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CODE-BASED EVALUATION OF SEISMIC PERFORMANCE LEVELS OF 
REINFORCED CONCRETE BUILDINGS WITH LINEAR AND NON-
LINEAR APPROACHES 

SUMMARY  

Determination of seismic performance of existing buildings has become one of the 
key concepts in structural analysis topics after recent earthquakes (i.e. Northridge 
Earthquake in 1994, Kobe Earthquake in 1995 and Izmit and Duzce Earthquake in 
1999). Considering the need for precise assessment tools to determine seismic 
performance level, most of earthquake hazardous countries try to include 
performance based assessment in their seismic codes. Recently Turkish Earthquake 
Code 2007 (TEC’07), which was put into effect in March 2007, also introduced 
linear and non-linear assessment procedures to be applied prior to building 
retrofitting process.  

In this thesis study, performance based assessment methods and basic principles 
given in TEC’07 and Eurocode 8 will be investigated. After the linear elastic 
approach and non-linear approach will be outlined as given in two codes, the 
procedures of seismic performance evaluations for existing RC buildings will be 
applied on a real three dimensional case study building and the results will be  
compared. 

The thesis consists of five chapters. The first chapter presents an introduction and 
definition of the subject, short review of the previous studies, the scope and the 
objectives of the study. 

The second chapter covers the seismic performance evaluation of existing structures 
according to TEC’07. The procedure of the equivalent seismic load method in linear 
static approach and the incremental in non-linear static analysis is explained and 
investigated. 

In the third chapter, the seismic performance assessment procedure is explained 
briefly as prescribed in Eurocode 8. The lateral force method of analysis and the 
push-over analysis are overviewed in addition to general assessment principles and 
rules. 

The fourth chapter is devoted to the solution of numerical example as a case study. 
Seismic performance evaluations according to Eurocode 8 and TEC’07 will be 
applied on existing building which experienced the seismic action of Ms = 6.3 with a 
maximum acceleration of 0.28 g during in Adana Ceyhan Earthquake of 1998. The 
case study building has six storeys with a total of 14.65 m height and it is composed 
of orthogonal frames, symmetrical in y direction and does not have any significant 
structural irregularities. The planar dimensions are 16.40 x 7.80 m = 127.90 m2 with 
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five spans in x and two spans in y directions. It was reported that retrofitting process 
is suggested for the residence building because of the moderate damage level. In this 
chapter, the linear static and non-linear static methods of analysis are applied on the 
residential building according to TEC’07 and Eurocode 8. 

The fifth chapter presents the final results and the discussions of the study. The basic 
features of the study, the evaluation of the numerical results and possible extensions 
of the study are presented in this chapter. 

The basic conclusions of the numerical evaluations are summarized below. 

a. The computations show that the performing methods of analysis with linear 
and non-linear approaches using either Eurocode 8 or TEC’07 independently 
produce a very similar performance levels for the critical storey of the 
structure. The case study building is found to be as in collapse level. 

b. The computed base shear value according to Eurocode is much higher than 
the Turkish Earthquake Code while the selected ground conditions represent 
the same characteristics. The main reason is that the ordinate of the horizontal 
elastic response spectrum for Eurocode 8 is increased by the soil factor. 

c. According to the displacement-based non-linear assessment described in 
TEC’07, the strains at plastic cross-sections are to be verified; however, the 
chord rotations of primary ductile elements must be checked for Eurocode 
safety verifications. 

d. The demand curvatures obtained from linear and non-linear methods of 
analysis of Eurocode 8 together with TEC’07 are almost similar.  
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1. INTRODUCTION 

1.1 Topic of the Study 

Performance based design and assessment in structural engineering is becoming 

more important in the past several years. The concept which was born in the United 

States can be defined simply as the design and assessment of a structure regarding 

one or more performance levels that are foreseen. The latest earthquakes has shown 

that, even though the structures in the industrial countries were built in an adequately 

safe fashion, the costs occurring with damage from the quakes as well as the 

recession of using the buildings for some time has become somewhat difficult to 

tolerate. In this case, it has become clear that it was necessary to design the structures 

with respect to different limit states, [1], [2]. 

Damage conditions which are the primary factor in the determination of structure 

seismic performance are most realistically expressed as displacement and 

deformations. For this reason, the use of the analysis tools in the principle of 

displacement based assessments as well in the decision of the analysis is in at most 

importance. On the other hand, with the aid of evaluations based on non-linear 

theory, the behavior of the structural system under the external loads and earthquake 

effects can be closely monitored, the earthquake performances regarding the 

displacements and strain can be realistically determined. 

Performance based structural design and the decision of the analysis for assessment 

being a new topic. While linear elastic methods of analysis have been used for long 

time, on the other hand, non-linear non-elastic analysis procedure has been 

widespreadly used the last couple of years. The main reason for this is the 

availability of suitable analysis tools with respect to both non-linear static (pushover) 

analysis and non-linear dynamic (time history) analysis for methods of analysis. 
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The most reliable method is non-linear dynamic (time history) analysis of structures 

under earthquake loads. But this method has its difficulties like getting the suitable 

surface motion entries, modeling the structure’s circumference, and the time 

consuming calculations. That is why non-linear static (pushover) analysis is mostly 

preferred. Non-linear static (pushover) analysis shows a simple approach regarding 

the displacement demands under the dynamic loads and the determination of the 

structure capacity. The method is applying a foresought lateral load distribution and 

pushing of the structure up to target displacement.  

1.2 Previous Research Work on the Subject  

Studies of the methods intending to evaluate structural systems based on non-linear 

theory have a long history. The analysis methods that have been developed can be 

divided into two groups regarding their primary hypothesis: 

a) the approach which guesses that the non-linear displacements spread in the 

system continuously 

b) the methods that are based on the plastic hinge hypothesis [3] 

In parallel to developing these methods, practical and effective computer programs 

based on the non-linear theory are continuously improving and are widely used, [4], 

[5]. 

Structural assessment and design concept with the principle of performance criteria 

based on the displacement and strain are especially put forward and developed for 

the realistic safety and rehabilitation of structures in the United States’ earthquake 

regions. 

The damage caused by the 1989 Loma Prieta and 1994 Northridge In the state of 

California – Unites States, made it possible to reconsider not only  the current 

performance criteria regarding the strength of materials but also add more realistic 

criteria based on displacement and strain. 

In this concept, Guidelines and Commentary for Seismic Rehabilitation of Buildings 

– the ATC 40 [6] Project by the Applied Technology Council (ATC), and NEHRP 
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Guidelines for the Seismic Rehabilitation of Buildings – FEMA 273 [7] and 356      

[8] by the Federal Emergency Management Agency (FEMA) have been developed. 

Later on, in order to examine the results further on, the ATC 55 and FEMA 440 [9] 

have been developed. Besides these organizations, different projects like Building 

Seismic Safety Council (BSSC), American Society of civil Engineers (ASCE) and 

Earthquake Engineering Research Center of University of California at Berkeley 

(EERC-UCB) contributed them. With the aid of these projects and papers, the 

assessment of the performance the existing structures at the quake zones and the 

redesigning of buildings according to their earthquake performances could be 

possible. 

On the other hand, there also exist some approaches and researches and assessments 

regarding the performances of structures at the Eurocode 8.3 [10] which is among the 

standards of the European Union. Eurocode 8 proposes displacement-based 

approaches for the seismic assessment and retrofit of existing buildings. The seismic 

effects does not represent a set of lateral loads to be resisted by the structure, as 

defined in forced-based design or assessment, but a demand of dynamic 

displacements. Therefore displacements represent a much more realistic for the 

seismic design or assessment of structures. Eventually, buildings do not collapse due 

to lateral loads, but due to vertical loads acting under horizontal displacements    

[11]. Additionally, displacement-based approach fulfills the deficiencies of 

conventional force-based approach [12]. 

Recent earthquakes which occurred in our country made it compulsory to assess the 

safety of structures. Thus, in addition to Turkish Earthquake Code 1998, articles have 

been added and therefore the Turkish Earthquake Code 2007 [13] has been 

developed for the assessment and rehabilitation of structures. Researches states that 

both linear and non-linear static analysis of methods under scope of TEC’07 

generally results with same performance levels. However, it is noted that linear 

analysis method is more relatively more conservative on the basis of component 

performance damage level [14]. Additionally, both non-linear static (push-over) and 

dynamic (time history) analyses produce very similar results on component-end 

damage levels and structure top displacement values for low-rise regular buildings, 

[15]. 
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Numerical studies comparing FEMA 356 and TEC using non-linear static analysis 

method shows that both codes results with almost similar damage levels on the basis 

of structural elements [16]. 

In addition to code-based linear and non-linear approaches, a preliminary assessment 

technique is developed by Bal, Tezcan and Gülay [17] to prevent life-loss on existing 

buildings. The method itself consist of 25 parameters including soil and topographic 

conditions, earthquake demand, various structural irregularities, material and 

geometrical properties and location of the buildings. Further researches note that the 

method results also correlates with code-based linear static and non-linear methods 

of analysis [18]. 

Non-linear static method of analysis, which is mainly based on single-mode push-

over analysis, has the advantage of establishing elastic response spectrum in 

estimating the inelastic demand compared to rather time consuming non-linear 

dynamic (time history) analysis. Therefore, push-over analysis provides an easy and 

time saving solution. On the other hand, single-mode push-over analysis gives 

reliable results only when applied to low-rise buildings regular in plan [19] [20]    

[21]. Before non-linear static approach was introduced to Turkish Earthquake Code, 

Özer, Pala and others developed incremental load method based on non-linear theory 

and applied on several 3-D structures to determine their seismic performances [22]. 

A recent research notes that application of single-mode push-over analysis to high-

rise buildings and also to any building irregular in plan-wise leads to incorrect 

results. Therefore, an improved push-over analysis procedure also contributes the 

effect of higher modes is required. However, only two procedures up to date, Modal 

Push-over Analysis (MPA)  method by Chopra and Goel [23] and Incremental 

Response Spectrum (IRSA)  by Aydınoğlu [24] [25] provide the requirements. 

For the determination of the performances of buildings, the reliability of the methods 

mentioned at the code which has been stated above has been widely argued and 

researched among scientists and academics [26]. 
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1.3 Aim and Scope of the Work 

Aim of this study is to investigate the code-based procedure of seismic performance 
assessments of existing buildings and to determine the seismic performance levels of 
a case study reinforced concrete building, which represents typical existing building 
stock in Turkey, using the new Turkish Earthquake Code of 2007 (TEC’07) and 
Eurocode 8 as well as comparing the consequences of linear static and non-linear 
static analysis procedures. The investigation is held by using methods of analysis 
according to Turkish Earthquake Code and Eurocode 8. 

The study consists of following steps: 

a) Describing analysis procedures for seismic assessment of existing buildings 
according to TEC 2007. 

b)  Reviewing the scope of seismic assessment of existing building procedures 
according to Eurocode 8. 

c) Introducing and describing the case study building which experienced Adana-
Ceyhan Earthquake of 1998. 

d) Evaluating the seismic performance of the existing building according to 
Eurocode 8 and TEC’07 with linear and non-linear approaches. 

e) Reviewing and comparing the results obtained from the analysis. 

f) Presenting conclusion remarks regarding to the study. 
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2. SEISMIC ASSESSMENT OF EXISTING BUILDINGS ACCORDING TO 

TEC 2007 

In Turkey, especially after 1999 Adapazari-Kocaeli and Duzce Earthquakes, practical 

applications for earthquake risk assessments and retrofitting of insufficient buildings 

have been significantly increased. However, since there were neither existing 

regulations nor codes regarding to assessment of existing buildings, these 

applications were performed under the basis of Turkish Earthquake Code 1998 which 

was actually aimed for new building design procedures. To prevent upcoming 

possible inconveniences later on, beginning from 2003, researches and studies to 

include a new chapter concerning the assessment and retrofitting for existing 

buildings have been completed. 

On following paragraphs, general rules and applications of performance based 

assessment that is included in Turkish Earthquake Code 2007 (TEC’07) are 

presented [13]. 

2.1 Obtaining As-built Information and Knowledge Levels  

In order to evaluate the seismic performance of existing buildings, information about 

structural system geometry, component cross-sections, characteristics of materials 

and soil conditions can be achieved from available building projects, reports or from 

in-situ tests and visual inspections. Due to the comprehensiveness of obtained as-

built information, knowledge levels and corresponding confidence factors are 

summarized as follows: Table 2.1. 

Table 2.1 : Knowledge Level Confidence Factors 

Knowledge Level Confidence Factor
Limited 0.75
Medium 0.90

Comprehensive 1.00  
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2.2 Damage Levels of Structural Elements 

Building seismic performance evaluation is generally determined with two different 

criteria. In force-controlled evaluation, capacities of structural elements are 

compared with linear elastic seismic demands. Verifications are made with 

consideration of components’ ductility and with demand reduction factors under 

based on each structural component. On the other hand, displacement-controlled 

evaluation, which constitutes the fundamentals of non-linear analysis methods, the 

component performance is determined by a nonlinear analysis procedure whereas the 

deformation demands are checked. 

At both approaches, damage limits and levels are defined for structural elements. 

Before safety verifications, structural elements are first classified as “ductile” or 

“brittle”. 

 

2.2.1 Cross-sectional Damage Limits 

For ductile elements, there are three damage levels defined under the basis of their 

cross-section. These are Minimum Damage Limit (ML), Safety Limit (SL), and 

Collapse Limit (CL). Minimum damage limit describes the beginning of post-elastic 

behavior of the cross-section, safety limit describes the limit of non-elastic behavior 

that can carry demands safely, collapse limit is describes the beginning of collapse 

state.  

2.2.2 Damage Levels 

Components that have lower damage than ML are at Slight Damage (SL) level, that 

have damage between ML and SL are at Moderate Damage (MD) level, that are 

between SL and CL belong to Heavy Damage (HD) level, and rest of them are 

considered as at Collapse (CD) level. Figure 2.1 
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Figure 2.1 : Cross-sectional Damage Levels 

2.3 Seismic Performance Levels of Buildings 

Seismic performance level of a building is the state of damage ratio limits under a 

predicted seismic action effects. These limit states are determined due to the measure 

of structural and non-structural element damage, its influence to risk for life safety, 

probability of building being operational or not, after the earthquake, and due to the 

economical loss, [27].  

Turkish Earthquake Code 2007 defines the seismic performance as the expected 

structural damage under considered seismic actions. Seismic performance of a 

building is determined by obtaining story-based structural element damage ratios 

under a linear or non-linear analysis. 

2.3.1 Immediate Occupancy Performance Level 

If the damages occurred at structural elements are all at minimum and those elements 

keep their initial stiffness and capacity properties, and there are no permanent plastic 

deformations observed the structural system is defined as at Immediate Occupancy 

Performance Level. Some elements may exceed their yielding capacities and there 

may be some cracks observed at some non-structural elements, however these 

damages are at repairable level. 

For each main direction that seismic loads affect, at any storey at most 10% of beams 

can be at moderate damage level; however, the rest of the structural elements should 
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be at slight damage level. With the condition of brittle elements to be retrofitted 

(reinforced), the buildings at this state are assumed to be at Immediate Occupancy 

Performance Level. 

2.3.2 Life Safety Performance Level 

Under applied seismic actions, some of the structural elements are damaged; 

however these elements mostly keep their initial horizontal stiffness and capacity 

properties. Vertical elements are adequate for axial forces. Non-structural elements 

may be fairly damaged, yet in-filled walls do not collapse. There may be some 

plastic deformations, but they are not distinguishable. 

For each main direction that seismic loads affect, at any storey at most 30% of beams 

and some of columns can be at heavy damage level; however, shear contributions of 

overall columns at heavy damage must be lower than 20%. The rest of the structural 

elements should be at slight or moderate damage levels. With the condition of brittle 

elements to be retrofitted, buildings at this state are assumed to be at Life Safety 

Performance Level. For the validity of this performance level, the ratio between the 

shear force contribution of a column with moderate or higher damage level from both 

ends and the total shear force of the corresponding storey must be at most 30%. This 

ratio can be permitted up to 40% at the top storey. 

2.3.3 Collapse Prevention Performance Level 

Under applied seismic actions, some of the structural elements are damaged. Some of 

these elements lose their initial horizontal stiffness and capacity properties. Vertical 

elements are adequate for axial forces, yet some of them reach to their axial load 

capacities. Non-structural elements are damaged and some of existing in-filled walls 

may fail. Permanent drifts and deformations occur on the structure itself. 

For each main direction that seismic loads affect, at any storey at most 20% of beams 

can collapse. Rest of the structural elements should be at slight damage, moderate 

damage, or heavy damage levels. With the condition of brittle elements to be 

retrofitted, the buildings at this state are assumed to be at Collapse Prevention 

Performance Level. For the validity of this performance level, the ratio between the 

shear force contribution of a column with moderate or higher damage level from both 
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ends and the total shear force of the corresponding storey must be at most 30%. 

Functionality of a building at this performance level has risks for life safety and it 

should be strengthened. Cost-effective analysis is also recommended for such 

seismic rehabilitation. 

2.3.4 State of Collapse 

Under applied seismic actions, structure reaches the state of collapse. Some of the 

vertical structural elements fail. Remaining vertical structural elements still able to 

carry vertical loads; however, their rigidities and capacities are significantly reduced. 

Most of the non-structural elements are collapsed. Permanent drifts and deformations 

significantly occur on the structure itself. Building may either be totally collapsed or 

is about to collapse under upcoming slight ground motion effects. 

Whenever a building fails to achieve collapse prevention performance level, then it is 

assumed to be in State of Collapse. The functionality of a building at this 

performance level has risks for life safety and it should be strengthened. However, 

seismic rehabilitation may not be effective in comparison with costs. 

2.4 Return Periods of Earthquakes to be Used in Building Assessments 

For performance-based designs and assessments, three different return periods of 

earthquakes are stated. The return periods are generally described by the probability 

of exceedence of 50 years or by the time interval between two corresponding type of 

earthquakes. 

• Occasional Earthquake: Return period of 72 years, corresponding to a 

probability of exceeding 50% in 50 years. 

• Rare Earthquake: Return period of 475 years, corresponding to a probability 

of exceeding 10% in 50 years. 

• Very Seldom Earthquake: Return period of 2475 years, corresponding to a 

probability of exceeding 2% in 50 years. 
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2.5 Minimum Seismic Performance Requirements 

Earthquake return periods and required performance levels to corresponding existing 

building types are given below. Table 2.2. 

Table 2.2 : Required Seismic Performance Levels 

PROBABILITY OF EXCEEDENCE
50% in 50 yrs 10% in 50 yrs 2% in 50 yrs

OPERATIONAL AFTER EARTHQUAKE  - IO LS
CROWDED FOR LONG-TERM  - IO LS
CROWDED FOR SHORT-TERM IO LS  -
CONTAINS HAZARDOUS MATERIAL  - IO CP
OTHER  - LS  -

PURPOSE OF OCCUPANCY

 

2.6 Methods of Analysis  

On the following paragraphs, first the principles and general rules for linear and non-

linear analysis methods stated in Turkish Earthquake Code 2007 will be described. 

Then, the procedures for determination of the seismic performance due to linear 

analysis methods will be explained. Finally, calculations with non-linear analysis 

methods will be defined step by step. 

2.6.1 General Rules for Linear and Non-linear Analysis Methods 

Turkish Earthquake Code 2007 recommends linear and non-linear methods of 

analysis in order to determine seismic performance of existing buildings. It is not 

expected that the methods give the same results, since the approaches are 

theoretically different. The principles and rules valid for both linear and non-linear 

approaches are given below: 

• Within the definition of seismic actions, demands are taken from earthquake 

with probability of exceedence of 10% in 50 years is used with using elastic 

(unreduced) response spectrum. For the earthquake with probability of 50% 

and 2% of exceedences in 50 years, the spectrum function ordinates are to be 

multiplied by 0.5 and 1.5, respectively. On the other hand, the building 

importance factor I is not applied, or it is considered as unity. 
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• The building seismic performance is evaluated under combinations of both 

vertical and earthquake loads. Storey masses are to be defined properly with 

constant dead loads with proper participation of live loads. 

• Seismic loads are considered as acted on buildings in two main directions, 

separately. 

• On buildings that slabs are defined as rigid diaphragm, two horizontal 

displacement degrees of freedom and one vertical rotational degree of 

freedom may be taken into account. Degrees of freedom are defined at each 

storey center of mass and accidental eccentricity is not applied. 

• The uncertainties from as-built information are influenced to assessment by 

the confidence factors related to knowledge levels. 

• The existing short columns in the buildings are considered with their own 

heights in the mathematical models. 

• Interaction curves of reinforced concrete cross-sections under bending 

moments and axial forces are evaluated with following principles. 

1. Mean values of material properties shall be used. 

2. The ultimate compression strain of concrete and the ultimate tension 

strain of steel materials may be taken as 0.003 and 0.01, respectively. 

3. Interaction curves can be multi-lined properly to obtain either multi-

lined planes or multi-planed surface. 

• Unless a more detailed research is performed, the effective elastic stiffness 

for cracked cross-sections of reinforced concrete elements under flexure with 

axial force must be used. 

a) At beams:  (EI)e = 0.4 (EI)0 

b) At columns and shear walls:   

(EI)e = 0.40 (EI)0 if ND / (Ac fcm) ≤ 0.10 

(EI)e = 0.80 (EI)0 if ND / (Ac fcm) ≥ 0.40 



 13

Straight line interpolation can be used for intermediate values of ND. ND is 

the axial force, determined by a preliminary analysis under vertical loads 

compatible with the masses. 

2.6.2 Linear Analysis Methods 

The suggested methods of linear analysis introduced in Turkish Earthquake Code 

2007 are Equivalent Seismic Load Method and Mode Superposition Method. The 

main objective of these methods is to compare demands by using unreduced elastic 

response spectrum with the existing capacity of elements, then to evaluate damage 

levels on the basis of elements with obtained demand-capacity ratios, and to 

determine the seismic performance level of the considered overall building. 

2.6.2.1 Equivalent Seismic Load Method 

The equivalent seismic load method may be applied to buildings whose height is 

lower than 25 meters and with number of storey not more than 8. Additionally, 

torsional irregularity factor in plan must be lower than 1.40. In determination of base 

shear force, unreduced (elastic) response spectrum function must be used and the 

right hand side of the equation must also be multiplied with λ coefficient. The value 

of λ can be taken as 1.00 for buildings with 2 storeys or lower excluding basement, 

and 0.85 for other higher buildings. 

2.6.2.2 Mode Superposition Method 

In mode superposition method, elastic (unreduced) elastic response is used. For 

determining internal forces and capacities of elements regarding to a direction of a 

seismic effects, internal force directions will be taken into account for the 

fundamental mode relating to the corresponding direction. 

2.6.2.3 Determination of Damage Levels of Structural Elements 

Denoting by (r), the ratio of the demand obtained from the analysis under the seismic 

loads, over the capacity of the same ductile element is used in order to determine the 

damage level of the corresponding element. 
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Elements are classified as ductile or brittle due to their failure types. To verify 

elements as ductile, shear force Ve which is related to member end moment 

capacities must be lower than the shear force resistance Vr determined by using 

formula as stated in Turkish Standard TS-500 “Requirements for Design and 

Construction of Reinforced Concrete Structures” [28]. Whenever the shear demand, 

which is obtained by using vertical and seismic loads as in combinations, is lower 

than Ve; shear demand value will be used instead of Ve. The elements that are not 

verified upon these general acceptance rules are defined as “elements under brittle 

failure”. 

Demand – capacity ratio (DCR) is obtained by dividing moments from unreduced 

seismic actions at element end cross-sections to residual moment capacities. Residual 

moment capacity is the difference between cross-sectional total bending moment 

capacity and the demand moments under vertical loads. Due to the verifications for 

horizontal reinforcement configuration acceptance criteria, element ends are 

classified as “confined” and “unconfined”. 

The calculated (r) values are to be compared with damage level limit values (rs) as 

given in to decide the damage levels of each structural member. 

Damage level limits for ductile beams, columns, and shear walls are given on Table 

2.3, Table 2.4 and Table 2.5 respectively. 

Table 2.3 : Demand-Capacity Ratio and Damage Level Limits (rs) for Beams 

(ρ-ρ')/ρb CONFINED Ve/(bw*fctm) ML SL CL
≤0.0 ≤0.65 3.0 7.0 10.0
≤0.0 ≥1.30 2.5 5.0 8.0
≥0.5 ≤0.65 3.0 5.0 7.0
≥0.5 ≥1.30 2.5 4.0 5.0
≤0.0 ≤0.65 2.5 4.0 6.0
≤0.0 ≥1.30 2.0 3.0 5.0
≥0.5 ≤0.65 2.0 3.0 5.0
≥0.5 ≥1.30 1.5 2.5 4.0

YES

NO

DUCTILE BEAMS DAMAGE LIMIT
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Table 2.4 : Demand-Capacity Ratio and Damage Level Limits (rs) for Columns 

NK/(Ac*fcm) CONFINED Ve/(bw*d*fctm) ML SL CL
≤ 0.1 ≤ 0.65 3.0 6.0 8.0
≤ 0.1 ≥ 1.30 2.5 5.0 6.0

≥ 0.4 and ≤ 0.7 ≤ 0.65 2.0 4.0 6.0
≥ 0.4 and ≤ 0.7 ≥ 1.30 1.5 2.5 3.5

≤ 0.1 ≤ 0.65 2.0 3.5 5.0
≤ 0.1 ≥ 1.30 1.5 2.5 3.5

≥ 0.4 and ≤ 0.7 ≤ 0.65 1.5 2.0 3.0
≥ 0.4 and ≤ 0.7 ≥ 1.30 1.0 1.5 2.0

≥ 0.7  - - 1.0 1.0 1.0

DUCTILE COLUMNS DAMAGE LIMIT

YES

NO

 

Table 2.5 : Demand-Capacity Ratio and Damage Level Limits (rs) for Shear Walls 

ML SL CL
3.0 6.0 8.0

DUCTILE SHEAR WALLS DAMAGE LIMIT

YES
boundires are confined

 

In calculations using linear elastic methods, relative drift ratios of vertical 
components under any direction of seismic actions must not exceed the value for the 
corresponding damage limits given in Table 2.6. 

Table 2.6 : Relative Storey Drift Ratio Limits 

ML SL CL
δi / hi 0.01 0.03 0.04

relative storey drift ratio DAMEGE LIMIT

 

2.6.3 Non-linear Analysis Methods 

The main objective of non-linear analysis methods is to attain plastic deformation 

demands in ductile members and internal force demands in brittle members under the 

expected seismic actions. After determining these values, the demands are compared 

with the existing element capacities in order to decide their damage. 

Incremental Equivalent Seismic Load Method, Incremental Mode Superposition 

Method and Time History Analysis Method are introduced as non-linear methods of 

analysis within the scope of Turkish Earthquake Code 2007. First two methods are 

based on push-over analysis for verifying seismic performance levels and structural 

interventions. In the following paragraphs, procedures of push-over analysis with 
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Incremental Equivalent Seismic Load Method will be introduced and described in 

detail under the scope of this thesis study.  

2.6.3.1 Assessment Procedures for Push-over Analysis 

Procedures for seismic performance assessment based on pushover analysis are 

summarized below; 

a) Besides general scope and rules, idealization of non-linear behavior and 

creation of mathematical model must also be complied. 

b) Before push-over analysis, a non-linear static analysis under gravity loads is 

performed. Results of this analysis are taken as initial conditions for the 

following push-over analysis. 

c) Modal capacity curve, which is coordinated with modal displacement and 

modal acceleration, must be obtained in order to determine the target 

displacement under corresponding seismic actions. Then, the plastic 

deformation and internal force demands at target displacement are calculated.  

d) Plastic rotation demands are obtained from plastically deformed ductile cross-

sections. From plastic rotations, plastic curvature values are calculated. Later 

on, total curvature demands are determined. At the end, those curvature 

demands are converted to strains occurred at concrete and reinforcement bars 

at the corresponding cross-sections. These strain demands are compared with 

the limit strain values in order to specify the member end damage levels.  

2.6.3.2 Idealization of Non-linear Behavior 

Idealization of non-linear behavior is based on lumped plastic behavior model since 

it is more practical than the distributed plastic hinge model and widely used in 

engineering applications. Deformations are assumed to be constant along the plastic 

hinge length where internal forces at beams, columns and walls exceed yield 

capacities. The length of plastic hinge (Lp), can be taken as half of the cross-section 

depth (h) [13]. 
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(2.1) 

 

The plastic cross-section, which represents lumped plastic deformation, theoretically 

must be located in middle of plastic deformation zone. However, replacing them at 

both ends of beams and columns is also acceptable for practical applications. 

Interaction curves of reinforced concrete cross-sections under bending moments and 

axial forces are evaluated with following principles: 

a) Mean values of material properties modified with knowledge confidence 

factor shall be used. 

b) Ultimate compression strain of concrete and ultimate tension strain of steel 

materials may be taken as 0.003 and 0.01, respectively. 

c) Interaction curves can be poly-lined properly to obtain either multi-lined 

plane or multi-planed surface. 

The following idealizations are applicable for internal force – plastic deformation 

relations: 

Strain hardening of steel in internal force - plastic deformation relations can be 

neglected, (Figure 2.2). In that case, plastic deformation vector is assumed to be 

approximately perpendicular to yielding surface. 

 

Figure 2.2 : Bending Moment – Plastic Rotation Relation (without hardening) 

hLp ⋅= 5.0



 18

When strain hardening effect is considered (Figure 2.3), conditions that plastic 

deformation vector must approve can be defined from the related literature. 

 

Figure 2.3 : Bending Moment – Plastic Rotation Relation (with hardening) 

2.6.3.3 Push-over Analysis with Incremental Equivalent Seismic Load Method 

The objective of Incremental Equivalent Seismic Load Method is to perform a non-

linear analysis with monotonically increasing equivalent seismic loads until the 

target displacement is reached. The equivalent seismic loads must be compatible 

with the fundamental mode shape. Following of the vertical load analysis, at each 

step of the push-over analysis, the maximum top displacement values, plastic 

deformations and the internal forces are obtained until the target displacement is 

reached. 

The incremental Equivalent Seismic Load Method can be applied to the buildings 

with 8 storey or less and a torsional irregularity factor in plan lower than 1.40. 

Additionally, the mass participation ratio corresponding to the fundamental mode in 

each direction must be at least 70%. 

After the performance of the push-over analysis under constant load distribution 

ratio, a push-over curve is obtained. This push-over curve is coordinated with top 

displacement versus the base shear. The top displacement is the calculated lateral 

displacement of center of mass at the top floor in the considered earthquake 

direction. The base shear is the sum of the equivalent seismic loads acting at each 

step in each considered direction. Modal Capacity Curve (modal displacement vs 
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modal acceleration), which is obtained from the push-over curve with coordinate 

conversions, can be sketched with following procedure: 

The modal acceleration of the fundamental period at i-th step )(
1

ia  can be calculated 

as follows: 

 

(2.2) 

Where )(
1

i
xV  is the base shear at i-th step in x direction, and 1xM  is the participated 

mass at the fundamental period in x direction. 

Modal displacement of the fundamental period at i-th step )(
1

id  can be calculated as 

follows: 

 

(2.3) 

 

1xΓ  is the modal participation factor of the fundamental period in x direction, and 

1xNΦ  represents the modal shape of N-th storey at the fundamental period of x 

direction. ( )i
xNu 1  is the top displacement value in x direction, obtained from i-th step 

of the push-over analysis.   

With the modal capacity curve and the spectral behavior curve drawn on the same 

scale together, the maximum modal displacement demand is achieved. By definition, 

the modal displacement demand )(
1

pd is equal to the non-linear spectral 

displacement 1diS . 

Non-linear spectral displacement 1diS  is dependent on the linear elastic spectral 

displacement 1deS  which is related to the first step of push-over analysis.  
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(2.4) 

Linear elastic spectral displacement 1deS , is calculated with the help of linear elastic 

spectral acceleration 1aeS . 

 

(2.5) 

Spectral displacement ratio 1RC  is determined by fundamental period )1(
1T . In case of 

fundamental period is being equal or longer than the characteristic period BT , on 

basis of equal displacement rule, nonlinear spectral displacement 1diS  is equal to 

linear elastic spectral displacement 1deS . As a result, spectral displacement ratio is 

taken as: 

(2.6) 

In Figure 2.4 modal capacity curve with coordinates (d1, a1) and spectral behavior 

curve with coordinates of spectral displacement (Sd) and spectral acceleration (Sa) are 

sketched at common axis. 

 

111 deRdi SCS ⋅=

( )2)1(
1

1
1

ω
ae

de
SS =

11 =RC
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Figure 2.4 : Determination of Modal Displacement Demand ( )BTT ≥)1(
1  

When fundamental period )1(
1T  is shorter than the characteristic period BT , then 

spectral displacement ratio 1RC  is calculated by iteration. The steps of the iteration 

procedure are explained below: 

Modal capacity curve is converted to a bi-linear diagram as shown in Figure 2.5. The 

slope of the first line is taken equal to the square of the frequency ( )1(
1ω ) of the 

fundamental mode. 
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Figure 2.5 : Determination of Modal Displacement Demand ( )BTT <)1(
1  

At first step of iteration, with assumption of 11 =RC , the coordinates of equivalent 

yielding are calculated by Equal Areas Rule. The calculation of 1RC  is based on 0
1ya  

as shown in Figure 2.5. 

 

(2.7) 

1yR  is the capacity reduction coefficient at the fundamental mode 

 

(2.8) 
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By using 1RC  from Equation (2.7) and in principle of 1diS , the coordinates of 

equivalent yielding point are determined with the Equal Areas Rule as shown in 

Figure 2.6. Then, 1ya , 1yR  and 1RC iterations are repeated until the final values are 

close enough to each other. 

 

Figure 2.6 : Determination of Modal Displacement Demand ( )BTT <)1(
1  

Replacing the modal displacement demand at p-th step yields the target displacement 
1

)(
xN

pu . 

(2.9) 

Other demands (displacements, deformations, internal forces) at target displacements 

can be obtained either from related analysis results or from a new analysis with 

pushing the system to target displacement value. 
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2.6.3.4 Determination of Strains at Plastic Cross-sections 

Plastic curvature demand is obtained by plastic rotation demands from the outputs of 

push-over analysis. 

Plastic curvature demand is the amount of plastic rotation demand at unit plastic 

hinge length. Plastic rotation values are obtained from the push-over analysis as an 

output. 

(2.10) 

  

Total curvature demand tφ  is sum of the plastic curvature demand pφ  and yielding 

curvature yφ  which can be achieved from a cross-section analysis related to concrete 

and reinforcement material properties. Then; 

(2.11) 

Concrete compression strain and reinforcement tension strain values are calculated 

with using the total curvature obtained by a cross-section analysis. 

Earthquake demands in terms of strains are to be compared with stain capacities in 

order to determine the damage level of the corresponding member end. 

2.6.3.5 Strain Capacities of Plastic Cross-sections for RC Elements 

Damage level stain limits (capacities) for plastic deformed elements are introduced 

on following paragraphs. 

Minimum Damage Limit (ML): upper limits of unconfined concrete zone 

compression strain and reinforcement tension strain values are: 

( ) 0035.0=MLcuε  

( ) 010.0=MLsε  

Safety Limit (SL): upper limits of confined concrete zone compression strain and 

reinforcement tension strain values are: 

p

p
p L

θ
φ =

pyt φφφ +=
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( ) ( ) 0135.001.00035.0 ≤+= smsSLcu ρρε  

( ) 040.0=SLsε  

where sρ  and msρ  are the existing and required transverse reinforcement ratios, 

respectively. 

Collapse Limit (CL): upper limits of confined concrete zone compression strain and 

reinforcement tension strain values are: 

( ) ( ) 018.0014.0004.0 ≤+= smsCLcu ρρε  

( ) 060.0=CLsε
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3. SEISMIC ASSESSMENT OF EXISTING BUILDINGS ACCORDING TO 

EUROCODE 8 

Eurocode 8, Design of Structures for Earthquake Resistance, covers, as its title 

suggests, earthquake-resistant design and construction of buildings in seismic 

regions. Main objective is to ensure life safety and building protection in an event of 

seismic actions. This is important for civil protection’s continuity [27]. 

3.1 As-built Information for Structural Assessment and Knowledge Levels 

The comprehension about the as-built situation of the structure, including its 

geometry, detailing, and material properties and existing of any degradation, is 

classified as a particular knowledge level. Source of the acquired information also 

affect the classification. Required information can be collected from available 

documentation specific to the building, field investigations, and test measurements 

from laboratories. 

From knowledge levels, component capacities are modified using confidence factors. 

The lower the knowledge level, the more conservative the applied assessment results 

should be. 

The non-linear analysis methods are not applicable when the knowledge level is 

insufficient, because they require detailed information about the properties of the 

structure. 

For each knowledge level, EC8 recommends respective confidence factors for 

dividing mean values of material properties.  
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Table 3.1 : Confidence Factors according to Eurocode 8 

Knowledge Level Confidence Factor
Limited (KL1) 1.35
Normal (KL2) 1.20

Full (KL3) 1.00  

3.2 Performance Requirements and Compliance Criteria 

Building seismic performance levels are chosen discrete levels of building damage 

under earthquake excitation. In Eurocode 8 denotes seismic performance levels as 

“Limit States”. These limit states are characterized on following paragraphs, namely 

Damage Limitation (DL), Significant Damage (SD), and Near Collapse (NC).  

3.2.1 Limit State of Damage Limitation 

The structure is only slightly damaged with insignificant plastic deformations. Repair 

of structural components is not required, because their resistance capacity and 

stiffness are not compromised. Cracks may present on non-structural elements, but 

they can be economically repaired. The residual deformations are unnecessary. 

3.2.2 Limit State of Significant Damage 

The structure is significantly damaged and it has undergone resistance reduction. The 

non-structural elements are damaged, yet the partition walls are not failed. The 

structure consists of permanent significant drifts and generally it is not economic to 

repair.  

3.2.3 Limit State of Near Collapse 

The structure is heavily damaged; on the other hand, vertical elements are still able to 

carry gravity loads. Most non-structural elements are failed, and remained ones will 

not survive under next seismic actions, even for slight horizontal loads. 

The adapted limit states are achieved by choosing, for each performance levels, a 

return period for the seismic action. European countries check the return periods 

ascribed to the various limit states and define it in its National Annex. Recommended 

return periods to corresponding limit states are defined at below: 
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a) Limit State of Near Collapse: Return period of 2457 years, corresponding to a 

probability of exceedence of 2% in 50 years. 

b) Limit State of Significant Damage: Return period of 475 years, corresponding 

to a probability of exceedence of 10% in 50 years. 

c) Limit State of Damage Limitation: Return period of 225 years, corresponding 

to a probability of exceedence of 20% in 50 years. 

3.3 Assessment and Methods of Analysis 

There are four types of displacement-based analysis procedures described EC8. 

Depending on the structural characteristics of the building, lateral force method of 

analysis or modal response spectrum analysis may be used as linear-elastic methods. 

As an alternative to a linear method, a non-linear method may also be used, such as 

non-linear static (pushover) analysis or non-linear time history (dynamic) analysis. 

Static procedures may be used whenever participation of higher modes is negligible. 

The load patterns, used for static analyses, are not able to represent deformed shape 

of the structure when higher modes are put into effect. The participation of higher 

modes depends generally on regularity of mass and stiffness and on the distribution 

of natural frequencies of the building with respect to seismic fundamental 

frequencies. 

Linear procedures (lateral force method of analysis and modal response spectrum) 

are applicable when the structure remains almost elastic or when expected plastic 

deformations are uniformly distributed all over the structure. 

For the horizontal components of the seismic action, the elastic response spectrum 

)(TSe  is defined by the following expressions (Figure 3.1): 

  (3.1) 
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(3.2) 

(3.3) 

 

(3.4) 

 

Where ga  is the design ground acceleration on type A soil condition profile, 
while, BT , CT  and DT  represent characteristic period values describing the shape of 

the spectrum curve. Soil factor S  , also depends on ground type, affects the overall 
curve ordinate. Damping correction factor η  may be taken as 1.00 for 5% viscous 

damping.  

 

Figure 3.1: Shape of elastic response spectrum 

The values of the periods BT , CT  and DT  and of the soil factor S  depend upon the 

soil type where the building is located. Characteristic periods and soil factor values 

are categorized for two different elastic response spectra curves. Type 1 elastic 

response is recommended for the purpose of probabilistic hazard assessment have a 

5.2)(: ⋅⋅⋅=≤≤ ηSaTSTTT geCB

⎥⎦
⎤

⎢⎣
⎡⋅⋅⋅⋅=≤≤

T
TSaTSTTT C

geDC 5.2)(: η

⎥⎦
⎤

⎢⎣
⎡ ⋅
⋅⋅⋅⋅≤≤ 25.2:4

T
TTSasTT DC

gD η



 30

surface-wave magnitude greater than 5.5, therefore, it includes a wider peak 

acceleration zone on its spectrum curve. On the other hand, Type 2 elastic response 

represents less critical seismic zones (Table 3.2 and Table 3.3). 

Table 3.2 : Parameters for Type 1 Elastic Response Spectra 

Ground Type S TB (sec) TC (sec) TD (sec)
A 1.00 0.15 0.40 2.00
B 1.20 0.15 0.50 2.00
C 1.15 0.20 0.60 2.00
D 1.35 0.20 0.80 2.00
E 1.40 0.15 0.50 2.00  

Table 3.3 : Parameters for Type 2 Elastic Response Spectra 

Ground Type S TB (sec) TC (sec) TD (sec)
A 1.00 0.05 0.25 1.20
B 1.35 0.05 0.25 1.20
C 1.50 0.10 0.25 1.20
D 1.80 0.10 0.30 1.20
E 1.60 0.05 0.25 1.20  

On the following paragraphs, procedures of lateral force method of analysis and non-

linear static (push-over) analysis will be introduced in detail under scope of this 

thesis study.  

 

Figure 3.2 : Recommended Type 1 Elastic Response Spectra  
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Figure 3.3 : Recommended Type 2 Elastic Response Spectra  

 

3.3.1 Lateral Force Method of Analysis 

Usage of linear static procedure instead of dynamic one is allowed when the structure 

is verified to be regular in elevation and when the fundamental period T is less than 2 

seconds and also less than the four times the characteristic period CT .  

(3.5) 

Another restriction for applying the lateral force method of analysis is that the ratio 

of the maximum value to minimum value of demand-capacity-ratios (r) for all ductile 

elements that go beyond elastic limit must be lower than 2.50.  

(3.6) 

This rule makes the lateral force method of analysis can only be applied for buildings 

with fairly uniform distribution of overstrengths of members. 

sec)2;4min(1 CTT ⋅≤
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Despite of using design spectrum )(TSd  as for new building design, elastic response 

spectrum )(TSe  must be used for the existing building assessments. 

The seismic base shear force bF , for the existing building in each horizontal 

direction for which the existing building seismic performance is analyzed, shall be 

determined using the following expression: 

(3.7) 

Total mass of the building m is obtained by considering above the foundation or 

above the top of a rigid basement. Correction factor λ  is equal to 0.85 whenever 

CTT ⋅≤ 21  and the building has more than two storeys; otherwise it must be taken as 

1.00. 

The distribution of the horizontal forces iF  along the height of the building depends 

on the mass and the mode shape contribution of each storey to overall building. 

(3.8) 

 

where is  represents the displacement of mass im  in the fundamental mode shape of 

a building. 

3.3.2 Non-linear Static Analysis 

In non-linear static (pushover) analysis procedure, the model directly incorporates 

the non-linear force and deformation relations of the structural components (material 

non-linearity) and accounts for P-delta influences (geometric non-linearity). At the 

beginning, the structure is subjected to gravity loads, and then horizontal forces are 

statically applied. The process is carried-out under monotonically increasing 

horizontal loads to investigate the relation of the displacements of the control node. 

The control node is generally located at the center of mass of the roof. The diagram 

which base shear is versus control displacement is called capacity curve or push-over 

curve.  
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Chord rotation demands at target displacement are checked due to the safety 

verifications to determine the overall structure performance level. The target 

displacement shall be defined as the seismic demand derived from elastic response 

spectrum in terms of the displacement of an equivalent single-degree-of-freedom 

(SDOF) system. The transformation procedure from multi-degree-of-freedom system 

(MDOF) to an equivalent single-degree-of-freedom system is explained below. 

The mass of an equivalent SDOF system ∗m  is determined as: 

(3.9) 

where normalized displacements i∆  are obtained is such a way that the control node 

displacement at roof is equal to a value of 1. 

The transformation factor Γ , which is required in order to convert push-over curve 

to modal capacity curve, can be determined as shown below: 

(3.10) 

 

The force ∗F  and displacement ∗d  of the equivalent SDOF system are computed as: 

(3.11) 

 

(3.12) 

 

where bF  and nd are, respectively, the base shear force and the control node 

displacement of the multi-degree-of-freedom (MDOF) system, respectively.  

Actual modal capacity curve can be idealized as elasto-perfectly plastic capacity 

relation where both modal displacement – modal force relations consist of equal 

deformation energy up to the formation of the plastic formation.  
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Figure 3.4 : Idealized Elasto-Perfectly Plastic Force - Displacement Relationship 

From this assumption, the yield displacement of the idealized SDOF system ∗
yd  can 

easily be determined from equation at below. 

(3.13) 

 

where md *  and mE *  are modal displacement and modal deformation energy 

respectively as shown in Figure 3.4. 

The period ∗T  of the idealized equivalent SDOF system is determined by: 

(3.14) 

 

The target displacement of the structure with period ∗T  and unlimited elastic 

behavior can be calculated from: 

(3.15) 

 

where )( ∗TSe  represents the elastic acceleration response spectrum at the period ∗T . 
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In determination of the SDOF system displacement ∗
td  for structures in the short-

period range and for the structures in the medium and long-period ranges different 

formulas must be used as expressed below. The corner period CT  distinguishes the 

short- and medium-period ranges from each other. 

In short period range, ∗∗ = ett dd  when the response is elastic. The condition of 

response being elastic can be verified from expression given below: 

(3.16)  

Otherwise, the response will be non-linear and  

(3.17) 

 

where uq  is defined as the ratio between the acceleration in the structure with 

unlimited elastic behavior ( )*TSe  and in the structure with limited strength ** mFy . 

(3.18) 

 

In medium- and long- period range, SDOF displacement is taken as ∗∗ = ett dd  . 

The actual target displacement for the MDOF system can be retrieved by multiplying 

single-degree-of-freedom system displacement by the transformation factor which is 

computed earlier in Eqn.(3.10). The target displacement corresponds to the control 

node. 

(3.19) 

3.4 Safety Verifications 

Comparisons of demand obtained from the analysis between the capacity, which is 

dependent on the geometry and material property of the structural members, must be 
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done for safety verifications. Verifications are necessary to determine whether the 

investigated structural component is compatible with requested limit state or not. 

Structural members are classified as ductile and brittle elements in advance. For 

linear methods of analysis, ductile elements are verified on the basis of deformations, 

while brittle elements must be verified on the basis of forces. Brittle elements or 

mechanisms must be verified with demands calculated by means of equilibrium 

conditions, on the basis of the action effects delivered to the brittle component by 

ductile components.  

If analysis is linear, shear force demand is determined from equilibrium conditions 

under end moments consistent with the formations of plastic hinges there or around 

joint.  

 

 

 

 

 

For columns: 
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Figure 3.5 : Equilibrium of column end moments 

 

(3.20) 

For beams: 

 

Figure 3.6 : Equilibrium of beam end moments 
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(3.21) 

where RcM  and RbM  are the design value of the column end moment and beam end 

moment, respectively. 

Each action in a ductile component delivered to the brittle component under 

consideration shall be taken equal to demand value from analysis whenever demand-

capacity ratio (DCR) is smaller than 1. Otherwise, component capacities multiplied 

with knowledge confidence factor must be used. 

Chord rotation capacity limits of ductile components for linear analysis and both 

ductile and brittle components for non-linear static analysis for each structure limit 

states are described in detail in following paragraphs. 

For limit state of near collapse, the value of the total chord rotation capacity (elastic 

plus inelastic part) at ultimate, uθ , of concrete members under cycling loading can be 

calculated from the following expression: 
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For the evaluation of the ultimate chord rotation capacity an alternative expression 

may also be used: 

(3.23) 

 

where 

h      : The depth of the cross-section 

vL   : The ratio moment/shear at the end section 
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υ     : Axial demand/capacity ratio of the section 

', ρρ  : Mechanical reinforcement ratio of tension and compression, respectively, 

longitudinal reinforcement 

sxρ  : The ratio of transverse steel parallel to the direction x of loading 

The cord rotation corresponding to significant damage SDθ  may be assumed to be ¾ 

of the ultimate chord rotation capacity. 

The capacity for limit state of damage limitation used in the verifications is the 

yielding bending moment under the design value of the axial load. 

In case of verifications is carried out in terms of deformations, the chord rotation at 

yielding yθ  can be evaluated as: 
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As for the brittle elements, the verification for damage limitation and significant 

damage limit states is not required, unless these two limit states are the only ones to 

be checked for the structures. 

For limit state of near collapse, the following expression may be used for the shear 

strength capacity. The units must be set in mega Newtons (MN) and meters. 
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4. CASE STUDY: EVALUATION OF SEISMIC PERFORMANCE LEVEL 

OF AN EXISTING REINFORCED CONCRETE BUILDING 

In this chapter, the procedures of seismic performance evaluations for existing 

reinforced concrete buildings according to Eurocode 8 and TEC’07 are applied on a 

real 3D case study building with six storeys.  

The case study building is designed as a framed RC structural system. The 

investigated building does not have any irregularities in elevation or in plan. It had 

been experienced the Adana-Ceyhan Earthquake occurred in 1998, and it was 

reported by the authorities that retrofitting process is suggested for the residence 

building because of the experienced medium damage level [29]. 

This chapter includes the description of the case-study building and the procedure of 

seismic performance evaluation with linear static and non-linear static (push-over) 

analyses according to Turkish Earthquake Code and Eurocode 8. For each methods 

of analysis, damage levels of structural components and building performance levels 

are determined. Softwares that were used for aid of the evaluations will also be 

introduced in this section.  The evaluations are summarized as a flowchart shown in 

Figure 4.1.  
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case study:
seismic performance evaluation

of an existing building

Turkish Earthquake Code Eurocode 8

linear static analysis non-linear static analysis linear static analysis non-linear static analysis
Equivalent Earthquake Incremental Equivalent Lateral Force Method Push-over Analysis

Load Method E.Q. Load Method
(push-over analysis)

 

Figure 4.1 : Case Study Flowchart 

4.1 Structural Information of the Building 

The considered building was exposed to seismic action of Ms = 6.3 with a maximum 

acceleration of 0.28 g occurred in Adana Ceyhan Earthquake of 1998 and reported as 

moderately damaged under that seismic action. The case study building has six 

storeys with a total of 14.65 m height and it is composed of orthogonal frames, 

symmetrical in y direction and does not have any structural irregularities. The planar 

dimensions are 16.4 x 7.8 m = 127.9 m2 with five spans in x and two spans in y 

directions (Figure 4.2). It was initially designed and constructed according to the 

1975 Turkish Seismic Code. 
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Figure 4.2 : First Floor Plan 
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Storey heights are 2.15 m for the first storey and 2.50 m for the other storeys. Slabs 

are having a thickness of 12 cm and they are modeled as rigid diaphragm at each 

storey level while creating the mathematical model. The columns have section with 

and depth as 25/45 cm, 25/50 cm, 25/70 cm at first storey for column groups A, B 

and C, respectively. For upper storeys, columns keep their cross-section dimensions 

as the same as at the first storey except group-A which is 25/40 cm. Outer 

dimensions and mathematical model created by using SAP 2000 [4] is shown with 

Figure 4.3. First floor structure component label map is shown in Figure 4.4. 

 

 

Figure 4.3 : 3D Mathematical Model 
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Figure 4.4 : First Floor Structural Component Label Map 

4.1.1 Frame Elements Cross-sectional Details 

Member cross-section dimensions and corresponding longitudinal reinforcements 

belong to the first storey, which is also called as critical storey, are given for columns 

and beams respectively. 

Table 4.1 : Dimensions and Longitudinal Reinforcements of First Storey Columns 

top + bottom edges
101 25 45 8Φ20 2Φ14
102 25 45 8Φ20 4Φ16
103 25 45 8Φ20 4Φ16
104 25 45 8Φ20 4Φ16
105 25 45 8Φ20 2Φ14
106 25 45 8Φ20 4Φ14
107 25 50 8Φ20 6Φ20
108 70 25 8Φ20 8Φ14
109 70 25 8Φ20 8Φ14
110 30 50 8Φ20 6Φ20
111 25 45 8Φ20 4Φ14
112 25 45 8Φ20 2Φ14
113 25 45 8Φ20 4Φ16
114 25 45 8Φ20 4Φ14
115 25 45 8Φ20 4Φ14
116 25 45 8Φ20 4Φ16

Reinforcement
Column b [cm] d [cm]
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Table 4.2 : Dimensions and Longitudinal Reinforcements of First Storey Beams 

Top Bottom Top Bottom
1101 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1102 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1103 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1104 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1105 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1106 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1107 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1108 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1109 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1110 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1111 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1112 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1114 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1115 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1116 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1117 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1118 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1119 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1121 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1122 55 40 5Φ14 4Φ14 5Φ14 4Φ14
1124 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1125 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1126 50 40 5Φ14 4Φ14 5Φ14 4Φ14
1127 55 45 6Φ14 5Φ14 6Φ14 5Φ14
1128 55 45 6Φ14 5Φ14 6Φ14 5Φ14

Beam bw [cm] h [cm]

Reinforcement
Left Right

 

4.1.2 Material Properties 

Information on the mechanical properties of construction materials from extended in-

situ testing are summarized at below [29]. 

Characteristic Compression Capacity of Concrete   : 10 MPa 

Elasticity Modulus of Concrete    :  24250 MPa    

Characteristic Yielding Capacity of Reinforcement  :  220 MPa 

Which are lower values than the ones given in the original project.  

4.1.3 Seismic Parameters 

General seismic properties, which are dependent of the location and the functional 

purpose of the building, are summarized below, in order to be used commonly 

according to TEC’07 and Eurocode 8 assessment procedures. 
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Description of the statigraphic profile of the ground mentions that it consists of 

deposits of very stiff clay, at least several tens of meters in thickness, with a gradual 

increase of mechanical properties with depth. 

Seismic Zone       :  2nd Zone 

Functionality Purpose      :  Residence 

Live Load Participation     :  0.30 

4.1.4 Gravity Loads 

At below, gravity loads from slabs that are used both in linear and non-linear static 

analysis procedures are given. 

Normal Storeys 

Dead Load       : 5.25 kN/m2 

Live Load       : 2.00 kN/m2 

Roof 

Dead Load       : 6.15 kN/m2 

Live Load       : 2.00 kN/m2 

 

4.1.5 Assumptions Made in Modeling 

Assumptions that are made during the creation of the mathematical model are 

described at below. 

a) Joints are defined as rigid and the behavior of restraints at foundation level is 

assumed as fixed. 

b) Gravity loads from infill walls (4.00 kN/m) are acted to columns as single 

loads [30]. 
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c) Diaphragm constraints are defined at each storey levels that cause all of its 

constrained joints to move together as a planar diaphragm that is rigid against 

membrane deformations. All constrained joints are connected to each other 

by links that are rigid for out-of-plane bending, but do not affect the in-plane 

deformations. 

d) Plastic hinges that are valid for non-linear methods of analysis are replaced at 

column and beam end points. 

4.2 Assessment According to TEC 2007 

After 1999 Adapazari-Kocaeli and Duzce Earthquakes analyses regarding to seismic 

risk assessments for existing buildings in Turkey have been significantly increased. 

Up to date, the existing seismic prestandard did not include assessment procedures 

for existing buildings. The applications were performed under the basis of Turkish 

Earthquake Code 1998 which was actually aimed only for new building design 

procedures. Since 2003, researches and studies to include a new chapter concerning 

the seismic performance evaluation of existing buildings have been completed and 

have been put into effect under Turkish Earthquake Code 2007. 

In this section, calculation steps for the case building according to Equivalent 

Seismic Load (linear static analysis) and Incremental Equivalent Seismic Load (push-

over analysis) methods of analysis will be explained briefly on the basis of TEC’07. 

Before investigating the seismic performance of the case building under different 

analysis types, on the following paragraphs, common seismic properties, which are 

valid both for linear static and non-linear static analysis procedures, are determined. 

Acceptance criteria for using the methods of analysis will also be checked. 

Storey weights and building total weight considering the participation of live loads 

are calculated with the formulas given below: 

(4.1) 

(4.2) 
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where iw  represents the weight of an individual storey i. 

Storey weights regarding to the case study building are given in Table 4.3. 

 

Table 4.3 : Storey Weights 

storey weight [kN]
6 925.50
5 1048.51
4 1048.51
3 1050.72
2 1052.93
1 1258.32

total 6384.50  

Due to the comprehensiveness of obtained as-built information, knowledge level of 

the case study building is confirmed as “medium” and the corresponding confidence 

factor is 0.90 as given in Table 2.1. 

The initial elastic stiffness values of beams are multiplied with 0.40 in order to obtain 

the effective stiffness. The calculation of the effective elastic stiffness for column 

101 under flexure with axial force is given below. The results for the rest of vertical 

elements at critical storey are given in  Table 4.4. 

(EI)e = 0.40 (EI)0 if ND / (Ac fcm) ≤ 0.10 

(EI)e = 0.80 (EI)0 if ND / (Ac fcm) ≥ 0.40 

For column 101: 

ND = 226.78 kN 

Ac = 0.1125 m2 

fcm = 9000 kN/ m2  

ND / (Ac fcm) = 0.223 

(EI)e = 0.45 (EI)0 for column 101 
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Table 4.4 : Effective Elastic Stiffness for Columns under Flexure 

COLUMN EIE / EI0
101 0.56
102 0.43
103 0.41
104 0.43
105 0.56
106 0.45
107 0.80
108 0.52
109 0.52
110 0.80
111 0.45
112 0.54
113 0.44
114 0.56
115 0.56
116 0.44
117 0.54  

Fundamental periods for along x axis and y axis and rotation about z axis are 

obtained by SAP2000 modal analysis after effective stiffness values are applied to 

the structural elements. 

Tx 0.861 sec
Ty 0.814 sec
Tө 0.701 sec  

Initially determined fundamental periods, which are obtained from SAP2000 [4] 

modal analysis, must be verified with the following relation. 

 

(4.3) 

 

Modal analysis of the software gives 0.861 sec for the fundamental period along x 

axis. This period time is verified since it is lower than the allowed maximum value 

calculated as in Table 4.5. 
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Table 4.5 : Maximum Fundamental  Period for x Direction  

storey mass [ton] dfi Ffi mi dfi
2 Ffi dfi

6 94.34 0.11 580.46 1.10 62.69
5 106.88 0.10 545.39 1.03 53.61
4 106.88 0.08 433.17 0.71 35.30
3 107.11 0.06 321.63 0.40 19.65
2 107.33 0.04 209.61 0.14 7.61
1 128.27 0.01 115.82 0.02 1.38

T max 0.8628455 sec  

Same criteria are also applied for y direction and it is validated that the initially 

period is shorter than the maximum allowed value 0.825 sec. 

Lateral loads acting on each storey are determined on the following lines according 

to Equivalent Seismic Load Method. 

Local Site Class: Z2    (TA = 0.15 sec, TB = 0.40 sec) 

30.00 =A  

00.1=I  

kNW 50.6384=  

(4.4) 

  

Spectrum coefficients ( )TS  are 1.35 and 1.42 for x and y directions respectively. 

Spectral Acceleration Coefficient  

(4.5) 

Spectral accelerations in terms of g  for both directions are given below. 

( ) 41.035.1130.0 =⋅⋅=xTA  

( ) 43.042.1130.0 =⋅⋅=yTA  

00.1=aR  

( )
8.0

5.2 ⎟
⎠
⎞

⎜
⎝
⎛⋅=

T
TTS B

( ) ( )TSIATA ⋅⋅= 0
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(4.6) 

  

kNVtx 09.2206
1

41.05.638485.0
=

⋅⋅
=  

kNVt y 37.2314=  

 

Figure 4.5 : Elastic Response Spectrum 

Table 4.6 : Distribution of Horizontal Forces at Storeys 

STOREY  m i [ton] HEIGHT[m]  Hi [m] Wi*Hi [kNm] Fix [kN] Fiy [kN]
6 94.34 2.50 14.65 13558.53 580.46 608.95
5 106.88 2.50 12.15 12739.43 545.39 572.16
4 106.88 2.50 9.65 10118.13 433.17 454.43
3 107.11 2.50 7.15 7512.65 321.63 337.41
2 107.33 2.50 4.65 4896.13 209.61 219.90
1 128.27 2.15 2.15 2705.39 115.82 121.51

650.81 51530.27 2206.09 2314.37  

Torsional Irregularity exists whenever the maximum displacement in a storey in each 

direction exceeds more than 20% of the average displacement of corresponding 

direction. Table 4.7 states that there is not any existing torsional irregularity neither 

with x nor y direction seismic actions. 

( )
aR

TAWVt 1⋅⋅
=
λ
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Table 4.7 : Maximum and Average Displacements at Storey Levels 

STOREY 1 2 3 4 5 6
MAXIMUM 0.0119 0.0363 0.0611 0.0821 0.0983 0.1080
AVERAGE 0.0118 0.0360 0.0606 0.0815 0.0977 0.1074
RATIO 1.0076 1.0078 1.0076 1.0073 1.0062 1.0059

STOREY 1 2 3 4 5 6
MAXIMUM 0.0094 0.0308 0.0529 0.0728 0.0882 0.0975
AVERAGE 0.0093 0.0306 0.0527 0.0726 0.0880 0.0972
RATIO 1.0132 1.0056 1.0038 1.0031 1.0028 1.0026

X DIRECTION

Y DIRECTION

 

 

Since the investigated building has a height lower than 25 meters and also does not 

have any torsional irregularity, Equivalent Seismic Load Method is usable as linear 

analysis. Additionally, having more than 70% mass participation for each 

fundamental period also make the Incremental Equivalent Seismic Load Method 

applicable as non-linear analysis for case study building. 

The horizontal load distribution along stories which were calculated on previous 

paragraphs will be used directly in linear static analysis and also be used in non-

linear static analysis with monotonically increments (push-over analysis). 

4.2.1 Linear Analysis with Equivalent Seismic Load Method 

In this section, seismic performance assessment of the case study building will be 

performed with TEC’07 linear static analysis by using Equivalent Seismic Load 

Method. Assessment procedure is summarized on a flowchart given in Figure 4.6. 
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Figure 4.6 : Linear Static Analysis Flowchart 
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4.2.1.1 Relative Storey Drift Ratio 

Relative drift ratios of vertical components under seismic actions for both directions 
are shown in Table 4.8.  

Table 4.8 : Relative Storey Drift Ratios 

storey disp x [m] rel. disp.x [m] disp y [m] rel. disp.x [m] h [m]  drift ratio x drift ratio y
1 0.0119 0.0119 0.0094 0.0094 2.15 0.006 0.004
2 0.0363 0.0244 0.0308 0.0214 2.5 0.010 0.009
3 0.0611 0.0248 0.0529 0.0221 2.5 0.010 0.009
4 0.0821 0.021 0.0728 0.0199 2.5 0.008 0.008
5 0.0983 0.0162 0.0882 0.0154 2.5 0.006 0.006
6 0.108 0.0097 0.0975 0.0093 2.5 0.004 0.004

max 0.010 0.009

 

In calculations using linear elastic methods, relative drift ratios of vertical 

components under any direction of seismic actions must not exceed the value for the 

corresponding damage limits given in Table 2.6. Maximum drift ratio value for x 

direction exceeds the minimum damage limit. As a result, even if the components 

represents slight damage level due to the demand-capacity ratio verification, they 

will be considered as at moderate damage level under seismic actions acting along x 

direction.  

4.2.1.2 Moment Capacities at Beam Ends 

Determination of end point moment capacity will be explained in detail for beam 

1101, and the results for all beams at first storey will be summarized. 

 

 

Figure 4.7 : Beam 1101 Left-end Cross-sectional Detail 

45 cm 

55 cm 

6Φ14 

5Φ14 
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After defining confined, unconfined concrete and reinforcement steel material 

properties to XTRACT [5] cross-section analysis software, moment-curvature plots 

can be obtained as an output (Figure 4.8). Unconfined and confined concrete material 

properties are defined and introduced to cross-section models in the software. In 

1988, Mander proposed reinforced concrete member stress-strain model which takes 

confinement effect into account, [31]. In Table 4.9 end-point moment capacities of 

Beam 1101 are summarized.    

 

Figure 4.8 : Beam 1101 Moment-Curvature Graph 

Table 4.9 : Beam 1101 End-point Moment Capacities 

i j
66.0 66.0

Bottom Moment Cap. [kNm]

 

 

left-end top bending moment capacity 79.2 kNm 

left-end bottom bending moment capacity 66.0 kNm 
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Table 4.10 : First Storey Beam Bending Moment Capacities 

i j i j
1101 79.21 79.21 66.01 66.01
1102 79.21 79.21 66.01 66.01
1103 79.21 79.21 66.01 66.01
1104 79.21 79.21 66.01 66.01
1105 57.54 57.54 46.03 46.03
1106 57.54 57.54 46.03 46.03
1107 57.54 57.54 46.03 46.03
1108 57.54 57.54 46.03 46.03
1109 57.54 57.54 46.03 46.03
1110 57.54 57.54 46.03 46.03
1111 79.21 79.21 66.01 66.01
1112 79.21 79.21 66.01 66.01
1114 79.21 79.21 66.01 66.01
1115 79.21 79.21 66.01 66.01
1116 79.21 79.21 66.01 66.01
1117 79.21 79.21 66.01 66.01
1118 57.54 57.54 46.03 46.03
1119 57.54 57.54 46.03 46.03
1121 57.54 57.54 46.03 46.03
1122 57.54 57.54 46.03 46.03
1124 57.54 57.54 46.03 46.03
1125 57.54 57.54 46.03 46.03
1126 57.54 57.54 46.03 46.03
1127 79.21 79.21 66.01 66.01
1128 79.21 79.21 66.01 66.01

Top Moment Cap. [kNm] Bottom Moment Cap. [kNm]
Beam

 

4.2.1.3 Moment Capacities of Columns 

On the following lines, evaluation of residual axial force demand acting on Column 

101 under x direction seismic actions will be explained in detail. Maximum axial 

force acting from seismic action is required for obtaining the residual moment 

capacity with axial force – bending moment interaction relation. After the example 

calculation for Column 101 is introduced, results for other columns will be 

summarized. 

Left bottom moment capacity of Beam 1101 = 66.01 kNm 

Left-end moment demand from gravity loads = -16.83 kNm 

Residual Moment Capacity of Beam left-end = 66.01-(-16.83) = 82.84 kNm 

Right top moment capacity of Beam 1101 = 79.21 kNm 

Right-end moment demand from gravity loads = 23.07 kNm 
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Residual Moment Capacity of Beam right-end = 79.21-23.07 = 56.14 kNm 

Span length of Beam 1101 = 3.65 m 

Residual Axial Force acting on Column 101 from Beam 1101  

= - (82.84 + 56.14) / 3.65 = -36.66 kN 

Residual Axial Force acting on Column 101 from Beam 1201 = -41.49 kN 

Residual Axial Force acting on Column 101 from Beam 1301 = -42.00 kN 

Residual Axial Force acting on Column 101 from Beam 1401 = -42.05 kN 

Residual Axial Force acting on Column 101 from Beam 1501 = -41.91 kN 

Residual Axial Force acting on Column 101 from Beam 1601 = -40.91 kN 

Total Residual Axial Force acting from beams  

= -36.66 - 41.49 – 42.00 – 42.05 – 41.91 – 40.91 = -244.99 kN 

Total Demand Axial force can be obtained by adding gravity load demand to residual 

axial forces 

Total Axial Force Demand acting on Column 101 = -244.99 + 217.84 = 27.15 kN 

Total Bending Capacity of Column 101 top-end section is evaluated as 43.1 kNm by 

using interaction curve as shown in Figure 4.9. 

Bending capacity of Column 201 bottom-end section is also calculated with the same 

procedure above and it is found as 42.9 kNm 
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Figure 4.9 : Column 101 Moment – Axial Force Interaction Curve 

In order to check whether if the hinges are developing at beam ends or not, moment 

capacity comparison must be done at column-beam joints. 

At joint 201 where Column 101, Column 201 and Beam 1101 intersect: 

(MC101 + MC201) / (MB1101) = (43.1 + 42.9) / 66.01 = 1.30  

Same procedures are done for upper joints 

At Joint 301 = 1.11 

At Joint 401 = 1.04 

At joint 501 = 0.98 

At joint 601 = 0.96 

At joint 701 = 0.47 

Since beams along x direction connecting to joint 501, 601 and 701 are stronger than 

columns, beam capacities relevant to these joints must be multiplied with 0.98, 0.96 

and 0.47 respectively. After reducing the moment capacities of beams, moment 
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capacities of columns are recalculated since the axial force transferred to the 

connecting columns are also changed.  

Subtracting moment demand of gravity loads from the total moment capacity gives 

the residual moment capacity. Residual moment capacity values of corresponding 

columns are given in Table 4.11.  

Table 4.11 : Residual Moment Capacities of Columns 

column NG+ NE [kN] total moment cap [kNm] bottom residual   [kNm] top residual  [kNm]
101 -21.0 43.0 44.5 39.9
102 488.6 49.0 48.2 47.5
103 436.2 47.0 47.0 47.0
104 357.2 48.0 47.7 48.5
105 422.1 46.0 45.5 50.0
106 161.4 48.0 49.8 44.4
107 636.5 62.0 61.4 63.3
108 -58.7 225.0 223.8 227.6
109 726.6 272.0 272.9 269.9
110 741.4 62.0 62.8 60.3
111 596.4 46.0 45.3 50.4
112 1.9 43.0 44.7 39.6
113 408.7 47.0 46.7 47.7
114 444.0 48.0 47.1 49.8
115 21.9 47.0 47.9 45.2
116 341.0 47.0 47.3 46.4
117 489.9 47.0 45.3 50.4

 

4.2.1.4 Safety Verification against Shear Failure 

In order to classify the structural components as ductile or brittle elements, their 

safety verification against shear failure must be achieved. The main principle of any 

structural component being controlled by flexure is its shear capacity is exceeded 

after its moment capacity. Otherwise the component is controlled by force. 

Shear force check for Column 101 will be explained specifically and the results for 

whole components will be summarized later on. 

Shear Resistance of Column 101 

Vr = Vc + Vw = 0.8 x 0.65 x fctm x d x (1+ γ x N / Ac)  

= 0.8 x 0.65 x 0.9 x 450x 220 x (1 + 0.07 x 28.2 x 1000 / (450 x 250) = 51480 N 
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= 51.48 kN 

Vw = Asw x fyw x d / s = 48.63 kN 

Vr = 100.11 kN 

The maximum shear is determined on the basis of end point bending moment 

capacities. The stronger column – weaker beam condition must be checked at both 

column end joints in order to determine exact moment capacities at ends. 

(MC101 + MC201) / (MB1101) = (43.1 + 42.9) / 66.01 = 1.30  

VE = Min((Mtop + Mbottom) / column height),(shear demand from seismic actions)) 

VE = 86 / 2.15 = 40 kN 

VE < Vr , thus Column 101 is controlled by flexure. 

 

Table 4.12 : Ductility Condition of Beams  

beam VE [kN] Vr [kN] controlled by
1101 36.66 166.54 flexure
1102 27.53 166.54 flexure
1103 27.01 166.54 flexure
1104 37.95 166.54 flexure
1105 26.45 137.10 flexure
1106 31.07 137.10 flexure
1107 96.72 137.10 flexure
1108 59.82 137.10 flexure
1109 32.70 137.10 flexure
1110 30.80 137.10 flexure
1111 37.64 166.54 flexure
1112 41.45 166.54 flexure
1114 42.91 166.54 flexure
1115 35.50 166.54 flexure
1116 38.07 166.54 flexure
1117 38.32 166.54 flexure
1118 26.92 137.10 flexure
1119 27.88 137.10 flexure
1121 27.43 137.10 flexure
1122 27.13 146.72 flexure
1124 27.44 137.10 flexure
1125 26.56 137.10 flexure
1126 28.19 137.10 flexure
1127 38.08 166.54 flexure
1128 38.31 166.54 flexure  
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Table 4.13 : Ductility Conditions of Columns 

column VE [kN] V r [kN] controlled by
101 40.0 100.1 flexure
102 45.6 114.5 flexure
103 43.7 114.0 flexure
104 44.7 111.2 flexure
105 42.8 115.5 flexure
106 44.7 104.8 flexure
107 57.7 126.3 flexure
108 209.3 235.2 flexure
109 253.0 260.5 flexure
110 57.7 153.1 flexure
111 42.8 120.3 flexure
112 40.0 100.1 flexure
113 43.7 111.6 flexure
114 44.7 116.4 flexure
115 43.7 100.1 flexure
116 43.7 112.9 flexure
117 43.7 115.8 flexure  

 

4.2.1.5 Damage Levels of Structural Elements 

Demand-capacity ratios are determined by dividing moments acting on ductile 

elements by the residual moment capacities calculated from previous sections. Later 

on, these demand-capacity ratios ( r ) are compared with the values for corresponding 

damage limits for beams and columns given in Table 2.3 and Table 2.4 respectively. 

Damage levels of critical storey structural components are specified on Table 4.14, 

Table 4.15, Table 4.16 and Table 4.17. 
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Table 4.14 : Column Damage Levels under x-Direction Seismic Actions 

shear r r limit ML r limit SL r limit CL damage
101 3.6% 2.20 2.00 3.50 5.00 moderate
102 3.5% 1.80 1.50 2.00 3.00 moderate
103 3.4% 1.79 2.02 3.56 5.08 slight
104 3.5% 1.82 2.14 3.91 5.55 slight
105 3.6% 2.16 2.04 3.62 5.17 moderate
106 2.8% 1.55 2.43 4.78 6.71 slight
107 6.3% 2.66 1.50 2.00 3.00 heavy
108 19.7% 3.37 1.58 2.66 3.74 heavy
109 19.9% 2.77 1.00 1.50 2.00 collapse
110 9.9% 4.24 1.50 2.00 3.00 collapse
111 2.9% 1.73 1.50 2.00 3.00 moderate
112 3.4% 2.09 2.00 3.50 5.00 moderate
113 3.8% 1.96 2.06 3.68 5.24 slight
114 3.3% 1.98 2.01 3.53 5.04 slight
115 3.3% 1.95 2.00 3.50 5.00 slight
116 3.7% 1.93 2.16 3.98 5.65 slight
117 3.4% 2.07 1.50 2.00 3.00 heavy

column
x direction

 

 

Table 4.15 :  Column Damage Levels under y-Direction Seismic Actions 

shear r r limit ML r limit SL r limit CL damage
101 6.1% 1.88 1.83 3.16 4.50 moderate
102 4.6% 1.35 1.55 2.48 3.53 slight
103 4.2% 1.23 1.54 2.45 3.49 slight
104 4.5% 1.35 1.58 2.53 3.60 slight
105 5.9% 2.06 1.89 3.28 4.67 moderate
106 7.4% 1.55 1.38 2.15 3.03 moderate
107 10.0% 1.87 1.00 1.50 2.00 heavy
108 3.5% 1.54 2.45 4.86 6.82 slight
109 3.5% 1.51 2.47 4.91 6.88 slight
110 11.4% 2.14 1.07 1.57 2.15 heavy
111 7.2% 1.53 1.37 2.13 3.00 moderate
112 6.1% 1.57 1.21 1.71 2.42 moderate
113 4.7% 1.24 1.19 1.69 2.38 moderate
114 5.2% 1.46 1.37 2.13 3.00 moderate
115 5.2% 1.45 1.19 1.69 2.38 moderate
116 4.6% 1.22 1.20 1.70 2.40 moderate
117 5.9% 1.56 1.42 2.22 3.15 moderate

column
y direction
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Table 4.16 : Beam Damage Levels under x-Direction Seismic Actions 

r r limit ML r limit SL r limit CL damage
1101 2.50 2.50 4.00 6.00 moderate
1102 1.10 2.50 4.00 6.00 slight
1103 1.25 2.50 4.00 6.00 slight
1104 2.36 2.50 4.00 6.00 slight
1105 3.09 2.50 4.00 6.00 moderate
1106 6.55 2.50 4.00 6.00 collapse
1107 6.60 2.50 4.00 6.00 collapse
1108 8.74 2.50 4.00 6.00 collapse
1109 4.97 2.50 4.00 6.00 heavy
1110 3.02 2.50 4.00 6.00 moderate
1111 2.32 2.50 4.00 6.00 slight
1112 2.76 2.50 4.00 6.00 moderate
1114 2.85 2.50 4.00 6.00 moderate
1115 2.28 2.50 4.00 6.00 slight
1116 0.05 2.50 4.00 6.00 slight
1117 0.07 2.50 4.00 6.00 slight
1118 0.09 2.50 4.00 6.00 slight
1119 0.02 2.50 4.00 6.00 slight
1121 0.14 2.50 4.00 6.00 slight
1122 0.00 2.50 4.00 6.00 slight
1124 0.14 2.50 4.00 6.00 slight
1125 0.09 2.50 4.00 6.00 slight
1126 0.01 2.50 4.00 6.00 slight
1127 0.05 2.50 4.00 6.00 slight
1128 0.07 2.50 4.00 6.00 slight

x direction
beam
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Table 4.17 : Beam Damage Levels under y-Direction Seismic Actions 

r r limit ML r limit SL r limit CL damage
1101 0.01 2.50 4.00 6.00 slight
1102 0.02 2.50 4.00 6.00 slight
1103 0.01 2.50 4.00 6.00 slight
1104 0.01 2.50 4.00 6.00 slight
1105 0.01 2.50 4.00 6.00 slight
1106 0.08 2.50 4.00 6.00 slight
1107 0.40 2.50 4.00 6.00 slight
1108 0.73 2.50 4.00 6.00 slight
1109 0.05 2.50 4.00 6.00 slight
1110 0.01 2.50 4.00 6.00 slight
1111 0.00 2.50 4.00 6.00 slight
1112 0.01 2.50 4.00 6.00 slight
1114 0.00 2.50 4.00 6.00 slight
1115 0.01 2.50 4.00 6.00 slight
1116 3.21 2.50 4.00 6.00 moderate
1117 3.43 2.50 4.00 6.00 moderate
1118 5.38 2.50 4.00 6.00 heavy
1119 4.40 2.50 4.00 6.00 heavy
1121 3.60 2.50 4.00 6.00 moderate
1122 3.88 2.50 4.00 6.00 moderate
1124 3.60 2.50 4.00 6.00 moderate
1125 5.50 2.50 4.00 6.00 heavy
1126 4.33 2.50 4.00 6.00 heavy
1127 3.16 2.50 4.00 6.00 moderate
1128 3.38 2.50 4.00 6.00 moderate

y direction
beam

 

Summary of structural element damage levels also considering the storey drift ratios 
are given visually in Figure 4.10 and Figure 4.11. 

 

Figure 4.10 : Damage Levels of Columns 
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Figure 4.11 : Damage Levels of Beams 

4.2.1.6 Seismic Performance of the Structure 

From linear static analysis results, building is more vulnerable when seismic actions 

affect along x direction. Since relative drift ratio of vertical elements does not satisfy 

the minimum damage limit case, all elements at slight damage level must be assumed 

as moderate damage level.  

While 84% of beams at critical storey are moderately damaged, 12% of overall 

beams are collapsed. The remaining beams are heavily damaged. 

For the vertical structural elements at the critical storey, 11.8% of columns collapse 

due to the analysis. This situation gives the building seismic performance of State of 

Collapse without questioning. 

4.2.2 Non-linear Analysis with Push-over Method 

In this section, seismic performance assessment of the case study building will be 

performed with TEC’07 non-linear static analysis by using Incremental Equivalent 

Seismic Load Method. Assessment procedure is summarized on a flowchart given in 
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Figure 4.12 : Non-linear Static Analysis Flowchart 

Plastic hinges are defined to the mathematical model at each column and beam ends. 

Mean values of mechanical properties are introduced when defining hinges yielding 

surfaces. Confidence factor confirmed from the knowledge level is multiplied to 

capacity values. Maximum compression strain of concrete material and maximum 
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tension strain of reinforcement steel material are taken 0.003 and 0.01 respectively. 

Yielding surface data for each plastic hinge created is entered to the mathematical 

model as input. 

Example Calculation for Column 101 

Plastic cross-section surfaces are created by XTRACT [5] cross-section analysis 

software program. For Column 101, where the cross-section details are given in 

Figure 4.13, Mander unconfined concrete model is used at outer zone from the 

transverse reinforcement and Mander confined concrete model is used for the core 

material. Hardening of steel material is neglected. Maximum compression strain of 

concrete material and maximum tension strain of reinforcement steel material are 

taken 0.003 and 0.01 respectively. 

 

  

 

Figure 4.13 : Cross-sectional Detail of Column 101 

The bending moment about x-axis and axial force interaction curve which is obtained 

from cross-section analysis is shown in Figure 4.14. An interaction surface is created 

and entered to the structural analysis program as input file after moment-axial force 

interaction curves performed for 0ο, 45 ο and 90 ο. 

25 cm 

45 cm8Φ20 + 2 Φ14 



 68

 

Figure 4.14 : Column 101 Moment – Axial Force Interaction Curve 

Example Calculation for Beam 1101 

Bending moment – curvature plots are created by XTRACT [5] cross-section 

analysis software program. For Beam 1101, where the cross-section details are given 

in Figure 4.15, Mander [31] unconfined concrete model is used at outer zone from 

the transverse reinforcement and Mander confined concrete model is used for the 

core material. Hardening of steel material is neglected. Maximum compression strain 

of concrete material and maximum tension strain of reinforcement steel material are 

taken 0.003 and 0.01, respectively. 

 

 

 

Figure 4.15 : Beam 1101 Left-end Cross-sectional Detail 

45 cm 

55 cm 

6Φ14 

5Φ14 
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At the end of cross-section analysis, yielding moment capacity values are determined 

as follows: 

Positive bending moment (Tension at bottom) 

Mpa
+ = 66.0 kNm 

Negative bending moment (Tension at top) 

Mpa
- = 79.2 kNm 

Internal force – deformation relation can be seen from Figure 4.16. Internal force-

deformation relation is introduced to the structural analysis program which will 

perform the push-over analysis. 

 

Figure 4.16 : Beam 1101 Left-end Moment-Curvature Graph 

Defining yielding curves procedures for given examples are repeated for every point 

on system where a plastic hinge may develop. Plastic hinges are defined at every 

column and beam end points as well as at beam mid span in case of possible plastic 

deformation because of gravity loadings (Figure 4.17). 

 

 

curvature 

66.0 kNm 

-79.2 kNm 

Moment 
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Figure 4.17 : Plastic Hinges Defined on Column and Beam Ends at C Axis 

Structural system is pushed up to any predefined displacement under constant gravity 

loads and monotonically increasing equivalent seismic loads. Within scope of this 

analysis, modal mass and modal participation factor and modal shape of fundamental 

modes are also determined, Table 4.18 - Table 4.20 

Table 4.18 : Modal Mass Ratios 

Mode Period [sec] UX UY 
1 0.871 0.7729 0.0000
2 0.824 0.0000 0.7587
3 0.709 0.0008 0.0000
4 0.289 0.1119 0.0000
5 0.274 0.0000 0.1148
6 0.237 0.0001 0.0000  

 

Table 4.19 : Modal Participation Factors 

Mode Period [sec] UX [kNs2] UY [kNs2]
1 0.871 22.290 0.011
2 0.824 -0.015 22.084
3 0.709 0.713 0.141
4 0.289 -8.480 -0.005
5 0.274 -0.007 8.591
6 0.237 -0.229 -0.058  
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Table 4.20 : Horizontal Displacements at Fundamental Periods 

Storey UX UY
6 0.0583 0.0589
5 0.0544 0.05314
4 0.0455 0.04384
3 0.0339 0.0318
2 0.0201 0.0187
1 0.0065 0.00569  

Base shear and control node displacement values are given in Table 4.21 for each 

step of push-over analyses separately for x and y directions. 

Table 4.21 : Base Shear – Top Displacement Values 

step ux [m] base shear x [kN] step uy [m] base shear y [kN]
1 0.000 0.0 1 0.000 0.0
2 0.012 249.2 2 0.018 394.8
3 0.045 750.4 3 0.035 701.6
4 0.064 893.3 4 0.045 790.3
5 0.072 925.0 5 0.073 902.7
6 0.072 812.3 6 0.110 978.1
7 0.079 847.3 7 0.172 1029.4
8 0.079 847.3 8 0.185 1036.7
9 0.079 847.3 9 0.255 1065.4
10 0.079 841.3 10 0.315 1086.7
11 0.092 877.7 11 0.319 1087.7
12 0.092 875.8 12 0.319 1086.6
13 0.093 879.8 13 0.374 1109.9
14 0.117 934.7 14 0.374 1097.9
15 0.117 934.8 15 0.374 1101.8
16 0.118 939.8 16 0.375 1102.9
17 0.122 950.9 17 0.375 1103.5
18 0.122 951.5 18 0.375 1099.4
19 0.125 966.8  -  -  -
20 0.129 976.1 - -  -  

 

Under cover of Table 4.21, push-over curves are sketched. Push-over curves for x-

direction and y-direction analyses are shown together at same coordinates in Figure 

4.18. 
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Figure 4.18 : Push-over Curves according to TEC’07 

Coordinate conversion is applied for push-over curves to achieve modal 

displacement and modal acceleration values by using equations (2.2) and (2.3). 

Modal displacement and modal acceleration values are shown in for two separate 

push-over curves. 

Table 4.22 : Modal Acceleration and Modal Displacement Values 

a1 x d1 x a1 y d1 y
0.000 0.000 0.000 0.000
0.495 0.010 0.799 0.014
1.492 0.035 1.420 0.026
1.776 0.049 1.600 0.034
1.839 0.055 1.827 0.055
1.615 0.055 1.980 0.084
1.684 0.062 2.084 0.131
1.684 0.062 2.099 0.140
1.684 0.062 2.157 0.194
1.672 0.062 2.200 0.238
1.745 0.071 2.202 0.241
1.741 0.071 2.200 0.241
1.749 0.072 2.247 0.283
1.858 0.091 2.223 0.283
1.858 0.091 2.230 0.284
1.868 0.091 2.233 0.284
1.890 0.095 2.234 0.284
1.891 0.095 2.226 0.284
1.922 0.097  -  -
1.940 0.100 - -
mass 503.080 mass 493.969
Φi1 0.058 Φi1 0.059
ΓX1 22.133 Γy1 22.412

x direction y direction
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Elastic response spectrum curve is also converted to spectral acceleration – spectral 

displacement curve modal capacity curve of the structure is also shown at the same 

sketch. Linear part of the modal capacity curve is extended up to spectral 

acceleration curve and the gives the linear spectral displacement value as shown in 

Figure 4.19 and Figure 4.20. 
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Figure 4.19 : Spectral Acceleration – Spectral Displacement Diagram (X-Dir.) 

Modal Capacity - Spectral Acceleration - y
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Figure 4.20 : Spectral Acceleration – Spectral Displacement Diagram (Y-Dir.) 

Since the initial period in  
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Figure 4.19 is longer than the characteristic period TB, non-linear spectral 

displacement is equal to the linear spectral displacement on the basis of equal 

displacement rule. 

Modal displacement demand is equal to the non-linear spectral displacement value 

under scope of equations from (2.4 ) to (2.6 ). 

Target displacements are calculated for two separate push-over analysis along x and 

y directions with equation (2.9 ) as 0.1019 m and 0.0974 m respectively. 

Control node of the structure is pushed up to these target displacement and plastic 

rotation demands are investigated. Plastic hinges are shown on Figure 4.21 as for x 

direction and y direction push-over analyses. 

 

Figure 4.21 : Developed Plastic Hinges 

Plastic curvatures are obtained by dividing plastic rotation by plastic hinge length as 
stated in equation (2.10).  

Total curvature demand is calculated by adding plastic curvature with yield curvature 
value, Equation (2.11). 

Curvature demands for beams at first storey are calculated with the procedure 
explained above and shown at Table 4.23. 
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Table 4.23 : Total Curvature Demands at Beam Ends 

BEAM HINGE θ P [RAD] h [m] Lp [m] Κ P Κ yield Κ total
1116 LEFT 0.00593 0.45 0.225 0.02636 0.00980 0.03616
1116 RIGHT -0.00675 0.45 0.225 0.03000 0.00980 0.03980
1117 LEFT 0.00503 0.4 0.2 0.02515 0.01103 0.03618
1117 RIGHT -0.00792 0.4 0.2 0.03960 0.01103 0.05063
1118 LEFT 0.00549 0.4 0.2 0.02745 0.01103 0.03848
1118 RIGHT -0.00734 0.4 0.2 0.03670 0.01103 0.04773
1119 LEFT 0.00474 0.4 0.2 0.02370 0.01103 0.03473
1119 RIGHT -0.00825 0.4 0.2 0.04125 0.01103 0.05228
1121 LEFT 0.00596 0.4 0.2 0.02980 0.01103 0.04083
1121 RIGHT -0.00661 0.4 0.2 0.03305 0.01103 0.04408
1122 LEFT 0.00394 0.4 0.2 0.01970 0.01103 0.03073
1122 RIGHT -0.00828 0.4 0.2 0.04140 0.01103 0.05243
1124 LEFT 0.00571 0.4 0.2 0.02855 0.01103 0.03958
1124 RIGHT -0.00655 0.4 0.2 0.03275 0.01103 0.04378
1125 LEFT 0.00543 0.4 0.2 0.02715 0.01103 0.03818
1125 RIGHT -0.00702 0.4 0.2 0.03510 0.01103 0.04613
1126 LEFT 0.00438 0.4 0.2 0.02190 0.01103 0.03293
1126 RIGHT -0.00827 0.4 0.2 0.04135 0.01103 0.05238
1127 LEFT 0.00569 0.45 0.225 0.02529 0.00980 0.03509
1127 RIGHT -0.00675 0.45 0.225 0.03000 0.00980 0.03980
1128 LEFT 0.00504 0.45 0.225 0.02240 0.00980 0.03220
1128 RIGHT -0.00798 0.45 0.225 0.03547 0.00980 0.04527  

Concrete compression strain and steel tension strain demand are achieved by using 

curvature demands in bending moment – curvature relations.  It is observed that a 

linear relation exists between curvature and strain values at beams. Strain demands of 

unconfined concrete, confined concrete and steel materials are achieved and those 

demands are compared with strains defined for each corresponding damage limit in 

order to define the component damage level. 
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Table 4.24 : Damage Levels of Beams under x Direction Seismic Effect 

BEAM HINGE ε s ε cu ε cc damage
1101 LEFT 0.0176 0.0019 0.0008 moderate
1101 RIGHT 0.0145 0.0016 0.0006 moderate
1102 LEFT 0.0111 0.0012 0.0005 moderate
1102 RIGHT 0.0050 0.0005 0.0002 slight
1103 LEFT 0.0032 0.0003 0.0001 slight
1103 RIGHT 0.0156 0.0017 0.0007 moderate
1104 LEFT 0.0139 0.0015 0.0006 moderate
1104 RIGHT 0.0207 0.0022 0.0009 moderate
1105 LEFT 0.0182 0.0021 0.0008 moderate
1105 RIGHT 0.0159 0.0018 0.0007 moderate
1106 LEFT 0.0133 0.0015 0.0006 moderate
1106 RIGHT 0.0128 0.0015 0.0006 moderate
1107 LEFT 0.0211 0.0024 0.0010 moderate
1107 RIGHT 0.0034 0.0004 0.0002 slight
1108 LEFT 0.0034 0.0004 0.0002 slight
1108 RIGHT 0.0223 0.0025 0.0010 moderate
1109 LEFT 0.0196 0.0022 0.0009 moderate
1109 RIGHT 0.0189 0.0022 0.0009 moderate
1110 LEFT 0.0157 0.0018 0.0007 moderate
1110 RIGHT 0.0223 0.0025 0.0010 moderate
1111 LEFT 0.0178 0.0019 0.0008 moderate
1111 RIGHT 0.0127 0.0014 0.0005 moderate
1112 LEFT 0.0109 0.0012 0.0005 moderate
1112 RIGHT 0.0208 0.0022 0.0009 moderate
1114 LEFT 0.0184 0.0020 0.0008 moderate
1114 RIGHT 0.0162 0.0017 0.0007 moderate
1115 LEFT 0.0141 0.0015 0.0006 moderate
1115 RIGHT 0.0208 0.0022 0.0009 moderate  
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Table 4.25 : Damage Levels of Beams under y Direction Seismic Effect 

BEAM HINGE ε s ε cu ε cc damage
1116 LEFT 0.0118 0.0013 0.0005 moderate
1116 RIGHT 0.0129 0.0014 0.0006 moderate
1117 LEFT 0.0118 0.0013 0.0005 moderate
1117 RIGHT 0.0165 0.0018 0.0007 moderate
1118 LEFT 0.0125 0.0013 0.0005 moderate
1118 RIGHT 0.0155 0.0017 0.0007 moderate
1119 LEFT 0.0113 0.0012 0.0005 moderate
1119 RIGHT 0.0170 0.0018 0.0007 moderate
1121 LEFT 0.0126 0.0014 0.0006 moderate
1121 RIGHT 0.0136 0.0015 0.0006 moderate
1122 LEFT 0.0095 0.0011 0.0004 slight
1122 RIGHT 0.0161 0.0018 0.0007 moderate
1124 LEFT 0.0122 0.0014 0.0006 moderate
1124 RIGHT 0.0135 0.0015 0.0006 moderate
1125 LEFT 0.0118 0.0013 0.0005 moderate
1125 RIGHT 0.0142 0.0016 0.0006 moderate
1126 LEFT 0.0101 0.0012 0.0005 moderate
1126 RIGHT 0.0161 0.0018 0.0007 moderate
1127 LEFT 0.0108 0.0012 0.0005 moderate
1127 RIGHT 0.0123 0.0014 0.0006 moderate
1128 LEFT 0.0105 0.0011 0.0005 moderate
1128 RIGHT 0.0147 0.0016 0.0006 moderate  

Same procedure for calculation of curvature demands is also valid for columns. Axial 

force – strain relation is sketched for each column end cross-section and defined 

strain limits for each damage limit is also represented on the same graph (Figure 

4.22). In guidance axial force and total curvature demands, the damage level of 

columns are obtained.  
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Figure 4.22 : Column 101 Axial Force – Curvature Graph with Damage Limits 

Example for Column 101 

Axial Force = 120.9 kN 

Curvature = 0.085 1/m 

Damage level: moderate 
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Table 4.26 : Damage Levels of Columns under x Direction Seismic Effects 

COLUMN HINGE N [kN] Κ total Damage 
101 BOTTOM 120.92 0.08484 moderate
101 TOP 120.92 0.01764 slight
102 BOTTOM 426.05 0.07244 moderate
102 TOP 426.05 0.018872 slight
103 BOTTOM 445.81 0.07844 moderate
103 TOP 445.81 0.04068 slight
104 BOTTOM 363.65 0.076664 moderate
104 TOP 363.65 0.01764 slight
105 BOTTOM 306.84 0.063832 moderate
105 TOP 306.84 0.01764 slight
106 BOTTOM 296.65 0.08164 moderate
106 TOP 296.65 0.01764 slight
107 BOTTOM 673.20 0.12964 heavy
107 TOP 673.20 0.03276 slight
108 BOTTOM 435.23 0.0346714 moderate
108 TOP 435.23 0.0063 slight
109 BOTTOM 409.91 0.0226714 moderate
109 TOP 409.91 0.0063 slight
110 BOTTOM 677.47 0.10484 collapse
110 TOP 677.47 0.01764 slight
111 BOTTOM 468.10 0.04764 slight
111 TOP 468.10 0.01764 slight
112 BOTTOM 151.51 0.08492 moderate
112 TOP 151.51 0.01764 slight
113 BOTTOM 379.61 0.0798 moderate
113 TOP 379.61 0.03284 slight
114 BOTTOM 310.24 0.06224 moderate
114 TOP 310.24 0.01764 slight
115 BOTTOM 119.87 0.08596 moderate
115 TOP 119.87 0.01764 slight
116 BOTTOM 410.05 0.07092 moderate
116 TOP 410.05 0.01764 slight
117 BOTTOM 326.03 0.062112 moderate
117 TOP 326.03 0.01764 slight  
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Table 4.27 : Damage Levels of Columns under y Direction Seismic Effects 

COLUMN HINGE N [kN] Κ total Damage 
101 BOTTOM 314.18 0.0134 slight
101 TOP 314.18 0.0098 slight
102 BOTTOM 500.76 0.0098 slight
102 TOP 500.76 0.0098 slight
103 BOTTOM 636.28 0.0098 slight
103 TOP 636.28 0.0098 slight
104 BOTTOM 504.30 0.0098 slight
104 TOP 504.30 0.0098 slight
105 BOTTOM 311.68 0.0134 slight
105 TOP 311.68 0.0098 slight
106 BOTTOM 392.93 0.0131 slight
106 TOP 392.93 0.0098 slight
107 BOTTOM 662.07 0.0195 slight
107 TOP 662.07 0.0098 slight
108 BOTTOM 498.29 0.0256 slight
108 TOP 498.29 0.0176 slight
109 BOTTOM 497.55 0.0255 slight
109 TOP 497.55 0.0176 slight
110 BOTTOM 671.57 0.0229 moderate
110 TOP 671.57 0.0098 slight
111 BOTTOM 390.77 0.0132 slight
111 TOP 390.77 0.0098 slight
112 BOTTOM 127.42 0.0173 slight
112 TOP 127.42 0.0098 slight
113 BOTTOM 283.95 0.0113 slight
113 TOP 283.95 0.0098 slight
114 BOTTOM 108.76 0.0173 slight
114 TOP 108.76 0.0098 slight
115 BOTTOM 104.14 0.0178 slight
115 TOP 104.14 0.0098 slight
116 BOTTOM 292.17 0.0116 slight
116 TOP 292.17 0.0098 slight
117 BOTTOM 127.52 0.0178 slight
117 TOP 127.52 0.0098 slight  
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Figure 4.23 : Damage Levels of Columns 

 

Figure 4.24 : Damage Levels of Beams 

4.3 Assessment According to Eurocode 8 

In this section, calculation steps for the case building according to Lateral Load 

(linear static analysis) and Push-over (non-linear static analysis) methods of analysis 

will be explained briefly on the basis of Eurocode 8. 
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Before investigating the seismic performance of the case building under different 

analysis types, on the following paragraphs, common seismic properties, which are 

valid both for linear static and non-linear static analysis procedures, are determined. 

Acceptance criteria for using the methods of analysis will also be checked. 

Due to the comprehensiveness of obtained as-built information, knowledge level of 

the case study building is confirmed as “normal” and the corresponding confidence 

factor is 1.20 as given in Table 3.1. The confidence factor will be used for dividing 

mean values of material properties and also multiplying when determining force 

demand on brittle elements transferred by ductile ones.  

Storey masses and building total masses considering the 30% participation of live 

loads are calculated and results are given in Table 4.28. 

Table 4.28 : Storey Masses 

storey mass [kN.sec2/m]
6 94.34
5 106.88
4 106.88
3 107.11
2 107.33
1 128.27

total 650.81  

Eurocode recommends using elastic flexural and shear stiffness properties of 

concrete elements to be taken one-half of the corresponding stiffness of the 

uncracked elements unless a more accurate analysis of cracked elements is 

performed. The initial elastic stiffness values of beams and columns are multiplied 

with 0.50 in order to obtain the effective stiffness.  

Fundamental periods for along x axis and y axis and rotation about z axis are 

obtained by SAP2000 [4] modal analysis after effective stiffness values are applied 

to the structural elements. 

Tx 0.852 sec
Ty 0.794 sec
Tө 0.689 sec  
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Lateral loads acting on each storey are determined on the following lines according 

to Lateral Load Method. 

Ground Type : B 

Soil Factor : 1.20 

Lower limit of the period of the constant acceleration branch (TB) : 0.15 sec 

Upper limit of the period of the constant acceleration branch (TC) : 0.50 sec 

Beginning of the constant displacement response (TD) : 2.00 sec 

Damping correction factor: 1.00 

Ordinate of the elastic spectrum at fundamental period Se(T1) 

= peak ground acceleration x S x correction factor x 2.50 x (TC / T1) 

Se(T1) (x direction) = 0.30 x 9.81 x 1.20 x 1.00 x 2.50 x (0.50 / 0.852) = 5.18 m / sec2 

Se(T1) (y direction) = 5.56 m / sec2 

Multiplying the ordinate value of the elastic spectrum with building mass gives the 

base shear. Multiplying also with correction factor 0.85 is also necessary since the 

building has more than two storeys and also has fundamental periods for both 

directions shorter than 1.00 sec. 

Base shear for x direction = 2865.77 kN 

Base shear for y direction = 3075.11. kN 

For the distribution of horizontal forces along storeys, following formula is used: 

(4.7) 

 

where Fi is the horizontal force acting on storey i 

Fb is the seismic base shear calculated above 
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mi is the storey mass 

si is the displacement of masses mi 

Distributions of horizontal loads are given in Table 4.29. 

Table 4.29 : Distribution of Horizontal Loads 

STOREY Fix [kN] Fiy [kN]
6 693.64 762.22
5 716.90 784.06
4 606.61 650.92
3 455.91 474.39
2 276.89 282.26
1 115.82 106.52

2865.77 3060.38  

The acceptance criteria for using Lateral Load method is depends on the fundamental 

period of the structure, irregularity condition on elevation and to the uniform 

distribution of elements which plastically deform. 

The case study is regular in elevation because vertical elements and storey are 

continuous to the top, storey stiffness is also constant and there is no any existing 

setback. 

The ratio of maximum to minimum value of demand-capacity ratio over all ductile 

members in a storey that go inelastic must not exceed the value of 2.50. Verification 

of this condition is shown in Table 4.30 and Table 4.31 separately for columns under 

seismic actions along x and y directions respectively.  
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Table 4.30 : Inelastic Behavior of Ductile Columns – X Direction 

Column Cap [kNm] Demand [kNm] DCR DCR max
101 43 113.88 2.65 4.30
102 49 128.44 2.62 DCR min
103 47 129.03 2.75 2.29
104 48 128.34 2.67 DCR max / DCR min
105 46 116.78 2.54 1.88
106 48 109.95 2.29
107 62 146.04 2.36
108 225 968.52 4.30
109 272 969.22 3.56
110 62 239.98 3.87
111 46 114.42 2.49
112 43 114.53 2.66
113 47 135.41 2.88
114 48 114.54 2.39
115 47 113.21 2.41
116 47 134.21 2.86
117 47 117.79 2.51

x - direction

 

Table 4.31 : Inelastic Behavior of Ductile Columns – Y Direction 

Column Cap [kNm] Demand [kNm] DCR DCR max
101 105 210.57 2.01 3.03
102 114 217.74 1.91 DCR min
103 115 233.94 2.03 1.64
104 112 259.48 2.32 DCR max / DCR min
105 96 290.83 3.03 1.85
106 127 250.71 1.97
107 192 314.21 1.64
108 67 136.82 2.04
109 66 143.15 2.17
110 194 441.77 2.28
111 128 344.05 2.69
112 124 207.32 1.67
113 127 212.85 1.68
114 128 224.93 1.76
115 127 233.74 1.84
116 126 254.62 2.02
117 124 288.13 2.32

y - direction

 

Since the overstrengths on columns are uniformly distributed, and there is not any 

existing irregularity in elevation, lateral force method is applicable for the 

investigated case study building. 
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4.3.1 Linear Analysis with Lateral Force Method 

On previous section, minimum requirements for performing assessment using lateral 

force method are investigated and method’s applicability is verified. 

On following paragraphs, seismic performance assessment of the case study building 

will be performed with TEC’07 linear static analysis with Lateral Force Method.  

Since the functionality purpose of case building is residence, on the basis of this 

thesis study, target seismic performance of the building will be Limit State of 

Significant Damage under seismic action with 475 years of return period. Therefore 

it will be convenient to compare seismic assessments using both TEC’07 and 

Eurocode 8 by using seismic actions with same return periods. 

The chord rotation capacities of ductile primary elements corresponding to 

significant damage SDθ  is assumed to be 3/4 of the ultimate chord rotation Uθ . 

For the calculation of ultimate chord rotation capacity of structural elements 

Equation (3.23) is used. Member-end rotation capacities for the critical storey 

vertical elements are given in Table 4.32 and Table 4.33. 

Table 4.32 : Rotation Capacities of Column Ends – x Direction 

column  θ yield [rad] φ ult. [1/m] φ yield [1/m] Lpl [m] LV [m]  θ ult. [rad]  θ SD[rad]
101 0.0017125 0.0451 0.0137 0.125 1.075 0.0036 0.0027
102 0.0015 0.037 0.012 0.125 1.075 0.0030 0.0022
103 0.001375 0.036 0.011 0.125 1.075 0.0029 0.0022
104 0.0015 0.037 0.012 0.125 1.075 0.0030 0.0022
105 0.0017125 0.0451 0.0137 0.125 1.075 0.0036 0.0027
106 0.0015 0.038 0.012 0.125 1.075 0.0030 0.0023
107 0.00125 0.031 0.01 0.125 1.075 0.0025 0.0019
108 0.00119 0.015 0.0034 0.35 1.075 0.0031 0.0023
109 0.00119 0.015 0.0034 0.35 1.075 0.0031 0.0023
110 0.00125 0.031 0.01 0.125 1.075 0.0025 0.0019
111 0.0015 0.038 0.012 0.125 1.075 0.0030 0.0023
112 0.001625 0.044 0.013 0.125 1.075 0.0035 0.0026
113 0.00145 0.0375 0.0116 0.125 1.075 0.0030 0.0022
114 0.0016875 0.044 0.0135 0.125 1.075 0.0035 0.0026
115 0.0016875 0.044 0.0135 0.125 1.075 0.0035 0.0026
116 0.00145 0.0375 0.0116 0.125 1.075 0.0030 0.0022
117 0.001625 0.044 0.013 0.125 1.075 0.0035 0.0026

x direction seismic effect
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Table 4.33 : Rotation Capacities of Column Ends – x Direction 

column  θ yield [rad] φ ult. [1/m] φ yield [1/m] Lpl [m] LV [m]  θ ult. [rad] θ SD[rad]
101 0.001395 0.029 0.0062 0.225 1.075 0.00399209 0.0030
102 0.0014625 0.02 0.0065 0.225 1.075 0.00278808 0.0021
103 0.001368 0.0195 0.00608 0.225 1.075 0.00271434 0.0020
104 0.0014625 0.02 0.0065 0.225 1.075 0.00278808 0.0021
105 0.001395 0.029 0.0062 0.225 1.075 0.00399209 0.0030
106 0.001395 0.021 0.0062 0.225 1.075 0.00291767 0.0022
107 0.0011 0.0155 0.0044 0.25 1.075 0.00236822 0.0018
108 0.00175 0.048 0.014 0.125 1.075 0.00383527 0.0029
109 0.00175 0.048 0.014 0.125 1.075 0.00383527 0.0029
110 0.0011 0.0155 0.0044 0.25 1.075 0.00236822 0.0018
111 0.001395 0.021 0.0062 0.225 1.075 0.00291767 0.0022
112 0.001395 0.029 0.0062 0.225 1.075 0.00399209 0.0030
113 0.0014625 0.02 0.0065 0.225 1.075 0.00278808 0.0021
114 0.00140175 0.0272 0.00623 0.225 1.075 0.00375082 0.0028
115 0.00140175 0.0272 0.00623 0.225 1.075 0.00375082 0.0028
116 0.0014625 0.02 0.0065 0.225 1.075 0.00278808 0.0021
117 0.001395 0.029 0.0062 0.225 1.075 0.00399209 0.0030

y direction seismic effect

 

Bending moment demands are obtained from analysis with load combination of 

gravity and seismic loads. Yielding moment and yielding curvature and so the 

yielding rotation values for each column is calculated by cross-sectional analysis.  

Demand rotations on member ends are determined on the basis of Equal 

Displacement Rule. Demand rotation, and the limit state of significant damage 

rotation capacities are compared in Table 4.34. 
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Table 4.34 : Demand Capacity Ratio of Columns 

Ө SD Ө DEMAND DCR Ө SD Ө DEMAND DCR
101 0.0027 0.0045 1.68 0.0030 0.0028 0.93
102 0.0022 0.0039 1.77 0.0021 0.0028 1.34
103 0.0022 0.0038 1.75 0.0020 0.0028 1.37
104 0.0022 0.0040 1.81 0.0021 0.0034 1.62
105 0.0027 0.0043 1.61 0.0030 0.0042 1.41
106 0.0023 0.0034 1.51 0.0022 0.0028 1.26
107 0.0019 0.0029 1.58 0.0018 0.0018 1.01
108 0.0023 0.0051 2.23 0.0029 0.0036 1.24
109 0.0023 0.0042 1.85 0.0029 0.0038 1.32
110 0.0019 0.0048 2.60 0.0018 0.0025 1.41
111 0.0023 0.0037 1.64 0.0022 0.0037 1.71
112 0.0026 0.0043 1.64 0.0030 0.0023 0.78
113 0.0022 0.0042 1.86 0.0021 0.0025 1.17
114 0.0026 0.0040 1.53 0.0028 0.0025 0.88
115 0.0026 0.0041 1.54 0.0028 0.0026 0.92
116 0.0022 0.0041 1.84 0.0021 0.0030 1.41
117 0.0026 0.0041 1.54 0.0030 0.0032 1.08

x direction y direction
COLUMN

 

Rotation demand-capacity ratios in Table 4.34 show that few columns are compatible 

with limit state of significant damage when seismic actions are acting along y axis. 

Other columns fail for the acceptance criteria under the regarding limit state.  

Observing the ratio values also gives the idea that the vertical elements may also not 

be suitable for collapse prevention performance level. 

4.3.2 Non-linear Static Analysis 

At the very first step of non-linear static (pushover) analysis procedure, the structure 

is subjected to gravity loads, and then horizontal forces defined in Equation (4.8) are 

statically applied.  

(4.8) 

Uniform and modal patterns are defined for vertical distributions of the lateral loads. 

The uniform pattern is based on the lateral loads that are proportional to mass 

regardless of elevation. 

1=iφ  

iii mF φα ⋅⋅=



 89

Table 4.35 : Vertical Distribution of Lateral Loads Using Uniform Pattern 

storey mass [kN.sec2/m] unit force [kN]
6 94.34 0.74
5 106.88 0.83
4 106.88 0.83
3 107.11 0.84
2 107.33 0.84
1 128.27 1.00  

The modal pattern is applied proportional to lateral forces consistent with the lateral 

force distribution in the direction under consideration determined in elastic analysis. 

Table 4.36 : Vertical Distribution of Lateral Loads Using Modal Pattern 

STOREY Fix [kN] unit force x [kN] Fiy [kN] unit force y [kN]
6 693.64 0.97 762.22 0.97
5 716.90 1.00 784.06 1.00
4 606.61 0.85 650.92 0.83
3 455.91 0.64 474.39 0.61
2 276.89 0.39 282.26 0.36
1 115.82 0.16 106.52 0.14  

The process is carried-out under monotonically increasing horizontal loads to 

investigate the displacement of control node relation. The control node is set to the 

center of mass of the top storey. Two different distributions of the lateral loads along 

the height of the building (uniform and inverted triangular) were used. The push-over 

curves which base shears are traced against control displacements are given in Figure 

4.25 and Figure 4.26. 



 90

X-DIRECTION PUSH-OVER CURVES

0
200
400
600
800

1000
1200
1400
1600

0 0.025 0.05 0.075 0.1 0.125 0.15
 Top Displacement [m]

B
as

e 
Sh

ea
r [

K
N

] 

modal pattern
uniform pattern

 

Figure 4.25 : X Direction Push-over Curves 
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Figure 4.26 : Y Direction Push-over Curves 

Previous studies on the topic states that uniform pattern for the lateral forces provides 

a good simulation of seismic response in bottom parts of structures, whereas a 

triangular distribution is better suited for top storey of buildings [32]. Though 

deformation energy capacities along both directions is lower while modal pattern, 

plastic rotations in first storey is higher when using the uniform distribution. 

Comparison of column top-end plastic rotations under triangular and uniform 

distribution of lateral loads is given in Table 4.37. Determination of seismic 

performance of the structure by using uniform distribution of lateral loads is more 

convenient since higher plastic deformations are obtained at first storey which is also 

critical storey of the structure. 
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Table 4.37 : Plastic Rotations at First Storey Columns 

modal pattern uniform pattern modal pattern uniform pattern
101 0.0089 0.0125 0.0000 0.0058
102 0.0060 0.0099 0.0006 0.0058
103 0.0077 0.0106 0.0016 0.0053
104 0.0070 0.0103 0.0024 0.0057
105 0.0019 0.0054 0.0040 0.0066
106 0.0077 0.0117 0.0001 0.0072
107 0.0063 0.0099 0.0011 0.0064
108 0.0053 0.0133 0.0015 0.0057
109 0.0073 0.0113 0.0021 0.0058
110 0.0058 0.0098 0.0043 0.0087
111 0.0025 0.0060 0.0048 0.0083
112 0.0084 0.0125 0.0006 0.0083
113 0.0070 0.0105 0.0011 0.0084
114 0.0019 0.0060 0.0025 0.0087
115 0.0087 0.0128 0.0037 0.0089
116 0.0058 0.0100 0.0040 0.0089
117 0.0023 0.0069 0.0056 0.0154

plastic rotations [rad]
x direction y direction

column

 

 

The target displacement shall be defined as the seismic demand derived from elastic 

response spectrum in terms of the displacement of an equivalent single-degree-of-

freedom (SDOF) system. Transformation to an equivalent single-degree-of-freedom 

system is explained below. 

Coordinate conversion is applied for push-over curves to achieve modal 

displacement and modal acceleration values by using equations (2.2) and (2.3). 

Modal displacement and modal acceleration values are shown in Figure 4.27 and 

Figure 4.28 for two separate push-over curve. 
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Table 4.38 : Modal Acceleration and Modal Displacement Values 

a1 x d1 x a1 y d1 y
0.000 0.000 0.000 0.000
0.479 0.006 0.890 0.010
1.720 0.028 1.734 0.023
1.989 0.037 2.121 0.039
2.066 0.042 2.278 0.051
2.346 0.090 2.285 0.051
2.398 0.102 2.492 0.102

 -  - 2.628 0.147
 -  - 2.724 0.194
 - - 2.724 0.194

mass 503.080 mass 493.969
Φi1 0.058 Φi1 0.059
ΓX1 22.133 Γy1 22.412

x direction y direction
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Figure 4.27 : Spectral Acceleration – Spectral Displacement Diagram (X Dir.) 
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Figure 4.28 : Spectral Acceleration – Spectral Displacement Diagram (Y Dir.) 

Since the initial periods in Figure 4.27 and Figure 4.28 are longer than the 

characteristic period TC, non-linear spectral displacement is equal to the linear 

spectral displacement on the basis of equal displacement rule. 

Modal displacement demand is equal to the non-linear spectral displacement value 

under scope of equations from (2.4 ) to (2.6 ). 

Target displacements are calculated for two separate push-over analysis along x and 

y directions with equation (2.9 ) as 0.1083 m and 0.1034 m respectively. 

Control node of the structure is pushed up to these target displacement and plastic 

rotation demands are investigated. Plastic hinges are shown on Figure 4.29 and 

Figure 4.30 as for x direction and y direction push-over analyses. 
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Figure 4.29 : Developed Plastic Hinges – X Direction Push-over Analysis 

 

Figure 4.30 : Developed Plastic Hinges – Y Direction Push-over Analysis 
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Plastic rotation demands which are obtained from the analysis are summed with 

elastic rotations to determine total rotation values. Allowed rotation amounts for 

limit state of significant damage is compared with rotation demands for each column 

at first storey in Table 4.39 and Table 4.40. 

Table 4.39 : Rotations at Columns under X Direction Push-over Analysis 

column elastic rot. [rad] plastic rot. [rad] total rot. [rad] allowed (SD) [rad]
101 0.0017 0.0125 0.0142 0.0027
102 0.0015 0.0099 0.0114 0.0022
103 0.0014 0.0106 0.0120 0.0022
104 0.0015 0.0103 0.0118 0.0022
105 0.0017 0.0054 0.0071 0.0027
106 0.0015 0.0117 0.0132 0.0023
107 0.0013 0.0099 0.0112 0.0019
108 0.0012 0.0133 0.0145 0.0023
109 0.0012 0.0113 0.0125 0.0023
110 0.0013 0.0098 0.0111 0.0019
111 0.0015 0.0060 0.0075 0.0023
112 0.0016 0.0125 0.0141 0.0026
113 0.0015 0.0105 0.0120 0.0022
114 0.0017 0.0060 0.0077 0.0026
115 0.0017 0.0128 0.0145 0.0026
116 0.0015 0.0100 0.0115 0.0022
117 0.0016 0.0069 0.0085 0.0026

 

Table 4.40 : Rotations at Columns under Y Direction Push-over Analysis 

column elastic rot. [rad] plastic rot. [rad] total rot. [rad] allowed (SD) [rad]
101 0.0014 0.0058 0.0072 0.0030
102 0.0015 0.0058 0.0073 0.0021
103 0.0014 0.0053 0.0067 0.0020
104 0.0015 0.0057 0.0072 0.0021
105 0.0014 0.0066 0.0080 0.0030
106 0.0014 0.0072 0.0086 0.0022
107 0.0011 0.0064 0.0075 0.0018
108 0.0018 0.0057 0.0075 0.0029
109 0.0018 0.0058 0.0076 0.0029
110 0.0011 0.0087 0.0098 0.0018
111 0.0014 0.0083 0.0097 0.0022
112 0.0014 0.0083 0.0097 0.0030
113 0.0015 0.0084 0.0099 0.0021
114 0.0014 0.0087 0.0101 0.0028
115 0.0014 0.0089 0.0103 0.0028
116 0.0015 0.0089 0.0104 0.0021
117 0.0014 0.0154 0.0168 0.0030
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Rotation demand-capacity comparisons in Table 4.39 and Table 4.40 show that all 

columns fail for the acceptance criteria under the regarding limit state.  Observing 

the values also gives the idea that the vertical elements may also not be suitable for 

collapse prevention performance level. 

Allowed rotation amounts for limit state of significant damage is compared with 

rotation demands for each column at first storey in Table 4.39 and Table 4.40. 

Table 4.41 : Rotations at Beams under X Direction Push-over Analysis 

beam elastic rot. [rad] plastic rot. [rad] total rot. [rad] allowed (SD) [rad]
1101 0.0008 0.0126 0.0134 0.0116
1102 0.0008 0.0093 0.0101 0.0118
1103 0.0008 0.0116 0.0124 0.0118
1104 0.0008 0.0145 0.0153 0.0116
1105 0.0009 0.0125 0.0134 0.0104
1106 0.0009 0.0154 0.0163 0.0103
1107 0.0009 0.0143 0.0152 0.0094
1108 0.0009 0.0155 0.0164 0.0094
1109 0.0009 0.0140 0.0149 0.0103
1110 0.0009 0.0149 0.0158 0.0104
1111 0.0010 0.0129 0.0139 0.0116
1112 0.0008 0.0150 0.0158 0.0115
1114 0.0008 0.0136 0.0144 0.0115
1115 0.0008 0.0149 0.0157 0.0116

 

Table 4.42 : Rotations at Beams under Y Direction Push-over Analysis 

beam elastic rot. [rad] plastic rot. [rad] total rot. [rad] allowed (SD) [rad]
1116 0.0008 0.0131 0.0139 0.0116
1117 0.0008 0.0142 0.0150 0.0117
1118 0.0009 0.0144 0.0153 0.0104
1119 0.0009 0.0145 0.0154 0.0105
1121 0.0009 0.0136 0.0145 0.0104
1122 0.0009 0.0149 0.0158 0.0105
1124 0.0009 0.0136 0.0145 0.0104
1125 0.0009 0.0143 0.0152 0.0104
1126 0.0009 0.0150 0.0159 0.0105
1127 0.0008 0.0136 0.0144 0.0116
1128 0.0008 0.0148 0.0156 0.0117
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4.4 Comparison of Results Obtained from Static Linear and Non-linear 

Analysis According to TEC’07 and EC8 

4.4.1 Comparison of Horizontal Elastic Response Spectrum Curves 

The computed base shear value according to Eurocode is much higher than the 

Turkish Earthquake Code while the selected ground conditions represent the same 

characteristics (Figure 4.31). The main reason is that the ordinate of the horizontal 

elastic response spectrum for Eurocode 8 is increased by the soil factor. 
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Figure 4.31 : Horizontal Elastic Response Spectrum Curves 

4.4.2 Comparison of Push-over Curves 

Push-over curves obtained under seismic loads in x and y directions according to 

Eurocode 8 and Turkish Earthquake Code are compared in Figure 4.32 and Figure 

4.33. 



 98

Figure 4.32 : X-Direction Push-over Curves 

Figure 4.33 : Y-Direction Push-over Curves 

4.4.3 Comparison of Curvatures 

Demand curvatures obtained from linear and non-linear methods of analysis of 

Eurocode 8 together with TEC’07 is given in Figure 4.34. Curvatures from linear 

methods of analysis are determined on basis of equal displacement rule. 
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Y Direction Seismic Loading - Base Storey Column Bottom End Curvatures 
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Figure 4.34 : Curvatures at Critical Storey Columns 

4.4.4 Comparison of Top Displacements 

Top storey displacements obtained from linear and non-linear methods of analysis of 

Eurocode 8 together with TEC’07 is given in Figure 4.35. Top storey displacements 

regarding to Eurocode 8 Push-over analysis is determined by using modal pattern of 

lateral load distribution.   
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Figure 4.35: Top Displacements 
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5. CONCLUSION 

In this thesis study, performance based assessment methods and basic principles 

given in TEC’07 and Eurocode 8 are investigated. After the linear elastic approach 

and non-linear approach are outlined as given in two codes, the procedures of 

seismic performance evaluations for existing RC buildings according to Eurocode 8 

and TEC’07 are applied on a real three dimensional case study building and the 

results are compared. 

Conclusion remarks regarding seismic performance assessments using static linear 

and static non-linear methods of analysis according to Eurocode 8 and TEC’07 are 

given below. 

1) The computations show that the performing methods of analysis with linear and 

non-linear approaches using either Eurocode 8 or TEC’07 independently 

produce a very similar performance levels for the critical storey of the structure. 

The case study building is found to be as in collapse performance level. 

2) The computed base shear value according to Eurocode is much higher than the 

Turkish Earthquake Code while the selected ground conditions represent the 

same characteristics. The main reason is that the ordinate of the horizontal 

elastic response spectrum for Eurocode 8 is increased by the soil factor. 

3) According to the displacement-based non-linear assessment described in 

TEC’07, the strains at plastic cross-sections are to be verified; however, the 

chord rotations of primary ductile elements must be checked for Eurocode safety 

verifications. 

4) The demand curvatures obtained from linear and non-linear methods of analysis 

are almost similar. Providing same levels of deformation in linear and non-linear 

analyses supports the “Equal Displacement Rule”. It is observed that rotations 



 102

with EC8 procedure are resulted with higher values than TEC’07 since the 

ordinate of the horizontal elastic response spectrum for EC8 is higher.  

Investigated existing case study building within scope of this thesis study has no 

structural irregularities neither in elevation not in plan. Irregular structures can be 

examined with further studies to investigate essential differences between two codes 

if any. 

Adaptive push-over analysis using different distribution of lateral loads at each step 

related to plastic deformations on the structure also using the participation of higher 

modes can be offered to observe the efficiencies of  non-linear between each other. 
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