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MODELLEME TEORİSİNDE MODÜLERLİK 

ÖZET 

Günümüzde, İşletmeler sürekli değişen dış ortam ile karşı karşıyadırlar. Uygun 
yönetim için daha iyi iş akışı ve değişime uyum sağlayacak işletme modelleri 
gereklidir. İş akışı modellemenin hedefi, iş akışı sisteminini anlamak, performans 
değerlendirmesini üstünleştirmek,  karar vermeyi desteklemek ve sürekli iyileştirme 
için değiştirme cesareti vermektir. Bu hedefe ulaşmak için, etkili enformasyon 
teknolojisi gerkelidir. Bu nedenle, İşletme içersinde bilgiye ulaşımı destekleyecek 
etkili enformasyon teknolojisi gereklidir. 

Organizasyon yönetimine destek amacı ile model entegrasyonuna destek için bu 
proje referans mimarisi ve modellemesi çercevesinde pattern modellerin 
geliştirilmesi üzerine odaklanmıştır. Dahası, Referans mimarisini belirleyen ve 
Üretim proseslere rehberlik eden pattern modelleri, ilgisi olamayan komponentler 
arasındaki ilişkiyi kurup prosesin ana elemanlarını tanımlar. Bu çalışmamda içeriği 
sağlamak için elektronik ticaret konusunda uluslararası camia tarafından Kabul gören  
Renkli Petri ağları ve UML dili şeçilmiştir.   

Birbirinden farklı optimizasyon durumları incelenmiş ve her duruma ait olan 
prosesler, daha temel alt proseslere bölünmüştür, Her bir temel alt proses patern 
olarak adlandırılır.  

Paternler, Colour Petri net paternleri gibi bir çok farklı kombinasyonda simulasyon 
modeli tasarımı yapılandırılabilecek tutarlı araçları ve kurallara ulaşmak için 
incelenir. Patternler systemin çalışma mekanizmasını ve yapılandırma şartlarını 
anlamaya yarar. Bulunan değerler özellikle sıra sistemleri ve depo sistemleri olmak 
üzere sistemin ana modeli üzerinde daha sonra  genellenebilir. Böylelikle, Modelin 
geri dönüşebilirliği ve devam edilebilirliği sağlanabilir.  

 
 
 
 
 
 
 
 
 
 
 
  



 

 

 

PATTERNS IN SYSTEM MODELING THEORY 

SUMMARY 

Enterprises today are faced with a rapidly changing environment. There is a need for 
better process management and increased integration, and enterprise modeling is 
necessary for proper management. The goal of process modeling is to improve 
understanding of what happens in the process system, enhance performance 
evaluation of some parts of the process, support decision-making activities and 
encourage changes for continuous improvement.  Therefore, efficient information 
technology is required to support the availability of information in the enterprise. 

In an effort to achieve the integration of models aimed at supporting various facets of 
organizational management, this project focused on the development of pattern 
modeling in the context of reference architectures and methodologies. Furthermore 
the Pattern models, that underlie various reference architectures and the guidelines 
on modeling manufacturing processes, specify the main elements of an process and 
provides a relation between its interrelated components. To provide the context that 
this work was performed in, Colored Petri Nets and UML which were selected 
because they result from and are promoted by the major international coalition in the 
area of e-commerce.  

Different Optimization cases have been examined, and the process of each case has 
been divided into several smaller sub processes which are called patterns.  

Patterns are examined for coherent tools which include basic generalized colored 
Petri net patterns that can be configured as any combination in system model 
simulation design. The patterns are used to understand the mechanisms and 
conditions for system configuration. Findings might be generalized to on any system 
model, especially queuing systems and inventory systems .Thus, the recyclability and 
the sustainability of the modem can be acquired. 
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1. INTRODUCTION 

1.1. Problem description 

The importance of simulation for decision making on production systems increases.  

The success of many enterprises depends on the use of advanced decision making 

techniques. In a dynamic environment, the constraints are always changing, so 

exceptions or deviations from plans occur almost regularly (E. Liu, A. Kumar, & 

Aalst, 2007) It is necessary to have an effective and efficient method.  A conceptual 

model is a necessary deliverable in a simulation enabled decision study. Creation of 

the conceptual model is a time consuming mental process which is labor intensive 

activity (Arons & Boer, 2001) 

Colored Petri Nets (CPN), which is a graphical language, is extensively used for 

modeling and analysis of distributed systems with elements of concurrency. It is one 

of the most practical and efficient languages to create and evaluate a conceptual 

model for simulation base researches. The challenges in using colored Petri nets 

(CPN) for workflow management is interfacing the Petri nets to the real world in a 

general way, and in a way that is easily changeable. (Kristoffersen & Boudko, 2006) 

In the complex cases the modeling itself requires a large effort, more so if the 

resulting model can  only be used once .(Zulch&Fisher,2001)  Alignment of the 

systems, however, implies extensive configuration and customization efforts in the 

implementation process and may lead to significant implementation costs that exceed 

the price of software licenses by factor five to ten. (Davenport, 2000) 

Current systems do not provide any knowledge about previously applied process 

instance changes when a new ad-hoc deviation becomes necessary; users have to 

define each ad-hoc change from scratch. This does not only lead to high efforts and 

lower user acceptance, but also to greater variability of change definitions and more 

noise. (Aalst, Guenther, J. Recker, & M. Reichert, 2006) 

There is a need for a clearly structured configuration procedure.  (J. Recker, 

J. Mendling, Aalst, & M. Rosemann, 2006) and the challenge that we undertake in 



 

 

this report is to investigate the use of patterns in the early phases of the simulation 

study. 

But it is a possible solution direction to split the decision study into several smaller 

phases, the deliverables of which can be reused in other decision studies. (Zulch, 

Jonsson, & Fisher, 2002) In cases such as flexible manufacturing systems, it is then 

possible to configure a variety of general operation simulation models on the basis of  

reusable smaller operation patterns . 

There are several reasons for using Colored Petri Nets and CPN Tools 

(I. Vanderfeesten, Aalst, & Reijers, 2005): 

• First, the use of Petri nets provides correctness analysis of the model by 

means of, for instance, a state space analysis. 

• It is very easy to make small adaptations to the models and then compare the 

outcomes. 

• Moreover, the integration of process and data is essential to this view on a 

workflow process. 

• CPN Tools provides the possibility to integrate them in one model. The data 

is then captured in the data structures of the model, i.e. in the colors or types, 

and the process in the PetriNet itself. 

•  Finally, CPN Tools contains a simulation environment, in which one can go 

step-by-step through the model, following or defining oneself a sequence of 

firing. 

In the context of the ten step method, the focus is on the three first steps which 

conclude with conceptual system model. For this model we make use of a set of 

empirically gathered patterns in Colored Petri nets. The main focus of the CPN 

patterns is to aid better simulation modeling and analysis for queuing problems and 

work flows  (Aalst & Mulyar, 2005) It allows modeler to design sub operations 

which are independent from the uniformity of the general operation model. 

The main aim of this project is searching for coherent tools which include basic 

generalized colored Petri net patterns that can be configured as any combination in 

system model simulation design. The work will focus on small examples to 

understand the mechanisms and conditions for system configuration. Findings can 

then be generalized to on any system model, especially queuing systems and 

inventory systems which are focused in this study. 



 

 

1.2. Research objective  

As mentioned in the problem description, main objective of this study is exploring a 

way to combine specific system modules as patterns which will collaborate in any 

system model structure. The study will draw on existing CPN patterns (Mulyar & 

van der Aalst, 2005) and on the conceptual system model used in the course 

Simulation of Operational Processes (Pels & Goossenaerts, 2005) 

1.3. Research plan and structure of the report 

First the main concept of the simulation modeling, the high level Petri nets and CPN 

needs to be understood. To do this several sources and methodologies have been 

examined, simulation problems, work flow logic have been reviewed.  The book of 

Law&Kelton (2000) is one of the main resources in this study. Since the aim of the 

study is to acquire the patterns, similar studies on that subject should be overviewed. 

Secondly the scope and the context of the project have to be defined in order to 

become a properly focused effort on specific problem types. This is done in chapter 2 

where the methodology for the simulation concept is recalled. Concepts such as 

problem formulation, problem objectives, level of details and design study are 

mentioned in this section.  

Thirdly the criteria for comparing the available methodology with and without the 

use of patterns for pattern gathering is described and illustrated. Those criteria are 

related to the examination of the methodology in the cost aspect, time aspect, team 

and organization aspect, insight aspect and the misguidance aspect (Goossenaerts & 

Pels (2005)) for details on these aspects. Conceptual models in Petri nets and UML 

will be gathered and the possible variation for basic elemental patterns such as 

additive and multipartite will be described. 

The final step is to gather the pattern information by solving selected problems that 

are basically about operational processes. Each problem will be explained briefly and 

next, the problem description, its black box representation, and the conceptual model 

will be defined. The pattern acquisition will be done in the way that has been 

described in the methodology section. The different patterns that have been gathered 

by different ways will be compared and examined in detail.  

A Chapter with conclusions and recommendations for further work concludes the 

report. 

 



 

 

 

 

 

 

2. SIMULATION MODELING, COLOR PETRI NETS & UML 

2.1. Simulation Modeling 

2.1.1. The Nature of Simulation 

Most real world systems are too complex to allow realistic models to be evaluated 

analytically, and these models must be studied by means of simulation. In a 

simulation, computer is used to evaluate a model numerically, and data are gathered 

in order to estimate the desired true characteristics of the model. 

Application areas for simulation are numerous and diverse. Below is a list of some 

particular kinds of problems for which simulation has been found to be a useful and 

powerful tool. (Law & Kelton, 2000) 

• Designing and analyzing manufacturing systems 

• Evaluating military weapons systems or their logistics requirements 

• Determining hardware and software requirements for a computer system. 

• Designing and operating transportation systems such as call airports, 

freeways, ports, and subways. 

• Evaluating designs for service organizations such as call centers, fast food 

restaurants, hospitals, and post offices. 

• Reengineering of business processes 

• Determining ordering policies for an inventory system 

• Analyzing financial or economic systems. 

Simulation is one of the most widely used operations-research and management 

science techniques, if not the most widely used. There are several surveys related to 

the use of operations – research techniques. According to Law& Kelton (2000) 



 

 

simulation was consistently ranked as one of the three most important “operation- 

research techniques”. The other two were “math programming” and “statistics”. 

There have been however several impediments to even wider acceptance and 

usefulness of simulation. First, models used to study large scale systems tend to be 

very complex and writing computer programs to execute them can be an arduous task 

indeed.  This task has been made much easier in recent years by the development of 

excellent software products that automatically provide many of the features needed 

to program a simulation model. (Law & Kelton, 2000) 

A second problem with simulation of complex systems is that a large amount of 

computer time is sometimes required. However, this difficulty is becoming much less 

severe as computers become faster and cheaper. (Law & Kelton, 2000) 

Finally, there appears to be an unfortunate impression that simulation is just an 

exercise in computer programming, albeit a complicated one. Consequently, man 

simulation studies have been composed of heuristic model building, coding and a 

single run of the program to obtain “the answer.” (Law & Kelton, 2000) 

2.1.2. System, Model and Simulation 

Law and Kelton (2000) define a system to be a collection of entities, e.g., people or 

machines that act and interact together towards the accomplishment of some logical 

end. In practice, what is meant by the system depends on the objectives of a 

particular study. The collection of entities that comprise a system for one study might 

be only a subset of the overall system for another. 

The systems can be categorized to be of two types, discrete and continuous. A 

discrete system is one for which the state variables change instantaneously at 

separated points in time. A bank is an example of a discrete system, variables change 

only when a customer arrives or when a customer finishes being served and departed. 

A continuous system is one for which the state variables change continuously with 

respect to time. An airplane moving through the air is an example of a continuous 

system. State variables such as position and velocity can change continuously with 

respect to time. (Law & Kelton, 2000) 

A mathematical model should be studied by means of simulation in most situations, 

due to the sheer complexity of the system of interest and of the models necessary to 



 

 

represent them in a valid way. For this purpose it is useful to classify simulation 

models along three different dimensions. (Law & Kelton, 2000) 

Static vs. Dynamic Simulation Models: A static simulation model is a representation 

of a system at a particular time or one that may be used to represent a system in 

which time simply plays no role; on the other hand a dynamic simulation model 

represents a system a s it evolves over time such as a conveyor system in the factory. 

(Law & Kelton, 2000) 

Deterministic vs. Stochastic simulation Models: If a simulation model does not 

contain any probabilistic components it is called deterministic; and the output is 

determined once the set of input quantities and relationships in the model have been 

specified. Many items however must be modeled as having at least some random 

input components, and these give rise to stochastic simulation models. (For example 

of the ship randomness in ship transport case.) Stochastic simulation models produce 

output that is itself random and must therefore be treated as only an estimate of the 

true characteristics of the model; this is one of the main disadvantages of simulation. 

(Law & Kelton, 2000) 

2.1.3. Discrete Event Simulation 

Discrete event simulation concerns the modeling of a system as it evolves over time 

by a representation in which the state variables change instantaneously at separate 

points in time. These points in time are the ones at which an event occur, where an 

event is defined as an instantaneous occurrence that may change the state of the 

system. Although discrete event simulation could conceptually be done by hand 

calculations, the amount  of data that must be stored and manipulated for most real 

world systems dictates that discrete event simulations be done on  a digital computer. 

(Law & Kelton, 2000) 

2.1.4. Time- Advance Mechanisms 

Because of the dynamic nature of discrete event simulation models, track of the 

current value of simulated time as the simulation proceeds should be kept, and a 

mechanism is needed to advance simulated time from one value. The unit of time for 

the simulation clock is never stated explicitly and it is assumed to be in the same 

units as the input parameter. Also, there is generally no relationship between 

simulated time and the time needed to run a simulation on the computer. The major 

approach for advancing the simulation clock is next event time advance approach. In 



 

 

this approach the simulation clock is initialized to zero and the times of occurrence 

of future event are determined. The same approach has been used in the current 

study. (Law & Kelton, 2000) 

2.1.5. Components and Organization of a Discrete Event Simulation Model 

Although simulation has been applied to a great diversity of real world systems, 

discrete-event  simulation Figures all share a number of common components and 

there is logical organization for there components that promotes the programming 

debugging, and future changing of a simulation Figure’s computer program. In 

particular, the following components will be found in most discrete event simulation 

Figures using the next-event time- advance approach programmed in a general-

purpose language: (Law & Kelton, 2000) 

• System State: The collection of state variable necessary to describe the 

system at a particular time. 

• Simulation Clock: A variable giving the current value of simulated time. 

• Event List: A list containing the next time when each type of event will 

occur. 

• Statistical Counters: variables used for storing statistical information about 

system performance. 

• Initialization Routine: A subprogram to initialize the simulation model at 

time 0. 

• Timing Routine:  A subprogram determines the next event from the event list 

and then advances the simulation clock to the time when that event is to 

occur. 

• Event routine: A subprogram that updates the system state when a particular 

type of event occurs. 

• Library routines: A set of subprograms used to generate random observations 

from probability distributions that were determined as a part of the simulation 

model. 

2.2. Petri Nets 

Petri nets are graphical and mathematical tools which provide a standardized setting 

for modeling, formal analysis, and design of discrete event systems. (Zurawski & 

Zhou, 1994)  



 

 

The main advantages of using Petri net models is that the same model can be used 

for logical structure of discrete event simulators and controllers,  as well as  the study 

of behavioral properties and performance valuation. 

 Petri nets were named after Carl A. Petri who created in 1962 a net-like 

mathematical tool for the study of communication with automata and were used as 

net-like mathematical tools for communication study in 1962. Since then, many 

extensions and variations have been developed. In the current study these extensions 

and variations will be referred as colored Petri net which can be the interface 

between the problem situation and the methods of analysis. (Wong, Parkin, & Coy, 

2007) 

2.2.1. Application of Petri Nets: 

• Graphical Tool: Petri nets provide a powerful communication medium 

between the user, typically requirements engineer, and the customer. 

Complex requirements specifications, instead of using ambiguous textual 

descriptions or mathematical notations difficult to understand by the 

customer, can be represented graphically using Petri nets. (Zurawski & Zhou, 

1994) 

• Mathematical tool:  a Petri net model can be described by a set of linear 

algebraic equations, or other mathematical models reflecting the behavior of 

the system. It allow for the performance evaluation of the modeled systems. 

(Zurawski & Zhou, 1994) 

• Modeling and analysis of communication protocols: SDL, Lotos, Estelle 

based protocol specifications into Petri net has been transformed for 

performance and reliability analysis. (Zurawski & Zhou, 1994) 

• Modeling sequence controllers: Programmable Logic Controllers are 

commonly used for the sequence control in automated systems. Petri net 

modeling reduced the development time compared with the traditional 

approach. (Zurawski & Zhou, 1994) 

• Analysis of manufacturing systems: Petri nets have been used extensively to 

model and analyze manufacturing systems. In this area, Petri nets were used 

to represent simple production lines with buffers, machine shops, automotive 

production systems, flexible manufacturing systems, automated assembly 

lines, resource-sharing systems, and recently just-in-time and KANBAN 

manufacturing systems.  (Adamou, 1993). 

• The performance of production systems, involving simple  production lines, 

job shops, robotic assembly cells, flexible manufacturing systems, etc., can be 



 

 

analyzed with Petri Nets. (Zurawski & Zhou, 1994). The discrete-event 

simulation can be driven from the model, sometimes using complex 

algorithmic strategies representing real-time scheduling and control policies 

of production systems. 

• Petri nets with time extensions, combined with heuristic search techniques, 

were used to model and study scheduling problems involving manufacturing 

systems as well as robotic systems (Zurawski & Zhou, 1994)  

• Software development: Petri nets have been extensively used in software 

development. The work in this area focused on modeling and analysis of 

software systems using Petri nets (Zurawski & Zhou, 1994).   

• Communication networks: Work was conducted on Fiber Optics Local Area 

Networks such as Expressnet, Fastnet, D-Net, U-Net. Token Ring (Zurawski 

& Zhou, 1994). 

• Petri nets have recently become widely accepted as a description method for 

biological pathways by researchers in computer science as well as those in 

biochemistry (Matsuno & Miyano, 2006) 

2.2.2. Description of Petri Nets 

A Petri net may be recognized as a particular type of bipartite directed graph 

populated by three types of objects. These objects are places, transitions, and directed 

arcs connecting places to transitions and transitions to places. Pictorially, places are 

illustrated by circles and transitions as bars or boxes. A place is an input place to a 

transition if there exists a directed arc linking this place to the transition. A place is 

an output place of a transition if there exists a directed arc linking the transition to 

the place. (Zurawski & Zhou, 1994) 

In its simplest form, a Petri net may be represented by a transition together with its 

input and output places. This basic net may be used to correspond to various aspects 

of the modeled systems. For example, input (output) places may represent 

reconditions (post conditions), the transition an event. Input places may stand for the 

availability of resources, the transition their utilization, output places the release of 

the resources. (Zurawski & Zhou, 1994) 

 



 

 

 

Figure 2.1: Basic Petri Net 

The Petri  net in Figure 2.1 consists of five places, represented by circles, four 

transitions, depicted by boxes, and directed arcs connecting places to transitions and 

transitions to places. In this net, place p1 is an input place of transition T1. Places P2, 

and P3 are output places of transition T1. (Zurawski & Zhou, 1994) 

In order to study dynamic behavior of the modeled system, in terms of its states and 

their changes, each place may potentially hold either none or a positive number of 

tokens, pictured by small solid dots, as shown in Figure. (Zurawski & Zhou, 1994) 

The presence or absence of a token in a place can indicate whether a condition 

associated with this place is true or false, for instance. For a place representing the 



 

 

availability of resources, the number of tokens in this place indicates the number of 

available resources. At any given time instance, the distribution of tokens on places, 

called Petri net marking, defines the current state of the modeled system. (Zurawski 

& Zhou, 1994) 

A marking of a Petri net with m places is represented by an (m x 1) vector M, 

elements of which denoted as M (p), are nonnegative integers representing the 

number of tokens in the corresponding places. (Zurawski & Zhou, 1994) 

A Petri net containing tokens is called a marked Petri net. For example, in the Petri 

net model shown in Fig. 1, M = (1,0,0,0,0)T .  

Formally, a Petri net can be defined as follows:  

PN = (P,T,I,O,Mo); where 

P = {p1,p2,..pm} is a finite set of places, 

T = { t l , t2…,tn}is a finite set of transitions ��� � �, and � � � � �,  

I : (P x T) →N is an input function that defines directed arcs from places to 

transitions, where N is a set of nonnegative integers,  

O: (P x T) →N is an output function which defines directed arcs from transitions to 

places, and  

M0 : P →N is the initial marking.  

If I(p, t) = k ( O ( p , t ) = k). Then there exist k directed (parallel) arcs connecting 

place p to transition t. (transition t to place p). If I ( p . t ) = 0 ( O ( p : / , ) = U), then 

there exist no directed arcs connecting p to t ( t to p ) .  

One can study dynamic behavior of the modeled system by changing distribution of 

tokens on places, which may reflect the rate of events or execution of operations. The 

following rules are used to govern the flow of tokens. (Zurawski & Zhou, 1994) 

Enabling Rule: A transition t is said to be enabled if each input place p of t contains 

at least the number of tokens equal to the weight of the directed arc connecting p to t.  

Firing Rule: An enabled transition f may or may not fire depending on the additional 

interpretation, and a firing of an enabled transition t removes from each input place p 

the number of tokens equal to the weight of the directed arc connecting p to t. It also 

deposits in each output place p the number of tokens equal to the weight of the 

directed arc connecting t to p. 

The enabling and firing rules are illustrated in Figure 2.2 & Model 2.3. 



 

 

 

Figure 2.2: Transition 

 

Figure 2.3 : Firing 

A Petri net is said to be pure or self-loop free if no place is an input place to and 

output place of the same transition. A Petri net that contains self-loops can always be 

converted to a pure Petri net. 

2.2.3.  Properties of Petri Nets 

Petri nets as mathematical tools possess a number of properties. These properties, 

when interpreted in the context of the modeled system, allow the system designer to 

identify the presence or absence of the application domain specific functional 

properties of the system under design. 

Reachability :An important issue in designing distributed systems is whether a 

system can reach a specific state, or exhibit a particular functional behavior. In 

general, the question is whether the system modeled with Petri nets exhibits all 

desirable properties, as specified in the requirements specification, and no 

undesirable ones. (Zurawski & Zhou, 1994) 

Boundedness and Safeness: Places are frequently used to represent information 

storage areas in communication and computer systems, product and tool storage 

areas in manufacturing systems, etc. It is important to be able to determine whether 



 

 

proposed control strategies prevent from the overflows of these storage areas. The 

information storage areas can hold, without corruption, only a restricted number of 

pieces of data. The Petri net property which helps to identify in the modeled system 

the existence of overflows is the concept of boundedness. (Zurawski & Zhou, 1994) 

Conservativeness: In real systems, the number of resources in use is typically 

restricted by the financial as well as other constraints. If tokens are used to represent 

resources, the number of which in a system is typically tixed, then the number of 

tokens in a Petri net model of this system should remain unchanged irrespective of 

the marking the net takes on. This follows from the fact that resources are neither 

created nor destroyed, unless there is a provision for this to happen. For instance, a 

broken tool may be removed from the manufacturing cell, thus reducing the number 

of tools available by one. (Zurawski & Zhou, 1994) 

Liveness: The concept of liveness is closely related to the deadlock situation, which 

has been studied extensively in the context of operating systems. Four conditions 

must hold for a deadlock to occur (Zurawski & Zhou, 1994). These four conditions 

are: 

Mutual exclusion: a resource is either available or allocated to a process which has 

an exclusive access to this resource. 

Hold and wait: a process is allowed to hold a resource(s) while requesting more 

resources. 

No preemption: a resource(s) allocated to a process cannot be removed from the 

process, until it is released by the process itself. 

Circular wait: two or more processes are arranged in a chain in which each process 

waits for resources held by the process\s next in the chain. 

Reversibility and Home State: An important issue in the operation of real systems, 

such as manufacturing systems, process control systems, etc., is the ability of these 

systems for an error recovery. These systems are required to return from the failure 

states to the preceding correct states. (Zurawski & Zhou, 1994) 

2.2.4. Colored Petri Nets 

Colored Petri Nets extend the classical Petri Nets with colors (to model data), time 

(to model durations), and hierarchy (to structure large models). Like in classical Petri 

Nets, CPNs use three basic concepts: transition, place, and token.  (N. Mulyar & 

Aalst, 2005). 



 

 

CPNs have an intuitive, graphical representation which is appealing to human beings. 

A CPN model consists of a set of modules (pages) which each contain a network of 

places, transitions and arcs. The modules act together through a set of well-defined 

interfaces, in a similar way as known from many modern programming languages. 

The graphical demonstration makes it easy to see the basic structure of a complex 

CPN model, i.e., understand how the individual processes work together. (Li, Chapa, 

Marin, & Cruz, 2004) 

CPNs also have a formal, mathematical representation with a well-defined structure 

and semantics. This representation is the foundation for the definition of the diverse 

behavioral properties and the analysis methods. Without the mathematical 

representation it would have been absolutely impossible to develop a sound and 

powerful CPN language. On the other hand, for the convenient use of CPNs and their 

tools, it suffices to have an intuitive understanding of the syntax and semantics. This 

is similar to programming languages which are effectively applied by users who are 

not familiar with the formal, mathematical definitions of the languages. (Jensen, 

2004) 

CPN models can be prepared with or without unambiguous reference to time. 

Untimed CPN models are typically used to validate the functional/logical correctness 

of a system, while timed CPN models are used to calculate the performance of the 

system. There are many other languages which can be used to examine the 

functional/logical correctness of a system or the performance of it. Still, it is rather 

rarely to find modeling languages that are well-suited for both kinds of analysis. 

(Gehlot & Hayrapetyan, 2007) 

CPNs can be simulated interactively or automatically. In an interactive simulation 

the user is in control. It is possible to see the effects of the individual steps directly 

on the graphical representation of the CP-net. This means that the user can 

investigate the different states and choose between the enabled transitions. An 

interactive simulation is similar to single-step debugging. It provides a way to "walk 

through" a CPN model, investigating different scenarios and checking whether the 

model works as expected. This is in contrast to many off-the-shelf simulation 

packages which often act as black boxes, where the user can define inputs and 

inspect the results, but otherwise have very little possibility to understand and 

validate the models on which the simulations build. It is our experience that the 

insight and detailed knowledge of a system, which the users gain during the 

development and validation of a simulation model, is often as important as the results 



 

 

that the users get from the actual simulation runs. (Jensen, Special section on the 

practical use of high-level Petri nets, 2004) 

Automatic simulations are similar to program executions. At present the purpose is to 

be able to execute the CPN models as fast and resourceful as possible, without 

detailed human interface and inspection. But the user still needs to interpret the 

simulation results. For this purpose it is often suitable to use animated, graphical 

representations providing an abstract, application-specific view of the current state 

and activities in the system.  (Liu, 2005) 

CPNs also present more formal verification methods, well-known as state space 

analysis and invariant analysis. In this way it is likely to prove, in the mathematical 

sense of the word, that a system has a certain set of behavioral properties. However, 

manufacturing systems are often so complex that it is impossible or at least very 

costly to make a full proof of system correctness. For this reason, the formal 

verification methods should be seen as a complement to the more informal validation 

by means of simulation. The use of formal verification is often restricted to the most 

important subsystems or the most important aspects of a complex system. (Jensen, 

Special section on coloured Petri nets, 2004) 

2.3. Unified Modeling Language 

The UML is considered to be the de facto standard for object-oriented modeling. 

UML Models supports designer by letting work at a higher level of abstraction. A 

model may do this by hiding or masking details, bringing out the big picture, or by 

focusing on different aspects of the prototype. In UML, the user can zoom out from a 

detailed view of an application to the environment where it executes, visualizing 

connections to other applications or, zoomed even further, to other sites. 

Alternatively, user can focus on different aspects of the application, such as the 

business process that it automates, or a business rules view. (Kobryn, 2007) 

Unified Modeling Language helps the user specify, visualize, and document business 

models of systems, including their structure and design, in a way that meets all of 

these requirements. Using any one of the large number of UML-based tools on the 

market, future application's requirements and design a solution that meets them can 

be analyzed, representing the results using UML 2.0's thirteen standard diagram 

types. (Kobryn, 2007) 

UML is a natural fit for object-oriented languages and environments such as C++, 

Java, and the recent C#, but it can be used to model non Object oriented applications 



 

 

as well in, for example, Fortran, VB, or COBOL. UML Profiles help to model 

Transactional, Real-time, and Fault-Tolerant systems in a natural way. (Kobryn, 

2007) 

In its current form UML is comprised of two major components: a Meta-model and a 

notation. In the future, some form of method or process may also be added to; or 

associated with, UML. (Martin, 2003) The UML classes will be described briefly in 

the following section. 

2.3.1. The Meta-model 

UML is unique in that it has a standard data representation. This representation is 

called the metamodel. The metamodel is a description of UMLin UML. It describes 

the objects, attributes, and relationships necessary to represent the concepts of UML 

within a software application. (Martin, 2003) 

This provides CASE manufacturers with a standard and unambiguous way to 

represent UML models. Hopefully it will allow for easy transport of UML models 

between tools. It may also make it easier to write ancillary tools for browsing, 

summarizing, and modifying UML models. (Martin, 2003) 

2.3.2. The Notation 

The UML notation is rich and full bodied. It is comprised of two major subdivisions. 

There is a notation for modeling the static elements of a design such as classes, 

attributes, and relationships. There is also a notation for modeling the dynamic 

elements of a design such as objects, messages, and finite state machines. 

In this study we have used  some of the aspects of the static modeling notation. Static 

models are presented in diagrams called: Class Diagrams. (Martin, 2003) 

2.3.3. Class Diagrams 

The purpose of a class diagram is to depict the classes within a model. In an object 

oriented application, classes have attributes (member variables), operations (member 

functions) and relationships with other classes. The fundamental element of the class 

diagram is an icon the represents a class. 



 

 

 

Figure 2.4:Meta Figure 

A class icon which is shown in Figure 2.1 is simply a rectangle divided into three 

compartments . The topmost compartment contains the name of the class. The 

middle compartment contains a list of attributes (member variables), and the bottom 

compartment contains a list of operations (member functions). In many diagrams, the 

bottom two compartments are omitted. Even when they are present, they typically do 

not show every attribute and operations. The goal is to show only those attributes and 

operations that are useful for the particular diagram which can be seen in Figure 2.2. 

(Martin, 2003) 

This ability to abbreviate an icon is one of the hallmarks of UML. Each diagram has 

a particular purpose. That purpose may be to highlight on particular part of the 

system, or it may be to illuminate the system in general. The class icons in such 

diagrams are abbreviated as necessary. There is typically never a need to show every 

attribute and operation of a class on any diagram. (Martin, 2003) 

 

Figure 2.5: Class Diagram 

2.3.4. Inheritance 

The inheritance relationship in UML is depicted by a peculiar triangular arrowhead. 

This arrowhead, that looks rather like a slice of pizza, points to the base class. One or 



 

 

more lines proceed from the base of the arrowhead connecting it to the derived 

classes. (Martin, 2003) 

UML 2.3  shows the form of the inheritance relationship. In this diagram It can be 

seen that Circle and Square both derive from Shape . Note that the name of class 

Shape is shown in italics. This indicates that Shape is an abstract class. Note also that 

the operations, Draw() and Erase() are also shown in italics. This indicates that they 

are pure virtual. (Martin, 2003) 

 

Figure 2.6: Inheritance 

2.3.5. Aggregation / Association 

The weak form of aggregation is denoted with an open diamond. This relationship 

denotes that the aggregate class which is the class with the white diamond touching 

it) is in some way the “whole”, and the other class in the relationship is somehow 

“part” of that whole. (Martin, 2003) 

2.3.6. Interfaces 

Interfaces are such  classes that have nothing but pure virtual functions. In Java such 

entities are not classes at all; they are a special language element called an  interface. 

UML has followed the Java example and has created some special syntactic elements 

for such entities.  (Martin, 2003) 



 

 

  



 

 

 

3. CONTEXT 

3.1. Steps for Creating a Decision Study 

According to Goossenaerts & Pels (2005) a simulation based decision study consists 

of 10 steps.  In this study, reuse is considered in the first 3 steps, with a focus on 

reuse of   conceptual models. Those steps are as follows: 

• Step 1.The Project Definition: The problem of the object system and the 

research questions of a decision study are formulated. In this study the 

problems are divided into basic structural units, and redefined in using the 

pattern of a consistent triplet of decision objects (objectives, performance 

indicators and action means). 

• Step 2. Black Box & Assumptions: The system is generally represented as a 

box with indication of input, environmental and output parameters. 

• Step 3. Conceptual Model: in this step the modeling of the object system 

(inside the black box) proceeds by using computer independent modeling 

techniques such as UML and Petri nets.  

3.2. Evaluation 

Criteria for evaluating patterns and their effect on the decision study will help a 

better comparison. The criteria for comparing methods with or without the use of 

patterns are (Goossenaerts & Pels, 2005): 

� The cost aspect: Simulation enables to test every aspect of a proposed change 

or addition without committing resources to their acquisition. This is critical 

because once the hard decisions have been made, the bricks have been laid or 

the material-handling systems have been installed, changes and corrections 

can be extremely expensive. (Goossenaerts & Pels, 2005)  

� The time aspect: Simulations are precisely repeatable; you can explore new 

policies, operating procedures, or methods without the expense and disruption 

of experimenting with the real system. . (Goossenaerts & Pels, 2005) 



 

 

� The team and organization aspect: This aspect is focused on training the 

team, building consensus, appropriate use of the simulation, level of 

necessary communication and knowledge.  

� The insight aspect: The necessity of simulation, plan visualization, ability to 

change, lack of exact results are the main points of this aspect. The 

functionality of the simulation models is investigated. 

� The misguidance aspect: The art of simulation involves assessing what level 

of detail is required to support the project’s goals. It’s tough to do this right, 

though, because often you can’t tell whether the detail is needed until you’ve 

developed it; and once the work is done, it’s hard to justify removing it if it’s 

unimportant. [Pels&Goossenaerts,2005] Problems with the data, level of 

detail are the main misguidance in simulation modeling.  

  



 

 

 

4. RESEARCH 

4.1. Selected Cases 

In the study the cases that have been selected are based on the real life simulation 

problems which are explained in Simulation modeling and Analysis of Law & 

Kelton. The main reason for selecting these cases is that the processes mentioned in 

the book are mainly operation processes that include queuing situations in dynamic 

systems. The following criteria have been looked for the selection of the problems: 

• The problem has to have complex operations which can be decomposed into 

simple operations. 

• The resulting simple operations can be defined as general sub (or aspect) 

functions which can be used in other cases. 

The following cases are selected according to these criteria: 

1) Ship Transportation Case ((Law & Kelton, 2000), p.188, q2.23]: This case is 

mainly based on the modeling of an activity of a tug which carries ships 

between harbor and berths. The complexity of the case gives us the 

opportunity of creating many patterns.  

2) Ship Loading Case (Law & Kelton (2000), p186, q2.19]: In this case the 

loading activity of ships in a harbor has been modeled. The cases are mostly 

related to the ship transportation case. It includes the multiplicative pattern.  

3) Elevator Case[Law & Kelton (2000), p199, q2.35]: Elevator case is selected 

because it includes both inventory aspects and queuing aspects  

4) Inventory Case: This case is selected because of the data structure and 

inventory control specializations. It also gives us the opportunity to directly 

use the patterns which are created in the previous works of van der 

Aalst(2005) (Law & Kelton (2000), p60]. 



 

 

4.2. Solving the cases 

For the solution of the selected case the first three steps of simulation are applied to 

each problem. Problem description, Black box, UML model, and finally Petri net 

model is acquired.   

4.3. Pattern Search 

For determining the patterns the solution of the problem is redefined in a new way. 

The problem itself is divided in to basic components. Each component requires a 

definition, Petri net and the coding of the component. Then the step by step evolution 

of the system is made on Petri nets and the compatibility of the patterns is shown in 

the following ways: 

4.4. Without Hierarchy 

The case of acquiring the Petri nets via adding patterns without any hierarchy is the 

first option to create a model. This technique has been used in Patterns in Colored 

Petri Nets (Mulyar& Aalst) In this option the inputs and the outputs of the basic 

patterns are assemble together to create more complex pattern which can be used in 

the system. 

4.4.1. With Hierarchy (additive) 

The Second technique to acquire the Petri net is using building blocks method to 

create a complex model. The main difference between the previous option and this 

option is a single pattern is shown as an action which has the same input and output 

in the main Petri net instead of an addition Petri net. The attributes and the instances 

are reset according to that system.  

4.4.2. With Hierarchy (Multiplicative) 

The Third option is used in special cases of operation processes which have repeated 

actions of patterns. It is also shown in the hierarchy, but the function itself represents 

the loop actions. Therefore this view shows much more clear view of the model. The 

only flaw of the view is that the reversibility of the model is more difficult than the 

additive Hierarchical model. 

  



 

 

 

5. SHIP TRANSPORTATION CASE 

5.1. Case Description 

A port in Africa loads tankers with crude oil for over water shipment and the port 

have facilities for loading as many as three tankers simultaneously. The tankers 

which arrive at the port every 11+- 7 hours are of three different types. (All times 

given as a+- ranges in this problem are distributed uniformly over the range.) The 

relative frequency of the various types and their loading time requirements are 

defined on table 5.1: 

Table 5.1: Loading Times 

Type Relative Frequency Loading Time, hours 

1 0.25 18+- 2 

2 0.25 24+- 4 

3 0.50 36+- 4 

There is one tug at the port. Tanker of all types requires the services of a tug to move 

from the harbor into a berth and later to move out of a berth into the harbor. When 

the tug is available, any berthing or deberthing activity takes 1 hour. It takes the tug 

0.25 hour to travel from the harbor to the berths, or vice versa, when not pulling a 

tanker. When the tug finishes a berthing activity, it will deberth the first tanker in the 

deberthing queue if this queue is not empty.  If the deberthing queue is empty but the 

harbor queue is not the tug will travel to the harbor and begin berthing the first tanker 

in the harbor queue (if both queues are empty, the tug will remain idle at the berths.) 

When the tug finishes a deberthing activity it will berth the first tanker in the harbor 

queue if this queue is not empty and a berth is available. Other wise the tug will 

travel to the berths and if the deberthing queue is not empty, will begin deberthing 

the first tanker in the queue. If the deberthing queue is empty the tug will remain idle 

at the berths. 



 

 

The situation is further complicated by the fact that the area experiences frequent 

storms that last 4+-2 hours. The time between the end of one storm and the onset of 

the next is an exponential random variable with mean 48 hours. The tug will not start 

a new activity when a storm is in progress but will always finish an activity already 

in progress. (The berths will operate during a storm). If the tug is traveling from the 

berths to the harbor without a tanker when a storm begins, it will turn around and 

head for the berths. Run this simulation model for a 1 year period (8760 hours) and 

estimate: 

a. The expected proportion of time the tug is idle, is traveling without a tanker, 

and is engaged in either a berthing or deberthing activity. 

b. The expected proportion of time each berth is unoccupied, is occupied but not 

loading, and is loading. 

c. The expected time average number of tankers in the deberthing queue and in 

the harbor queue. 

d. The expected average in port residence time of each type of tanker. 

5.2. Decision Description 

The decision process can be simplified in 3 elements so that each element can be 

modeled separately: 

Ships: There are ships coming to harbor and they will need to be taken in to the 

berth. After the berthing activity they need to be taken to the harbor again and sail to 

the open sea. 

Tug Activity: There is one tug which carries all types of tankers from harbor into a 

berth and out of the berth into the harbor.  There is certain logical rules apply to the 

tugs actions while carrying the tankers according to the situation on the berth queue 

and harbor queue.  

Storm: Periodically storms occur. The storms affect the activity of the tug.  

 

5.3. The Black Box representation 

As it has been described in the section 3.1 The black box assumption  is visualized 

for this case. The black box of the problem is shown in figure 5.1. 

The input variables are listed as follows: 



 

 

• Environmental Variables 

- Relative Frequency 

- Loading Times 

- Storm duration 

- Storm inter arrival time 

- Arrival Time 

• Control Variables 

- Queuing policy 

• Output Variables 

- The expected proportion of time of Tug 

- The expected proportion of time each berth 

- The expected time average number of tankers 

- The expected average in port residence time 

 



 

 

 

 

5.4. UML Model 

UML model of the problem is shown 

 

 

UML model of the problem is shown in Figure 5.1.  

Figure 5.1: Black box Representation 



 

 

 

Figure 5.2: Ship Transportation Figure 

The following rules have been considered for creating the UML models: 

Tug Rules: 

• When the tug finishes a berthing activity, it will deberth the first tanker in the 

deberthing queue if this queue is not empty. 

• If the deberthing queue is empty but the harbor queue is not the tug will travel 

to the harbor and begin berthing the first tanker in the harbor queue (if both 

queues are empty, the tug will remain idle at the berths.)  

• When the tug finishes a deberthing activity it will berth the first tanker in the 

harbor queue if this queue is not empty and a berth is available. Other wise 

the tug will travel to the berths and if the deberthing queue is not empty, will 

begin deberthing the first tanker in the queue. 

• If the deberthing queue is empty the tug will remain idle at the berths. 

Storm Rules: 

• The tug will not start a new activity when a storm is in progress but will 

always finish an activity already in progress.  



 

 

• If the tug is traveling from the berths to the harbor without a tanker when a 

storm begins, it will turn around and head for the berths. 

5.5. Petri Net Patterns 

5.5.1. Tug Activity Pattern 

This pattern can be described as the logical phase of the tug movement. As 

mentioned in the problem description tanker of all types requires the services of a tug 

to move from the harbor into a berth and later to move out of a berth into the harbor. 

When the tug is available, any berthing or deberthing activity takes 1 hour. It takes 

the tug 0.25 hour to travel from the harbor to the berths, or vice versa, when not 

pulling a tanker. When the tug finishes a berthing activity, it will deberth the first 

tanker in the deberthing queue if this queue is not empty.  If the deberthing queue is 

empty but the harbor queue is not the tug will travel to the harbor and begin berthing 

the first tanker in the harbor queue (if both queues are empty, the tug will remain idle 

at the berths.) When the tug finishes a deberthing activity it will berth the first tanker 

in the harbor queue if this queue is not empty and a berth is available. Other wise the 

tug will travel to the berths and if the deberthing queue is not empty, will begin 

deberthing the first tanker in the queue. If the deberthing queue is empty the tug will 

remain idle at the berths. 

 

Figure 5.3: Tug Activity 



 

 

The Petri net scheme which is shown in Figure 5.1 can be described as the actions of 

the Tug itself. The upper row and the lower row are mainly the transportation of the 

ship by the tug between Harbor and the Berth area.  

Connectors: 

Inputs  Harbor Queue: S1 

Deberthing queue: S1 

Outputs 

Berth queue: S1 

Harbor: S1. 

In the tug activity pattern model all the places are connectors. These connectors will 

be used for connecting the other patterns. 

 

Codes for Tug Activity pattern 

Start t1.place = FreeH 

        S1.place = HarborQueue 

StartCarrytoBerth 

Pre     

S = Harborqueue.first 

Post 

CarrytoBerth <- (s,t) 

t.endtime:= now.time + 60 (1 hour) 

StopCarrytoBerth 

Pre Now.Time = T.EndTime 

Post deBerthQueue <- s 

StartCarrytoHarbor 

Pre     

S = DeberthQueue.First 

Post 



 

 

CarrytoHarbor <- (s,t) 

T.Endtime:= Now.Time + 60 (1 hour) 

StopCarrytoBerth 

Pre Now.Time = T.EndTime 

Post harbor <- s 

GobackBerth 

Pre 

T= FreeH 

X= CounterPlaceHarborQueue 

Post 

FreeB<- t 

GobackHar 

Pre 

T= FreeB 

z= HarborQueue 

Post 

FreeH<- t 

5.5.2. Storm Pattern 

This pattern is expressing the effect of the storm. Storm affects the tug which is free 

at the harbor (Place shown as “FreeH”) or Berth (FreeB) and the tug which carries a 

ship to harbor (Carry to Harbor). Frequent storms that last 4+-2 hours occur. The 

time between the end of one storm and the onset of the next is an exponential random 

variable with mean 48 hours. The tug will not start a new activity when a storm is in 

progress but will always finish an activity already in progress. (The berths will 

operate during a storm). If the tug is traveling from the berths to the harbor without a 

tanker when a storm begins, it will turn around and head for the berths. The pattern is 

showed in the figure 5.2. 



 

 

 

Figure 5.4: Storm 

This Petri net pattern consists of 3 basic patterns which has general purpose such as 

Interrupt, Switch and Halt. These patterns may also be used in other models because 

of their purpose generality. If the Storm pattern is divided into general patterns the 

result will be the following. 

Connectors: 

Storm(Harbor)= harbor with FreeH = Hhalt 

FreeB = Bhalt 

Carrytoharbor = CS1 

Carrytoberth = CS2 

In  Hhalt: T1 

Bhalt: T1 

CS1: S1,  

Int: Storm. 

Out Hhalt: T1 

Bhalt: T1 

CS2: ST1 

Codes for the storm patter will be build up from the following patterns. 



 

 

5.5.3. Halt Pattern 

 

Figure 5.5: Halt 

Main purpose of this pattern is to take out one or more tokens from the system for a 

temporary period to manipulate system flow in condition such that a disturbance 

affects the systems. In the Storm pattern this pattern is used to halt the processes of 

the tug when it’s in the Free State. The presentation is shown in Figure 5.3.  

Connectors: 

In Chalt: T 

Out Chalt: T 

Halt(storm) = storm     with CS1 = Chalt CS2 = Chalt 

Code for Hatl Pattern: 

Pre 

T = State 

Post 

State<- t 

Nowtime:= Nowtime+Halt.time 

5.5.4. Switch Pattern 

 

Figure 5.6: Switch 

This pattern can be described as a simple switch for the tokens from one place to 

another in a time of disturbance. The pattern can be vary and can be evaluate further 

such that defining the instances of the places as a risk taker or wanted/ unwanted 

situation. After that, the pattern will work allover the system as an auto switch which 

will manipulate the system in necessary states. The pattern is shown in Figure 5.4. 

Connectors:  

In CS1: ST 



 

 

CS2: ST 

Out CS1: ST 

CS2: ST 

Switch(Harbor) = Harbor     with CarrytoHarbor = CS1 

     CarrytoBerth = CS2 

Codes for switch pattern 

SwitchRisk 

Pre 

(S,t) = State1 

Post 

State2<- (s,t) 

Now.time:= Now.time+service.time 

5.5.5. Interrupt Pattern 

 

Figure 5.7: Interrupt 

The pattern will work parallel to the designed system. It will create impulse for 

necessary states which can affect the Halt and switch patterns.  The pattern can be 

represented as Interrupt(harbor) = harbor. Pattern is shown in Figure 5.5. 

Codes for input pattern 

Start 

St.place= FreeSt 

Interrupt 

Pre: st.arrTime= now.time 

Post storm<- st 



 

 

State.Tug= pasive 

St.arrtime: = now.time+Exp(48) 

End.time:= now.time+ Unif(2.6) 

EndInterrupt 

Pre  

Now.time=End.time 

State.Tug= active 

 

5.6. Model Creation 

5.6.1. Adding structure without hierarchy  

In this Structure switch pattern, interrupt pattern, halt pattern and the tug activity 

pattern are added together without hierarchy. The Structure system allows creating 

the system model without any pattern connection priority. The disadvantage of that 

structure is the chaotic side of viewing all system in once. The model is complex 

therefore it is hard to read and inefficient.  Connectors are difficult to trace. 

In the figure 5.6 complete detail of the model which includes the ship movement, tug 

movement, storm action, can be seen.  

This view is not considered to be practical for reuse, and modification. 

 

 

 

 



 

 

 

Figure 5.8: Figure without Hierarchy 



 

 

5.6.2. Adding structure with hierarch 

 

Figure 5.9: Combined Pattern of Tug and Storm 

The structure is mainly based on adding one ore more patterns together and creating 

an upper pattern which can be added with other patterns and creates a hierarchy. In 

this example the storm pattern which is constructed from halt, interrupt and switch 

patterns is showed as a transition which is connected to the storm patterns input and 

output in the pattern of tug activity pattern. The patterns connection priority is 

necessary. The hierarch process is  is shown step by step in in Figure 5.7 as first 

hierarch model, and model 5.8 as the second hierarch model. 

  



 

 

 

Figure 5.10: Top hierarch Figure 

The pattern created by the unification of two patterns is shown as one transition in 

Figure 5.10. The whole system can be showed in a simple scheme since the 

connector structure. 

  



 

 

 

6. SHIP LOADING CASE 

6.1. Case Description 

Ships arrive at a harbor with inter arrival times that IID exponential random variable 

with a mean of 1.25 days. The harbor has a dock with two berth and two cranes for 

unloading the ships; ship arriving when both berths are occupied join a FIFO queue. 

The time for one crane to unload ships distributed uniformly between 0.5 and 1.5 

days. If only one ship is in the harbor, both cranes unload the ship and the 

(remaining) unloading time is cut in half. When two ships are in the harbor, one 

crane works for each ship. If both cranes are unloading one ship when a second ship 

arrives, one of the cranes immediately begins serving the second ship and the 

remaining service time of the first ship is doubled. 

Assuming that no ships are in the harbor at time 0, run the simulation for 90 days and 

compute the minimum, maximum, and average time that ships are in the harbor 

(which includes their time in berth). Also estimate the expected utilization of each 

berth and the cranes. Use stream 1 for the inter arrival times and stream 2 for the 

unloading times. 

6.2. Decision Description 

There are two Cranes that should unload the ships which come to harbor. The cranes 

can work separately or together according to the rules: 

- If there are no other ships in the queue the cranes will work together on a 

single ship. 

-  If the Cranes are working together and an other ship comes to harbor, the 

cranes will stop working together and one of them start to unload the new 

ship. 

6.3. Black Box Representation 

From the objective it is clear that Minimum, maximum, and average time that ships 

are in the harbor and the expected utilizations of each berth and the cranes has to be 



 

 

determined. This is the output variables, which have to be delivered by the observer. 

In order to deliver this output variable the observer has to record some items within 

the simulated system. 

The control variable is fixed. The dock allocation strategy and the queue 

Discipline has been given in the problem. The environmental variables are the 

interarrival time, service time. Figure 6.1 presents the representation. 

 

Figure 6.1: Ship Loading Blackbox 

 

The input variables are: 

- Environmental variables: 

- Interval time of the Ships 

- Service time of the Cranes 

- Control variables: 

      - Are fixed 

The output variables are: 

- Minimum time 

- Maximum time 

- Average time 

- Expected Utilizations 



 

 

6.4. UML model 

 

Figure 6.2: Ship Loading Figure 

The classes and the inheritance is shown in Figure 6.1. The following rules are based 

on the UML meta model. 

Crane rules: 

• If only one ship is in the harbor, both cranes unload the ship and the 

(remaining) unloading time is cut in half.  

• When two ships are in the harbor, one crane works for each ship.  

• If both cranes are unloading one ship when a second ship arrives, one of the 

cranes immediately begins serving the second ship and the remaining service 

time of the first ship is doubled. 

6.5. Petri Net patterns 

6.5.1. Source Increase Pattern 

Described in the question “If only one ship is in the harbor, both cranes unload the 

ship and the (remaining) unloading time is cut in half.” The action of using the 

sources on one Customer/Ship, or in other words increase the sources that are used 

on one customer may be patterned in the figure 6.1. 



 

 

 

Figure 6.3: Source Increase basic pattern 

The pattern can be evaluated further as a hierarchy by adding add and stop transition 

together. Since the number of the working sources is an instance of the token, place 

that describes the loading of ship with N sources (LoadN) and N+1 sources 

(LoadN+1) can be showed in the same place. The evaluation is as model 6.2. 

 

Figure 6.4: Source Increase complex pattern 

Codes: 

Start 

s.Place = LoadN  

∧ b1.Place = Free; 

ADD1 

Pre x= CounterPlace 



 

 

Post  LoadN+1 <- S,b 

s.XCompRate: = s.CompRate 

s.BusySource: = s.busySource+1 

^^s.CompRate := s.busysource* (NowTime - NewarrTime)/ Uniform(0.5, 1.5) + 

s.XCompRate 

If (s.CompRate <1) Then S.ServiceTime:= S.ServiceTime + (NowTime - 

NewarrTime) 

Else S.ServiceTime:= (1- s.XCompRate)*Uniform( 0.5, 1.5) + S.serviceTime  

Connectors: 

In CounterPlace: X 

 LoadN: SB1 

 Free: B1 

Out LoadN+1: SB1 

ADD1(Loading) = Loading with Loading = LoadN 

     Loading = LoadN+1 

     Free = Free 

 

6.5.2. Source Decrease Pattern 

Described in the question “If both cranes are unloading one ship when a second ship 

arrives, one of the cranes immediately begins serving the second ship and the 

remaining service time of the first ship is doubled.” The action of using the switching 

the sources from one customer to two customer, or in other words decrease the 

sources that are used on one customer may be patterned in the figure 6.3. 



 

 

 

Figure 6.5: Source Decrease complex pattern 

Code: 

Start 

s.Place = LoadN+1  

∧ b.Place = LoadN+1; 

Sub1 

Pre x= Queue 

Post  LoadN <- S,b 

s.XCompRate: = s.CompRate 

s.BusySource: = s.BusySource-1 

^^s.CompRate := s.busysource* (NowTime - NewarrTime)/ Uniform(0.5, 1.5) + 

s.XCompRate 

If (s.CompRate <1) Then S.ServiceTime:= S.ServiceTime + (NowTime - 

NewarrTime) 

Else S.ServiceTime:= (1- s.XCompRate)*Uniform( 0.5, 1.5) + S.serviceTime 

Connectors: 

In Queue: X 

 LoadN+1: SB1 

Out Free: B1 

 LoadN+1: SB1 



 

 

ADD1(Loading) = Loading with Loading = LoadN 

     Loading = LoadN+1 

     Free = Free 

6.6. Model Creation 

6.6.1. Adding structure without hierarch  

 

Figure 6.6: Ship Loading Figure without Hierarch 

In this structure all the transitions can be seen as individually in the figure 6.4. Due 

to the simplicity of the model this type of structure may be possible to model. 

6.6.2. Adding structure with hierarch 

 

Figure 6.7: Combined pattern of Source increase and decrease 



 

 

 

The first step of the hierarchy is to use the source decrease pattern and source 

increase pattern as a sub net of the transition called Sub/Add. (Model 6.5) Another 

pattern is also included to the system which is called the Counter place pattern. 

(Mulyar & Aalst, 2005) It is necessary for the input of the Sub/Add pattern and the 

main purpose of this pattern is to have a token in the counter place when there is no 

token in the queue place. Since the input and the output of the patterns are the 

similar, the structural effect of the Sub/Add pattern is as model 6.6: 

 

Figure 6.8: Top Hierarch Figure for Ship Loading 

6.6.3. Adding structure with hierarch (Multiplicative) 

In this structure The Sub/Add pattern mentioned above is not combined with the 

model via adding but integrating with Load Stop transition on the system. After the 

integration the model is as model 6.7: 

 

Figure 6.9: Multiplicative Figure of ship loading 

  



 

 

 

7. ELEVATOR CASE 

Elevator traffic calculation is a critical issue in the elevator system projects. For that 

purpose the given situation shall be analyzed, i.e. it may turn out as necessary to 

elaborate the utilization concept as a first step. Since the expected traffic in the 

building is complex, a simulation shall give more information whether the calculated 

group will meet the requirements in any traffic situation. It will then be defined 

which area of the building shall be utilized by calculated elevators. (Lohri, 2000) 

The entire flow of traffic must perhaps be handled by more than one elevator group 

(e.g. hospital: division into bed and passenger transport, high building: division into 

several zones). Further the need for special service or goods elevators must be 

clarified and if these might be required for passenger transport as well, and also 

whether the traffic should rather be handled by escalators, etc.. In this projecting 

stage we recommend to represent the capacity concept graphically. (Lohri, Traffic 

Simulation, 2000) 

All large elevator manufacturers are in the position to perform traffic calculations. 

Normally the results do not differ much - under equal marginal conditions. Deviating 

variants are presented rather for other reasons, e.g. because a bidder cannot offer a 

particular configuration (suitable machine for the demanded speed not available, or 

no suitable control for the size of group). The quality in the capacity of elevators 

from different manufacturers will not show up before the control can prove its effect. 

Respective investigations must be performed by means of a simulation. (Lohri, 

Traffic Simulation, 2000) 

7.1. Case Description 

A five- story office building is served by a single elevator. People arrive to the 

ground floor (floor 1) with independent exponential interarrival times having mean 1 

minute. A person will go to each of the upper floors with probability 0.25. It takes 

the elevator 15 seconds to travel one floor. Assume, however, that there is no loading 

or unloading time for the elevator at a particular floor. A person will stay on a 

particular floor for an amount of time that is distributed uniformly between 15 and 

120 minutes. When a person leaves floor i (where i=2,3,4,5), he or she will go to 

floor 1 with probability 0.7, and will go to each of the other three floors with 



 

 

probability 0.1. The elevator can carry six people, and starts on floor 1.  If there is 

not room to get all people waiting at a particular floor on the arriving elevator, the 

excess remain in queue. A person coming down to floor 1 departs from the building 

immediately. The following control logic also applies to the elevator: 

• When the elevator is going up, it will continue in that direction if a current 

passenger wants to go to a higher floor or if a person on a higher floor wants 

to get on the elevator. 

• When the elevator is going down it will continue in that direction if it has at 

least one passenger or if there is a waiting passenger at a lower floor. 

• If the elevator is at floor i (where i= 2,3,4) and going up (down), then it will 

not immediately pick up a person who wants to go down (up) at that floor. 

• When the elevator is idle, its home base is floor 1 

• The elevator decides at each floor when floor it will go to next. It will not 

change directions between floors. 

7.2. Decision Description 

Elevator: There is an elevator which carries people between five floors. People enter 

to the system from the first floor and leave the elevator system to the first floor.  

Waiting time: Each passenger has his personal waiting time. This is the time that a 

passenger spends waiting for an elevator measured from the instant when the 

passenger has arrived (and possibly registers a landing call) until the instant the 

passenger enters the car. The totality of the personal waiting time during a simulation 

can be evaluated according to several statistical criteria. (Lohri, Traffic Simulation, 

2000) 

Some examples: mean waiting time or the waiting time limit for 90 % of all 

passengers or the maximum waiting time. The evaluation for the mentioned criteria 

can be selected, e.g. according to the following sub-criteria: 

• for all passengers in the simulation 

• for all passengers on a selected stop or a selected range of stops 

• for all passengers which are traveling in a selected direction 

• for all passengers within a selected time period 

• Transit time: This is the time that a passenger spends traveling in a elevator car, 

measured from the instant that the passenger boards the car until the instant that the 

passenger alights at the destination floor. (Lohri, 2000) 



 

 

Time to destination (journey time): Each passenger has his personal time to 

destination. The time of destination results in an addition of the waiting time with the 

transit time. The evaluation of the time to destination can be carried out analogously 

how remarked by waiting time. (Lohri, Traffic Simulation, 2000) 

• Waiting queue: Persons who are waiting for an elevator serving them. 

There are three criteria that effect the elevators movement: 

- The people inside the elevator 

- The people waiting for the elevator in the floors ( Call button) 

- The direction of movement of the elevator 

7.3. Black Box Representation 

 

Figure 7.1: Black box of Elevatation 

The black box representation on figure 7.1, describes the  control variables, 

environmental variables, and output variables. 



 

 

7.4. UML model 

 

Figure 7.2: Elevator Figure 

UML meta model is presented in Figure 7.1. The rules are based on the UML 

meta model datas. 

• When the elevator is going up, it will continue in that direction if a current 

passenger wants to go to a higher floor or if a person on a higher floor wants 

to get on the elevator. 

• When the elevator is going down it will continue in that direction if it has at 

least one passenger or if there is a waiting passenger at a lower floor. 

• If the elevator is at floor i (where i= 2,3,4) and going up (down), then it will 

not immediately pick up a person who wants to go down (up) at that floor. 

• When the elevator is idle, its home base is floor 1 

• The elevator decides at each floor when floor it will go to next. It will not 

change directions between floors. 

7.5. Petri Net Patterns 

7.5.1. Call Pattern 

In the system there are two main factors that effect the direction of the elevator: The 

people in the elevator and the people who call the elevator. In this pattern the relation 



 

 

between the people waiting in one floor for the elevator and the call button has been 

described.  This pattern is based on the Data Distributor pattern of Aalst(2005). This 

pattern modifies the attributes of the entity “Calls” and shown in Figure 7.1. 

 

Figure 7.3: Call 

Code: 

Start 

p=Pcall 

Call 

Pre c=Pcall.first 

Post 

Callup<- c 

Fi 

Connectors: 

In Pcall: p 

Out Calldirect:c 

Call (elevator) = Elevator with Callqueuup = CallDirect 

     Callqueuedown = CallDirect 

     UpFloorNqueue = Pcall 

     DownFloorNqueue = Pcall 



 

 

7.5.2. Ascending/Descending Transportation Pattern 

In this pattern the first two motives of the elevator that has been described in the first 

two logic paragraphs of the problem. This pattern enables the elevator to move in the 

same direction (Up/Down) in the possible state. The pattern also includes the sub 

pattern of Capacity bounding pattern in patterns in colored Petri nets (Aalst, 2005). 

The logic consists on comparing the people getting in to the elevator and elevator 

call list, then selecting the nearest floor in the same direction. Paterns are presented 

in Figure 7.2 

.  

Figure 7.4: Trasport up/ Trasport down 

Code: 

TransportUp 

Pre n+I= First(UpfloorNqueue.first, CallqueueUp) 

Post 

UpFloorN+i<-P,e 

The coding of the Descending transport pattern is similar to the ascending transport 

pattern. 

 

Connector: 

 Ascending (elevator) = elevator with   

UpfloorN = Upfloorqueue 

ArrvUpN+1 = UpfloorN+1 



 

 

7.5.3. Occupy Pattern 

 

Figure 7.5: Occupy 

The code of the Occupy transition is similar to the Halt pattern that has been 

mentioned in the ship transportation problem. The transition which is shown in 

Figure 7.3, similarly holds the token transfer for a period of time.  

Connector: 

Occupy (elevator) = elevator with ArrvUpN+1 = ParrFlrX 

DepUp N+1 = PdepFlrX 

7.5.4. Switch Pattern 

 

Figure 7.6: Switch  

In this problem the switch pattern also used for determining the direction of the 

elevator. The impulse is triggered if there are no calls or people going in the same 

direction. The counter Place pattern (Mulyar & Aalst, 2005)is also necessary for this 

pattern for expressing the empty places for call list and floors. This can be also 

represented by aggregate objects. Switch pattern is presented in Figure 7.4. 

Connector: 

Switch(elevator) =elevator with UpfloorN = St1 

     DownFloorN = St2 

Code: 

Switch 

If (Direction.elevator=up && up.Floors.calls=[])  

Then Direction.elevator=down. 

Else If (Direction.elevator=down && down.Floors.calls=[])  

Then Direction.elevator=up 

If(Floors.calls=[]) 



 

 

Then Floor.elevator=1 

Else 

Fi 

7.6. Model Creation 

7.6.1. Adding structure with hierarch 

This structure in Figure 7.5 shows the relationship between the patterns. The switch 

pattern is the link between transportation patterns which will eventually change the 

direction of the elevator if there is no one waiting in that direction floors or in the 

elevator. The main aim of this pattern is to model the elevators actions which is 

represented as elevate in the figure 7.6.  

 



 

 

 

Figure 7.7: Elevation logic 

 

 

 



 

 

 

Figure 7.8: Top Elevator Figure 

  



 

 

 

8. INVENTOR SYSTEM CASE  

8.1. Case Description 

A company that sells a single product would like to decide how many items it should 

have in inventory for each of the next n months (n is a fixed input parameter). The 

times between demands are IDD exponential random variables with a mean of 0.1 

month. The sizes of the demands, D, are IID random variables (independent of when 

the demands occur), with 

  D= {1    w.p. 1/6,  

2 w.p. 1/3 

3 w.p. 1/3 

4 w.p. 1/6} 

At the beginning of each month, the company reviews the inventory level and 

decides how many items to order from its supplier. If the company orders Z items, it 

incurs a cost of K+iZ, where K=$32 is the setup cost and i=$3 is the incremental cost 

per item ordered. (If Z=0, no cost is incurred.) When an order is placed the time 

required for it to arrive (called the delivery lag or lead time) is a random variable that 

is distributed uniformly between 0.5 and 1 month.  

The company uses a stationary (s,S) policy to decide how much to order, i.e., 

Z= { S- I if I<s 

0 if I>s} 

Where I is the inventory level at the beginning of the month. 

When a demand occurs, it is satisfied immediately if the inventory level is at least as 

large as the demand. If the demand exceeds the inventory level, the excess of 

demand over supply is backlogged and satisfied by future deliveries. (In this case, the 

new inventory level is equal to the old inventory level minus the demand size, 

resulting in a negative inventory level.) When an order arrives, it is first used to 

eliminate as much of the backlog (if any) as possible; the remainder of the order (if 

any) is added to the inventory. 



 

 

So far we have discussed only one type of cost incurred by the inventory system, the 

ordering cost. However, most real inventory systems also have two additional types 

of costs, holding and shortage costs, which we discuss after introducing some 

additional notation. Let I(t) be the inventory level at time t [ note that I(t) could be 

positive, negative or zero]; let I+(t)=max{I(t),0} be the number of items physically on 

hand in the inventory at time t [note that I+(t)>=0]; and let I-(t)=max{-{I(t),0} be the 

backlog at time t [ I-(t)>=0 as well]. A possible realization of I(t), I+(t) and I-(t) is 

shown in fig 1.41. The time points at which  I(t) decreases are the ones at which 

demands occur. 

For out model, we shall assume that the company incurs a holding cost of h=$1 per 

item per month held in (positive) inventory. The holding cost includes such costs as 

warehouse rental, insurance taxes, and maintenance, as well as the opportunity cost 

of having capital tied up in inventory rather than invested elsewhere.  

Similarly, suppose that the company incurs a backlog cost of Л=$5 per item per 

month in backlog; this accounts for the cost of extra record keeping when a backlog 

exists, as well as loss of customers’ goodwill. 

Assume that the initial inventory level is I(0)=60 and that no order is outstanding. 

We simulate the inventory system for n = 120 months and use the average total cost 

per month (which is the sum of average ordering cost per month, the  average 

holding cost per month, and average shortage cost per month) to compare the 

following nine inventory policies in table 8.1: 

Table 8.1: Inventor Policy 

s 20 20 20 20 40 40 40 60 60

S 40 60 80 100 60 80 100 80 100

 

8.2. Decision Description 

A company which has monthly demands is having an inventory control and wants to 

know which inventory level limits are the most profitable. 

- Inventory control system is based on the maximum and minimum inventory levels. 

- Every demand affects the inventory directly. 

- To increase the inventory level orders should be made to the supplier at the 

beginning of each month. 

- Inventory level effects the cost such as holding cost and backlog cost.  



 

 

8.3. The Black Box representation 

The Black box representation for the inventory case is shown in figure 8.1. 

 

Figure 8.1: Black box of Inventory system 

8.4. UML Model 

 

Figure 8.2: Inventory System Figure 

8.5. Petri Net Patterns 

8.5.1. Delivery Pattern 

When a demand occurs, it is satisfied immediately if the inventory level is at least as 

large as the demand. If the demand exceeds the inventory level, the excess of 



 

 

demand over supply is backlogged and satisfied by future deliveries. The input 

parameters are the current inventory level and the size of the demand. The demand 

will be serviced at the end of the transaction which is shown in Figure 8.1. This 

pattern is similar to the Inventory set pattern. 

DeliveryDecrData

Data
BASE

d

i

Logd

 

Figure 8.3: Delivery Pattern 

Code:  

Delivery 

Post 

Serviced<- D 

i.inventorylevel := i.inventorylevel- d.size 

Connector: 

Delivery(Inventory)= Inventory with Demand = DecrData 

      InventoryDB = Database 

8.5.2. Inventory Control Pattern 

Description: “The company uses a stationary (s,S) policy to decide how much to 

order, i.e., 

Z= { S- I if I<s 

0  if I>s} 

where i is the inventory level at the beginning of the month.” The input parameters 

are the level of the inventory and inventory control limits. The pattern decides on 

ordering process and the order size (o.size) according to the inventory level. The 

pattern which is shown in Figure 8.2, is based on Database management pattern of 

Aalst(2005). 

 



 

 

 

Figure 8.4: Inventory Control 

Code: 

InventoryControl 

Post 

Order<-o 

 If (i.level<c.mininventorylevel) Then o.size:= (c.maxinventorylevel-i.level) 

Else o.size:= 0 

FI 

Control(Inventory) = Inventory with  InventoryCheck = Trig 

      InventoryDB = Database 

      Order = Rqst 

      OrderRecieved = RqstFB 

 

Inventory check place is an infinite source for the inventory control trigger. The 

interarrival times of periodical checks can be set in the system. 

8.5.3. Inventory Set Pattern 

This pattern is based on database management pattern of Aalst (2005). The purpose 

of the pattern is setting inventory level according to the order size. The value of 

inventory level (i.Level) is renewed at the end of the transition. The pattern is shown 

in Figure 8.3. 
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Figure 8.5: Inventory Set 

Code: 

InventorySet 

Post inventoryDb<- i 

i.level:=i.level+o.size 

Connector: 

Set(Inventory)= Inventory with OrderRecieved = Add 

     InventoryDB = Database 

8.5.4. Inventory Log Pattern 

This Pattern is based on Log management pattern of Aalst(2005). The purpose of the 

pattern is to log the inventory surplus or backlogs for future cost analysis. The 

inventory levels are recorded into two different places according to the sign of the 

inventory. The pattern is presented in Figure 8.4. 

 

Figure 8.6: Inventory Log 

Code: 

InventoryLevel 

Post IF i.level>0 slogDB<-c ELSE HlogDB<-c Fi 

Connector:  

Level(Inventory)= Inventory with InventoryCheck = trig 



 

 

     InventoryDB= Database 

     ShortageDb=sLogDb 

     HoldingDb= hLogDb 

8.6. Model Creation 

8.6.1. Adding structure without Hierarch 

As it has been described in the section 4.4, patterns are united without any Hierarch. 

In this case, all the details of the model can be seen. It is the first phase of the model 

creation which is shown in Figure 8.5. 

 

Figure 8.7: Inventory Figure without Hierarch 

8.6.2. Adding Structure with Hierarch 

If we evaluate the patterns in to major patterns we will acquire semi major patterns 

such as inventory order pattern which is the combination of inventory control pattern 

and inventory set pattern. The pattern is shown in Figure 8.6. 



 

 

 

Figure 8.8: Combined patterns of inventory control and inventory set 

 

The combination of inventory order pattern and Delivery pattern is resulted in the 

inventory management pattern which is managing all the inventory stock control and 

supplying of the orders. 

 

Figure 8.9: Combined pattern of Inventory order and delivery 

The collection of the inventory management and Inventory log pattern gives us the 

solution of the problem which runs the system and calculates the cost of the 

inventory. The pattern is shown in Figure 8.7 & Figure 8.8. 

 

Figure 8.10: Inventory Figure with hierarch 

 



 

 

9. EVALUATION 

The main advantage of CPN patterns is the ability to create models easily without 

any compatibility issue. In this study certain cases has been examined. The problems 

are actually independent from each other, but after creating the individual models by 

patterns, connecting the independent cases won’t be difficult. 

If the actions of the examples are generalized it can be said that the ship 

transportation problem includes a ship loading transition. In the terms of hierarch it is 

possible to use the transition of Ship loading problem in this circumstances. 

In the below figure, It has been showed a general demonstration of the combination 

of the models. The two models which have the main object as ship, has been 

combined without any difficulty or modification since the objects has the same 

descriptions. 

 



 

 

 

Figure 9.1: Combination of Inventory, ship trasport and ship loading cases 

In the Evaluation of the cases, the vertical connectivity is seen between the cases as 

in Figure 9.1. The berthing activity transition in the ship transport case can be 

explained by the ship loading case. The two cases are different from each other and 

the token properties are different. But the UML allows us to combine two Figures 

without any problem; the last UML of the Figure will include all the properties of the 

tokens in the system.  

The other vertical connection is the ordering process transition in the inventory case 

and the ship transportation case. The same logic may apply for the connection. The 

result is seen on the table. 



 

 

If we think in the manufacturing concept, the modular system for creating simulation 

Figures can enable for re usage of the specific simulation Figures, opportunity to 

organize flexible manufacturing systems.  

  



 

 

 

10. CONCLUSION AND RECOMENDATION 

10.1. Impact of Pattern Use 

In this work with Petri net patterns, certain queuing cases, inventory cases and their 

interconnectivity to found a complex Figure has been presented. The study shows the 

reusability of the partial Figures (patterns), and how to configure them to create a 

complex Figure. It also allows transferring of Figures from one decision study to 

another.  

This is an improvement when comparing to the general and common situation where 

a Figure created conventionally for one system can not be used in another. 

(Klussmann & Caskey, 1998)The complexity and specificity of the Figure does not 

allow it to be reused in other systems.  

Conventionally, Figureing the production line which is open to the dynamic changes 

for more efficiency and performance is costly. After the simulation the production 

line may change and a new simulation might be necessary for production 

management decision making. Patterns have the advantage of allowing flexible 

Figureing of the system that must be studied. Patterns that correspond to the changes 

in the production line can be added to earlier decision study deliverables. These 

deliverables must be kept in a repository. Pattern based configuration of the system 

Figure is compatible with the change methods in many operational processes: a new 

aspect or component is built into the production system, for instance a Flexible 

manufacturing systems (FMS). After the first Figure which is based upon the 

configuration of patterns, it is possible to Figure change every time the production 

line has changed.  

From the cost/time viewpoint, and when no patterns are available yet, the investment 

in the first patterns and the Figure configuration will be larger than in conventional 

Figures.  However, in the context where frequent changes are required, or where 

pattern libraries are available, the reuse of the Figure itself will be much more 

economic and feasible. 

Regarding the cost/time aspect the gain of the pattern development and usage is in 

the reuse of the Figure in the other situations. Our main challenge here is how to 



 

 

cope with the lack of negative examples. We do not have logs that show the 

forbidden (negative) behavior.  (Medeiros, Weijters, & Aalst, 2005) 

 The other benefits of the pattern usage are vertical and horizontal connectivity 

among simulation based decision studies.  Horizontal connectivity occurs where 

different manufacturing plants are Figureed separately and then simulated together.  

The Ship transport and the loading Figures illustrate the vertical connectivity of 

patterns and Figures.  

Our main challenge here is how to cope with the lack of negative examples. We do 

not have logs that show the forbidden (negative) behavior.  (Medeiros, Weijters, & 

Aalst, 2005) 

 

10.2. Use of Connectors  

Connectors are the main elements that can transform the attributes of the entities in 

one pattern to another. The only thing that has to be reset on the replication of the 

patterns is the logic of the connector conversation. The designer of the Figure doesn’t 

need to know all the constraints but the entity attributes for managing the connectors 

between the patterns. 

10.3. Recommendations 

Previously, both ship and berth cases were examined. In addition to the previous 

studies, UML Figures & Patterns have been extended for basic patterns. The tools 

that have been used in the research are explained in various aspects.  

 

The patterns and the connections that were described in this study give an idealized 

view of reuse of Petri net patterns. Different disciplines of processes can be studied 

in detail and the process Figureing and simulations can be improved. Especially new 

manufacturing techniques such as modular manufacturing systems, flexible 

manufacturing systems have the potential to the applications of patterns. 

In this study the comparison is made most in the time aspect and insight aspect which 

is mentioned in the chapter 2. Further comparison should be made with the other 

aspects such as team and organizational aspect and cost aspect. 
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