, can be derived from the symmetric Qg
nonmetricity tensor ;

q"p, = —1"Opc N +1,0% N e (2.28)

So, the antisymmetric part of the full connection is

Apap) = Qap + Kap + Gap (2.29)
and the symmetric part is
Aapy = Qap- (2.30)

We can see from the above equation, if Q% = 0 then ¢g“;, = 0. In this case it is possible

to decompose the connection 1-forms in a unique way:
a)ab — d)(,lb + Kab (2.31)

In addition to Q,, if also K, is zero then

Ay — @y (2.32)
Moreover, @, satisfy the equation
20, = —14(dep) +1p(deg) + 141 (dec ) e (2.33)

Analogously, K¢, contorsion 1-forms can be written as
2K = 14T — 1T — (1415 T, ) €€ (2.34)

The connections are dimensionless quantities. Thus, Torsion has dimension of length,

T = [L).

11



Physically, the torsion tensor can describe the density of intrinsic angular momentum
or effects of scalar fields depending on the related theory. In Einstein’s general
relativity, torsion tensor is zero. But, when one considers the couplings of gravity with
matter fields, the torsion tensor has to be taken into account. Additionally, theories

with torsion have more degrees of freedom to comply with observations.

2.4 Curvature

The covariant exterior derivative of the connection 1-forms gives R%;,(A) curvature

tensor or third Cartan structure equation [4].
R%, (A) := DAY, = dA + AN NN (2.35)

R%(A) is a (1,3)-type Riemann curvature tensor. We can show that R, (A) transforms

as a tensor;

RY, = dA", +A"L AN,

Yy L0dL™))

= (LA L
(LA LY L dL Y ) A (LA L+ L8 d L)

R = L%R,L ',

In the second line, we have used that (dL~'%,)L?, = —L™1%,(dL?,).

Geometrically it is related to linear group. Now let us see the effect of curvature on
vectors after parallel transport along a closed loop. If the vector does not undergo a
rotation, then the space is flat. Conversely, if the vector is rotated, then the space is
curved. Performing the parallel transport of a vector A = e,A“ around a closed small

path one obtains the following transformation
1
Vi /S Ry APdx A dx (2.36)

where § is the surface of the loop. If this tensor is not zero that means if any
component is not zero, then space-time is curved. If this tensor is zero, then
space-time is flat. Physically this is a fundamental tensor in gravitation, in particular

in Einstein’s general relativity.
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2.5 Bianchi Identities

One can find Bianchi identities taking the covariant exterior derivative of curvature,

torsion, nonmetricty tensors as

1
DQab - E(Rab'i'Rba) (2-37)
DT® = RYAeé’ (2.38)
DR, = 0. (2.39)

Here we have used (2.24), (2.35), (2.20) and the properties of exterior algebra.

Also, one can show that the following equalities noting that lowering or raising
an index in front of the covariant exterior derivative if the spacetime metric is not

compatible or nonmetricity is not zero.

Dxe, = —QAxeq+TP Axey, (2.40)
Dxey = —0QAxey+TCAxey, (2.41)
Dxeype = —0N*egpe+ TN *€abed (2.42)
Dxegpea = —ON*€abeq- (2.43)
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3. EINSTEIN-CARTAN GRAVITY

Einstein-Cartan Gravity is considered as an extension of general relativity in the
presence of torsion tensor field. The source of the torsion field can be intrinsic angular
momentum, scalar fields, non-minimal couplings of gravity and electromagnetic
fields depending on the theory. In the following sections we will discuss also the
effects of torsion for electromagnetic field coupled to gravity in four dimensions and

Dirac field coupled to gravity in three dimensions.

Therefore, we will point out the difference between general relativity and
Einstein-Cartan gravity in this chapter giving an outline of these two theories in
arbitrary d-dimensions. We will take a metric compatible connection; that is, the

nonmetricity tensor is equal to zero.

3.1 General Relativity

Einstein’s theory of gravity has been formulated in (pseudo-)Riemannian space-times
in four dimensions such that the structure of the space-time is characterized by the
metric or co-frame uniquely and the corresponding field strength is the curvature R
written in terms of the Levi-Civita connection. That is; in Einstein gravity, in addition
to the non-metricity, the torsion is zero and the zero-torsion condition can be imposed
to the field equations by inserting a Lagrange multiplier term to the Lagrangian. One

can generalize the theory to d-dimensions writing the following action
1:/ {Lon+ 251+ By + T 20 | 3.1)
M
where the Einstein-Hilbert Lagrangian density is defined by

1 4
Ry Nx(e“ NeP), (3.2)

=50

with  is the gravitational coupling constant such that k2 = 828 — 8¢ > €p = 1073m
C
is the Planck length, G is the Newton’s gravitational constant. We will take ¢ = 1 in

this research and " describe the tensors related with the Levi-Civita connection. In
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(3.1) A is the cosmological constant, A, are the Lagrange multiplier (d-2)-forms, the
Lagrangian .,2/”1\14 = %y (e, ®, matter fields) can be composed of metric, connection

and other fields.

The field equations are obtained by making independent variations of the action with
respect to the co-frame {e“}, the connection {®“,} and the other gauge potentials.
We write the infinitesimal variations of the Lagrangian as (up to a closed form)

p 1 A ~ A
¢ = e'“/\(—mRb‘/\*eabc—i—l*ea+fa+D7La>

+OP N (e A g +Eap) + TN Aa (3.3)

where the symbol [ab] means that the indices a, b are antisymmetric and the variations

of the matter Lagrangian yield the stress-energy (d-1)-forms

A

£, = 9% _ kel (3.4)
de?

and the angular momentum (d-1)-forms

A

$ 0-Lu

ab — W = Sab,c * ec. (3.5)

Therefore, in Einstein theory of gravity with matter fields, the field equations are

given as

1 . .
—mRbC Asxegpe + A keg =—%, — DAy, (3.6)

ea N Ap—ep AN Ag =280, (3.7)

The second equation (3.7), can be solved for A, via the interior product for any

d-dimensions interestingly and the result is
a $ba 1 a $heh
A4 = 22X+ 56 Nipel 3.8
If we substitute this A, into (3.6), we find the Einstein field equations:

1 A A A 1 A A
— mRbc Axegpe+ A keg = —1, —2D1,5% — 5ec ADip 8. (3.9)
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3.2 Einstein-Cartan Gravitation Theory

Einstein-Cartan theory gravity is a generalization of Einstein gravitation theory. In
this theory, the full connection has a torsion part and the torsion is considered
independent of the co-frame. Since the torsion is introduced into the theory, the
space-time is Riemann-Cartan. The field equations of Einstein-Cartan theory of

gravity [10] are obtained by varying the action in d-dimensions
= / (Loc+Lx1+ %) (3.10)
M

where the Einstein-Cartan Lagrangian density

1
Ry A x(e“ Neb). (3.11)

Zec= "33

Here the gravitational constant k and %) (e, ®, matter fields) is the Lagrangian
density related with the other fields. The curvature 2-forms are decomposed as

follows:
Rab — kab —|_ DKab + Kac /\ ch (3-12)
where
ﬁKab — dKab + é\)ac /\ ch - d)(,b /\Kac.

Similarly to the Einstein theory of gravity, we write the infinitesimal variations as (up

to a closed form)

, 1
<L = e'a/\(—mRbc/\*eabc—l—?L*ea—l—Ta)

1
+@ A (_F sk egpe NTC + zab> (3.13)

where the co-frame and connection variations of the matter Lagrangian yield the

stress-energy

0Z
Ta= aeff — T % e (3.14)
and the angular momentum
0Ly
Lab =5 b = Sab.c * € (3.15)
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respectively. Therefore, the Einstein-Cartan field equations are given as

1
5 R Nseape A xeq = 1T, (3.16)
1 C
mT VAN *Cabe — Zab. (3.17)

We note that while the field equations of Einstein-Cartan gravity is written in terms
of the full connection ®, the field equations of Einstein gravity is written in terms of

® Levi-Civita connection.
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4. THE COUPLINGS OF ELECTROMAGNETIC FIELDS TO GRAVITY

We can test a majority of the results of general relativity via photons coming from
distant stars and galaxies. In order to verify the insight of a gravitation theory
exactly, it should couple to electromagnetic fields. The Einstein-Maxwell theory is a
minimally coupled theory between the electromagnetic fields and gravitation and this

theory is described by the action;
B 1 . a. b 1 4
S—/{—WRab/\*(e /\e)+§F/\>x<F} 4.1)

where electromagnetic coupling constant q is absorbed into the electromagnetic
field F. In this minimal theory, the spacetime geometry is modified by the
electromagnetic fields. The spherically symmetric and static solution of this theory
is known as Reissner-Nordstrom solution. Some gravitational wave solutions of the

Einstein-Maxwell theory were given in [11], [12] and [14].

To extend this theory as non-minimal, the coupling terms including curvature and
Maxwell tensor in the same term are inserted into the Lagrangian of Einstein-Maxwell
theory. The coupling terms were first considered by Prasanna [15] . They were soon
extended and classified by Horndeski [16] to gain more insight into the relationship
between spacetime curvature and electric charge conservation. It is remarkable
that a calculation in QED of the photon effective action from 1-loop vacuum
polarization on a curved background [17] contributed similar nonminimal coupling
terms. It was contemplated at about the same times that Kaluza-Klein reduction of a
five-dimensional R?-Lagrangian would induce similar non-minimal couplings in four
dimensions [18]. A variation of an arbitrary Lagrangian with non-minimally coupled
gravitational and electromagnetic fields in general may involve field equations of
order higher than two. The nonminimal couplings in four dimensions classified by
Horndeski are exactly those that involve at most second order terms. These particular
combinations are obtained by reduction of the Euler-Poincaré Lagrangian in five

dimensions to four dimensions [19], [20].
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Recently, in more detail, such a 3-parameter nonminimally coupled Einstein-Maxwell
theory was applied to the spherical symmetric models in [21], [22] and the
cosmological models in [23]. Later, Balakin et al. have also extended the nonminimal
theory to presence of axion fields, which is the non-minimal 10-parameter
Einstein-Maxwell-axion model [24]. They considered the model with pp wave metric
in the Bondi et al. form. They have shown that the non-minimal coupling of the
photon and axions to gravitational field generally may lead to the birefringence effect

and optical activity.

In this chapter, we formulate a general 6-parameter nonminimal extended
Einstein-Maxwell theory and Einstein-Cartan-Maxwell theory that are linear in the
curvature and quadratic in the electromagnetic field; using the algebra of exterior
differential forms without torsion and with torsion. We derive the field equations of
the model according to the first order variation method and we look for plane-fronted
wave solutions in Ehlers-Kundt form and static, spherically symmetric solutions.
Consequently, although the structure of Maxwell field equations is modified by
the coupling terms, the modifying part vanishes and the Maxwell equations are
left the same as vacuum for the pp-wave metric solutions. But, Einstein and
Einstein-Cartan field equations allow a class of nontrivial solutions. Additionally,
the energy-momentum transported by the pp waves is modified by the nonminimal
coupling terms. We have shown the difference between Einstein-Maxwell and

Einstein-Cartan-Maxwell theory for pp-wave and static spherically symmetric metric.

4.1 Non-minimally Coupled Einstein-Maxwell Theory

Non-minimally coupled Lagrangian density Pm = ZLm(A,e,®) can include
couplings of curvature and Maxwell tensor such as R"F™ in any invariant order
(n,m=1,2,.. are not indices, they describe the order of a tensor). In this study, we
will use a first order formalism. We will use the electromagnetic field 2-forms F
for which the homogeneous field equation dF = 0 is imposed by the variation of the

Lagrange multiplier 2-form p. We will start with the following action with constraint;
1 A 1 ~n
I:/ —RPN*eup+ A% 1 —=F A*F + Py + TN g+ U NdF 4.2)
M | 2x? 2

which has Einstein-Hilbert Lagrangian density, cosmological constant A, Maxwell

Lagrangian density, non-minimally coupled Lagrangian density and constraint terms
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respectively. Here K is the gravitational constant, A, and u are Lagrange multiplier
2-forms. That is, we will take {e“} and {®“,} to be the fundamental field variables,
F is the electromagnetic field 2-form. We write the infinitesimal variations of the

Lagrangian as (up to a closed form)

. 1 A ~ A A &
¥ = A (mRbc N *€gpe + A x eq.+ 1, —f—DAa) + a)“b A (e[a A\ lb} + Zab)

INm
JA

+A/\(—d*F—|—8 )+ A AT+ L NdF (4.3)

where the symbol [ab] means that the indices a,b are antisymmetric. We can write
the stress-energy 3-forms 7, related with the Levi-Civita connection from the above

variation as

t, = Maxg, 4 NMg (4.4)

where the Maxwell stress-energy tensor and the non-minimally coupled stress-energy

tensor are
Max 1
Tazi(laF/\*F—FAla*F) 4.5)
0.%
NMs _ 9<NM
Ta = W. (4.6)
The angular momentum 3-forms are found from the above variation (4.3 ) as
. 0.% .
Sup= o kel 4.7

ab = 9 b

After solving the A,,’s as (3.8), the Einstein field equations and the Maxwell equations

turn out to be

1 . o 1 R
——— RV Nxegpe — A xeq = —14 —2DiP8 ), — —eq A Dip EP. 4.8)
2x2 2
0.
dF =0, —dxF+ a;‘Wzo (4.9)
with T¢ = Q.

In this section, we will consider only the following Lagrangian density as

non-minimally coupled electromagnetic fields to gravity:
Py = = %ﬁabF“b A*F + %z“F AR, AF + %31?F A*F
+%IéabF“b NF + %z"F AR NF + %IéF AF (4.10)
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where ¢}s are phenomenological coupling constants and we assume that the
cosmological constant is zero. Through the research we will show the interior
products of the electromagnetic tensor 2-form F' = %Fabe“b and the curvature 2-forms

Rap = 3Rap cae® with the co-frame e as

wF =Fue® = F, 1 — form, (4.11)
Wl = Eyp 0— form, (4.12)

1,R® = R ﬂded = R Ricci 1 — form, (4.13)
1, R = R“b,ab = R curvature scalar, 0— form. (4.14)

The first term in the (4.10) has been considered firstly by Prasanna [15]. For the six

non-minimally coupled terms the stress-energy tensors ‘¢ can be found as:

» 1 . A - A A .
lge _Z(4Facle A xRy +1°F A xRy FP — Ry F®° N x F
+1°RpF N5 F — F Ni€ % Ry F) (4.15)
1. . .
¢ = §[2RFCNSF —2FC ARg A1+ F + 2Fp1° R N +F

+21RP AN Fy A iy % F + FRy AxF — 1I°Ry“F N +F

—FCA%(FOAR) +F AR,NIExF+F A% (FYAR,)]  (4.16)

3r¢ = —%[ZLCIéble A*F +21°R°F Ay« F +1°F A +RF
—RF Ni° % F) 4.17)
41¢ = 4[FRyNF —F*“Ry ANFP) (4.18)
Spe — %[—F“’Iéa AF +FRAF — FC ARINAF, — EyiCRY AF
—F°RENF — Fy NiCRPY A\ F)] (4.19)
07¢ = —2¢6(1°Ry)FP NF (4.20)

and the angular momentum tensor 3%:

. - A 263 A
gab _ %D(F“b*F)—i—%D(Fb/\l“*F—F“/\zb*F)
. — ¢5+2c6 A —2c A
—%SD(F A F) + WDF“Z’F + %DF“ AFP(4.21)

Additionally, the Maxwell field equations read
dF =0 (4.22)
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d{—*F—i—ch“b*Iéab—k%Z[I@a/\z“*F—I@*F—i—*(F“/\Iéa)]

cq4 —C5+2c6

+c3R* F + %4 [2F, AR® +2F ;R + 5

FR} =0 (423

Trace of the co-frame equation (4.8) is

1 . . . R
ER*l—/l*l—ch/\F“b*Rab—czF"/\Ra/\*F—@RF/\*F

—CaFpR NF + csRE NF —2cRy NFEAF + e, ANDAY = 0. (4.24)

4.2 Electromagnetic Constitutive Equations

In general, one encodes the effects of non-minimal couplings of electromagnetic
fields to gravity into the definition of a constitutive tensor. Maxwell’s equations for

an electromagnetic field F in an arbitrary medium can be written as,
dF =0 , xdxG=J (4.25)

where G is called the excitation 2-form and J is the source electric current density
I-form. The effects of gravitation and electromagnetism on matter are described by
G and J. To close this system we need electromagnetic constitutive relations relating
G and J to F. Here we consider only the source-free interactions, so that J = 0. Then

we take a simple linear constitutive relation
G=%(F) (4.26)
where & is a type-(2,2) constitutive tensor. For the above theory we have
G = F—ciRpF™ —cy"F ARy — c3RF — caRypF
—c51°F AR, — cgRF. 4.27)

With these definitions, the non-minimal Einstein-Maxwell Lagrangian simply

becomes

1 1

The electric field e and magnetic induction field b associated with F are defined
with respect to an arbitrary unit, future-pointing time-like 4-velocity vector field U

("inertial observer") by
e=I1yF , b=y *F. (4.29)
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Since g(U,U)=-1 we have
F=eAU—x(bAU) (4.30)

where U € T*M. Likewise, the electric displacement field d and the magnetic field h

associated with G are defined with respect to U as
d=1yG , h=1y *G. (4.31)
Thus
G=dAU—xhAU). (4.32)

It is sometimes convenient to work in terms of polarization 1-form p =d —e and

magnetization m = b —h. More details about this concepts can be found in [25,26].

4.3 Non-minimally Coupled Einstein-Cartan-Maxwell Theory

The field equations of Einstein-Cartan theory considering non-minimally coupled
electromagnetic fields with gravity are obtained by varying the action without any

constraints on torsion;
1 1
1:/ R Ney+ A x| — ~F AF + Ly +dF AL (4.33)
M | 2K2 2

where the first term is the Einstein-Cartan Lagrangian density and the non-minimally
coupled Lagrangian density -Zyu(A,e,®) now can include torsion more generally
from the previous theory. In general, Zyy(A,e,K) can include couplings of
curvature, electromagnetic and torsion tensors such as R"'F nT! in any non-minimal
invariant order (n,m,l = 0,1,2,3..). At the lowest order one can consider the direct
coupling R* A xF,, which is zero in the absence of torsion because of Bianchi identity,
which may give interesting insights in the presence of torsion. Recently, the effects of
some non-minimally couplings such as TFJdF on the Maxwell equations have been

investigated in [27]. We consider the couplings in the form RF? again.

Similar to the Einstein gravitation theory, here we write the infinitesimal variations as

(up to a closed form)

. 1 1
L = N (—Rbc/\*eabc+l *ea+fa> + % A (m*eabc/\Tc+Zab)

2K2
0 Lm

AN(—d*F
+/\(d>|<+aA

) (4.34)
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Now we can write 7, the stress-energy 3-forms as

Max

1, = Maxg, 4 NMg, (4.35)

where the non-minimally coupled stress-energy tensors and the angular momentum

3-forms are

NMT o an=gNM

= 4.
Sed (4.36)
0.4
Yo = W]Z]lfl = Sab,c *e€. (4.37)

The Einstein-Cartan field equations and the Maxwell equations of the model above

are given by

1
—mRbc A %€gpe — A *eq = Tg, (4.38)
1 c
o *eae N TE = —Za (4.39)
P
dF =0, —d*F+ ";ZVM —=0. (4.40)

For the non-minimally coupled terms (4.10), the stress energy tensors ‘¢ can be found

from (4.36)

1
lpe — _Z(4Faclbp A*Ryp +1°F A %R F® — Ry FP N x F
+1I°RypF N %F — F Nt % Ry F0) (4.41)
1
206 — J2RFCN+F —2F NRo A5 F + 2F,i°RYP A F

+21RPY AN Fy A iy % F + FRy A*F — i°Ry“F A *F

—FA*(F*ARG) +F*ARGANE«F+F A% (FUAR,)]  (4.42)

3g¢ = —% [21°RP1,F A %F 4+ 2:°RPF A, % F +1°F AN+RF

—RF Ni€ % F] (4.43)
41¢ = ¢4[FRyNF —F*“Ry AFP) (4.44)
Sge — %[—F“‘Ra AF +FRAF — FC ARCAF, — Eyi°RY A F

—F °REANF — Fy NiSRPY A\ F)] (4.45)
07¢ = —2¢6(1°Rp)FP NF (4.46)
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and the angular momentum tensor ¥ (4.37) becomes

_ Yea —
sab %D(W%Fw%D(F”AZH*F—F“A#’*F)
_ 2 -2
—%D(F A 5 ) + WD(F“”F) + ST p(pa \ R

We can write (4.39) in another form in terms of contortion as;
%Kcm Ne"™ Axegpe + DUy — Ky ALy — Ky ALy =0 (4.47)
where we have used that
¥ = 2pre® =2prt,, (4.48)

and

2c3— 2
2
—c3(FAI® 5 F) + (c4 — ¢542¢6) (FPF) + (¢5 — 2¢6) (F4 A F?).

r< — (cl—C2—|-c3)(F“b*F)+ (Fb/\l"*F—F“/\lb*F)

It is very complicated to solve the above expression algebraically in terms of I'.
But, for a given [, we have twenty four unknowns which are the components
of K,, 1-forms and twenty four differential equations. Firstly, we have to find the
connections K, satisfying the equation. After, we have to replace the previous
Levi-Civita connection @ with @,, = @, + K, because of the non-zero contortion
K., . The Einstein-Cartan-Maxwell field equations can be obtained from the co-frame
variation of (4.33) for the non-minimally coupled electromagnetic fields to gravity as
a

g At =14 ) ' (4.49)

dF =0 (4.50)

d{—*F—i—ch“b*Rab—l—%Z[Ra/\z“*F—R*F+*(F“/\Ra)]

c4 —c5+2cq

3R+ F + %42Fa AR® +2F,, R + FRY=0 (451
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4.4 Conformally Extended, Nonminimally Coupled Einstein-Maxwell Theory

Let’s consider two manifolds M and M’ with co-frames ¢4 and ¢’“. If we can find the

following transformations;
e we’=e%" |, 99 =79, (4.52)

we can say these two manifolds are conformal to each other and these are conformal
transformations. Here o(x) is a conformal factor. Specially, ¢ = constant
corresponds to a scale transformation which is a global transformation. In order to
extend the nonminimally coupled Einstein-Maxwell theory conformally, we write the

following Lagrangian,

O A 1 1
L 2R * 1 ¢d¢/\ do > N * +¢£</V///
+TNAg+UNAF (4.53)

where we consider the six nonminimally coupled terms in (4.10) as £y ». A

conformally invariant non-minimally coupled Einstein-Maxwell theory is achieved

(for the case w = ——) by considering
L= (PRab/\*e ——a’q)/\*dq)—lF/\*FqL L Capy NFP«F
2 29 2¢
+T*N A+ uNdF (4.54)

where ¢ is the dilaton field and
1 1
Cup =R, — E(ea /\c@b —ep N\ %a) + g%eab (455)

are the Weyl conformal curvature 2-forms (c; =cy; =7, ¢3 = %’ ,ca=c5=ce=0).

Thus, the field equations for (4.53) are written as!

0G* = T[dP] + 1] —|—Zc, “[F,R] +DA“ (4.56)
dF =0 (4.57)

d[—*F—I—%F“b*ﬁab—}—2[1%/\1“*F—I§*F+*(1“F/\Iéa)]

29

FSBReF + SX[2F, AR + 2F,R%) +
¢ 2¢[

There i =1,2,3,4,5,6

—c5+2cq

T FR]=0 (4.58)
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where

G = — %Iéab A e (4.59)
“[F] = %(z"F A*F —F A5 F) (4.60)
lg] = %(z%up Axdo+do A€ xd9) (4.61)
YTIF,.R] = —ﬁ (4F“1PF ARy +1°F ARy F — Ry FP Ni€ % F
+1I°RpF N5 F — F Ni€ % Ry FP) (4.62)
2t |[F.R] = ﬁ [2RF, A %F —2F. ARy AN1® % F 4 2F 1R N xF

+21, RPN Fy Ay % F + FuoR A +F — 1,R41°F N\ xF

—F A*(FCARY) +FOAR N1 % F +F Niex (FOAR,)| (4.63)

. 1. 4 R R
3T [F,R] = % [21RP1,F N +F +21.RPF Ny F 4 1.F A %RF
—RF N1+ F] (4.64)
‘e F R = %[Faclé“ AF — FeR \ F)
SLIF.R] = ;—;[—Fmﬁ“ AF+FRNF —F, AR NF, — Fp1oRP A F
—F1cR*NF — Fy NicRP N\ F] (4.65)
R 2 R
6t [F,R] = —%(chb)Fb NF (4.66)
“e — 2c3 — ,
gac = NTOTBpac, p  FB T pepayp  FOpLsF) — SE ALK
¢ 2¢ ¢
—cs5+2 : -2 . :
+<C“C+C6)F“‘F L 7206) pay pe 4 gset p et (4.67)
we have also the scalar field ¢ equation;
IR*1+ ® d¢/\*d¢+a)d*d¢ ! [clF ANFP %Ry, + c2F* ARy N +F
= — — — =—|C c
2 2¢2 ¢ 2¢2 1 ab 2 a
+¢3RF A *F + c4F R’ NF + ¢51°F AN1PRyoF + cgRF AF] =0 (4.68)
producting with 2¢

N d 1 - N
¢R*1+%d¢)/\*d¢ +2a)¢d*£ —a[ch/\F“b*Rab#—czF“/\Ra/\*F

+c3RF A*F + caFp, R NF + c51°F N1PRyyF + cRF ANF]=0 (4.69)
Trace of the co-frame equation is,

N [0} 1 N N N
PR+1— 5d¢ Axd — E[CIF AF® s Ry + c2F ARy A F + c3RF NxF

+c4F R NF — csRF NF 4 2c6Ry NF ANF) 4+ ¢S ADA. =0 (4.70)

28



subtract the trace eq. from ¢ eq.
20d xdo — %[(65 +c6)RF NF 4 (c5+2¢6)F ANR,ANF]— e ADA. =0 (4.71)
Lagrange multiplier A, can be solved again;
A¢ = 1 ,DE% 4 %zba[)iab A€ 4.72)

Lastly, the field equations of the conformally invariant non-minimally coupled

Einstein-Maxwell Lagrangian (4.54) is found to be

1 A A A 1 A A
0G* = 1°[do] + T[F] + y( 't 4+ 219 + = 319 4+ D1, DE" + 5z;,chd’ Aef],(4.73)

3
d[—+F + %F“b*ﬁab—f— %(Ram“ x*F —RxF+x(F*AR,))
—|—£1?*F] —0, 4.74)

dF =0, (4.75)
2wd *d¢ — e, AD[1,DEP + %zbcbic” Ae'l =0 (4.76)

where 3496

. 1
$ae — %[F“C*F-l—E(FCAI“*F—F“/\ZC*F)—F/\z"C*F]—i—gb*e“C. 4.77)
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5. EXACT SOLUTIONS

5.1 Plane Fronted Wave Solutions

Gravitational waves describing the propagation of gravitational radiation predicted by
Albert Einstein based on Einstein’s general relativity. They are known as fluctuations
of curvature of spacetime and they can be produced by binary star systems or black
holes. The linearized gravitational wave solutions of general relativity is well known.
However, the linearized solutions may cause inadequate information. So, we look for
the exact solutions describing plane fronted waves with parallel rays (pp-waves). The
following calculations of this section can be found partly in [28]. A generic pp-wave

metric (in Ehlers-Kundt form) [11, 12] is given by,
g = 2dudv +dx* +dy?* +2H (u,x,y)du’. (5.1

H is the metric disturbance which is a smooth function to be determined!. According
to the pp-wave metric the two surfaces u and v are constant or plane wave surfaces
and the metric of the surfaces is (dx? + dyz). For the metric (5.1), a convenient choice
of orthonormal co-frames is going to be used:

H+1
0 1 2 3
e = du+dv, e =dx, e =dy, e =

V2 g V2

We may also exploit the advantages of complex coordinates in transverse plane by

du—+dv. (5.2)

letting
g = 2dudv + 2dzdz + 2H (u,z,7)du? (5.3)
where

x+1iy X —1y
7=— —.
V2 V)

We firstly determine the unique Levi-Civita connection using that torsion is zero

= (5.4)

. . H . . H
0" = —oB =1 ), a%=-0%="2(1 ). (5.5)
2 2
U1f the metric disturbance H is quadratic in (x,y), then one can find a transformation [29] from the
metric (6.36) to the metric in Bondi et al. form.

31



We calculate the Einstein tensor 3-forms which are defined as G, = —#Iébc N *€gpe

for the connection

A A H +H

Q»

(& —-¢, G =0=0G,. (5.6)

We consider an electromagnetic potential 1-form in direction du given as A =

a(u,x,y)du or A = a(u,z,7)du for pp-waves. Then

F = dA
= aydx/Ndu+aydy\du

= agdzNdu+azdz \Ndu (5.7)

and the Maxwell stress-energy 3-forms turn out to be

2 2
Maxg, — _Maxg, — _ & Ay s (e — ) = —aaz x (&3 — €°) (5.8)

2
Max,lv.l _ Maxl'z:(). (8.9)

After a lengthy calculation it is found that the non-minimal invariants give a nontrivial
contribution to the non-minimally coupled Einstein-Maxwell theory only via DA,

(o)) g C1 ((axz)xx +2(axay)xy + (ayz)yy) " <e3 _ eo)’ (5.10)

DA = 0=DA,, (5.11)

Do = —Dis=

The all other expressions are zero;
Mz = o0. (5.12)

Now we put all these terms together and write the non-minimally coupled

Einstein-Maxwell equations as

Hy+ Hyy = — k% (a” + a,*) + K2 (c2 — ¢1) (@) wx + 2(axay) vy + (ay%)yy ) 5 (5.13)

These equations can be written in an invariant form on the transverse xy-plane [12],
[13]:
AH = «*|Va|?—«*(cy—ci)Hess(a)
—2k%(c2 — ¢1) (A(aAa) — aA(Aa) + (Aa)?) (5.15)

Aa = 0 (5.16)
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where

2 2
A ? 9

w2ty (5.17)

is the 2-dimensional Laplacian,

- % 2 @ 2
|Va|® = ( ax> + R (5.18)

is the norm-squared of the 2-dimensional gradient and

Axx dxy

Hess(a) = = Ay — (ayy)? (5.19)

Ayx  dyy
is the 2-dimensional Hessian operator. In terms of complex coordinates, (5.16) simply

become
H: = —K’a.a:+K*(c;— -
z = K azaz + K (C2 Cl)‘lzzazzv

az; = 0. (5.20)

A non-trivial solution that depends on the coupling constant (c; — ¢y) is obtained by

letting
a(u,2,2) = fi)z+ fi(w)z+ fr(u)2* + fo(u)2. (5.21)

while fi(u), fi(u) arbitrary functions demonstrate the polarization states of photon
in vacuum, f>(u), f>(u) demonstrate the polarization by the presence of nonminimal

coupling terms. Then

%H(%Zi) = )+ Hw)Z —|fiw)z = L) Pl = fi(w) fA(u)z)z)?
—fo(u) i (w)z|z)* +4(ca — c1) | fo (w) [P 2% (5.22)

We note that the non-minimal coupling c¢; —c; between the gravitational and
electromagnetic waves is carried in the last term on the right hand side of the
expression above and affects only the space-time metric. Both the polarization p =0

and the magnetization m = 0 identically in the pp-wave geometry. We write
A=+ + i+ o (5.23)
where
Ay = flwedu=ch_ |, chy=fr(u)ddu=ch_ (5.24)
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and introduce z = re'? to show that

L) o Ay =T+ L) o Gy =F20h . (5.25)

ido i 06
%x denotes the Lie derivative along the vector field X. Hence 7|1, .9% are null

photon helicity eigen-tensors. Similarly, the metric tensor decomposes as
g=N+%+%++%-+% +%- (5.26)
where 7 is the metric of Minkowski spacetime and

Gy = —fw)fr(u)zlz*du@du =9 _ (5.27)
G, = Hwddidu=%_ (5.28)
% = (—1AWP =Ll +4(c— )l fo(w)2]?) du@du. (5.29)

The ¥)1,% . are null g-wave helicity eigen-tensors for linearized gravitation about

n+%:

Z

1

Gie=+9 Z

A
0 90

Gy = 42% . (5.30)

QJ‘Q)

The helicity of the electromagnetic fields must have £1. This means that f> = f>» = 0.
These two helicity components correspond to the classical concepts of right-handed

and left-handed circularly polarized light.

While fi(u), fi (u) arbitrary functions demonstrate the polarization states of photon
in vacuum, f>(u), f>(u) demonstrate the polarization states to see the effects of the

nonminimal coupling terms. Then

%H(u,m) = A+ HBw)Z+ A1) Pz + L) Plal* + £ () fo(u)zlz?

+(u)fi(w)z|z)* —4(ca —c1)| |2 (5.31)

These solutions describe parallelly propagating plane fronted gravitational and
electromagnetic waves that do not interact with each other in the Einstein-Maxwell
theory. Here if only the standard degrees of polarization ( £1 for the photon and
42 for the graviton) are kept, no contribution arises from the non-minimal coupling
constants c1,cp. It is interesting to note that if cy,c, are kept they bring in +2
polarization degrees of freedom for the photon together with 4-1 polarization degrees

of freedom for the graviton. The notion of a partially massless (spin-2) photon had
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been introduced before by Deser and Waldron [30], [31]. On the other hand, the
partially massive (spin-2) graviton here is new and it may find some observational

evidence in future.

Additionally, Energy-momentum transported by the exact plane wave is given by

Y=y = %[|f1(u)|2z2+4(62 —c)lfiu)

+2f1(u) fr(w)z+22(u) f W)z + fo(u)] xdu (5.32)
5.1.1 The non-zero torsion case:

Now we give up the zero-torsion constraint in the action of nonminimal

Einstein-Maxwell theory and calculate the contortion 1-forms from (4.47) as

2
K*(c2—c
2
K“(ca—c
K? =K% = —% [axayy 4 2ayayy + ayay](e® — e°) (5.34)

and the other components are zero. We find the non-zero torsion components from
this contortion using (2.25)

2
K“(Ccp —¢C
2
K=(cyr —cC
+% [axaxy + Zayayy + ayaxx] 62 A (63 _ 60). (5.35)

Then the full connection 1- forms are to be

1

1
0”? = 0?= 3 [Hy — k2(c2 — ¢1)(@xny + 2ayay, + ayary)| (€2 — €°). (5.37)
For the full connection the Einstein-Cartan tensor 3-forms which are defined by G, =

1

— mRb" A kegpe become

Hy. +H c—c
Gy = —G3={ xszz » 2 > 1 ((axz)xx‘f'z(axay)xy"’(ayz)yy)}*(€3 —éY),

G = 0=0. (5.38)

When we put all these terms together to write the non-minimally coupled
Einstein-Cartan-Maxwell equations, we find remarkably that they are the same
equations with the non-minimally coupled Einstein-Maxwell equations

Hyo+ Hyy — k(2 = 1) ((ax” )+ 2(axty)uy + (ay%)yy) = =K (a” +a%),

e+ ayy = 0. (5.39)
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5.2 Static Spherically Symmetric Solutions

We look for static spherically symmetric solutions of the field equations of

non-minimally coupled Einstein-Cartan-Maxwell theory. We start with the following

metric
g = —f(r)2di®+ f(r)72dr* + r*(d6* + sin*0d9?)
the convenient choice of orthonormal co-frames:
L =f(rdt , ' =f(r)ldr , E=rd0 , & =rsin0de
under this choice the metric (5.40) becomes
g = —eo®eo+el ®e1 +ez®e2+e3®e3

and the exterior derivative of the co-frames (5.41) can be calculated as

f12 L ded = f13 cot® o2

r

= fle!%  de' =0, dé?

the Levi-Civita connection 1-forms are to be

. N N . cotf
wolzf/eo7w21:[827w31:[637w32: e
r r r

from the definition of curvature (2.35), each component of curvature 2-form:

201 _ (f;)”elo R (J;Z)'ezo RS (J;)/eso,
r r
2\/ 2\/
o1 ) 1 w3 s, am
R =5 , R =5 , R _rz(l foe-.

and Ricci 1-forms from 1,R%® = R?:

0 ()L UY o s () UY
=l 2 + r le” = 2 * r Je

. 2_1 2\/ . 2_1 2\/

RZ:_[frZ +(fr)]627 R3:_[fr2 +(fr)]e3

the scalar of curvature:

R = laﬁa = loféo + llRG1 + l2R\2 + l3}é3
2/ 2
N —1
R —- 2 //_4(f ) _2f
Ay -4l ol
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(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)



Thus the Einstein tensor can be calculated as

G0 — _[(fz)/ _ 1—_102]8123 Gl = _[(fz)/ _ 1__](2]6023
r r2 ’ r r?
2\ 2\/ 2\ 2\/
a2 [(fz) L) 1013, &3 _[ﬂjL@]eOlZ. (5.48)
r 2 r

In general, to solve the field equations of non-minimally coupled Einstein-Maxwell
theory is not easy. So, we look at the special solutions such as the Coulomb potential
and magnetic monopole potential.

5.2.1 Coulomb potential

We will consider Coulomb potential as an electromagnetic potential 1-form satisfying

the Maxwell equation dF = 0;
A = h(r)dt. (5.49)

We can calculate the following components of electromagnetic field

1
F=dA= 5 e’ = el F=h0*e0=ne,
FOZlOF:hlel, Fl:llF:hleo, F()I:h/
FPRy = —H (f?)"e!°. (5.50)

Thus, the Maxwell energy momentum tensor,

1 1 1 1
TO — Eh/26123, Tl — Eh/26023, TQ. — Eh/26013, T3 — _Eh/26012 (5.51)
and energy momentum-tensor of the nonminimally coupled terms respectively from

(4.15)-(4.20).

1,’1:.0 — h,z(fz)”6123, 1%1 — ],1/2(102)//80237

lhlz(fz)//€0]3 ]%3 — _lhlz(fZ)lle()]Z (5.52)

152
7=
2 2

A / y 30 N / . 32
ZTO — 5 2[(f2) _'_E@]e]l“ﬁ? 21.1 — —h 2[(f2) +§@]8023

2N/ 2\/
252 _%hlz[(fz)//+ @]60137 243 _ %hfz[(fz)//+ @]6012 (5.53)

2\/ 2 2/ 2
2 2/ 2 N
3%2 — h?[(fZ)//_Fz@]eOB’ 3%3 _ _%[(f2)1/+2(fr) ]6012 (5.54)
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dga _Spa _6pa _ () (5.55)

the Lagrange multiplier A, can be found from (3.7) as

c K

20 = —2fh’[(c1—cz+C3)h"+(c1—E)7]eZ3
Al =0
h/
A2 = —2fh'[(263—c2)h”—%2—]603
r
h/
A3 = 2fh'[(263—cz)h"—%27]602 (5.56)
and the covariant exterior derivative of them
A7 0 2/ 2,112 2 2K
DAY = —[(ci—cor+ec3)(fFHh" +2f°0""+2f h’h”’)—l—(2c1—c2)(—2
;
27712 201,01
h hh
+f2 )+ (8¢) — 6¢2 —|—4C3)f—]6123 (5.57)
r r
Ao 5 cH f2/h12 thlh//
DAY = —[(ci—ca+c3)f h'h”+(cl —3) + (4¢3 —2¢) .
21,12
h
e —1e%% (5.58)
r
. 2h/h//
D/lz — [(263—Cz)(lehlh//—I—le’l//z—f—fzh/hm)+(2C3—262)f ;
21712
h
_ ST o (5.59)
2 r
271,11
N h'h
D7L3 — —[(263—CQ)(leh/hN—l-fzh”Z—i—fzh/hm)-I—(2C3—2C2)f ,
27712
h
_a ST (5.60)
2 r
The total field equations are
I o 123 21 2! 3o, /7 o1y 0
—G" —Ae = W[+ —a+ta)f’ +Ba——F5)—+c—75]e~ +DA
K 2 27 r r
[y 023 21 2/ N T 1
—G — e = W[5+ —a+ta)f" +Ba——F5)—+c—75]e " +DA
K 2 2 r r
A W (c1—cr+e e WY
56+ = [7+—( — 3)h’2f2”+((:3—32)—f "% + DA
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1 3 012 > (c1—ca+¢3), 2 on o

12 2!
W= f 1893 1 D3

These differential equation system can be reduced to the following form; the

difference between the zeroth and first equations:

c1H + (2¢1 — c2)H'r + #H"ﬂ ) (5.61)
and we can solve it for H(r) as
—c1—cp+3c3+by —cp—cp+3c3—b
H(r) =C1+Cor Ya-ata) 4 Cyr 2a-ota) (5.62)

where b| = c% 4+2cicp — l4cie3+ c% +2crc3+ c% the first equation:

LA 1= I % Vi
_P[T_ > ] = 7L+H[§+(CI—CZ+C3)f +(3C3—Cl—02)7
2 217/
— — H
+(62+C3)2f €3 _ ¢ CZ+C3f2/H/—(2C3—Cz)f
r 2
the second equation:
(A" ) H  (ci—ca+c3)  on (Hf?)
— — QTS _
S+ o+ S22 (- )
2c3—C2, .y o
———=(H
+22 2 )
where H = i'? and there is also the Maxwell equation from (4.23)
2/ 2
—1
(14 (c1 — 2 +c3) 2" + (4cs —2C2)f7+203f e =q/r* (5.63)

We have not found any analytic solutions to these three differential equations which

has one unknown function.

5.2.2 Magnetic monopole potential

Now we consider the solutions with magnetic monopole potential to this theory as

A =ko(1—cos(0))do (5.64)
where
1
ko = E/SF (5.65)

We calculate the all required expressions to solve the field equations of the

non-minimal Einstein-Maxwell theory for the above potential. We point out that the

39



0" and 1*" components of all the Einstein equations have the same results, except of

DA“.

A% and DA“ components can be found as:

2f &)
0o _ 2 23
AV = —r—5(203 — E)koe
Al =0
2 f 3¢ 2 03
Ac = —r—s(cl — +4c3)kge
5
A3 = ris(cl —%4—463)/((2)602 (5.66)
6/ cay 2ff o
0o _ 2 123
DA (=5 (Qes =) = =5 (3= )lkge
A 212 5¢, 2ff s
DAl =[5l == +aes) = =5 (o3 — )kge™
A 212 5c¢ 2FF 5¢
DA? [_%2@1 - 72 +4c3) ,,Sf (c1— —22 +4c3)| k3t
A 212 5¢ 2ff 5¢
D2 = [fater 5 ey - e - vac I 567

Thus we can write the total field equations respectively;

The 0" component:
f2/ 1 _f2 N k2 k2C3f2/
r r2 2r4 P
(4ca — 13¢5 — K2 f2 + (¢ — ¢34 c3)k?

— ¢ =0 (5.68)
,,
where k = k2k.
The 1% component:
fZ/ 1_f2 N k2 k2c3f2/
r r? 2r4 r
—der +7 k2 f? - k?
_( co + C3—|-Cl) ];4—(01 C2—|-63) _ 0 (5.69)
r
The 2™ component:
f2'+ 2 (D2 (Tes—4er+c))KEfY
r 2 2rt r
8¢y — l4c3 — 21k f> —2(cy — k?
Be e m2e)k T2 matall (5
r

and the Maxwell equation is automatically satisfied for this potential.
dxF =0 (5.71)
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We can see from 0/ and 1% components?.

c1—4cp;+10c3 =0 (5.72)

e If one choose c3 =0, ¢; = 4c; , the above system is reduced to the following two

differential equations;

——3—— =0 (5.73)

As it is given by Balakin in [32], the solution of these differential equations is

2m kE cok?

PP == = (574

The solution is asymptotically flat and a generalization of Reissner-Nordstrom
solution to the non-minimal case. The metric function f? has a central essential
singularity for arbitrary mass and charge. That is, f> has at least one positive real

solution for r, thus spacetime has one or more horizons.

e If ¢y = 6¢3, co = 4c3, the above system turns out to the following two differential

equations;

ﬁyﬁ_ (1+c3 2"k . 3K2es 2 6c3(f2— 1R

=0
2 r 2r4 rd 7o
2/ 2 2 2 2/ 2(£2
1-— k k 3c3k —1
U e R O Vi Utk PP Y 2
r r2 2r4 rd 70

the solution of this differential system [33] is

k2r? — dmr?

20 —
)

(5.76)

This solution is also asymptotically flat and it is regular at » = 0, f2(0) = 1, provided

that c3 # 0. There is a singularity at #* = k?c3 and there is at least one horizon.

2When we take ¢; = g3 ¢y = —q» ¢3 = q1, we obtain the same results with [32]
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5.2.3 The non-zero torsion case:

In the beginning of this chapter, we have shown that we can consider also theory
with torsion. For a given electromagnetic potential we can determine the contortion

uniquely from (4.47) as

fk? (—3 c6’k? —21r%ce — r*es + cskPe3 + r4C3) el

K% = 5.77

! r(r84+2rtcek? + cg2k?) ( )
k2 (c3+c6) e’

K! K=/ 5.78

2 r(r*+cgk?) (5.78)

and using (2.25) we can determine the components of the torsion

sz (—3 c62k? —2r%c — r*es +eskPes + r4C3) eVl

0 _

= r(r8+2rtcek? + ce2k?) (579)
2 fk*(c3+cg)e'?

T e (5.80)
3 [k (c3+co) el

T e (5.81)

where cs = ¢y —cy+c3 and ¢g = c3 — F.

When we calculate the Einstein-Cartan-Maxwell field equations (4.49)-(4.51), we
find very long and complicate differential equations for the above magnetic monopole
potential and static spherically symmetric metric. Therefore, we think it is not useful
to give the expressions explicitly here. So, we look for solutions for some special

values of ¢;.

o If ¢; = 6¢3, c» = 4c3, the above system is reduced to (5.75) with 7% = 0

interestingly and the solution is (5.76) again.

e But, if ¢c3 =0, ¢; = 4c¢, the above system with torsion is not consistent and
there is no solution. The absence of the solution gives us the difference between
Einstein-Maxwell theory and Einstein-Cartan-Maxwell theory for this choice. We
can see while the solution (5.76) is regular at r = O for ¢3 # 0, the solution (5.74)
has a singularity at this point. Thus, when we allow the torsion, there is no solution
which has central singularity, while there is a solution which has central singularity

(5.76) to the Einstein-Maxwell field equations.
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6. EINSTEIN-CARTAN-DIRAC THEORY

Although general relativity describes the motion of bodies at the scale of solar
system very successfully, it is inadequate in Planck densities and cosmological scales.
Therefore, for a natural extension of general relativity to those scales, the effects of

coupling fermions to gravity should be considered.

On the other hand, Einstein-Cartan theory [10] is a generalization of Einstein’s
theory of gravity allowing space-time (in arbitrary number of dimensions) to have
torsion in addition to curvature and relating torsion to the density of intrinsic angular
momentum of matter. In this theory, torsion is considered as a nonpropagating
field. The Einstein and Einstein-Cartan theories give exactly the same results
in empty space. Since all tests of general relativity are based on the idea of
Einstein’s field equations in vacuum, the Einstein-Cartan gravity is consistent with
the idea in that case. Initial expectation of Trautman was that the intrinsic angular
momentum may influence the occurrence of singularities in gravitational collapse or
cosmology but that didn’t turn out to be the case. The theory of gravity which has
torsion and spin was given independently by Sciama and Kibble. Actually, simple
theory of supergravity is equivalent to Einstein-Cartan-Dirac theory with massless,

anticommuting Rarita-Schwinger field [38].

One can couple gravity with the Dirac fields in the formulation of
Einstein-Cartan-Dirac theory. In Einstein-Cartan-Dirac theory, torsion depends
on the spin and the energy-momentum tensor which is non-symmetric (because of
torsion). The effects of torsion can be significant only at high densities of matter.
Nevertheless, they may contribute at much smaller densities than the Planck density
at which quantum gravitational effects are believed to dominate. Moreover, it
can be a new insight to consider the couplings in the context of astrophysical and
quantum field theory. Field theories often provide easy ways to check the ideas that

are difficult to prove in actual (1+3)-dimensions. However, it is not surprising to
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uncover other new ideas as well that are specific to (1+2)-dimensions. Topologically
massive gravity [34] or BTZ black holes [35] are some of the best known examples
to the latter case. Other aspects and the literature may be found in Ref. [36]. An
extension of the BTZ solution with torsion is discussed by Garcia et al [37] where the
field equations are derived from an action that includes topological Chern-Simons
terms. Despite the existence of many solutions of general relativity in the Einstein or

Einstein-Maxwell theory, there are a few solutions for Einstein-Cartan-Dirac theory.

We investigate Einstein-Cartan-Dirac theory in order to obtain the behevior of the
space-time metric in the precense of a Dirac spinor field. Firstly, we will obtain the
field equations of Einstein-Cartan theory using the variational principle. Therefore,
we will point out the difference between General relativity and Einstein-Cartan
gravity giving an outline of these two theories in arbitrary d-dimensions. In order
to reach this theory, the Einstein-Hilbert action is extended to Einstein-Cartan action
which includes torsion tensor. We will couple a Dirac spinor to Einstein-Cartan
gravity and obtain the field equations by a variational principle in (1+2)-dimensions
using the algebra of exterior differential forms. We will determine the torsion tensor
in terms of Dirac field couplings in three dimensions. It is interesting to note that
the same Einstein-Cartan-Dirac field equations can also be obtained from an action
by zero-torsion constrained variations using the method of Lagrange multipliers.
Thus, we will show that the equivalence between the Einstein-Dirac theory and
Einstein-Cartan-Dirac theory in three dimensions. We will consider through this
paper the metric compatible connection. That is; the nonmetricity tensor is equal

to zero.

The space-time torsion is determined algebraically in terms of the quadratic spinor
invariant associated with a Dirac condensate field. We then looked for rotating,
circularly symmetric solutions. We found a particular class of solutions that possess
an essential curvature singularity at the origin r=0. The mass and the intrinsic angular
momentum of this configuration can be identified. It is remarkable that in the absence
of the Dirac condensate field the metric collapses to the regular AdS3 metric. We note
that for our solution the Dirac condensate field determines completely the rotation of

the metric of the space-time.
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6.1 Variational Field Equations

We consider a Dirac spinor field y which has two components in 14+2 dimensional

space-time in spinor representation of the Lorentz group as

_ (W
Y= ( v ) 6.1)

and the conjugate spinor field
v=vn=(v W) (6.2)

where Y and y, are complex, odd Grassmann valued functions. We use a real (i.e.

Majorana) realization of the gamma matrices {7,} given explicitly as

0 1 01 1 0
?’0=<_1O),%:(lo),?’z:(o_l)- (6.3)

To write the hermitian Dirac Lagrangian let us start the following Lagrangian for the

Dirac fields vy, v,
Lp[V, e, 0] = iYW Axy AVy +imyyxl (6.4)

where m represents the mass of the fermionic field. The exterior covariant derivatives

of the spinor fields are defined to be

1 — 1
szdw+§w”%w/, szdw—zwwwqh (6.5)
with
1 1 .
Oup = Z [Yaa Yb] = 5 * eabc’y" (66)

in terms of spinor connection @,;,. We set xy = 7, * e“. We see from (6.4) that the

first term is not hermitian. But, the second term is hermitian since ()" = —}o.

(imyy)" = imGy (6.7)

In order to make the first term in (6.4) hermitian, hermitian conjugate of this is

inserted to the Lagrangian

ﬁ:;ﬁ+ﬁ) (6.8)

45



thus,

Lp = %[ZT/*’}//\ Vy + (W AsyAVY) ] +imyy«l
= é[V*Y/\VW—(W/\*W\VW)T]+imW1V*1
= [P AVY— (V) A ) (0 0) ] imy]
= é[W*M Vy — (V)" A (1) () ] +imPy«1
where we have used the properties of Dirac matrices such as %% % = ¥. 0% = —1
and 1" = —.

We will continue with taking independent variations according to the fields of the

hermitian Dirac Lagrangian 3-form in three dimensions.
- o -
Lp= EW*W\ Vy — Vy A xyy] + imyyxl (6.9)

e The co-frame variation of the Dirac Lagrangian:

S.Lp = %(75*7/\ VY — VYA Sxyy) + impydxl (6.10)

substituting xy = y,xe® and 0x1 = §e“ A xe,, in the above expression the variation can

be recast into the form
SLp = Oxe” A %(W%Vl[/ —Vypy) + 8¢ NimPyxe,
= Set Ax(eP Neg) A é(WYbVW —Vypw) + 8¢ NimPyxe,
_ e A éW*(W\ e) VU +VU(Y A ea) W] + 8¢ A imTyre
Thus, the energy-momentum 2-form of a spinor field have been derived such as

. i =-— .
T.[v] = z[l//*(}//\ eqa)VY+Vyu(yAe,) W]+ imyysxe, (6.11)

e The connection variation of the Dirac Lagrangian:

%pr/\ VY + 8V Axyy]

= PHYA ﬁéa)"boabl//— i(—V5wabGab * YY)
= oA %W(*'}’Gab + Oup*Y) ¥

= oA ﬁ V(YeOup + OupYe) We
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by using the properties of the Dirac matrices the variation
Sl = S A ﬁwwgabc *ef
= —Sa’A %Wweab (6.12)
from here the spinor angular momentum 2-form can be identified as

i
L= =3 Ve (6.13)

e The VY field variation of the Dirac Lagrangian:

Syl = %[W*w\vw—V(éw)A*yw}+8Wimq/*1 (6.14)

The second term in the parenthesis

_ 1o
VEY) Axyy = d(8Y) Axyy — S8V 0w Axyy

_ 1
= Wy Ady +dryy + 50" 0y A1yl

USing this property OuabYe = YeOuab + NbcYa — Nac Yo

— L,
VEY) Axyy = —SWld(xyy) + 50 A (¥Y0ub + Ya* e — Vo *€a) V]
= —SUxYAVY—8Y(d*e’ + 0 xep) vy
= —OYxyYAVy+OoYT Axyy (6.15)

where in the last step we have used

Dxe® = dxe’+ o™ Nxep =T xe%, (6.16)

= —T Axe (6.17)

Thus from (6.14) non-linear Dirac equation is obtained in the Riemann-Cartan

space-times
_i
Oyl = 51//5[2*7//\ Vy —xy ATy +2myx1] (6.18)
and for the y field after same process we find that

Syl = %[—ZW/\*y—F*y/\ Ty + 2myx1]8y (6.19)
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Thus, the infinitesimal variations of the Dirac Lagrangian (6.9) are found to be (up to

a closed form)
“p = é“A{%*ebw(WNW-W%WHWW*%}
1 - ab I _
5 OT N SV YO+ Oap x V)W
. 1
+il/7{>x<y/\V1//+§*eg/\TbyaI//-l-m*y/}

—i{WA*'y—%*eZ/\Tbl/_/ya—m* 1/7} V. (6.20)

Here we use the notation SL = L. In order to obtain the field equations of the
Einstein-Cartan-Dirac theory, we substitute these variations into (3.16) and 3.17).

Thus, we obtain

Ry = KAeyNep+imkWye, Nep
K _ K _
Hizea N(UBVY) —izer N FhVY)
K N K _
tise AN(VYhay)—isea N VYY), (6.21)
K _
T, = zzwy/*ea (6.22)

We note that the torsion 2-forms (6.22) satisfy xej, A T? = 0 and the Dirac equation
(6.18) simplifies to

*YANVYy+myx1=0. (6.23)

6.2 Equivalence of Einstein-Cartan-Dirac and Einstein-Dirac Theories

When we solve contortion from (6.22) using (2.25) and substitute it into the field
equations (6.21) and (6.23) we can rewrite the field equations explicitly. In order to

show this the con-torsion 1-forms can be calculated as

i_ T
Kap = VW rea = —5 *ea (6.24)

where 7(r) = £y is a new radial function.
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Noting that the full connection ,, = @, + K,, Einstein tensor and

energy-momentum tensor can be written as

1

GC = —R[ﬁ“b/\*eabc—l—@l(“b/\*eabc+K“f/\be/\>keabC]
= G- Mrnet Dren (6.25)
= R €c 3 €c .
i = .
tly, 0] = S[Wx(YAe) \VY+VYA(yNec)y] +imyy+ec

= S (A AVY+ VY Ay Ae) Y] +imPy ve.

+4£wa* (ef AN €c> A Kab('yfcab + Gabe)
1-2
= v+ e (6:26)

These field equations (6.21) and (6.23) can be rewritten in terms of the Levi-Civita

connection only [39].

3K, _
E(WW) eq N\ ep,

*Y AV + my * 1+i3?’((1/71//)l//* 1=0 (6.27)

A . K
Ry = KAde, A eb—K*eabC%‘—i-iZd(l/_/l//) Ax(eq Nep)—

It is interesting to note that the Einstein-Cartan-Dirac equations (6.27) can be obtained
from an action by zero-torsion constrained variations using the method of Lagrange

multipliers [40]. To this end, we consider a modified Dirac Lagrangian density 3-form

fézé(lf/*}//\@l;/—@lﬂ/\*}/lﬂ)+iml/_/y/*1—31—’6<(¢/1//)2*1 (6.28)
together with the constraint term

Lronstraint = (de® + 0% N eP) A Ay (6.29)
where {A,} are the Lagrange multiplier 1-forms. The variation of the total action

I= /M (D%EC + gé + D%constraint) (6.30)

with respect to the Lagrange multipliers imposes the constraint that the connection
1-forms are Levi-Civita. Then we firstly find the connection variation equations under

this constraint for the Lagrange multiplier 1-forms from the connection @ variation

of (6.30)
iwweab FAaAep=0 (6.31)
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We can solve the Lagrange multiplier A, from the Levi-Civita connection equation

and find,

T
A/a = _Ecea (6032)
and the covariant derivative of it
N dt 1 ~
Dka = _ﬁ Neg = _Z(VKab AN *€abc (6.33)

The Einstein and Dirac field equations of the constraint Lagrangian are found as;

Ge+Axec=—T[y,d] — DA+ 31—2(71,”)2 *ec,
*Y AV Y+ my * l—i—i?%((y'/w)y/*l =0 . (6.34)
where
[V, 0] = L[ (YA e) AV(O)y + V(@)W A (YA e) W] + imPye. (635)

|

If we rewrite the Einstein-Dirac field equations (6.34) explicitly and compare with
the equations of Einstein-Cartan-Dirac theory (6.27), we find field equations of these

two theories are equivalent.

6.3 Stationary, Circularly Symmetric Solutions

We will seek the solutions of the field equations in terms of the local coordinates

(t,r,9) given by the metric tensor,
g = —f(r)?dt® +h(r)*dr* + r*(d¢ + a(r)dt)? (6.36)
In the orthonormal co-frames
g:—eo®eo+el®el—|—ez®e2 (6.37)
where we choose
0 = f(r)dt, el = h(r)dr, ¢ = r(do +a(r)dt). (6.38)
leads to the Levi-Civita connection 1-forms
(i)ol = o’ — gez , (f)Oz = —gel , D = —'}/ez — —e (6.39)
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where the new unknown functions

1 1 _dr

o= = — = — 6.40
are introduced to simplify the calculations with denoting the derivative dir.
The exterior derivatives of the co-frames become
/ /
1
de = %elo, de' =0, de* = —%e‘“ + Ee” (6.41)

On the other hand, assuming i5 Yy = 7(r), we calculate the contortion 1-forms

T T T
K% = 562 K% = _Eel K = —Eeo, (6.42)
We can write the full connection 1-forms as
—7T T T
a)Ol = ae® - ﬁ—e2 o’ = —ﬁLel 0l = —ye® — ﬁ;eo (6.43)

2 TR 2 2
As we know GR is based on a space which has real metric functions. But here we
find the metric functions can take even Grassman numbers. If we want to generalize
GR to the superspace considering the Dirac fields, the metric necessarily involves
the even Grassman valued functions. ECD theory is defined here similarly. We can
extend the real metric as § = g and the (6.42) satisfy the requirement. It is need for

consistency of the theory with SUGRA and QFT. However, the all following results

are also correct for ordinary complex Dirac spinors without any other assumptions.

Using this expressions as a first step towards a solution, we take a Dirac spinor that

depends only on r and work out (6.23) in components as follows:

h h

wi'+ @+ v+ (B+3t+dmyr = 0 (6.44)
h h

o'+ (a+ e+ (B+3T+4myr = 0. (6.45)

It is important to remember that while o, 3,y are the metric functions, T is the
function of torsion tensor. Since differential equations depend on both y; and y»
simultaneously, we take the combinations y; = y; + v, and y_ = y; — ¥, and write

a decoupled system of equations

Vit (kitk)y, = 0
v+ (ki —k)y- = 0 (6.46)
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where we set

h h
ky = 5(oc+y) , k= Z(ﬁ +37+4m).

The formal solution to these equations are given by

v = ok <§+e*frk2dr+§fefrk2dr)

v = e_frkldr <€+€_Irk2dr . g_efrkzdr> (6.47)

where &, and &_ are complex, odd Grassmann valued constants. It can easily be

verified
T(r) = ik(EXE, —EFE Ye 2 hdr, (6.48)

The function of torsion is a real function with even Grassmann numbers. This is
the general solution of the radial Dirac equation with torsion for stationary circularly
symmetric metric. Now let us solve the co-frame equations for (6.36). The Einstein

tensor related with Levi-Civita connection,

N oY B*\ 1

G = E[(g‘i‘?’ﬁ)e —(§+?’2+7)€ ] (6.49)

G = —l(ya+ﬁ—2)e02 (6.50)
K 4 )

o Lo 5 3B o B 12

G- = K[( . +a e Je +(2g—l—ﬁy)e ] (6.51)

Non-Riemannian part of the Einstein tensor related with torsion or spinor fields

PN afo f a0y 1T o T 12
_QK[DKaf/\*e +K, /\be/\*e ] = K'[zge —|-4€ ] (6.52)
1A afl f abl 17%
_ﬁ [DKaf N *xe + Ka A be N *xe ] = Eze (6.53)
Lk e K AR aee®] = 0T (654
2t @ Rfb k' 4 28 .
and the energy-momentum tensor for the Dirac fields
: 2
T™ i _ 7 2mtT
0 = ?em—i—(ga—g——’( )e12 (6.55)
2 .
T° 2mT i “ X % %
U= () T Y ety — v y)e (6.56)
i %00 ) %00/ / * x/ 01
+g(ll/2 VIT VIV — W Vi — T e (6.57)
- 2
T i T°  2mT T
2 = —le12+(——3+—+—+ﬁ—)e01 (6.58)
K 2g K K K



where E = —y1*y] + vy + v 'y — o'y, We arrange the equations such
that the left hand side of the following equation system represents torsion-less
contributions and cosmological constant term, and the right hand side describes
with torsion part of Einstein tensor in addition to energy momentum tensor of Dirac
spinors. We next work out the Einstein field equations (6.21) that after simplifications

reduce to the following system of coupled first order differential equations:

/ /

T
B N 59
zg-p-ﬁy 2 TQ (6.59)
Yy p? _ 3%2 Bt
o 3B% 312 Bt
z _2F = - _ 7 .61
P +a°+AKk 1 5 (6.61)
2 372
_T —Qay— A = T +2m7t (6.62)
/ T/
Z 4By = —+1y (6.63)
2g 2g

At this point, to be able to find an explicit solution we fix a negative cosmological

constant

1

KA = ) <0 (6.64)

and restrict our attention to those cases for which

y=a=— , 1=f="2. (6.65)
.

r [
fr)=+5 , h(r)= , (6.66)
l r\/l_zmgoﬂ_@
and
Bo
1 m+ =
a(r) = — arcsin — |~ — arcsin r (6.67)

21 /mz_’_llz 21 /mz_’_llz

It now remains to integrate for the Dirac spinor and we find

By
:FmTI :I:larcsin< ) )
2 4 ) 2 2
_&l|r Bo -+ \/r_ _ 2mPor* By e i (6.68)

‘Ifi—T 72~ MPo
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where — Ak =/¢"2,Q:= k\/E_ZrA —2Bol2mr? — [3354, k==+1and By = ik(&"E —
£1"&,) is an even Grassmann number. Here dimensions are [¢] = [k] = L and [Bo] =

[m] =[&] =L"".

In order to understand the physical meaning of this solution we write down the metric

2 29,2
r l“dr
= ——df’
S S R YO
r 2 2

+r2(d¢ +a(r)dt)?. (6.69)

Firstly we observe that in the absence of a Dirac condensate () = 0) the above metric

collapses to the AdS3 metric

P2

l2
g0 = —l—zdﬂ + r—zdrz +r2d¢?. (6.70)

Even when 3y # 0, the metric g — go asymptotically as r — 0. Secondly we note a

metric singularity at

l\/mﬁo—l—ﬁo\/mz—kliz , Bo>0
Fe=
l\/!ﬁo!\/m2+llz—m|ﬁ0! <0

This is a coordinate singularity as evidenced by a further calculation of the curvature

(6.71)

scalar

6 4mpy

X = - 2 (6.72)
and the quadratic curvature invariant
6 8mPy  By(8m>—7%) 16mB; 8P
by _ I 0 0
*(Rup AN *xRY) = AT 2 e + s + p (6.73)

that are regular at r = r.. However, these curvature invariants exhibit an essential
singularity at r = 0. Such a configuration resembles to a black hole for which the
essential curvature singularity at the coordinate origin is hidden behind an event
horizon. A global extension of the above solution is tedious and will not be attempted
here. Instead we will check the quasi-local conserved quantities associated with our
solution at a distance r > r.. A comprehensive discussion of the conserved quasi-local
quantities for gravitating systems within the framework of general relativity may be
found in [41,42]. For calculational details in (1 +2) dimensions we again refer to

Ref. [43].
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The quasi-local angular momentum is a constant

P da
J(r)= TR dr Po. (6.74)
the quasi-local energy is
E(r)= Lt (6.75)
~ ho(r)  h(r) ‘

where the first term describes the contribution of the background "empty" spacetime.

Using the metric functions in (6.69),

2 2
r r 5 Boml
and the quasi-local mass is determined by the expression
M(r) = 2f(r)E(r)—J(r)a(r). (6.77)

We can calculate the quasi-local mass for the system as;

> 2 2mByl2 212
M(r) = 2——2—\/1— mpol” By

r? r? r? r4
Bo
1 1 m+ >3
+2—l arcsin S 3 arcsin | ——1— (6.78)
m? + l% m? -+ ILZ
~ ZmBO

in the limit as r» — oo.

The results of this chapter is submitted for publication [44]. Also, a similar model
has been considered [45] where the space-time torsion was introduced independent
of a Dirac spinor. The static solutions were discussed there rather than the stationary

solutions as given here.
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7. CONCLUSION

Firstly, we have investigated gravitation theories considering non-minimally coupled
electromagnetic fields to gravity. We have derived the field equations of the theories
with torsion and without torsion using exterior algebra of differential forms by the
first order variation procedure. We investigated static spherically symmetric and
pp-wave solutions. We found an exact magnetic monopole solution for the field
equations of Einstein-Cartan-Maxwell theory. The torsion affects the singularity
of the solution and do not allow a singularity at the central point. We give also a
class of exact plane fronted wave solutions in Brinkmann form to the field equations
for a generic 6-parameter non-minimally coupled terms. Maxwell field equations
are not changed by the nonminimal coupled terms for the pp-wave metric. But,
Einstein field equations allow a class of nontrivial solutions by the presence of the
first two non-minimal couplings of electromagnetic fields to gravity. Additionally,
The energy-momentum transported by the plane-fronted waves is modified by the

nonminimal coupled terms.

Secondly, we have formulated the Einstein-Cartan-Dirac theory in (1+2)-dimensions
using the algebra of exterior differential forms. We coupled a Dirac spinor to
Einstein-Cartan gravity and obtained the field equations by a variational principle.
The space-time torsion is given algebraically in terms of the quadratic spinor invariant
associated with a Dirac condensate field. We then looked for rotating, circularly
symmetric solutions. We found a particular class of solutions that possess an
essential curvature singularity at the origin r = 0. The mass and the intrinsic angular
momentum of this configuration can be identified. It is remarkable that in the absence

of the Dirac condensate field the metric collapses to the regular AdS3 metric.

57



58



REFERENCES

[1] Dereli, T., 1984. Differential Forms and Maxwell Equations, Lectures Notes,
TUBITAK Graduate Summer School, 18-28 Sep.

[2] Flanders, H., 1963. Differential Forms with Applications to the Physical
Sciences, ISBN 0122596501, Academic Press, New York, USA.

[3] Thring, W., 1997. Classical Mathematical Physics: Dynamical Systems
and Field Theories, (3" Edition), ISBN 0-397-94843-0, 539p.,
Springer-Verlag.

[4] Cartan, E., 1923. On manifolds with an affine connection and the theory of
general relativity, edited 1986, Bibliopolis, Italy.

[5] Dereli, T., Onder, M., Tucker, R.W., 1995: Solutions for neutral axi-dilaton
gravity in four dimensions, Class. Quant. Grav., 12, L25.

[6] Dereli, T., Onder, M., Schray, J., Tucker, R. W., Wang, C., 1996.
Non-Riemannian Gravity and the Einstein-Proca system, Class. Quant.
Grav., 13, L103.

[7] Hehl, F. W., McCrea, J. D., Mielke, E. W., Ne’eman, Y., 1995: Metric-Affine
Gauge Theory of Gravity: Field Equations, Noether Identies, World
Spinors and Breaking of Dilaton Invariance, Phys. Rep., 12, L31.

[8] Adak M., Sert O., 2005. A solution to symmetric teleparallel gravity, Turk. J.
Phys., 29, 1-7.

[9] Adak M., Kalay M., Sert 0., 2006. Lagrange formulation of the symmetric
teleparallel gravity, Int. J. Mod. Phys. D, 15, 619.

[10] Trautman, A., 1972a, b, ¢, 1973a. On the Einstein-Cartan equations. I-IV, Bull.
Acad. Polon. Scie., 20, 185, 503, 895, ibid.21 345.

[11] Ehlers, J., Kundt W. 1962. Gravitation: An Introduction to Current Research,
edited by L. Witten, Wiley, New York.

[12] Aichelburg, P. C., 1971. Remark On The Superposition Principle For
Gravitational Waves, Acta Phys. Austr., 34, 279.

[13] Dereli, T. and Tucker, R. W., 2004. On the energy-momentum density of
gravitational plane waves, Class. Q. Grav., 21 , 1459-1464.

[14] Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., and Herlt,
E., 2005. Exact Solutions to Einstein’s Field Equations, Second ed.,
Chambridge University Press, UK.

59



[15] Prasanna, A. R., 1971. A new invariant for electromagnetic fields in curved
space-time, Phys. Lett., A37, 331.

[16] Horndeski, G. W.,Conservation of charge and Einstein-Maxwell field
equations, 1976. J. Math. Phys. 17 1980.

[17] I. T. Drummond and S. J. Hathrell , 1980. QED vacuum polarization in a
background gravitational field and its effect on the velocity of photons,
Phys. Rev. D 22, 343.

[18] Buchdahl, H. A., 1979. On a Lagrangian for non-minimally coupled
gravitational and electromagnetic fields, J. Phys. A, 12, 1037.

[19] Miiller-Hoissen, F., 1988. Non-minimal coupling from dimensional reduction
of the Gauss-Bonet action, Class. Q. Grav., 5, L35.

[20] Dereli, T., Ucoluk, G., 1990. Kaluza-Klein reduction of generalized theories
of gravity and nonminimal gauge couplings, Class. Q. Grav., 7, 1109.

[21] Balakin, A. B., 2005. Non-minimal coupling for the gravitational and
electromagnetic fields: a general system of equations, Class. Q. Grav.,
22, 1867.

[22] Balakin, A.B., Bochkarev, V.V., Lemos, J.P.S. 2008. Nonminimal coupling
for the gravitational and electromagnetic fields: Black hole solutions
and solitons, Phys. Rev. D, 77, 084013.

[23] Balakin, A. B., Zimdahl, W. 2005. Anisotropic cosmological models with
nonminimally coupled magnetic field, Phys. Rev. D 71, 124014.

[24] Balakin, A.B., Ni, W.T., 2010. Non-minimal coupling of photons and axion,
Grav. Cosm. 27, 055003, p.23.

[25] Dereli, T., Gratus, J. and Tucker, R.W.,, 2007. New perspectives
on the relevance of gravitation for the covariant description of
electromagnetically polarizable media, J. Phys. A: Math. Theor. 40,
5695.

[26] Dereli, T., Gratus, J. and Tucker R.W., 2007. The covariant description
of electromagnetically polarizable media, Physics Letters A 361, 3,
190-193.

[27] Das, M., Mohanty, S., Prasanna, A.R., 2009. Constraints on background
torsion from birefringence of CMB polarization, arXiv:0908.0629v1.

[28] T. Dereli, O. Sert, 2011. Non-minimally Coupled Gravitational and
Electromagnetic Fields: pp-Wave Solutions, Phys. Rev. D 83, 065005,
arXiv:1101.1177.

[29] Misner, C. W., Thorne, K. S. and Wheeler, J. A., 1973. Gravitation,
SanFrancisco: Freeman.

[30] S. Deser, A. Waldron, 2006. Partially massless spin-2 electrodynamics, Phys.
Rev. D 74, 084036.

60



[31] Yu. M. Zinoviev, 2009. On massive spin 2 electromagnetic interactions, Nucl.
Phys. B 821, 431.

[32] Balakin, A. B., Dehnen, H., Zayats, A.E., 2009. Non-minimal monopoles of
the Dirac type as realization of the censorship conjecture, Phys. Rev. D,
79, 024007.

[33] Balakin, A. B., Zayats, Alexei, E., 2008. Ray optics in the field of a
nonminimal Dirac monopole, Grav. Cosm. 14 86-94, arXiv:0710.0606.

[34] Deser, S., Jackiw, R., Templeton, S., 1982. Three-Dimensional Massive
Gauge Theories, Ann. Phys. 140, 372.

[35] Banados, M., Teitelboim, C., Zanelli, J., 1992. Black hole in
three-dimensional spacetime, Phys. Rev. Lett., 69, 1849.

[36] Carlip, S., 1998. Quantum Gravity in (2+1)-Dimensions, Cambridge
University Press, UK.

[37] Garcia, A. A., Hehl, F. W., Heinicke, C., Macias, A., 2003. Exact vacuum
solution of a (1+2)-dimensional Poincaré gauge theory: BTZ solution
with torsion, Phys. Rev. D, 67, 124016.

[38] Trautman, A., 2006. Einstein-Cartan theory, in Encyclopedia of Mathematical
Physics Volume:2, edited by J.-P. Francoise, G. L. Naber, Tsou S.T.,
Elsevier, p. 189, arXiv:gr-qc/0606062 and references therein.

[39] Hehl, F. W., Datta, B. K., 1971. Nonlinear spinor equation asymmetric
connection in general relativity, J. Math. Phys. 12, 1334.

[40] Dereli, T., Tucker, R. W., 1988. Gravitational Interactions in 2+1 Dimensions,
Class. Quant. Grav. 5,951.

[41] Brown, J. D. York Jr., J. W., 1993. Quasilocal energy and conserved charges
derived from the gravitational action, Phys. Rev. D, 47, 1407.

[42] Brown, J. D., Creighton, J., Mann, R. B., 1994. Temperature, energy, and
heat capacity of asymptotically anti-de Sitter black holes, Phys. Rev. D
50, 6394.

[43] Dereli, T., Obukhov, Y. , 2000. General analysis of self-dual solutions for
the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions, Phys.
Rev. D , 62, 0240013.

[44] Dereli, T., Ozdemir, N., Sert, O., 2010. Einstein-Cartan-Dirac theory in
(1+2)-dimensions, arXiv:1002.0958v1 [gr-qc].

[45] Hortacsu, M., Ozcelik, H.T., Ozdemir, N., 2008. 2+1 dimensional solution of
Einstein Cartan equations, arXiv:0807.4413[gr-qc].

61



62



APPENDIX

APPENDIX A: Derivation of Field Equations from a General Action.
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A. DERIVATION OF FIELD EQUATIONS FROM A GENERAL ACTION

Let M be an n-dimensional manifold and o, 3 € A?(M) where A”(M) denotes any
p-form on M. Then we would like to find the extremum of the following action
integral

T, B, e] :/ anxB (A.D)
M
by varying it with respect to the dependent variables '; o, B and ¢® 2.
512/5(1/\*B+a/\5*ﬁ (A2)
M

Here, variation of the second term on the right hand side needs some calculations to
be given in detail, because it contains Hodge star.

1
OC/\5>|<B = a/\é(aﬁil...ip*ell lp)
1 1
= OC/\E((SﬁiI...,'p)*e” l”-l—(X/\Eﬁil...ipa*e“ ' (A.3)

First, use the identity in the first term

0N+ =0 A0 (A4)
where 0 , ¥ € AP(M)
1 o 1 —
UNCEYES —‘(5[3,~1,..,~p)e’1""f’ A%+ QN —,Bi1-~-ip5 xe'l (A.5)
p: p:
By making the use of the equality
1 i
o = 6(}7![3,'1...,'[7611 )
1 i i 1 i
= 17!(3[31'1...1'[))6 p+(6€ )/\mﬁil...ipe P
1 N
= 5(6[3,-1...,-[,)6” '+ (8e") A (1, B) (A.6)
1 o
]7(5&1.-4,,)6“ o= 6B —(8e")A(1P) (A7)
and the equality
1 iveeei 1 1 iveeei P
Eﬁil”")ﬁ*el P = IT!Bil...ip5 mgl pip+1...in€p+l n
= <5ep+l)/\p!(n_17—1)!81 pip+1"'inﬁi1"'ip€p+2 !
= (6€¢) A (1axB) (A.8)

ISince these variables are dependent of chart coordinates x*, we call them as "dependent variables".
2These kinds of Lagrangian contains co-frame via the Hodge star.

64



in (A.S5) and then substituting the results into (A.2) we obtain
51 = & / anB
M
- / SOUN%B + 8B Axa— 8¢ A [(1aB) Axa— (—1)PaA (10 B)] (A9)
M
where o , B € AP(M).
e Special Case: oa=B=F=dA

We encounter these kinds of Lagrangians, especially in electromagnetic theory and
symmetric teleparallel gravity models. In this case (A.9) becomes

51— /M (SAA) A (2 dA) — 5 A [(1aF) A%F — (—1)PF A (1a+F)]  (A.10)
where A € AP~!(M). Since variation and exterior derivative commute with each other
8d =ds (A.11)
the equation may be rewritten
51 — /M (dSA) A (25 dA) — 8¢ A [(1aF) A*F — (—1)PF A (1 F)]

-~ /M(SA)/\(—1)1’(2d*F)+d(5A/\2*F)
=8 N[(1,F) N*F — (—1)PF A (1% F)] (A.12)

By applying the Stoke’s theorem, the second term on the right hand side can be written

/d(5A/\2>x<F): SAN2¥F =0 (A.13)
M oM

because the boundary condition is 8A|;,, = 0 where dM is the boundary of M. Thus

ol = 3/ dA N xdA
M

_ /M(SA)/\(—I)P(ZCI*F)—56“A[(zaF)/\>x<F
—(—1)PF A (14 F)] (A.14)

where F = dA € AP (M).
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