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INVESTIGATION THE EFFECT OF FILM FORMING AMINES ON THE 

CORROSION INHIBITION OF CARBON STEEL   

SUMMARY 

In this study, the behavior of the carbon steel, in presence of different inhibitive 

formulations based of film forming amines of different structures, by steady-state 

current-voltage curves and  electrochemical impedance spectroscopy measurements 

was studied. Sea, decarbonised and deionised water qualities were examined in 

absence of and with inhibitors at varying pH values from 5 to 11 in order to to 

observe the pH dependency of the inhibitors at corrosion inhibition. Also, at the same 

pH value (pH 8), 6 different inhibitors were examined at 3 different water quality in 

order to obtain the relationship between the inhibitor structure and inhibitor 

efficiency, additionally by the effect of different corrosive media. Moreover, 

adsorption isotherm plots were observed by using EIS data at decarbonised water 

which has low electrical conductivity close to that encountered in natural waters at 

pH=8 in order to understand the corrosion inhibition mechanism. Also, surface 

structure of some correded carbon steel electrodes were examined by the scanning 

electron microscope (SEM) that images the sample surface by scanning it with a 

high-energy beam of electrons in a raster scan pattern and provides information 

about the sample's surface topography, composition and other properties such as 

electrical conductivity. 

Because corrosion occurs via electrochemical reactions, electrochemical techniques 

are ideal for the study of the corrosion processes. The electrochemical impedance 

spectroscopy (EIS) is one of the most effective and reliable method to extract 

information about electrochemical characteristics of the electrochemical system. 

Electrochemical measurements, including potentiodynamic polarization curves and 

electrochemical impedance spectroscopy (EIS) were performed in a three-electrode 

cell. 

During the work, EIS data is also analyzed by fitting it to an equivalent electrical 

circuit model. Most of the circuit elements in the model are common electrical 

elements such as resistors, capacitors, and inductors. From the data obtained, it is 

intended to develop structure/property relations in order to find optimal corrosion 

inhibitors. 
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KARBON ÇELĠĞĠN KOROZYONUNU ÖNLEMEDE FĠLM YAPICI 

AMĠNLERĠN ETKĠLERĠNĠN ĠNCELENMESĠ  

ÖZET 

Bu çalışmada, kararlı durum akım-gerilim eğrileri ve elektrokimyasal impedans 

ölçümleri kullanılarak, karbon çeliğin korozyonunu önlemede farklı formülasyonlara 

sahip aminlerin etkileri incelenmiştir. 5 ve 11 arasında değişen pH değerleri arasında, 

korozyon inhibitörü olarak kullanılan farklı yapıdaki poliaminlerin varlığında ve 

inhibitörler olmadan korozif ortam olarak seçilen deniz suyu, dekarbonize su ve 

deiyonize suyunda pH değerine bağlı korozyon önleme etkileri incelenmiştir. Aynı 

zamanda, pH değeri 8 değerinde sabit tutularak, 3 farklı korozif  ortamda 6 farklı 

inhibitörün korozyon önleme performansları tespit edilmiştir. Böylece değişen 

inhibitör yapısının farklı su kalitelerindeki etkinlikleri saptanmıştır. İlave 

olarak,nispeten doğal su kaynaklarında rastlanan düşük iletkenlikdeğerine sahip olan 

dekarbonize sudan pH 8 değerinde elektrokimyasal impedans spektroskopisi ile elde 

edilen veriler ile inhibitörlerin korozyon önleme mekanizmalarını tespit etmek 

amacıyla  adsropsiyon izotermleri oluşturulmuştur. 

Taramalı Elektron Mikroskobu (SEM) ile inhibitör kullanılmadığı ve inhibitör 

kullanıldığı durumlardaki karbon çelik malzemenin yüzeyi, yüksek enerjili 

elektronlarla yüzeyin taranması incelenmiştir. Bu metod ile yüzeylerin engebeli 

(topografik) yapısıyla, kompozisyonu ve elektrikseliletkenlikleri gibi özellikleriyle  

ilişkili bilgi elde edilir.  

Korozyon olgusu elektrokimyasal reaksiyonlar sonucu oluştuğu için, korozyon 

prosesinin çalışmaları sırasında elektrokimyasal yöntemler kullanılmıştır. 

Elektrokimyasal impedans spektroskopisi, elektrokimyasal sistemlerin 

karakteristikleri hakkında bilgi edinmede kullanılan en etkin ve güvenilir  

metotlardan biridir. Deneyler sırasında, potansiyodinamik polarizasyon eğrileri ve 

elektrokimyasal impedans spektroskopisinin kullanıldığı elektrokimyasal ölçümler 3 

elektrotlu hücrelerde gerçekleştirilmiştir.  

Çalışma sırasında ayrıca EIS dataları eşlenik elektrik devre modelleri oluşturularak 

da analiz edilmiştir. Oluşturulan devre elemanları genellikle yaygın olarak kullanılan 

direnç, kapasitör ve indüktör gibi elektrik devre elemanlarıdır. Elde edilen bütün 

veriler ile yapı / özellik ilişkine bağlı olarak en uygun korozyon inhibitörün tespiti 

amaçlanmıştır. 
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1 

1.  INTRODUCTION 

Corrosion is the destructive attack of a material by reaction with its environment. 

The serious consequences of the corrosion process have become a problem of 

worldwide significance. In addition to our everyday encounters with this form of 

degradation, corrosion causes plant shutdowns, waste of valuable resources, loss or 

contamination of product, reduction in efficiency, costly maintenance, and expensive 

overdesign; it also jeopardizes safety and inhibits technological progress.  

Corrosion control is achieved by recognizing and understanding corrosion 

mechanisms, by using corrosion- resistant materials and designs, and by using 

protective systems, devices, and treatments [1,2]. 

A synergism, or cooperation, is often present between different inhibitors and the 

environment being controlled, and mixtures are the usual choice in commercial 

formulations. The scientific and technical corrosion literature has descriptions and 

lists of numerous chemical compounds that exhibit inhibitive properties. Of these, 

only very few are actually used in practice. This is partly because the desirable 

properties of an inhibitor usually extend beyond those simply related to metal 

protection. Considerations of cost, toxicity, availability, and environmental 

friendliness are of considerable importance [3]. 

Due to stringent environmental regulations and as well as human safety, inorganic 

corrosion inhibitors such as chromates, nitrites, polyphosphates, zinc salts or oxides 

incorporated in protective coatings for mild steel are being replaced by organic 

compounds [4,5]. 

The present work was designed to gain further understanding of the inhibition 

mechanism of organic corrosion inhibitors, film forming amines, (FFA). 

Comparative studies have been carried out to evaluate the efficiency of film forming 

amines, and to optimize their  inhibitive properties against the corrosion of carbon 

steel.  
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Because corrosion occurs via electrochemical reactions, electrochemical techniques 

are ideal for the study of the corrosion processes [6]. 

In this aim, the work is devoted to study the behavior of the carbon steel, in presence 

of different inhibitive formulations based of FFA of different structures, by steady-

state current-voltage curves and impedance spectroscopy measurements. From the 

data obtained, it is intended to develop structure/property relations in order to find 

optimal corrosion inhibitors. 

The electrochemical impedance spectroscopy (EIS) is one of the most effective and 

reliable method to extract information about electrochemical characteristics of the 

electrochemical system for instance double layer capacitance (Cdl), determination of 

the rate of the charge transfer and charge transport processes and solution resistance 

etc.. 

In the first part of the study, 3 different water qualities are examined in absence of 

and with inhibitors at varying pH values from 5 to 11 in order to to observe the pH 

dependency of the inhibitors at corrosion inhibition. 

In the second part of the study, at the same pH value (pH 8), 6 different inhibitors 

were examined at 3 different water quality in order to obtain the relationship between 

the inhibitor structure and inhibitor efficiency, additionally by the effect of different 

corrosive media. 

In the last part, adsorption isotherm plots were observed by using EIS data at 

decarbonised water at pH=8 in order to obtain the corrosion inhibition mechanism. 

Also, surface structure of some corroded carbon steel electrodes were examined by 

the scanning electron microscope (SEM) in order to obtain information about the 

sample's surface topography. 
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2.  LITERATURE SURVEY 

2.1 Corrosion Definition 

The corrosion of metals occurs primarily by electrochemical processes involving 

metal oxidation and simultaneous reduction of some other species. The fundamental 

understanding of these processes has allowed the development of a number of 

electrochemical techniques for the study of the corrosion  phenomena and assessment 

of the corrosion rate [2]. 

Water is used for a wide variety of purposes, from supporting life as potable water to 

performing a multitude of industrial tasks such as heat exchange and waste transport. 

The impact of water on the integrity of materials is thus an important aspect of 

system management. Since steels and other iron-based alloys are the metallic 

materials most commonly exposed to water, aqueous corrosion has been discussed 

with a special focus on the reactions of iron (Fe) with water (H2O).  

The main force behind corrosion is the tendency of iron to break down into its 

natural state.  The iron found in pipe is elemental iron (Fe
0
) which is unstable and 

tends to oxidize, to join with oxygen or other elements.  In nature, this oxidation 

produces an iron ore such as hematite (Fe2O3), magnetite (Fe3O4), iron pyrite (FeS2), 

or siderite (FeCO3).  In corrosion, the result of this oxidation is rust, Fe(OH)2 or 

Fe(OH)3 [7].  

Oxidation of the elemental iron occurs at the anode.  First, the elemental iron breaks 

down (Equation 2.1).  In this reaction, elemental iron leaves the pipe, so pits form in 

the pipe's surface at the anode.   

Elemental Iron → Ferrous iron + Electrons 

 Fe
0
 → Fe

2+
 + 2e

-
                                                             (2.1) 

 



 
4 

 

Figure 2.1 : Simple model describing the electrochemical nature of corrosion  

                process [7]. 

The reaction produces ferrous iron and two electrons.  The electrons are then able to 

flow through the pipe wall to the cathode [8]. This reaction is rapid in most media, as 

shown by the lack of pronounced polarization when iron is made an anode 

employing an external current. When iron corrodes, the rate is usually controlled by 

the cathodic reaction, which in general is much slower (cathodic control). In 

deaerated solutions, the cathodic reaction is: 

2H
+ 

+ 2e
-
 → H2                                                                     (2.2) 

This reaction proceeds rapidly in acids, but only slowly in alkaline or neutral 

aqueous media. The corrosion rate of iron in deaerated neutral water at room 

temperature, for example, is less than 5 µm/year. The rate of hydrogen evolution at a 

specific pH depends on the presence or absence of low-hydrogen overvoltage 

impurities in the metal. For pure iron, the metal surface itself provides sites for H2 

evolution; hence, high-purity iron continues to corrode in acids, but at a measurably 

lower rate than does commercial iron.  

The cathodic reaction can be accelerated by the reduction of dissolved oxygen in 

accordance with the following reaction, a process called depolarization (Equation 

2.3). 

 4H
+
 + O2 + 4e

-
 → 2H2O                                   (2.3) 
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Dissolved oxygen reacts with hydrogen atoms adsorbed at random on the iron 

surface, independent of the presence or absence of impurities in the metal. The 

oxidation reaction proceeds as rapidly as oxygen reaches the metal surface. 

Meanwhile, the ferrous iron reacts with the water (the electrolyte) in the pipe to 

produce rust and hydrogen ions [7]. 

Ferrous iron + Water + Oxygen ↔ Ferrous hydroxide 

 2Fe
2+

 + 2H2O + O2 ↔ 2Fe(OH)2                                             (2.4) 

The rust builds up a coating over the anode's surface.  Ferrous hydroxide may then 

react with more water to produce another form of rust called ferric hydroxide 

(Fe(OH)3). 

4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3                                             (2.5) 

 

Figure 2.2 : Metal corrosion mechanism [8]. 

Corrosive attack of a metal can take place either uniformly or as a localised attack at 

specified sites. If the activities of all the local action cells are approximately the 

same, uniform corrosion occurs resulting in a general thinning of the metal. When 

some of the local cells are more active than others, localised corrosion such as pitting 

will occur.  

Although corrosion is a dynamic process, thermodynamics can provide a good 

strarting point for discussion. The thermodynamic stability of a metal in a solution is 

often represented in the form of a Pourbaix diagram, or E-pH, such as the ones 

shown in Figure 2.3 for iron [9]. Pourbaix diagrams are thermodynamic diagrams 

which show the ability of metals to be attacked, dissolved or corroded at various pH 
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and oxidation conditions [10]. Figure 2.3 illustrates the E-pH diagram for iron in the 

presence of water or humid environments at 25
o
C, which was calculated by 

considering all possible reactions associated with iron in wet or aqueous conditions 

listed in the Table 2.1, excluding therefore drier forms of corrosion products such as 

magnetite (Fe3O4) or iron (ferric) oxide (Fe2O3). 

At potentials more positive than -0.6 V and at pH values below about 9, ferrous ion 

(Fe
2+

 or Fe II) is the stable substance (Figure 2.3). This indicates that iron will 

corrode under these conditions. In other regions of the iron E-pH diagram, it can be 

seen that the corrosion of iron produces ferric ions (Fe
3+

 or Fe III), ferric hydroxide 

[Fe(OH)3], ferrous hydroxide [Fe(OH)2], and at very alkaline conditions, complex 

HFeO2
-
 ions. The solid corrosion products considered are different than earlier, ferric 

oxide (Fe2O3) and magnetite (Fe3O4), both important iron ore constituents [12]. 

The various stability regions for these drier corrosion products are shown in Table 

2.2 where the predominant compounds and ions are also indicated. 

 

Figure 2.3 : E-pH diagram of iron or steel with four concentrations of soluble 

           species, three soluble species and two wet corrosion products (25
o
C). 

                       

 

http://corrosion-doctors.org/Water-Glossary/Glossary.htm
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Table 2.1: Possible reactions in the Fe-H2O system between the species most stable       

      in wet conditions. 
 

Equilibria 

1.  2e
- 
+ 2H

+ 
= 1H2 

2.  4e
- 
+ 1O2

 
+ 4H

+ 
= 2H2O 

3.  2e
- 
+ 1Fe(OH)2  + 2H

+ 
= 1Fe + 2H2O 

4.  2e
- 
+ 1Fe

2+ 
= 1Fe 

5.  2e
- 
+ 1Fe(OH)3

-
 + 3H

+ 
= 1Fe + 3H2O 

6.  1e
- 
+ 1Fe(OH)3 + 1H

+ 
=1Fe(OH)2  + 1H2O 

7.  1e
- 
+ 1Fe(OH)3 + 1H

+ 
=1Fe

2+
 + 3H2O 

8.  1Fe(OH)3 
-
+ 1H

+ 
=1Fe(OH)2  + 1H2O 

9.  1e
- 
+ 1Fe(OH)3 

 
= 1Fe(OH)3 

– 

10.1Fe
3+ 

 +3H2O =1Fe(OH)3  +3H
+ 

11. 1Fe
2+ 

+2H2O = 1Fe(OH)2 +2H
+ 

12. 1e
- 
+1Fe

3+ 
 = 1Fe

2+ 

13. 1Fe
2+ 

 +1H2O = 1FeOH
+ 

+1H
+ 

14. 1FeOH
+ 

+ 1H2O = 1Fe(OH)2(sln) +1H
+ 

15. 1Fe(OH)2(sln) + 1H2O = 1Fe(OH)3  
-
+1H

+ 

16. 1Fe
3+ 

 +1H2O = 1FeOH
2 + 

+1H
+ 

17. 1FeOH
2
 
+ 

+ 1H2O = 1Fe(OH)2 +1H
+ 

18. 1Fe(OH)2 +1H2O = 1Fe(OH)3 (sln) +1H
+ 

19. 1e
- 
+ 1FeOH

2+  
+1H

+ 
= 1Fe

2+  
+ 1H2O 

20.  1e
- 
+1Fe(OH)2

 
+2H

+ 
= 1Fe

2+  
+ 2H2O 

21. 1e
- 
+1Fe(OH)3 (sln) +1H

+ 
= 1Fe(OH)2(sln) + 1H2O 

22. 1e
-
 +1Fe(OH)3 (sln) +2H

+
= 1FeOH

+
 +2H2O 

23. 1e
-
 +1Fe(OH)3 (sln) +3H

+
= 1Fe

2+  
+ 3H2O 

 

In Figure 2.4, A is the equilibrium line for the reaction: H2 → 2H
+ 

+ 2e
-
.                                                     

B is the equilibrium line for the reaction: 2H2O → O2 + 4H
+
 + 4e

-
. * indicates 

increasing thermodynamic driving force for cathodic oxygen reduction, as the 

potential falls below line B. ** indicates increasing thermodynamic driving force for 

cathodic hydrogen evolution, as the potential falls below line A [7]. 

For corrosion in aqueous media, two fundamental variables, namely corrosion 

potential and pH, are deemed to be particularly important. Changes in other 

variables, such as the oxygen concentration, tend to be reflected by changes in the 

corrosion potential.  
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Table 2.2: Possible reactions in the Fe-H2O system between the species most stable        

                  in dry conditions [11]. 

 

Equilibria 

1.  2e
- 
+ 2H

+ 
= 1H2 

2.  4e
- 
+ 1O2

 
+ 4H

+ 
= 2H2O 

3.  8e
- 
+ 1Fe3O4  +8H

+ 
= 3Fe + 4H2O 

4.  2e
- 
+ 1Fe

2+ 
= 1Fe 

5.  2e
- 
+ 1Fe(OH)3

-
 + 3H

+ 
= 1Fe + 3H2O 

6. 2e
- 
+ 1Fe2O3 +2H

+ 
= 2Fe3O4 + 1H2O 

7.  2e
- - 

+ 1Fe3O4  +8H
+ 

= 3Fe
2+

 + 4H2O 

8.  2e
- 
+ 1Fe2O3 +6H

+
= 2Fe

2+
 + 4H2O 

9.  2e
-- 

+ 1Fe3O4  +5H2O = 3Fe(OH)3
-
 + 1H

+ 

10. 2Fe
3+ 

 +3H2O = 1Fe2O3 + 6H
+ 

11. 1e
-- 

+1Fe
3+ 

 = 1Fe
2+ 

12. 1Fe
2+ 

 +1H2O = 1FeOH
+ 

+1H
+ 

13. 1FeOH
+ 

+ 1H2O = 1Fe(OH)2(sln) +1H
+ 

14. . 1Fe(OH)2(sln) + 1H2O = 1Fe(OH)3  
-
+1H

+ 

15. 1Fe
3+ 

 +1H2O = 1FeOH
2 + 

+1H
+ 

16. 1FeOH
2
 
+ 

+ 1H2O = 1Fe(OH)2 +1H
+ 

17. 1Fe(OH)2 +1H2O = 1Fe
2+ 

+2H2O 

19. 1e
- 
+1Fe(OH)2 +2H

+ 
= 1Fe(OH)2(sln) + 1H2O 

20. 1e
- 
+1Fe(OH)3 (sln) +1H

+ 
= 1Fe(OH)2(sln) + 1H2O 

21. 1e
-
 +1Fe(OH)3 (sln) +2H

+
= 1FeOH

+
 +2H2O 

22. 1e
-
 +1Fe(OH)3 (sln) +3H

+
= 1Fe

2+  
+ 3H2O 

 

 

Figure 2.4 : Thermodynamic stability of water, oxygen and hydrogen. 
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Two important variables affecting water-side corrosion of ironbased alloys are the 

pH and oxygen content of the water. As the oxygen level has a strong influence on 

the corrosion potential, these two variables exert a direct influence in defining the 

position on the E-pH diagram. A higher degree of aeration raises the corrosion 

potential of iron in water, while a lower oxygen content reduces it. 

While the E-Ph diagram provides no kinetic information whatsoever, it defines the 

thermodynamic boundaries for important corrosion species and reactions. The 

observed corrosion behavior of a particular metal or alloy can also be superimposed 

on E-pH diagrams. Such a superposition is presented in Fig. 2.5. The corrosion 

behavior of steel presented in this figure was characterized by polarization 

measurements at different potentials in solutions with varying pH levels. 

 

Figure 2.5 : Thermodynamic boundaries of the types of corrosion observed on steel 

[13].  

2.2. Corrosion Types 

Important influence factors which can favour corrosion processes at safety-relevant 

components are the operating conditions existing in plants such as water chemistry, 

assigned materials, mechanical and thermal loads, operational state and geometrical 

factors (Figure 2.6). 
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Figure 2.6 : Factors influencing corrosion fatigue [14]. 

Corrosion requires energy. During corrosion, the reacting components go from a 

higher to a lower energy state and release the energy needed for the reaction. In the 

dry corrosion the metal and the oxygen combine to produce the oxide on the surface 

because the reaction leads to a compound (the oxide) at a lower energy level. The 

oxide layer shields the metal from the oxygen and forms a barrier. The oxide will not 

react with the oxygen in the air or the metal. The barrier makes it difficult for oxygen 

in the air to contact the metal and it eventually grows so thick that the movement of 

electrons and ions across it stop. Provided the oxide layer does not crack, or is not 

removed, the metal is protected from further corrosion [15]. 

Corrosion can occur on the outside of a pipe (due to corrosive soil) or on the inside 

of a pipe (due to corrosive water.)  Either outside or inside a pipe, corrosion can have 

one of several causes.  Each cause somehow sets up an anode and a cathode so that 

corrosion can occur.  The creation of the corrosion cell can be through electrolysis, 

oxygen concentration cells, or through galvanic action [16]. 

The various types of corrosion are listed in the Figure 2.7. 
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Figure 2.7 : Various types of corrosion [17].  

 

Figure 2.8 contains the distribution of the different corrosion types for all reportable 

events of all boiling water reactors, BWR of German nuclear power plants which are 

in operation in the Federal Republic of Germany from 1968 to 2001. As a result one 

can see that stress corrosion was most frequently identified in BWR plants. Pitting 

corrosion occurs in the BWR plants with 12% whereas corrosion fatigue occurs with 

17% fatigue. 
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Figure 2.8 : Distribution of corrosion types in BWR (boiling water reactor) plants  

                     in Germany (Evaluation of reportable events 1968 – 2001) [14]. 

2.3. Corrosion Protection 

Hydrogen is considered to be an ideal energy carrier in the future. Considering the 

inhibition of corrosion of mild steel alloy, the processes of the metal corrosion 

(active dissolution) and of the hydrogen embrittlement have to be taken  into 

account. The effective inhibitors should suppress both the corrosion and the 

hydrogen charging, not intensifying any of them. By immersion of mild steel alloy in 

water solutions, the sources of hydrogen are water decomposition and reaction of 

water with the metal. Evolved hydrogen may recombine and leave the surface as a 

gas or may enter the metal causing the hydrogen-induced degradation of the metal. In 

order to reduce the susceptibility to hydrogen uptake, the modification of solution by 

addition of inhibitors or the modification of the metal surface may be applied. The 

requirement for effective inhibition of hydrogen uptake is to inhibit the hydrogen 

evolution, to promote the hydrogen gas recombination and to inhibit the hydrogen 

entry. Since hydrogen evolves in corrosion processes, the inhibition of corrosion 

should have inhibited also the hydrogen evolution. On the other hand, inhibition of 

hydrogen evolution does not necessarily mean decrease in the hydrogen charging of 
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the metal. The presence of corrosion inhibitors may substantially affect the hydrogen 

ingress processes. Therefore, the mutual influence of inhibitors on the corrosion and 

on the hydrogen evolution should be taken into account [18]. 

2.3.1. Corrosion Protection Methods 

Corrosion can be mitigated by five basic methods: coatings, cathodic protection, 

materials selection, chemical inhibitors and environmental change [19,20]. 

When considering the corrosion protection of steel structures, a distinction is made 

between active and passive measures. Active corrosion protection aims at preventing 

corrosion or reducing the rate of the corrosion reaction by: 

 interfering in the corrosion process, e.g. reducing air pollution 

 choosing a suitable material, e.g. using corrosion resistant materials 

 using detailing appropriate for corrosion protection 

The goal of passive corrosion protection is to shield the steel surface from corrosive 

substances. 

Due to their broad range of application possibilities and their efficiency, the 

following methods dominate the corrosion protection of steel structures: 

 coatings based on liquid or powder coatings 

 metallic coatings (zinc, aluminum or zinc-/aluminum alloys) applied by 

hotdip galvanization or thermal spraying 

 combination of metallic coatings and paint systems 

Optimal corrosion protection is achieved by combining active and passive corrosion 

protection methods, based on the appropriate detailing prior to the application of the 

passive corrosion protection [21].  

Inhibitors are chemicals that react with a metallic surface, or the environment this 

surface is exposed to, giving the surface a certain level of protection. Inhibitors often 

work by adsorbing themselves on the metallic surface, protecting the metallic surface 

by forming a film. Inhibitors are normally distributed from a solution or dispersion. 

Some are included in a protective coating formulation. Inhibitors slow corrosion 

processes by either: 
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 Increasing the anodic or cathodic polarization behavior (Tafel slopes) 

 Reducing the movement or diffusion of ions to the metallic surface 

 Increasing the electrical resistance of the metallic surface [19]. 

There are various techniques for preventing metallic corrosion. For example, for 

iron, cathodic protection can be achieved by maintaining its potential and pH within 

the region of stability of the elemental metal. This can be done via a suitable power 

source, or by electrical connection to a more reactive metal such as zinc immersed in 

a solution. Both techniques are widely used.  

Certain metal oxides or hydroxides have low aqueous solubilities and are stable in 

the presence of water. Hence, there may be helpful in stifling further corrosion. 

Typical examples include Fe2O3 or Al2O3. The formation of such protective films can 

be accomplished by maintaining the potential and pH within the appropriate  region. 

This method which is known as anodic protection, is not widely used because it is 

critical dependent on the ability of the protective film to shut down the corrosion 

reaction. Any faulire in the film will result in enhanced corrosion [9]. 

Broader application of corrosion-resistant materials and the application of the best 

corrosion-related technical practices could reduce approximately one-third of 

corrosion costs.  

2.3.2. Organic Corrosion Inhibitors 

Over the years, as worldwide awareness for environmental issues have grown, gentle 

processing technologies and the use of renewable resources have become 

increasingly important [22]. 

A widespread application like the use of acid solution during pickling and industrial 

cleaning leads to corrosive attack on mild steel. Therefore, corrosion of mild steel 

and its inhibition in acidic solutions have attracted the attention of number of 

investigators as a result of its industrial concern [23, 18].  

 Due to stringent environmental regulations, high toxicity, unacceptable high level 

disposal in waste water  and as well as human safety, inorganic corrosion inhibitors 

such as chromates, nitrites, polyphosphates, zinc salts or oxides incorporated in 

protective coatings for mild steel are being replaced by organic compounds [4,5,24]. 
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Since the 1960s, more advanced treatments using organic compounds (e.g., 

phosphonates, polyacrylates, amines) have been  proposed to  improve  corrosion 

protection, their principal advantage being their non- toxic nature. Nevertheless, high 

concentrations are necessary to obtain good inhibition. More recently, molybdate-

based compounds have been considered as an alternative to chromate-based 

inhibitors. However, these compounds are of  low  commercial interest because they 

are very expensive [24]. 

Study of organic corrosion inhibitors is an attractive field of research due to its 

usefulness in various industries [25].  

Currently, the environmental requirements to the corrosion inhibitors have become 

more rigid. It was proved that highly hydrophobic compounds are more capable of 

accumulating in living organisms than their less hydrophobic and, hence, more 

environmentally dangerous homologs. In connection with this, the water-soluble 

compounds, which can protect steel against corrosion in two-phase liquids, deserve 

special attention [26]. 

Most of the efficient inhibitors used in industry are organic compounds having 

multiple bonds in their molecules which mainly contain nitrogen and sulphur atoms 

through which they are adsorbed on the metal surface [18]. 

The use of corrosion inhibitors are an effective way to reduce metal corrosion. The 

inhibitors act by adsorbing onto the metal surface, thus providing an barrier to the 

corrosive environment. The advantages of organic corrosion inhibitors include: 

 Presence of film prevents uniform corrosion attack  

 Organic inhibitors increase the activation energy on the metal surface     

(passivation) 

 Organic inhibitors have been shown to eliminate corrosion over wide  

range of pH values 

 Inhibitors adsorb and form a thin polymeric layer [27]. 

Inhibitors are usually used in these processes to control the corrosion of the metals. 

The protection of mild steel against corrosion can be achieved by adding a small 

concentration of organic compounds to environment [25]. 

Compounds with functional groups containing oxygen, nitrogen and sulphur having 

ability to form complexes with iron. They have been reported to act as effective 



 
16 

inhibitors to the surface of steel by means of their competitive adsorption through the 

surface complex formation. In practice corrosion or hydrogen evolution can never be 

stopped but hindered to a reasonable level. Among many methods of corrosion 

control and prevention the organic inhibitors is the most frequently used. Organic 

compounds used as inhibitors act through a process of surface adsorption, so the 

efficiency of an inhibitor depends on: 

(i) The chemical structure of the organic compound 

(ii) The surface charge of the metal, and 

(iii) The type of interactions between the organic molecule and metal surface. 

Existing data reveal most inhibitors to act by adsorption on the metal surface through 

heteroatoms such as nitrogen, oxygen and sulphur, double bonds, triple bonds or 

aromatic rings which tend to form stronger coordination bonds. Compounds with π-

bonds generally exhibit good inhibitive properties, the electrons for the surface 

interaction being provided by the π-orbitals [18]. 

 Cooling water circuits can present several problems. Corrosion, formation of salt 

deposits and fouling by micro-organisms can appear when natural waters are used as 

thermal fluid. These problems can occur jointly, reducing the thermal efficiency of 

the circuit with significant economic repercussions. To reduce or eliminate these 

problems, waters used in cooling circuits are treated with inhibitive formulations 

composed of corrosion inhibitors associated with chemical reagents used to limit the 

scaling and fouling phenomena. Today, due to new restrictive laws concerning the 

environment, these compounds must be non-toxic and biodegradable [28]. 

2.3.3. Filming Inhibitor Technology 

As the world develops, greater oil and gas production from marginal sources, there is 

a need for more effective corrosion inhibitors under more extreme conditions [29]. 

Compounds derived from fatty acids constitute an important class of corrosion 

inhibitor. They are used in oil wells and pipelines and in the gas industry [30, 31]. 

 Corrosion of pipelines or equipment results in the necessity to shut down production 

while corroded pipelines and equipment are replaced. Also, corrosion in pipelines 

sometimes leads to leaks which in addition to being costly, may create severe 

environmental hazards [32]. 
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Both anodic and cathodic effects are sometimes observed in the presence of organic 

inhibitors, but as a general rule, organic inhibitors affect the entire surface of a 

corroding metal when present in sufficient concentration. Organic inhibitors, usually 

designated as “film-forming”, protect the metal by forming a hydrophobic film on 

the metal surface. 

Their effectiveness depends on the chemical composition, their molecular structure, 

and their affinities for the metal surface. Because film formation is an adsorption 

process, the temperature and pressure in the system are important factors. Organic 

inhibitors will be adsorbed according to the ionic charge of the inhibitor and the 

charge on the surface. 

Cationic inhibitors, such as amines, or anionic inhibitors, such as sulfonates, will be 

adsorbed preferentially depending on whether the metal is charged negatively or 

positively. The strength of the adsorption bond is the dominant factor for soluble 

organic inhibitors. These materials build up a protective film of adsorbed molecules 

on the metal surface, which provides a barrier to the dissolution of the metal in the 

electrolyte. Because the metal surface covered is proportional to the inhibitor 

concentrates, the concentration of the inhibitor in the medium is critical. For any 

specific inhibitor in any given medium there is an optimal concentration [33]. 

Compounds with nitrogen and oxygen functional groups as well as multiple bonds or 

aromatic rings are considered to be one of the effective chemicals for inhibiting the 

metal corrosion [34]. 

Nitrogen-based compounds are effective inhibitors for mild steel corrosion in acidic 

solutions. The presence of the lone pair of electrons on the nitrogen atoms helps to 

delocalize the electrons and thus stabilize the compound. The presence of non-

bonded electron pairs on the nitrogen atom induces greater adsorption of the 

compounds onto the metal surface thus providing higher inhibition efficiency [30, 

31]. 

In comparison with traditional programs such as all- volatile treatment or solid 

alkalinisation, treatment with film- forming amines is of lesser importance, although 

numerous steam generators have been successfully treated with film-forming amines 

for many years – also in some instances where the traditional methods failed to 

produce satisfactory results. 
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Film forming amines, often also called polyamines or fatty amines, are defined 

chemical substances of the class of oligo alkylamino fatty amines, the simplest 

representative being the well known octadecylamine [28]. 

The polyamines are, in the main, linear aliphatic molecules of, in biological terms, 

small molecular mass. They are water soluble, and at physiological pH all the amino 

groups will be positively charged; hence, these compounds are organic bases, their 

basicity increasing with the number of amino groups. Unlike inorganic molecules or 

ions, the positive charges on polyamines are spaced out at intervals and, although the 

hydrocarbon chains are flexible, will have steric as well as cationic properties [35]. 

By 1931, Deutsche Hydrierwerke (DHW) in Rodleben/Germany patented and 

initiated the world‟s first production of fatty alcohols based on the evolving 

technology of catalytic, high pressure hydrogenation. The experiences acquired by 

the DHW since this time in field of hydrogenation technology resulted in a key 

innovation for the company in 1960: the production of fatty amines from natural raw 

materials. The initial use for primary amines was in the flotation of potash ore and 

then followed the establishment of a wide range of fatty amine compounds [22]. 

Chemical structure of fatty amines are shown in Figure 2.9. 

 

Figure 2.9 : Chemical structure of fatty amines [28]. 

Fatty alkyl amines have typical alkyl chain length of 8-24 carbon atoms, and many of 

major commercial importance, such as tallow amine, oleylamine, cocoamine and 

soya amine are naturally derived. Fatty amines are soluble in polar and non-polar 

solvents, but solubility in water is limited to fatty amines with fewer than 10 carbons 

per unit chain. Fatty alkyl amines can also be produced synthetically from paraffins 

or from naturally occurring fatty acids such as cocoamines, soya amines and tallow 

amines.  

Many fatty amines are in fact mixtures of different alkyl chain lengths. For example 

cocoamine, tallow amine, soya amine and oleylamine contains the following alkyl 

chains: 
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Cocoamine  = 7% C10 + 50% C12 + 18% C14 + 6% unsaturated C18 +  

   19% others 

Oleylamine   = 5% C18 + 76% unsaturated C18 + 19% others 

Tallow amine   = 29% C16 + 23% C18 + 37% saturated C18 + 11% others 

Soya amine   = 16% C16 + 15% C18 + 50% unsaturated C18 + 13% doubly    

      unsaturated C18+ 6% others [36]. 

Most alkyl amines are made on an industrial scale by the reaction between ammonia 

and alcohols or alkyl chlorides and fractionation of the resulting product mixture 

[37].  

Fatty amines and their salts are suitable for use as anticorrosion agents as they can be 

substantively adsorbed onto metal surfaces from either aqueous or oily systems. The 

resulting coating firmly adheres to and protects metal surfaces from aggressive 

liquids or gases. Similarly, in the petroleum industry, fatty amines and their salts give 

outstanding results in corrosion prevention [22]. 

The film forming mechanism by which all materials function is the same and 

requires their adsorption onto the metal through their polar group or head. The 

nonpolar tail of the inhibitor molecule is oriented in a direction generally vertical to 

the metal surface. It is believed that the hydrocarbon tails mesh with each other in a 

sort of  „zipper‟ effect to form a tight film which repels aqueous fluids, establishing a 

barrier to the chemical and electrochemical attack of fluids on the base metal. A 

secondary effect is the physical sorption of hydrocarbon molecules from the process 

fluids by the hydrocarbon tails of the adsorbed inhibitor molecules. This increases 

both the thickness and effectiveness of the hydrophobic barrier to corrosion (Figure 

2.10). 

The film that forms on the metal surface acts as a barrier against corrosive substances 

such as oxygen, carbon dioxide and carbonic acid. The hydrophobic alkyl group 

makes the metal surface unwettable with water.  

The addition of organic inhibitor compound may reduce the partial anodic (anodic 

inhibitor), the partial cathodic (cathodic inhibitor) or the two partial reactions (mixed 

inhibitor). 
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Figure 2.10 : FFA adsorption on metal surface [38]. 

In many cases, the inhibition is related to adsorption of the inhibitor on the metal 

surface forming a barrier layer which separates the metal from the corrosive media. 

According to the type of inhibitor species and the nature of metal and alloy, 

adsorption may be chemical or physical adsorption [39]. 

The film-forming amine, FFA, can be described most effectively as a surface active 

chelant. By definition, surface-active chelants are both surfactants and chelants and 

their use as corrosion inhibitors is not new. It is theorized that proper combination of 

surface-active and chelating groups in the same molecule will enable surface-active 

chelants to seek out the metal–water interface, undergo chemisorption with surface 

metal atoms or ions, and provide an insoluble adherent, protective chelate film on the 

metal surface.  

Corrosion research has indicated that surface chelation provides enhancement of 

already existent corrosion inhibition properties and that surface-active chelants 

possessing large hydrophobic substituent groups promote adsorption onto the steel 

surface and once adsorbed improve the hydrophobic barrier to electrolyte 

penetration. In addition, this barrier may be enhanced by the ability of the 

hydrophobic tails of the chelated FFA to attract other hydrocarbon molecules, such 

as additional FFA molecules or the waterproofing ester, to create an additional water-

repellent oil film [38]. 

The choice of fatty amines as corrosion inhibitors is based on the following: these 

molecules (a) can be easily synthesized, (b) contain oxygen and nitrogen as active 

centers, (c) have high solubility in acidic media and (d) are not expensive.  
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Indeed, the number of alkyl groups greatly influences the inhibition properties and 

can be related to the flexibility of the molecule, influencing therefore the adsorption 

process. Then we can conclude that with higher alkyl chain length, the inhibition 

becomes less effective. This behavior is in agreement with the literature [40,41]. 

However, other authors state that the inhibition efficiency is improved when the alkyl 

chain length of the inhibitors was increased in the case of primary aliphatic amines 

[25]. 

Tallow is a hard fat consists chiefly of glyceryl esters of oleic, palmitic, and stearic 

acids (16-18 carbon chains). It is extracted from fatty deposits of animals, especially 

from suet (fatty tissues around the kidneys of cattle and sheep). Tallow is used for 

soaps, leather dressings, candles, food, and lubricants. It is used in producing 

synthetic surfactants.  Tallow based alkyl amines are widely used in the synthesis of 

organic chemicals and cationic and amphoteric surfactants [42]. 

The combination amine-carboxylic acid gives rise to ammonium carboxylates, also 

named catanionic surfactants. For reasons of compatibility with the coating, 

carboxylic acids are often used together with an organic base, typically an amine. 

The resulting corrosion inhibitor consists therefore of an acid/base couple [4].  

The cationic compounds i.e. fatty amines and fatty amine derivatives, differ from 

anionic and nonionic surfactants in that they have a marked degree of substantivity 

for nearly all solid surfaces. Their substantivity is a characteristic property which 

allows them to be adsorbed onto solids and form a firm cationic film on them so that 

properties can be varied to fit in with any desired application. Thus, materials such as 

wool, hair, leather, cotton, synthetic fibres, plastics, dye pigments, rocks, metals etc. 

can be treated with fatty-amine-based cationic formulations to acquire useful 

properties for quite specific applications [22]. 

It is known that in the case of long-term standstill (over 7 days) of the power 

equipment of a cogeneration plant the equipment should be protected from standstill 

corrosion. The equipment with scale on the surfaces, under the layer of which 

corrosion processes intensify, requires protection especially urgently. In the presence 

of moisture standstill corrosion develops even in the absence of scale. Today the 

metal of power equipment is protected from standstill corrosion by various methods 

aimed at preventing contact between the metal and air and creating a protective film 

on the surface of the metal. One such method involves the use of film-forming 
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amines, octadecylamine (ODA) in particular . This reagent forms a protective film on 

the surface of the metal, which prevents contact between the metal and aggressive 

media, for example, humid air. In addition, ODA possesses detergent properties, 

which makes it suitable for preservation and washing-off of deposits (loose deposits) 

from power equipment stopped for a long period [43]. 

2.4 Corrosion Test Methods 

Corrosion test methods can be divided into electrochemical and non-electrochemical 

methods. Among the electrochemical techniques that have been used successfully for 

corrosion prediction are potentiodynamic polarization methods, electrochemical 

impedance spectroscopy (EIS), corrosion current monitoring, controlled potential 

tests for cathodic and anodic protection and the rotating cylinder electrode for studies 

of velocity effects. Though not literally a test, potential-pH (Pourbaix) diagrams have 

been used as road maps to help understand the results of other tests [44]. 

2.4.1. Non-Electrochemical Measurements  

A number of non-electrochemical measurement techniques can be used to assess 

corrosion rate. These techniques can be simplified as weight lost, pitting and crevice 

rate and stress-strain time determination, resistance measurements, surface 

measurements and different analytical measurements. 

Weight loss measurement, considered by some to be the “gold standard” of corrosion 

testing is certainly the easiest. However, there are important issues to consider even 

for weight loss measurements. First, since mass can be measured easily only to about 

0.1 mg, the sensitivity of weight loss measurements is limited [2]. 

The non-electrochemical techniques include direct immersion of mateial samples in 

the test fluid either in the laboratory or plant. These samples sometimes have an 

artifical crevice generated with a serrated washer. They may be welded to determine 

the effects of welds and weld heat affected zones. Real time- time information can be 

obtained using electrical resistance probes. Heat transfer effects can be evaluated by 

having a test sample that is exposed to the corrodent on one side and the other side 

heated or cooled. Stressed samples are used to evaluate stress corrosion cracking 

tendencies [44]. 

http://corrosion-doctors.org/Electrochem/PotPol.htm
http://corrosion-doctors.org/Electrochem/EIS.htm
http://corrosion-doctors.org/Electrochem/EIS.htm
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A technique that has had more application in corrosion rate monitoring than in 

corrosion science involves the change in electrical resistance _ER_ of a probe 

sample. The reduction of the cross-sectional area of a probe by corrosion is 

accompanied by a proportionate increase in the electrical resistance, which can be 

tracked easily. A major advantage of the ER technique is its applicability to a wide 

range of corrosive conditions including environments having poor conductivity or 

non-continuous electrolytes such as vapors and gases. However, ER monitoring 

typically requires a relatively long exposure period for a detectible difference in 

probe resistance and electrically conductive deposits can affect the measurements 

[2]. 

2.4.2. Electrochemical Measurements 

While all laboratory corrosion tests require accelerating corrosion processes, only 

electrochemical tests can directly amplify the impact of corrosion processes. The 

main reasons why this is possible is that all electrochemical tests use some 

fundamental model of the electrode kinetics associated with corrosion processes to 

quantify corrosion rates. The amplification of the electrical signals generated during 

these tests has permitted very precise and sensitive measurements to be carried out 

[45]. 

The main advantage of electrochemical techniques for studying corrosion over 

traditional coupon testing is that it allows the rapid determination of the corrosion 

rate of a sample without requiring long-term testing. Corrosion rate itself can vary 

with time under a given set of conditions, so electrochemical corrosion 

measurements only give you a snapshot of how the system behaved under those 

conditions at that point in time. Long-term testing is still required if you need to 

know how a metal reacts after 12 months in a given test environment. But short-term 

electrochemical measurements are more than sufficient in many cases, as they allow 

you to compare the performance of inhibitors or to decide that a given metal is 

corroding too rapidly under those conditions to be a valid candidate for the 

application [46,47,48]. 

Corrosion testing by weight loss methods is generally a long, tedious affair which 

often does not produce completely satisfactory results. This is particularly true when 

the corrosion rate changes with time [49]. 

http://corrosion-doctors.org/TestingBasics/Laboratory.htm
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Potentiodynamic polarization methods: Polarization methods such as 

potentiodynamic polarization, potentiostaircase, and cyclic voltammetry are often 

used for laboratory corrosion testing. These techniques can provide significant useful 

information regarding the corrosion mechanisms, corrosion rate and susceptibility of 

specific materials to corrosion in designated environments. Polarization methods 

involve changing the potential of the working electrode and monitoring the current 

which is produced as a function of time or potential. 

Linear polarization resistance (LPR): With this widely used technique in 

corrosion monitoring, the polarization resistance of a material is defined as the slope 

of the potential-current density (ΔE/Δi) curve at the free corrosion potential, yielding 

the polarization resistance, Rp, that can be related (for reactions under activation 

control) to the corrosion current by the Stern-Geary equation (Equation 2.6) [45]. 
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R                 (2.6)                               

 Rp is the polarization resistance 

 Icorr the corrosion current 

 The proportionality constant β, for a particular system can be determined 

empirically (calibrated from separate weight loss measurements) or, as shown 

by Stern and Geary, can be calculated from βa and βc, the slopes of the anodic 

and cathodic Tafel. 
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An electrochemical reaction under kinetic control obeys Equation 2.8, the Tafel 

Equation: 

)3.2exp(.
0

0

EE
II                                                               (2.8) 

In this equation,  

 I is the current resulting from the reaction 

 I0
 

is a reaction dependent constant called the Exchange Current 

 E  is the electrode potential 

 E
o 

is the equilibrium potential (constant for a given reaction) 

 β is the reaction's Tafel Constant (constant for a given reaction). 

  Beta has units of volts/decade [50].   

http://corrosion-doctors.org/Electrochem/PotPol.htm
http://corrosion-doctors.org/Forms/Framework.htm
http://corrosion-doctors.org/Principles/mechanism.htm
http://corrosion-doctors.org/KTS/roberge.htm
http://corrosion-doctors.org/Electrochem/LPR.htm
http://corrosion-doctors.org/MonitorBasics/lpr.htm
http://corrosion-doctors.org/Quizzes/Quizzes.htm
http://corrosion-doctors.org/Electrochem/linear.htm
http://corrosion-doctors.org/Corrosion-History/Stern-Geary.htm
http://corrosion-doctors.org/Corrosion-History/Stern-Geary.htm
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The Tafel equations for both the anodic and cathodic reactions in a corrosion system 

can be combined to generate the Butler-Volmer Equation (Equation 2.9). 

))3.2exp()3.2.(exp(
c

EE

a

EE
IIII corrcorr

corrca
            (2.9) 

where 

 I           is the measured cell current in amps 

 Icorr       is the corrosion current in amps 

            E    is the electrode potential 

 Ecorr    is the corrosion potential in volts 

 βa is the anodic Beta Tafel Constant in volts/decade 

 βc is the cathodic Beta Tafel Constant in volts/decade [46,47,48]. 

The following is a list of situations where it appears that the use of linear polarization 

measurements can supply valuable information. 

1. Studies of the effect of environment variables on corrosion rate. These 

include changes in composition, velocity, and temperatures.  

2. Evaluation of inhibitors in controlling corrosion.  

3. Comparison of the corrosion rates of various alloys of similar composition in 

a given environment.  

4. Determination of changes in corrosion rate with time, including studies of 

underground structures as well as materials in aqueous solutions.  

5. It also may be possible to evaluate the condition of coatings in service which 

cannot be inspected by visual methods [49]. 

At Figure 2.11, a typical linear polarization curve with the vertical axis is potential 

and the horizontal axis is the logarithm of absolute current is shown.  The theoretical 

current for the anodic and cathodic reactions are indicated as straight lines.  The 

curved line is the total current - the sum of the anodic and cathodic currents.  This is 

the current that is measured when the potential of the metal is sweeped with the 

potentiostat [51]. 
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Figure 2.11 : Corrosion process showing anodic and cathodic current components 

[52].  

Electrochemical impedance spectroscopy (EIS) : Electrochemical Impedance 

Spectroscopy (EIS) is an electrochemical technique with applications in corrosion, 

biosensors, battery development, fuel cell development, paint characterization, 

sensor development, and physical electrochemistry. EIS experiment involves the 

application of a sinusoidal electrochemical perturbation (potential or current) to the 

sample that covers a wide range of frequencies. This multi-frequency excitation 

allows (1) the measurement of several electrochemical reactions that take place at 

different rates and (2) the measurement of the capacitance of the electrode [53]. 

An important advantage of EIS over other laboratory techniques is the possibility of 

using very small amplitude signals without significantly disturbing the properties 

being measured. To make an EIS measurement, a small amplitude signal, usually a 

voltage between 5 to 50 mV, is applied to a specimen over a range of frequencies of 

0.001 Hz to 100,000 Hz. The EIS instrument records the real (resistance) and 

imaginary (capacitance) components of the impedance response of the system [45]. 

The excitation signal, expressed as a function of time, has the form: 

)sin(.0 tEEt                                                                                   (2.10) 

http://corrosion-doctors.org/Electrochem/EIS.htm
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where Et is the potential at time t, E0 is the amplitude of the signal, and ω is the radial 

frequency. In a linear system, the response signal, It, is shifted in phase (φ) and has a 

different amplitude, I0 (Equation 2.11). 

)sin(.0 tII t                             (2.11) 

An expression analogous to Ohm's Law allows us to calculate the impedance of the 

system as: 
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The impedance is therefore expressed in terms of a magnitude, Zo, and a phase shift, 

φ. With Eulers relationship, 

sincos)exp( jj               (2.13)                                         

The impedance is then represented as a complex number, 

)sin(cos)exp()( 00 jZjZ
I

E
Z                       (2.14) 

At Equation 2.14, the expression for Z(ω) is composed of a real and an imaginary 

part. If the real part is plotted on the X-axis and the imaginary part is plotted on the 

Y-axis of a chart, "Nyquist Plot" is observed (Figure 2.12). 

 

Figure 2.12 : Nyquist plot with impedance vector [53]. 

EIS data is commonly analyzed by fitting it to an equivalent electrical circuit model. 

Depending upon the shape of the EIS spectrum, a circuit model or circuit description 

code and initial circuit parameters are assumed and input by the operator [45]. Most 
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of the circuit elements in the model are common electrical elements such as resistors, 

capacitors, and inductors. 

 

Figure 2.13 : Common electrical elements [54]. 

Constant phase elements, CPEs are widely used in the analysis of EIS corrosion data. 

The extra fitting parameter associated with the non-ideal capacitance of a CPE 

improves the fit to the data. The CPE is a mathematical construct of convenience. 

However, it is not surprising that a physical structure such as an electrochemical 

interface does not behave exactly like a combination of standard circuit elements, 

and no rationale need to be given for the use of CPEs. The simplified Randles circuit 

with a CPE shown in Fig. 2.14 and is commonly used to represent many corroding 

interfaces. EIS is a particularly useful technique for low conductivity electrolytes as 

the ohmic resistance is determined explicitly [2]. 

 

Figure 2.14 : The simplified Randles circuit [55]. 

Electrochemical noise (EN): The extensive development in the sensitivity of the 

equipment for studying electrochemical systems has rendered the study of 

oscillations in electrochemical processes, that translate into measurable EN, 

increasingly accessible. The study of corrosion potential fluctuations was applied, for 

example, to monitor the onset of events characterizing localized corrosion such as 

pitting or stress corrosion cracking (SCC), exfoliation, erosion-corrosion in either 

laboratory or diverse and complex industrial environments. No other technique, 

http://corrosion-doctors.org/Electrochem/EN.htm
http://corrosion-doctors.org/Forms-pitting/Pitting.htm
http://corrosion-doctors.org/Forms-SCC/scc.htm
http://corrosion-doctors.org/Forms-exfoliation/exfoliation.htm
http://corrosion-doctors.org/Forms-Erosion/erosion.htm
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electrochemical or otherwise is even remotely as sensitive as EN to system changes 

and upsets.  

During localized corrosion, EN is believed to be generated by a combination of 

stochastic processes, such as passivation breakdown and repassivation events, and 

deterministic processes which can be caused by film formation or pit propagation 

processes [45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
31 

 

3.  EXPERIMENTAL STUDY 

3.1. Materials 

 The corrosion inhibitor compounds, selected for the study are based on 3 different 

chemical families of film forming amines (FFA), that vary in the number of amino 

groups and the aliphatic alkylgroup, generally a fatty alkyl chain. The generic 

structure of these compounds is presented in Figure 3.1.  

R
1
−(NH−R

2
)n−NH2 

  With:                n = number of monomers  

                           R
1
 = alkyl chain: CH3− (CH2)7− CH=CH− (CH2)8 

      R
2

 = alkyl group: −(CH2)3− 

Figure 3.1 : Generic chemical structure of the different film forming amines [56]. 

During the study, six compounds different in the number of amino groups are used, 

e.g. N2 indicates a diamine, or the type of alkyl chain R, i.e. saturated or unsaturated, 

which is indicated by a subscript “S” and “U” respectively. As an example RUN2 is a 

oleylpropylenediamine. The whole species used through the study are RUN, RUN2, 

RUN3, RSN, RSN2 and RSN3. All the compounds were supplied from BK Giulini 

GmbH- Düsseldorf. 

For all the experiments, each compound has been studied at the same concentration 

of 100 mg L
-1

. 

Through the study, experiments with six different inhibitors are carried out at five 

different pH values varying between pH = 5 -11 with 1.5 increment. Sulphuric acid  

5 % w/w and NaOH 4 % w/w were used for the adjustment of the pH.  

The chemical composition of commercially mild steel metal for working electrode 

with exposed area of 3.95 cm
2
 is as follows (percentage by weight): C=0.35, 

Mn=0.65, Si=0.25, P=0.035, S=0.035 and Fe to 100. Carbon steel metals were 

supplied from Imotron Instruments B.V., distributor for Rohrback Cosasco Systems 
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Inc, Netherlands. For each run, an unused set of electrodes were used and the 

samples were rinsed in acetone to remove any organic contamination from metal 

surface before measurements.   

A glass cell of capacity 200 mL was used, which contained three electrodes; steel as 

working, platinum as counter and silver/silver chloride (Ag/AgCl) as reference 

electrodes.  

 

Figure 3.2 : Three electrode type electrochemical cell 

The measurements were carried out in 3 different aerated solution quality: seawater, 

decarbonised water and deionised water. The solutions were freshly prepared from 

analytical grade chemical reagents supplied from Carlo Erba Company using 

distilled water and used without further purification. 

All the tests were carried out at ambient temperature (25 
o
C), the solutions being in 

contact with air. 

3.1.1. Seawater Preparation 

Through the experiments, artificial seawater is prepared as indicated at Table 3.1. For 

each run, a freshly prepared solution was used. The ion content  for the 35% w/w 

artificial seawater is seen at Table 3.2 and the approximate pH value of this 

formulation is 8 and conductivity is 60.000 µs/cm. 
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Table 3.1: Formula for 1 kg of 35% artificial seawater 

A. Gravimetric salts 

Salt Molecular wt g/kg of solution 

NaCl 58.44 23.926 

Na2SO4 142.04 4.008 

KCl 74.56 0.677 

NaHCO3 84.00 0.196 

KBr 119.01 0.098 

H3BO3 61.83 0.026 

NaF 41.99 0.003 

B. Volumetric Salts 

Salt Molecular wt moles/kg of solution 

MgCl2.6H2O 203.33 0.053 

CaCl2.2H2O 147.03 0.010 

SrCl2.6H2O 266.64 0.00009 

C. Distilled water to 1,000 g 

Ion Artificial Seawater (g/kg) 

Cl
-
 19.353 

Na
+
 10.765 

SO4
2-

 2.711 

Mg
2+

 1.295 

Ca
2+

 0.414 

K
+
 0.387 

HCO3
-
 0.142 

Br
-
 0.066 

Sr
2+

 0.008 

H3BO3 0.026 

F
-
 0.001 

3.1.2. Decarbonised Water Preparation 

The  decarbonised water advantageously is produced in deionised water by addition 

of two basic solutions. At Table 3.3, chemical composition of the decarbonised water 

used during the experiments is indicated.  

Decarbonised Water I  

In 1 L deionised water:  

17.64 g CaCl2 · 2H2O  

16.24 g MgCl2 · 6H2O  

92.00 g NaCl are dissolved. 

 

Table 3.2: The ion content for the 35% w/w artificial seawater [57]. 
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Decarbonised Water II  

In 1 L deionised water: 

 6.72 g NaHCO3 is dissolved. 

By filling-up 5 ml decarbonised water I and 5 ml decarbonised water II with 

deionised water to 1000 ml, 1l decarbonised water is obtained. 

Table 3.3: Chemical composition of the decarbonised water used during the  

experiments         

 

The choice of this medium was based upon the following criteria: 

 (i) its low electrical conductivity is close to that encountered in natural waters,  

(ii) its corrosivity is fairly high and  

(iii) it is an easily reproducible baseline solution [28]. 

3.1.3. Deionised Water Preparation 

Deionised water consumed during the study were obtained from a mixed-bed 

demineralizer   in  which  the  cation  and  anion  resin  beads  are mixed together. 

The approximate conductivity was around 3 µs/cm with a silica content less than 

0,02 ppm. 

3.2. Methods  

Because corrosion occurs via electrochemical reactions, electrochemical techniques 

are ideal for the study of the corrosion processes [52]. 

Electrochemical measurements, including potentiodynamic polarization curves, and 

electrochemical impedance spectroscopy (EIS), were performed in a three-electrode 

cell using Parstat 2263 Instrument potentiostat/galvanostat, which included 

Powersuite framework system. The potentiodynamic current−potential curves were 

swept from −250 to 250 mV at a scan rate of 1.00 mV/s. Impedance measurements 

were carried out using AC signals of amplitude of ±10 mV (peak to peak) at open 

circuit potential in the frequency range from 10 mHz to 2 MHz. Prior to the potential 

sweep, the electrode was left under open-circuit in the respective solution for ~1 h 

Ion Ca
2+

 Mg
2+

 Cl
-
 HCO3

-
 pH 

Conductivity 

(µs/cm) 

Concentration 

in mg.L
-1

 
24 9.7 350 24.4 7.0 1.100 -1.200 
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until a steady free corrosion potential was recorded. The above procedures were 

repeated two times with success for each water quality, pH value and each inhibitors. 

In the first part of the study, 3 different water qualities are examined in absence and 

presence of  RUN2 and RSN2 at different pH values from 5 to 11 with an increment of 

1.5. This is repeated for six inhibitors in decarbonised water. The aim is to observe 

the pH dependency of the inhibitors on corrosion inhibition. 

In the second part of the study, six different inhibitors were examined in three 

different water at pH= 8, in order to observe the relationship between the inhibitor 

structure and inhibitor efficiency, additionally by the effect of different corrosive 

media . 

In the last part, as a result of the literature survey, it is also obvious from the name of 

inhibitors (film forming amines) that fatty polyamines can be adsorbed on the carbon 

steel surface and block the active sites to decrease the corrosion rate. Therefore, 

adsorption isotherm plots were observed by using EIS data at decarbonised water at  

pH 8 for RUN2 and with RSN2. Also, surface structure of some correded carbon steel 

electrodes were examined by the scanning electron microscope (SEM) in order to 

obtain information about the sample's surface topography. 
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4.  RESULTS AND DISCUSSION 

4.1. Measurements in Seawater 

In this part of the work, corrosion phenomena of carbon steel is examined by 

polarization curves and EIS measurements in absence and presence of RUN2 and  

RSN2 inhibitors at different pH values from 5 to 11 in seawater. Then six inhibitors 

differing in chemical structure are studied at pH= 8 in order to observe the effect of 

chemical structure and pH at corrosion inhibition of carbon steel in seawater.  

4.1.1. Measurements in the Absence of Inhibitor 

Figure 4.1 reports the Nyquist diagrams plotted at the corrosion potential for the 

different pH values in seawater in the absence of inhibitors. The impedance diagrams 

are characterized by a single time constant (a single loop).  High frequency intercept 

of semi-circle on the real axis yields the solution resistance (Rs) and low frequency 

region yield the sum of Rs and polarization resistance (Rp).  Rp values obtained from 

Nyquist diagram were summarized in Table 4.1 The semicircles are generally 

associated with the relaxation of the capacitors of electrical double layers with their 

diameters representing the charge transfer resistance. Loop size of pH 9.5 is larger 

than the other pH values which means highest polarization resistance and less 

corrosion rates.  
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Figure 4.1 : Nyquist plot for carbon steel in seawater at 25 

o
C in absence of   

          inhibitors at varying pH values. 

Tafel-extrapolation measurements were done in the potentials region  250 mV from 

corrosion potential, Ecorr. Figure 4.2 shows the steady-state current voltage curves 

obtained in seawater at different pH values varying from 5 to 11 in absence of 

inhibitors. The corresponding Ecorr,  Icorr, anodic Tafel slopes ( a) and cathodic Tafel 

slopes ( c) at different pH values were summarized in Table 4.1. 

Tafel extrapolation data were observed with less than 2 chi-square value in order to 

obtain consistency between the results, minimize the error percentage and 

standardize the extrapolation range (Table 4.1). 

At pH= 9.5, a shift of Ecorr in the anodic direction is observed and Icorr decreased in 

comparison with the other pH values. Icorr obtained from Tafel extrapolation and 

polarization resistance (Rp) data obtained from EIS support each other and show 

smaller corrosion rate as compare to the other pH values (Table 4.1) 

According to Pourbaix diagrams (Figure 2.3), possible reaction associated with iron 

in aqueous conditions at pH=9.5 is reaction of dissolved iron with hydroxyl ion in 

solution and formation of a passive film which consist of iron hydroxide on electrode 

surface. This explain the lower corrosion rate at this pH. 
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Figure 4.2 : Potentiodynamic polarization curves for carbon steel in seawater at 25 

                             o
C in absence of inhibitors at different pH values. 

        

Table 4.1 : Polarization parameters for carbon steel in seawater at 25 
o
C in absence  

        of  inhibitors at different pH values. 

Seawater No Inhibitor 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 
Rp (Ωcm

2
) Chi-Squ. 

5.0 683 26 71 749 277 1.13 

6.5 664 28 88 1302 668 1.07 

8.0 661 21 99 1573 502 1.06 

9.5 626 19 105 1473 1556 0.71 

11.0 684 20 75 405 596 1.24 

4.1.2. Measurements in Seawater in the presence of inhibitors at pH=8 

Inhibitors with different chemical structure are studied in order to observe the effect 

of chemical structure at constant pH (pH=8).  

Figure 4.3 presents the impedance diagrams plotted for the unsaturated amines with 

the same concentration at pH=8 in order to compare them more clearly. RUN2 has 

higher inhibition efficiency when compared with RUN3 and RuN. Both polarization 

data (Table 4.2) and impedance data support that the inhibition efficiency sequence is 

RUN2 > RUN3 = RUN. 
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Figure 4.3 : Nyquist plot for carbon steel in seawater at 25 
o
C in absence and with  

          unsaturated filming amines at  pH 8. 

Figure 4.4 shows the  Nyquist diagrams plotted for the saturated amines with the 

same concentration at pH= 8 in seawater. RSN2 has the largest Rp value which is also 

complying with the polarization results listed at Table 4.2. In fact, the higher is the 

Rp value, the better is the anticorrosion efficiency. The inhibition efficiency sequence 

is RSN2 > RSN3 > RSN according to EIS data. 
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Figure 4.4 : Nyquist plot for carbon steel in seawater at 25 
o
C in absence and with  

          saturated filming amines at  pH 8. 

The impedance response of carbon steel in seawater has significantly changed in the 

presence of inhibitors. 
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 Polarization resistances were increased according to blank condition showing 

formation of more resistive layer on electrode surface in the presence of all inhibitor. 

On the other hand, the capacitive loop has the largest diameter with RUN2 (Figure 

4.5).  
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Figure 4.5: Nyquist plot for carbon steel in seawater at 25 
o
C in absence and  

          presence of different inhibitors at  pH=8. 

 

From Table 4.2, it can be observed based on EIS data that unsaturated filming 

amines shows higher Rp values meaning better anticorrosion efficiency when 

compared to saturated polyamines, also diamines of both saturated and unsaturated 

species show the best efficiency compared to mono and triamines  at seawater at pH 

8.  

Table 4.2 : Polarization parameters for carbon steel in seawater at 25 
o
C in absence  

         and with different inhibitors at pH 8. 

Seawater pH 8 

 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 
Rp* (Ωcm

2
) Chi-Squ. 

no 

inhibitor 661 21 99 1573 502 1.06 

RSN3 743 9 72 304 632 0.90 

RSN2 745 10 72 250 790 0.60 

RSN 694 17 75 589 557 0.92 

RUN3 565 17 91 734 1375 0.54 

RUN2 530 11 86 476 1529 0.92 

RUN 622 16 89 548 1086 0.78 
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Inhibition efficiency expected to increase with decrease  in amine number i.e 

RN>RN2>RN3. Although second amin group shows expected effect in both saturated 

and unsaturated cases (RUN2, RsN2), further increase in amine number (RN3) does 

not have further increase in efficieny. It can be concluded that the inhibition 

efficiency is not proportional to the amine number in seawater. On the other hand 

unsaturated amines (RUNx) have better inhibition effect than the saturated 

ones(RsNx),  may be due to better interaction of  -bonds of unsaturated inhibitors 

with metal surface. 

EIS data is also analyzed by fitting it to an equivalent electrical circuit model. As the 

Nyquist plot obtained for all inhibitors present a depressed loop, such behavior is 

characteristic for solid electrodes and often referred to as frequency dispersion which 

has been attributed to the surface heterogeneity [58-61]. 

Figure 4.6 depicts the equivalent circuits to model electrochemical behavior 

belonging to the absence of  the inhibitors after 1 hour immersion in seawater. The 

simplified Randles circuit with a CPE is used to represent the corroding system 

where Rs represents solution resistance, Rct charge transfer resistance, CPEdl a 

constant phase element, non ideal double layer capacitive element to give a more 

accurate fit [62]. 

 

Figure 4.6 : Values of the elements of equivalent circuit required for fitting the EIS  

        of carbon steel in seawater in absence of inhibitors at pH=8. 

 

On the other hand, Figure 4.7 shows the equivalent circuits to model electrochemical 

behavior in the presence of the inhibitors after 1 hour immersion in seawater. The 
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electrochemical circuit model is represented by two time constant where the 

capacitance of the intact coating is represented by Cc. Its value is much smaller than 

a typical double layer capacitance. Rpo (pore resistance) is the resistance of ion 

conducting paths that develop in the coating. These paths may not be physical pores 

filled with electrolyte. On the metal side of the pore, it is assumed that an area of the 

coating has delaminated and a pocket filled with an electrolyte solution has formed. 

This electrolyte solution can be very different than the bulk solution outside of the 

coating. The interface between this pocket of solution and the bare metal is modeled 

as a double layer capacitance in parallel with a kinetically controlled charge transfer 

reaction [62]. 

It is observed that a reasonable accuracy of the fitting was obtained, as evidence by 

chi-square in the order of 10
-3

 and 10
-4

 for all the experimental data. 

        

 

Figure 4.7 : Values of the elements of equivalent circuit required for fitting the EIS  

          of carbon steel in seawater in presence of different inhibitors at pH=8. 

         

Table 4.3 contains all the impedance parameters obtained from the simulation of 

experimental impedance data, including Rs, Rct, Yo and n. In the Table 4.3, also the 

calculated „„double layer capacitance” values, Cdl, are shown using the equation 4.1. 

nnRctYoCdl /11 ).(                                                                                 (4.1) 
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where Yo is the CPE constant, n is a CPE exponent which can be used as a gauge of 

the heterogeneity or roughness of the surface. Inhibitor efficiency based on 

impedance data are calculated (Equation 4.2) and listed at Table 4.3   [56,57,58] 

)(

)(
%

inhRct

RctinhRct
IE                            (4.2) 

From Table 4.3, it is clear that the addition of inhibitors causes an increase in Rct in 

seawater as the Rct increases inhibitor efficiency increases and gets the highest value 

with RUN2 when compared with the other species. 

The value of the proportional factor Yo of CPE varies in a regular manner with 

inhibitor concentration. The change of Rct and Yo values can be related to the 

gradual replacement of water molecules by inhibitor molecules on the surface and 

consequently to a decrease in the number of active sites necessary for the corrosion 

reaction.  

Table 4.3 : Values of the elements of equivalent circuit required for fitting the EIS of  

         carbon steel in seawater in absence and presence of different inhibitors 

         at pH 8. 

Seawater    

pH 8 

Rs 

Ωcm2 

Rct 

Ωcm2 

CPE, 

Yodl.105         

Ω-1sncm-2 

ndl Cdl µFcm-2 
Rpo 

Ωcm2 

CPE, 

Yoc.105    

Ω1sncm-2 

nC 
IE

% 

No inh. 8 474 29 0.86 211     

RSN3 6 664 149 0.75 1.489 10 42 1 29 

RSN2 7 909 194 0.71 2.453 12 42 1 48 

RSN 6 557 44 0.69 236 10 7 1 15 

RUN3 8 1,311 29 0.77 216 10 9 1 64 

RUN2 8 1,888 2 0.96 13 83 78 0.62 75 

RUN 8 1,169 53 0.51 340 6 4 0.87 59 
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Figure 4.8 : Potentiodynamic polarization curves for carbon steel in seawater at 25 
                              o

C in absence and with different inhibitors at pH 8. 

As it can be seen from Figure 4.8, the anodic and cathodic reactions are affected by 

the inhibitors. Meaning that, the addition of even saturated or unsaturated alkyl 

amines to seawater reduces the anodic dissolution of steel and also retards the 

cathodic hydrogen evolution reaction.  Regarding the potentiodynamic polarization 

curves, it can be clearly seen that the Ecorr values shifted to more positive potentials 

in the presence of unsaturated polyamines on the other hand to more negative 

potentials in the presence of saturated polyamines. There was not a specific relation 

between Ecorr and inhibitors efficiency (Table 4.2). However, this can be related to 

alkyl chain chemistry. 

As a result of  these polarization data, Icorr values decrease considerably in the 

presence of all inhibitors which is more observable at RUN2 and RSN2. The anodic 

Tafel slope (βa) change is less than when it is compared with the cathodic Tafel slope 

(βc) of all inhibitors, indicating that the all inhibitors controlled both anodic and 

cathodic reactions however more observable in cathodic side in seawater at pH 8. 

The inhibition efficiency (IE%) can be calculated both from polarization and EIS 

measurements as given below with Equation 4.3.  Calculated IE% were given in 

Table 4.4. Although values obtained from polarization and EIS have different values 

due to different methods (i.e DC and AC current measurements), they have similar 

trends. The polarization resistance (Rp) was calculated from the EIS data. 
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100)(100)(% x
Rpinh

RpcorrRpinh
x

Icorr

IinhIcorr
IE             (4.3) 

IE(%) reaches a maximum value with diamines for both of unsaturated and saturated 

amines when compared  with mono and triamines. It is found that, saturated and 

unsaturated diamines present slightly better performances than mono and triamines. 

Table 4.4 : Polarization parameters and the corresponding inhibition efficiency for  

         the corrosion of carbon steel in seawater in absence and with different  

         inhibitors at pH 8. 

Seawater pH 8 

 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

Rp 

(Ωcm
2
) 

IEIcorr (%) IERp (%) 

no inhibitor 661 21 502   

RSN3 743 9 632 56 21 

RSN2 745 10 790 52 37 

RSN 694 17 557 17 10 

RUN3 565 17 1375 19 64 

RUN2 530 11 1529 46 67 

RUN 622 16 1086 21 54 

4.1.3. Measurements in seawater in the presence of RuN2 

Saturated and unsaturated diamines showed better inhibition than the other amines. 

Therefore, they were investigated at different pH in seawater. Figure 4.9 presents the 

impedance diagrams obtained at the corrosion potential in the presence of 100 ppm 

RUN2 in seawater at different pH values. It is obvious that the inhibitor has the largest 

loop size at pH=11. However, a phase formation occurred at pH=11with addition of 

100 ppm RUN2 into seawater that has approx. 60.000 µs/cm conductivity.  

Addition of NaOH in order to pH adjustment causes phase formation at the end of 1 

hour measurement which was not observed in the other pH measurements. Therefore, 

the measurement at pH=11was not conducted under the same conditions with the 

others.  

When pH=11measurements eliminated, RUN2 has the largest loop size at pH=9.5 

when compared with the other pH values. Also, there is a noticeable increase at Rp 

value compared to in absence of inhibitor at pH 9.5 which enables the protection of 

the material. 
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Figure 4.9 : Nyquist plot for carbon steel in seawater at 25 
o
C with RUN2 at different   

          pH values. 

 

Potentiodynamic polarization curves in the presence of  RUN2, were given in Figure 

4.10. Addition of RUN2 caused a shift in positive direction meaning more positive 

Ecorr values (Figure 4.9) as compared to in the absence of inhibitors. At higher pH 

than 5.0 potential shift to anodic direction which shows inhibition of anodic reaction 

due to formation of a passive film.  
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Figure 4.10 : Potentiodynamic polarization curves for carbon steel in seawater at 25 

                                  o
C with RUN2 at varying pH values. 
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The corresponding Ecorr, Icorr, IE%, a and c at different pH values for RUN2 are 

listed in Table 4.5. The polarization resistance (Rp) values are derived from the EIS 

data. When the data compared with the absence and presence of RUN2 (Table 4.1 and 

Table 4.5 respectively), it can be seen that Icorr values were significantly changed in 

the pH range of 6.5- 9.5 according to both polarization and EIS results. We can 

conclude that RUN2 has high anticorrosion efficiency in a range of 6.5-9.5 in 

seawater. Also, IE% values calculated from both polarization EIS data comply with 

the conclusion that RUN2 has high anticorrosion efficiency in a range of 6.5-9.5 in 

seawater. 

Table 4.5 : Polarization parameters for carbon steel in seawater at 25 
o
C with RUN2 

        at different pH values.  

Seawater RUN2 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-

2
) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

IEIcorr 

(%) 

IERp 

(%) 
Chi-Squ. 

5.0 682 12 84 466 988 53 72 1.25 

6.5 529 11 87 454 1580 55 58 1.42 

8.0 530 11 86 476 1529 46 67 0.92 

9.5 530 14 102 551 2173 27 28 1.13 

11.0 513 9 131 430 2907 53 79 1.13 

4.1.4. Measurements in seawater in the presence of RSN2 

Figure 4.11 reports the impedance diagrams obtained at the corrosion potential in the 

presence of 100 ppm RSN2 in seawater at different pH values. Again, phase 

formation with addition of 100 ppm RSN2 occurred at pH 11 in seawater. The largest 

loop size is obtained at pH 9.5 (Rp = 1,047 Ω.cm
2 

). Meaning that better corrosion 

inhibition is enabled with RSN2 at pH 9.5 which is also supported by polarization data 

listed in Table 4.6. 
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Figure 4.11 : Nyquist plot for carbon steel in seawater at 25 
o
C with RsN2 at  

            different pH values. 

 

Potentiodynamic polarization curves in the presence of RSN2,  were given in Figure 

4.12. Corrosion potential were shifted in the cathodic range as compared to in 

absence of inhibitors (Figure 4.11 and Figure 4.2 respectively). 

The corresponding Ecorr, Icorr, IE%, a and c at different pH values for RSN2 are 

listed in Table 4.6. It can be observed that both polarization and impedans data 

supporting each other and suggest that the better corrosion inhibition is enabled in a 

pH range of 6.5- 9.5 with RSN2 in seawater similarly to RUN2. IE% values based on 

polarization results also support this pH range. While Ecorr values shifted in the 

anodic range with RUN2 they were shifted in cathodic direction with  RSN2 in 

seawater. 
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Figure 4.12 : Potentiodynamic polarization curves for carbon steel in seawater at 25 
                               o

C with RsN2 at different pH values. 
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Table 4.6 : Polarization parameters for carbon steel in seawater at 25 
o
C with RsN2     

        at varying pH values.  

Seawater RSN2 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-

2
) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

Chi-

Squ. 

5.0 719 10 67 273 948 62 71 0,99 

6.5 727 9 70 230 869 62 23 1,06 

8.0 745 10 72 250 790 52 37 0,60 

9.5 717 7 78 277 1047 64 -49 0,99 

11.0 662 26 86 429 462 -30 -29 0,94 

4.2. Measurements in Decarbonised Water 

In this part of the work, corrosion phenomena of carbon steel is examined by 

polarization curves and EIS data in absence and presence of inhibitor at different pH 

values from 5 to 11 in decarbonised water. Similarly to  the measurements in 

seawater at constant pH (pH= 8), corrosion inhibition of inhibitors for carbon steel 

were also investigated. In addition inhibition effect of RUN2 and RSN2 were also 

investigated at different pH comparatively with the absence of inhibitors. 

4.2.1. Measurements in decarbonised water  in the absence of inhibitor 

Figure 4.13 shows the Nyquist diagrams obtained after 1h immersion in absence of 

inhibitors at different pH.  When the diameter of semicircle obtained at different pH 

compared with each other significant changes as in the case of seawater 

measurements (Figure 4.1) were not observed in decarbonised water. 
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Figure 4.13 : Nyquist plot for carbon steel in decarbonised water at 25 
o
C in absence 

                      of  inhibitors at varying pH values. 
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Anodic and cathodic polarization curves obtained at different pH in decarbonized 

water were given in Figure 4.14. Data collected from these curves were summarized 

in Table 4.7. It can be seen that anodic and cathodic slopes are very similar for all pH 

values. However, at pH=8, Icorr, βa and βc have the lowest values as compared to 

the other pH values suggested more stable behaviour of carbon steel. 
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Figure 4.14 : Potentiodynamic polarization curves for carbon steel in decarbonised     

       water at 25
 o
C in absence of inhibitors at varying pH values. 

The polarization resistances (Rp) were obtained from the EIS measurements and 

compared with polarization measurements (Table 4.7). Rp values are very close to 

each other. 

Table 4.7 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C in  

         absence of  inhibitors. 

Decarbonised 

Water 
No Inhibitor 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 
Rp (Ωcm

2
) 

Chi-

Squ. 

5.0 797 25 135 886 790 1.08 

6.5 758 24 131 824 810 0.71 

8.0 775 13 104 373 790 1.06 

9.5 780 21 112 774 672 1.08 

11.0 751 25 161 864 711 1.11 
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4.2.2. Measurements in decarbonised water in the presence of inhibitors at  

          pH=8 

pH stayed constant at 8 and, inhibitors added in decarbonized water in order to 

observe the effect of chemical structure polarization and EIS measurements were 

performed. The impedance response of carbon steel in decarbonised water has 

significantly changed after the addition of inhibitors. The capacitive loop has the 

largest shape with RUN2 (Figure 4.15) which is similar to the behaviour in seawater. 

It means that RUN2 has greatest anticorrosion efficiency in decarbonised water when 

compared with the other inhibitors which is also supported by polarization results 

given in Table 4.8. RSN2 shows the similar behavior with RUN2 and it has the highest 

Rp values in saturated amines. For both saturated and unsaturated amines, the 

inhibition efficiency is not proportional to the amine number. Moreover, alkyl chain 

structure is also effective on corrosion inhibition that unsaturated diamine has greater 

efficiency than saturated diamine which is also supported by the results observed in 

seawater. 
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Figure 4.15 : Nyquist plot for carbon steel in decarbonised water at 25 
o
C in absence 

                      and with different inhibitors at  pH 8. 

Figure 4.16 presents comparison of saturated and unsaturated diamines and 

triamines. As it can be seen diamines show better anticorrosion efficiency as 

compared to triamines and  unsaturated diamines effect better than saturated at pH=8.  
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Figure 4.16 : Nyquist plot for carbon steel in decarbonised water at 25 
o
C in absence 

     and presence unsaturated and saturated di- and triamines at  pH=8. 

Table 4.8 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C  

         in absence and presence of inhibitors at pH=8. 

Decarbonised 

Water 
pH 8 

 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 
Rp (Ωcm

2
) 

Chi-

Squ. 

no inhibitor 775 13 104 373 790 1.06 

RSN3 681 13 158 690 1.185 1.03 

RSN2 560 10 195 435 3.950 0.18 

RSN 804 19 97 392 593 0.8 

RUN3 689 13 151 565 1.067 1.65 

RUN2 547 7 181 321 4.069 0.99 

RUN 775 17 107 705 869 1.09 

 

Figure 4.17 defines the equivalent circuits to model electrochemical behavior in 

absence of the inhibitors after 1 hour immersion in decarbonised water. The 

simplified Randles circuit with a CPE is used to represent the corroding system 

where Rs represents solution resistance, Rct charge transfer resistance, CPEdl a 

constant phase element, non ideal double layer capacitive element to give a more 

accurate fit. 
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Figure 4.17 : Values of the elements of equivalent circuit required for fitting the EIS 

                     of carbon steel in decarbonised water in absence of inhibitors at pH 8. 

 

Moreover, Figure 4.18 presents the equivalent circuits to model electrochemical 

behavior in the presence of the inhibitors after 1 hour immersion in decarbonised 

water. The electrochemical circuit model is represented by two time constant  where 

the capacitance of the intact coating is represented by Cc. Rpo (pore resistance) is the 

resistance of ion conducting paths the develop in the coating. These paths may not be 

physical pores filled with electrolyte. On the metal side of the pore, it is assumed that 

an area of the coating has delaminated and a pocket filled with an electrolyte solution 

has formed. This electrolyte solution can be very different than the bulk solution 

outside of the coating. The interface between this pocket of solution and the bare 

metal is modeled as a double layer capacitance in parallel with a kinetically 

controlled charge transfer reaction [62]. 

All the experimental data was observed by a reasonable accuracy of the fitting by 

chi-square in the order of 10
-4

. 
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Figure 4.18 : Values of the elements of equivalent circuit required for fitting the EIS  

                      of carbon steel in decarbonised water in presence of different inhibitors  

at pH=8. 

                 

Table 4.9 contains all the impedance parameters obtained from the simulation of 

experimental impedance data, including Rs, Rct, Yo, n and also the calculated 

„„double layer capacitance” values (Cdl) are shown, using the Equation 4.1. 

From Table 4.9, it is clear that the addition of inhibitors causes an increase in Rct in 

decarbonised water except RsN and RuN and this can be attributed as negligible 

corrosion inhibition of these inhibitors. As the Rct increases inhibitor efficiency 

increases and gets the highest value with RUN2 when compared with the others. 

Inhibitor efficiency based on impedance data are calculated (Equation 4.2) and listed 

at Table 4.9. RUN2 has the highest inhibitor efficiency which is also supported by 

polarization data. It can be said that alkyl chain structure is effective on corrosion 

inhibition and unsaturated ones shows better performance.  

Table 4.9 : Values of the elements of equivalent circuit required for fitting the EIS  

        of carbon steel in decarbonised water in absence and presence of  

        different inhibitors at pH=8. 

Decarb.   

pH 8 

Rs 

Ωcm2 

Rct 

Ωcm2 

CPE, 

Yodl.105         

Ω-1sncm-2 

ndl Cdl µFcm-2 
Rpo 

Ωcm2 

CPE, 

Yoc.105    

Ω1sncm-2 

nC 
IE

% 

No inh. 224 969 204 0.7 2,734     

RSN3 0 2,674 173 0.56 5,792 265 0 1 64 

RSN2 169 4,294 20 0.75 184 332 9 0.4 77 

RSN 186 608 237 0.69 2,788 65 74 1 -59 

RUN3 0 2,149 198 0.59 5,438 261 0 1 55 

RUN2 250 4,400 23,26 0.75 234 142 0 0.8 78 

RUN 269 845 202 0.66 2.651 71 49 1 -15 
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Anodic and cathodic polarization curves obtained in the absence and presence of 

inhibitors at pH=8 in decarbonized water were given in Figure 4.19. As it can be 

seen, with addition of  the inhibitors, shift of Ecorr in anodic region was observed. The 

highest positive shift in Ecorr was observed in the case of RUN2 and RSN2 In the 

presence of monoamines the Icorr values increased as compared to in absence of 

inhibitors. This results also supported by EIS data (Table 4.9 and Table 4.10). 
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Figure 4.19 : Potentiodynamic polarization curves for carbon steel in decarbonised     

           water at 25
 o
C in absence and with different inhibitors at pH 8. 

 

The inhibition efficiency (IE%) are calculated from the Equation 4.3 also given in 

Table 4.10. 

Table 4.10 : Polarization parameters and the corresponding inhibition efficiency for  

          the corrosion of carbon steel in decarbonised water in absence and with  

          different inhibitors at pH=8. 

Decarbonised 

Water 

pH 8 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

Rp 

(Ωcm
2
) 

EIcorr (%) ERp (%) 

no inhibitor 775 13 790   

RSN3 681 13 1.185 4 33 

RSN2 560 10 3.950 27 80 

RSN 804 19 593 -41 -33 

RUN3 689 13 1.067 6 26 

RUN2 547 7 4.069 47 81 

RUN 775 17 869 -24 9 
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4.2.3. Measurements in Decarbonised Water in the presence of RUN2 at different   

 pH 

Figure 4.20 presents the impedance diagrams plotted for RUN2 at varying pH values 

in decarbonised water. The impedance diagrams are characterized by a single time 

constant. Comparison of the polarization resistance values, Rp, determined from this 

loop has the largest size at pH 8 in presence of RUN2. 

The distorted shape of the high-frequency part of the impedance diagram (Figure 

4.20) can be attributed to the formation of a relatively thick and compact protective 

film on the metal surface [63]. 
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Figure 4.20 : Nyquist plot for carbon steel in decarbonised water at 25 

o
C with RUN2  

           at varying pH values. 

As it can be seen from Figure 4.21, the anodic and cathodic reactions are affected by 

the addition of RUN2.  Ecorr values (Table 4.11)  shifted to more positive potentials in 

the presence of  RUN2.  At pH 11, Ecorr shifted to more positive region compared to 

the other pH values although there was not a specific relation between Ecorr and 

inhibitors efficiency. Since, at pH 11, βa got the highest value compared to no 

inhibitor case which resulted in the highest Icorr.  
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Figure 4.21 : Potentiodynamic polarization curves for carbon steel in decarbonised  

            water at 25
 o
C with RuN2 at varying pH values.    

Values of associated electrochemical parameters obtained by extrapolation of the 

Tafel lines and EIS data and also IE% based on Tafel and EIS data are presented in 

Table 4.11. The polarization resistance (Rp) was calculated from the EIS data. Both 

Tafel and EIS support each other that at pH 8, Icorr got the lowest value and Rp gets 

the highest value meaning higher anticorrosion efficiency. Moreover, inhibitor 

efficiency is higher at pH= 8 when compared to the other pH values. 

Table 4.11 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C  

           with RUN2 at varying pH values. 

Decarbonised 

Water 
RUN2 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-

2
) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

EIcorr 

(%) 

ERp 

(%) 

Chi-

Squ. 

5.0 638 16 192 843 1,699 34 53 0.95 

6.5 617 14 181 642 1,857 42 55 1.49 

8.0 547 7 181 321 3,950 47 80 0.99 

9.5 632 18 174 3,262 1,462 14 54 1.51 

11.0 516 33 330 1,029 1,817   -32 61 1.55 

4.2.4. Measurements in Decarbonised Water in the presence of RSN2 at different  

 pH 

Corrosion behaviour of saturated diamine was investigated at different pH in 

decarbonized water. The Nyquist diagrams obtained at different pH are shown in 

Figure 4.22. Although there is only one capacitive loop in absence of inhibitor 

(Figure 4.13) and in the RUN2 (Figure 4.20), in the presence of RSN2 two separated 

capacitive loops observed. These loops are more observable at pH 5, 6.5 and 9.5 
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values (Figure A.1). The capacity associated with the high frequency loop observed 

in the presence of RSN2 is very low compared to low frequency  that can be ascribed 

to either a) the change of the dielectric constant of the double layer, resulting from 

the strong hydrophobic nature of the inhibitor compound thus involving a double 

layer capacity value of the same order of magnitude to those obtained in less polar 

solvents, or b) the formation of a more compact and protective film, similar to a paint 

film [63]. In this case, it can be attributed to formation of more compact and 

protective film. 
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Figure 4.22 : Nyquist plot for carbon steel in decarbonised water at 25 
o
C with RsN2  

            at varying pH values. 

 

Anodic and cathodic polarization curves obtained at different pH for RSN2 were 

given in Figure 4.23. Corrosion parameters obtained from these curves summarized 

in Table 4.12. It can be seen that anodic and cathodic slopes are very close for all pH 

values and also shifted to more positive potentials except pH=11. At pH=11, there is 

a drastic increase in βc the and highest Icorr was obtained as compared to the other 

pH values.  Increase in OH
- 
ion concentration enchanged the cathodic reaction and 

cause the increase in corrosion rate. 
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Figure 4.23 : Potentiodynamic polarization curves for carbon steel in decarbonised  

            water at 25
 o
C with RSN2 at varying pH values.    

 

The polarization resistance (Rp) was calculated from the EIS data and given in Table 

4.12. Both polarization and EIS results have the same trend and at pH=6.5 and 8.0 

the lowest Icorr and the highest Rp values were observed. Additionally, the IE% 

values listed in the Table 4.12 show that at pH 6.5 and 8, highest inhibitor 

efficiencies were observed. 

Table 4.12 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C  

           with RSN2 at different pH values. 

Decarbonised 

Water 
RSN2 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-

2
) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

Chi-

Squ. 

5.0 556 11 173 664 3,753 56 79 1.0 

6.5 572 10 197 461 3,950 57 79 1.1 

8.0 560 10 195 435 3,950 23 80 0.18 

9.5 572 12 204 541 2,765 43 76 0.71 

11.0 651 26 227 2,576 1,225    -3 42 1.21 

In this part of the work, RUN, RUN3, RSN, RSN3 are additionally investigated in 

decarbonised water at different pH values from 5 to 11. Further detailed informations 

on these measurements are given in Appendices.  

Corrosion behaviour of saturated monoamine (RSN) was studied at different pH in 

decarbonized water. Anodic and cathodic polarization curves observed at different 

pH were given in Figure A.3. Corrosion parameters obtained from these curves were 
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summarized in Table A.1. It can be seen that anodic and cathodic slopes are very 

close for all pH values and also shifted to more positive potentials except pH=11 

which has the same behavior with RSN2. The Nyquist diagrams obtained at different 

pH for RSN are shown in Figure A.4. It can be seen that with obtained polarization 

and EIS data which is summarized at Table A.1, with addition of RSN, not an 

observable anticorrosion efficiency was obtained. 

Corrosion behaviour of saturated monoamine (RSN3) was investigated at different pH 

in decarbonized water. Anodic and cathodic polarization curves observed at different 

pH were given in Figure A.5. Corrosion parameters obtained from these curves were 

listed in Table A.2. It can be seen that anodic and cathodic slopes are very close for 

all pH values except pH=5 and pH=11 at which there was a drastic increase in 

cathodic slopes. At pH= 6.5, corrosion potential shifted to more positive potentials 

which resulted in the highest inhibitor efficiency compared to the other pH values. 

The Nyquist diagrams obtained at different pH for RSN3 are shown in Figure A.6.  

From Figure A.7, the anodic and cathodic reactions are affected by the addition of 

unsaturated monoamine, RUN.  Ecorr values (Table A.3)  shifted to more positive 

potentials in the presence of RUN. At pH=6.5 and pH=11, Ecorr shifted to more 

positive region compared to the other pH values although there was not a specific 

relation between Ecorr and inhibitors efficiency. Since, at pH 11, βa got the highest 

value compared to no inhibitor case which resulted in the highest Icorr. Figure A.8 

presents the impedance diagrams plotted for RUN at varying pH values in 

decarbonised water. Comparison of the polarization resistance values, Rp, 

determined from this loop has the largest size at pH 6.5 in presence of RUN. 

Anodic and cathodic polarization curves obtained at different pH for RUN3 were 

given in Figure A.9. Corrosion parameters obtained from these curves summarized in 

Table A.4. It can be seen that anodic slopes are very close for all pH values and got 

the lowest values at pH= 8 which resulted in the lowest Icorr. The Nyquist diagrams 

obtained at different pH for RUN3 are shown in Figure A.10. It can be seen that with 

obtained EIS data which is summarized at Table A.4, higher inhibitor efficiency was 

obtained at around pH=8. 
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4.3. Measurements in Deionised Water  

This part of study is composed of the investigated of carbon steel corrosion by 

polarization curves and EIS data in absence of inhibitor, at different pH values from 

5 to 11 in deionised water. Additionally, at the same pH value (pH=8), corrosion 

inhibition of inhibitors for carbon steel in deionised water were compared. Effect of 

pH in the presence of RUN2 and RSN2 was also investigated as in the case of sea and 

decarbonized water. 

4.3.1. Measurements in Deionised Water in the Absence of Inhibitor 

Figure 4.24 reports the Nyquist diagrams plotted at the corrosion potential for the 

different pH values in deionised water in absence of inhibitors. The impedance 

diagrams are characterized by two time constant which is more significant at pH=11 

(Figure 4.25). Polarization resistance values obtained from Nyquist diagram listed in 

Table 4.24. Rp value at pH 9.5 is higher than the other pH values meaning higher 

anticorrosion efficiency.  
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Figure 4.24 : Nyquist plot for carbon steel in deionised water at 25 
o
C in absence  

           of  inhibitors at varying pH values. 
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Figure 4.25 : Nyquist plot for carbon steel in deionised water at 25 

o
C in absence  

           of  inhibitors at pH 11. 

Potentiodynamic polarization curves for carbon steel in deionised water in the 

absence of inhibitors at different pH values were given in Figure 4.26. Corrosion 

parameters obtained from these curves were summarized in Table 4.13. It can be 

seen that anodic and cathodic slopes (βa and βc) and positive shift in Ecorr at pH 9.5 

have the highest values. The polarization resistance (Rp) was obtained from the EIS 

measurements and given in Table 4.13. It has the highest value at pH 9.5 which is in 

agreement with polarization measurements . 
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Figure 4.26 :Potentiodynamic polarization curves for carbon steel in deionised     

  water at 25
 o
C in absence of inhibitors at different pH values. 

 

 



 
64 

Table 4.13 : Polarization parameters for carbon steel in deionised water at 25 
o
C in  

           absence of  inhibitors at pH 8. 

Deionised 

Water 
No Inhibitor 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 
Rp (Ωcm

2
) Chi-Squ. 

5.0 700 12 575 563 17,143 0.64 

6.5 706 11 432 462 12,561 0.68 

8.0 729 11 568 564 9,926 0.42 

9.5 650 14 2,026 1,430 36,170 1.1 

11.0 655 9 432 501 3,753 0.57 

4.3.2. Measurements in Deionised Water in the Presence of Inhibitors at pH=8 

The effect of addition of different amin derivatives on the carbon steel corrosion at 

pH= 8 carbon steel in deionised water was investigted similarly to sea and 

decarbonized water. The impedance response of steel in deionised water significantly 

changed after the addition of inhibitors. On the other hand, the highest capacitive 

loop was observed in the case of RUN (Figure 4.27). It means that RUN has greatest 

anticorrosion efficiency in deionised water when compared to the other inhibitors. 

RuN2 and RSN2 show show almost similar behaviour.  Moreover, alkyl chain 

structure is also effective on corrosion inhibition and unsaturated diamine has greater 

efficiency than saturated diamine which is in agreement with the results observed for 

sea and decarbonised water. 
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Figure 4.27 : Nyquist plot for carbon steel in deionised water at 25 
o
C in absence  

                      and with different inhibitors at  pH 8. 
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Figure 4.28 shows the cathodic and anodic polarization plots of carbon steel 

immersed in deionized water the absence and the presence of inhibitors. 

Electrochemical parameters such as Ecorr, Tafel slopes  and icorr as well as 

percentage of inhibition efficiency (IE%) are listed in Table 4.14.  

Corrosion potential in Fig. 4.28, shifts with no definite trend with the addition of  the 

inhibitors indicating that amine derivatives act as mixed type inhibitor.  Only positive 

shift of Ecorr was observed in the case of RUN and it shows lower Icorr than the 

others and this result also supported with EIS data (Table 4.14) Triamines seem to 

have negligible effects on the corrosion behaviour of carbon steel in deionized water.  
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Figure 4.28 :Potentiodynamic polarization curves for carbon steel in deionised     

             water at 25
 o
C in absence and with different inhibitors at pH 8. 

Rp values obtained from Nyquist plot were also listed in Table 4.14 and they are in 

agreement with the polarization results. 
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Table 4.14 : Polarization parameters for carbon steel in deionised water at 25 
o
C in  

           absence and presence of different inhibitors at pH 8. 

Deionised 

Water 
pH 8 

 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 
Rp (Ωcm

2
) Chi-Squ. 

no 

inhibitor 
729 8 568 564 9,926 0.42 

RSN3 726 9 401 681 7,505 0.86 

RSN2 734 6 530 650 16,590 0.85 

RSN 756 7 343 255 7,308 0.86 

RUN3 718 12 403 794 5,372 0.94 

RUN2 724 6 495 636 13,430 0.91 

RUN 685 4 1100 1243 67,150 0.02 

All results from polarization and EIS measurements were compared in Table 4.15 

and they suggest that most effective inhibitors are  RUN, RSN2, RUN2, respectively. 

Table 4.15 : Polarization parameters and the corresponding inhibition efficiency for  

           the corrosion of carbon steel in deionised water in absence and  

           presence of different inhibitors at pH 8. 

Deionised 

Water 
pH 8 

 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

Rp 

(Ωcm
2
) 

EIcorr (%) ERp (%) 

no inhibitor 729 8 9,926   

RSN3 726 9 7,505 -8    - 32 

RSN2 734 6 16,590 29 40 

RSN 756 7 7,308 22 -36 

RUN3 718 12 5,372 - 47 -85 

RUN2 724 6 13,430 25  26 

RUN 685 4 67,150 57  85 

4.3.3. Measurements in Deionised Water in the presence of RUN2 at Different pH 

Electrochemical impedance spectroscopy measurements are performed to study the 

effect of pH for RUN2 similarly to sea and decarbonized water (Figure 4.29). They 

are characterized by two separated capacitive loops where LF (low frequency) loop 

size is more significant at pH 9.5 and 11.0.  
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Figure 4.29 : Nyquist plot for carbon steel in deionised water at 25 
o
C with RUN2  

            at varying pH values. 

Potentiodynamic polarization curves for carbon steel in deionised water in the 

presence of RuN2 at different pH values were given in Figure 4.30. It can be seen 

that there is a drastic increase in βa and βc at pH 11 and positive shift of Ecorr is 

observed. Moreover, at pH= 8.0 and 9.5, different Ecorr and lower Icorr values are 

observed with similar βa and βc as compared to the other pH values. Associated 

electrochemical parameters obtained by extrapolation of the Tafel lines and EIS data 

and also IE% based on Tafel and EIS data are presented in Table 4.16. The 

polarization resistance (Rp) was calculated from the EIS data and the highest value 

was observed in the case of pH 9.5. On the other hand, based on polarization data, 

inhibitor efficiency (IE%) is obtained in a range from pH= 6.5 to pH=9.5. 
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Figure 4.30 : Potentiodynamic polarization curves for carbon steel in deionised  
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            water at 25
 o
C with RuN2 at varying pH values.    

 

Table 4.16 : Polarization parameters for carbon steel in deionised water at 25 
o
C  

                     with RUN2 at different pH values. 

Deionised 

Water 
RUN2 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-

2
) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

EIcorr 

(%) 

ERp 

(%) 
Chi-Squ. 

5.0 677 10 457 615 8,295 -71  -107 0.87 

6.5 724 8 374 595 7,110 64 -77 0.88 

8.0 724 6 495 636 13,825 25 28 0.91 

9.5 597 7 510 565 14,418 31   -151 0.07 

11.0 606 31 1570 759 8,295 -116 55 0.78 

4.3.4. Measurements in Deionised Water in the presence of RSN2 at different pH  

Figure 4.31 reports the impedance diagrams obtained at the corrosion potential in the 

presence of 100 ppm RSN2 in deionised water at different pH values. The largest loop 

size (Rp = 21,330 Ω.cm
2 

) is obtained at pH=9.5. Meaning that better corrosion 

inhibition is enabled with RSN2 at pH=9.5 which is also supported by polarization 

data listed in Table 4.17. 
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Figure 4.31 : Nyquist plot for carbon steel in deionised water at 25 
o
C with RsN2  

            at varying pH values. 

In the presence of RSN2, the highest positive shift in Ecorr is obtained at pH 11 (Figure 

4.32). Associated electrochemical parameters obtained by extrapolation of the Tafel 
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lines and EIS data are presented in Table 4.17. There is abrupt increase in βa and 

decrease in βc and the highest Icorr values was observed in the case of pH=11. 
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Figure 4.32 : Potentiodynamic polarization curves for carbon steel in deionised  

            water at 25
 o
C with RSN2 at varying pH values.    

The polarization resistance (Rp) was calculated from the EIS data and has the highest 

value at pH 9.5. According to both EIS and polarization data, it can be concluded 

that RSN2 has better anticorrosion efficiency in the range of pH= 6.5-9.5. However, at 

pH=8, inhibitor efficiency which is observed based on both polarization and EIS data 

is the highest compared to the other pH values. 

Table 4.17 : Polarization parameters for carbon steel in deionised water at 25 
o
C  

                     with RSN2 at different pH values. 

Deionised 

Water 
RSN2 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-

2
) 

βa 

(mV) 

βc 

(mV) 

Rp* 

(Ωcm
2
) 

EIcorr 

(%) 

ERp 

(%) 

Chi-

Squ. 

5.0 745 10 411 687 8,690 -77 - 97 0.84 

6.5 719 6 396 493 10,665 -27 -18 0.87 

8.0 734 6 530 650 16,748 29 41 0.85 

9.5 682 8 902 914 21,330 25 -70 0.89 

11.0 531 13 1.087 319 6,834 11 45 0.84 

In deionised water at pH= 11, most significant two capacitive loops were observed 

with RUN2 and RSN2 (Figure A.2) meaning two time constants. Figure 4.33 depicts 

the equivalent circuit to model electrochemical behavior of the inhibitors after 1 hour 

immersion in deionised water at pH= 11 which is the pH value with most significant 
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two capacitive loops. Rs, solution resistance is a property of the test solution and the 

test cell geometry, not a property of the coating. It is, therefore, not interested. 

The capacitance of the intact coating is represented by Cc. Its value is much smaller 

than a typical double layer capacitance. Rpo (pore resistance) is the resistance of ion 

conducting paths the develop in the coating. These paths may not be physical pores 

filled with electrolyte. On the metal side of the pore, it can be assumed that an area of 

the coating has delaminated and a pocket filled with an electrolyte solution has 

formed. This electrolyte solution can be very different than the bulk solution outside 

of the coating. The interface between this pocket of solution and the bare metal is 

modeled as a double layer capacitance in parallel with a kinetically controlled charge 

transfer reaction. Rct charge transfer resistance and Cdl double layer capacitive 

element. 

 

Figure 4.33 : Values of the elements of equivalent circuit required for fitting the EIS  

            of carbon steel in deionised water with RSN2 at pH 11. 

Values of the elements of equivalent circuit were given in Table 4.18. It is clear that 

the addition of inhibitors causes an increase in Rct in deionised water. As the Rct 

increases inhibitor efficiency increases and gets higher value with RUN2 when 

compared with RSN2. 

Inhibitor efficiency based on impedance data are calculated (Equation 4.2) and listed 

at Table 4.18. RUN2 has the highest inhibitor efficiency which is also supported by 

polarization data. It can be said that alkyl chain structure is effective on corrosion 

inhibition and unsaturated ones shows better performance.      
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Table 4.18 : Values of the elements of equivalent circuit required for fitting the EIS  

         of carbon steel in deionised water in absence and presence of RUN2 

         and RSN2 at pH=11. 

Deionised 

water             

pH 8 

Rs 

(Ω.cm
2
) 

Rct (Ω.cm
2
) 

CPE, Yo.10
5
 

(Ω
-1

.s
n
.cm

-2
) 

ndl Cdl (µF.cm
-2

) IE% 

no inhibitor 7 474 29 0.86 210  

RSN2 7 883 221 0.77 2,693 46 

RUN2 9 1,945 78 0.64 984 76 

4.4 Adsorption Mechanisms 

Electrochemical impedance spectroscopy provides a new method to characterize the 

film coverage on the electrode, which is related to charge transfer resistance (Rct). 

The interface capacitance can also be used to determine the film quality. It is known 

that the coverage of an organic substance on the metal surface depends not only on 

the structure of the organic substance and the nature of the metal, but also on the 

experimental conditions such as immersion time and concentration of adsorbent [60]. 

The adsorption isotherms can provide basic information on the interaction of 

inhibitor and metal surface [64]. 

The adsorption on corroding surfaces never reaches the real equilibrium and tends to 

reach an adsorption steady state. When corrosion rate is sufficiently decreased in the 

presence of inhibitor, the adsorption steady state has a tendency to attain quasi-

equilibrium state. 

It is known that the adsorption isotherms are very important for the understanding of 

the mechanism of corrosion inhibition [65]. The most frequently used isotherms are 

Langmuir, Freundlich, Temkin and Frumkin equations. Because impedance 

measurements are based on small amplitude perturbations, they are non- destructive 

and well suited to continuous monitoring of the corrosion [66]. 

In this work, the influence of concentration on the surface coverage in decarbonised 

water with RSN2 and RUN2 was carried out. Therefore, EIS measurement data were 

used to evaluate the surface coverage (θ), which was given by Equation 4.4.  

)(

)(
%

inhRct

RctinhRct
IE                          (4.4) 

It is assumed that the adsorption of these inhibitors follows the Langmuir adsorption 

isotherm model, and can be described by the following Equation 4.5 [64]. 
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cKads..
1

                 (4.5) 

The plot of C/Ѳ versus C (Equation 4.6) yield s a straight line with correlation 

coefficients of  0.998 and 0.993 for RSN2 and RUN2, respectively, providing that the 

adsorption of these inhibitors in decarbonised water  on the carbon steel surface 

obeys Langmuir adsorption isotherm, which is presented by Equation 4.5. 

c
Kads

c 1
                   (4.6) 

where C is inhibitor concentration, Ѳ is the degree of coverage on the metal surface 

and Kads is the equilibrium constant for adsorption-desorption process. 

From the intercepts of the straight lines on the C/Ѳ axis, Kads can be calculated that 

relates to the standard free energy of adsorption, ΔG
0

ads  as given by the Equation 

4.7.  

)5.55ln(
0

KadsRTGads
                            (4.7) 

At Table 4.19, Langmuir isotherm adsorption parameters for RSN2 in decarbonised 

water at pH 8 are listed. Rct is increasing as the concentration of  RSN2 is increased. 

Table 4.19 : Langmuir isotherm adsorption parameters for RSN2 in decarbonised  

           water at pH=8 at 25 ℃. 

RSN2 
Rs 

Ωcm
2
 

Rct 

Ωcm
2
 

CPE, 

Yodl.10
5
         

Ω
-1

s
n
cm

-2
 

ndl 
Cdl 

µFcm
-2

 

Rpo 

Ωcm
2
 

CPE, 

Yoc.10
5
    

Ω
1
s

n
cm

-2
 

nC 
IE

% 

No inh. 224 969 204 0.7 2,734     

50 ppm 119 3,990 19 0.7 170 115 1 0.8 76 

100 ppm 169 4,294 20 0.8 184 332 9 0.4 77 

150 ppm 277 4,993 35 0.6 532 324 1 0.8 81 

200 ppm 249 6,162 16 0.7 158 423 1 0.7 84 

Regarding the obtained Rct values, corresponding Ѳ the degree of coverage on the 

metal surface are calculated and reported at Table 4.20. 

Table 4.20 : Concentration and  degree of coverage values for RSN2  in decarbonised  

           water at pH=8 at 25 ℃. 

c (ppm) c(mol/L) Ѳ c/Ѳ 

50 0.000153 0.76 0.00020 

100 0.000307 0.77 0.00040 

150 0.000460 0.81 0.00057 

200 0.000613 0.84 0.00073 
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Figure 4.34 shows The plot of C/Ѳ versus C for  RSN2 in decarbonised water at 

varying concentration from 50 ppm to 200 ppm. From the interception of the Y axis, 

Kads is observed as 0,00004 mol/L for RSN2. 

At Table 4.21, Langmuir isotherm adsorption parameters for RUN2 in decarbonised 

water at pH 8 are listed. Rct is decreasing as the concentration of  RUN2 is increased 

from 50 ppm to 200 ppm. 

Regarding the obtained Rct values, corresponding Ѳ the degree of coverage on the 

metal surface are calculated for RUN2  and reported at Table 4.22. 

 

Figure 4.34 : Langmuir isotherm adsorption plot for adsorption of  RSN2 in  

             decarbonised water at pH 8 at 25 ℃. 

Table 4.21 : Langmuir isotherm adsorption parameters for RUN2 in decarbonised  

           water at pH 8 at 25 ℃. 

RUN2 
Rs 

Ωcm
2
 

Rct 

Ωcm
2
 

CPE, 

Yodl.10
5
         

Ω
-1

s
n
cm

-2
 

ndl 
Cdl 

µFcm
-2

 

Rpo 

Ωcm
2
 

CPE, 

Yoc.10
5
    

Ω
1
s

n
cm

-2
 

nC 
IE

% 

No inh. 224 969 204 0.7 2.734     

50 ppm 257 5,672 19 0.72 192 201 1 0.8 83 

100 ppm 250 4,400 23 0.75 234 142 0 0.8 78 

150 ppm 142 4,357 25 0.71 256 126 1 0.8 78 

200 ppm 150 3,231 33 0.67 339 119 0 0.9 70 
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Table 4.22 : Concentration and  degree of coverage values for RUN2 in decarbonised  

          water at pH 8 at 25 ℃. 

c (ppm) c(mol/L) Ѳ c/Ѳ 

50 0.000154 0.83 0.00019 

100 0.000309 0.78 0.00040 

150 0.000463 0.78 0.00060 

200 0.000617 0.70 0.00088 

Figure 4.35 shows The plot of C/Ѳ versus C for  RUN2 in decarbonised water at 

varying concentration from 50 ppm to 200 ppm. From the interception of the Y axis, 

Kads is observed as 0,00006 mol/L for RUN2. 

 

Figure 4.35 : Langmuir isotherm adsorption plot for adsorption of  RUN2 in  

           decarbonised water at pH 8 at 25 ℃. 

Free energies (ΔG
0

ads) were calculated to be -34 and -35 kJ/mol for RUN2 and RSN2 

respectively; the negative value of ΔG
0

ads indicates spontaneous adsorption of these 

inhibitors on the mild steel surface and also the strong interaction between inhibitors 

molecules and metal surface. Generally, values of ΔG
0

ads up to -20 kJ/mol are 

consistent with physisorption, while those around -40 kJ/mol or higher are associated 

with chemisorptions as a result of the sharing or transfer of electrons from organic 

molecules to the metal surface to form a co-ordinate.  

The basic character of inhibitors affects the adsorption of cation on the surface of 

carbon steel (electrostatic attraction). In the presence of Cl
-
 which are strongly 
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adsorbed on the metal surface, the metal surface becomes negatively charged hence 

favoured the adsorption of cation type inhibitors. Thus, all the inhibitors studied in 

this work adsorbed through electrostatic interactions between the positively charged 

molecules and negatively charged metal surface [65]. 

Thus, the value of ΔG
0

ads for RUN2 and RSN2 on carbon steel in decarbonised water is 

in the range of -30-40 kJ/mol indicated that they are all adsorbed by mixed mode 

(physisorption  and chemisorptions) of adsorption on the metal surface [34,65]. 

4.5 SEM (Scanning Electron Microscopy) Measurements 

Morphology of carbon steel electrode that left in corrosion environment in the 

presence and absence of inhibitors was investigated in three of corrosion media 

(decarbonized, sea and deionized water) (Figure 4.36 - 4.38). In the presence of 

RUN2 and RSN2 surface became more smooth than the case of blank, showing the 

adsorption of the inhibitors on the electrode surface in decarbonised water (Figure 

4.36). 

 

 

 

 

 

 

 

 

 

 

 

a)                                 b)                                           c) 

Figure 4.36 : SEM image ( x 500, x 200) of the carbon steel electrode obtained after 

1 h  immersion a) without inhibitor b) in the presence of RUN2 c) in  

the presence of RSN2 in decarbonised water at pH=8 at 25 ℃. 

 

In seawater, corrosion products are more pronounced that other corrosion 

environment due to aggressiveness of chloride ion (Figure 4.37). A denser and 

smoother film adsorbed on the steel surface for RUN2 inhibited mild steel than that 

for the RsN2. 
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a)                       b)                                           c) 

Figure 4.37 : SEM image ( x 500, x 200) of the carbon steel electrode obtained after 

1 h  immersion a) without inhibitor b) in the presence of RUN2 c) in 

the presence of RSN2 in seawater at pH=8 at 25 ℃. 

SEM photographs in deionised water at pH=8 in the absence and presence of 

inhibitors are shown in Figure 4.38. It can be seen from Figure 4.38- a  that the 

surface is strongly damaged in the absence of the inhibitors. In the presence of RUN 

and RUN2 it can be seen that the rate of corrosion is suppressed, and there is little 

acid corrosion product on the steel surface, suggesting an adsorbed layer is formed 

on the surface, which inhibits corrosion.  In the presence of RSN2 inhibitor leads to 

formation of a stiffly stuck surface cover with irregular  pits and adsorption of this 

inhibitor is not as well as RUN and RUN2. This result is in agreement with the 

polarization measurements (Table 4.14). 
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             a)    a) 

 

 

 

 

             b)    b) 

 

 

 

 

             c)   c) 

 

                d) 

Figure 4.38 : SEM image ( x 500, x 200) of the carbon steel electrode obtained after 

1 h  immersion a) without inhibitor b) in the presence of RUN c) in the 

presence of RUN2 d) in the presence of RSN2 in deionised water at 

pH=8 at 25 ℃. 
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5.  CONCLUSIONS  

 

In this work, the behavior of the carbon steel, in presence of different inhibitors 

which have different functional group based of FFA of different structures, by 

steady-state current-voltage curves and  impedance spectroscopy measurements was 

studied. Sea, decarbonised and deionised water qualities were examined in absence 

of and with inhibitors at different pH values from 5 to 11 in order to observe the pH 

dependency of the inhibitors on corrosion inhibition. Also, at the same pH value 

(pH=8), 6 different inhibitors were examined at 3 different water quality in order to 

obtain the relationship between the inhibitor structure and inhibitor efficiency, 

additionally by the effect of different corrosive media. In the last part, adsorption 

isotherm plots were observed by using EIS data at decarbonised water at pH=8 in 

order to understand the corrosion inhibition mechanism. 

In seawater, inhibition efficiency expected to increase with decrease in amine 

number i.e RN3<RN2<RN. Although second amine group shows expected effect in 

both saturated and unsaturated cases (RUN2, RsN2), further increase in amine number 

(RN3) does not have further increase in efficieny. It can be concluded that the 

inhibition efficiency is not proportional to the amine number in seawater. On the 

other hand unsaturated amines (RUNx) have better inhibition effect than the saturated 

ones(RsNx), may be due to better interaction of  -bonds of unsaturated inhibitors 

with metal surface.  

Regarding the potentiodynamic polarization curves obtained in seawater with 

different inhibitors, it can be clearly seen that the Ecorr values shifted to more positive 

potentials in the presence of unsaturated polyamines on the other hand to more 

negative potentials in the presence of saturated polyamines. There was not a specific 

relation between Ecorr and inhibitors efficiency. However, this can be related to alkyl 

chain chemistry. 
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 It can be observed that both polarization and impedans data supporting each other 

and suggest that the better corrosion inhibition is enabled in a pH range of 6.5- 9.5 

for both RUN2 and RSN2 in seawater where RUN2 has higher IE% than RSN2 due to the 

unsaturated alkyl chain chemistry. 

Similar results were observed in decarbonised water that for both saturated and 

unsaturated amines, the inhibition efficiency is not proportional to the amine number. 

Moreover, alkyl chain structure is also effective on corrosion inhibition that 

unsaturated diamine has greater efficiency than saturated diamine in decarbonised 

water which is also supported by the results observed in seawater. Diamines show 

better anticorrosion efficiency as compared to triamines and  unsaturated diamines 

effect better than saturated ones at pH=8.  

The distorted shape of the high-frequency part of the impedance diagrams (Figure 

4.20 and Figure 4.22) of both RUN2 and RSN2  can be attributed to the formation of a 

relatively thick and compact protective film on the metal surface. 

In deionised water, corrosion potential (Fig. 4.28)  shifts with no definite trend with 

the addition of the inhibitors indicating that amine derivatives act as mixed type 

inhibitors. Also, triamines seem have negligible effects on the corrosion behaviour of 

carbon steel in deionized water .Both polarization and EIS data (Table 4.15) are 

supporting each others.    

RUN has greatest anticorrosion efficiency in deionised water when compared to the 

other inhibitors in deionised water. RuN2 and RSN2  show almost similar behaviour. 

Moreover, alkyl chain structure is also effective on corrosion inhibition and 

unsaturated diamine has greater efficiency than saturated diamine which is in 

agreement with the results observed for sea and decarbonised water. 

In deionised water at pH= 11, most significant two capacitive loops were observed 

with RUN2 and RSN2 (Figure A.2) meaning two time constants. This can be attributed 

to the low conductivity of the medium which is not sufficient for the current flow. 

Additionally, cation type inhibitors adsorption is affected by the negative  charge 

deposition of the metal surface where the deionised water may not be negatively 

charged for the adsorption of the inhibitors due to deionised water characteristics. 

Two time constants can also be attributed to not formation of the film on the metal 

surface. 
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Moreover, the influence of concentration on the surface coverage in decarbonised 

water with RSN2 and RUN2 was carried out. Assuming that the adsorption of these 

inhibitors follows the Langmuir adsorption isotherm model, obtained ΔG
0

ads values 

indicated that they are all adsorbed by mixed mode (physisorption and 

chemisorptions) of adsorption on the metal surface.  

Table 5.1 reports inhibitor efficiencies of different inhibitors obtained from 

polarization data in different water qualities 25 
o
C at pH=8. It is obvious that with 

saturated and unsaturated diamines, highest anticorrosion efficiencies were obtained 

in both of sea and decarbonised water. In deionised water, the highest efficiency was 

observed with unsaturated monoamine which was followed by saturated and 

unsaturated diamines. There is also a significant observation that , in sea water 

anticorrosion efficiency is much more dependent on alkyl chain chemistry while 

amino group number is more important than alkyl chain chemistry in the case of 

decarbonised water. 

Table 5.1 : Inhibitor efficiencies of different inhibitors obtained from polarization      

data in different water qualities 25 
o
C at pH=8. 

 pH=8, IE%Rp 

 Decarbonised Water Seawater Deionised Water 

RSN3 33 21 -32 

RSN2 80 37 40 

RSN -33 10 -36 

RUN3 26 64 -85 

RUN2 81 67 26 

RUN 9 54 85 
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APPENDICES 

APPENDIX A.1 : Mesurements in presence of inhibitors in decarbonised  and   

deionised water 
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APPENDIX A.1  
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Figure A.1 : Nyquist plot for carbon steel in decarbonised water at 25 oC with  

                  RsN2 at 3 different pH values. 
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Figure A.2 : Nyquist plot for carbon steel in deionised water at 25 oC in absence 

                 and presence of  RuN2 and RsN2 at pH=11. 
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Figure A.3 : Potentiodynamic polarization curves for carbon steel in decarbonised  

           water at 25
 o

C with RsN at different pH values.    
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Figure A.4 : Nyquist plot for carbon steel in decarbonised water at 25 

o
C with RsN  

           at different pH values. 
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Table A.1 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C 

                    with RsN at different pH values. 

Decarbonised 

Water 

 
RSN 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

Chi-

Squ. 

5.0 816 23 91 490 553 6 -43 0.96 

6.5 817 21 115 460 514 12 -62 1.03 

8.0 804 19 97 392 593 -41 -33 0.8 

9.5 797 22 98 549 553 -7 -21 0.98 

11.0 731 15 141 362 593 40 -20 0.96 
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Figure A.5 : Potentiodynamic polarization curves for carbon steel in decarbonised  

          water at 25
 o
C with RSN3 at different pH values.    
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Figure A.6 : Nyquist plot for carbon steel in decarbonised water at 25 

o
C with RsN3  

          at different pH values. 

 

Table A.2 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C 

                    with RsN3 at different pH values. 

Decarbonised 

Water 

 
RSN3 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

Chi-

Squ. 

5.0 627 16 143 1145 1,659 33 52 1.07 

6.5 571 13 125 496 1,304 43 36 0.97 

8.0 681 13 158 690 1,146 4 31 1.03 

9.5 664 16 161 789 1,343 26 50 1 

11.0 627 32 268 3533 1,620 - 28 56 1.19 
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Figure A.7 : Potentiodynamic polarization curves for carbon steel in decarbonised  

            water at 25
 o
C with RuN at different pH values.    
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Figure A.8 : Nyquist plot for carbon steel in decarbonised water at 25 

o
C with RuN  

          at different pH values. 
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Table A.3 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C 

                   with RuN at different pH values. 

Decarbonise

d Water 

 
RuN 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl

) 

Icorr 

(µA.cm
-2

) 

βa 

(mV

) 

βc 

(mV

) 

Rp 

(Ωcm
2

) 

IEIcor

r (%) 

IERp 

(%) 

Chi-

Squ. 

5.0 729 15 99 700 909 38 13 0.5 

6.5 604 15 175 457 1.422 37 42 0.05 

8.0 752 17 107 705 909 - 24 13 1.09 

9.5 702 27 157 3866 869 - 30 23 1.12 

11.0 481 31 369 2130 1.304 -23 45 0.98 
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Figure A.9 : Potentiodynamic polarization curves for carbon steel in decarbonised  

           water at 25
 o

C with RuN3 at different pH values.    
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Figure A.10 : Nyquist plot for carbon steel in decarbonised water at 25 
o
C with  

             RuN3 at different pH values. 

 

Table A.4 : Polarization parameters for carbon steel in decarbonised water at 25 
o
C 

                    with RuN3 at different pH values. 

Decarbonised 

Water 

 
RUN3 

pH 

-Ecorr                  

(mV vs. 

Ag/AgCl) 

Icorr 

(µA.cm
-2

) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ωcm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

Chi-

Squ. 

5.0 675 20 218 2,315 553 20 33 0.02 

6.5 671 13 164 616 514 44 32 0.33 

8.0 689 13 151 565 593 6 66 1.65 

9.5 645 24 176 1,168 553 -13 15 1.04 

11.0 602 25 222 1,496 593 2 28 1.24 
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