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PREFACE 

 In today’s information-driven economy, companies may benefit a lot from suitable 

process control activities. One of the most powerful process control tools is the 

control charts. Even though the first control chart was proposed during the 1920’s by 

W.A. Shewhart, today they are still subject to new application areas that deserve 

further attention. Classical process control charts are suitable when the data is exactly 

known and precise; but in some cases, it is nearly impossible to have such strict data 

if human subjectivity plays an important role. Fuzzy sets are inevitable in 

representing uncertainty, vagueness and human subjectivity.  

In this thesis, fuzzy control charts are developed and some models are proposed. In 

Section 1 an introduction is given. Section 2 is about statistical process control. 

Basics of the statistical process control charts are presented in Section 3. Unnatural 

pattern analyses for the classical process control charts are explained in Section 4. 

Section 5 includes fundamental knowledge of the fuzzy set theory required to 

construct fuzzy control charts explained in Section 6. In Section 7, unnatural pattern 

analyses are developed for the fuzzy control charts. In Section 8, numerical examples 

using the data of a real case are given. 

I would like to thank Prof. Dr. Cengiz KAHRAMAN for his valuable advice and 

help at each stage of this thesis and special thanks to Prof. Dr. M. Nahit 

SERARSLAN and Prof. Dr. Sıtkı GÖZLÜ for their great comments during the 

preparation of the thesis. 

 

DECEMBER 2006 Murat GÜLBAY
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FUZZY PROCESS CONTROL AND DEVELOPMENT OF SOME MODELS 

FOR FUZZY CONTROL CHARTS  

SUMMARY 

Even though the first classical control chart was proposed during the 1920’s by W.A. 
Shewhart, today they are still subject to new application areas that deserve further 
attention. Classical process control charts are suitable when the data are exactly 
known and precise; but in some cases, it is nearly impossible to have such strict data 
if human subjectivity plays an important role. It is not surprising that uncertainty 
exists in the human world. To survive in our world, we are engaged in making 
decisions, managing and analyzing information, as well as predicting future events. 
All of these activities utilize information that is available and help us try to cope with 
information that is not. A rational approach toward decision-making should take 
human subjectivity into account, rather than employing only objective probability 
measures. A research work incorporating uncertainty into decision analysis is 
basically done through the probability theory and/or the fuzzy set theory. The former 
represents the stochastic nature of decision analysis while the latter captures the 
subjectivity of human behavior. The fuzzy set theory is a perfect means for modeling 
uncertainty (or imprecision) arising from mental phenomena which is neither random 
nor stochastic. Fuzzy sets are inevitable in representing uncertainty, vagueness and 
human subjectivity.  

In this study, process control charts under linguistic, vague, imprecise, and uncertain 
data are developed in the light of the Fuzzy Set Theory. Linguistic or uncertain data 
are represented by the use of fuzzy numbers. Fuzzy control charts for the linguistic 
data are proposed and integrated with the α-cut approach of fuzzy sets in order to set 
the degree of tightness of the inspection.  
In the literature, there exist few papers on fuzzy control charts, which use 
defuzziffication methods in the early steps of their algorithms. The use of 
defuzziffication methods in the early steps of the algorithm makes it too similar to 
the classical analysis. Linguistic data in those works are transformed into numeric 
values before control limits are calculated. Thus both control limits as well as sample 
values become numeric. This transformation may cause biased results due to the loss 
of information included by the samples. A new approach called direct fuzzy 
approach to fuzzy control charts is modeled in order to prevent the loss of 
information of the fuzzy data during the construction of control charts. It directly 
compares the linguistic data in fuzzy space without making any transformation. 
Finally, fuzzy unnatural pattern analyses are developed to monitor the abnormal 
patterns of the fuzzy data on the control charts. Numerical examples using the data of 
a real case are also given to highlight the practical usage of the proposed approaches. 
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BULANIK PROSES KONTROLÜ VE BULANIK KONTROL DİYAGRAMI 

MODELLERİNİN GELİŞTİRİLMESİ 

ÖZET 

Klasik kontrol diyagramları, W.A. Shewhart tarafından 1920’lerde geliştirilmiş 
olmasına rağmen yeni uygulama alanları ile günümüzde hala gelişimini 
sürdürmektedir. Verilerin tam ve kesin olduğu durumlarda klasik kontrol 
diyagramlarının kullanılması uygundur; ancak subjektifliğin önemli bir rol oynadığı 
durumlarda bu kadar kesin verilere sahip olmak neredeyse imkansızdır. İnsan 
yaşamında belirsizliklerin olması sürpriz bir durum değildir. Hayatın devamı için, 
gelecekteki olayları tahmin etmenin yanı sıra, kararlar vermek, bilgiyi analiz etmek 
ve yönetmek zorundayız. Bütün bu aktivitelerde, eldeki bilgiler kullanılabilir biçimde 
derlenerek bunlardan sonuçlar elde edilmeye çalışılır. Karar vermede gerçekçi 
yaklaşımlar sadece nesnel olasılık ölçüleri ile değil insan subjektifliğini de dikkate 
almalıdır. Belirsizlik altındaki durumlarda karar analizleri genellikle olasılık teorisi 
ve/veya bulanık kümeler teorisi kullanılarak yapılmaktadır. Bunlardan birincisi karar 
vermenin stokastik yapısını diğeri ise insanın düşüncesinin subjektifliğini temsil eder. 
Bulanık kümeler teorisi, ne rassal ne de stokastik olan insanın zihinsel yapısından 
kaynaklanan belirsizliğin modellenmesinde mükemmeldir. Belirsiz, kesin olmayan 
ve dilsel anlatımlar içeren durumlarda bulanık kümeler teorisinin kullanılması 
kaçınılmazdır. 
Bu çalışmada, bulanık kümeler teorisi kullanılarak belirsizlik içeren dilsel verilerle 
kontrol diyagramlarına yeni yaklaşımlar geliştirilmiştir. Belirsizlik içeren dilsel 
veriler, bulanık sayılarla ifade edilmiştir. Dilsel veriler için bulanık kontrol 
diyagramları α-kesim yaklaşımı kullanılarak geliştirilmiş ve bu suretle muayene 
sıklığı tanımlanmıştır.  
Literatürde, ilk adımlarında durulaştırmanın temel alındığı bazı bulanık kontrol 
diyagramları modelleri mevcuttur. Durulaştırma metotlarının en başta kullanılması, 
klasik kontrol diyagramlarına aşırı derecede benzer modeller geliştirilmesine neden 
olmuştur. Bu çalışmalardaki dilsel veriler, kontrol limitlerinin hesaplanmasından 
hemen önce nümerik değerlere dönüştürülmüştür. Bu dönüştürme ile veriler 
karakteristik özelliklerini kaybettiğinden kontrol diyagramlarında yanıltıcı 
durumlarla karşılaşılmasına neden olmaktadır. Bulanık kontrol diyagramlarının 
oluşturulmasında, bulanık verilerin taşıdığı bilgilerin kaybolmasını önlemek 
amacıyla “Direkt Bulanık Yaklaşım” geliştirilmiştir. Belirsizlik içeren dilsel ifadeler 
durulaştırma kullanılmadan bulanık ortamda değerlendirilmiştir. Aynı zamanda, 
bulanık verilerin kontrol diyagramındaki normal olmayan davranış testleri için 
bulanık bir yaklaşım geliştirilmiştir. Önerilen yaklaşımların pratik kullanımlarının 
yansıtılması açısından gerçek verilere dayalı nümerik örnekler sunulmuştur. 
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1 INTRODUCTION 

1.1 History and Evolution of Quality Control 

Every act by an individual, a group of individuals or an organization to ensure that a 

product or service meets a desired or specified standard can justifiably be seen as a 

quality control activity. Viewed in this way, quality control is almost, if not exactly, 

as old as the human race. It is quite logical to reason that, in the earliest times, 

quality control acts were not conscious, but rather were performed subconsciously as 

part of everyday activities, in isolation, and were restricted to the single individual. 

The history and evolution of quality control are therefore linked with the 

technological advances of the human race. 

We should start by defining some terms. The Glossary and Tables for Statistical 

Quality Control defines the following terms [1]:  

Nonconformity: A departure of a quality characteristic from its intended level or 

state that occurs with a severity sufficient to cause an associated product or service 

not to meet a specifications requirement.  

Nonconforming unit: A unit of product or service containing at least one 

nonconformity, 

Defect: A departure of a quality characteristic from its intended level or state that 

occurs with a severity sufficient to cause an associated product or service not to 

satisfy intended normal, or reasonably foreseeable usage requirements. 

Defective (Defective Unit): A unit of product or service containing at least one 

defect, or having several imperfections that in combination cause the unit not to 

satisfy intended normal, or reasonably foreseeable usage requirements. Note: The 

word defective is appropriate for use when a unit of product or service is evaluated in 

terms of usage (as contrasted to conformance to specifications). 
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Ancient Developments 

As human evolved, so did the nature of their activities. Eventually humans were no 

longer content with simply filling their stomachs for the day. Ancient history 

indicates that as early as several thousand years before the common era, humans had 

embarked on complex technical endeavors. Inevitably, the erstwhile subconscious 

and isolated quality control gave way to a more formal approach. 

It is not known precisely when this subconscious and uncoordinated quality control 

came to an end. However, archaeological findings and the remains of ancient 

structures indicate that by the time of the construction of Egypt’s pyramids, 

conscious efforts at quality control had emerged. The perfection of the pyramids, the 

flawlessness of the classical Greek master works, and the endurance of Roman 

structures attest to a conscious effort to control quality [2]. Ancient Egyptians were 

involved in the earliest known formalized efforts to control quality. Their chief 

contribution was in engineering [3]. The bare struggle for existence resulting from 

the annual inundation by the Nile River forced the Egyptians to acquire knowledge 

of engineering, arithmetic, geometry, surveying, and mensuration [4]. From all these 

endeavors, the basic decimal system was developed. The Egyptians also devised 

measures of length (the cubit) and area (squared cubit) [5]. 

The computation of the area of a circle and of the value of pi by the early Egyptians 

was more accurate than that of any other ancient civilization. The Egyptians 

produced elementary geographical maps and star maps and used a simple form of 

theodolite. They discovered and developed the concept of a 365 ¼ day year. By their 

calendar, the year was divided and thus standardized into 12 months, each consisting 

of 30 days [4]. The concept of the 24-hour day (12 hours of day and 12 hours of 

night) also came from them [5]. The bearing of all these developments and 

inventions on quality control does not seem direct and therefore may not be 

immediately clear. However, their contribution becomes clear when it is considered 

that these mathematical and engineering inventions found use in the construction of 

the pyramids. In connection with the work on the pyramids, the “royal cubit” was 

accepted and used as the master standard for linear dimensions [6]. The high quality 

of these pyramids, both in their mathematical precision and in the material used for 
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their construction, is attested to not only by the fact that they still stand after 

thousand of years, but also by the fact that their magnificence is still marveled at. 

The calendar in use today is basically the same as the one invented by the early 

Egyptians. This, in itself, indicates the high quality of that invention.  

Apart from their interest in the principles and theories of science, the ancient Greeks 

also left a legacy in quality control. Apparently motivated by trade and commerce, 

they produced high-quality pottery and enhanced the art of vase making, both in the 

development of various types of vases and in their decoration [4]. Ancient Greek 

contributions to precision and quality are also noticeable in their architecture. The 

culmination of Greek architecture in the fifth century BCE was the perfect 

development and highest artistic expression of column-and-lintel construction. These 

edifices were believed to have inspired the later architectural constructions of ancient 

Rome, the Renaissance, and modern times [4].  

Ancient Romans also left a legacy in quality, especially in architecture and 

engineering. Roman architecture, which flourished between 100 BCE and the mid 

fourth century CE was by far the most important form in terms of its grandeur and its 

influence on later times.  

In structural engineering, the ancient Romans developed high quality reinforced 

concrete, which was used in perfectly constructed hemispherical domes and in many 

other lasting structures [4]. Some of the splendid early Roman aqueducts and bridges 

can still be observed.  

Further evolution and development of current quality control occurred in several 

basic stages. Feigenbaum (1983) identifies these stages as operator quality control, 

foreman quality control, inspection quality control and statistical quality control, 

total quality control, and organization-wide total quality management [7]. Each stage 

is a broad grouping of developments that occurred over a long period of time. A 

more detailed delineation of the evolution of quality control requires that these 

developments be considered in smaller time frames.  
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Middle Ages 

In the Middle Ages and up to the 1800s, the supply of services and the production of 

goods were essentially limited to single individuals or, at most, to a group of several 

persons. The individual worker or workers controlled the quality of products. A 

peculiarity of this era was that the individual was both the producer and the inspector. 

The result was that quality standards were self-established. The decisions on 

conformance between the quality of the product or service and the needs of the 

customer were made by the individual. 

This era, however, was not totally lacking in organized control of quality. It was in 

this period that craft guilds were most active in Europe. These guilds were medieval 

associations of master craftsmen organized for the protection and economic and 

social gain of their members. They regulated local urban economies by establishing 

monopolies over trade; maintaining stable prices under stable conditions; and 

specifying standards for the quality of goods [5]. In their efforts to manage quality, 

the guilds set standards, stipulated working conditions and wages, and protected their 

members from governmental abuse and unfair competition [4].  They also regulate 

every detail of manufacture, from raw material to finished product [8]. This 

regulation of manufacturing activities may have been one of their most direct efforts 

at quality control. 

Late 1800s to the 1920s 

With the advent of industrialization in the late nineteenth and early twentieth 

centuries, the complexity of manufacturing increased. The growing technology 

resulted in a need to form group of workers that performed either similar or specific 

tasks. With this, the era of the supervisor began. Industrial firms were comparatively 

small, and the owner was physically present. Thus, the owner knew what was 

happening in the firm. Therefore standards were set and key decisions on quality 

control were made by the owner.  

As the nineteenth century progressed, the complexity of production and of 

manufacturing enterprises and techniques grew. The number of workers reporting to 

each supervisor increased. Organizations soon began to realize the need for 

individuals who, although not directly involved in the actual manufacturing and 
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production processes, were active in inspecting the quality of the product. This 

ushering in of quality control inspection lessened the burden on the supervisor. As a 

result, the supervisor and the worker were finally able to devote most of their time 

and concern to the actual manufacture and production. 

Toward the end of the nineteenth century, the need for the dissemination of technical 

knowledge through technical publications was recognized. In this era the Journal of 

the American Statistical Society, began publication. This journal, which published 

many of the major technical papers on quality and reliability, represented a source of 

current technical knowledge and developments [9]. 

The routine quality checks provided by inspectors in the early 1900s were not good 

enough for some companies. Companies like Western Electric, under contract from 

the American Bell Telephone Company, sought more rigorous quality control 

methods that would engender confidence in their instruments and appliances. It was 

this need that eventually led in 1924 to the formation of the Inspection Engineering 

Department of Western Electric’s Bell Telephone Laboratories. The early 

membership of these laboratories consisted of Harold F, Dodge, Donald A. Quarles, 

Walter A. Shewhart, George D. Edwards, R. B. Miller, and E.G.D. Peterson, Harry G. 

Roming, M.N. Torrey, and P.S. Olmstead later became members. 

It was in connection with their development of theories and methods of quality 

control and assurance that the first control charts emerged. In response to “problems 

connected with the development of an acceptable form of inspection report which 

might be modified from time to time, in order to give at a glance the greatest amount 

of accurate information” [10]. Shewhart designed control charts in 1924 that have 

come to be referred to as first Shewhart control charts. 

Yet more developments were forthcoming from this group of pioneer quality 

controllers. Prior to the 1900s, there was a dearth of terms to describe adequately 

various nations and concepts. Between 1925 and 1926 the Western Electric group 

defined various terms that are associated to this day with acceptance sampling. These 

include consumer’s risk, producer’s risk, probability of acceptance, operating 

characteristic (OC) curves, lot tolerance percent defective (LTPD), average total 

inspection (ATI), double sampling, and type A and type B risks. The basic concepts of 
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sampling inspection by attributes were presented by Dodge in 1925. In 1927, average 

outgoing quality limit (AOQL) sampling tables and the concepts of multiple 

sampling were developed by the Western Electric group. The demerit rating system 

joined the list in 1928. 

The 1930s 

A major development in the 1930s was the increased application of acceptance 

sampling techniques in industry as the methods developed at Western Electric spread 

throughout the United States and abroad. This era saw not only industrial 

applications of these techniques but also the dissemination of Shewhart’s ideas. 

By the mid-1930s, international interest in quality control had emerged. In 1935 

Pearson developed the British Standards Institution Standard Number 600, entitled 

“Application of Statistical Methods to Industrial Standardization and Quality 

Control.” In 1939, the article “The Control of Proportion Defective as Judged by a 

Single Quality Characteristic Varying on a Continuous Scale” laid the foundation for 

variable sampling [11]. 

Meanwhile, in the United States, more developments were occurring. In 1939 H. 

Romig presented his work on variable sampling plans in his PhD. Dissertation 

“Allowable Averages in Sampling Inspection” [12]. 

The 1940s 

The 1940s saw the birth of what is referred to as statistical quality control [7]. In 

1940, the American Standards Association (ASA), acting on the request of the War 

Department, became involved in the application of statistical quality control to 

manufactured products. From this work, the American War Standards AWS Z1.1: 

“Guide to Quality Control” and AWS Z1.2 “Control Chart Methods of Analyzing 

Data” emerged [13].  

Dodge and Romig presented LTPD protection sampling schemes that were based on 

fixed consumer risks. They also offered AOQL protection schemes consisting of 

rectifying inspection plans that guaranteed some stated protection after 100 percent 

inspection of rejected lots. These acceptance sampling plans were published in an 



 7

article in 1941 [14], and in book form in 1944 [15, 16]. These tables are part of what 

has come to be known as the Dodge-Romig system.  

It was no surprise that after the concept of a consumer’s risk was identified and 

considered, the notion of a risk of an opposite kind arose. This other kind of risk 

related to the consumer’s refusal to accept, that is, the consumer’s rejection of some-

thing good. The notion of a numerical producer’s risk emerged and was incorporated 

with that of a consumer’s risk [17]. 

As part of the war effort, other groups were formed to conduct research on quality 

control. In 1943, while working as a member of the Statistical Research Group based 

at Columbia University. A. Wald put forth the theory of sequential sampling. This 

group also made other valuable advances in variables and attributes sampling and in 

sequential analysis [18]. The results of the work of this group were considered to be 

so important to the war effort that they were classified for the duration of the war. In 

1948, the group’s work on sampling inspection was published [19]. The Joint Army-

Navy Standard JAN-105, developed in 1949, was based on this article [18]. 

The 1950s 

Although statistical quality control continued into this period, the era was marked by 

increased activity in the development and modification of quality control standards. 

In 1950, a committee formed by the military issued MIL-STD-1O5A which was a 

compromise military quality control standard between the Army Service Forces 

(ASF) tables of 1944 and JAN-105. Later modifications of MIL-STD-105A resulted 

in MIL-STD-105B, MIL-STD-105C, and MIL-STD-105D [18]. MIL-STD-414 came 

into being in 1957. This last-mentioned military standard dealt with acceptance 

sampling by variables. 

Not surprisingly, the U.S. Department of Defense (DoD) was also active in this area. 

The DoD issued Handbook H107 for Single-Level Continuous Sampling Procedures 

and Tables for Inspection by Attributes (Inspection and Quality Control Handbook 

(Interim) H107, 1958). This handbook was followed by Handbook H108, which 

contained multilevel continuous sampling procedures and tables for inspection by 

attributes (Inspection and Quality Control Handbook H108, 1959). A section of 

Handbook H108 also has tables for life and reliability testing. These military-related 
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standards were not concerned with suppliers' detailed quality program requirements 

or inspection techniques. The correction of this flaw was, however, not long in com-

ing. Military standards to this effect, MIL-O-9858A and MIL-I-45208A were soon 

released. However, these two standards went beyond specifying programs for sup-

pliers; in addition, they presented comprehensive quality-control and quality-

assurance programs [13]. It seemed as though most of the government agencies had 

suddenly become aware of the significance of quality control and quality assurance. 

The National Aeronautics and Space Agency (NASA) released the standards NHB 

5300.4(1B). They were comparable in comprehensiveness to MIL-O-9858A and 

MIL-I-45208A [13]. The standards AWS Z1.1 and AWS Z1.2, which had been 

produced earlier on the request of the War Department, were revised and adopted in 

1958 by the ASA as American Standard Z1.1 and American Standard Z1.2. 

According to the [13], these revised standards made reference to methods of 

collecting, arranging, and analyzing inspection and test records to detect lack of 

uniformity of quality and to apply the control chart technique in order to ascertain the 

quality of materials and manufactured products were given. 

By the 1950s awareness of the importance of quality control had spread beyond the 

United States. The introduction of quality control courses and quality control charts 

had a late start in Japan. Deming was instrumental in the dissemination and 

popularization of quality control in Japan [20]. In 1950, he started teaching a series 

of courses on statistical methods in that country. Talks to influential industry leaders 

in Japan were subsequently added to the courses; it was only in 1950 that the 

renowned Japanese quality control expert K. Ishikawa began his studies of quality 

control concepts.  

The 1950s, however, also witnessed further advances in and contributions to new 

statistical quality control techniques. One such contribution came from Britain when 

Page (1954) introduced the Cumulative Sum (Cusum) Chart. On the Cusum Chart, 

the individual values of the statistic of interest are not plotted; instead, the 

cumulation of these values is formed and charted. The Cusum technique therefore 

accounts for the effect of historical data on current data. A distinctive characteristic 

of the Cusum technique is that it gives equal weight to all the data, both past and 
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present. The effect of this equal weighting of all data is that old data have the same 

significance as the most recent data [21]. 

Continuing his earlier work on the Continuous Sampling Plan (CSP-1, [22]) 

developed Skip-Lot Sampling Plans (SkSP) and Chain Sampling Plans (ChSP) [23].  

A modification of CSP-I was proposed by Lieberman and Solomon (1955).  The plan 

referred to as Multi-Level Inspection Plan (MLP) allows for multiple level of 

inspection instead of the single level used in the CSP-I scheme. MLP starts with 100 

percent inspection [24].  

Soon variants on the CSP and MLP appeared, including CSP-2, CSP-3, CSP-F, CSP-

T, CSP-V, and MLP-T. The conception of the CSP-2 was motivated by experiences 

in the application of the CSP-1 to military items during World War II. It was thought 

that for sampling cases, where an appreciable number of nonconforming units are 

permissible. It might be logical not to revert to 100 percent inspection every time a 

nonconforming unit is found. Instead CSP-2 calls for a return to 100 percent 

inspection only when the spacing between nonconforming units is smaller than some 

prescribed minimum. CSP-3 was suggested by an inspection planning organization 

of the Western Electric Company as a refinement of the CSP-2 pan [25]. It was 

designed to be used for cases where single sample units are selected one at a time 

from a product comprising a now of individual units CSP-3 calls for the inspection of 

four additional sample units whenever an allowed nonconforming unit is found 

during sampling and for the immediate return to 100%, inspection if one of the four 

is found to be nonconforming. In this way, it provides extra protection against spotty 

quality.  

CSP, ChSP, SkSP, and MLP are sampling plans based on the attributes of the items 

being inspected. Because of the lack, of information carried by attributes these plans 

tend to use large samples, making them expensive to operate. As early as 1957, 

alternative schemes had been developed, MIL-STD-414, issued in 1957, contained 

variable acceptance sampling plans. The variables of an item contain more 

information about the quality of the item than the attributes. Therefore, variable 

sampling uses comparatively smaller samples than its attributes-based counterpart. 
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Another important development was the application of the exponentially weighted 

moving average (EWMA) in quality control [26]. This concept was presented by 

Roberts (1959) when he compared the average run lengths of the “geometric moving 

average chart” to the Shewhart chart [27].  

The 1960s 

A new phase in quality control dawned in the 1960s. This was the beginning of an 

era that Feigenbaum [7] described as total quality control.  Prior to the 1960s, quality 

control activities were essentially associated with the shop floor. The decision-

making structures of businesses could not utilize effectively the results and 

recommendations, emanating from the statistical techniques being applied. The tech-

niques were not applied to those serious quality control problems in which manage-

ment was most interested.  

Other concepts that attempted to involve all employees of the organization, in the 

quality control function began to emerge. In the same year that Feigenbaum [7] put 

forward his concept of total quality control, the concept of zero defects (ZD) was 

born. 

The 1960, was the beginning of the race for space. Since space exploration is risky 

and costly, quality control was a great concern. It was realized that a multi-million-

dollar missile could be destroyed and lives could be lost by the failure or malfunction 

of a S2 part. The elimination of defective components in missile construction had, 

therefore, always been a goal. With this objective in mind, the Martin Marietta 

Corporation sought new ways or detecting discrepancies and defects in the parts used 

in missile construction. In December 1961 the company was finally able to deliver a 

missile with zero defects [28] and the term zero defects was coined. It was an idea 

that achieved its objectives through worker motivation and involvement. 

The concept of quality circles, another major development in total quality control and 

management, had its early beginnings in Japan. At the dawn of the 1960s, Japanese 

industries strongly felt the need for a more through education of the supervisor, who 

was the liaison between management and workers. 
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The 1970s 

In the 1970s, quality control entered another phase. Ishikawa referred to this stage as 

companywide quality control [29]. Feigenbaum [7] identified the same phase as total 

quality control organization wide. This phase was marked by emphasis on the 

involvement in quality control of every worker, from the company president to the 

machine operator. The significant point here was that the highest level of 

management must be actively involved in quality control. Quality thereby became 

the responsibility of each individual. Quality system eventually came to be used as 

an all-embracing term to describe the collective plans, activities, and events that are 

provided to ensure that a product, process, or service will satisfy given needs. 

Feigenbaum [7] defines quality system as the agreed on company-wide and plant-

wide operating work structure, documented in effective, integrated technical and 

managerial procedures, for guiding the coordinated actions of the people, the 

machines, and the information of the company and plant in the best and most 

practical way to assure customers quality satisfaction and economical costs of quality. 

Inseparably linked with assurance and control of quality is the concept of quality cost. 

The ASQC recognized the importance of quality cost in the overall quality structure. 

In 1971, it defined the various categories of quality cost. Wadsworth et al. (1986) 

classified these costs as preventive, appraisal, internal, and external [9]. Feigenbaum 

[7] divided them into two broader categories: preventive costs and appraisal costs as 

belonging to costs of control, and internal costs and external costs as belonging to 

costs of failure of control. 

Drifts and variations in the values of manufacturing process parameters give rise to 

loss of quality of the manufactured product. Yet, it is more costly to control the 

causes of manufacturing variations than to make a process insensitive to these 

variations [30]. It was in regard to this aspect or quality that Taguchi [31,32] made 

his contributions to quality control. He promoted the use of statistical methods for 

product design improvement. The Taguchi methods embrace both off-line and on-

line quality control functions. They include parameter design, tolerance design, the 

quality loss function, on-line quality control, design of experiments using orthogonal 

arrays, and methodology applied to evaluate measuring systems [33].  
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The implementation of various statistical quality control methods in industry was 

enhanced by the use of computers. The general use of computers in quality control is 

relatively recent, but by the middle lo late 1970s computers had come to be used in 

automated testing, in computer-aided design (CAD), in computer-aided 

manufacturing (CAM), in computer-aided process control, and in data acquisition, 

storage, and analysis. Computer-aided quality (CAQ) represents the totality of the 

application of computers to quality control. CAQ, according to Feigenbaum [7], 

integrates the engineering database that designed the part and the product and guided 

its manufacture with the inspection and testing of the part and product. Thus, CAQ 

could be operated from the same data bases as CAD and CAM. 

The 1980s 

If each era is markedly by a major quality control activity, then the 1980s 

appropriately be termed the era of quality slogans. Although these slogans 

themselves do not impart quality to the items, they have, if nothing else, succeeded in 

increasing the public’s awareness of the importance of quality. . 

A big push in quality control in industry during the 1980s has been toward quality 

management particularly its human aspect. The problem now confronting industry is 

how to ensure that quality control procedures are adhered to, if the shop-floor worker 

rails, for some reason, to record the process parameter values at the right time, then 

the statistical quality control techniques that require these values cannot be applied 

without the danger of their giving a false indication of the state of the process. 

Therefore, a significant portion of quality management addresses this human aspect. 

However, the concerns of quality management are much more extensive than this 

concern with the performance of the shop-floor worker. They embrace the whole 

organization. 

As in most other fields of technology, quality control and quality assurance have 

experienced tremendous growth in the area of computer applications. It is not known 

exactly when computers were first used for these purposes. Due to the proprietary 

nature of technological developments, it is also difficult to identify precisely the first 

computer applications in quality control and quality assurance. A 1969 issue of the 
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Journal of Quality Technology contains a computer program [34] for data analysis in 

quality control.  

More Recent Developments and Ongoing Events 

Activities such as product design assurance, procurement quality assurance, 

production quality control, and product quality audit are of very recent origin, and 

are ongoing. Product design assurance acknowledges the important role of design in 

the final quality of the item. Poor design may result in erroneous specifications that 

ultimately leave their mark on the quality of the final product. 

Procurement quality assurance deals with the quality of raw material. The rationale 

behind procurement quality assurance is straightforward. The manufacture of a 

quality product requires the use of quality raw materials. 

Production quality control consists of the entire range of activities that are performed 

in the production process to achieve desired quality. Therefore, these activities 

include the use of computers in process control and manufacturing, preventive and 

corrective maintenance; process performance and capability tests; in-factory control 

of nonconformities; quality and quality control of in-process inventories; periodic 

survey of process control programs; and a system to establish and control applicable 

specifications and related instructions. A discussion of these activities can be found 

in Wadsworth et al. [9]. 

A quality time line is given in Table 1.1 that is a reference to the point in time of the 

occurrence of each of the major quality control events. It shows the order of 

occurrences of the events in the evolution of quality control and the types of quality 

control activities that were predominant in each era.  

 

 



 14

Table 1.1: Quality Time Line 

Era Development 

Ancient period 

 

Early Egyptians 

  “Royal cubit” area cubit 

  Basic decimal system 

  Area of a circle, value of pi 

  Division of time 

Early Greeks 

  High quality and standards of art 

  High precision and quality of architecture 

High-quality literature 

Early Romans 

  Architecture 

  High quality in masonry 

  Structural engineering 

Middle Ages 

 

Operator quality control 

Craft guilds in Europe 

Regulated economies 

Established trade monopolies maintained stable price 

Specified standard for good 

Set workmanship standards  

Stipulated working conditions  

Regulated detail of manufacture 

1900s 

 

Journal of the American Statistical Society  

Supervisor quality control 

1920s 

 

 

Inspection quality control 

First Shewhart control charts 

Consumer risk, producer’s risk  

Probability of acceptance 

OC curves, LTPD 

ATI, double sampling 

Type A and type B risks 

LTPD sampling tables 

AOQL sampling tables  

Demerit rating system 
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Table 1.1: Quality Time Line (continued) 

Era Development 

1930s 

 

 

Joint Committee for the Development of Statistical Applications in 
Development and manufacturing 

Development of British Standards 

Institution Standard 600, “Application of Statistical Methods to Industrial 
Standardizations and Quality Control” 

Variable sampling plan 

Scanlon Plan 

U.S. Food, Drug and Cosmetic Act 

1940s Statistical quality control 

Dodge-Romig Sampling inspection tables (LTPD protection)  

Rectifying inspection (AOQL protection) 

Army “Standard inspection procedures” (AQL) 

Rectifying inspection on continuous sequence of products  (AOQL) 

Sequential sampling 

Advances in variables and attributes sampling and sequential analysis 

Sampling inspection (AQL) 

American War Standards 

AWS Z1.1 “Guide to Quality Control” 

AWS Z1.2 “Control Chart Methods of analyzing data” 

Industrial Quality Control published by the Society of Quality 

Control Engineers and the University of Buffalo 

American Society for Quality Control formed 

1950s Quality control training courses in the United State 

Australian Laboratory Accreditation System (for testing) JAN-105 

Multivariate quality control 

Average sample number (ASN) 

Grubb’s sampling table 

MIL-STD-105A 

'Formation of Advisory Group on Reliability of Electronic Equipment 
(AGREE) 

MIL-M-26512A 

Cusum control charts 

Freund’s acceptance control charts 

MIL-STD-414 

Inspection and Quality Control Handbook (Interim) H107 and H108 for 
Single-Ievel and Multi-Level Continuous Sampling Procedures and Tables 
for Inspection by Attributes, respectively 

MIL-O-9858A  
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Table 1.1: Quality Time Line (continued) 

Era Development 

1950s (Continued) MIL-I-45208A 

NHB 5300.4(IB) 

ASA guidelines for treating problems concerning economic control of 
quality of materials and manufactured products, ZI.1 and Z1.2 

Exponential weighted moving averages 

Applied Statistics published 

Quality control charts in Japan 

Quality control training courses in Japan 

Chain sampling inspection plans 

Skip-Lot sampling plan . 

Additional continuous sampling inspection plans  

Sampling plans for inspection by variables 

Multilevel continuous sampling plans 

Continuous inspection schemes 

Poultry Products Inspection Act 

1960s Total quality control 

Zero defects 

Quality Progress published 

Journal of Quality Technology published 

Quality circles 

U.S. Consumer Product Safety Act 

U.S. Food, Drug and Cosmetic Act Amendments on manufacturing, 
processing, packaging and handling of human food. 

Radiation Control for Health and Safety Act 

1970s Categories of quality costs defined by the ASQC 

U.S. laboratory accreditation 

Quality system 

Cause-and-effect (Ishikawa) diagrams 

Taguchi methods 

Quality improvement through Statistically designed experiments 

Participative quality control 

Quality defined by ANSI/ASQC Standard A3 

U.S. Meat Inspection Act 

Medical Device Amendments 

Organization wide quality control and total quality management 
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Table 1.1: Quality Time Line (continued) 

Era Development 

1980s Plethora of quality slogans 

Plethora of quality control software and computer programs 

Recent Developments Product design assurance 

Procurement quality assurance 

Production quality control 

Product quality audit  

Increasing customer requirements for quality 

Industry adjustment to customers' higher awareness of quality 

 

Finally, Table 1.2 is a list of those individuals who are considered to be the pioneer, 

in quality control and their contributions to the field. This table can therefore be used 

as a quick reference to the major contributions or accomplishments of each pioneer. 

 

Table 1.2: Pioneers in Quality Control 

Pioneer Accomplishment 

Crosby, P.B. 

 

Founded Quality College, Winter Park, Florida  

Initiated the quality cost reduction program “Buck a Day (SAD)”  

Developed the “14-Step Quality Improvement Program” Originated a 
widely used definition of quality  

Wrote Quality Is Free and numerous other popular books on quality 

Developed “Zero Defects-30'“ a 30-day quality program for a 
supervisor and 8 to 10 of the supervisor’s employees 

Deming, W.E. 

 

Developed quality control training during World War II  

Researched the use of statistics in quality control for the War II 

Brought statistical methods in quality control to Japan after World 
War II 

Originated a definition of statistical quality control that emphasizes 
statistical aspects and economic goals of quality control 

Developed “14 points” (or obligations) of management’s 
responsibility for quality and management of an enterprise 

Identified two separate causes (“special” and “common”) for poor 
quality and responsibilities for their correction 
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Table 1.2: Pioneers in Quality Control (continued) 

Pioneer Accomplishment 

Dodge, H.F.  

 

Founding member of the Western Electric inspection Department (the 
department developed theories and methods of quality control and 
quality assurance) 

Developed basic concepts of sampling inspection by attributes 

Defined consumer’s risks and producer’s risks 

Member of a group of statisticians and engineers formed by the War 
Department to conduct research in the use of statistics in quality 
control (the group developed standard inspection procedures and 
sampling tables) 

Initiated widespread applications of control chart techniques 
throughout Western Electric 

Prepared the ASTM manual on presentation of data Chairman of ASA 
Committee ZI Developed the Dodge-Romig Sampling inspection 
Tables on attribute acceptance sampling 

Developed first continuous sampling plans 

Developed skip-lot sampling plans 

Developed chain sampling plans 

Edwards, G.D. 

 

Founding member of Western Electric Inspection Department Taught 
courses on the use of statistical quality control throughout 
manufacturing plants in the United States during World War II 

Feigenbaum, A.V. 

 

Developed the concept of total quality control 

Identified five stages in the history and evolution of quality control 

Freund, R.A.  

 

Member of the ASQC committee for precision in terminology which 
prepared “Delineations Symbols, Formulas and Tables for  Control 
Charts” 

Developed an acceptance control chart for samp1e or subgroup 
variability 

Grubbs, F.E.  Developed tables for attributes sampling plans 

Gryna, F.M.  Developed together with Juran the concept of operator self-control (by 
this concept, control must be delegated to the operator in the 
workplace) 

Hotelling, H.  

 

Member of the Statistical Research Group at Columbia University 
during World War II (the group developed sequential analysis and 
multivariate analysis in quality control)  

Developed the t2 statistic 
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Table 1.2: Pioneers in Quality Control (Continued) 

Pioneer Accomplishment 

Ishikawa, K.  

 

Introduced control chart methods to Japan 

Developed cause-and-effect diagram  

Acclaimed as the “father of quality circles” 

Suggested intervals in construction of histograms used in quality 
control indicated the use of paired barplots in quality control 

Juran, J.M.  

 

Renowned international consultant in quality control 

Member of a group of engineers associated the Western Electric 
Inspection Department 

Developed many concepts in quality (his work is credited as being the 
basis of Japan’s postwar management 

Developed one of the general definitions of quality 

Espoused the application of the Pareto principle in quality control 
Developed the alternative designations sporadic and chronic for the 
causes of poor quality 

Developed in conjunction with Gryna, the concept of operator self-
control 

Pearson, E.  

 

Developed British standards on the application of statistical methods 
to industrial standardization and quality control  

Developed estimation curves  

Indicated the use of range and its properties in quality control  

D. A. Quarles Founding member of the Western Electric Inspection Department 

Romig, H.G.  

 

Developed, along with Dodge. the Dodge-Romig Sampling 

Inspection Tables on attributes acceptance sampling 

Scanlon, J. Developed the Scanlon Plan for employee motivation 

Shewhart, W.A. Founding member of the Western Electric Inspection Department 

Developed the first control charts 

Formed one of the groups sponsored by the War Department during 
World War II to conduct research on the use of statistics in quality 
control 

Developed the concept of assignable causes 

Developed basic concepts of type 1 and type II error 

Taguchi, G.  

 

Developed methods for quality improvement studies using 
experimental design procedures (explored the concept of off-line) 

Torrey, M.N.  Later member of the Western Electric Inspection Department Further 
developed CSP. in conjunction with Dodge 
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Table 1.2: Pioneers in Quality Control (Continued) 

Pioneer Accomplishment 

Wald, A.  

 

Member of the Statistical Research Group at Columbia University 
during World War II 

Developed sequential-sampling plans, procedures. and tables 

Proposed truncation value in sequential sampling plans Developed 
general expression for average sample numbers (ASN) Developed 
parametric equations for OC curves for sequential sampling plan 

 

1.2 Probability Theory used in Statistical Quality Control 

Statistical methods can be used to summarize or describe a collection of data that is 

called descriptive statistics. In addition, patterns in the data may be modeled in a way 

that accounts for randomness and uncertainty in the observations, to draw inferences 

about the process or population being studied; this is called inferential statistics. 

Both descriptive and inferential statistics can be considered part of applied statistics. 

A control chart is a run chart of a sequence of quantitative data with five horizontal 

lines drawn on the chart: 

• A centre line, drawn at the process mean;  

• An upper warning limit drawn two standard deviations above the centre line;  

• An upper control-limit (also called an upper natural process-limit drawn 

three standard deviations above the centre line;  

• A lower warning limit drawn two standard deviations below the centre line; 

• A lower control-limit (also called a lower natural process-limit drawn three 

standard deviations below the centre line.  

Shewhart set 3-sigma limits on the following basis of the probability theory. 

• The coarse result of Chebyshev's inequality that, for any probability 

distribution, the probability of an outcome greater than k standard deviations 

from the mean is at most 1/k2.  
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Chebyshev's inequality: Let X be a random variable with expected value µ and finite 

variance σ2. Then for any real number k > 0, 

( ) 2

1Pr .X k
k

µ σ− ≥ ≤  (1.1)

• The finer result of the Vysochanskii-Petunin inequality, that for any unimodal 

probability distribution, the probability of an outcome greater than k standard 

deviations from the mean is at most 4/(9k2).  

Vysochanskii-Petunin inequality: Let X be a random variable with unimodal 

distribution, mean µ and finite, non-zero variance σ2. Then, for any 

8 1.6329,3λ > =  

( ) 2

4Pr .
9

X µ λσ
λ

− ≥ ≤  (1.2)

It is common in the construction of control charts, and other statistical heuristics, to 

set λ = 3, corresponding to an upper probability bound of 4/81 = 0.04938, and to 

construct 3-sigma limits to bound nearly all (i.e. 95%) of the values of a process 

output. 

• The empirical investigation of sundry probability distributions that at least 

99% of observations occurred within three standard deviations of the mean.  

Shewhart summarized the conclusions by saying: 

... the fact that the criterion which we happen to use has a fine ancestry in highbrow 

statistical theorems does not justify its use. Such justification must come from 

empirical evidence that it works. As the practical engineer might say, the proof of the 

pudding is in the eating. 

Though he initially experimented with limits based on probability distributions, 

Shewhart ultimately wrote: 

Some of the earliest attempts to characterize a state of statistical control were 

inspired by the belief that there existed a special form of frequency function f and it 

was early argued that the normal law characterized such a state. When the normal 



 22

law was found to be inadequate, then generalized functional forms were tried. Today, 

however, all hopes of finding a unique functional form f are blasted. 

The control chart is intended as a heuristic. Deming insisted that it is not an 

hypothesis test and is not motivated by the Neyman-Pearson lemma. He contended 

that the disjoint nature of population and sampling frame in most industrial situations 

compromised the use of conventional statistical techniques. Deming’s intention was 

to seek insights into the cause system of a process ...under a wide range of 

unknowable circumstances, future and past.... He claimed that, under such conditions, 

3-sigma limits provided ... a rational and economic guide to minimum economic 

loss... from the two errors: 

• Ascribe a variation or a mistake to a special cause when in fact the cause 

belongs to the system (common cause). In statistics this is a Type I error  

• Ascribe a variation or a mistake to the system (common causes) when in fact 

the cause was special. In statistics this is a Type II error  

Common cause variation plots as an irregular pattern, mostly within the control 

limits. Any observations outside the limits, or patterns within, suggest (signal) a 

special-cause. The run chart provides a context in which to interpret signals and can 

be beneficially annotated with events in the business. 

1.3 From classical control charts to fuzzy control charts 

It is not surprising that uncertainty exists in the human world. To survive in our 

world, we are engaged in making decisions, managing and analyzing information, as 

well as predicting future events. All of these activities utilize information that is 

available and help us try to cope with information that is not. A rational approach 

toward decision-making should take human subjectivity into account, rather than 

employing only objective probability measures. A research work incorporating 

uncertainty into decision analysis is basically done through the probability theory 

and/or the fuzzy set theory. The former represents the stochastic nature of decision 

analysis while the latter captures the subjectivity of human behavior. The fuzzy set 
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theory is a perfect means for modeling uncertainty (or imprecision) arising from 

mental phenomena which is neither random nor stochastic.  

When human subjectivity plays an important role in defining the quality 

characteristics, the classical control charts may not be applicable since they require 

certain information. Fuzzy control charts are inevitable to use when the statistical 

data in consideration are uncertain or vague; or available information about the 

process is incomplete, linguistic or includes human subjectivity. A general 

comparison of traditional Shewhart control charts and fuzzy control charts is given in 

Table 1.3. 

Table 1.3: Comparison of Traditional Shewhart and Fuzzy Control Charts 

Comparison issue Traditional Shewhart Control 
Charts 

Fuzzy Control Charts 

 

Number of quality 
characteristics  Only one quality characteristic Multiple quality characteristics 

Availability and type of 
statistical data Completely required and certain  Vague, uncertain, and incomplete 

information 

Information used in 
base period Historical data Experts' experience rules  

Judgment  in control or out of control Further intermediate linguistic 
decisions  

Advantages 

1. Easier for considering one quality 
characteristic  

 

2. More objective 

 

1. Provide more accurate control 
standards for the process based on 
experts' experience expressed in 
degree of membership 

2. More flexible for the definitions 
of the fuzzy inference rules  

Disadvantages 

1. Inflexible control limits  

2. Sample size influences the width 
of  control limits  

3. Historical data are needed to 
obtain the formal control limits 

1. Inference outcomes are based on 
the subjective experience rules  

2. Supplemental rules (for 
systematic changes) of the 
traditional control charts cannot be 
used 
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1.4 Scope and aim of the thesis 

This thesis aims at developing some models for the construction and interpretation of 

the fuzzy control charts with linguistic, uncertain, and vague data. Section 2 is a 

review of the statistical process control. Statistical process control charts are given in 

Section 3. Unnatural pattern analyses for the classical process control charts are 

explained in Section 4. Basics of the fuzzy sets theory required to construct fuzzy 

control charts are presented in Section 5. In Section 6, fuzzy control charts are 

developed. Fuzzy unnatural pattern analyses for the developed fuzzy control charts 

are proposed in Section 7. Numerical examples are presented in Section 8 and finally 

a conclusion is given at the end of the thesis. 
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2 STATISTICAL PROCESS CONTROL (SPC) 

2.1 Introduction 

Statistical process control was pioneered by Walter A. Shewhart and taken up by W. 

Edwards Deming with significant effect by the Americans during World War II to 

improve industrial production. Deming was also instrumental in introducing SPC 

methods to Japanese industry after that war. Dr. Shewhart created the basis for the 

control chart and the concept of a state of statistical control by carefully designed 

experiments. While Dr. Shewhart drew from pure mathematical statistical theories, 

he understood data from physical processes never produce a “normal distribution 

curve” (a Gaussian distribution, also commonly referred to as a “bell curve”). He 

discovered that observed variation in manufacturing data did not always behave the 

same way as data in nature (Brownian motion of particles). Dr. Shewhart concluded 

that while every process displays variation, some processes display controlled 

variation that is natural to the process, while others display uncontrolled variation 

that is not present in the process causal system at all times. 

SPC encompasses the following basic ideas: 

• Quality is conformance to specifications. 

• Processes and products vary. 

• Variation in processes and products can be measured. 

• Variation follows identifiable patterns. 

• Variation due to assignable causes distorts the bell shape. 

• Variation is detected and controlled through SPC 

Classical Quality control was achieved by observing important properties of the 

finished product and accept/reject the finished product. As opposed to this statistical 
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process control uses statistical tools to observe the performance of the production 

line to predict significant deviations that may result in reject products. 

The underlying assumption in the SPC method is that any production process will 

produce products whose properties vary slightly from their designed values, even 

when the production line is running normally, and these variances can be analyzed 

statistically to control the process. For example, a breakfast cereal packaging line 

may be designed to fill each cereal box with 500 grams of product, but some boxes 

will have slightly more than 500 grams, and some will have slightly less, producing a 

distribution of net weights. If the production process itself changes (for example, the 

machines doing the manufacture begin to wear) this distribution can shift or spread 

out. For example, as its cams and pulleys wear out, the cereal filling machine may 

start putting more cereal into each box than it was designed to. If this change is 

allowed to continue unchecked, product may be produced that fall outside the 

tolerances of the manufacturer or consumer, causing product to be rejected. 

By using statistical tools, the operator of the production line can discover that a 

significant change has been made to the production line, by wear and tear or other 

means, and correct the problem - or even stop production - before producing product 

outside specifications. An example of such a statistical tool would be the Shewhart 

control chart, and the operator in the aforementioned example plotting the net weight 

in the Shewhart chart. 

A production system is a process hierarchy, consisting of basic processes and their 

respective sub-processes and sub-subprocesses. Process control is a critical part of 

operations. Process control is a complex combination of measurement, comparison, 

and correction. Box et. al. [35] and Box and Luceno [36] cite two techniques for 

dealing with process control issues: techniques of process monitoring and techniques 

of process adjustment.  

Process monitoring strategies focuses on process disruptions/special cause 

elimination, the detection, isolation, and removal of influences over and above 

common cause or natural variation that enters a process by virtue of controllable or 

uncontrollable variables. 
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Process adjustment strategies focuses on process regulation/adjustment, the 

manipulation of identified controllable input/transformation variables so as to 

influence the value of an output variable [37]. 

2.2 SPC Tools 

SPC can be applied to any process. Its major tools are briefly explained in the 

following [38]: 

• Histogram: The histogram is a graphical data summary tool which allows to 

group observed data into cells, or predefined categories, in order to discover 

data location and dispersion characteristics (without a sophisticated numerical 

analysis). The histogram is a very valuable and underrated data analysis tool. 

Two types of histograms are:  

1. a frequency count histogram 

2. a relative frequency or proportion histogram. 

• Check Sheet: A check sheet is a simple tool used to record and classify 

observed data. Primarily, there are two types of check sheets [39]:  

1. Tabular check sheets 

2. Pictorial check sheets. 

• Pareto Chart: In nineteenth-century Italy, the Italian economist Vilfredo 

Pareto observed that about 80 percent of the country’s wealth was controlled 

by about 20 percent of the population. This observation lead to what is now 

known as Pareto Principle; it is also known as “80-20” rule. Juran [40] and 

Juran and Gryna [41] applied this concept to the causes of quality failures. 

They stated that 20 percent of the causes account for 80 percent of the 

failures. In general, Pareto principle, applied to quality, suggests that majority 

of the quality losses are distributed in such a way that a “vital few” quality 

defects or problems always constitute a high percent of the overall quality 

losses [38].  
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• Cause and Effect Diagram: A cause is a fundamental condition or stimulus of 

some sort that ultimately creates a result or effect. We may proceed from 

cause to effect, or conversely from effects to cause. Most analyses work in 

both directions in order to discover or document causes, effects, and cause-

effect linkages. Cause-Effect analyses are usually summarized in a cause-

effect diagram that is developed by Ishikawa for the purpose of representing 

the relationship between an effect and the potential or possible causes 

influencing it. The cause-effect diagram first helps us to discover possible 

root causes of defects and then helps us understand the failure mechanism 

involved, so that we can prevent or eliminate them by proactive-reactive 

actions [38].  

• Strafication Analyses: Strafication is the process of breaking down or sorting 

a large database so that meaningful subset, classifications, or summaries can 

be developed. It allows us to effectively and efficiently navigate through huge 

volumes of data, seeking out the clues to quality improvement buried therein. 

• Scatter Diagram: A scatter diagram provides the opportunity to view a data 

set in multiple dimensions in order to detect trends, spot best operating 

regions, explore cause-effect relationships, and so on [38]. 

• Control Charts: The seventh fundamental tool is the statistical process control 

(SPC) chart. These tools are based on the principles of probability and 

statistics. Control charts that are the main scope of this thesis are discussed in 

the next section. 
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3  STATISTICAL PROCESS CONTROL CHARTS (SPCC) 

3.1 Introduction 

Every process varies. If you write your name ten times, your signatures will all be 

similar, but no two signatures will be exactly alike. There is an inherent variation, but 

it varies between predictable limits. If, as you are signing your name, someone 

bumps your elbow, you get an unusual variation due to what is called a “special 

cause”. If you are cutting diamonds, and someone bumps your elbow, the special 

cause can be expensive. For many, many processes, it is important to notice special 

causes of variation as soon as they occur. 

There is also “common cause” variation. Consider a baseball pitcher. If he has good 

control, most of his pitches are going to be where he wants them. There will be some 

variation, but not too much. If he is “wild”, his pitches are not going where he wants 

them; there is more variation. There may not be any special causes - no wind, no 

change in the ball - just more “common cause” variation. The result: more walks are 

issued, and there are unintended fat pitches out over the plate where batters can hit 

them. In baseball, control wins ballgames. Likewise, in most processes, reducing 

common cause variation saves money. [42] 

Happily, there are easy-to-use charts which make it easy see both special and 

common cause variation in a process. They are called control charts, or sometimes 

Shewhart charts, after their inventor, Walter Shewhart, of Bell Labs. There are many 

different subspecies of control charts which can be applied to the different types of 

process data which are typically available. 

All control charts have three basic components:  

• a centerline, usually the mathematical average of all the samples plotted. 

• upper and lower statistical control limits that define the constraints of 

common cause variations. 
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• performance data plotted over time.  

Control charts are used to routinely monitor quality. Depending on the number of 

process characteristics to be monitored, there are two basic types of control charts. 

The first, referred to as a univariate control chart, is a graphical display (chart) of one 

quality characteristic. The second, referred to as a multivariate control chart, is a 

graphical display of a statistic that summarizes or represents more than one quality 

characteristic. 

If a single quality characteristic has been measured or computed from a sample, the 

control chart shows the value of the quality characteristic versus the sample number 

or versus time. In general, the chart contains a center line that represents the mean 

value for the in-control process. Two other horizontal lines, called the upper control 

limit (UCL) and the lower control limit (LCL), are also shown on the chart. These 

control limits are chosen so that almost all of the data points will fall within these 

limits as long as the process remains in-control. The figure below illustrates this. 

 

Figure 3.1: Illustration of control limits. 

 

The control limits as pictured in the graph might be 0.001 probability limits. If so, 

and if chance causes alone were present, the probability of a point falling above the 

upper limit would be one out of a thousand, and similarly, a point falling below the 
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lower limit would be one out of a thousand. We would be searching for an assignable 

cause if a point would fall outside these limits. Where we put these limits will 

determine the risk of undertaking such a search when in reality there is no assignable 

cause for variation.  

Since two out of a thousand is a very small risk, the 0.001 limits may be said to give 

practical assurances that, if a point falls outside these limits, the variation was caused 

be an assignable cause. It must be noted that two out of one thousand is a purely 

arbitrary number. There is no reason why it could have been set to one out a hundred 

or even larger. The decision would depend on the amount of risk the management of 

the quality control program is willing to take. In general (in the world of quality 

control) it is customary to use limits that approximate the 0.002 standard.  

Letting X denote the value of a process characteristic, if the system of chance causes 

generates a variation in X that follows the normal distribution, the 0.001 probability 

limits will be very close to the 3σ limits. From normal tables we glean that the 3  in 

one direction is 0.00135, or in both directions 0.0027. For normal distributions, 

therefore, the 3σ limits are the practical equivalent of 0.001 probability limits.  

In the U.S., whether X is normally distributed or not, it is an acceptable practice to 

base the control limits upon a multiple of the standard deviation. Usually this 

multiple is 3 and thus the limits are called 3σ limits. This term is used whether the 

standard deviation is the universe or population parameter, or some estimate thereof, 

or simply a “standard value” for control chart purposes. It should be inferred from 

the context what standard deviation is involved. (Note that in the U.K., statisticians 

generally prefer to adhere to probability limits.)  

If the underlying distribution is skewed, say in the positive direction, the 3-sigma 

limit will fall short of the upper 0.001 limit, while the lower 3-sigma limit will fall 

below the 0.001 limit. This situation means that the risk of looking for assignable 

causes of positive variation when none exists will be greater than one out of a 

thousand. But the risk of searching for an assignable cause of negative variation, 

when none exists, will be reduced. The net result, however, will be an increase in the 

risk of a chance variation beyond the control limits. How much this risk will be 

increased will depend on the degree of skewness.  
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If variation in quality follows a Poisson distribution, for example, for which np = 0.8, 

the risk of exceeding the upper limit by chance would be raised by the use of 3σ 

limits from 0.001 to 0.009 and the lower limit reduces from 0.001 to 0. For a Poisson 

distribution, the mean and variance both equal np. Hence the upper 3σ limit is 0.8 + 3 

0.8  = 3.48 and the lower limit = 0. For np = 0.8 the probability of getting more 

than 3 successes is 0.009.  

If a data point falls outside the control limits, we assume that the process is probably 

out of control and that an investigation is warranted to find and eliminate the cause or 

causes.  

Does this mean that when all points fall within the limits, the process is in control? 

Not necessarily. If the plot looks non-random, that is, if the points exhibit some form 

of systematic behavior, there is still something wrong. For example, if the first 25 of 

30 points fall above the center line and the last 5 fall below the center line, we would 

wish to know why this is so. Statistical methods to detect sequences or nonrandom 

patterns can be applied to the interpretation of control charts. To be sure, “in control” 

implies that all points are between the control limits and they form a random pattern.  

3.2 Statistical Basis of the Control Charts 

A typical control chart is the graphical display of a quality characteristic that has 

been measured or computed from a sample versus the sample number or time. 

Control limits are chosen so that if the process is in control, nearly all of the sample 

points fall between them. As long as the points plot within the control limits, the 

process is assumed to be in control, and no action is necessary. However, a point that 

plots outside of the control limits is interpreted as evidence that the process is out of 

control, and investigation and corrective action is required to find and eliminate the 

assignable cause or causes responsible for this behavior. It is customary to connect 

the sample points on the control chart with straight-line segments, so that it is easier 

to visualize how the sequence of points has evolved over time. 

Even if all the points plot inside the control limits, if they behave in a systematic or 

nonrandom manner, then it is an indication that the process is out of control. For 

example, if 18 of the last 20 points plotted above the center line but below the upper 
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control limit and only two of these points plotted below the center line but above the 

lower control limit, we would be very suspicious that something was wrong. If the 

process is in control, all the plotted points should have an essentially random pattern. 

Methods for looking for sequences or nonrandom patterns can be applied to control 

charts as an aid in detecting out-of-control conditions. Usually, there is a reason why 

a particular nonrandom pattern appears on a control chart, and if it can be found and 

eliminated, process performance can be improved [38]. 

There is a close connection between control charts and hypothesis testing. Essentially, 

the control chart is a test of the hypothesis that the process is in a state of statistical 

control. A point plotting within the control limits is equivalent to failing to reject the 

hypothesis of statistical control. Just as in hypothesis testing, we may think of the 

probability of type I error of the control chart (concluding the process is out of 

control when it is really in control) and the probability of type II error of the control 

chart (concluding the process is in control when it is really out of control). It is 

occasionally helpful to use the operating-characteristic curve of a control chart to 

display its probability of type II error. This would be an indication of the ability of 

the control chart to detect process shifts of different magnitudes [38]. 

The control chart is a device for describing in a precise manner exactly what is meant 

by statistical control. The most important use of a control chart is to improve the 

process. Most processes do not operate in a state of statistical control. Consequently, 

the routine and attentive use of control charts will identify assignable causes. If these 

causes can be eliminated from the process, variability will be reduced and the 

process will be improved. This process improvement activity using the control chart 

is illustrated in Figure 3.2. 
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Figure 3.2: Process improvement using the control chart. 

Some reasons for the popularity of the control charts are given below [38]: 

• Control charts are proven a technique for improving productivity: A 

successful control chart program will reduce the scrap and rework, which are 

the primary productivity-killers in any operation. If you reduce scrap and 

rework, then productivity increases, cost decreases, and production capacity 

(measured in the number of good parts per hour) increases. 

• Control charts are effective in defect prevention: The control helps keep the 

process in control, which is consistent with the “do it right the first time” 

philosophy. It is never cheaper to sort out “good” units from “bad” units later 

on than it is to build it right initially. If you do not have effective process 

control, you are paying someone to make a nonconforming product. 

• Control chart prevent unnecessary process adjustments: A control chart can 

distinguish between background noise and abnormal variation; no other 

device including a human operator is as effective in making this distinction. If 

process operators adjust the process based on periodic tests unrelated to a 

control chart program, they will often overreact to the background noise and 

make unneeded adjustments. These unnecessary adjustments can actually 

result in a deterioration of process performance. In other words, the control 

chart is consistent with the “if it is not broken, do not fix it” philosophy. 

Input Process Output 

Measurement 
System 

Detect assignable  
causes 

Indentify root 
cause of problem 

Implement 
corrective action 

Verify and 
follow up 
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• Control charts provide diagnostic information: frequently, the pattern of 

points on the control chart will contain information of diagnostic value to an 

experienced operator or engineer. This information allows the 

implementation of a change in the process that improves its performance. 

• Control charts provide information about process capability: The control 

chart provides information about the value of important process parameters 

and their stability over time. This allows an estimate of process capability to 

be made. This information is of tremendous use to product and process 

designers. 

3.3 Control Limits 

Specifying the control limits is one of the critical decisions that must be made in 

designing a control chart. By moving the control limits further from the center line, 

the risk of a type I error is decreased. However, widening the control limits will also 

increase the risk of a type II error. If the control limits are moved closer to the center 

line, the opposite effect is obtained: The risk of type I error is increased, while the 

risk of type II error is decreased [38]. 

One of the salient characteristics of the distribution of the example data is the 

tendency to build up observations in the center of the distribution. This characteristic 

is known as central tendency. Central tendency is usually expressed in three ways: (a) 

the average value termed the arithmetic mean, (b) the middle value termed the 

median, and (c) the most frequently occurring value termed the mode [43]. The 

arithmetic mean, X , is by far the most used measure of central tendency and is the 

basis of the definition of the center line of the control charts. 

,
i

i
X

CL X
n

= =
∑

 (3.1)

where Xi is the characteristic value of the observed data and n is the number of data 

initially available to construct the control chart. 
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Once the center line is determined, upper and lower control limits are set as 

3σ above and below the center line. Some analysts suggest using two sets of limits 

on control charts. The 3σ limits are the usual action limits; that is, when a point plots 

outside of this limit, a search for an assignable cause is made and corrective action is 

taken if necessary. The second set of the control limits is the 2σ control limits known 

as warning limits. If one or more points fall between the warning limits and action 

limits, or very close to the warning limit, one should be suspicious that the process 

may not be operating properly. One possible action to take when this occurs is to 

increase sampling frequency and to use these additional data in conjunction with the 

suspicious points to investigate the state of control of the process. Warning limits 

increase the sensitivity of the control chart. Their disadvantage is that they do not 

have a precise interpretation and may be confusing to operating personnel. This is 

not a serious objection, however [38]. 

3.4 Classification of SPCC 

SPCC’s are usually classified in two ways: Classification based on the number of 

quality characteristics and type of the quality characteristics [44]. 

3.4.1 Classification Based on the Number of Variables 

Based on the number of characteristic variables in consideration SPCC can be 

categorized into two categories as univariate control charts and multivariate control 

charts. 

Univariate SPCC 

In this type of SPCC, there is only one characteristic to be observed with the control 

charts. Classical Shewhart Chart uses one quality characteristic and so known as 

univariate control chart. Examples of univariate control charts can be given as p, np, 

and c charts.  



 37

Multivariate SPCC 

SPCC in this category deals with more than one quality characteristic at the same 

time. As a special case, a control chart with two quality characteristics in 

consideration is called as a bivariate control chart. 

3.4.2 Classification Based on the Quality Characteristics 

Consider that you are evaluating the output from a process.  Conceptually, you could 

evaluate the products in two basic ways.  In the first way you could measure a key 

characteristic using a continuous scale.  This produces variable (continuous) data. In 

the second way you would simply classify the products as “conforming” or 

“nonconforming”.  This produces attribute (discrete) data. A SPCC based on a 

continuous and measurable data is called variables SPCC, while that on a discrete 

and immeasurable data are called attributes SPCC. 

Variables SPCC 

Variables control charts are used to evaluate variation in a process where the 

measurement is a variable, i.e. the variable can be measured on a continuous scale 

(e.g. height, weight, length, concentration). There are two main types of variables 

control charts.  One (e.g. x-bar chart, Delta chart) evaluates variation between 

samples. Non-random patterns (signals) in the data on these charts would indicate a 

possible change in central tendency from one sampling period to the next.  One way 

of thinking about the use of a variables control chart is that you are testing the 

hypothesis that a particular sample mean came from the population of sample means 

represented by the control limits of the process.  If the particular sample mean is 

within the control limits, your conclusion is that it does come from that 

population.  If the particular sample mean is outside the control limits, you 

conclusion is that it may have come from some other distribution (i.e. a distribution 

with a mean that is higher or lower than this population mean.   

The other type of variables control chart (e.g. R-chart, S-chart, Moving Range chart) 

evaluates variation within samples.  Non-random patterns (signals) in the data on 

these charts would indicate a possible change in the variation within the samples.  
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Attributes SPCC 

The Shewhart control chart plots quality characteristics that can be measured and 

expressed numerically. We measure weight, height, position, thickness, etc. If we 

cannot represent a particular quality characteristic numerically, or if it is impractical 

to do so, we then often resort to using a quality characteristic to sort or classify an 

item that is inspected into one of two “buckets”.  

An example of a common quality characteristic classification would be designating 

units as “conforming units” or “nonconforming units”. Another quality characteristic 

criteria would be sorting units into “non defective” and “defective” categories. 

Quality characteristics of that type are called attributes.  

Control charts dealing with the number of defects or nonconformities are called c 

charts (for count).  

Control charts dealing with the proportion or fraction of defective product are 

called  p charts (for proportion).  

There is another chart which handles defects per unit, called the u chart (for unit). 

This applies when we wish to work with the average number of nonconformities per 

unit of product.  
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4 UNNATURAL PATTERN ANALYSES 

When a process is in statistical control, a control chart will display the known 

patterns of variation. When the control chart points deviate from these known 

patterns, the process is considered to be out of control. The control chart 

distinguishes between normal and non-normal variation through the use of statistical 

tests and control limits. The control limits are calculated using the rules of 

probability so that when a point is determined to be out of control, it is due to an 

assignable cause and not due to a normal variation. Points outside the control limits 

are not the only criteria to determine out of control conditions. All points may be 

inside the limits and the process may still be out of control if it does not display a 

normal pattern of variation. Zone tests are, which are hypothesis tests in a modified 

form, used to determine out of control conditions. They are used to test if the plotted 

points are following a normal pattern of variation. For a control chart to be effective, 

some action must be taken as a result of the chart pattern. When the process average 

is centered where it is supposed to be, and the variability displays a normal pattern, 

the process is considered to be in control. A normal pattern means that the process is 

aligned with the probabilities of the normal distribution. Large abnormal variability 

and unnatural patterns indicate out of control conditions. Out of control conditions 

usually have assignable causes that must be investigated and resolved. 

The control charts may indicate an out-of-control condition when either one or more 

points fall beyond the control limits or plotted points show some non-random 

patterns of behavior. Unnatural (non-random) patterns for classical control charts 

have been extensively studied. Over the years, many rules have been developed to 

detect non-random patterns within the control limits. Under the pattern-recognition 

approach, numerous researches have defined several types of out-of-control patterns 

(e.g. trends, cyclic pattern, mixture, etc.) with a specific set of possible causes. When 

a process exhibits any of these unnatural patterns, it implies that those patterns may 

provide valuable information for process improvement.  
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Zones of a control chart used in zone tests are bounded by the standard deviations of 

the data as illustrated in Figure 4.1. Probabilities of each zone based on the normal 

distribution are depicted in Figure 4.2. 

 

Figure 4.1: Zones of a control chart 

 

Figure 4.2: Zones and probabilities of normal distribution 

The main idea behind defining a rule for an unnatural pattern is the probability of the 

occurrence: These rules are based on the premise that a specific run of data has a low 

probability of occurrence in a completely random stream of data. In general, 

probability of occurrence of an unnatural pattern is less than 1%. In the literature, 

there exist some unnatural patterns defined for the crisp cases. There is no certain 

rule about which unnatural patterns to use and the selection of a set of rules depends 

on the user preferences. Unnatural patterns are defined for the short runs, i.e., rules 

for a 15-20 consecutive points on the chart are investigated.  
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Numerous supplementary rules, like zone tests or run rules [39, 45-48] have been 

developed to assist quality practitioners in detection of unnatural patterns for the 

crisp control charts. Run rules are based on the premise that a specific run of data has 

a low probability of occurrence in a completely random stream of data. If a run 

occurs, then this must mean that something has changed in the process to produce a 

nonrandom or unnatural pattern. Based on the expected percentages in each zone, 

sensitive run tests can be developed for analyzing the patterns of variation in the 

various zones.  

Western Electric suggested a set of decision rules for detecting unnatural patterns on 

control charts. Specifically, it suggested concluding that the process is out of control 

if any of the following conditions is satisfied [45]. 

Rule 1: A single point falls outside of the control limits (beyond ±3σ limits) (Figure 

4.3) 

 

Figure 4.3: Representation of Rule 1 of Western Electric  

 

Rule 2: Two out of three successive points fall in zone A or beyond (The odd point 

may be anywhere. Only two points count) (Figure 4.4). 
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Figure 4.4: Representation of Rule 2 of Western Electric 

Rule 3: Four out of five successive points fall in zone B or beyond (The odd point 

may be anywhere. Only four points count) (Figure 4.5). 

 

Figure 4.5: Representation of Rule 3 of Western Electric 

Rule 4: Eight successive points fall in zone C or beyond (Figure 4.6). 

 

Figure 4.6: Representation of Rule 4 of Western Electric 

 

One-sided probabilities of the rules above are calculated as 0.00135, 0.0015, 0.0027, 

and 0.0039, respectively. 
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Grant and Leavenworth recommended that nonrandom variations are likely to be 

presented if any one of the following sequences of points occurs in the control charts 

[39]. 

Rule 1: 7 consecutive points on the same side of the center line (Figure 4.7). 

 

Figure 4.7: Representation of Rule 1 of Grant and Leavenworth  

 

Rule 2: At least 10 of 11 consecutive points on the same side of the center line. 

Rule 3: At least 12 of 14 consecutive points on the same side of the center line. 

Rule 4: At least 14 of 17 consecutive points on the same side of the center line. 

One-sided probabilities of the rules above are calculated as 0.00781, 0.00586, 

0.00647, and 0.00636, respectively. 

Nelson proposed the following rules for unnatural patterns [46, 47]: 

Rule 1: One or more points outside of the control limits; 

Rule 2: 9 consecutive points in the same side of center line 

Rule 3: 6 points in a row steadily increasing or decreasing (Figure 4.8) 
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Figure 4.8: Representation of Rule 3 of Nelson 

Rule 4: 14 points in a row altering up and down (Figure 4.9) 

 

Figure 4.9: Representation of Rule 3 of Nelson 

Rule 5: 2 out of 3 points in a row in zone A or beyond 

Rule 6: 4 out of 5 points in zone B or beyond 

Rule 7: 15 points in a row in zones C, above and below the centerline 

Rule 8: 8 points in a row on both sides of the centerline with none in zone C 

Unnatural patterns tend to fluctuate too wide or they fail to balance around the 

centerline. The portrayal of natural and unnatural patterns is what makes the control 

chart a very useful tool for statistical process and quality control. When a chart is 

interpreted, we look for special patterns such as cycles, trends, freaks, mixtures, 

groupings or bunching of measurements, and sudden shifts in levels [45]. 
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5 FUZZY SET THEORY 

5.1 Introduction 

The boundaries of classical sets are required to be drawn precisely and, therefore, set 

membership is determined with complete certainty. An individual is either definitely 

a member of the set or definitely not a member of it. This sharp distinction is also 

reflected in classical logic, where each proposition is treated as either true or false. 

However, most sets and propositions are not so neatly characterized. It is not 

surprising that uncertainty exists in the human world. To survive in our world, we are 

engaged in making decisions, managing and analyzing information, as well as 

predicting future events. All of these activities utilize information that is available 

and help us try to cope with information that is not. Lack of information, of course, 

produces uncertainty, which is the condition where the possibility of error exists. 

This interplay of information and uncertainty is the hallmark of complexity. 

Research that attempts to model uncertainty into decision analysis is done basically 

through probability theory and/or fuzzy set theory. The former represents the 

stochastic nature of decision analysis while the latter captures the subjectivity of 

human behavior. 

A classical (crisp) set is normally defined as a collection of elements or objects 

x X∈ which can be finite, countable, or overcountable. Each single element can 

either belong to or not belong to a set A, A X⊆ . In the former case, the statement “x 

belongs to A” is true, whereas in the latter case it is false. It is possible to describe 

such a classical set in different ways: one can either enumerate the elements that 

belong to the set; describe the set analytically, i.e., by stating conditions for 

membership ( { }| 4A x x= ≤ ); or define the member elements by using the 

characteristic function, in which 1 indicates memberships and 0 nonmemberships. 

Fuzzy set theory is developed for solving problems in which descriptions of activities 

and observations are imprecise, vague, and uncertain. The term “fuzzy” refers to the 
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situation in which there are no well-defined boundaries of the set of the activities or 

observations to which the descriptions apply. In fuzzy set, the characteristic function 

allows various degrees of membership for the elements of a given set. [49] 

5.2 Literature Survey 

Professor Zadeh’s paper [50] on fuzzy sets introduced the concept of a class with 

unsharp boundaries and marked the beginning of a new direction by providing a 

basis for a qualitative approach to the analysis of complex systems in which 

linguistic rather than numerical variables are employed to describe system behavior 

and performance. This approach centers on building better models of human 

reasoning and decision-making. His unorthodox ideas were initially met with some 

skepticism but they have since gained wide acceptance. 

Fuzzy sets were introduced in 1965 by Lotfi Zadeh with a view to reconcile 

mathematical modeling and human knowledge in the engineering sciences. Since 

then, a considerable body of literature has blossomed around the concept of fuzzy 

sets in an incredible wide range of areas, from mathematics and logics to traditional 

and advanced engineering methodologies. Applications are found in many contexts, 

from medicine to finance, from human factors to consumer products, from vehicle 

control to computational linguistics, and so on… Fuzzy logic is now currently used 

in the industrial practice of advanced information technology [51].  

Recent Applications of fuzzy sets in the last decades can be found in [52-103]. A 

literature survey about the fuzzy set theory applications in production management 

research can be referred to the study of Guiffrida and Nagi [104]. 

5.3 Basic Concepts and Definitions 

5.3.1 Definition of a Fuzzy Set and Membership Function 

Fuzzy set theory is composed of an organized body of mathematical tools 

particularly well-suited for handling incomplete information, the unhappiness of 

classes of objects or situations, or gradualness of preference profiles, in a flexible 

way. It offers a unifying framework for modeling various types of information 
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ranging from precise numerical, interval-valued data, to symbolic and linguistic 

knowledge, with a stress on semantics rather than syntax (hence, some 

misunderstandings with logicians). [51] 

Let X be classical (ordinary) set of objects, called the universe, whose generic 

elements are denoted by x, namely, { }X x= . A fuzzy set A  in X is characterized by 

a membership function ( )x Aµ  which associates with each element in X a real 

number in the interval [0, 1].  If X is a collection of objects denoted by x, the fuzzy 

set A in X is a set of ordered pairs: 

( ){ }, ( )) |AA x x x Xµ= ∈  

( )A xµ is called the membership function or grade of membership (sometimes degree 

of compatibility or degree of truth) of x in A which maps X to the membership space 

M. The range of the membership function is a subset of the nonnegative real numbers 

whose supremum is finite. Elements with a zero degree of membership are normally 

not listed in A . Membership function is not limited to values between 0 and 1. If 

( )sup ( ) 1x xµ =  the fuzzy set A  is called as normal. A nonempty fuzzy set A  can be 

normalized by dividing ( )A xµ by ( )sup ( )x xµ . As a matter of convenience, otherwise 

stated, we will generally assume that fuzzy sets are normalized. In defining a 

membership function, the universal (crisp) set X is always assumed to be a classical 

set. 

As an example, suppose that a university defines class levels according to the Table 

5.1 and seeking to represent the concept of an experienced undergraduate student. 

By contrast with the crisp sets based on the precisely defined class levels, the vague 

term experienced undergraduate student corresponds to a genuine fuzzy set. This 

fuzzy set consists of individuals whose degrees of membership in the set range from 

0 to 1, and thus the graph of their membership degrees provides a transition from 0 to 

1. Depending on our judgment of how many completed credit hours are required for 

an undergraduate student to be regarded as experienced, one might represent the 

transition from inexperienced to experienced as depicted in Figure 5.1. 
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Table 5.1: Undergraduate Class Levels 

Class Level Credit 
Hours 

Freshman 0-32 

Sophomore 33-62 

Junior 63-94 

Senior 95-126 

 

 

Figure 5.1: Representation of experienced undergraduate students. 

The transition from nonmembership to full membership takes the form of a smooth 

curve which increases in height from left to right. Membership functions may exhibit 

other types of shapes depending upon the decision maker. In many fuzzy sets the 

exact shape of the transition from 0 to 1 is not critical. Indeed, sometimes we do not 

know for sure how to draw the transition from zero membership to total membership 

to capture the meaning of a linguistic term, such as medium, in a given context. The 

reason is that such a transitional shape must be based on empirical evidence of how 

the term in question is used in that context; many times this evidence is incomplete. 

However, most applications of fuzzy se theory do not show great sensitivity to the 

actual shapes of the membership functions involved. Hence, simple shapes are 

usually favored. [105] 

Membership functions can be represented in the following ways: 

• Graphical representation, as illustrated in Figure 5.1, 
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Credit 
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• Tabular and list representation: As the list of all ordered pairs consisting of 

each membership degree together with the label of individual. Some of the 

tabular and list representations used in the literature are given below. 

{ }1 2 3 4/ 0.8, / 0.3, / 0.9, /1.0A x x x x=  (5.1)

{ }1 2 3 40.8 / ,0.3 / ,0.9 / ,1.0 /A x x x x=  (5.2)

1 2 3 40.8 / 0.3 / 0.9 / 1.0 /A x x x x= + + +  (5.3)

Notice that the symbols / and + do not stand for division and summation; they are 

merely the correspondence between an element in the universal set and its 

membership degree, and connector between the elements, respectively. 

Analytic representation: When a universal set is infinite, which is usually the case for 

a set of real numbers, it is impossible to list all the elements together with their 

membership grades. These kinds of fuzzy sets are represented by an analytic form, 

which describes the shapes of the membership function. An example of analytic 

representation of membership functions is given below. 

4 for 4 5,
( ) 6 for 5 6,

0 otherwise.

x x
A x x x

− ≤ ≤⎧
⎪= − ≤ ≤⎨
⎪
⎩

 (5.4)

5.3.2 Complement of a Fuzzy Set 

The complement of A , denoted by A , is defined as: 

( ) 1 ( ),AA x x x Xµ µ= − ∀ ∈  (5.5)

Let { }10, 20,30, 40,50,60,70,80,90,100X = , the possible speed at which cars can 

cruise over a long distance. Then the fuzzy set, comfortable car speed for long 
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distance travel, A can subjectively be defined by the membership function as given 

below. 

{ }30 / 0.7,  40 / 0.75,  50 / 0.80,  60 / 0.80,  70 /1.0,  80 / 0.8,  90 / 0.30A =  

Then, the fuzzy set of uncomfortable car speed for long distance travel, A , can be 

written as: 

{ }10 /1.0,  20 /1.0,  30 / 0.30,  40 / 0.25,  50 / 0.20,  60 / 0.20,  80 / 0.20,  90 / 0.70A =  

Notice that elements of the fuzzy sets with zero membership degrees are omitted 

from the fuzzy set. The membership functions of A  and A  are illustrated in Figure 

5.2. 

 

Figure 5.2: Illustration of A  ( ) and A  ( ).  

5.3.3 Support of a Fuzzy Set 

It is often necessary to consider such elements in a fuzzy set which have nonzero 

membership grades. These elements are called support of that fuzzy set. The support 

of a fuzzy set A , ( )S A , is the crisp set of all x X∈ such that ~ ( ) 0
A

xµ > . 

5.3.4 α-Cut of a Fuzzy Set 

The (crisp) set of elements that belong to fuzzy set A  at least to the degree α is 

called the α-level set: 

{ }| AA x Xα µ α= ∈ ≥  (5.6)

10 30 50 70 90

1.0 
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Speed 

( )x Aµ

0.80 
0.60 
0.40 
0.20 
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{ }` | AA x Xα µ α= ∈ > is called “strong α-level set” or “strong α-cut”.  The α-cut of a 

fuzzy set is a more general case of the support of a fuzzy set. When 0, ( )A S Aαα = = . 

5.3.5 Convexity of a Fuzzy Set 

The convexity of a fuzzy set is an important property from the point of view of the 

application aspect. A fuzzy set A  is convex if 

1 2 1 1( (1 ) ) min( ( ), ( ))A A Ax x x xµ λ λ µ µ+ − ≥  (5.7)

where 1 2,x x X∈ and [ ]0,1λ ∈ . Alternatively, a fuzzy set is convex if all α-level sets 

are convex. Figure 5.3 gives a convex fuzzy set and a nonconvex fuzzy set. 

Generally speaking, unless otherwise stated, the term fuzzy set will denote a convex 

fuzzy set. 

 

Figure 5.3: Example of convex and nonconvex fuzzy set. 

5.3.6 Normality of a Fuzzy Set 

A fuzzy set A  is normal if and only if there exists at least one x value such 

that ( ) 1A xµ = . This property guarantees that at least one element in a fuzzy set fully 

satisfies the phenomenon that the fuzzy set applies to. Unless otherwise stated, the 

term fuzzy set is also assumed to be a normal fuzzy set. 

5.4 Fuzzy Numbers 

The concept of fuzzy number arises from the fact that many quantifiable phenomena 

do not lend themselves to be characterized in terms of absolutely precise numbers. 
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x

a) Convex
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Imprecise numerical quantities, such as “close to 12”, “about 15”, “several”, “near”, 

are represented with fuzzy numbers. A real fuzzy number A is described as any fuzzy 

subset of the real line R with membership function Af which possesses the following 

properties. [106] 

• Af is a continuous mapping from R to the closed interval [0, 1] 

• ( ) 0Af x = , for all ( ],x a∈ −∞  

• Af is strictly increasing on [ ],a b  

• ( ) 1Af x = , for all [ ],x b c∈  

• Af is strictly decreasing on [ ],c d  

• ( ) 0Af x = , for all [ ),x d∈ ∞ ; 

where a, b, c, and d are real numbers. Different types of fuzzy numbers can be 

obtained by changing the positions of a, b, c, and d (i.e., a = −∞ , or a b= , or b c= , 

or c d= , or d = ∞ ), and/or defining different increasing functions for (a, b], and/or 

decreasing function for.[c, d) Unless specified, it is assumed that A is convex, 

normal and bounded, i.e., a−∞ < , d < ∞ . 

The membership function Aµ  of the fuzzy number A can be stated as 

( )

( )

( )

,  for ,
1,   for ,

,  for ,
0,  otherwise.

L
A

A R
A

x a x b
b x c

x
x c x d

µ

µ
µ

⎧ ≤ ≤
⎪

≤ ≤⎪= ⎨
≤ ≤⎪

⎪
⎩

 (5.8)

where
A

Lµ and
A

Rµ are the left (increasing part) and right (decreasing part) membership 

functions of fuzzy number A, respectively. 

A fuzzy number can be represented in discrete or continuous form. Although there 

are a great variety of shapes of membership functions, as exemplified in Figure 5.4, 
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the most common are trapezoidal and triangular shapes. These types of fuzzy 

numbers are easy to construct and manipulate. 

x

( )xµ

53 7
x

( )xµ

53 7
x
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x
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53 7
x
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53 7

1 1 1
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Figure 5.4: Possible fuzzy numbers to capture the concept of “around 5”. 

A trapezoidal fuzzy number (TraFN) illustrated in Figure 5.5 has the membership 

function as given in Eq. below. 

( )

,    for ,

1,   for ,

,    for ,

0,  otherwise.

x a a x b
b a

b x c
x

d x c x d
d c

µ

−⎧ ≤ ≤⎪ −⎪
≤ ≤⎪= ⎨ −⎪ ≤ ≤

⎪ −
⎪
⎩

 (5.9)
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x

( )xµ

a

1

db c  

Figure 5.5: A trapezoidal fuzzy number (TraFN). 

Trapezoidal fuzzy numbers are represented by four points: a, b, c, and d as illustrated 

in Figure 5.5. From this point forward, a TraFN will be denoted as (a, b, c, d). 

A triangular fuzzy number (TriFN) as illustrated in Figure 5.6 is indeed a special 

case of the TraFN where b=c, and will be represented as (a, b, d) for the convenience 

to the TraFN. In this case, membership function of the TriFN becomes as follows: 

( )

,    for ,

1,   for ,

,    for ,

0,  otherwise.

x a a x b
b a

x b
x

d x b x d
d c

µ

−⎧ ≤ ≤⎪ −⎪
=⎪= ⎨ −⎪ ≤ ≤

⎪ −
⎪
⎩

 (5.10)

x

( )xµ

a

1

db=c  

Figure 5.6: A triangular fuzzy number (TriFN). 
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5.5 Fuzzy Arithmetic 

Basic operations for TriFNs and TraFNs used in this thesis are tabulated in Tables 

5.2 and 5.3.  

Table 5.2. Fuzzy operations for ( , , )M l m u= , ( , , )N a b c=  

Image of N ( , , )N c b a− = − − −  (5.11)

Inverse of N 1 1 1 1( , , )N
c b a

− =  (5.12)

Addition ( , , )M N l a m b u c+ = + + +  (5.13)

Subtraction ( , , )M N l c m b u a− = − − −  (5.14)

Scalar Multiplications 

0,k k R∀ > ∈  ( , , )kM kl km ku=  (5.15)

0,k k R∀ < ∈  ( , , )kM ku km kl=  (5.16)

Multiplications 

0, 0M N> >  ( , , )M N la mb uc=  (5.17)

0, 0M N< >  ( , , )M N lc mb ua=  (5.18)

0, 0M N< <  ( , , )M N uc mb la=  (5.19)

Division   

0, 0M N> >  ( , , )M l m u
N c b a

=  (5.20)

0, 0M N< >  ( , , )M u m l
N c b a

=  (5.21)

0, 0M N< <  ( , , )M u m l
N a b c

=  (5.22)
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Table 5.3: Fuzzy operations for 1 1 1 1( , , , )M a b c d= , 2 2 2 2( , , , )N a b c d=  

Image of N 2 2 2 2( , , , , )N d c b a− = − − − −  (5.23)

Inverse of N 1

2 2 2 2

1 1 1 1( , , , )N
d c b a

− =  (5.24)

Addition 1 2 1 2 1 2 1 2( , , , )M N a a b b c c d d+ = + + + +  (5.25)

Subtraction 1 2 1 2 1 2 1 2( , , , )M N a d b c c b d a− = − − − −  (5.26)

Scalar Multiplications 

0,k k R∀ > ∈  1 1 1 1( , , , )k M ka kb kc kd=  (5.27)

0,k k R∀ < ∈  1 1 1 1( , , , )k M kd kc kb ka=  (5.28)

Multiplications 

0, 0M N> >  1 2 1 2 1 2 1 2( , , , )M N a a b b c c d d=  (5.29)

0, 0M N< >  2 1 2 1 2 1 2 1( , , , )M N a d b c c b d a=  (5.30)

0, 0M N< <  1 2 1 2 1 2 1 2( , , , )M N d d c c b b a a=  (5.31)

Division   

0, 0M N> >  1 1 1 1

2 2 2 2

( , , , )a b c dM
N d c b a

=  (5.32)

0, 0M N< >  1 1 1 1

2 2 2 2

( , , , )d c b aM
N d c b a

=  (5.33)

0, 0M N< <  1 1 1 1

2 2 2 2

( , , , )d c b aM
N a b c d

=  (5.34)

5.6 Comparison of Fuzzy Numbers 

Fuzzy numbers cannot be easily compared to each other. So, in decision analysis it is 

very difficult to distinguish the best possible course of action among alternatives 

defined by means of fuzzy numbers. This is because fuzzy numbers do not provide a 
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totally ordered set as real numbers do. Taxonomy of fuzzy ranking methods is given 

in Figure 5.7. 

α

 

Figure 5.7: Taxonomy of fuzzy ranking methods. 

A detailed description of the fuzzy ranking methods can be found from [131].  When 

dealing process control charts in fuzzy environment, as well as in classical way, we 

check fuzzy samples whether they are within the fuzzy control limits or not. In 

classical control charts, a sample is either within or beyond the control limits. While 

a sample is within the control limits, process is said to be in control with a 

membership degree of 1 with respect to be in control, a sample beyond the control 

limits is marked as an out of control situation with 0 membership degree of being in 

control. From this point of view, for a fuzzy sample, membership degree of being in 

control can possess any membership degree between 0 and 1. In order to reflect the 

concept of fuzziness, a fuzzy ranking with respect to the fuzzy scoring based on the 

area measurement for TriFN and TraFN’s used in this thesis is explained below. 



 58

Let 1 1 1 1( , , , , )LCL a b c d= and 2 2 2 2( , , , , )UCL a b c d= be two TraFN’s corresponding to 

the lower and upper fuzzy control limits, respectively. A fuzzy sample, 

3 3 3 3( , , , , )S a b c d= needs to be compared to A and B in the following possibilities. 

• LCL S UCL≤ ≤ process is in control with a membership degree of 0 1µ≤ ≤ , 

• S LCL UCL≤ ≤  process is in control with a membership degree of 0 1µ≤ ≤ , 

• LCL UCL S≤ ≤  process is in control with a membership degree of 0 1µ≤ ≤ , 

where 0µ = and 1µ = refer to classical out of control and in control situations, 

respectively. 

An example for each of these three conditions is illustrated through the Figures 5.8-

10, respectively. 

 

Figure 5.8: Illustration of LCL S UCL≤ ≤  

 

 

Figure 5.9. Illustration of S LCL UCL≤ ≤  

UCL  LCL  S  

a2 b2 c2 d2 a1 b1 c1 d1 a3 b3 c3 d3 
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UCL  LCL  
S  

a2 b2 c2 d2 a1 b1 c1 d1 a3 b3 c3 d3 

1α =
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Figure 5.10: Illustration of LCL UCL S≤ ≤  

3 1 3 1 3 2 3 2

3 1 3 2

1                  
( ) 0                 

0 1  

if a a b b d d c c
LCL S UCL if d a a d

otherwise
µ

µ

≥ ∧ ≥ ∧ ≤ ∧ ≤⎧
⎪≤ ≤ = ≤ ∨ ≥⎨
⎪ < <⎩

 (5.35)

Membership degree of LCL S UCL≤ ≤  can be stated as 

in outS S S
S S

µ β −
= = =  (5.36)

where Sin and Sout are the fuzzy sample areas falling between and beyond the fuzzy 

control limits, respectively; and S is the total fuzzy sample area. Therefore, 

0 1µ β≤ = ≤  is always satisfied and meaningful with respect to the definition of the 

membership degree. 

5.7 Representative Values for Fuzzy Sets 

The most commonly used four ways of representative (scalar) values for the fuzzy 

sets, which transforms fuzzy sets into crisp values are fuzzy mode, α-level fuzzy 

midrange, fuzzy median, and fuzzy average. 

5.7.1 Fuzzy mode 

The fuzzy mode of a fuzzy set F is the value of the base variable where the 

membership function equals to 1. This is stated as 

{ } Fxxxf fe ∈∀== ,1)(|mod µ  (5.37)

1α =

UCL  LCL
S  

a2 b2 c2 d2 a1 b1 c1 d1 a3 b3 c3 d3 

0α =
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If the membership function is unimodal, the fuzzy mode is unique. However fuzzy 

mode is easy to calculate, it may lead to a biased result when the membership 

function is extremely asymmetrical. The fuzzy mode for TriFN and TraFN are 

illustrated in Figure 5.11. 

 

Figure 5.11: Illustration of fuzzy mode for a) TriFN, b) TraFN 

5.7.2 α-Level Fuzzy Midrange 

The α-level fuzzy midrange, )(αmrf , is defined as the midpoint of the ends of the α-

level cut. An α-level cut, denoted by αA , is a nonfuzzy set which comprises all 

elements whose membership is greater than or equal to α. If αa and αb  are the end 

points of αA , then 

( )ααα bafmr +=
2
1)(  (5.38)

In fact, the fuzzy mode is a special case ofα -level fuzzy midrange when 1=α . α -

level fuzzy midrange is also easy to calculate and more flexible since one can choose 

different levels of membership (α) of interest. The α-level fuzzy midrange for TriFN 

and TraFN are illustrated in Figure 5.12. 

1 1

µ µ

modf  
 
 

modf

a)  b) 
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Figure 5.12: Illustration of α-level fuzzy midrange for a) TriFN, b) TraFN 

5.7.3 Fuzzy Median 

The fuzzy median, medf , is the point which partitions the curve under the membership 

function of a fuzzy set into two equal regions satisfying the following equation: 

∫∫∫ ==
b

a
f

b

f
f

f

a
f dxxdxxdxx

med

med

)(
2
1)()( µµµ  (5.39)

where a and b are the end points in the base variable of the fuzzy set F such 

that ba < . If the area under the membership function is considered to be an 

appropriate measure of fuzziness, the fuzzy median may be thought to be suitable. 

The fuzzy median for TriFN and TraFN are illustrated in Figure 5.13. 

 

Figure 5.13: Illustration of fuzzy median for a) TriFN, b) TraFN 
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5.7.4 Fuzzy Average 

The fuzzy average, avgf , is defined as below: 

∫

∫

=

=== 1

0

1

0

)(

)(
):(

x
f

x
f

avg

dxx

dxxx
FxAvf

µ

µ
 (5.40)

When anyone wants to account for the shape of the membership function as well as 

its location, the fuzzy average will then be a better choice since it is derived from the 

extension principle and is basically a weighted average of the base variable. 
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6 FUZZY CONTROL CHARTS 

Fuzzy set theory has been used to model systems that are hard to define precisely. As 

a methodology, fuzzy set theory incorporates imprecision and subjectivity into the 

model formulation and solution process. Fuzzy set theory represents an attractive 

tool to aid research in the development of the control charts. 

6.1 Literature Survey 

Bradshaw used fuzzy set theory as a basis for interpreting the representation of a 

graded degree of product conformance with a quality standard. When the costs 

resulting from substandard quality are related to the extent of nonconformance, a 

compatibility function exists which describes the grade of nonconformance 

associated with any given value of that quality characteristic. This compatibility 

function can then be used to construct fuzzy economic control charts on an 

acceptance control chart. The author stresses that fuzzy economic control chart limits 

are advantageous over traditional acceptance charts in that fuzzy economic control 

charts provide information on the severity as well as the frequency of product 

nonconformance [132].  

Wang and Raz illustrated two approaches for constructing variable control charts 

based on linguistic data. When product quality can be classified using terms such as 

`perfect', `good', `poor', etc., membership functions can be used to quantify the 

linguistic quality descriptions. Representative (scalar) values for the fuzzy measures 

may be found using any one of four commonly used methods: (1) by using the fuzzy 

mode; (2) the alpha-level fuzzy midrange; (3) the fuzzy median; or (4) the fuzzy 

average. The representative values that result from any of these methods are then 

used to construct the control limits of the control chart. Wang and Raz illustrate the 

construction of an x-bar chart using the `probabilistic' control limits based on the 

estimate of the process mean, plus or minus three standard errors (in a fuzzy format), 

and by control limits expressed as membership functions [133].  
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Raz and Wang present a continuation of their 1990 work on the construction of 

control charts for linguistic data. Results based on simulated data suggest that, on the 

basis of sensitivity to process shifts, control charts for linguistic data outperform 

conventional percentage defective charts. The number of linguistic terms used to 

represent the observation was found to influence the sensitivity of the control chart 

[134].  

Kanagawa et al. developed control charts for linguistic variables based on probability 

density functions which exist behind the linguistic data in order to control process 

average and process variability. This approach differs from the procedure of Wang 

and Raz in that the control charts are targeted at directly controlling the underlying 

probability distributions of the linguistic data [135].  

Wang and Chen presented a fuzzy mathematical programming model and solution 

heuristic for the economic design of statistical control charts. The economic 

statistical design of an attribute np-chart is studied under the objective of minimizing 

the expected lost cost per hour of operation subject to satisfying constraints on the 

Type I and Type II errors. The authors argue that under the assumptions of the 

economic statistical model, the fuzzy set theory procedure presented improves the 

economic design of control charts by allowing more flexibility in the modeling of the 

imprecision that exist when satisfying Type I and Type II error constraints [136]. 

Gutierrez and Carmona noted that decisions regarding quality were inherently 

ambiguous and must be resolved based on multiple criteria. Hence, fuzzy multi-

criteria decision theory provides a suitable framework for modeling quality decisions. 

The authors demonstrated the fuzzy multiple criteria framework in an automobile 

manufacturing example consisting of five decision alternatives (purchasing new 

machinery, workforce training, preventative maintenance, supplier quality and 

inspection) and four evaluation criteria (reduction of total cost, flexibility, leadtime 

and cost of quality) [137].  

Khoo and Ho presented a framework for a fuzzy quality function deployment (FQFD) 

system in which the voice of the customer’ could be expressed as both linguistic and 

crisp variables. The FQFD system was used to facilitate the documentation process 

and consists of four modules (planning, deployment, quality control and operation) 

and five supporting databases linked via a coordinating control mechanism. The 
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FQFD system was demonstrated for determining the basic design requirements of a 

flexible manufacturing system [138]. 

Glushkovsky and Florescu described how fuzzy set theory can be applied to quality 

improvement tools when linguistic data are available. The authors identified three 

general steps for formalizing linguistic quality characteristics: (1) universal set 

choosing; (2) definition and adequate formalization of terms; and (3) relevant 

linguistic description of the observation. Examples of the application of fuzzy set 

theory using linguistic characteristics to Pareto analysis, cause-and-effect diagrams, 

design of experiments, statistical control charts and process capability studies were 

demonstrated [139]. 

Yongting identified that failure to deal with quality as a fuzzy concept was a 

fundamental shortcoming of conformance with a quality standard. When the costs 

resulting from substandard quality are related to the extent of nonconformance, a 

compatibility function exists which describes the grade of nonconformance 

associated with any given value of that quality characteristic. This compatibility 

function can then be used to construct fuzzy economic control charts on an 

acceptance control chart. The author stresses that fuzzy economic control chart limits 

are advantageous over traditional acceptance charts in that fuzzy economic control 

charts provide information on the severity as well as the frequency of product 

nonconformance [140].  

Grzegorzewski proposed a fuzzy control chart consisting of two complementary 

graphs for fuzzy observations represented by fuzzy numbers. The first graph 

incorporated a centre line which took the representative value of the fuzzy grand 

mean of all the samples as an estimate of the process level. Each sample was 

transformed to an interval symbolizing the fuzzy set of the sample mean. These 

intervals were plotted on the graph, and the failure of an interval to intersect with the 

centre line was taken as an indication of an out-of-control situation. Each interval 

also corresponded to a value plotted on the second graph, in which each value was 

interpreted as a degree of conviction that the process was out of control [141]. 

The aforementioned approaches for constructing fuzzy control charts established the 

centre line by calculating the representative value of the grand sample mean. 

However, these approaches all have the drawback that the fuzziness of the process 

level tends to be lost to a certain extent, and hence the resultant control charts lose 
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some of the information associated with the original data. To retain the fuzziness of 

vague data, Grzegorzewski and Hryniewicz [142] proposed the use of a fuzzy control 

chart based on a statistical test to verify a fuzzy hypothesis with vague data. Their 

approach utilized the necessity index of strict dominance (NSD) proposed by Dubois 

and Prade [143] to test the fuzzy hypothesis and required the user to specify a value 

for the necessity index, ξ . A centre area, rather than a centre line, was determined by 

the (1−ξ )-level set of the grand sample mean, and was used to estimate the process 

level. The upper and lower control limits were determined using the method 

presented by Grzegorzewski [141]. Each sample was represented by the interval of 

the (1 − ξ )-level set of the sample mean. The presence of an interval outside the 

control limits was taken as an indication that the process was no longer in control. In 

general, the aforementioned approaches for fuzzy process control employed the 

linguistic terms to assess product quality. However, the membership functions of 

these linguistic terms may not accurately reflect the expert’s judgment since they are 

assigned arbitrarily along the scale without regard to the fuzziness of the expert’s 

judgment. Kanagawa et al. [144] also commented that the membership functions of 

the linguistic terms used in their study and in that of Wang and Raz [133] were 

problematic. 

Cheng presented the construction of fuzzy control charts for a process with fuzzy 

outcomes derived from the subjective quality ratings provided by a group of experts. 

The proposed fuzzy process control methodology comprises an off-line stage and an 

on-line stage. In the off-line stage, experts assign quality ratings to products based on 

a numerical scale. The individual numerical ratings are then aggregated to form 

collective opinions expressed in the form of fuzzy numbers. The collective 

knowledge applied by the experts when conducting the quality rating process is 

acquired through a process of fuzzy regression analysis performed by a neural 

network. In the on-line stage, the product dimensions are measured, and the fuzzy 

regression model is employed to automate the experts’ judgments by mapping the 

measured dimensions to appropriate fuzzy quality ratings. The fuzzy quality ratings 

are then plotted on fuzzy control charts, whose construction and out-of-control 

conditions are developed using possibility theory. The developed control charts not 

only monitor the central tendency of the process, but also indicate its degree of 

fuzziness [145]. 
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6.2 Fuzzy p Control Charts 

In classical p charts, products are distinctly classified as “conformed” or 

“nonconformed” when determining fraction rejected. In fuzzy p control charts, when 

categorizing products, several linguistic terms can be used to denote the degree of 

being a nonconformed product such as “standard”, “second choice”, “third choice”, 

“chipped”, and so on… A membership degree of being a nonconformed product is 

assigned to each linguistic term. Then, sample means for each sample group, jM , are 

calculated using Eq. 6.1 [88]: 

j

t

i
iij

j m

rk
M

∑
== 1  (6.1)

where t  is the total number of linguistic terms, ijk is the number of products 

categorized with the linguistic term i in the sample j , ir is the membership degree of 

the linguistic term i , and jm is the total number of products in sample j . Center 

line,CL , is the average of the means of the n sample groups and can be determined 

by Eq. 6.2. 
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j
j

j

∑
=== 1  

(6.2)

where n is the number of sample groups initially available. ijk  and ir in Eq. 6.1, and 

so in Eq. 6.2, are the uncertain values and depend on the human subjective judgment. 

In another word, a sample can be belonged to the second choice category by a quality 

controller, while it may be included in the standard or third choice by another quality 

controller. In the same way, defining a membership degree for a category may 

depend on the quality controller preferences. Therefore, the value of jM  may lie 

between 0 and 1, as a result of these human judgments. It is clear that CL  in Eq. 6.2 

has a range between 0 and 1 too. To overcome the uncertainty in the determination of 

the CL , fuzzy set theory can successfully be adopted by defining CL  as a triangular 

fuzzy number (TFN) whose fuzzy mode is CL , as shown in Figure 6.1. Then, for 

each sample mean, ( )αjL and ( )αjR can be calculated using Eqs. 6.3 and 6.4, 

respectively [88]. 
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( ) αα jj ML =  (6.3)

( ) ( )[ ]αα jj MR −−= 11  (6.4)

 

Figure 6.1: TFN representation of M and jM of the sample j  

Membership function of the M , or CL , can be written as: 
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Control limits for α-cut can also be represented by TFNs. Since the membership 

function of CL  is divided into two components, then, each component will have its 

own CL , LCL  andUCL . The membership function of the control limits depending 

upon the value of α is given in Eq. 6.6 and illustrated in Figure 6.2 [88]. 
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(6.6)

 

where n is the average sample size (ASS). When the ASS is used, the control limits do 

not change with the sample size. Hence, the control limits for all samples are the 

same.  

 

Figure 6.2: Illustration of the α-cut control limits. 

For the variable sample size (VSS), n should be replaced by the size of the j th 

sample, jn . Hence, control limits change for each sample depending upon the size of 
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the sample. Therefore, each sample has its own control limits. The decision that 

whether process is in control (1) or out of control (0) for both ASS and VSS is as 

follows: 

( ) ( ) ( ) ( ) ( ) ( )
Process Control

1, if ,

0, otherwise.

L L R R
j jLCL L UCL LCL R UCLα α α α α α

=

⎧ ≤ ≤ ∧ ≤ ≤⎪
⎨
⎪⎩

 (6.7)

The value of α-cut is decided with respect to the tightness of inspection such that for 

a tight inspection, α values close to 1 may be used. As can be seen from Figure 6.2, 

while α reduces to 0 (decreasing the tightness of inspection), the range where the 

process is in control (difference between UCL  and LCL ) increases [88].  

6.3 Fuzzy c Control Charts: A Direct Fuzzy Approach 

In the crisp case, control limits for number of nonconformities are calculated by the 

Eqs. 6.8-10. 

CL c=  (6.8)

3= −LCL c c  (6.9)

3= +UCL c c  (6.10)

where c is the mean of the nonconformities In the fuzzy case, where number of 

nonconformity includes human subjectivity or uncertainty, uncertain values such as 

“between 10 and 14” or “approximately 12” can be used to define number of 

nonconformities in a sample. Then number of nonconformity in each sample, or 

subgroup, can be represented by a trapezoidal fuzzy number (a, b, c, d) or a 

triangular fuzzy number (a, b, d) as shown in Figure 6.3. Note that a trapezoidal 

fuzzy number becomes triangular when b=c. For the ease of representation and 

calculation, a triangular fuzzy number is also represented as trapezoidal by (a, b, b, d) 

or (a, c, c, d).  
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Figure 6.3: Representation of number of nonconformities by fuzzy numbers 

Here, we propose a direct fuzzy approach (DFA) to deal with the vague data for the 

control charts. Transforming the vague data by representing them with their 

representative values may result in biased decisions for particular data especially 

when they are represented by asymmetrical fuzzy numbers. Center line, CL , given in 

Eq. 8, is the mean of the samples. For fuzzy case, where the numbers of 

nonconformities are represented by trapezoidal fuzzy numbers, fuzzy center line, CL , 

can be determined using the arithmetic mean of the fuzzy numbers and  written as in 

Eq. 6.11 (See Chen and Hwang (1992) for the fuzzy arithmetics performed in this 

paper).  
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where n is the number of fuzzy samples and a ,b , c  and d are the arithmetic means 

of the a, b, c, and d, respectively. CL  can be rewritten as in Eq. 6.12. Then LCL  and 

UCL are calculated using fuzzy arithmetics as given in Eqs. 6.13 and 6.14, 

respectively. 

( ) ( )1 2 3 4, , , , , ,= =CL a b c d CL CL CL CL  (6.12)
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An α-cut is a nonfuzzy set which comprises all elements whose membership is 

greater than or equal to α. Applying α-cuts of fuzzy sets (Figure 6.3), values of 

aα and dα  for samples and 1CLα  and 4CLα  (start and end points of the α -cut of CL ) 

for center line are determined by Eqs. 6.15 and 6.16, respectively. 

( )a a b aα α= + −  

( )1 1 2 1CL CL CL CLα α= + −  
(6.15)

( )d d d cα α= − −  

( )4 4 4 3CL CL CL CLα α= − −  
(6.16)

Using α-cut representations, fuzzy control limits can be rewritten as given in Eqs. 

6.17-19. 

1 2 3 4( , , , )CL CL CL CL CL
α α α=  (6.17)

1 2 3 4( , , , )LCL LCL LCL LCL LCL
α α α=  (6.18)

1 2 3 4( , , , )UCL UCL UCL UCL UCL
α α α=  (6.19)

The results of these equations can be illustrated as in Figure 6.4. To retain the 

standard format of control charts and to facilitate the plotting of observations on the 

chart, it is necessary to convert the fuzzy sets associated with linguistic values into 

scalars referred to as representative values. This conversion may be performed in a 

number of ways as long as the result is intuitively representative of the range of the 

base variable included in the fuzzy set. Four ways, which are similar in principle to 

the measures of central tendency used in descriptive statistics, are fuzzy mode, α-

level fuzzy midrange, fuzzy median, and fuzzy average. It should be pointed out that 

there is no theoretical basis supporting any one specifically and the selection between 
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them should be mainly based on the ease of computation or preference of the user 

[133]. Conversion of fuzzy sets into crisp values results in loss of information in 

linguistic data. To retain the information of the linguistic data, we prefer to keep 

fuzzy sets as themselves and to compare fuzzy samples with the fuzzy control limits. 

For this reason, a direct fuzzy approach (DFA) based on the area measurement is 

proposed for the fuzzy control charts [54]. 
 

 

Figure 6.4: Representation of fuzzy control limits. 

Decision about whether the process is in control can be made according to the 

percentage area of the sample which remains inside the UCL  and/or LCL defined as 

fuzzy sets. When the fuzzy sample is completely involved by the fuzzy control limits, 

the process is said to be “in-control”. If a fuzzy sample is totally excluded by the 

fuzzy control limits, the process is said to be “out of control”. Otherwise, a sample is 

partially included by the fuzzy control limits. In this case, if the percentage area (βj) 

which remains inside the fuzzy control limits is equal or greater than a predefined 
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acceptable percentage (β), then the process can be accepted as “rather in control”; 

otherwise it can be stated as “rather out of control”. Possible decisions resulting 

from DFA are illustrated in Figure 6.5.  The parameters for determination of the 

sample area outside the control limits for α-level fuzzy cut are LCL1, LCL2, UCL3, 

UCL4, a, b, c, d, and α. The shape of the control limits and fuzzy sample are formed 

by the lines of 1 2LCL LCL , 3 4UCL UCL , a b  , and c d . A flowchart to calculate area 

of the fuzzy sample outside the control limits is given in Figure 6.6. Sample area 

above the upper control limits, U
outA , and sample area falling below the lower control 

limits, L
outA , are calculated. Equations to compute U

outA and L
outA are given in Appendix 

A. Then, total sample area outside the fuzzy control limits, outA , is the sum of the 

areas below fuzzy lower control limit and above fuzzy upper control limit. 

Percentage sample area within the control limits is calculated as given in Eq. 6.20. 

 

Figure 6.5: Illustration of all possible sample areas outside the fuzzy control limits at 

α-level cut. 
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where jS α is the sample area at α-level cut. 
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Figure 6.6: Flowchart to compute the area outside the fuzzy control limits
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DFA provides the possibility of obtaining linguistic decisions like “rather in control” 

or “rather out of control”. Further intermediate levels of process control decisions are 

also possible by defining β  in stages. For instance, it may be defined as given below 

which is more distinguished. 

in control,                  for  0.85 1,

rather in control,        for  0.60 0.85,
Process Control=

rather out of control,  for  0.10 0.60,

out of control,             for  0 0.10.

j

j

j

j

β

β

β

β

≤ ≤⎧
⎪

≤ <⎪⎪
⎨ ≤ <⎪
⎪ ≤ <⎪⎩

 (6.21)

Intermediate levels of process control decisions are subjectively defined by the 

quality expert. In binary classification (crisp case), the quality expert may only know 

if the process is in control or out of control. These predefined levels refer the 

strengthens of the out of control. It can be used as a tracking and may give valuable 

information before the process is out of control. However intermediate levels are 

subjectively defined, it should refer to the depth of information the quality expert 

needs to take some preventive actions [54]. 
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7 FUZZY UNNATURAL PATTERN ANALYSIS 

Analysis of fuzzy unnatural patterns for fuzzy control charts is necessary to develop. 

In this section a model for the fuzzy control charts developed in the previous section 

is proposed.  

The formula for calculating the probability of a fuzzy event A is a generalization of 

the probability theory: In the case which a sample space X is a continuum or discrete, 

the probability of a fuzzy event P(A) is given by Yen and Langari as: 

( ) ( ) ,     if  is continuous,
( )

( ) ( ),     if  is discrete.
A X

A i X i
i

x P x dx X
P A

x P x X

µ

µ

⎧
⎪= ⎨
⎪⎩

∫
∑

 (7.1)

where XP  denotes a classical probability distribution function of X for continuous sample 

space and probability function for discrete sample space, and Aµ  is a membership function 

of the event A  [146]. 

The membership degree of a fuzzy sample to belong to a region is directly related to 

its percentage area falling in that region, and therefore, it is continuous. For example, 

a fuzzy sample may be in zone B with a membership degree of 0.4 and in zone C 

with a membership degree of 0.6. While counting fuzzy samples in zone B, that 

sample is counted as 0.4.  

Run rules are based on the premise that a specific run of data has a low probability of 

occurrence in a completely random stream of data. If a run occurs, then this must 

mean that something has changed in the process to produce a nonrandom or 

unnatural pattern. Based on the expected percentages in each zone, sensitive run tests 

can be developed for analyzing the patterns of variation in the various zones.  

For fuzzy control charts, based on the Western Electric rules [45], the following 

fuzzy unnatural pattern rules can be defined. Probabilities of these fuzzy events are 

calculated using normal approach to binomial distribution. The probability of each 

fuzzy rule (event) below depends on the definition of the membership function which 
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is subjectively defined so that the probability of each of the fuzzy rules is as close as 

possible to the corresponding classical rule for unnatural patterns. The idea behind 

this approach may justify the following rules [54]. 

Rule 1: Any fuzzy data falling outside the three-sigma control limits with a ratio of 

more than predefined percentage (β) of sample area at desired α-level. Membership 

function for this rule can subjectively be defined as below: 

( )1

0,                            for  0.85 1,
( 0.60) / 0.25,      for  0.60 0.85,
( 0.10) / 0.50,      for  0.10 0.60,
1,                             for  0 0.10,

x
x x

x
x x

x

µ

≤ ≤⎧
⎪ − ≤ ≤⎪= ⎨ − ≤ ≤⎪
⎪ ≤ ≤⎩

 (7.2)

Rule 2: A total membership degree around 2 from 3 consecutive points in zone A or 

beyond.  

Probability of a sample being in zone A (0.0214) or beyond (0.00135) is 0.02275. 

Let membership function for this rule be defined as follows: 

( )2

0,                            for  0 0.59,
( 0.59) /1.41,      for  0.59 2,   
1,                             for  2 3.

x
x x x

x
µ

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪ ≤ ≤⎩

 (7.3)

Using the membership function above, fuzzy probability given in Eq. 7.1 can be 

determined by Eq. 7.4. 
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where, 

( ) x npP X x P z
npq

⎛ ⎞−
≥ = ≥⎜ ⎟⎜ ⎟

⎝ ⎠
 (7.5)
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To integrate the equation above, membership function is divided into sections each 

with a 0.05 width and 2 ( ) ( )xx P xµ  values for each section are added. For 

1 0.59x = and 2 2x = , the probability of the fuzzy event, rule 2, is determined as 

0.0015, which corresponds to the crisp case of this rule. 

 In the following rules, the membership functions are set in the same way. 

Rule 3: A total membership degree around 4 from 5 consecutive points in zone C or 

beyond: 

( )3

0,                            for  0 2.42,
( 2.42) /1.58,      for  2.42 4,   
1,                             for  4 5.

x
x x x

x
µ

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪ ≤ ≤⎩

 (7.6)

Fuzzy probability for this rule is calculated as 0.0027. 

Rule 4: A total membership degree around 8 from 8 consecutive points on the same 

side of the centerline with the membership function below: 

( )4

0,                            for  0 2.54,
 

( 2.54) / 5.46,     for  2.54 8.
x

x
x x

µ
≤ ≤⎧

= ⎨ − ≤ ≤⎩
 (7.7)

The fuzzy probability for the rule above is then determined as 0.0039 

Based on Grant and Leavenworth’s rules (1988), the following fuzzy unnatural 

pattern rules can be defined. 

Rule 1: A total membership degree around 7 from 7 consecutive points on the same 

side of the center line. Fuzzy probability of this rule is 0.0079 when membership 

function is defined as below: 

( )1

0,                                for  0 2.48,
 

( 2.48) / 4.52,         for  2.48 7.
x

x
x x

µ
≤ ≤⎧

= ⎨ − ≤ ≤⎩
 (7.8)

Rule 2: At least a total membership degree around 10 from 11 consecutive points on 

the same side of the center line. Fuzzy probability of this rule is 0.0058 when 

membership function is defined as below: 
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( )2

0,                                for  0 x 9.33,
( 9.33) / 0.77,         for  9.33 x 10,   
1,                                 for  10 x 11.

x xµ
≤ ≤⎧

⎪= − ≤ ≤⎨
⎪ ≤ ≤⎩

 (7.9)

Rule 3: At least a total membership degree around 12 from 14 consecutive points on 

the same side of the center line. If membership function is set as given below, then 

fuzzy probability of the rule is equal to 0.0065. 

( )3

0,                              for  0 11.33,
( 11.33) / 0.67,      for  11.33 12,   
1,                               for  12 14.

x
x x x

x
µ

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪ ≤ ≤⎩

 (7.10)

Rule 4: At least a total membership degree around 14 from 17 consecutive points on 

the same side of the center line. Probability of this fuzzy event with the membership 

function below is 0.0062. 

( )4

0,                              for  0 13.34,
( 13.34) / 0.66,      for  13.34 14,   
1,                               for  14 17.

x
x x x

x
µ

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪ ≤ ≤⎩

 (7.11)

Fuzzy unnatural pattern rules based on Nelson’s Rules (1985) can be defined in the 

same way. Some of Nelson’s rules (Rules 3 and 4) are different from the Western 

Electric Rules and Grant and Leavenworth’s rules. In order to apply these rules to 

fuzzy control charts, fuzzy samples can be defuzzified using α-level fuzzy midranges 

of the samples. Remember that the α-level fuzzy midrange, mrf α , is defined as the 

midpoint of the ends of the α-cut. If aα and dα are the end points of α-cut, then, 

( )1
2mrf a dα α α= +  (7.12)

Then Nelson’s 3rd and 4th rules are fuzzified as follows: 

Rule 3: 6 points in a row steadily increasing or decreasing with respect to the desired 

α-level fuzzy midranges. 

Rule 4: 14 points in a row altering up and down with respect to the desired α-level 

fuzzy midranges. 
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8 APPLICATIONS 

8.1 α-Level Fuzzy Control Charts for Fraction Rejected 

In order to compare our approach, a numerical example of Tunisie Porcelaine 

problem stated by Wang and Raz (1990) and Taleb and Limam (2002) will be 

handled. In the example presented, Taleb and Limam (2002) classified porcelain 

products into four categories with respect to the quality. When a product represents 

no default, or an invisible minor default, it is classified as a standard product (S). If it 

presents a visible minor default that does not affect the use of the product, then it is 

classified as second choice (SC). When there is a visible major default that does not 

affect the product use, it is called as third choice (TC). Finally, when the use is 

affected, the item is considered as chipped (C). Data for 30 samples of different sizes 

taken every half an hour is shown in Table 8.1. 

Wang and Raz’s Approaches 

a) Probablistic Approach: We will use the fuzzy mode as the representative value of 

the fuzzy subset. For each sample j , sample mean jM and the standard deviation jSD , 

are determined. The results of these values, their means, and the corresponding 

control limits, are shown in Table 8.2. The control limits change when the sample 

size changes. Only on two occasions is the process deemed to be out of control: 

samples 8 and 29 as shown in Figure 8.1. 
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Table 8.1: Data of the Porcelain Process 

Sample 

j 
Standard Second Choice Third Choice Chipped Size 

1 144 46 12 5 207 

2 142 50 9 5 206 

3 142 35 16 6 199 

4 130 70 19 10 229 

5 126 60 15 10 211 

6 112 47 9 8 176 

7 151 28 22 9 210 

8 127 43 45 30 245 

9 102 79 20 3 204 

10 137 64 24 5 230 

11 147 59 16 6 228 

12 146 30 6 6 188 

13 135 51 16 8 210 

14 186 82 23 7 298 

15 183 53 11 9 256 

16 137 65 26 4 232 

17 140 70 10 3 223 

18 135 48 15 9 207 

19 122 52 23 10 207 

20 109 42 28 9 188 

21 140 31 9 4 184 

22 130 22 3 8 163 

23 126 29 11 8 174 

24 90 23 16 2 131 

25 80 29 19 8 136 

26 138 55 12 12 217 

27 121 35 18 10 184 

28 140 35 15 6 196 

29 110 15 9 1 135 

30 112 37 28 11 188 
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Table 8.2: Determined values of jM , jSD , jUCL , jLCL  for 30 subgroups. 

j jM
 jSD

 jUCL  jUCL j jM
 jSD

 jUCL jLCL
 

1 0.109 0.20 0.184 0.088 16 0.143 0.21 0.170 0.091 

2 0.107 0.20 0.164 0.088 17 0.114 0.18 0.174 0.090 

3 0.114 0.22 0.183 0.085 18 0.138 0.24 0.177 0.088 

4 0.162 0.24 0.178 0.091 19 0.167 0.25 0.178 0.088 

5 0.154 0.24 0.182 0.089 20 0.178 0.26 0.182 0.086 

6 0.138 0.24 0.181 0.084 21 0.088 0.19 0.182 0.085 

7 0.129 0.25 0.179 0.089 22 0.092 0.23 0.188 0.082 

8 0.258 0.34 0.179 0.092 23 0.119 0.24 0.186 0.084 

9 0.161 0.19 0.180 0.088 24 0.120 0.21 0.198 0.076 

10 0.143 0.21 0.174 0.091 25 0.182 0.27 0.195 0.077 

11 0.126 0.21 0.178 0.090 26 0.146 0.25 0.190 0.089 

12 0.088 0.21 0.179 0.086 27 0.151 0.26 0.193 0.085 

13 0.137 0.23 0.177 0.089 28 0.114 0.22 0.180 0.087 

14 0.131 0.21 0.174 0.096 29 0.069 0.16 0.193 0.077 

15 0.108 0.22 0.175 0.093 30 0.182 0.27 0.183 0.086 

Average 0.136 0.229   
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Figure 8.1: Fuzzy probabilistic control chart with fuzzy mode. 

b) Membership Approach: For each sample, the membership function of the fuzzy 

subset corresponding to the sample observations is determined. Membership function 

for the porcelain process is as follows: 

0,    for 0,
( ) 1, for 0 1,

0,     for 1.
S

x
x x x

x
µ

≤⎧
⎪= − + ≤ ≤⎨
⎪ ≥⎩

  

0,       for 0,
14 ,             for 0 ,
4( )

4 4 1,  for 1,
3 3 4

0,   for 1.

SC

x

x x
x

x x

x

µ

≤⎧
⎪
⎪ ≤ ≤
⎪= ⎨
⎪− + ≤ ≤
⎪
⎪ ≥⎩

 

0,  for 0,
12 ,        for 0 ,
2( )

12 2 ,  for 1,
2

0,  for 1.

TC

x

x x
x

x x

x

µ

≤⎧
⎪
⎪ ≤ ≤
⎪= ⎨
⎪ − ≤ ≤
⎪
⎪ ≥⎩

  
0, for 0,

( ) ,         for 0 1,
0, for 1.

C

x
x x x

x
µ

≤⎧
⎪= ≤ ≤⎨
⎪ ≥⎩

 

(8.1)

By the use of the fuzzy mode transformation, the representative values for fuzzy 

subsets shown in Table 8.3 are determined.   
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Table 8.3: Representative values of linguistic terms 

Linguistic  

Term 

Representative 
Value 

S 0 

SC 0.25 

TC 0.5 

C 1 

 

The membership functions for the porcelain data are also illustrated in Figure 8.2. 

 

Figure 8.2: Membership functions for the porcelain data. 

By applying membership approach to the porcelain data, fuzzy membership control 

chart is obtained as in Figure 8.3. As can be seen from Figure 8.3, only samples 8 

and 29 are an out of control state. Note that fuzzy control limits, here, are calculated 

as follows. 

{ }
{ }

max 0,[ ]

min 1,[ ]

LCL CL k

UCL CL k

σ

σ

= −

= +
 (8.2)

where  

 

S SC TC C 

0.25 0.50 0.75 1 

1 

0 
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1

1 m

j
j

SD
m

σ
=

= ∑  (8.3)

 

and  

 

∑
=

−
−

=
t

i
jjijj Mrk

n
SD

1

2)(
1

1  (8.4)

The value of k is calculated by the use of Monte Carlo simulation so that a pre-

specified type I error probability yields. In this example, the value of k , used here, is 

approximately 0.2795, CL is 0.136, and σ is 0.229. Then UCL and LCL are 

calculated as 0.200 and 0.072, respectively.  
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Figure 8.3: Fuzzy membership control chart with fuzzy mode transformation. 
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Assume that quality control expert decides for reduced inspection, say α=0.30. If we 

apply the ASS approach, then center lines and control limits for α=0.30 can be 

determined using Eq. (6.6), as: 

040800.0)30.0( ==αLCL  

0.0)30.0( ==αLLCL  

082550.0)30.0( ==αLUCL  

740800.0)30.0( ==αRCL  

648321.0)30.0( ==αRLCL  

833279.0)30.0( ==αRUCL  

As can be seen from Figure 8.4, corresponding control chart for α=0.30, all the 

samples are in control. 
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Figure 8.4: α-cut fuzzy control chart for α=0.30 (ASS approach) 

 

For a tighter inspection with α=0.50, control chart is obtained as shown in Figure 8.5. 

Note that sample 8 begins to be out of control while α is chosen as 0.39 or greater. 
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Figure 8.5: α-cut fuzzy control chart for α=0.50 (ASS approach) 

 

When α=1.0, the crisp control limits are obtained as in Figure 8.6. 

0,000000

0,050000

0,100000

0,150000

0,200000

0,250000

0,300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sample No

C
on

tro
l L

im
its

 

Figure 8.6: α-Cut fuzzy control chart for α=1.0 (Crisp Case, ASS approach) 

If we use the VSS approach for the same example, control charts for α=0.30, α=0.50, 

and α=1.0 are obtained as in Figures 8.7, 8.8 and 8.9. While increasing α-cut, 

namely tightening the inspection, sample 8 starts to be out of control while 33.0≥α . 
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Figure 8.7: α-cut fuzzy control chart for α=0.30 (VSS approach) 

 

0,000000

0,050000

0,100000

0,150000

0,200000

0,250000

0,300000

0,350000

0,400000

0,450000

0,500000

0,550000

0,600000

0,650000

0,700000

0,750000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sample No

C
on

tro
l L

im
its

 
Figure 8.8: α-Cut fuzzy control chart for α=0.50 (VSS approach) 
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Figure 8.9: α-Cut fuzzy control chart for α=1.0 (Crisp Case, VSS approach) 

 

Wang and Raz (1990) attempted to extend the use of control charts to linguistic 

variables by presenting several ways for determining the center line and the control 

limits. Kanagawa and Ohta (1993) proposed control charts for linguistic data with the 

above values of UCL, LCL, and CL, from a standpoint different to that of Wang and 

Raz in order not only to control the process average but also to control the process 

variability. 

Our approach differs from previous studies from the point of view of inspection 

tightness. The quality controller is able to define the tightness of the inspection 

depending on the nature of the products and manufacturing processes. This is 

possible by selecting the value of α-cut freely. Quality controller may decide using 

higher values of α-cut for products that require a tighter inspection. Our approach is 

very easy in computation and similar to the crisp control charts [88].  

8.2 α-Level Fuzzy Control Charts for number of nonconformıtıes 

The samples from a toy company producing large-sized toys are taken every 4 h to 

control number of nonconformities. Because of the large dimensions of the toys, the 
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number of nonconformities may also be large. The data collected from 30 subgroups 

are linguistic as shown in Table 8.4. 

Table 8.4: Number of nonconformities for 30 subgroups. 

Sample 
No 

Approximately Between Sample No Approximately Between 

1 30  16 40  

2  20-30 17  32-50 

3  5-12 18 39  

4 6  19  15-21 

5 38  20 28  

6  20-24 21  32-35 

7  4-8 22  10-25 

8  36-44 23 30  

9  11-15 24 25  

10  10-13 25  31-41 

11 6  26  10-25 

12 32  27  5-14 

13 13  28  28-35 

14  50-52 29  20-25 

15  38-41 30 8  

 

The linguistic expressions in Table 8.4 are represented by fuzzy numbers as shown in 

Table 8.5. These numbers are subjectively identified by the quality control expert 

who also sets a = 0.60 and minimum acceptable ratio as b = 0.70. 
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Table 8.5: Fuzzy number (a,b,c,d) representation of 30 subgroups. 

No a b c d No a b c d 

1 25 30 30 35 16 33 40 40 44 

2 15 20 30 35 17 28 32 50 60 

3 4 5 12 15 18 33 39 39 43 

4 3 6 6 8 19 12 15 21 38 

5 32 38 38 45 20 23 28 28 36 

6 16 20 24 28 21 28 32 35 42 

7 3 4 8 12 22 14 18 28 33 

8 27 36 44 50 23 24 30 30 34 

9 9 11 15 20 24 20 25 25 31 

10 7 10 13 15 25 25 31 41 46 

11 3 6 6 10 26 7 10 25 28 

12 27 32 32 37 27 3 5 14 20 

13 11 13 13 15 28 23 28 35 38 

14 39 50 52 55 29 17 20 25 29 

15 28 38 41 45 30 5 8 8 15 

Average of 30 subgroups 18.13 22.67 26.93 32.07 

 

Using Eqs. 6.11-14, CL , LCL , andUCL are determined as follows: 

(18.13, 22.67, 26.93, 32.07)CL =  

(1.15, 7.10, 12.65, 19.29)LCL =  

(30.91, 36.95, 42.50, 49.05)UCL =  

Applying an α-cut of 0.60, values of 0.60CLα= , 0.60LCLα= , and 60.0~ =αLCU are calculated 

as follows. (See Eqs. 6.17-19) 

0.60 (20.85, 22.67, 26.93, 28.99)CLα= =  
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0.60 (4.72, 7.10, 12.65, 15.31)LCLα= =  

0.60 (36.95, 36.95, 42.50, 45.12)UCLα= =  

 

The fuzzy modes, α-level fuzzy midranges, and α-level fuzzy medians of the fuzzy 

control limits above are summarized in Table 8.6.  

 

Table 8.6: Control limits and their representative values based on fuzzy mode, fuzzy 
midrange, and fuzzy median 

a b c d Midrange 
(α=0.60)

Median 
(α=0.60)

CL 18.13 22.67 26.93 32.07 24.95 24.88
LCL 1.15 7.10 12.65 19.29 10.05 9.96
UCL 30.91 36.95 42.5 49.05 38.95 39.79[36.95,42.5

Mode

Fuzzy Transformation MethodFuzzy number

[22.67,26.9
[7.10,12.65]

 

The decisions about the process control resulted from each sample based on the 

fuzzy mode, α-level fuzzy midrange, and α-level fuzzy median are given in Table 8.7. 
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Table 8.7: Decisions based on fuzzy mode, fuzzy midrange, and fuzzy median 
(α=0.60, β=0.70) 

Sj mod, jf  jβ  mod, jf   

Decision 

0.60
,mr jf α=

0.60
,mr jf α=   

Decision 

0.60
,med jf α=

0.60
,med jf α=  

Decision 

1 30 30 100.00 In Control 30.00 In Control 30.00 In Control 

2 20 30 100.00 In Control 25.00 In Control 25.00 In Control 

3 5 12 70.04 Rather In Control 8.90 Out of Control 8.70 Out of Control 

4 6 6 0.00 Out of Control 5.80 Out of Control 5.90 Out of Control 

5 38 38 100.00 In Control 38.20 In Control 38.10 In Control 

6 20 24 100.00 In Control 22.00 In Control 22.00 In Control 

7 4 8 22.56 Rather Out of Control 6.60 Out of Control 6.30 Out of Control 

8 36 44 81.28 Rather In Control 39.40 In Control 39.70 In Control 

9 11 15 100.00 In Control 13.60 In Control 13.30 In Control 

10 10 13 100.00 In Control 11.30 In Control 11.40 In Control 

11 6 6 0.00 Out of Control 6.20 Out of Control 6.10 Out of Control 

12 32 32 100.00 In Control 32.00 In Control 32.00 In Control 

13 13 13 100.00 In Control 13.00 In Control 13.00 In Control 

14 50 52 0.00 Out of Control 49.40 Out of Control 50.20 Out of Control 

15 38 41 100.00 In Control 38.30 In Control 38.90 In Control 

16 40 40 100.00 In Control 39.40 In Control 39.70 In Control 

17 32 50 58.35 Rather Out of Control 42.20 Out of Control 41.60 Out of Control 

18 39 39 100.00 In Control 38.60 In Control 38.80 In Control 

19 15 21 100.00 In Control 20.80 In Control 19.40 In Control 

20 28 28 100.00 In Control 28.60 In Control 28.30 In Control 

21 32 35 100.00 In Control 34.10 In Control 33.80 In Control 

22 18 28 100.00 In Control 23.20 In Control 23.10 In Control 

23 30 30 100.00 In Control 29.60 In Control 29.80 In Control 

24 25 25 100.00 In Control 25.20 In Control 25.10 In Control 

25 31 41 100.00 In Control 35.80 In Control 35.90 In Control 

26 10 25 100.00 In Control 17.50 In Control 17.50 In Control 

27 5 14 76.69 Rather In Control 10.30 In Control 9.90 Out of Control 

28 28 35 100.00 In Control 31.10 In Control 31.30 In Control 

29 20 25 100.00 In Control 22.70 In Control 22.60 In Control 

30 8 8 100.00 In Control 8.80 Out of Control 8.40 Out of Control 
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The overall results of these approaches are summarized in Table 8.8. As it is clearly 

seen, some different decisions are obtained. For example, sample 3 indicates “Rather 

in control” when fuzzy mode transformation or DFA (85.81 percent of the sample is 

inside the control limits) is used, but it also indicates “out of control” when fuzzy 

midrange or fuzzy median is used. On the other hand, while sample 11 indicates an 

“out of control” situation when fuzzy mode, fuzzy midrange, or fuzzy median is used, 

DFA results in “Rather in control” since 74.38 percent of the fuzzy sample is inside 

the fuzzy control limits. Another typical result is sample 27’s, which reveals 3 

different process control decisions. According to the fuzzy mode transformation and 

DFA, this sample indicates “Rather in Control”, while fuzzy midrange 

transformation results in “In Control” and fuzzy median results in “Out of Control”. 

DFA shows that 87.67 percent of this sample is within the fuzzy control limits and it 

is strongly “Rather in Control” for β=0.70. Sample 30 is another example that reveals 

different decisions.  
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Table 8.8: Comparison of alternative approaches: Fuzzy mode, fuzzy midrange, 
fuzzy median, and DFA (α = 0.60 and β=0.70) 

j mod, jf  

Decision 

0.60
,mr jf α=  

Decision 

0.60
,med jf α=  

Decision 

DFA 
(α=0.60) 
Decision 

j mod, jf  

Decision 

0.60
,mr jf α=  

Decision 

0.60
,med jf α=  

Decision 

DFA  
(α=0.60) 
Decision 

1 In Control In Control In 
Control In Control 16 In 

Control 
In 

Control 
In 

Control 
In 

Control 

2 In Control In Control In 
Control In Control 17

Rather 
Out of 
Control 

Out of 
Control 

Out of 
Control 

Rather 
Out of 
Control 

3 Rather In 
Control 

Out of 
Control 

Out of 
Control 

Rather In 
Control 18 In 

Control 
In 

Control 
In 

Control 
In 

Control 

4 Out of 
Control 

Out of 
Control 

Out of 
Control 

Rather Out 
of Control 19 In 

Control 
In 

Control 
In 

Control 
In 

Control 

5 In Control In Control In 
Control In Control 20 In 

Control 
In 

Control 
In 

Control 
In 

Control 

6 In Control In Control In 
Control In Control 21 In 

Control 
In 

Control 
In 

Control 
In 

Control 

7 
Rather 
Out of 
Control 

Out of 
Control 

Out of 
Control 

Rather Out 
of Control 22 In 

Control 
In 

Control 
In 

Control 
In 

Control 

8 Rather In 
Control In Control In 

Control 
Rather In 
Control 23 In 

Control 
In 

Control 
In 

Control 
In 

Control 

9 In Control In Control In 
Control In Control 24 In 

Control 
In 

Control 
In 

Control 
In 

Control 

10 In Control In Control In 
Control In Control 25 In 

Control 
In 

Control 
In 

Control 
In 

Control 

11 Out of 
Control 

Out of 
Control 

Out of 
Control 

Rather In 
Control 26 In 

Control 
In 

Control 
In 

Control 
In 

Control 

12 In Control In Control In 
Control In Control 27 Rather In 

Control 
In 

Control 
Out of 
Control 

Rather In 
Control 

13 In Control In Control In 
Control In Control 28 In 

Control 
In 

Control 
In 

Control 
In 

Control 

14 Out of 
Control 

Out of 
Control 

Out of 
Control 

Out of 
Control 29 In 

Control 
In 

Control 
In 

Control 
In 

Control 

15 In Control In Control In 
Control In Control 30 In 

Control 
Out of 
Control 

Out of 
Control 

In 
Control 

 

DFA provides the possibility of making linguistic decisions like “rather in control” 

or “rather out of control”. Further intermediate levels of process control decisions are 

also possible by defining different intervals forβ . For instance, it may be defined as 

in Eq. 8.5. 

in control,                  for  0.85 1,

rather in control,        for  0.60 0.85,
Process Control=

rather out of control,  for  0.10 0.60,

out of control,            for  0 0.10.

j

j

j

j

β

β

β

β

≤ ≤

≤ <

≤ <

≤ <

⎧
⎪
⎪
⎨
⎪
⎪
⎩

 (8.5)

More intervals for the process control decisions can be subjectively defined by the 

decision-maker [61]. 



 97

8.3 A Numerical Example for Fuzzy Unnatural Pattern Analysis 

Fuzzy unnatural pattern analysis for the numerical example given in Section 8.2 is 

carried out in this section. Fuzzy control limits were determined as: 

0.60
(20.85,22.67,26.93,28.99)CL

α=
=  

0.60
(4.72,7.10,12.65,15.31)LCL

α=
=  

0.60
(34.53,36.95,42.50,45.12)UCL

α=
=  

 

Fuzzy zones are calculated and tabulated in the Table 8.9. 

 

Table 8.9: Fuzzy zones calculated for the example 

Zone a b c d 

UCLα 34.53 36.95 42.50 45.12

+2 σ 29.97 32.19 37.31 39.74

+1 σ 25.41 27.43 32.12 34.37

CLα 20.85 22.67 26.93 28.99

-1 σ 15.47 17.48 22.17 24.43

-2 σ 10.10 12.29 17.41 19.87

LCLα 4.72 7.10 12.65 15.31

 

Based on the Western Electric Rules 1-4, membership functions in Eqs. 6.2, 6.3, 6.6, 

and 6.7 are used. These membership functions set the degree of unnaturalness for 

each rule. As an example, when a total membership degree of 1.90 is calculated for 

the rule 2, its degree of unnaturalness is determined from ( )2 xµ as 0.9291.  

In order to make calculations easy and mine our sample database for unnaturalness a 

computer program is coded using Fortran 90 programming language. Table 8.10 

gives total membership degrees of the fuzzy samples in various zones.  

Total membership degrees of the fuzzy samples (and degree of unnaturalness) for the 

fuzzified Western Electric Rules are given in Table 8.11. Sample 14 shows an out of 
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control situation with respect to Rule 1, while samples 10 and 16 indicate an 

unnatural pattern with respect to the Rule 2. Their degrees of unnaturalness are 

determined from the membership function of the Rule 2. As an example, considering 

Rule 2 of the fuzzified Western Electric Rules, membership degrees of samples 15 

and 16 become 2 and it corresponds to a degree of unnaturalness of 1. 
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Table 8.10: Membership degrees of fuzzy samples for different zones (A: Above, B: Below) 
 A +3σ in +3σ B +3σ A +2σ in +2σ B +2σ A  +1σ in +1σ B +1σ A CL in CL B CL A -1σ in -1σ B -1σ A -2σ in -2σ B -2σ A -3σ in -3σ B -3σ 
1 0 0 1 0 0.24 0.76 0 1 0 0.94 0.06 0 1 0 0 1 0 0 1 0 0 
2 0 0 1 0 0.04 0.96 0 0.38 0.62 0.25 0.52 0.23 0.64 0.36 0 0.97 0.03 0 1 0 0 
3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0.18 0.82 0 0.86 0.14 
4 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0.68 0.32 
5 0 1 0 0.32 0.68 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
6 0 0 1 0 0 1 0 0 1 0 0.54 0.46 0.27 0.73 0 0.95 0.05 0 1 0 0 
7 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0.58 0.42 
8 0.13 0.73 0.14 0.61 0.39 0 0.97 0.03 0 1 0 0 1 0 0 1 0 0 1 0 0 
9 0 0 1 0 0 1 0 0 1 0 0 1 0 0.05 0.95 0 0.89 0.11 0.37 0.63 0 

10 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0.55 0.45 0.01 0.99 0 
11 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0.74 0.26 
12 0 0 1 0 0.96 0.04 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 
13 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0.02 0.98 0 
14 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
15 0 0.98 0.02 0.56 0.44 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
16 0 1 0 0.72 0.28 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
17 0.39 0.39 0.22 0.65 0.35 0 0.9 0.1 0 1 0 0 1 0 0 1 0 0 1 0 0 
18 0 1 0 0.49 0.51 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
19 0 0 1 0 0 1 0 0.03 0.97 0 0.28 0.72 0.13 0.67 0.21 0.58 0.42 0 0.97 0.03 0 
20 0 0 1 0 0.05 0.95 0 1 0 0.58 0.42 0 1 0 0 1 0 0 1 0 0 
21 0 0.2 0.8 0 0.99 0.01 0.61 0.39 0 1 0 0 1 0 0 1 0 0 1 0 0 
22 0 0 1 0 0 1 0 0.22 0.78 0.09 0.53 0.39 0.48 0.52 0 0.87 0.13 0 1 0 0 
23 0 0 1 0 0.17 0.83 0 1 0 0.89 0.11 0 1 0 0 1 0 0 1 0 0 
24 0 0 1 0 0 1 0 0.2 0.8 0 1 0 0.89 0.11 0 1 0 0 1 0 0 
25 0 0.51 0.49 0.28 0.61 0.1 0.72 0.28 0 1 0 0 1 0 0 1 0 0 1 0 0 
26 0 0 1 0 0 1 0 0.01 0.99 0 0.24 0.76 0.14 0.42 0.44 0.43 0.46 0.11 0.72 0.28 0 
27 0 0 1 0 0 1 0 0 1 0 0 1 0 0.01 0.99 0 0.38 0.62 0.12 0.76 0.12 
28 0 0.04 0.96 0 0.53 0.47 0.27 0.73 0 0.87 0.13 0 1 0 0 1 0 0 1 0 0 
29 0 0 1 0 0 1 0 0.03 0.97 0 0.63 0.37 0.39 0.61 0 0.98 0.02 0 1 0 0 
30 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0.02 0.98 0 1 0 
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Table 8.11: Total membership degrees of the fuzzy samples  in zones for the 
fuzzified Western Electric Rules. 

 In or Above Fuzzy CL In or Below Fuzzy CL Sample 
No 

Beyond 
±3σ Rule 2 Rule 3 Rule 4 Rule 2 Rule 3 Rule 4 

1 0.00 0.24 1 1 0 0 0.06
2 0.00 0.04 0.38 0.77 0.03 0.36 0.75
3 0.14 0 0 0 0.86 0.86 0.86
4 0.32 0 0 0 0.68 0.68 0.68
5 0.00 1 1 1 0 0 0
6 0.00 0 0 0.54 0.05 0.73 1
7 0.42 0 0 0 0.58 0.58 0.58
8 0.13 0.87 0.87 0.87 0 0 0
9 0.00 0 0 0 1 1 1

10 0.00 0 0 0 1 (µ*=1) 1 1
11 0.26 0 0 0 0.74 0.74 0.74
12 0.00 0.96 1 1 0 0 0
13 0.00 0 0 0 1 1 1
14 1.00 0 0 0 0 0 0
15 0.00 1 1 1 0 0 0
16 0.00 1 (µ*=1) 1 1 0 0 0
17 0.39 0.61 0.61 0.61 0 0 0
18 0.00 1 1 1 0 0 0
19 0.00 0 0.03 0.28 0.42 0.87 1
20 0.00 0.05 1 1 0 0 0.42
21 0.00 0.99 1 1 0 0 0
22 0.00 0 0.22 0.61 0.13 0.52 0.91
23 0.00 0.17 1 1 0 0 0.11
24 0.00 0 0.2 1 0 0.11 1
25 0.00 0.9 1 1 0 0 0
26 0.00 0 0.01 0.24 0.57 0.86 1
27 0.12 0 0 0 0.88 0.88 0.88
28 0.00 0.53 1 1 0 0 0.13
29 0.00 0 0.03 0.63 0.02 0.61 1
30 0.00 0 0 0 1 1 1

* unnatural sample with the corresponding degree of unnaturalness defined 
by the membersip functions for each rule. 
 
Total membership degrees of the fuzzy samples in zones for fuzzified Grant and 

Leavenworth’s rules are represented in Table 8.12. 

As can be seen from Table 8.12, no samples indicate an unnatural pattern with 

respect to the fuzzified Grant and Leavenworth’s rules. 

Rules 1, 2, 5, 6, 7, and 8 among Nelson’s rules can be examined in the same way. 

For Nelson’s Rules 3 and 4, fuzzy samples are defuzzified by using α-level fuzzy 

midranges (given in Table 8.7) in order to check whether next sample shows an 

increment or decrement or alternating. α-level fuzzy midranges for α=0.60 are 
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illustrated in Figure 8.10, which refers no unnaturalness with respect to the Nelson’s 

Rules 3 and 4. 

Table 8.12: Total membership degrees of the fuzzy samples in zones for fuzzified 
Grant and Leavenworth’s rules 

In or Above CL In or Below CL 
Sample 

No 

In or 
Above

CL 

In or 
Below 

CL 
Rule 1 Rule 2Rule 3Rule 4Rule 1Rule 2Rule 3Rule 4 

1 1.00 0.06 - - - - - - - - 
2 0.77 0.75 - - - - - - - - 
3 0.00 0.86 - - - - - - - - 
4 0.00 0.68 - - - - - - - - 
5 1.00 0.00 - - - - - - - - 
6 0.54 1.00 - - - - - - - - 
7 0.00 0.58 3.31 - - - 3.93 - - - 
8 0.87 0.00 3.18 - - - 3.87 - - - 
9 0.00 1.00 2.41 - - - 4.12 - - - 

10 0.00 1.00 2.41 - - - 4.26 - - - 
11 0.00 0.74 2.41 4.18 - - 4.32 6.67 - - 
12 1.00 0.00 2.41 4.18 - - 4.32 6.61 - - 
13 0.00 1.00 1.87 3.41 - - 4.32 6.86 - - 
14 0.00 0.00 1.87 3.41 5.18 - 3.74 6.00 7.67 - 
15 1.00 0.00 2.00 4.41 5.18 - 3.74 5.32 7.61 - 
16 1.00 0.00 3.00 4.41 5.41 - 2.74 5.32 6.86 - 
17 0.61 0.00 3.61 4.48 6.02 7.79 1.74 4.32 6.00 7.67 
18 1.00 0.00 4.61 5.48 7.02 7.79 1.00 3.74 5.32 7.61 
19 0.28 1.00 3.89 4.89 6.30 7.30 2.00 4.74 6.32 7.86 
20 1.00 0.42 4.89 5.89 6.76 8.30 1.42 4.16 5.74 7.42 
21 1.00 0.00 5.89 6.89 7.76 9.30 1.42 3.16 5.16 6.74 
22 0.61 0.91 5.51 7.51 7.51 8.92 2.34 3.34 6.08 7.66 
23 1.00 0.11 5.51 7.51 8.51 9.38 2.45 3.45 5.19 6.77 
24 1.00 1.00 5.90 8.51 9.51 10.38 3.45 3.45 5.19 7.19 
25 1.00 0.00 5.90 9.51 10.51 10.51 3.45 3.45 4.45 7.19 
26 0.24 1.00 5.86 8.75 9.75 10.75 3.45 4.45 5.45 7.19 
27 0.00 0.88 4.86 7.75 9.75 10.75 3.91 5.33 5.33 7.07 
28 1.00 0.13 4.86 8.14 10.75 11.75 4.04 5.46 5.46 6.46 
29 0.63 1.00 4.87 7.77 10.38 11.38 4.12 6.46 6.46 7.46 
30 0.00 1.00 3.87 7.49 9.38 11.38 5.01 6.46 7.46 7.46 
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Figure 8.10:  α-level (α =0.60) fuzzy midranges of the fuzzy samples 
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CONCLUSIONS 

Fuzzy sets in the study of control charts were first used by Wang and Raz (1990) by 

means of fuzzy transformation. The aim was to represent the uncertainty in the 

available data. Followed Wand and Raz some similar models were proposed for the 

fuzzy control charts. Their models were based on the transformation to the crisp case 

using one of the representative values of fuzzy sets. This transformation is 

problematic since the characteristics of data were lost upon the transformation at 

early stages of the model. For example, when the uncertainty is represented by 

extremely asymmetrical fuzzy numbers, none of the representative values are 

successful to handle the information provided by the data. Furthermore, their study 

simply investigated the usual means of the control charts that resulted with the state 

of “in control” or “out of control”. To make such a strict decision under uncertainty 

was another failure, i.e. there were no further intermediate levels of decisions 

available. On the other hand, the most meaningful part of the control charts was not 

studied: unnatural pattern analyses for fuzzy control charts. 

In this study, the elimination of the gap in the construction and interpretation of 

fuzzy control charts is aimed. First, the existing models of fuzzy control charts were 

improved. α-cut of fuzzy sets is successfully introduced in order to reflect the 

tightness of the inspection that can subjectively be set by the quality controller 

according to the importance of the inspection. Using this approach, α-cut fuzzy p 

charts for linguistic data were developed. The proposed approach is effective in 

detecting process shifts.  

In construction of the fuzzy c charts, loss of the properties of the fuzzy data was 

taken into consideration. For these purposes, a new approach based on the area 

measurement is developed and named as “Direct Fuzzy Approach (DFA)”. In this 

model, linguistic or uncertain data are represented by triangular and trapezoidal 

fuzzy numbers. Based on the central tendency method, center line for fuzzy control 

chart is determined using fuzzy arithmetic operations. Then, lower and upper control 
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limits of the chart are also determined as fuzzy numbers rather than transforming 

them by using representative values. As a result, both the sample data and control 

limits were obtained as fuzzy numbers and their comparison to judge the state of 

process control is carried out by means of a method based on the area measurement. 

At this stage, several intermediate decisions are able to set by the quality controller 

so that the strength of the signal can be defined. DFA provides the possibility of 

making linguistic decisions like “rather in control” or “rather out of control”. 

If all of the points on the control chart lie between the defined control limits, the 

process is simply said to be in control. Does this mean that when all points fall within 

the limits, the process is in control? Not necessarily. If the plot looks non-random, 

that is, if the points exhibit some form of systematic behavior, there is still something 

wrong. Statistical methods to detect sequences or nonrandom patterns were 

extensively applied to the interpretation of classical control charts. To be sure, “in 

control” implies that all points are between the control limits and they form a random 

pattern. In this study, unnatural pattern analyses are also developed for the proposed 

direct fuzzy approach. Some fuzzy rules for the DFA are defined and their 

probability of occurrence is calculated using the probabilities of fuzzy events. It is, of 

course, possible that one can set further different fuzzy unnatural pattern rules in the 

light of the proposed model. In fuzzy unnatural pattern analyses, the degree of being 

an unnatural pattern is also defined so that the quality controller can be aware of the 

membership degree to say that an unnatural pattern exists. This model is also 

illustrated with a numerical example. 

For a further study, construction and interpretation of multivariate fuzzy control 

charts is suggested. It is clear that the study of multivariate fuzzy control charts is 

going to open new research areas. 
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APPENDIX A 

Equations to compute U
outA and L

outA  given in Figure 6.6  
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where, 
 

( ) ( )
4

1
4 3

UCL at
b a UCL UCL

−
=

− + −
 , 

( ) ( )
4

2
4 3

UCL dt
UCL UCL d c

−
=

− − −
 ,  

 
( )1 1max ,z tα=  , and ( )2 2max ,z tα=  

 
0U

outA =  (A-U6 )
 

( ) ( ) ( )1 1
2

U
outA d a c bα α α⎡ ⎤= − + − −⎣ ⎦  (A-U7 )

 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1
1 max ,0
2

1 min 1 ,1
2

L t t
out

z z

A LCL a LCL a t

d a c b t

α α α

α

⎡ ⎤= − + − − +⎣ ⎦

⎡ ⎤− + − − −⎣ ⎦

 

 
where, 
 

( ) ( )
1

2 1

d LCLt
LCL LCL d c

−
=

− + −
 and ( )max ,z tα=  

(A-L1 )

 

( ) ( ) ( )1 1
2

L
outA d a c bα α α⎡ ⎤= − + − −⎣ ⎦  (A-L2 )

 

( ) ( ) ( )1 2
1 1
2

L
outA LCL a LCL bα α α⎡ ⎤= − + − −⎣ ⎦  (A-L3 )

 

( ) ( ) ( )( )( )

( ) ( ) ( )( )

2 2 1 1

1 1

1 1 1 1 2
1 min max ,0 ,
2

1 min 1 ,1
2

z z t tL
out

z z

A LCL a LCL a t t t

d a c b t

α

α

⎡ ⎤= − + − − − +⎣ ⎦

⎡ ⎤− + − − −⎣ ⎦

 

 
where, 
 

( ) ( )
1

1
2 1

d LCLt
LCL LCL d c

−
=

− + −
 , 

( ) ( )
1

2
2 1

a LCLt
LCL LCL b a

−
=

− − −
 

 
( )1 1max ,z tα=  , and ( )2 2max ,z tα=  

(A-L4 )

 

( ) ( ) ( )( )1 2
1 min 1 ,1
2

L z z
outA LCL a LCL b t α⎡ ⎤= − + − − −⎣ ⎦  

 
(A-L5 )



 120

where, 
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