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DYNAMIC SOIL STRUCTURE INTERACTION UNDER WAVE 
PROPAGATION VIA AN IMPROVED FINITE ELEMENT-BOUNDARY  
ELEMENT METHODOLOGY 

SUMMARY 

The effect of soil-structure interaction is recognized to play an important role in the 
seismic analysis of civil structures. The dynamic analysis of the structures in general 
engineering practice is based on the idealization that the structure rests on very stiff 
soil and the seismic motions applied at the support points are the same as the free 
field motions at those locations. However, the structure always interacts with the 
surrounding soil which leads to a change in the seismic motions at the base.  

The nature and the amount of interaction mainly depend on the stiffness of the soil 
and the structure as well as the structure’s mass properties. If the structure is founded 
on rock, the motion of the base is identical to the free field motion of the same point. 
In this case, the seismic analysis can be carried out with the assumption that the 
structure is excited by the specified motion. If the structure is founded on soft soil, 
the dynamic response of the structure will be different from the fixed-based 
condition. The presence of the structure will also alter the free field motion strongly 
at the site. Therefore, the interaction problem has to be taken into account in the 
seismic analysis of the structures, more so, in the case of soft soil conditions and 
stiff, massive structures. 

Within the scope of this study, a three dimensional coupled Finite Element-Boundary 
Element (FE-BE) methodology is developed to analyze the dynamic soil-structure 
interaction under the effects of the traveling seismic waves. The dynamic response of 
the soil-structure systems subjected to traveling seismic waves is obtained in the 
frequency domain. In the seismic analysis of the system, the substructure method is 
employed to deal with the interaction problem. This method is based on 
substructuring the system as the structure and the unbound soil. 

Finally, through the use of the displacement response curves of a multistory building 
which is obtained by the dynamic analysis employing the developed numerical 
procedure, a drift-based damage identification technique is proposed.  
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DĐNAM ĐK YAPI ZEM ĐN ETK ĐLEŞĐMĐNĐN DALGA YAYILIMI ETK ĐSĐ 
ALTINDA SONLU ELEMAN-SINIR ELEMAN YÖNTEM Đ ĐLE 
MODELLENMES Đ 

ÖZET 

Yapıların deprem yükü altındaki dinamik çözümlemelerinde yapı-zemin 
etkileşiminin önemli bir etkisi olduğu bilinmektedir. Genellikle, yapıların dinamik 
analizinde yapının sert zemin üzerine oturduğu; dolayısı ile yapının zemin ile rijit 
olarak bağlandığı kabul edilmektedir. Bu durumda, yapının temele ait düğüm 
noktalarına gelen deprem hareketinin yer hareketi ile aynı olduğu varsayılır. Ancak, 
yapının zemin ile etkileşimi temele etkiyen yer hareketinin değişmesine neden olur. 

Yapı-zemin etkileşimin etkisi zeminin ve üstyapının rijitliği ile üstyapının kütlesi ve 
geometrik özellikleriyle doğrudan ilişkilidir. Yapının sert kayalık zemin üzerinde 
inşa edildiği durumlar için temel hareketinin yer hareketi ile eşdeğer olduğu kabul 
edilebilir. Bu durumda, yapının dinamik analizi temelden etkiyen yer hareketi altında 
çözümlenebilir. Ancak, yapının yumuşak zemin üzerinde inşa edildiği durumlarda 
yapının dinamik analiz için bu yaklaşım doğru değildir. Yapı, zeminden etkiyen yer 
hareketinde de değişim yaratabilmektedir. Bu sebeple, özellikle zayıf zemin üzerinde 
inşa edilmiş ağır ve rijit yapıların dinamik analizinde yapı-zemin etkileşiminin göz 
önünde bulundurulması gerekmektedir. 

Bu çalışmanın kapsamında, yapı-zemin etkileşimini deprem dalgaları etkisi altında 
incelemek için Sonlu Eleman ve Sınır Eleman Yöntemleri kullanılarak üç boyutlu 
sayısal bir metodoloji geliştirilmi ştir. Geliştirilen metodoloji ile yapı-zemin 
sistemlerinin dinamik cevabı, frekans tanım alanında elde edilmiştir. Sistemin 
dinamik analizi için altsistem yöntemi kullanılmıştır. Bu yöntemde, iki ayrık sistem 
olarak modellenen yapı ve zemin ortamı, süreklilik denklemleri ve dinamik denge 
denklemleri kullanılarak yapı-zemin arakesitinde eşleştirilmi ştir.  

Geliştirilen bu teknik ile çok katlı bir yapının dinamik analizi gerçekleştirilmi ş, 
yapının her katındaki yatay yerdeğiştirmeler elde edilerek yapıda göreli kat ötelemesi 
oranına bağlı hasar seviyesi belirlenmiştir. Bu şekilde, çok katlı binalarda göreli kat 
ötelemesine bağlı bir hasar belirleme yöntemi önerilmiştir.   
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1

1.  AN OVERVIEW OF THE THESIS 

Soil-structure interaction (SSI) has an important effect on the seismic response of 

structures especially for massive structures, which are founded on soft soil. For 

structures resting on stiff soil, motion of the foundation is approximately identical to 

the free field motion, which is the motion at the surface level of soil without the 

structure built on it. In this case, interaction effect of soil on the structure can be 

neglected. Moreover, the change in the free-field motion caused by the structure 

existing on it is negligible. 

Considering the soft soil conditions and structures resting on large foundation areas 

such as bridges, not only the response of the structure is altered due to the interaction 

effects but also the dynamic characteristics. The most important change occurs in the 

fixed based fundamental frequency of the structure. In general, the interaction effect 

reduces the natural frequency of the structure; increases the contribution of rocking 

motion to the structural response and reduces the maximum base shear of the 

structure [1-4]. 

The reduction of the fundamental frequency has been stated by various studies based 

on vibration recordings during earthquake excitation and ambient vibration tests. The 

study conducted by Trifunac et al. [5,6] covers a detailed analysis on the time 

dependent changes of the apparent frequency of a seven-story reinforced concrete 

building in Van-Nuys, California based on the recorded data of 12 earthquakes. The 

results indicate that the system frequency changes from one earthquake to another 

due to “the softening” of the system and the nonlinearity of the soil. 

Using the vibration recordings of 11 earthquakes belonging to the seven-story 

building in Van-Nuys, the authors [7] have also used wave propagation method in 

order to detect the structural damage. The plots of the impulse response functions 

computed by deconvolution of the recorded earthquake response are used for 

measuring the wave travel times of the vertical propagating seismic waves. The 

changes in the wave travel times are used to detect the changes in the structural 

stiffness between the two subsequent earthquakes. 
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In a previous study conducted by Şafak E. [8], a layered continuous model for the 

analysis of the seismic response of a building is proposed and the damage is detected 

by monitoring the changes in the parameters of each layer. The author has developed 

a discrete-time wave-propagation method to calculate the seismic response of the 

multistory buildings resting on a layered soil media and subjected to vertically 

propagating shear waves. Buildings are modeled considering each story as separate 

layers resting on the layered soil media. The response has been defined in terms of 

the wave travel times between the layers as well as the wave reflection and the 

transmission coefficients at layer interfaces. This method has been suggested as a 

practical tool for the damage detection from seismic records due to its ability to 

incorporate the soil layers under the foundation.  

Clinton et al. [9] have shown that the modal parameters of a structure are affected by 

the earthquake history, weather conditions such as the rain, wind and the extremities 

in the temperature. The study has drawn attention on the mechanisms reducing the 

natural frequencies of the observed structure. The emphasis was made on the 

interaction of the structure with the surrounding soil, which causes the reduction, as 

well as the nonlinear softening of the superstructure itself. 

Şafak E. [10] has investigated the detection and the identification of the soil-structure 

interaction in buildings using the vibration recordings. The author has suggested a 

very useful tool to identify and discriminate the effects of the SSI on the natural 

frequency of the fixed-based buildings. The identification process depends on the 

earthquake response data recorded from the top and the foundation levels. The ratio 

of the Fourier Amplitude Spectrum (FAS) of top-story accelerations to the 

foundation data has been verified theoretically and experimentally to have peaks at 

the fixed-based frequency of the building. Observing the deviation of the peak  

response values of the individual top-story and the foundation acceleration records, 

the proposed method enables the identification of the SSI effect without any borehole 

or free-field recordings from the site.  

Unlike the listed studies, Çelebi and Şafak [11,12] have analyzed the acceleration 

response records of the buildings and concentrated on the identification of site 

frequencies as well as the structural frequencies using the data obtained from the roof 

and the ground floor. The site frequency is simply identified using the cross-spectra 

of the orthogonal acceleration records at any desirable level. The peaks that appear at 
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the cross-spectra curves corresponding to the roof or the base motions clearly 

indicate the site frequencies. The structural frequencies are determined using the 

ratio of the transfer functions. The simple spectral technique has been applied to 5 

instrumented buildings in order to verify the proposed procedure. 

As apparent from the above mentioned references, the emphasis in the literature is on 

the variation of the fundamental frequency of the structure under seismic motions. 

One of the reasons is that, in the earthquake resistant design of the structures based 

on the Response Spectrum Method [13], the base shear and the design seismic loads 

acting on each story level are estimated in terms of the fundamental frequency of the 

building. Equally important is damage identification in structures. Damage results in 

change in the modal parameters (frequency, mode shapes and damping ratios) of the 

structures. By monitoring the changes in the modal parameters, it is possible to 

monitor the progress of the damage in the structure. Since SSI also affects the 

frequencies, it is important to discriminate the effects of the SSI from the effects of 

the damage on the modal parameters.  Thus, the effects of the SSI on the natural 

frequencies of the structures will be analyzed and discussed within the scope of this 

study.  

In addition to the changes in the fundamental frequency of the structures, the 

response amplitude at the shifted frequency is also changed due to the soil type 

underlying the structure. The seismic waves that are generated due to the occurrence 

of an earthquake, propagate through the soil media having different mechanical 

properties and different layer thicknesses. Reaching the base of a structure, the 

seismic waves cause different types of base excitation depending on the underlying 

soil type. Thus, the effects of the underlying soil conditions on the response 

amplitude of the soil-structure system has to be investigated in details. The results of 

the analysis will be discussed in terms of the interstory drift ratios. Finally, the drift 

values will be employed to evaluate the damage state of the structure that is defined 

by the earthquake codes. 

1.1 Purpose of the Dissertation 

Within the scope of this study, a numerical procedure has been developed in order to 

analyze and determine the dynamic response of the structures with surface 

foundations under the effect of the seismic wave motion propagating in the elastic 
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half-space soil medium. Finite Elements Method (FEM) has been used for three-

dimensional modeling of the structure that has a surface foundation. The effect of the 

seismic waves at the base of the structure is considered in terms of the excitation 

force applied at the soil-structure interface, which has been discretized by rectangular 

areas. The excitation force induced by the seismic wave motion has been determined 

by multiplying the free-field displacement vector of each interface node and the 

corresponding frequency-dependent impedance matrix of the elastic half-space 

representing the underlying soil medium. The impedance matrix is evaluated using 

the Green’s functions that are defined for unit harmonic force acting on a specific 

point of the semi-infinite half-space surface [14, 15]. 

Implementing the described numerical model, the main objectives of this study are; 

• to develop the three dimensional (3D) numerical model of the soil-structure 

system, 

• to obtain the dynamic response of the structures for increasing the excitation 

frequency of the seismic waves, 

• to obtain the effects of the SSI on the modal parameters of structures, 

• to analyze the effect of the traveling seismic waves on the response of the 

structures, 

• to analyze the effect of the soil conditions on the response of the soil-

structure system, 

• to introduce a code based damage identification methodology for the 

structures under the effects of the seismic waves. This methodology is based 

on identifying the peak displacement response of the soil-structure system; to 

determine the maximum interstory drift ratio of the structure; and to evaluate 

the code based damage state defined in HAZUS99 Technical Manual [16] or 

the structural performance level of the structure.  

The outline of the general framework summarizing the objectives of the study and 

the methods that are used for achieving these objectives is given in Figure 1.1. The 

objectives are listed by order of phases that are performed to accomplish the final 

and main purpose of the thesis.    



 
5

  

Figure 1.1 : General framework of the study. 

OBJECTIVES 

Developing the 3D 
numerical modeling of the 
soil-structure system 

METHODS USED and PHASES PERFORMED   

• FEM for the structure 
• Elastic wave propagation equations in the 

semi-infinite half-space soil medium 
• Analytical solution of the Green’s 

functions for the elastic half-space [14,15]  

Obtaining dynamic 
response under the effect 
of the seismic waves in 
the frequency domain 

• “Modal Analysis” for the extraction of the 
eigenmodes and the eigenfrequencies of 
the structure  

• “Substructuring Method” for the coupling 
of the soil and the structure systems 

• Numerical solution of the dynamic 
equations of motion by the Mode 
Superposition Method 

Obtaining the effect of the 
SSI on the modal 
parameters 

• Evaluation of the numerical results: peak 
displacement response and the 
corresponding frequency 

• Solution of the numerical model for the 
vertical and horizontal incident SH waves 

• Solution of the numerical model for the 
rigid and the soft soil conditions 

Analyzing the effect of  
the traveling seismic 
waves on the dynamic 
response  

Understanding the effect 
of the soil conditions on 
the dynamic response of 
the soil-structure system 

Developing a code based 
damage identification 
methodology for the 
structures under the effect 
of seismic waves  

• Solution of the numerical model 
• Identifying the peak displacement response  
• Determining the maximum interstory drift 

ratio of the structure 
 

• Evaluating the code based damage state 
[16] or the structural performance level of 
the structure [17] 
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1.2 The Summary of the Methodology 

Within the scope of this thesis, a numerical study is conducted to analyze the effect 

of the soil-structure interaction on the dynamic response of the structures. The 

dynamic response is obtained by modeling the soil medium and the structure under 

the effect of the seismic waves.  

The dynamic analysis of the soil-structure system is accomplished by the 

“Substructure Method”. Implementing this method, the total system is divided as the 

structure and the unbounded soil. Then, the structure and the soil are modelled using 

the Finite Elements and the Boundary Element Methods, respectively. The numerical 

procedure is based on the analysis of the structure under the excitation force, which 

is induced by the free-field motion. The excitation force representing the effect of the 

seismic waves acts at the soil-structure interface, which is usually the contact surface 

of the foundation with the soil. Coupling the two substructures at the soil-structure 

interface is provided using the displacement compatibility and the dynamic 

equilibrium equations at the soil-structure interface elements. 

The physical representation of the soil model mainly depends on the seismic wave 

motion and the dynamic-stiffness coefficients of the soil. The vector of the seismic 

wave motion at the soil-structure interface nodes is multiplied with the frequency-

dependent impedance matrix of the soil in order to obtain the excitation force acting 

at the interface nodes of the soil-structure system.  

The seismic input motion acting on the surface of the foundation is calculated using 

elastic seismic wave equations. These equations define the motion of the seismic 

waves, propagating through the soil, which is represented by an elastic half-space.  

The dynamic stiffness of the soil is expressed in terms of the frequency-dependent 

impedance matrix. This matrix is calculated using the Greens’ Functions [14,15] that 

are defined for the unit harmonic force acting on a specific point of the half-space 

surface.  

Finally, the dynamic response of the structure is obtained by the numerical solution 

of the set of dynamic equilibrium equations under the base excitation induced by the 

seismic waves. The methodology that is developed for the numerical implementation 

of the numerical procedure is summarized in Fig. 1.2. 
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Figure 1.2 : The methodology developed in this study.  

SEISMIC WAVE MOTION 
• Elastic seismic wave equations 

are defined in the semi-infinite 
soil medium. 

• Free-field displacements caused 
by the seismic waves are 
evaluated at the surface nodes of 
the elastic half-space coinciding 
with the soil-structure interface  

DYNAMIC STIFFNESS MATRIX 
OF THE SOIL 
• Frequency-dependent impedance 

matrix of the soil defined at the 
interface nodes of the system are 
evaluated using the Greens’ 
Functions. 

• Greens’ Functions are employed 
to express the displacement on a 
specific point of the half-space 
surface caused by a unit surface 
harmonic force. 

 

DYNAMIC ANALYSIS 
• Substructure Method is 

employed to evaluate the 
dynamic response of the 
soil-structure system. 

• Coupling of the soil and the 
structure models is 
accomplished by using the 
displacement compatibility 
and the dynamic 
equilibrium equations at the 
interface elements. 

 

 
DYNAMIC RESPONSE 
OF THE STRUCTURE 

3D FEM OF THE STRUCTURE 
• Modal analysis is used for the 

extraction of the natural modes 
and the frequencies of the 
structure. 

NUMERICAL OR ANALYTICAL METHODS EMPLOYED 



 
8

 



 
9

2.  INTRODUCTION 

This study concentrates on determining the effect of the SSI on the dynamic response 

of the structures. To achieve this, a numerical procedure is developed for modeling 

the soil-structure system under the effects of the seismic waves.  

In the process of modeling the soil-structure system, the soil medium is represented 

as an elastic half space; the seismic excitation is regarded in the form of a free-field 

motion induced by the elastic seismic waves and the structure is considered to be 

resting on a surface foundation system. The dynamic analysis of the soil-structure 

system has been carried out by using the substructure method in the frequency 

domain. Implementing this method, the structure and the soil have been modeled 

using Finite Elements and Boundary Elements, respectively.  The two separate 

systems are coupled at the soil-structure interaction surface, which is the contact area 

between the foundation and the soil.  

The Boundary Element Method is a very convenient approach for dynamic soil 

structure interaction problems. Implementing this technique, the radiation condition 

of the semi-infinite elastic half-space is automatically encountered. Due to the use of 

the fundamental solutions in the half space, only a surface discretization is required 

leading to a reduction in the dimension of the problem by one [18]. Since the 

solution is obtained on the boundary surface of the volume, only a mesh on the 

boundary is sufficient. However, implementation of FEM necessitates the generation 

of the mesh through the entire domain. In addition, Finite Elements Method 

necessitates the implementation of the non-reflective boundaries at the edge elements 

in order to prevent trapping of the wave energy within the system. In the solution 

process of the Finite Element model, the element integrals are easy to evaluate. On 

the contrary, the BEM integrals are harder to evaluate which contain integrands that 

become singular at specific points [19]. Therefore, each technique has both 

advantageous and disadvantageous features in terms of the computational efficiency. 

The chose of the method depends on the type of the problem that is encountered.         
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The interaction surface is discretized by four-noded rectangular elements. 

Considering the interface nodes each having three translational degrees of freedom, 

the surface foundation is regarded as a flexible base. Thus, the free-field 

displacement and the excitation force induced by the seismic waves are transmitted 

through the nodes that compose the interaction surface.  

The dynamic stiffness of the soil-foundation system is represented by the frequency-

dependent impedance matrix. Generation of this matrix is performed by; 

• The evaluation of the Green’s Functions matrix at each node of the interface; 

• Transforming Green’s Functions matrix from polar to Cartesian coordinate 

system; 

• Evaluation of the compliance matrix using the transposed Green’s Functions 

matrix for the total interaction surface; 

• Inversion of the compliance matrix. 

Combining the sub-steps of the numerical procedure, the three-dimensional dynamic 

analysis of the soil-structure system can be carried out by running the developed 

program. The final numerical procedure is capable of obtaining the displacement and 

acceleration response of any nodal point of the structure and the foundation which is 

excited by the seismic waves through the soil. Implementing the procedure on a 

multistory building, the maximum interstory drift ratio of each story level is 

computed using the peak displacement amplitude. Therefore, the maximum 

interstory drift ratio values can be employed to identify “the damage state” or the 

“structural performance level” defined by HAZUS99 [16] and FEMA 356 [17], 

respectively. 

2.1 The Theoretical Background 

Various numerical methods have been developed for the analysis of the interaction 

problem, which can be classified in two main groups as the direct method and the 

substructure method. 

For the numerical analysis of the semi-infinite soil medium, an interaction surface 

enclosing the structure is determined.  The characteristics of the nodes lying on the 

surface represent the overall features of the unbounded soil domain existing on the 
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exterior region of the surface [20]. The location of the interaction surface can be 

selected arbitrarily. In the substructure method, the surface is regarded to coincide 

with the soil-structure interface, whereas it coincides with an artificial boundary 

within which the soil is modeled in the direct method. 

In addition to these two techniques, simple physical models are the alternative 

approaches for the analysis of the dynamic soil-structure interaction problem. 

Implementing these models, a small number of degrees of freedom and a few 

springs, dashpots and masses with frequency-independent coefficients are used in 

order to represent the dynamic stiffness, damping and mass properties of the 

underlying soil. The three types of simple physical models in the literature are the 

truncated cones, the spring-dashpot-mass models and the methods with a prescribed 

wave pattern in the horizontal plane [21]. 

2.1.1 Solutions in the time domain versus the frequency domain 

The dynamic interaction problem can be analyzed in the frequency domain or in the 

time domain. The solution in the frequency domain has many advantages. Since the 

Green’s functions of a semi-infinite half-space are usually computed in the frequency 

domain and are less singular than in the time domain, this approach is much more 

favorable.  

Furthermore, the frequency domain approach permits splitting the problem into 

separate parts as the soil and the structure through the use of the frequency-

dependent impedance coefficients. 

Considering the linear soil-structure interaction problems, material damping can be 

easily defined in terms of the harmonic motions. Thus, using the complex response 

method, the soil-structure interaction analysis is easier to handle in the frequency 

domain than the time domain [22]. 

However, the computational efficiency of the numerical solution in the time domain 

is higher than the frequency domain in the nonlinear dynamic soil-structure 

problems, which is beyond the scope of this study. 
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2.1.2 Direct method 

In the direct method, response of the structure and the soil within the artificial 

boundary, which is termed as the near-field, are modeled using a finite number of 

elements. Appropriate boundary conditions should be determined in order to 

represent the missing soil existing on the exterior region of the interaction surface 

[23]. As the soil is modeled up to infinity, the reflections of the outwardly 

propagating waves should be absorbed through the interpretation of a transmitting 

boundary on behalf of the artificial boundary. The effects of the surrounding soil, 

which is termed as far-field is analyzed approximately by imposing these 

transmitting boundaries along the interface of the near field and the far field. The 

model proposed by Lymser and Kuhlmeyer [24] implements the simplest type of 

transmitting boundaries as viscous boundaries, which are represented by simple 

dashpots. Engquist and Majda [25], Liao and Wong [26] have proposed local, non-

consistent boundaries whereas Weber [27] implemented the type of boundaries 

which were based on transfer functions. 

In the direct method, the solution of the equations of motion for the soil-structure 

system may be conducted in the frequency or in the time domain. Since this method 

does not use the superposition of the displacement, it has the advantage of including 

the nonlinear effects through the use of the equivalent linear method. However, it has 

the disadvantage of high computational expense and coarser models can be obtained 

for structures using the direct method. 

2.1.3 Substructure method 

Implementation of the substructure method is based on splitting the complete model 

into two parts as the soil and the structure using the principles of compatibility and 

displacements at the foundation level. For the soil-structure interaction, the dynamic 

response of the soil-structure system is obtained by introducing the free field motion 

at the foundation level. 

In the substructure method, the structure is normally modeled using the finite 

elements. The properties of the unbounded soil on the exterior of the interaction 

surface are represented by a boundary condition at the interface nodes reflecting the 

effects of the soil mesh extending to infinity.  



 
13

If the dynamic analysis is performed in the frequency domain, the excitation is 

decomposed into a Fourier series and the response is determined independently for 

each Fourier term corresponding to a specified frequency. The boundary condition in 

the frequency domain is determined using the frequency dependent dynamic stiffness 

coefficients. These coefficients relate the displacement amplitudes with the force 

amplitudes, which should be fully coupled at the interface nodes for the frequency 

domain. 

For the dynamic analysis in the time domain, the convolution integrals of the 

dynamic stiffness coefficients and the related displacements are evaluated in the time 

domain in order to determine the forces. The coupling of the time dimension should 

be provided in addition to the displacement and the force amplitudes. The dynamic 

stiffness coefficients can be determined using the boundary integral-equation 

procedure for the analysis in the time domain. 

The linear analysis of the interaction problem has been carried out previously by the 

computer codes developed in the frequency domain, which are based on the 

substructure method [28, 29]. These studies enable efficient procedures for the linear 

interaction problem using the Fast Fourier Transform. However, the analysis in the 

time domain has a higher computational effort due to the recursive evolution of the 

convolution integrals. 

The substructure method has the advantage that if the free field motion is changed, 

the dynamic stiffness coefficients do not have to be recalculated. In addition, the use 

of this method in design is more favorable than the direct method. Because, the 

implementation of this technique is simpler and less expensive than the direct 

method especially for the structures with surface foundations resting on a uniform 

half-space [30]. However, considering the structures with embedded foundations 

resting on a layered soil medium, implementation of the substructure method may be 

as difficult as the direct method. Therefore, choice of the method mainly depends on 

the type of the structure, the underlying foundation and the soil conditions.  

2.1.4 Lumped parameter models 

The lumped parameter model representing the linear unbounded soil in the SSI 

analysis mainly consists of several springs, dampers and masses with frequency-

independent real coefficients. These models are chosen by arranging a variety of 
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connected springs, dashpots and masses with unknown parameters, whose values are 

determined by minimizing the total square errors between the dynamic stiffness 

flexibility function of the lumped-parameter model and the corresponding rigorous 

solution for the soil [30]. 

Some of the previous work employed constant values for the foundation stiffness and 

damping in order to represent the unbounded soil medium [31–34]. The truncated 

semi-infinite cone model was developed for general practices in foundation vibration 

in the light of the numerous studies [35–40]. Furthermore, certain discrete physical 

models were established leading to the lumped-parameter models which yielded 

consistent results with the truncated cone model [41, 42]. 

The transfer function of a lumped parameter in the frequency domain which is 

composed of a selected arrangement of springs, dampers and masses at the 

foundation nodes, is the dynamic stiffness or the flexibility coefficient and it can be 

represented by a non-linear function of these functions. These coefficients are 

determined by using a curve-fitting technique in order to find an optimum fit 

between the transfer function of the lumped parameter model and the exact solution 

attained by the boundary-element procedure. 

Employing the lumped parameter model for the dynamic SSI analysis, the dynamic 

behavior of the total soil-structure system may be represented by the stiffness, 

damping and the mass matrices, which are assembled by the finite element model of 

the superstructure and the lumped parameter model for the unbounded soil. In order 

to remain within the framework of the substructure method which leads to a 

convenient representation of the dynamic SSI problem, the properties of the lumped 

parameter model of the soil should be independent of the properties of the structure 

or the total system [43]. 

The lumped parameter model has the advantage of easy incorporation with the 

conventional dynamic analysis and direct applicability to the non-linear structural 

analysis in the time domain leading to further developments on the improved 

lumped-parameter models [44–49]. Even though the lumped parameter models 

represent the linear behavior of the unbounded soil, the nonlinear behavior of the 

structure can also be taken into consideration [30]. 
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3.  SEISMIC WAVE PROPOGATION IN THE SOIL MEDIUM 

3.1 Seismic Waves 

The seismic waves produced by an earthquake motion are the body waves and the 

surface waves. The body waves which can propagate through the interior part of the 

earth can be categorized as P-waves (primary or longitudinal waves) and the S-waves 

(secondary, shear or transverse waves having two components as SV and SH). The 

surface waves are mainly produced by the interaction of the body waves with the 

surface layers of the earth (Fig. 3.1). Hence, they propagate along the surface of the 

earth and the amplitude of the waves decrease exponentially with the depth. Rayleigh 

and Love waves are the important types of surface waves, which are produced by the 

body waves generated by the source of the earthquake motion from the interior part 

of the earth. Rayleigh waves have vertical and horizontal components of particle 

motion resulting in an elliptical movement against the propagation direction. This 

deformation type is due to the interaction of the P-waves and the S-waves with the 

surface layers. Thus, these waves can be considered as the combinations of the P-

waves and the S-waves. On the contrary, Love waves that are caused by the 

interaction of SH-waves with a soft surface layer have only the horizontal component 

of the particle motion [50]. 

 

Figure 3.1 : Deformations produced by Love waves and Rayleigh waves [51]. 
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The body wave equations are derived from the dynamic equilibrium equations of a 

cubical element, which represents a very small part of a homogeneous, elastic, 

isotropic and unbounded medium. These equilibrium equations lead to two basic 

wave equations referring to two extreme types of deformation; the P-wave equation 

that involve pure dilatational deformation without any shearing or rotation and the S-

wave equation corresponding to the pure distortional deformation. Fig. 3.2 shows the 

direction of the propagation and the type of the deformation as they travel through 

the elastic material for each type of the body wave. 

 

Figure 3.2 : Deformations produced by the body waves: P, SV and SH-waves [52]. 

The reflections of the incident P, SV and SH waves at the free surface of an elastic 

solid have different vertical angles according to the wave type as shown in Fig. 3.3. 

An incident P-wave reaching the ground surface with the vertical angle, e is reflected 

as a P-wave with the same angle and a SV-wave with the angle f which is greater 

than the vertical incidence angle. In the case of an incident SV-wave reaching the 

ground surface with the vertical angle f, the reflection is in the form of a SV-wave 

with an angle f, which is coupled with a P-wave with the angle, e. Since the 

reflection angle of P-wave e is smaller than f, the reflected P-wave occurs only in the 

case that f >θcr where θcr is the critical angle determined as: 
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where sv , pv : the shear and the primary wave velocities, respectively.  

 

Figure 3.3 : Reflections of P, SV and SH waves at the ground surface [14]. 

3.2 Equations of Motion for an Elastic Solid 

The derivation of the wave equations involves the solution of the dynamic 

equilibrium equations of the elastic solid material under the stress variation in x. 

Considering an infinitesimal elastic solid cube as shown in Fig. 3.4, the dynamic 

equilibrium equation for the stress variation in x direction is expressed as: 
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where ρ: the mass density of the elastic solid and u: the displacement in the x 

direction. The equation can be rewritten as: 
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Similarly, the equation of motion can also be written in y and z directions as: 
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Figure 3.4 : Reflections of P, SV and SH waves at the ground surface [50]. 

Using the Hooke’s Law for the isotropic, linear and elastic materials, the stress and 

strain components are defined as: 

xxxx µεελσ 2+=  ,             xyxy µεσ =  

yyyy µεελσ 2+=  ,             yzyz µεσ =  

zzzz µεελσ 2+=  ,              zxzx µεσ =  

(3.6)

where zzyyxx εεεε ++=  is the volumetric strain and λ , µ : the Lame’s constants. 

Implementing the stress-strain relationships into the equations of motion in x, y and z 

directions Eq. (3.6) into Eqs. (3.3), (3.4) and (3.5) yields;  
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Using the Laplacian operator which is defined as 
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Differentiating the Eqs. (3.10), (3.11) and (3.12) with respect to x, y and z, 

respectively; and adding the equations, the first type of wave equation is derived as 

below; 
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The resulting equation describes the dilatational wave, which is named as the P-wave 

equation since the volumetric strain ε  involves the pure dilatational deformations 

without any shearing or rotation. Referring to the P-wave equation, the velocity of 

the p-wave is defined as: 

ρ
µλ 2+=pv  (3.14)

The P-wave velocity can also be expressed in terms of the Poisson’s ratio υ and the 

shear modulus G, using the relationships between the elastic material properties and 

the Lame’s constants; 
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20

where the shear modulus G = µ and the Poisson’s ratio υ is defined as: 

)(2 µλ
λυ
+

=  (3.16)

Similarly, the shear wave equation (S-wave) is derived by differentiating Eq. (3.11) 

with respect to z and Eq. (3.12) with respect to y. Subtracting the resulting equations 

yields; 
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Since the rotation about the x axis is defined as
z

v

y

w

∂
∂−

∂
∂=Ωx , Eq. (3.17) is rewritten 

as: 

 x
x

t
Ω∇=

∂
Ω∂ 2

2

2

ρ
µ

 (3.18)

The resulting equation defines the distortional wave or the S-wave of the rotation 

about the x axis. Finally, using Eq. (3.18), the shear wave velocity (S-wave) is 

derived as: 

ρ
G

vS =  (3.19)

3.3 Solution of the Wave Equations in the Elastic Medium 

In this section, the solution of the wave equations is encountered for three types of 

plane waves generated in an elastic, homogeneous and isotropic half-space. Initially, 

the propagation of the P and the SV waves is investigated and the wave motion 

equations are obtained at the ground surface. Secondly, the propagation of the SH 

wave is determined in terms of the surface displacement equations. 

The displacements in the x and the z directions induced by the seismic waves can be 

expressed in terms of the two potential functions Φ  and Ψ as: 
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Using the stress-strain relationships in three dimensional space, the volumetric strain, 

ε and the rotation about y axis, yΩ can also be expressed as: 
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The dynamic equilibriums in x and z directions are defined as: 
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Substituting Equations (3.20) and (3.21) into (3.24) and (3.25) yield; 
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Using the above equations, the two potential functions are derived as: 
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It is evident that the first potential function involves pure dilatation and the latter 

involves rotation given by the Equations (3.28) and (3.29).  Solutions of the potential 

functions have the exponential forms as given below: 

( )x)( ktiezF −=Φ ω  (3.30)

( )x)( ktiezG −=Ψ ω  (3.31)

where ω : the excitation frequency of the incident wave; k: the wave-number defined 

in terms of the excitation frequency and the apparent wave velocity defined as 

ck /ω= . Substituting Eq. (3.30) and (3.31) into (3.28) and (3.29) yields; 
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The general solutions for the second-order differential equations are;  

qzqz eAeAzF −+= 21)(  (3.34)

szsz eBeBzG −+= 21)(  (3.35)

where; 
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Finally, two displacement potential functions are obtained as:  
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( ) ( )x
2

x
1

ktiszktisz eBeB −+−−+ +=Ψ ωω  (3.39)

Since the potential functions are defined for pure dilatation and distortion 

respectively, the coefficients A1, B1, A2 and B2 denote the incident and the reflected 

waves for the P and SV-waves. These coefficients are determined from the boundary 

conditions at the ground surface.  

Considering an incident P-wave, the amplitude B1 involving the incident SV-wave is 

zero in Eq. (3.39). Since the shear and the normal stress at the ground surface is zero 

as a boundary condition, the ratios of A2/A1 and  B2/A1 are expressed as [14];  
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The relationship between the cosines of the incident P-wave and the reflected SV 

wave angles, e and f is dependent on the primary and shear wave velocities, vp and vs 

as given below; 
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Using the solutions of the potential functions and the amplitude ratios given above, 

the free field motion due to an incident P-wave at the ground surface is finally 

determined as: 
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where p: the amplitude of the incident P-wave. The surface displacement amplitudes 

u0, v0 and w0 of the P-wave are defined as: 



 
24









−+= f

A

B

A

A
eu tan1)(cos

1

2

1

2
0  (3.44)

00 =v  (3.45)









−−−= e

A

B

A

A
ew cot1)(sin

1

2

1

2
0  (3.46)

In the case of an incident SV wave reaching the ground surface, the coefficient A1 

which involves the amplitude of an incident P-wave is zero. Applying the same 

boundary conditions which are still valid for SV-waves, the ratios of A2/B1 and  B2/B1 

are expressed as [14]: 
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The relationship between the cosines of the incident SV-wave and the reflected P 

wave angles, f and e is given as: 
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where vp and vs are the primary and shear wave velocities. The above equation yields 

real values of the reflection wave angle, e for the incident wave angles of 

cre θ≥ where 







= −

P

S
cr v

v1cosθ . The free field displacement vector caused by the 

incident SV-wave at the ground surface can be finally determined as: 
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where s : the amplitude of the incident SV-wave. The displacement amplitudes in the 

plane of the SV-wave propagation i.e. x’- y’-z’ coordinate system are expressed as:  
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Unlike the P and the SV-waves, SH-wave is reflected as a SH-wave, which has an 

amplitude independent of the vertical incident angle (Fig. 3.3). The particle motion 

has a horizontal direction, which is normal to the plane of the wave propagation (Fig. 

3.2). Since the total wave energy is reflected as a SH wave, the horizontal 

displacement at the free surface is twice that of the incident wave. The ground 

motion induced by the incident SH wave is obtained using Eq. (3.52) where s is the 

amplitude of the incident SH wave; 
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The formulations that are derived to determine the surface displacements induced by 

an incident P, SV or SH wave are defined in the vertical plane of the wave 

propagation. However, the coordinate system of a structure may not coincide with 

that of the incident wave as given in Fig. 3.5. Therefore, the wave motion reaching 

the ground surface has to be rotated into the coordinate system of the structure using 

the horizontal angle between the vertical plane of the wave motion and the vertical 

plane of the structure.  
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Figure 3.5 : Free-field displacement due to seismic wave propagation.  

Hence, the free-field displacement vector at the interface nodes of the soil-structure 

system is obtained by multiplying the surface wave displacement vector with the 

rotation matrix, [Rz] in order to rotate the displacement vector with an angle of θH 

around the global z axis. The rotation matrix around the z axis, [Rz] is defined as: 
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The resulting free field displacement defined in the plane of the soil-structure system 

is obtained as: 
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where u0, v0 and w0 are the complex valued displacement amplitudes of the incident 

waves [29]. 
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4.  MODELLING OF THE SOIL MEDIUM 

4.1 Background 

The soil medium is represented by a semi-infinite elastic half-space and the 

interaction surface is flexible but the soil-structure system is fully bonded at the 

interface. The interaction surface is defined by rectangular elements, which also 

match with the geometry of the finite element model of the structure. Thereby, the 

coupling of the soil-structure system is achieved using the displacement 

compatibility at the interaction nodes. The frequency-dependent impedance matrix 

representing the complex-valued dynamic stiffness matrix of the soil-structure 

system under the seismic excitation is calculated utilizing the Green’s functions on 

the surface of the elastic half space. 

The Green’s functions that are defined for an elastic half space have aroused from 

the solution of Lamb’s problem, which deals with the elastic displacements resulting 

from the disturbance in an elastic half space. This pioneering work “On Propagation 

of tremors over the surface of an elastic solid” by Lamb [15] mainly concerns the 

wave motion generated at the surface of an elastic half-space due to the concentrated 

loads at the surface or the interior part of the half-space. Both harmonic time 

dependent and impulsive loads that are applied along a line or at a specific point are 

considered for the solution of the problem. After the work of Lamb, which is referred 

to as Lamb’s Problem due to his contribution to the theory of wave propagation, 

many researchers have studied on the same problem such as Ewing  et  al. [14], Graff 

[53] and Achenbach [54]. 

In the previous study conducted Dendrou et. al. [29] for the dynamic analysis of the 

bridge-backfill systems, the solution of the Lamb’s problem provided by Ewing et al. 

[15] has been evaluated in order to calculate the Green’s functions for the elastic 

half-space. The Green’s functions given by Dendrou et. al. [29] are employed to 

evaluate the frequency-dependent impedance matrix of the soil-structure system in 

this study. 
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Obtaining the impedance matrix of the soil-structure system for each excitation 

frequency, the force vector induced by the seismic wave motion is calculated by the 

multiplication of the impedance matrix and the free field displacement vector at the 

same excitation frequency. The calculation of frequency-dependent impedance 

matrix of the half-space is expressed in the form of a flowchart in order to summarize 

numerical procedure as given in Fig. 4.1. 

 
Figure 4.1 : Flowchart for the calculation of half-space impedance matrix. 

Input: 
• shear modulus of soil, µ 

• mass density of soil, ρ 

• dimensionless 
frequency, a0 

• poisson’s ratio of soil, ν 

 

Evaluation of the Green’s 
functions in polar coordinates 
(Dendrou et al. [29]) 
frr(a0), fөr(a0), frz(a0), fzz(a0) 

• Transformation of the 
Green’s functions matrix into 
Cartesian coordinate system 
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4.2 Green’s Functions for the Harmonic Point Load acting on the Surface of an 

Elastic Half-Space 

Considering a harmonic point load acting on the surface of an elastic half space, the 

displacement vector {u} of any point x on the surface due to the point source is 

expressed in terms of the Green’s function matrix ( )[ ])xx(,G 0−ω  and the harmonic 

force vector { })( 0xP  acting at point x0 as given in Eq. (4.1). 
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
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= ωω  (4.1)

where x : vector containing the coordinates of the surface point where the 

displacement is calculated;     x0 : vector containing the coordinates of the surface 

point where the harmonic force is applied; {P(x0)}: harmonic force applied at x0 ; ω: 

excitation frequency. The vector notation for the force and the displacement on the 

surface of elastic half-space is given in Fig. 4.2. 

 

Figure 4.2 : The source and the receiver points in the Cartesian coordinate system. 
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Green’s function matrix ( )[ ])0xxω,(G −  is composed of the displacement Green’s 

functions, which are originally defined in polar coordinate system. Since the finite 

elements model of the structure is developed in the Cartesian coordinate system, the 

soil-structure interaction surface is also discretized by rectangular subregions. 

Therefore, the components of the Green’s function matrix, which have been defined 

and evaluated in polar coordinates, are transformed into Cartesian coordinates. 

The displacement vector at point 0x  in the polar coordinate system can be 

transformed into the Cartesian coordinate system as: 
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The components of the force vector at point 0x  in Cartesian coordinate system are 

given as: 
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The relationship between the harmonic point source and the displacement vector by 

given by Eq. 4.1 is revised using the Eqs. (4.2) and (4.3);  
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where µ : shear modulus of the soil;  R : distance between the point that the force is 

applied (source) and the point at which the displacement is calculated (receiver);  θ : 

angle between R and x axis.  Substituting Eq. (4.2) into Eq. (4.4) and using 0=zfθ  

and zrrz ff −= , the Green’s functions matrix in the Cartesian coordinate system is 

finally derived as: 
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In the case of a concentrated impulsive load, the solution of the displacement as an 

elastodynamic problem is named as the fundamental singular solution or the Green’s 

function of the medium [55,56]. Considering a point load applied harmonically on 

the surface of the halfspace, the displacement is expressed in terms of the 

displacement and the traction Green’s functions for which the surface of the 

halfspace is traction free as a boundary condition. 

The Green’s functions are obtained by the integral solutions of the displacement 

potential functions defined for the elastic wave propagation. The derivation of the 

Green’s functions for the surface point source for the elastic half-space is given in 

Ewing et al. [14]. Each component of the Green’s function matrix is as follows: 
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)()( 00 afaf rzzr −=  (4.9)

0)( 0 =af zθ  (4.10)

where the Rayleigh Determinant is determined as: 

)1)((4)12()( 222222 −−−−= znzzzzF   

The ratio of the shear and primary wave velocity is defined as: 
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v
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and the dimensionless frequency is given as: 

sv

R
a

ω=0  

Using the Ewing’s approach [14], Denrdou et al. [29] have evaluated the Green’s 

functions replacing the integrals by the contour integrals in the complex plane. 

Evidently, these contour integrals have singular point at z=s where F(s) = 0 and 

branch points at z = 1 and z = n. Before applying the Cauchy’s Theorem, the branch 

cuts have been introduced in the complex plane. The integrals are partitioned into six 

parts in order to evaluate numerically. In such a case, each component of the Green’s 

functions is expressed as below: 
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The static values of the Green’s functions are defined for the excitation frequency,   

ω = 0 by Love [57] as given below: 

π2

1
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)0()0( rzzr ff −=  (4.25)

0)0( =zfθ  (4.26)

Since the dynamic analysis of the soil-structure system is carried out in the frequency 

domain, the integrals are evaluated for the specific excitation frequencies 

sequentially in the numerical procedure.  

The plots of the real and the complex parts of the Green’s functions for the Poisson’s 

ratio 3/1=ν  and 4/1=ν  of the soil medium are presented in Figs. 4.3 through 4.6. 

It is observed that frr(a0) is not affected by the change in the Poisson’s ratio of the 

soil medium as shown in Fig. 4.3. The rest of the functions frr, fθr, frz, fzz are slightly 

increased with the decrease of Poisson’s ratio.  
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Since the integration of the functions in the complex plane possess singularities at 

Rayleigh Pole, 0)( =sF  and branch points associated with the terms 22 nz − and 

12 −z , the evaluation of the integrals are partitioned into intervals of nz≤≤0  and 

1≤≤ zn  using the procedure given by Ewing [14]. Therefore, the variation of 

Poisson’s ratio essentially affect the limits and the contents of the integrals defined 

by the ratio of the shear wave velocity and the primary wave velocity as 
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21
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−==
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S

v

v
n . 

 

Figure 4.3 : The graph of frr versus dimensionless frequency a0 for the Poisson’s 
ratio  of 3/1=ν  and  4/1=ν  [29].  
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Figure 4.4 : The graph of fθr versus dimensionless frequency a0 for the Poisson’s 
ratio  of  3/1=ν  and 4/1=ν   [29]. 

 

Figure 4.5 : The graph of frz versus dimensionless frequency a0 for the Poisson’s 
ratio  of 3/1=ν  and 4/1=ν   [29]. 
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Figure 4.6 : The graph of fzz versus dimensionless frequency a0 for the Poisson’s 
ratio  of 3/1=ν  and 4/1=ν   [29]. 

4.3 Evaluation of the Frequency Dependent Impedance Matrix of the Elastic 

Half-Space 

Green’s functions matrix has been previously defined in terms of the harmonic point 

source, {P(xj)}e
iωt applied at point xj and the surface displacement vector {u(xi)} at xi ; 

{ } ( )[ ]{ } ti
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i e)xP(xxe
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u

u

)xu( ωω ω .)(,G −=
















=  (4.27)

For the dynamic analysis of soil-structure system with a surface foundation, the 

interface surface is discretized by the rectangular areas of Aj(x). The generation of the 

impedance matrix involves determining the displacement vector at any nodal point xi 

of the rectangular interface due to the unit harmonic force at each nodal point xj. 

Considering constant stress traction over the total interface area, Eq. (4.27) defining 

the displacement due to a single point load is superposed for unit point harmonic 

load applied at each interface node. Therefore, Eq. (4.27) is rewritten as:  
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where {σ(xj)}: constant traction at the centroid of subregion j and  Aj : area of the jth 

subregion.  

Wong [58] has studied the dynamic response of the deformable soil under the effect 

of the seismic excitations. The research focuses on the determination of the soil 

impedance and driving forces induced by the seismic waves at the foundation-soil 

interface. The results of this study reveal that the stress distribution is sensitive to the 

shape of the foundation. However, the impedance evaluated by integrating the stress 

values and the driving force are not affected by the shape of the foundation. 

Therefore, the integration can be discretized by an approximate area in order to 

simplify the integration process as given in Eq. (4.28). 

In the previous study conducted by Elorduy et al. [59], each subregion has been 

represented by square elements. Since the evaluation of Green’s functions for the 

concurrent points xi = xj is difficult due to the singularity, 
)(

1

ji xx −
. The researchers 

kept the source points at the center of each square element and the receiver points 

were shifted to the nodes of the square elements. A similar procedure has been 

developed by Dendrou et al. [29] for the computation of the impedance matrix. In 

this procedure, the integration of the Green’s functions are accomplished considering 

the source point as the centroid of the rectangular element and the receiver point as 

the node composing the interface area.   

To implement the proposed procedure, the Eq. (4.28) has been revised as: 

{ } [ ] { })()( jji xxu σφ=  (4.29)

where the matrix [φ] is written as: 
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Each component of the matrix [ ]φ  is determined by the integration of the Green’s 

function matrix over the discretized interface surface; 
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The constant traction vector can be rewritten as { } [ ] { })()( 1
jsjj xPAx −=σ  where [ ]A  is 

the diagonal matrix, which consists of the area of each rectangular element. The load 

vector {Ps(xj)} with the dimensions of (3Sx1) is obtained as: 

{ } { }PTPs ][=  (4.32)

where {P} : the load vector having a dimension of 3Nx1 and [T] : the transformation 

matrix with the dimensions of (3Sx3N). N and S are the number of nodes of the 

interface and the number of subregions, respectively. Using transformation matrix 

[T], the point loads applied at the corners of subregions are shifted to the center of 

each element.  

The generation of the transformation matrix is based on transforming the nodal point 

force into equivalent forces acting at the centroids of the subregions nearby the 

original nodal source. Three different types of transformation are possible: the 

transformation of the point source acting on an interior node, on an edge node or on a 

corner node.  

Using the transformation matrix and the nodal force vector, the displacement vector 

{u} in Eq. (4.29) is rewritten as:  

{ } [ ]{ } [ ] [ ] { }PTAu
Ds ][1

.
−== φσφ  (4.33)

Eventually, the compliance matrix of the half-space,  [CHS] defined as: 
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{ } [ ] [ ] { } [ ]{ }PCPTAu HS== − ][1
.φ  (4.34)

[ ] [ ] [ ] ][1
. TAC

DHS
−= φ  (4.35)

Since the frequency-dependent impedance matrix, [KHS] is the inverse of the 

compliance matrix, [CHS] it is calculated as:  

[ ] [ ] 1−= HSHS CK  (4.36)
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5.  IMPLEMENTATION OF THE SUBSTRUCTURE METHOD 

5.1 General Procedure 

The dynamic analysis of the soil-structure system has been carried out using the 

substructure method. Implementation of the numerical model for the substructure 

method has been accomplished by partitioning the soil and the structure system and 

analyzing each system separately. The finite element modeling of the superstructure 

has been developed using ANSYS [60] software and modeling of soil medium has 

been conducted by a special MATLAB code [61] developed within the scope of this 

dissertation.  

The free field motion induced by the seismic waves has been determined by the 

computer program developed in this study using the elastic wave theory, which has 

been explained in Chapter 3.  The impedance matrix for each excitation frequency at 

the interface nodes has been obtained sequentially within a numerical loop of the 

computer program as given in Chapter 4. The evaluation of the impedance matrix has 

been formulated employing the fundamental solutions for the homogeneous half-

space. Finally, the output data produced by the two subprograms for the seismic 

wave motion and the impedance matrix of the soil medium have been multiplied in 

order to calculate the excitation force vector caused by the incident wave at the 

interface nodes as given below; 

{ } [ ]{ }ffHS uKP .=  (5.1)

Using the compatibility equations for the displacement at the interface nodes, the 

equations of motion for the total system are formulated in the matrix form and solved 

numerically. The overall numerical procedure is summarized in Figure 5.1. 
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Figure 5.1 : Flowchart for the numerical modeling of the soil-structure system. 
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5.2 Derivation of the Numerical Methodology 

Finite element modeling of the superstructure necessitates the generation of the 

structural geometry using a number of nodes. Employing the substructure method, 

the nodes of the structure are categorized as the structural nodes and the nodes 

belonging to the soil-structure interface surface. Therefore, the matrices composing 

the set of the equations of motion for the dynamic analysis are also partitioned as the 

structure and the soil-structure interface. 

The dynamic response of the soil-structure system, { }y  is accomplished by the 

solution of the dynamic equilibrium equations given as: 

[ ]{ } [ ]{ } [ ]{ } { }PyKyCyM =++ &&&  (5.2)

where [M], [C] and [K] are mass, damping and stiffness matrices. The displacement 

vector { }y  defined in the time domain is composed of the superstructure 

displacements { }1y  and the displacements of the interface nodes, { }2y .  Using the 

substructure method, Equation (5.2) is rewritten as:  
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where [M11] : the mass matrix of the superstructure;  [M22] : the mass matrix for the 

soil-structure interface; [C11] : the diagonal damping matrix of the superstructure; 

[K11] : the stiffness matrix of the superstructure; [K22] : the stiffness matrix the soil-

structure interface; [K12] : the coupled stiffness matrix of the superstructure and the 

interface region and { }2P  : the vector of the forces applied along the interface nodes.  

The response of the structure, { }1y  is defined by the static and the dynamic parts as 

given in Eq. (5.4). Using quasi-static transmission of the free field motion, the static 

part of the displacement vector { }sy1  can be expressed in terms of the displacement 

vector of the interface nodes { }2y  as given in Eq. (5.6).  

{ } { } { }ds yyy 111 +=  (5.4)
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[ ]{ } [ ]{ } { }0212111 =+ yKyK s  (5.5)

{ } [ ] [ ]{ } [ ]{ }2212
1

111 yRyKKy ss =−= −  (5.6)

[ ]sR  is the quasi-static transformation matrix which is derived using the static part of 

the equilibrium equation [62,18]. Using Eq. (5.4), the first row of the matrix of the 

dynamic equilibrium equation is expressed as:  

[ ]{ } [ ]{ } [ ]{ } [ ]{ } { }0.... 212111111111111 =++++++ yKyyKyyCyyM dsdsds &&&&&&  (5.7)

Substituting Eq. (5.6) in Eq. (5.7) yields; 

[ ][ ]{ } [ ]{ } [ ][ ]{ } [ ]{ }
[ ][ ]{ } [ ]{ } [ ]{ } { }0....

.........

212111211

111211111211

=++
++++

yKyKyRK

yCyRCyMyRM

dS

dSdS &&&&&&&
 (5.8)

Since [ ][ ]{ } [ ]{ } { }0... 212211 =+ yKyRK S , Eq. (5.7) is finally expressed in the form of; 

[ ]{ } [ ]{ } [ ]{ } [ ][ ]{ } [ ][ ]{ }( )211211111111111 ....... yRCyRMyKyCyM SSddd &&&&&& +−=++  (5.9)

Dendrou et al. [29] has neglected the effect of the damping on the forcing function 

and obtained Eq. (5.9) as: 

[ ]{ } [ ]{ } [ ]{ } [ ][ ]{ }211111111111 .. yRMyKyCyM sddd &&&&& −=++  (5.10)

The dynamic part of the displacement vector { }dy1  is expressed in terms of the 

eigenvectors of the structure as given below; 

{ } [ ]{ }η.1 Φ=dy  (5.11)

where { }η  is the vector of the modal response amplitudes and [ ]Φ  is the modal 

matrix. Substituting Eq. (5.11) into (5.10) and using the orthogonality conditions, Eq. 

(5.12) is obtained for each free vibration mode of the superstructure, which is given 

below;  
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[ ]{ } [ ]{ } [ ]{ } [ ] [ ][ ]{ } [ ][ ]{ }( )211211
2 ......2. yRCyRMI SS

T
NNN &&&&&& +Φ−=++ ηωηζωη  (5.12)

where [ ]I : the identity matrix; { }η&  and { }η&& : the first and second derivatives of the 

vector of modal response amplitudes with respect to time; [ ]2
Nω : the diagonal matrix 

containing the square of the nth natural frequency; [ ]Φ : the modal matrix containing 

the eigenvectors of the superstructure and Nζ : the modal damping ratio which is 

proportional to the mass and the stiffness matrices of the structure. The orthogonality 

conditions are as follows; 

[ ] [ ][ ] [ ]IMT =ΦΦ .11  (5.13)

[ ] [ ][ ] [ ]NN
T C ζω2.11 =ΦΦ  (5.14)

[ ] [ ][ ] [ ]2
11 . N

T K ω=ΦΦ  (5.15)

The modal matrix, [ ]Φ  is normalized to the mass matrix, [[[[ ]]]]11M . Expressing the 

displacement vector of the interface nodes, { }2y  and the vector of the modal 

response amplitudes, { }η  in the form of harmonic motion with an excitation 

frequency  of Ω , the Eq. (5.12) can be rearranged as: 

[ ] [ ] [ ]{ }{ }
[ ] [ ][ ] [ ][ ]{ }{ }201111

2

0
22

..

.2

yRCiRM

i

SS

T

NNN

Ω+Ω−Φ−

=+Ω+Ω− ηωξω
 (5.16) 

where { } { } tieyy Ω= 202 ; { } { } tieΩ= 0ηη . Finally, the displacement amplitude, { }0η  in 

the frequency domain in Eq. (5.16) is obtained as: 

{ } [ ] [ ] [ ] [ ][ ]{ }{ }2011
21

0 .. yRCiS s
TΦΩ−ΓΩ= −η  (5.17)

where ][ 2Ω  is the diagonal matrix containing the square of the excitation frequency 

and [ ]S  is given as: 
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[ ] [ ] [ ] [ ]22 2 NNNiS ωξω +Ω+Ω−=  (5.18)

Multiplying both sides of Eq. (5.18) by tieΩ , the dynamic part of the displacement 

vector of the structure { }dy1  is expressed in terms of the displacement vector of the 

interface modes { }2y  as given below; 

{ } [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ] { } ti
s

T
d eyRCSiSy Ω−− ΦΦΩ−ΓΦΩ= 2011

112
1  (5.19)

where [ ]Γ  is the matrix of modal participation factors which is obtained as: 

[ ] [ ] [ ][ ]S
T RM11Φ=Γ  (5.20)

The diagonal damping matrix [ ]11C  can also be expressed as: 

[ ] [ ][ ][ ][ ] [ ]111111 .2.. MMC T
NN ΦΦ= ξω  (5.21)

which has been given as an alternative formulation for the evaluation of the damping 

matrix by Clough and Penzien [62]. Substituting the above expression into Eq. (5.19) 

yields; 

{ } [ ][ ] [ ] [ ][ ] [ ][ ] [ ][ ][ ] { } ti
s

T
NNd eyRMSiSy Ω−− ΦΦΩ−ΓΦΩ= 2011

112
1 ..2.. ξω  (5.22)

Rearranging the matrices that are multiplied by the displacement vector { }2y , Eq. 

(5.18) is finally obtained as: 

{ } [ ]{ }21 yRy Dd =  (5.23)

where the dynamic transformation matrix [[[[ ]]]]DR  is defined as: 

  [ ] [ ][ ] [ ] [ ][ ] [ ][ ] [ ][ ]s
T

NND RMSiSR 11
112 2 ΦΦΩ−ΓΦΩ= −− ξω  (5.24)

Eventually, the relationship between the displacement vector of the structure {{{{ }}}}1y  

and the interface nodes {{{{ }}}}2y  is derived as: 
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{ } [ ]{ } [ ]{ } tieyTyTy Ω== 2021  (5.25)

[ ] [ ] [ ]DS RRT +=  (5.26)

where [ ]SR : the static transformation matrix; [ ]DR : the dynamic transformation 

matrix and [ ]T : the system transformation matrix. Using the relationship between the 

displacement vector of the structure { }1y  and the interface nodes { }2y , the second 

row of the matrix in Eq. (5.3) can be rewritten as: 

[ ] [ ] [ ] [ ]{ } { }2222212

..

222 PyKyTKyM T =+






+







  (5.27)

Similar to the displacement vector of the interface nodes which has been defined  as 

{ } { } tieyy Ω= 202 , the force vector applied along the interface, { }2P  is also expressed in 

terms of a harmonic excitation which is given as { } { } tiePP Ω= 202 . Therefore, Eq. 

(5.27) is rearranged as: 

[ ]{ } { }2020 PyKST =  (5.28)

where the matrix [ ]STK  represents ‘the effective impedance matrix’ of the structure 

as given below; 

[ ] [ ] [ ] [ ] [ ]221222
2 KTKMK T

ST ++Ω−=  (5.29)

The vector of the forces applied along the interface, { }2P  is decomposed as the 

driving forces and the resisting forces as given below: 

{ } { } { } { }[ ] ti
RD

ti ePPePP ΩΩ +== 00202  (5.30)

The vector of driving force amplitudes { }0DP  is composed of the force amplitudes, 

which are induced by the seismic wave motion. Using the Green’s functions, the 

driving forces along the interface nodes have been previously defined in terms of the 



 48 
 

impedance matrix of the half-space, [ ]HSK  and the free field motion, { }ffu  as given 

below: 

{ } [ ]{ }ffHSDO uKP .=  (5.31)

Using the compatibility of the displacements at the interface nodes, the vector of the 

resisting force amplitudes is given as: 

{ } [ ]{ }20. yKP HSRO −=  (5.32)

Substituting Eq. (5.30) into (5.28), the vector of the response amplitudes along the 

interface, {{{{ }}}}20y  can be obtained as: 

{ } [ ] { }DOHSST PKKy 1
20

−+=  (5.33)

where [ ]HSST KK +  is the impedance matrix of the soil-structure system. 

Since{ } [ ] { }2.1 yTy = , the response of the superstructure is finally expressed as: 

{ } [ ] [ ] { } ti
DOHSST ePKKTy Ω−+= 1

1  (5.34)

5.3 The Summary of The Numerical Procedure 

This chapter includes the numerical procedure that has been implemented for the 

dynamic analysis of the soil-structure systems. The solution of the dynamic soil-

structure interaction problem has been encountered using the substructure method. 

The detailed derivation of the formulation has been explained in the previous 

sections of this chapter. The numerical procedure is summarized in Table 5.1. 

The numerical procedure is mainly based on the methodology developed by Dendrou 

et al. [29] for dynamic analysis of soil-structure interaction problems. The authors 

have used the substructure method for the coupling of the soil and the structure 

systems. The formulation of the dynamic transformation matrix, [RD] in the previous 

study has been derived neglecting the effect of damping on the dynamic 

transformation matrix. However, this assumption has led to the overestimation of the 
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response amplitudes of the soil-structure system under the effect of the seismic 

waves. As a contribution of this thesis, an alternative formulation has been developed 

including the effect of the damping on the dynamic transformation matrix, [RD]. The 

damping matrix which is implemented in this study is an alternative formulation of 

the damping matrix given by Clough and Penzien [62]. The dynamic response 

amplitudes of the soil-structure systems using the new formulation developed in this 

study are more realistic than the previous methodology.  

Table 5.1: The summary of the numerical procedure. 

STAGE DESCRIPTION AND FORMULATION OF THE PROCEDURE 

Assembling the element 

matrices using Finite 

Element Method 

The mass, and the stiffness matrices have been partitioned into the 

components of the superstructure and the interface. 
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Eigenvalue analysis 

The interface nodes have been assumed to be fixed at the base. The 

modal matrix is obtained by mass normalization. 
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Table 5.1 (Continued): The summary of the numerical procedure. 

STAGE DESCRIPTION AND FORMULATION OF THE PROCEDURE 

Calculation of the  

transformation matrix  

 { } [ ]{ }21 yTy =  

[ ] [ ] [ ]DS RRT +=  

Calculation of the 

effective impedance 

matrix for the 

structure 

 [ ]{ } { }2020 PyKST =  

 [ ] [ ] [ ] [ ] [ ]221222
2 KTKMK T

ST ++Ω−=  

Determination of the 

vector of driving force 

amplitude 

{ } [ ]{ }ffHSDO uKP =  

[ ]HSK :Half-space impedance matrix 

{ }ffu : Free-field motion of the interface nodes 

Determination of the 

vector of interface 

displacement 

amplitudes 

  { } [ ] { }DOHSST PKKy 1
20

−+=  

Determination of the 

response of the 

structure 

  { } [ ] [ ] { } ti
DOHSSTDS ePKKRRy Ω−++= 1

.1  
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6.  SAMPLE PROBLEM 1: 3D BRIDGE-BACKFILL SYSTEM 

6.1 Introduction 

This chapter includes the dynamic analysis of a bridge-backfill system under the 

effect of the traveling SH waves, which has been previously analyzed by Dendrou et 

al. [63]. The authors have discussed the traveling seismic wave effect on the dynamic 

response of the soil-structure system. The same bridge model has been regenerated 

and examined using the numerical procedure that is developed in this study. The 

solution of the soil-structure model has been conducted implementing the same 

geometrical and material properties of the structure and the soil with the previous 

study. Comparing the results of the dynamic analyses, it has been observed that the 

response curves of the bridge-backfill system obtained using the numerical procedure 

developed in this study are in good agreement with the previous one.  

After the verification of the computer program that is implemented in this study, the 

same bridge-backfill system has been analyzed for three different soil types in order 

to observe the effect of soil conditions on the dynamic response of the soil-structure 

system. 

Eventually, the dynamic response for each case has been obtained by the revised 

substructure methodology including the effect of the damping on the dynamic 

transformation matrix of the system. The results of the analyses are discussed in 

detail.            

6.2 Traveling Seismic Wave Effect 

The influence of the dynamic soil structure interaction on the response of the 

structures becomes more important, if the size of a structure is large such as a bridge 

or a large dam. The effect of the soil-structure interaction may appear in two types 

according to the size and geometry of the foundation. The first effect is named as the 

kinematic interaction. In this type of interaction, the foundation serves as a filtering 

effect to the seismic waves by its geometry. The other type of interaction, which is 
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called as the traveling wave effect, occurs when the characteristic length of the 

structure is in the same order as the wavelength of the seismic waves. In this case, 

the ground motion changes to a great extent along the length of the structure. The 

traveling wave effect becomes important depending on the size of the structure and 

on the type, frequency and direction of the seismic wave [64]. 

In general, the dynamic response of the structures is carried out with the assumption 

that the structure is under the same input excitation applied simultaneously at the 

entire base. This assumption may be sufficient for a structure with moderate building 

dimensions. However, seismic waves traveling along the soil-structure interface may 

cause a non-uniform effect if the length of the structure is close to the seismic 

wavelength. In this case, amplitude and phase angle of the base motion at each point 

is different.  

The spatial variation of motion has been studied by many researchers, previously. 

The early studies are accomplished by Abdel-Ghaffar [65], Abdel-Ghaffar and 

Trifunac [66]. Some of the recent studies are carried out by Romanelli [67], Zembaty 

[68] and Todorovska [69] which are mentioned further in this section. 

The first study [65] concerns the effects of the differential motion of the foundations 

on the response of a bridge. First part of the study deals with the analysis of a simple 

beam under harmonic excitation. Two end supports of the beam have been subjected 

to harmonic ground motion with different phases. The response has been obtained as 

displacement amplitudes at specific points of the beam in the frequency domain. In 

the second part of the study, a numerical method has been developed to analyze the 

dynamic soil-bridge interaction of a 2D bridge model. The bridge was supported by 

two rigid abutments with semi-circular foundation resting on elastic half-space and 

excited by the input motion in the form of plane SH waves. Moreover, a parametric 

study was carried out in order to determine the effect of the soil properties on the 

response of the single span bridge. The results indicate that the response depends on 

the stiffness, the mass and the damping characteristics of the bridge relative to that of 

soil. It is also stated that the symmetric modes are excited for the support motion in 

phase whereas the antisymetric modes are dominant when the abutments move out of 

phase. In addition, the peak response displacement amplitudes are magnified at the 

natural frequencies in the case of non-vertical excitation.  
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The second study accomplished by Abdel-Ghaffar and Trifunac [66] is based on the 

same theory with the first study. Similarly, the response of the 2D model of the 

multispan bridge in frequency domain is investigated (Fig. 6.1). In this case, the 

following issues are discussed: 

• the effect of span length to the response, 

• the ratio of successive span length,  

• the ratio of rigidity of girders to that of the soil, 

• the effect of angle of the traveling SH wave. 

 

Figure 6.1 : 2D Multispan bridge under the effect of SH waves [66]. 

The effect of traveling seismic waves has also been studied by Werner et al. [70]. A 

numerical procedure has been developed to analyze the dynamic response of the soil-

structure system. The bridge system has been modeled using finite element methods 

and the soil has been modeled employing boundary elements as a homogeneous 

elastic half space.  

Another study carried out by the same researchers [29] involves the three 

dimensional seismic response of a bridge under the effect of the seismic waves using 

the same numerical procedure described above. The dynamic response of a single 

span bridge resting on a soft soil medium has been obtained using the developed 

methodology (Fig. 6.4). The traveling seismic effect has been discussed considering 
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the incident wave angle and the displacement amplitude on different sections of the 

bridge. For SH wave angle θV = θH = 0, the wave propagation is parallel to the 

longitudinal direction of the bridge and the particle motion is in the transverse 

direction. The plots of the response indicate that the structure displacements are 

essentially antisymetric about the midspan when odd multiples of the half 

wavelength are equal to the bridge span. For incident wave angle θV = 90 and θH = 0, 

the waves propagate vertically and the particle motion is identical at every point of 

the foundation. Hence, there is no traveling wave effect and bridge response 

amplitudes are symmetrical about the midspan for this case.  

 

Figure 6.2 : The 3D bridge model under the effect of SH waves [70]. 

The recent studies on this subject generally focus on the spatial variations of the 

ground motion due to the size of the structure or heterogeneities of the underlying 

soil. The effect of this differential motion is also named as the “wave passage effect” 

which is the phase shift of the seismic arrivals at different parts of the structure. The 

study of Romanelli et al. [67] deals with the wave passage effect to assess the 

importance of the non-synchronous seismic excitation of long structures. Another 

study conducted by Zembaty [68] concerns the random vibrations of a bridge under 

the propagating seismic excitations and the joint effects of the pseudostatic and the 

dynamic vibrations. In addition, Todorovska [69] has studied the wave passage effect 
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and the dynamic soil-structure interaction on the response of the base-isolated 

buildings with embedded foundations. 

6.3 The Sample Problem 

 

Figure 6.3 : 3D Finite element model of the bridge. 

The numerical procedure developed in this study has been used to analyze the wave 

propagation effect for a bridge-backfill system of 84 meters length and 12 meters 

width (Fig. 6.3). The finite element modeling of the superstructure has been 

accomplished by ANSYS [60] using the eight node brick element (SOLID45) for the 

backfill; elastic thin shell element (SHELL63) for the road deck and the membrane 

shell element (SHELL41) for the retaining walls surrounding the backfill soil. The 

brick element has translational degrees of freedom, ux, uy and uz at each node. The 

thin shell element that is used for modeling the roadway slab has 4 degrees of 

freedom at each node; translations in the x, y, and z directions and rotation about y-

axis. The elastic membrane element representing the surrounding walls has only 

translational degrees of freedom in x, y, and z directions (Figure 6.4). The material 

and the geometrical properties of the finite element model are summarized in Table 

6.1. 
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Figure 6.4 : Solid, thin shell and membrane elements [60]. 

Table 6.1: Physical and material properties of the bridge 

MATERIAL PROPERTIES BACKFILL 
RETAINING 

WALLS 

BRIDGE 

DECK 
SOIL 

Modulus of Elasticity (N/m2) 1.82x108 1.99x1010 1.99x1010 1.82x108 

Poisson's Ratio 0.33 0.15 0.15 0.33 

Type of Finite Element Brick 

Plane Stress- 

Membrane 

Shell 

Elastic  

Thin Shell 

Elastic  

Half-Space 

Thickness -- 0.3 m 1.0 m --- 

DOF at each node of the 

element 
ux, uy, uz ux, uy, uz ux, uy, uz, ry ux, uy, uz 

Number of Elements 20 16 8 16 

Prior to the dynamic analysis of soil-structure system, a modal analysis has been 

performed in order to determine the free vibration characteristics of the bridge: 

natural frequencies, mode shapes and modal participation factors. The eigenvector of 

each mode is normalized to the mass matrix. In addition, the mass matrix and the 

stiffness matrix are obtained and partitioned as upper nodes and interface in order to 

use in the substructuring. Some of the natural modes of bridge backfill system are 

presented in Figs. A.1 to A.4. Since the natural frequencies vary within the wide 

range of 1.37 Hz and 150 Hz., it has been difficult to distinguish between the natural 

modes concerning the roadway slab and the backfill. Thus, a modal analysis of the 
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road deck has been carried out apart from the bridge-backfill system. The natural 

frequencies and the mode shapes involving the bridge deck are shown in Fig. A.5. 

The dominant frequencies in the dynamic response of bridge backfill system are 

identified by examining the modal participation factors and the effective masses of 

each natural mode of the system in the next section. 

6.4 The Modal Participation Factors 

The modal participation factor nΓ  is a measure of the contribution of each mode to 

the dynamic response of the structure. For any arbitrary mode n, the equation of 

motion can be expressed as: 

{ } { }
n

T
n

nnnnn M

tp
tytyty

)(
)()(2)( 2 φωωξ =++ &&&  (6.1)

where nω : the nth natural frequency of the structure, nξ : the damping ratio of the nth 

mode, ω : the excitation frequency,  { }T
nφ : the transpose of the nth eigenvector, 

{ })(tp  : the load vector and nM : the modal mass  (generalized mass) determined as 

{ } [ ] { }n
T

nn MM φφ= .  

For the dynamic analysis developed, the mode shape vectors are normalized to the 

lumped mass matrix. Therefore, the modal mass for each mode is unity. For the case 

of base excitation under earthquake loading, the effective earthquake loading vector, 

{ })(tpeff  is expressed as: 

{ } [ ]{ } )(.)(
..

tvrMtp geff =  (6.2)

where { }r  is the displacement transformation vector which is composed of 

displacements at each degrees of freedom resulting from unit support displacement 

and )(
..

tvg is the earthquake time history. For a multistory building under the 

horizontal ground motion, the vector { }r  is simply a unit column vector. Introducing 

the upper equation into the equation of motion, the formulation becomes: 
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Considering the total dynamic response of the structure, the importance of each mode 

depends on the spatial distribution of the earthquake loading. The contribution of the 

individual modes is expressed in terms of the modal participation factor, nΓ  which is 

defined as [62]; 

{ } [ ]{ }
{ } [ ]{ }n
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n

T
n

n
M
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φφ
φ

.

.
=Γ  (6.4)

Since eigenvectors are normalized to the mass matrix in this study, the modal 

participation factors are simply the upper part of the fraction. In addition to the 

modal participation factors, the effective mass of each natural mode is calculated 

revealing the contribution of each mode. Effective mass is defined as: 

{ } [ ]{ }n
T

n

n
n

M
M

φφ .

)( 2
* Γ

=  (6.5)

Examining the effective masses of the modal analysis of bridge deck, it is clearly 

observed that the bending mode in x-z plane (first mode), the bending mode in x-y 

plane (7th mode), 11th mode are the dominant modes in z, y and x directions, 

respectively (Fig. 6.11). The modal analysis of the bridge deck has 27 degrees of 

freedom. However, except for the first bending mode in Z direction (1.04 Hz) and 

mode number 7 (bending in x-y plane), none of the bridge deck modes has significant 

effect on the dynamic response of the bridge backfill system.  

Observing the natural mode shapes and the effective mass of each mode of the total 

system reveal different results (Tables 6.2 to 6.4).  

In the z direction; 

• The first mode shape coincides with the first bending mode of the bridge deck 

and is a dominant mode similar to the modal analysis of the bridge deck 

comparing the effective mass values. 

• The following dominant modes are modes 45, 57, 75, 87 and 92 

corresponding to backfill deformation. 
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• The modes 57 and 75 are the coupled modes. Both bridge slab and the 

backfill part deform extensively. 

• The effective masses are distributed uniformly among these modes indicating 

that each of these modes has almost the same effect on the dynamic response. 

The results in the y direction are summarized below: 

• The most dominant modes in the y direction are the 5th and the 12th modes 

with 9.42 Hz and 10.51 Hz frequencies, respectively. In both modes, the 

backfill part is deformed. 

• The other dominant modes in the y direction (20, 31) have the same effect on 

the dynamic response.  These modes are related to the deformation of the 

backfill parts. 

• Mode 48 coincides with 7th mode of the bridge deck which is the bending 

mode in x-y plane. 

The results in the x direction are summarized below: 

• Mode numbers 13, 17, 58 and 71 have significant effective masses in the x 

direction. Especially, the lower mode 13 having a natural frequency of 10.71 

Hz has the highest effective mass among the other modes indicating that it is 

one of the dominant modes in X direction. The corresponding mode shapes 

reveal that these modes refer to the   backfill deformation. 

Table 6.2: Natural modes of the bridge-backfill system. 

mode frequency 
x direction y direction z direction 

effective 
mass 

mass 
fraction 

effective 
mass 

mass 
fraction 

effective 
mass 

mass 
fraction 

1 1.04 0.00 0.00 0.00 0.00 75079.40 0.23 
2 4.16 3.15 0.00 0.00 0.00 0.00 0.23 
3 9.06 0.00 0.00 0.00 0.00 2445.40 0.24 
4 9.42 0.00 0.00 0.00 0.00 0.00 0.24 
5 9.42 0.00 0.00 102155.00 0.32 0.00 0.24 
6 9.86 20230.20 0.06 0.00 0.32 0.00 0.24 
7 9.87 0.00 0.06 0.00 0.32 17.34 0.24 
8 10.25 903.44 0.07 0.00 0.32 0.00 0.24 
9 10.26 0.00 0.07 0.00 0.32 24.42 0.24 
10 10.34 0.00 0.07 919.86 0.32 0.00 0.24 
11 10.35 0.00 0.07 0.00 0.32 0.00 0.24 
12 10.51 0.00 0.07 117836.00 0.69 0.00 0.24 
13 10.71 110023.00 0.41 0.00 0.69 0.00 0.24 
14 10.83 0.00 0.41 0.00 0.69 0.00 0.24 
15 10.83 0.00 0.41 14225.40 0.73 0.00 0.24 
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Table 6.2 (Continued): Natural modes of the bridge-backfill system. 

mode frequency 
x direction y direction z direction 

effective 
mass 

mass 
fraction 

effective 
mass 

mass 
fraction 

effective 
mass 

mass 
fraction 

16 11.12 0.00 0.41 0.00 0.73 85.82 0.24 
17 11.17 72429.10 0.63 0.00 0.73 0.00 0.24 
18 11.72 0.00 0.63 0.00 0.73 3916.85 0.25 
19 11.73 0.00 0.63 0.00 0.73 0.00 0.25 
20 11.73 0.00 0.63 24531.10 0.81 0.00 0.25 
21 12.13 11616.50 0.67 0.00 0.81 0.00 0.25 
22 12.43 0.00 0.67 0.00 0.81 18.39 0.25 
23 12.64 162.02 0.67 0.00 0.81 0.00 0.25 
24 12.76 0.00 0.67 0.00 0.81 1574.46 0.26 
25 12.81 0.00 0.67 0.00 0.81 0.00 0.26 
26 12.81 0.00 0.67 3148.61 0.82 0.00 0.26 
27 12.96 13325.40 0.71 0.00 0.82 0.00 0.26 
28 13.65 0.00 0.71 0.00 0.82 9503.42 0.29 
29 13.78 3379.33 0.72 0.00 0.82 0.00 0.29 
30 13.83 0.00 0.72 0.00 0.82 0.00 0.29 
31 13.83 0.00 0.72 35067.50 0.93 0.00 0.29 
32 14.65 0.00 0.72 0.00 0.93 838.95 0.29 
33 14.65 2159.95 0.73 0.00 0.93 0.00 0.29 
34 14.89 0.00 0.73 0.00 0.93 655.00 0.29 
35 14.89 4426.35 0.74 0.00 0.93 0.00 0.29 
36 15.14 0.00 0.74 0.00 0.93 5582.74 0.31 
37 15.15 7.61 0.74 0.00 0.93 0.00 0.31 
38 15.36 0.00 0.74 0.00 0.93 0.00 0.31 
39 15.36 0.00 0.74 126.18 0.93 0.00 0.31 
40 16.10 0.00 0.74 0.04 0.93 0.00 0.31 
41 16.85 0.00 0.74 0.00 0.93 0.00 0.31 
42 16.93 0.00 0.74 0.00 0.93 0.00 0.31 
43 16.93 0.00 0.74 1866.03 0.93 0.00 0.31 
44 17.12 0.00 0.74 0.00 0.93 0.00 0.31 
45 17.34 0.00 0.74 0.00 0.93 30135.90 0.40 
46 17.34 80.31 0.74 0.00 0.93 0.00 0.40 
47 18.59 0.00 0.74 7.63 0.93 0.00 0.40 
48 21.95 0.00 0.74 18305.50 0.99 0.00 0.40 
49 22.74 0.00 0.74 0.00 0.99 0.84 0.40 
50 22.90 0.00 0.74 0.00 0.99 21633.00 0.47 
51 22.90 871.82 0.74 0.00 0.99 0.00 0.47 
52 23.40 0.25 0.74 0.00 0.99 0.00 0.47 
53 24.46 0.00 0.74 0.00 0.99 7.79 0.47 
54 31.43 0.00 0.74 0.00 0.99 1633.78 0.48 
55 32.53 0.00 0.74 0.00 0.99 0.00 0.48 
56 32.57 490.69 0.75 0.00 0.99 0.00 0.48 
57 32.58 0.00 0.75 0.00 0.99 24958.80 0.55 
58 36.67 31985.90 0.85 0.00 0.99 0.00 0.55 
59 37.38 0.00 0.85 319.34 0.99 0.00 0.55 
60 37.68 0.00 0.85 0.00 0.99 2407.47 0.56 
61 38.45 0.00 0.85 0.00 0.99 0.00 0.56 
62 39.25 0.00 0.85 0.00 0.99 3571.84 0.57 
63 39.26 18775.10 0.90 0.00 0.99 0.00 0.57 
64 40.66 0.00 0.90 1478.61 0.99 0.00 0.57 
65 42.08 0.00 0.90 0.00 0.99 0.00 0.57 
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Table 6.2 (Continued): Natural modes of the bridge-backfill system. 

mode frequency 
x direction y direction z direction 

effective 
mass 

mass 
fraction 

effective 
mass 

mass 
fraction 

effective 
mass 

mass 
fraction 

66 42.63 0.00 0.90 0.00 0.99 2778.70 0.58 
67 42.65 660.49 0.91 0.00 0.99 0.00 0.58 
68 42.82 0.00 0.91 208.28 1.00 0.00 0.58 
69 43.48 0.00 0.91 0.00 1.00 0.00 0.58 
70 43.89 0.00 0.91 0.00 1.00 88.84 0.58 
71 43.89 23131.70 0.98 0.00 1.00 0.00 0.58 
72 43.89 0.00 0.98 4.32 1.00 0.00 0.58 
73 44.07 0.00 0.98 0.00 1.00 0.00 0.58 
74 44.84 1013.73 0.98 0.00 1.00 0.00 0.58 
75 44.89 0.00 0.98 0.00 1.00 40038.60 0.71 
76 45.19 0.00 0.98 1253.56 1.00 0.00 0.71 
77 45.22 0.00 0.98 0.00 1.00 0.00 0.71 
78 47.88 1268.46 0.99 0.00 1.00 0.00 0.71 
79 48.02 0.00 0.99 0.00 1.00 1830.42 0.71 
80 48.37 0.00 0.99 15.37 1.00 0.00 0.71 
81 48.46 0.00 0.99 0.00 1.00 0.00 0.71 
82 48.77 134.24 0.99 0.00 1.00 0.00 0.71 
83 49.31 0.00 0.99 0.00 1.00 2561.21 0.72 
84 51.07 0.00 0.99 34.69 1.00 0.00 0.72 
85 51.09 0.00 0.99 0.00 1.00 0.00 0.72 
86 51.10 481.64 0.99 0.00 1.00 0.00 0.72 
87 51.12 0.00 0.99 0.00 1.00 30301.70 0.81 
88 53.42 0.00 0.99 24.63 1.00 0.00 0.81 
89 56.99 8.75 0.99 0.00 1.00 0.00 0.81 
90 59.22 0.00 0.99 0.00 1.00 0.00 0.81 
91 59.22 0.00 0.99 15.38 1.00 0.00 0.81 
92 59.25 0.00 0.99 0.00 1.00 30404.30 0.91 
93 59.25 1632.13 0.99 0.00 1.00 0.00 0.91 
94 59.66 72.43 0.99 0.00 1.00 0.00 0.91 
95 62.37 0.00 0.99 0.00 1.00 411.19 0.91 
96 64.85 0.00 0.99 0.00 1.00 0.00 0.91 
97 69.32 0.00 0.99 90.84 1.00 0.00 0.91 
98 74.61 0.00 0.99 8.55 1.00 0.00 0.91 
99 74.61 0.00 0.99 0.00 1.00 0.00 0.91 
100 74.68 2364.11 1.00 0.00 1.00 0.00 0.91 

total mass 321648 
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6.5 The Response of the Bridge-Backfill System under Harmonic Excitation 

Harmonic response analysis is a technique used to determine the steady-state 

response of a structure to loads or displacements that vary harmonically with time. 

The purpose is to determine the response at varying frequencies. Using the results of 

the analysis, the graph of the displacement response versus the frequency is obtained 

at different nodal points.  The "Peak" values of the response are then identified 

indicating important features about the dynamic behavior of the structure. 

Considering the matrix of equations of motion; 

[ ]{ } [ ]{ } [ ]{ } { }aFuKuCuM =++ &&&  (6.6)

{ }aF : the applied load vector; [M]: the  mass matrix; [C]: the damping matrix; [K]: 

the stiffness matrix and { }u& ,{ }u&&  and { }u : the acceleration, the velocity and the 

displacement vectors of the nodes, respectively. Since there is the structural 

damping, points of the structure move with the same frequency but not always in the 

same phase. Therefore, the displacement vector (and the force vector) can be defined 

as: 

{ } { } )(
x

φω += ti
ma euu  (6.7)

where { }xmau : the maximum displacement vector; φ : displacement phase shift and 

ω : the angular frequency of harmonic motion. 

In order to determine the dynamic behavior of the bridge-backfill system, the 

harmonic response of the structure has been initially analyzed using ANSYS [60]. 

Even though the numerical study focuses on the traveling wave effect, it is of great 

importance to compare the peak frequencies under uniform harmonic motion with 

those obtained by the numerical procedure to identify the effect of the traveling 

seismic waves.  

In the numerical procedure developed for this study, the input excitation is in the 

form of a plane SH wave motion. The SH wave has a displacement amplitude of 2 

units with the shear wave velocity of 213 m/s and originates from an infinite distance 

of the elastic half-space soil medium. Since the length of the bridge-backfill system 
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is close to the wavelength of the seismic wave, the plane SH wave arriving to the 

base causes different values of the displacement at every interface node. Therefore, 

the excitation at the interface is not uniform.  

Unlike the response under the traveling waves, the harmonic response of the 

structure is obtained employing uniform base excitation with harmonic 

displacements. Therefore, it is essential to compare the response under traveling 

waves with the uniform harmonic base excitation.  

The harmonic analysis has been carried out for three directions; the x and the y 

directions separately. The displacements at the interface nodes have been constrained 

except for the direction of the harmonic motion for each analysis.  

The displacement response has been obtained at three different nodes on the bridge 

deck. The graphs of the response versus frequency in each direction have been 

plotted for the nodes 47, 50 and 53 as shown in Figs. 6.5 to 6.6. Node 50 is the 

midpoint of the road deck and 47 and 53 are the closest nodes to the midpoint. Each 

graph indicates that the symmetric nodes 47 and 53 always move with the same 

amplitude and direction regardless of the direction of the harmonic motion. In 

addition, the response values of these nodes are always equal to or smaller than the 

response of the midpoint. 

The peak response for the harmonic excitation in x direction occurs at 12 Hz and 64 

Hz. Considering the mode shapes and the effective modal mass values; the first 

frequency coincides with a dominant natural mode (Mode No.21) in the x direction, 

which corresponds to the backfill deformation.  

The peak response for the harmonic excitation in the y direction occurs at 11 Hz, 17 

Hz and 30 Hz. The deformed shape of the response at f = 11 Hz corresponds to the 

12th natural mode obtained from the modal analysis. The effective modal mass of 

this natural mode also implies that the peak frequency corresponds to a dominant 

natural frequency. Similarly, the deformed shape of the peak response at f = 30 Hz is 

related to a coupled mode shape (Mode Number 54), but the effective mass of the 

mode is not high compared to the other modes. 
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Figure 6.5 : Harmonic motion in the x direction. 

 

Figure 6.6 : Harmonic motion in the y direction. 
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6.6 The Response of Bridge-Backfill System under Plane SH Wave Excitation 

The numerical analysis which has been developed for the dynamic response of the 

bridge under the traveling wave effect has been applied to the sample problem under 

three different conditions: 

Case A1: The plane SH wave propagates in the three dimensional half-space which 

is almost a rigid soil medium. 

Case B1: The backfill soil has the same dynamic properties with the underlying soil 

(medium clay). 

Case C1: The backfill soil has a very low mass density value compared to the bridge 

and the underlying soil (medium clay). 

The material properties of the underlying soil and the backfill soil surrounded by the 

retaining walls are given in Table 6.3. The displacement amplitudes in the y direction 

are plotted against the excitation frequency of the incident SH wave for Cases A1, 

B1 and C1 in Figs. 6.12 to 6.14. The results are discussed in the following section.  

Table 6.3: Material properties of the soil for Cases A1, B1 and C1. 

case 

UNDERLYING SOIL  BACKFILL SOIL  

soil type G ρ vs 
soil 
type 

G ρ vs 

A1 granite 2.52x1010 2800 3000 
 med. 
clay 

6.86 x107 1500 213.85 

B1 
 med. 
clay 

6.86 x107 1500 213.85 
 med. 
clay 

6.86 x107 1500 213.85 

C1 
med. 
clay 

6.86 x107 1500 213.85 
fict. 

mater. 
6.86 x107 38.12 1341.4 

υ = 0.33 (Poisson’s ratio) 
G  = Shear modulus (N/m2) 
ρ = Mass density (kg/m3) 
vs  = Shear wave velocity (m/s) 
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6.7 The Discussion of the Results 

Firstly, the results of the uniform harmonic motion in the y direction are compared 

with the values obtained from the numerical analysis under SH wave traveling along 

the x direction (horizontal and vertical angles of the wave, θH and θV are zero) for a 

very rigid soil condition. The solution under rigid soil conditions corresponds to Case 

A1 that is defined in Table 6.5. The peak response of the midpoint node 50 occurs at 

11 Hz, 17 Hz and 30 Hz for uniform harmonic excitation as observed in Fig. 6.7. The 

other symmetrical nodes also reach their peak values of the amplitude at the same 

frequencies but with smaller amplitudes.  

However, the peak response under the effect of the traveling SH wave does not occur 

at the same frequency values (Fig. 6.7). Displacement amplitude at the midpoint 

reaches its peak value at 8.5 Hz and 18 Hz. In addition, the uniform harmonic 

response curves of symmetrical nodes coinciding for the entire frequency range are 

no longer identical for the analysis of the Case A1. The curves of the response for 

these nodes are still smaller than the midpoint, but the displacement amplitude of 

node 47 is less than that of node 53 for the initial peak frequency of 8.5 Hz. 

Furthermore, the second peak response of node 47 is captured at 15 Hz, whereas the 

peak response of node 47 occurs at 14 Hz with a larger displacement amplitude. 

Therefore, it can be deduced that the response for the uniform harmonic excitation 

and the response under SH wave propagation resemble but are not identical even for 

the same rigid base conditions. This is an expected consequence since the input 

motion at the base is different for each point with respect to the coordinates of the 

nodes for the Case A1. On the contrary, the uniform harmonic analysis of the bridge 

embankment system is conducted by applying the same uniform displacement 

amplitude at the base, which is the general representation of the ground motion.  

Secondly, the response curves of Case A1, B1 and C1 are compared in order to 

determine the effect of the underlying and backfill soil conditions. Figs. 6.7 and 6.9 

indicate that both the displacement amplitude and the peak response frequency 

increase as the underlying soil conditions get stiffer. The peak response values for 

Case B1 (where the underlying soil is medium clay) are captured at 1.04 Hz, 2.20 

Hz, 2.60 Hz, 2.90 Hz, 4.40 Hz and 6.70 Hz. The response of the system caused by 

the incident SH wave is almost completely damped after the last peak value at 6.7 
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Hz. On the contrary, the first peak response for the rigid soil conditions (Case A1) is 

reached at 8.5 Hz and the motion is damped at frequency values higher than 15 Hz. 

In this case, it can be concluded that increasing the stiffness of soil increases both the 

displacement amplitude and the frequency at which the peak responses are obtained. 

In addition, there is a greater extent of fluctuation in the amplitude values for the 

case of the soft soil conditions (Case B1). 

Finally, the dynamic analysis is carried out for Case C1, which has the same type of 

underlying soil (medium clay) as Case B1 but with a stiffer backfill material. 

Comparing the results of the two cases indicate that softer backfill material magnifies 

the ground motion. Because, the amplitude values for Case C1 slightly exceeds the 

initial displacement amplitude at 3.5 Hz. The rest of the peak response amplitudes 

are smaller than the initial value. In addition, it is clear that the response of each node 

on the road deck is much closer to each other than for Case B1. 

Cases A1, B1 and C1 are analyzed under the effect of the traveling SH waves with 

amplitude of 2 units and the propagation direction coinciding with x axis of the 

bridge model. The solution of each case has been conducted by the computer 

program developed in this study using the methodology developed by Dendrou et al. 

[29].  The response curves of Case C1 indicate that the solutions obtained in this 

study are in good agreement with the results obtained by the authors. Verifying the 

developed numerical procedure in this study, the bridge-backfill models are 

reanalyzed implementing the revised numerical technique, which includes the effect 

of damping on the dynamic transformation matrix of the system. The response curves 

of Cases A2, B2 and C2 that are obtained by the new methodology are given in 

Figures 6.7 to 6.9. 

Comparing the results of Case A1 and Case A2 corresponding to the rigid soil 

condition, it is clearly seen that the peak response amplitude occurs at the same 

excitation frequency (8.5 Hz) for both of the analyses. However, the response 

amplitude at the midpoint for Case A1 is reduced from a value of 20 units to 15 units 

for Case A2. Similarly, the response values of the other two nodes on the bridge deck 

are also smaller for Case A2. This reduction of displacement amplitude values is due 

to the implementation of the damping matrix into the dynamic transformation matrix. 

Since the response of the bridge deck is obtained by the multiplication of the 

dynamic transformation matrix and the response vector of the base nodes, the 
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reduction in the dynamic transformation matrix causes a reduction in the response 

curves of the superstructure. 

The peak response values of Case B2 are also smaller than those of Case B1. 

Moreover, the displacement amplitude of Case B2 never exceeds the initial value 

within the frequency range of the analysis. Finally, observing the response curve of 

Case C2 shows that the motion is almost totally damped for the excitation 

frequencies higher than 1 Hz using the revised methodology. 

 

Figure 6.7 : The response in the y direction for the rigid base conditions given as 
Case A1 (top) and Case A2 (bottom). 
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Figure 6.8 : The response in the y direction for Case B1 (top) and Case B2 (bottom). 
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Figure 6.9 : The response in the y direction for Case C1 (top) and Case C2 (bottom).
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7.  SAMPLE PROBLEM 2: 3D MULTISTORY BUILDING 

7.1 Introduction 

This chapter includes the application of the proposed numerical procedure on a real 

multistory building in Düzce. The dynamic response curves of each story level and 

the foundation are obtained for stiff and soft soil conditions. The analysis of the soil-

structure system is conducted for both vertically and horizontally propagating SH 

waves. The response for each case has been used to calculate the maximum drift ratio 

of the existing building. Eventually, the damage state or level of the structure has 

been identified using the provisions prepared by FEMA [16,17]. The results are 

discussed in the last section of this chapter.  

7.2 Simplified Equivalent Single-Degree-Of-Freedom  (SDOF) System for the 

Coupled Soil-Structure System 

The frequency of the soil-structure system to be analyzed by the numerical procedure 

developed is compared with the results obtained by the equivalent single degree of 

freedom (SDOF) representation of the 3D structure. The derivation of the formula to 

determine the frequency of the coupled system will be summarized by the following 

equations. 

Equations of motion of a an equivalent single degree of freedom (SDOF) soil-

structure system are given as: 

gumuikhuum 2
0

2 )21(( ωζφω =++++−  

gogh umuiikhuum 2
x0

2 )221(( ωζζφω =+++++−  

ggr umhiikhuum 2
0

2 )221(( ωφζζφω φ =+++++−  

(7.1)

(7.2)

(7.3)

where m: the effective mass of the structure in its fundamental mode; ω : the 

excitation frequency of the input motion;  h: the effective height of the structure 
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determined for its fundamental mode; k: the lateral stiffness of mass; ζ : the 

hysteretic damping ratio of the structure; kh : spring coefficient of foundation; xζ : 

the hysteretic damping ratio of the foundation; gζ : the hysteretic damping ratio of 

the soil; u0 : the displacement amplitude of foundation; ug : the displacement 

amplitude of the ground motion; u: the displacement amplitude of mass due to elastic 

deformation of the SDOF system; φ  : the rocking amplitude of the mass (Fig. 7.1). 

 

Figure 7.1 : The single degree of freedom model for soil-structure interaction [18]. 
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(7.4)

where ωs : the fixed based natural frequency of the structure; ωh : the natural 

frequency of the structure without rocking vibration; ωr : the natural frequency of the 

structure without horizontal vibration;. 

Eliminating u0 and hφ form the above equation yields; 

u
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u is derived as: 
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The properties of the SDOF system are given by the natural frequency ω~ , the ratio 

of the hysteretic damping ζ~ and the equivalent effective seismic input gu~ . The 

parameters given by the tilde (~) denote the properties of an equivalent oscillator 

replacing the real system. The equation of motion is given as: 

gumukcim ~)
~~( 22 ωωω =++−  (7.8)

where  

m

k
~

~2 =ω  (7.9)

m

k
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(7.10)

Eq. (7.8) can also be expressed as: 
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For an undamped system where 0gx ==== ζζζζ r  and ωω ~= , the coupled 

frequency of the system given in Eq. 6.6 can be represented as [22]:  

2222

1111

rhs ωωωϖ
++=  (7.12)

where the fixed based frequency of the structural mass sω , the natural frequency of 

the mass with horizontal vibration hω  and the natural frequency of the mass with 

rocking vibration rω are defined as: 
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m

k
s =2ω  (7.13)

m

kh
h =2ω  (7.14)

2
2

mh

kr
r =ω  (7.15)

7.3 Two-Degree-Of-Freedom System for the Coupled Soil-Structure System 

In addition to the simplified SDOF system that is described in the previous section, 

the dynamic characteristics of the soil-structure system are also compared by an 

alternative simplified method which is composed of two masses representing the 

building and the foundation (Figure 7.2) [18]. 

 

Figure 7.2 : Two degree of freedom system for the soil-structure system [18]. 

The spring-dashpot between the two masses concerns the stiffness and the damping 

characteristics of the building and the latter represents the stiffness and the damping 

of the foundation, which is determined using the soil properties. The motion of the 

coupled system is assumed to be in the horizontal direction and the rocking motion is 

neglected for the linear system. The dynamic characteristics of the soil-structure 

system is determined for its fundamental mode [10]. Two equations of motion can be 

written for the system as given below; 

0

......

xfbbbbffffff mykycykycym −=−−++  

 

(7.16)
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0

.......

x)( bbbbbbfb mykycyym −=+++
 

(7.17)

where bm : the mass of the building;bk : the stiffness of the building (for the fixed 

based condition); bc : the damping of the building (for fixed based condition); fm : 

the mass of the foundation;fk : the stiffness of the foundation; fc : the damping of 

the foundation. The stiffness and the damping parameters of the foundation is 

determined assuming that there exists no building on the foundation. The final 

natural frequencies of the soil-structure system are derived from Eqs. (7.13) and 

(7.14) as [71]; 

 [ ] 



 −++±++= 22222222 4)1()1(

2
1

2,1 bfbfbf ωωωµωωµωω  (7.18)

where fb mm /=µ : the mass ratio; fff mk /=ω : the natural frequency of the 

foundation without the building; bbb mk /=ω : the fixed based natural frequency of 

the building. Natural frequency of the foundation is determined using Hall’s Analog 

[72] that is based on a SDOF system representing the horizontal and the rocking 

vibrations of a rigid circular footing. The equation of the harmonic motion for a rigid 

circular disk considering merely the horizontal excitation is; 

tieQukucum ω
0x

.

x

..

=++  (7.19)

where  u : the horizontal displacement at the surface of half-space; Q0 : the amplitude 

of the harmonic force applied horizontally at the center of rigid foundation; m: the 

mass of the foundation; kx : the spring constant and cx : the damping constant 

determined as: 

µ
µ
87

)1(32 0
x −

−= Gr
k  

Grc ρ
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µ 2
0x 87

)1(4.18

−
−=  

(7.20)

(7.21)

where G : the shear modulus of the soil; µ : the Poisson’s ratio of the soil; ρ: the mass 

density of the soil and r0: the equivalent radius of a rectangular foundation. 
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Considering the harmonic rocking motion without horizontal vibrations, the equation 

of motion can be written as: 

  ti
y eMkcI ω

φφφ φφφ 0

...

=++  (7.22)

where φ : the angle of rotation of the foundation; Iφ: the mass moment of inertia; My0: 

the amplitude of the harmonic rocking moment; kφ : the spring constant and cφ : the 

damping constant determined as: 
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where Bφ is calculated as: 
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Natural frequency of the foundation is determined using the two equations of motion 

for free vibration. Finally, the value of fω  is implemented in Eq. (7.15) in order to 

calculate the frequencies of the coupled motion.  

7.4 Response of Two-Degree-Of-Freedom Model to Earthquake Ground Motion 

In Sections 7.2 and 7.3, the given formulations are employed in order to determine 

the natural frequencies of the soil-structure system using simplified models instead of 

the detailed finite elements model. Response of the 3D soil-structure system is also 

analyzed by an alternative formulation based on the dynamic equations of a 

representative Two-Degree-of-Freedom model. The displacement amplitude values 

due to the horizontal harmonic ground motion are compared with the results of the 

numerical model. 

The representative model has two degrees of freedom; horizontal displacement of the 

concentrated mass concerning the structure and the horizontal displacement of the 

foundation. The time dependent variables of the system are the horizontal ground 

motion ug(t), the horizontal displacement of foundation ub(t), the deformation of the 
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structure u(t), the total horizontal displacement of the structural mass ut(t), which are 

shown in Figure 7.3. 

 

Figure 7.3 : Two-degree of freedom model. 

The displacement of the foundation ub(t) and the deformation of the mass u(t) are 

expressed in terms of the harmonic ground motion ug(t) = Aeiωt through the use of 

transfer functions defined as: 

)()( tΩutu gb =  

)()( tΠutu g=  

(7.26)

(7.27)

The equation of motion for the mass can be written as:  

0)()()( =++ tkutuctum t &&&  (7.28)

Since the total displacement of the mass is expressed as ut(t) = (Ω + Π ) ug(t), Eq. 

(7.26) can also be written as: 

0)( )()( )(2 =+++− tukΠtuciΠtuΠΩm ggg ωω  (7.29)

The dynamic equilibrium equation of motion at the foundation level is defined as: 

0)()()( =++ tPtumtum tbb &&&&  (7.30)
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where )(  )( 0x tuKtP ⋅= : the force applied to the foundation by the underlying soil, 

xK  is the frequency-dependent foundation impedance which is determined as: 

xxx KkK =  (7.31)

where Kx is calculated as: 

µ−
=

2

8 0
x

Gr
K  (7.32)

and the dimensionless coefficient kx is determined using Fig. 7.4 [73] for 

dimensionless frequency a0 = ωr0/vs where vs is shear wave velocity of the soil. 

Using the above equations, Eq. (7.28) can be rewritten in terms of transfer functions 

as: 

0)(u )1()( )()( gx
2

g
2 =−++−− tΩKtuΠΩmtuΩm gb ωω  (7.33)

Eventually, Eqs. (7.27) and (7.31) are rearranged in matrix form in order to 

determine the transfer functions, Ω  and Π . The set of equations can be written as: 
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Figure 7.4 : Coefficients in impedance functions of a rigid massless circular footing 
resting  on  the  elastic half-space [73]. 
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7.5 Verification of the Numerical Procedure: A Simplified Three Dimensional 

Frame 

 

Figure 7.5 : Three dimensional modeling of the single story structure. 

Before analyzing a multistory building composed of many degrees of freedom, the 

numerical model that is developed is simplified as a single story structure (Fig. 7.5). 

The system is composed of a raft foundation, a single shell element for the floor slab; 

four beams and four columns. The soil structure system is excited by a vertical SH 

wave propagating in the x direction. The amplitude of the seismic wave 2A0 is equal 

to 2 cm. The material properties that are used for the detailed numerical model is 

given in Table 7.1. However, the solution of the simplified model is accomplished 

for the soil conditions given as Soil A. 

The results of the simplified numerical analysis show that the peak displacement 

response amplitude of the structure (in the y direction) relative to its foundation is 

0.072 cm at 8.55 Hz (Figs. 7.6, 7.7 and 7.8). Therefore, the fundamental frequency of 

the fixed based structure in the y direction has been reduced from 10.46 Hz to 8.55 

Hz due to the soil-structure interaction effect under the harmonic seismic motion. For 
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verification of this result, the frequency of the soil structure system is compared with 

the results obtained using Eqs. 7.13, 7.16 and 7.32 which have been derived from the 

lumped mass-spring-dashpot SDOF and Two-Degree-of freedom models as given in 

Sections 7.2, 7.3 and 7.4. The results clearly show that the frequency obtained using 

the numerical analysis developed in this study is in good agreement with the results 

obtained by the formulations previously defined in the literature (Table 7.2).  

Table 7.1: Mechanical and material properties of soil-structure system. 

Mechanical/ Material Property Structure Foundation Soil A Soil B 

Modulus of Elasticity (N/m2) 3 x 1010 3 x 1010 - - 
Shear Modulus of Elasticity 

(N/m2) 
- - 6 x 107 2.52x1010 

Mass Density (kg/m3) 2550 2550 1500 2800 

Poisson's Ratio 0.20 0.20 0.33 0.33 

Shear Wave Velocity, vs (m/sec2) - - 200 3000.00 

Type of Finite Element 
Columns - Beams: 
3D Elastic Beam 
Slab: Elastic Shell 

Membrane 
Shell 

Elastic Half-Space 

Geometric Properties of Finite 
Elements 

Slab Thickness: 24 cm 

Column Dimension: 60x40 cm2 

Beam Dimension: 47x20 cm2 

Foundation Thickness: 20 cm 

 

Figure 7.6 : Response of one story building at the foundation. 
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Figure 7.7 : Response of one story building at the first story level. 

 

Figure 7.8 : Relative displacement of the first story level with respect to foundation. 

 



 82 
 

The displacement response of the soil-structure system has been obtained for 

increasing excitation frequencies at the foundation and first story levels as shown in 

Figs. 7.6 and 7.7. Eventually, the relative displacement response of the first story 

level has been plotted in Fig. 7.7, which is the horizontal motion of the roof relative 

to the base. 

Table 7.2: Comparison of the natural frequency of the soil-structure system.. 

Frequency of soil-structure system Equation No. 
Natural frequency 

of the structure 
fy (Hz) 

Frequency of the 
coupled system f1 

(Hz) 

Simplified Equivalent SDOF System 
Equation 

(7.13) 
10.46 8.92 

Two-Degree-of-Freedom System 
Equation 

(7.16) 
10.46 9.03 

Two-Degree-of-Freedom System 
Equation 

(7.32) 
10.46 9.71 

3D Modeling of Soil-Structure System 
(This Study) 

- 10.46 8.65 

Table 7.3: Comparison of the displacement amplitude values in y direction. 

Peak response of soil-structure system 
3D modeling of the 
soil-structure system 

Idealized 2DOF mass-
spring-dashpot model 

Total response of the structure |ut(t)| 11.04 12.69 

Response of the structure relative to the base 
|u(t)| 8.45 10.86 

Response of the foundation |ub(t)| 4.06 2.12 

The peak displacement amplitudes that are obtained by the numerical analysis of the 

system are compared with the results obtained by the analytical solution that is 

determined using the equations of motion for the idealized 2DOF system in Section 

7.4. The peak values of the response are obtained by using the transfer functions that 

are defined to express the total response of the structure ut(t), the deformation of the 

structure u(t) and the response of the foundation ub(t) in terms of the ground motion 

ug(t). These results are compared with the values obtained by this study in Table 7.3.  

The results for the total response of the structure show that the analytical solution of 

the 2DOF system is compatible with the numerical solution. However, there is a 

discrepancy between the peak values of the relative response. Since the response of 

the structure relative to the base u(t) are directly related to the deformation of the 
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structure, the relative motion of the lumped mass representing the structure is 

overestimated for the idealized 2DOF model.  

In addition, there is a difference between the response of the foundation ub(t) 

obtained by the 2DOF system and the results of the numerical analysis. This 

difference depends on the fact that the response of the foundation is a function of the 

coupled stiffness matrix as well as the stiffness matrices of the structure and the 

foundation for the 3D numerical analysis. On the contrary, the solution of the 

idealized model does not include a spring constant representing the coupled stiffness 

of the system. 

The results show that the displacement values and the shifted fundamental 

frequencies obtained from the developed numerical analysis as well as the existing 

formulations are in good agreement with each other. Therefore, the verification of 

the numerical procedure developed in this study is accomplished. 

7.6 Three Dimensional Modeling of A Reinforced Concrete Multistory Building  

After verification of the numerical procedure that is developed in this study for a 

simple model, three-dimensional modelling of an existing 6-story building in Bolu 

has been accomplished using the developed numerical procedure (Figs. 7.9 and 

7.10). Finite element modelling of the building has been developed using the 

building drawings that had been reproduced by the surveying team of researchers 

from Purdue University after the 1999 Düzce Earthquake [74].  

The surveying data show that the building has a surface foundation resting on clay 

soil conditions. The floor slab has a thickness of 12 cm and the dimensions of the raft 

foundation are 19.4 m (in x direction), 20.4 m (in the y direction) and the thickness is 

30 cm. Material properties and the soil conditions of the soil-structure system are 

listed in Table 7.1. The Soil Type A, B refer to the stiff clay and hard rock soil 

conditions, respectively. The foundation surface, which is the interface of the soil-

structure interaction, is discretized by 30 rectangular elements as shown in Fig. 7.9.  
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Figure 7.9 : FEM of the building and discretization of the soil-structure interface. 
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Figure 7.10 : Plan section of the multistory building [74]. 
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Table 7.4: The natural frequencies, the proportional damping and the effective 
masses for the first 20 modes. 

Mode Frequency 
(Hz) 

Proportional 
damping 

Effective mass 
(X ) 

Effective 
mass (Y) 

Effective mass 
(Z) 

1 1.70 0.05 133027.0 0.0 0.0 

2 2.13 0.05 0.0 130635.0 0.0 

3 2.24 0.05 5.3 1435.1 0.0 

4 5.92 0.09 11224.4 0.0 0.1 

5 7.51 0.11 0.0 10967.7 0.0 

6 7.87 0.11 0.1 732.2 0.0 

7 11.97 0.16 3447.4 0.0 0.2 

8 15.49 0.21 0.3 2735.2 0.2 

9 16.12 0.22 0.6 945.0 0.1 

10 19.06 0.25 1.0 6.1 27383.5 

11 19.14 0.25 0.4 10.3 8416.5 

12 20.01 0.27 1504.8 0.0 16.3 

13 20.74 0.28 0.5 6.7 20015.4 

14 21.16 0.28 0.0 6.3 15393.5 

15 21.84 0.29 0.1 1.1 1493.3 

16 22.04 0.29 1.0 0.3 1579.7 

17 22.13 0.29 0.0 0.2 189.0 

18 22.33 0.30 1.3 0.3 8299.6 

19 22.36 0.30 0.1 0.0 4123.3 

20 22.39 0.30 3.5 1.3 1196.5 

Sum of effective masses: 149217.9 147482.9 88107.2 

7.7 Discussion of the Results 

The results of the numerical analysis of the soil structure system have been discussed 

considering the topics listed below; 

• the peak displacement and the frequency values that are obtained for 

increasing excitation frequency;  

• the dynamic response of the building under seismic wave motion;  

• the interstory drift and the drift ratios at each story level at the peak response 

frequency;  

• the torsional irregularity factor at each story level at the peak response 

frequency;  
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• the damage level related to the drift ratios obtained at the peak excitation 

frequency. 

Table 7.5: The summary of the results. 

Response of the soil-structure 
system 

SOIL A (soft soil) SOIL B (rigid soil) 

Vertical   
SH wave 

Horizontal 
SH wave 

Vertical   
SH wave 

Horizontal 
SH wave 

Peak displacement response 
amplitude and the frequency at 

the base 

3.37 cm 
1.25 Hz 

3.39 cm 
1.25 Hz 

2.01 cm 
1.95 Hz 

2.02 cm 
2.05 Hz 

Peak response displacement 
amplitude and the frequency at 

the 6th story 

8.49 cm 
1.35 Hz 

9.02 cm 
1.35 Hz 

25.60 cm 
2.15 Hz 

25.21 cm 
2.15 Hz 

Ratio of transfer functions for the 
acceleration 

Peak value 
at 1.85 Hz 

Peak value 
at 1.95 Hz 

Peak value 
at 2.15 Hz 

Peak value 
at 2.15 Hz 

Displacement response amplitude 
at the 6th story relative to the base 

6.59 cm 7.06 cm 26.3 cm 26.0 cm 

Torsional irregularity factor at the 
peak response frequency 

1.068 at 1st 
story 

1.198 at 1st 
story 

1.071 at 1st 
story 

1.060 at 1st 
story 

Drift ratio for each story 
0.0058 at 1st 

story 
0.0062 at 1st 

story 
0.0269 at 
1st story 

0.0266 at 1st 
story 

7.7.1 Effect of the soil-structure interaction on the fundamental frequency of the 

structure  

The reinforced concrete building that is chosen as a sample problem is analyzed 

under the effect of the traveling SH wave with an amplitude of 1 cm and a varying 

vertical angle between 00 (horizontally propagating) and 900 (vertically propagating). 

Considering the local coordinate system of the soil-structure interface (Fig. 7.9), the 

vertically incident SH wave propagates along the z direction and causes a free-field 

harmonic motion in the y direction at each node of the surface foundation. Similarly, 

the particle motion of the horizontally incident SH wave is in the y direction but the 

direction of propagation is along the x direction. Since the out-of-plane motion of the 

SH wave is independent of the angle of incidence, the amplitudes of the incident and 

the reflected waves are equal and in phase. Therefore, the amplitude of free-field 

displacement caused by the SH wave at the surface of the soil is always twice the 

amplitude of the wave which can also be noticed from the wave equation given in 

Eq. (3.52) . 

The most important aspect of soil-structure phenomenon is that it causes a reduction 

in the natural vibration frequency of the structure under seismic excitation. This 



 88 
 

reduction is larger for very soft soil conditions and the shift of the natural frequency 

is negligible for rigid soil conditions. Observing the displacement response curves 

obtained from the numerical analysis (Figs. B.1 through B.8), the shift of the 

fundamental frequency in the y direction is larger for the soft soil conditions (Soil A) 

and it is smaller for the rigid soil conditions (Soil B). Therefore, the results agree 

with the previous studies confirming the validity the developed numerical model.  

Since the soil-structure system is under the effect of a vertical or a horizontal 

incident SH wave, the dynamic base excitation invokes the fundamental fixed base 

mode of the structure in the y direction with a natural frequency of 2.13 Hz. The peak 

values of the response curves indicate that the natural frequency of the structure is 

reduced to 1.25 Hz and 1.95 Hz for Soil A and Soil B, respectively. 

The previous study conducted by Şafak E. [10] suggests a powerful tool to indicate 

the effect of the soil-structure interaction on the natural frequency of the coupled 

system. Fourier amplitude spectra (FAS) of acceleration records at the top and 

foundation levels are obtained for a seismic motion. The ratio of FAS for the top and 

foundation levels |R| is identical to the ratio of the transfer functions for the 

acceleration as |R| = |Hb/Hf|. This ratio always has a peak at the fixed base 

fundamental frequency of the structure regardless of the underlying soil conditions 

unless there exists a rocking motion. As a contribution of this study, this useful 

technique has been employed as an indicator of the soil-structure interaction.  

In the study of Şafak [10], the ratio of the FAS has been used to identify the soil-

structure interaction for the buildings from vibration recordings. Referring to this 

study, the identification method has been applied in this research in a different way. 

Instead of the ratio of the FAS obtained from real vibration recordings, the 

acceleration response ratio of the 6th story and the foundation are determined under 

the effect of the SH waves using the developed numerical procedure. The results 

confirm the validity of this technique for the developed numerical model for the 

dynamic soil-structure analysis (Figs. B.9-B.12). 

The response curves that are obtained for four different conditions show that the 

effect of the wave propagation can be observed for weak soil condition (Soil A) and 

horizontal SH wave. This is an expected result, because wave propagation effect is 

significant for long structures having comparable dimensions with the wavelength of 

the incident wave. Since the size of the building (about 20 m) is not long in 
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comparison with the wavelength (about 100 m for 2 Hz), the effect of the wave 

propagation causes a small shift in the frequencies corresponding to the peak 

response of the propagation even for the soft soil conditions. 

7.7.2 Effect of soil-structure interaction on the peak displacement response of 

the soil-structure system  

Apart from the effect of the soil-structure interaction on the fundamental frequency 

of the fixed base building, the second issue that is discussed is the peak response 

amplitudes, which are important concerning the design process of the structure.  The 

peak response that is attained at the fundamental frequency of the system at the base 

does not vary to a great extent due to soil conditions and direction of the incident 

wave. However, the response at the top story for the rigid soil conditions (which is 

about 25 cm) is substantially higher than that of the system with the soft soil 

conditions (9 cm). This indicates that the stiffness and the shear wave velocity of the 

underlying soil have a major influence on the response of the structure at the 

fundamental frequency. As the stiffness of the underling soil increases under 

constant initial SH wave amplitude, the force exerted on the structure due to the base 

excitation increases as well. Therefore, the horizontal displacement of the roof 

increases, depending on the increase of the excitation force due to the seismic 

motion. 

Torsional irregularity factor which is the ratio of the maximum relative interstory 

drift to the average relative interstory drift is determined at the peak response 

frequency of each case (Table 7.5). The results reveal that the torsional irregularity 

factor is below the limiting value which is stated as 1.20 in the Turkish Earthquake 

Code for both types of the soil under the vertical wave propagation [75]. The 

torsional irregularity factor determined by the dynamic analysis for the rigid soil 

condition (Soil B) under horizontal wave propagation is also very close to the results 

obtained for the vertical wave propagation. However, this factor is comparably 

higher than the rest of the cases for the soft soil conditions (Soil A) under horizontal 

wave propagation, still lower than the limiting value. 
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7.7.3 Damage identification using the drift ratio 

Finally, the most important issue that is discussed using the results of the numerical 

analysis is the story drift and the drift ratio of each story. As the main objective of 

this study, a numerical procedure has been developed to analyze the soil-structure 

system under the effect of the seismic wave motion; and to determine the 

displacement response at each node of the system for varying excitation frequencies. 

Using the peak displacement response at the fundamental frequency, the drift ratio of 

each story is obtained. Subsequently, a damage identification procedure is introduced 

employing the damage states described in the technical manual of HAZUS [16] in 

terms of the drift ratios considering the effect of the soil-structure interaction. The 

proposed procedure is described in Fig. 7.11. 

 

Figure 7.11 : The procedure proposed for the damage identification. 

HAZUS99 Technical Manual [16] defines the structural damage states as “Slight”, 

“Moderate”, “Extensive” and “Complete” for 16 basic building types. For the 

numerical example that is analyzed, the 6-story building falls into the model building 

type of “Reinforced Concrete Moment Resisting Frame (C1M)” which is in the mid-

rise range. Seismic design levels of buildings are classified as “High-Code”, 

“Moderate-Code”, “Low Code” and “Pre-Code” according to the seismic zones. The 
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drift limits that are described with respect to the damage states in HAZUS99 [16] are 

listed in Table 7.6. 

Table 7.6: Drift ratio at the threshold of the damage state for C1M building type 
according to HAZUS99 [16]. 

Seismic design level Slight Moderate Extensive Complete 
High-code 0.0033 0.0067 0.0200 0.0533 

Moderate-code 0.0033 0.0058 0.0156 0.0400 
Low-code 0.0033 0.0053 0.0133 0.0333 
Pre-code 0.0027 0.0043 0.0107 0.0267 

Similarly, FEMA 356 [17] restricts the drift ratios with respect to the structural 

performance levels and ranges defined as Immediate Occupancy (S-1), Damage 

Control Range (S-2), Life Safety (S-3), Limited Safety Range (S-4), Collapse 

Prevention (S-5) and Not Considered (S-6). The drift limits for concrete frames 

stated in FEMA 356 Prestandard [17] are summarized in Table 7.7. Finally, The 

Turkish Earthquake Resistant Design Code [75] states the drift limit as the smaller 

value of 0.0035 and 0.02/R where R is the structural behavior factor. 

 Table 7.7: Structural performance levels and damage given by FEMA 356 [17]. 

 
Drift ratio 

Structural performance levels 

Collapse 
prevention 

(S-5) 

Life 
safety 
(S-3) 

Immediate 
occupancy  

(S-1) 
Transient 0.04 0.02 0.01 

Permanent 0.04 0.01 negligible 

Examining the interstory drift results obtained by the analysis of soil-structure 

system (Figs. C.1-C.4), the maximum drift ratio of the building, which is built on 

stiff clay (Soil A), is estimated as 0.0058 and 0.0062 for the vertical and the 

horizontal incident SH wave, respectively. These two values are just below the limits 

corresponding to the moderate damage state for high-code seismic design level given 

in HAZUS99 [16]. Considering the Turkish Earthquake Resistant Design Code [75], 

the drift limit is given as 0.0035 or 0.02/R = 0.005 where R is four for the reinforced 

concrete framed structures. The calculated values of the drift ratio do not satisfy the 

requirements given by the Turkish Code [75].  

The maximum inter-story drift ratios estimated for the soil-structure system with 

rigid soil condition (Soil B) are about 0.0266 for both the vertical and the horizontal 



 92 
 

wave propagation. These values exceed the drift limit for extensive damage state 

according to the high-code design level defined by HAZUS99 [16]. They are also 

slightly higher than the limit for the Life Safety structural performance level 

suggested by FEMA 356 [17]. 

Examining the story levels versus interstory drift ratio plots in (Figs. C.1 –C.8), it is 

obvious that the maximum drift ratios are attained at the first story levels and 

decrease linearly with increasing story levels.  Therefore, the most critical part is the 

first story when the structure is under the effect of the seismic waves causing 

horizontal motion of the structure.  

The initial amplitude of the SH wave which is taken as 2A0 = 2 cm, corresponds to a 

mild earthquake ground motion using the response spectra obtained for 1999 the 

Düzce Earthquake [76]. The results of the dynamic analysis of the soil-structure 

system for the existing soil conditions (Soil A) also indicate that the damage level of 

the building under the given SH wave excitation is close to the damage of the 

building that is stated as slightly damaged by the research team [74]. 
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8.  CONCLUSIONS AND RECOMMENDATIONS 

The interaction of the soil with the foundation under seismic loading plays an 

important role on the performance of the structure. Especially, the dynamic behavior 

of structures resting on soft soil is strongly affected by the interaction of the soil and 

the foundation. The extent and the type of the effect mainly depend on the stiffness 

of the underlying soil; the stiffness, the mass and the geometric properties of the 

structure and the shape and the type of the foundation system. Thus, the influence of 

the soil-structure interaction has always been an important issue that has drawn the 

attention of the researchers throughout many years. 

Many methods have been developed to deal with the dynamic analysis of the 

structures that are built on soft soil. The basic approach to the solution of the 

problem is to model the total soil-structure system and to analyze the total system 

under the effect of the seismic excitation whether in the time domain or in the 

frequency domain. The techniques to analyze the problem are mainly categorized in 

two groups as the direct method and the substructure method. The numerical 

modeling of the structure is generally conducted by the Finite Elements technique for 

both of the methods. Nevertheless, the Finite Element or the Boundary Element 

methods can be implemented for the modeling of the soil medium. 

In this study, a coupled Finite Element-Boundary Element (FE-BE) methodology is 

introduced for the modeling of the soil-structure system. The dynamic analysis of the 

soil-structure model is accomplished by the “Substructure Method” under the effect 

of the traveling seismic waves. The total system is substructured as the structure and 

the unbounded soil. Then, the structure is modelled using the Finite Elements 

Method and the modeling of the soil medium is carried out by the Boundary Element 

Method. Eventually, the two models are coupled at the soil-structure interface using 

the displacement compatibility and the dynamic equilibrium equations at the soil-

structure interface. The dynamic response of the structure is obtained by the 

numerical solution of the set of the dynamic equilibrium equations under the effect of 
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the traveling seismic wave motion at the interface nodes, which are determined by 

the elastic wave theory.  

Finally, a drift-based damage identification technique is introduced for the multistory 

buildings using the peak response at each story level. The response is obtained by the 

solution of the soil-structure model that is generated using the developed numerical 

procedure.  

8.1 Conclusions 

Using the numerical procedure, a three dimensional bridge-backfill system has been 

analyzed under the effect of the traveling SH waves for different soil conditions. 

Initially, three different bridge-backfill model was generated. Among these, the 

solution of Case C1 was used for the verification of the implemented procedure 

comparing the response curves with those obtained by Dendrou et. al. [26]. The 

results were in good agreement with the previous study.  

Using the same methodology, the solution of Case A1 and Case B1 has been carried 

out as a parametric study to determine the effect of the soil conditions on the 

dynamic response of the soil-structure system. Examining the results of analyses, it is 

concluded that; 

• Increasing the stiffness of the soil underlying the structure, increases the peak 

response of the bridge under constant wave amplitude.  

• The results of the dynamic analysis for each case under constant SH wave 

amplitude reveal that the excitation frequency that the peak response occurs 

increases as the soil gets stiffer. 

• The response of the bridge-backfill system has also been obtained by uniform 

harmonic excitation. Comparing the results of the harmonic analysis with 

those of Case A1 (rigid soil conditions), it was observed that the motion of 

the bridge deck was symmetrical about the center of the bridge at the peak 

frequency for the harmonic motion, but the response of the symmetrical 

nodes were not identical for the solution of Case A1. This was an indication 

of the traveling seismic wave effect. Since the direction of the propagation for 

the incident SH wave coincided with the longitudinal axis of the bridge, the 

deck was subjected to a non-uniform seismic motion at each point. 
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After presenting and discussing the results of Case A1, B1 and C1, the same models 

were reanalyzed using the improved methodology. In this case, the bridge models 

were named as Case A2, B2 and C2. The conclusions withdrawn from the 

comparison of the results are discussed below. 

• The revised numerical technique includes the effect of damping on the 

dynamic transformation matrix of the system. Using the new formulation, the 

peak displacement amplitudes of the bridge deck for all of the cases are 

reduced since the reduction in the dynamic transformation matrix causes a 

reduction in the response curves of the superstructure as well. 

• Comparing the results of the solutions corresponding to the rigid soil 

condition (Case A1 and Case A2), it was observed that the peak response 

amplitude occurred at the same excitation frequency despite the reduction in 

the amplitude values. 

• For the bridge-backfill system resisting on stiff clay, the response was again 

reduced by the revised methodology. In addition, the displacement amplitude 

of Case B2 never exceeded the initial value within the frequency range of the 

response curve.  

As a second sample problem, three-dimensional modelling of an existing 6-story 

building in Bolu has been accomplished using the developed numerical procedure. 

Dynamic analysis of the building resting on raft foundation was carried out for two 

different soil conditions; soil types A and B corresponding to the stiff clay and the 

rigid soil conditions. In addition, the sample problem was analyzed under the effect 

of the traveling SH waves with two different incident angles as 900 (vertically 

propagating) and 00 (horizontally propagating). The conclusions withdrawn from the 

results are listed below; 

• Comparing the displacement response curves obtained from the analyses for 

the soft and stiff soil conditions, there is a reduction in the fundamental 

frequency for both of the soil conditions. However, this reduction is observed 

to be larger for the response of the structure with the soft soil condition and 

the shift of the natural frequency is negligible for the rigid soil condition. 

This is an expected result because the effect of the soil-structure interaction 

causes a reduction of the fundamental frequency of the structure under 
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seismic excitation. Thus, the proposed methodology can also serve as an 

efficient tool to identify the change in the dynamic properties of the structures 

caused by the dynamic soil-structure interaction. 

• Şafak E. [10] introduced a simple technique to identify the effect of the SSI 

using the vibration recordings. The FAS of the acceleration records at the 

roof and the foundation levels were obtained for seismic motion. The author 

stated that the ratio of the FAS for the top and the foundation levels always 

had a peak at the fixed base fundamental frequency of the structure if the 

rocking motion of the system had a negligible impact on the response. This 

was used as an indicator of the SSI by the author. This approach has been 

applied in this dissertation as well. However, instead of the acceleration 

records of a real seismic motion, the ratio of the acceleration response of the 

6th story and the foundation were determined under the effect of the SH 

waves using the developed numerical procedure. The results were 

satisfactory. Regardless of the soil conditions, the ratios of the acceleration 

response always peaked at the fixed based natural frequency of the structure.   

• Obtaining the displacement response of the multistory building by the 

proposed methodology, the horizontal displacement values at each story level 

were used to evaluate the drift ratio at the peak response. The structural 

damage was identified in terms of the maximum drift ratio, using the 

structural performance levels defined in FEMA 356 [18] or the damage states 

given in HAZUS99 [17]. The results showed that the structural damage of the 

building built on stiff  clay were just below the limits corresponding to the 

moderate damage state for the high-code seismic design level given in 

HAZUS99 [17]. For rigid soil conditions, the results exceeded the drift limit 

for extensive damage state according to the high-code design level 

(corresponding to the fourth seismic zone in UBC) defined by HAZUS99 

[17]. 

8.2 Contributions 

The major contributions of this study are summarized below; 
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• An effective computational tool has been developed in order to obtain the 

dynamic response of a structure under the effect seismic waves. 

• The methodology introduced in this study originates from a previous 

numerical approach that is conducted for the dynamic analysis of a simple 

bridge-backfill system [26]. Improving the formulation and the numerical 

procedure, the new computational tool is capable of solving various types of 

structures such as buildings, suspension bridges or bridge-backfill systems 

etc. with a great number of structural nodes.    

• The new methodology provides an improved formulation of the dynamic 

transformation matrix of the soil-structure system, which relates the 

displacement response amplitude vector of the soil-structure interface with 

the dynamic response of the structural nodes. It has been observed that the 

response obtained by the previous techniques excluded the damping matrix of 

the structure in the dynamic transformation matrix. However, this assumption 

has led to the overestimated values of the structural response. Including the 

effect of the damping in the formulation, more realistic response values are 

obtained by the solution of the soil-structure system. 

• The technique introduced by Şafak E. [10] for the identification of the SSI 

using the vibration recordings was adopted in this numerical study. 

Alternatively, instead of the ratio of the FAS of the top and foundation levels 

obtained from the acceleration records of a real seismic motion, the ratio of 

the acceleration response of the 6th story and the foundation were determined 

using the developed numerical procedure.  Since the ratios of the acceleration 

response have peaks at the fixed based natural frequency of the structure 

regardless of the soil conditions, this approach has been proposed as a simple 

method for the identification of the SSI of the multistory buildings which is 

one of the contributions of this study. 

• This study introduces an efficient technique for a drift-based damage 

identification for multistory buildings using the dynamic response at each 

story level. Obtaining the displacement response of a multistory building 

under the effect of the seismic waves, the horizontal displacement values at 

each story level are used to evaluate the drift ratio at the peak response. Using 



 98 
 

the structural performance levels defined in FEMA 356 [18] or the damage 

states given in HAZUS99 manual [17], the structural damage is identified in 

terms of the maximum drift ratio values of the building. 

8.3 Recommendations for The Future Work 

• Developing the coupled BE-FE methodology, the soil medium is represented 

as an elastic half space. However, in reality the underlying soil deposits are 

mostly composed of layers with different mechanical properties. This 

heterogeneity considerably affects the vibrations of the foundations and the 

superstructure as well. The types of soil composing the layers can cause an 

amplifying effect on the seismic waves reaching soil-structure interface. This 

amplification can lead to an increased response of the superstructure. Thus, 

further work is necessary for the implementation of the layered soil medium 

as a soil model within the computer program. 

• As a further research, a vibration-based study on a multistory building can be 

conducted in order to verify the results of the dynamic soil-structure model 

developed in this study and to improve the proposed methodology. Thus, a 

new technique can be introduced for the identification of soil-structure 

interaction based on vibration recordings of a future earthquake motion and 

the results obtained form the proposed numerical procedure. 

• The computer program that has been developed is capable of obtaining the 

displacement and the acceleration response of any point of a multistory 

building excited by the seismic waves through the soil. Implementing a 

layered soil model within the computer program, the same drift-based 

damage identification technique can be used to assess the damage levels of 

the buildings that are founded on layered soil medium. 
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APPENDIX A.  

 
Figure A.1 : Mode shapes of the bridge (1-9).
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Figure A.2 : Mode shapes of the bridge (10-17). 
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Figure A.3 : Mode shapes of the bridge (18-26). 
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Figure A.4 : Mode shapes of the bridge (31, 45, 57, 58, 71, 75). 
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Figure A.5 : Mode shapes of the bridge deck.
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APPENDIX B.  

 

Figure B.1 : Displacement response at the foundation normalized with respect to the 
base excitation for the Soil A and the vertical SH wave. 

 

Figure B.2 : Displacement response at the sixth story normalized with respect to the 
base excitation for the Soil A and the vertical SH wave. 
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Figure B.3 : Displacement response at the foundation normalized with respect to the 
base excitation for the Soil A and the horizontal SH wave. 

 

Figure B.4 : Displacement response at the 6th story normalized with respect to the 
base excitation for the Soil A and the horizontal SH wave. 
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Figure B.5 : Displacement response at the foundation normalized with respect to the 
base excitation for the Soil B and the vertical SH wave. 

 

Figure B.6 : Displacement response at the 6th story normalized with respect to the 
base excitation for the Soil B and the vertical SH wave. 
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Figure B.7 : Displacement response at the foundation normalized with respect to the 
base excitation for the Soil B and the horizontal SH wave. 

 

Figure B.8 : Displacement response at the 6th story normalized with respect to the 
base excitation for the Soil B and the horizontal SH wave. 
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Figure B.9 : Ratio of the acceleration response (top/base) for the Soil A and the 
vertical SH wave. 

 

Figure B.10 : Ratio of the acceleration response (top/base) for the Soil A and the 
horizontal SH wave. 
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Figure B.11 : Ratio of the acceleration response (top/base) for the Soil B and the 
vertical SH wave. 

 

Figure B.12 : Ratio of the acceleration response (top/base) for the Soil B and the 
horizontal SH wave. 
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APPENDIX C.  

 

Figure C.1 : Displacement response of the story levels relative to foundation at  f = 
1.45 Hz for the Soil A and the vertical SH wave motion.  

 

Figure C.2 : Interstory drift ratio at f = 1.45 Hz for the Soil A and the vertical SH 
wave motion. 
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Figure C.3 : Displacement response of the story levels relative to foundation at f = 
1.45 Hz for the Soil A and the horizontal SH wave motion.  

 

Figure C.4 : Interstory drift ratio at f = 1.45 Hz for the Soil A and the horizontal SH 
wave motion. 
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Figure C.5 : Displacement response of the story levels relative to foundation at f = 
2.15 Hz for the Soil B and the vertical SH wave motion.  

 

Figure C.6 : Interstory drift ratio at f = 2.15 Hz for the Soil B and the vertical SH 
wave motion. 
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Figure C.7 : Displacement response of the story levels relative to foundation at f = 
2.15 Hz for the Soil B and the horizontal SH wave motion.  

 

Figure C.8 : Interstory drift ratio at f = 2.15 Hz for the Soil B / horizontal SH wave 
motion. 
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