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SYNTHESIS AND CHARACTERIZATION OF HYDROGEN BONDED   
SIDE CHAIN LIQUID CRYSTALLINE POLYMERS 

SUMMARY 

Recently, the application of hydrogen bonding in the formation of new liquid 
crystalline materials, ie. supramolecular liquid crystals  has been rapidly developed. 
Supramolecular liquid crystals are molecular complexes generated from 
complexation of molecular species through non-covalent intermolecular forces, e.g. 
hydrogen bonding. The mesogenic properties can be easily modified by several 
proton donors and proton acceptors, and new liquid crystalline properties, which are 
different from those of their original moieties, can be obtained by supramolecular 
structures. Hydrogen bonded liquid crystalline materials have various potential in the 
fields of display, biomaterials and materials for electro-optical applications. 

This study describes the preparation of three different polymers as  hydrogen bond 
acceptor and three different 4'-(hydroxyalkoxy)-4-cyanobiphenyl derivatives 
(n=6,8,11) as hydrogen bond donor. In the first step, poly(vinyl imidazole)(PVI) and 
poly(4-vinyl pyridine) (PVP) hydrogen bond acceptors were prepared by free radical 
polymerization of related monomers. Poly(vinyl pyrrolidon) was purchased 
commercially. The hydrogen bond donors were synthesized by the reaction of 
hydroxy halides having different number of  methylene unit with hydroxy cyano 
biphenyl mesogens. In the second step, the hydrogen bond donors were  attached to 
the proton acceptor polymers through H-bond interactions between the hydroxyl 
group of hydrogen bond donors and imidazole, pyrrolidone and pyridine groups of 
the hydrogen bond acceptors to yield the desired side chain liquid crystalline 
polymers. The formation of H-bond was confirmed by using FTIR spectroscopy. To 
confirm the liquid crystalline nature and to identify the phases of 4'-(hydroxyalkoxy)-
4-cyanobiphenyl derivatives and corresponding H-bonded polymers, differantial 
scanning calorimetry (DSC) and polarising optical microscopy (POM) were 
employed. The co-operation of hydrogen-bonding and dipolar interactions resulted in 
the formation of LC behaviour. 
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HİDROJEN BAĞLI YAN ZİNCİR SIVI KRİSTAL POLİMERLERİN 
SENTEZİ VE KARAKTERİZASYONU 

ÖZET 

Son yıllarda, supramoleküler sıvı kristaller gibi, yeni sıvı kristal malzemelerin 
hazırlanmasında hidrojen bağı uygulamaları hızla gelişmektedir. Supramoleküler sıvı 
kristaller, moleküler türlerin, hidrojen bağları gibi kovalent olmayan moleküller arası 
kuvvetler vasıtasıyla oluşturdukları komplekslerdir.  Mesojenik özellikler, çeşitli 
proton verici ve proton alıcı gruplarla kolayca değiştirilebilir ve başlangıç türlerinin 
özelliklerinden farklı yeni sıvı kristal özelliklere sahip  supramoleküler  yapılar  elde 
edilebilirler. Hidrojen bağlı sıvı kristal malzemeler, gösterge, biyomalzeme ve 
elektro-optik malzemeler için çeşitli uygulama potansiyeline sahiptirler. 

Bu çalışma, hidrojen bağ alıcı olarak üç farklı polimerin ve hidrojen bağ verici olarak 
üç farklı 4'-(n-hidroksi alkoksi)-4-siyanobifenil türevlerinin (n=6,8,11) hazırlanarak, 
H-bağlı yan zincir sıvı kristal polimer sentezinde kullanımlarını  tanımlamaktadır.  
İlk aşamada, hidrojen bağı alıcı polimerler poli(vinil imidazol) ve poli(4-vinil 
piridin), monomerlerinin serbest radikal polimerizasyonu ile hazırlanmıştır. Poli(vinil 
pirolidon) ticari olarak elde edilmiştir. Hidrojen bağı verici bileşikler, farklı sayıda 
metilen grubu içeren hidroksi halojenürler ile hidroksi siyano bifenil mesojenlerinin  
reaksiyonu ile sentezlenmiştir. İkinci aşamada, hidrojen bağ verici bileşiklerin 
hidroksil grubu ile hidrojen bağ alıcı polimerlerin imidazol, pirolidon ve pridin 
grupları arasındaki H-bağı etkileşimleri vasıtasıyla istenilen H-bağlı yan zincir sıvı 
kristal polimerler hazırlanmıştır. 

Hidrojen bağı oluşumu FT-IR spektroskopisi yöntemiyle kanıtlanmıştır. Sıvı kristal 
özellikleri saptamak ve 4'-(n-hidroksi alkoksi)-4-siyanobifenil türevlerinin ve 
hidrojen bağlı polimerlerinin sıvı kristal fazlarını belirlemek için, Diferansiyel 
Taramalı Kalorimetre (DSC) ve Polarize Optik Mikroskop (POM) kullanılmıştır. 
Hidrojen bağı ve dipolar etkileşiminin birleşimi sıvı kristal davranışların oluşumuna 
neden olmuştur. 
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1. INTRODUCTION 

Liquid crystal technology has had a major effect many areas of science and 

engineering, as well as device technology. Liquid crystal polymers combines 

polymer-specific properties and specific properties of the liquid crystalline phase so 

that, this combination leds to a multitude of new prospectives; this has made possible 

a wide range of applications of liquid crystal polymers with excellent properties. 

SCLCPs are generally prepared by  covalently linking rigid mesogens to polymer 

backbones through flexible spacers. Recently, self-assembly through specific 

interactions, such as hydrogen-bonding, ionic, ionicdipolar, and charge transfer 

interactions, has been recognized as a new strategy for constructing SCLCPs. 

Hydrogen bonding is particularly attractive since there are many natural models for 

it. The formation and dissociation of the hydrogen bonds play an important role in 

many biological processes. Hyrogen-bonded systems are prepared using two suitably 

designed components that are commonly called H-bond donors and H-bond 

acceptors. The association between the ‘donor’ and ‘acceptor’ effectively induces 

hydrogen bonds that lead to a more stable structural organisation. 

Hydrogen bonded liquid crystalline materials have various potential applications in 

the fields of display and electro optical devices which makes them good candidates 

for applications in microelectronic devices ranging from optical data storage and 

nonlinear optics. 

In this study, three different polymers poly(vinyl imidazole)(PVI), Poly(vinyl 

pyrrolidon) (PVPy) and poly(4-vinyl pyridine) (PVP) as  hydrogen bond acceptor  

and three different 4'-(hydroxyalkoxy)-4-cyanobiphenyl derivatives ( LC6, LC8, 

LC11 ) as hydrogen bond donor were prepared. The hydrogen bond donors were then 

attached to the proton acceptor polymers through H-bond interactions between the 

hydroxyl group of hydrogen bond donors and imidazole, pyrrolidone and pyridine 

groups of the hydrogen bond acceptors to yield the desired side chain liquid 

crystalline polymers. The SCLCPs was characterised using differential scanning 

calorimetry (DSC), polarising optical microscopy (POM) to determine whether the 
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liquid crystalline and thermal properties of the supramolecular complexes. The 

structure analysis of the SCLCP  was characterised by FT-IR spectroscopy. 
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2. THEORETICAL PART 

2.1 .  Liquid Crystals 

2.1.1. Historical development of liquid crystals 

The discovery of liquid crystals is usually attributed to an Austrian botanist by the 

name of Friedrich Reinitzer. In 1888, he experimented with a substance related to 

cholesterol and noted that it had two melting points. At 145.50C it melted from a 

solid to a cloudy liquid and at 178.50C it turned into a clear liquid. He also observed 

some unusual colour behaviour upon cooling; first a pale blue colour appeared as the 

clear liquid turned cloudy and second a bright blue-violet colour was present as the 

cloudy liquid crystallised [1]. The molecular structure of cholesteryl benzoate and its 

phase transition temperatures are shown in Figure 2.1 [2]. 

  

 

Figure 2.1: Structure formula of cholesteryl benzoate. Phase Transitions: K 150.5 
N*182.6 Iso 

Reinitzer sent samples of this substance to Otto Lehmann, a professor of natural 

physics in Germany. Lehmann was one of the people studying the crystallisation 

properties of various substances and first he called them soft crystals; later he used 

the term crystalline fluids because of  their both solid and liquid properties [1]. 

In the early 1900s, Vorlander started systematic synthetic work. Under his direction, 

many new crystalline compounds were synthesized. Another early outstanding 

contribution to the liquid crystal field was made by George Friedel who gave the first 
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rational explanation for the patterns observed with liquid crystals in the polarizing 

microscope and deduced the molecular order of these liquid crystal textures [3]. 

Shortly before 1960, interest in liquid crystals awakened in the United States, Great 

Britain, and the Soviet Union. An American chemist, Gleen Brown, published a 

lengthy rewiev article on liquid crystals. George Gray , a British chemist, published a 

full-length book on liquid crystals, and I. G. Chystyakov started a group working on 

liquid crystals in Moscow. Research on liquid crystals also began in Germany and 

France. Also during this time period the first room temperature, moderately stable 

liquid crystal was discovered [1]. 

Over the decade after Reinitzer's discovery, about 15 compounds became known to 

behave like liquid crystals (LC). By 1935, about 1100 liquid crystalline substances 

were synthesized. Today, more than 50,000 compounds and mixtures are known to 

possess liquid crystalline properties [4]. 

Liquid crystal technology has had a major effect many areas of science and 

engineering, as well as device technology. Applications for this special kind of 

material are still being discovered and continue to provide effective solutions to 

many different problems. The most common application of liquid crystal technology 

is liquid crystal displays (LCDs.), also they  are using as thermometers, optical 

imaging and recording, medical applications. As new properties and types of liquid 

crystals are investigated and researched, these materials are sure to gain increasing 

importance in industrial and scientific applications [5]. 

 

2.1.2. General definition and classification of liquid crystals 

Solids, liquids and gases are the most common phase of the matter. These three 

common states of matter are different from each other because the molecules in each 

state possess different amounts of order. 

The solid state consists of a more or less rigid arrangement of molecules because 

each molecule occupies a certain place in the arrangement and remains there. And 

the molecules also oriented in a specific way. The molecules might vibrate a bit, but 

on average they constantly maintain this highly ordered arrangement. There are large  
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attractive forces holding the molecules of a solid in place, so solids are hard and  

diffucult to deform. 

The liquid state is quite different in that the molecules neither occupy a specific 

average position nor remain oriented in a particular way. The amount of order in a 

liquid much less than in a solid. Attractive forces still exist in a liquid  but they are 

much weaker than the forces in solids. Liquids flow and will change its shape easily. 

In the gas state, the amount of order is less than in liquids and the forces are not 

strong enough to hold the molecules close together. A gas can be deformed more 

easily. 

The molecules in a solid are constrained to occupy only certain positions. To 

describe this condition saying the solid phase possesses positional order. In addition, 

the molecules in these specific positions are also constrained in the ways they orient 

themselves with respect to one another. So solid phase also possesses orientational 

order. When a solid melts to a liquid, both types of order are lost completely; the 

molecules move and tumble randomly. When a solid melts to liquid crystal, however, 

the positional order may be lost although some of the orientational order remains. 

The molecules in the liquid crystal phase are free to move about in much the same 

fashion as in a liquid; but as they do so they tend to remain oriented in a certain 

direction. Still this partial alignment does represent a degree of order not present in 

liquids and thus requires that to call this condition a new phase ar state of matter. 

Scientist was described this new phase as liquid crystal phase or mesophase [6]. 

Liquid crystals are partially ordered, anisotropic fluids, thermodynamically located 

between the three dimensionally ordered solid state crystal and the isotropic liquid 

[7]. The average alignment of the molecules for each phase are shown in Figure 2.2 

[5]. 

 

Figure 2.2 : The average alignment of the molecules for each phase 
Solid Liquid Crystal Liquid 
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To quantify just how much order is present in a material, an order parameter (S) is 

defined. Traditionally, the order parameter is given as follows: 

S=(3/2 cos2θ – 1/2)                                                                                          (2.1) 

                                                    
Figure 2.3 : Figural represantation of the angle between director and long axis of 

molecules 

θ is the angle between the director and the long axis of each molecule (Fig.2.3). In an 

isotropic liquid, the average of the cosine terms is zero, and therefore the order 

parameter is equal to zero. For a perfect crystal, the order parameter evaluates to one. 

Typical values for the order parameter of a liquid crystal range between 0.3 and 0.9 

[5] and highly dependent on the temperature of the sample. Typical order vs. 

temperature relationship are shown in Figure 2.4 [8]. 

 

Figure 2.4 : Order vs. temperature for a typical liquid crystal 

Liquid crystalline materials are generally divided into two categories the 

thermotropic and the lyotropic mesophases. The term “mesophase” originates from 

the Greek word meso, meaning “in between” (the crystal and the liquid phases). 

Thermotropic liquid crystal phases are observed by a change of temperature, while 

lyotropic phases form in the presence of a suitable (isotropic) solvent. An additional 

variable of state in the latter case is the concentration. Thus lyotropic mesophases are 

always mixtures, whereas many of the reported thermotropic liquid crystals are 
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single compounds. Some mesogens may exhibit both lyotropic and thermotropic 

phases; these materials are named amphotropic [7]. 

Lyotropic liquid crystal phases are frequently encountered in everyday life. For 

example, most surfactants in water form lyotropic liquid crystal phases; detergents 

and soaps are used with water, liquid crystal phases are generated. Of far greater 

importance, however, is occurrence lyotropic liquid crystal phases in biological 

membranes. The cell membranes in the body are a result of  the lyotropic liquid 

crystal phase that is generated from the dissolution of phospholipids in water. 

The types of molecular structure that generate lyotropic liquid crystal phases are 

amphiphilic. They combine a hydrophobic group at one end with a hydrophilic group 

at the other end, and possess both polar and non-polar region in the same molecule 

[1]. The two most important types of amphiphilic molecules are soaps and 

phospholipids [6]. Chemical structures and schematic representation of soaps and 

phopsholipids are shown in Figure 2.5. 

 

Figure 2.5 : Two lyotropic liquid crystals, (a) a soap, and (b) a phospholipid 

While the molecules are arranged in thermotropic liquid crystals, micelles and 

vesicles are arranged  in lyotropic liquid crystals as Figure 2.6 [1]. 

Lyotropic  liquid crystals are using in the food industry as food emulsifiers and  in 

medical applications for some drugs [6]. Also, in recent years, various nanostructures 

have been created using lyotropic liquid crystal (LLC) templates, such as nanowires, 

nanofilms, nanorods, nanotubes, nanofibers,mesoporous materials and molecular 

imprinted materials [9]. 

 

(a) (b) 
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Figure 2.6 : Structures formed by amphiphilic molecules in a polar solvent                                                  
(a) micelle, (b) vesicle 

Thermotropic liquid crystals form thermally activated mesogenic phases that extend 

from the crystal melting temperature, Tm , up to the clearing or isotropic 

temperature, Ti [3]. If thermotropic mesophase is formed by heating and cooling, it is 

called enantiotropic and it is a thermodynamically stable mesophase. If thermotropic 

phase is formed by cooling an isotropic liquid, it is called monotropic. 

Thermotropic liquid crystals are generally further distinguished with respect to the 

molecular shape of the constituent molecules, being called calamitic for rodlike, 

discotic for disk-like, and sanidic for brick- or lath-like molecules (Figure 2.7) [7]. 

 

Figure 2.7:  Different types of mesogens and the resulting calamitic, discotic and 
sanidic phases [10]. 

(a) (b) 
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The last types of molecule that form liquid crystal phases are polymers. Liquid 

crystal polymers are obtained  from its main chain or side chain arrangements 

(Figure 2.8). 

 

 

Figure 2 .8 : Polymeric liquid crystals: (a) main chain, (b) side chain [11]. 

2.1.2.1 . Calamitic liquid crystals 

The most common type of molecule that forms liquid crystal phases is a rod shaped 

molecule (one molecular axis is much longer than than the other two). Such 

compounds are called calamitic liquid crystals and many different phases are 

possible [1]. A common structural feature of calamitic mesogens is a relatively rigid 

core, often incorporating phenyl and biphenyl groups, and two flexible endgroups, 

often alkyl or alkoxy chains [7]. A typical  calamitic liquid crystal molecule  and its 

molecular shape is shown in Figure 2.9 [12]. 

 

 

Figure 2.9 : A calamitic mesogen and its effective molecular shapes as roads. 

(a) 

(b) 
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Generally, calamitic mesogens are obtained from the structures  such as given at 

Table 2.1 

Table 2.1: General structure of calamitic liquid crystals 

 

In this structure A is the core units, this core of the structure is usually provided by 

linearly linked ring systems that are most often aromatic but can be also alicyclic. 

The rings can be directly linked or they may be joined by a linking group (L) which 

maintains the linearity. And flexibility is provided by the terminal substituents R and 

R’ which are usually straight alkyl or alkoxy chains. In general, calamitic liquid 

crystals show two different type of mesophase: Nematics and smectics [1,2]. 

 

                                                        

Figure 2.10 : Type of calamitic liquid crystal masophase [7,13]. 
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Nematic Phase 

The nematic phase of calamities is the simplest liquid crystal phase. In this phase the 

molecules maintain a preferred orientational direction as they diffuse throughout the 

sample. There exists no positional order (Figure 2.11). The nematic phase is the most 

commonly observed liquid crystalline phase. In this state, the intermolecular forces 

are very small, so molecules can easily pass by each other [3,14]. 

 

 

Figure 2.11: Nematic Phase 

Smectic Phase 

When the crystalline order is lost in two dimensions, one obtains stacks of two 

dimensional liquid. Such systems are called smectics. There is a number of 

symmetry variants exist in smectic phase. Smectic phases are characterized by layer 

structures, with additional order possible in each layer. Within the layers, the centers 

of molecules are arranged in equidistant planes. The planes are allowed to move 

perpendicular to the layers, and, within the layers, different arrangements of 

molecules are possible. The smectic modifications are labeled according to the 

arrangement of the molecules within the layers. The two most common smectic 

phases are smectic A and smectic C. The smectic A phase is the least ordered of all 

the smectic phases, with the molecules with their overall long axis perpendicular to 

the layer plane. In smectic C phase, the orientation axis of the molecules is tilted with 

respect to the layer phase. In the smectic B phase, the molecules are arranged with an 

even higher degree of order (Figure 2.12) they have two dimensional long-range 

order and positional order within the layer. Similar to smectic A, the molecules are 

perpendicular to the layer plane [3,1]. 
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Figure 2.12: Smectic Phase 

In the case of tilted smectic phases, there are several packing possibilities depending 

on the direction of the tilt and the positional ordering [3]. The molecular arrangement 

of smectic phases are shown in Figure 2.13 [15]. 

 

Figure 2.13 : The molecular arrangement presentation of smectic phases. 

Chiral Phases 

Chiral Nematic Phases: The structure of the chiral nematic phase (Figure 2.14) 

consists of liquid crystal molecules in a statistically parallel arrangement of the 

director. However, the asymmetry of the constituent molecules causes a slight and 

gradual rotation of the director. This gradual  director change describes a helix which 

has a specific, temperature-dependent pitch; thus the chiral nematic phase has twist 

along one axis. The pitch length is temperature- dependent and hence so is the colour   
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of the reflected light. This is the basis behind the commercially-successful use of 

chiral nematic materials in thermochromic thermometer devices and other devices 

that change colour with temperature, such as, articles of clothing, inks and paints [1]. 

 

Figure 2.14: The structure of the chiral nematic phase [15]. 

Chiral Smectic Phases: There are many different types of  chiral smectic liquid 

crystal phases and crystal smectic mesophases which could generate form chirality as 

a direct result of the molecular chirality of the constituent molecules. The form 

chirality of all of these chiral smectic mesophases takes the form of a helical 

structure, but the helix manifests itselfs in a different way from the helix in the chiral 

nematic phases. In addition to being substantially the most commonly exhibited of 

the tilted chiral smectic phases, the chiral smectic C phase is by far the most 

important ( least ordered and least viscous) in this category. The structure of the 

smectic C phase (Figure 2.15)  is lamellar and the molecules within the layers are 

tilted at a temperature-dependent angle from the layer normal. 

 

Figure 2.15: The structure of the chiral smectic C phase [14]. 

The chiral smectic C phase is employed in the ferroelectric display device [1]. 
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2.1.2.2. Discotic liquid crystals 

A typical discotic mesogen generally includes a central aromatic core functionalized 

with three to eight flexible chains (Figure 2.16) [16]. The existence of mesophases 

generated by disc-shaped molecules was theoretically predicted in 1970 and 

mesomorphism in discotic materials was first reported in 1977 by Chandrasekhar [1]. 

 

 Figure 2.16 : A discotic mesogen and its effective molecular shapes as disks [12]. 

The two main types of mesophases DLCs form are nematic and columnar. 

Nematic Discotic Phase: The most simple discotic phase is the discotic nematic;  it 

is the least ordered and the least viscous, see Figure2.17, There is no long-range 

positional correlation [14]. 

Columnar Discotic Phase: In the columnar phase the discs pile into columns 

(Figure 2.17) and are generally considered most useful for organic electronics 

applications. There is six different columnar DLC phases: hexagonal columnar, 

rectangular columnar, columnar oblique, columnar plastic, helical, and columnar 

lamellar [16]. 

 

Figure 2.17: Schematic representations of  (a) the discotic nematic and (b) the 
columnar  phase. 
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There is several applications of  discotic liquid crystals as a result of their orientation 

in the columnar mesophase, making them ideal candidates for molecular wires in 

various optical and electronic devices such as photocopiers, laser printers, 

photovoltaic cells, light-emitting diodes, field-effect transistors, and holographic data 

storage [12]. 

2.2.  Liquid Crystal Polymers 

2.2.1. General definition and classification of liquid crystal polymers 

Polymers are long-chain molecules (or macromolecules) formed by the repetition of 

certain basic units or segments known as monomers. In liquid crystal polymers the 

low molar mass mesogens can be used as monomers. There are two aspects to the 

synthesis of macromolecule mesogens, the conventional synthesis to generate the 

monomeric unit(s) and then the polymerisation reaction that yields the desired liquid 

crystal polymer (LCP). It is the combination of polymer-specific properties, together 

with the properties specific to the liquid crystalline phase that has led to a multitude 

of new prospectives; this has made possible a wide range of applications of liquid 

crystal polymers with excellent properties.  

On the basis of the location of mesogenic group, that is, depending on whether the 

mesogenic group is inserted within the main chain, or as side group, the LCPs can be 

divided mainly into two kinds: main -chain liquid crystal  polymers (MCLCPs) and 

side-chain liquid crystal polymers (SCLCPs). A third kind can also be generated by 

inserting the mesogenic units both within the main-chain and as side groups; this 

class is known as combined liquid crystal polymers (CLCPs).  

The mesogenic units used in the generation of LCPs can be rod-like, disc-like, 

amphiphilic, etc. In addition to linear polymer structure, polymers with many other 

artitectures, such as, cyclic, hyperbranched, dendrimeric, crosslinked, etc.,  have also 

been synthesized [14]. 

2.2.1.1.  Main chain liquid crystal polymers 

The main chain liquid crystal polymers were found in 1956 that a polypeptide 

formed a mesophase in solution; however, systematic studies on main chain liquid 

crystal polymers did not begin until the 1970s [1]. 
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Figure 2.18: Schematic presentation of liquid crystal polymers [17]. 

Aromatic main chain liquid crystalline polymers consist of a sequence of directly 

connected aromatic moieties, namely, polyarylenes, or a sequence of aromatic 

moieties linked by an even number of atoms or heterocyclic units. Typical linkage 

groups in combination with aromatic moieties are, for example, ester and amid 

groups [18]. 

 

Figure 2.19 : General structure of main chain liquid crystal polymers [17]. 
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Figure 2.20:  Typical aromatic units and linkage groups in main cahin  liquid 
crystalline polymers. 

Main chain liquid crystal polymers can be divided in two groups; ıf the mesogenic 

units are directly linked (Figure 2.18a) then the polymer will be very rigid and 

intractable, ıf the mesogenic groups are connected via a flexible spacer (Figure 

2.18b), the main chain becomes semiflexible [1,19]. 

The synthesis of LC main chain polymers normally follows step-growth reactions, 

such as polycondensation or polyaddition, where the reactants contain two 

monofunctional  groups. The monomers can either be a suitably substituted 

mesogenic compound or a non-mesogenic substance. These monomers form the 

mesogenic segment of the  polymer main chain by a polymerization reaction [19]. 

Kevlar (Figure 2.21) is a well-known polymer material is obtained by condensation 

reaction between terephthalic acid and 1,4-phenylenediamine. It is extremely strong 

and is used in bullet-proof vests and in construction and exhibits a nematic phase and  

when dissolved in sulfuric acid. 
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Many polymers are prepared by transesterification reaction also [1]. 

 

Figure 2.21:  Kevlar 

The main-chain thermotropic liquid crystalline polymers (MCLCPs) have still been 

attracting much attention owing to their scientific interests and numerous industrial 

applications. The aromatic main-chain liquid crystalline polymers usually exhibit 

insoluble properties and high melting temperatures because of their rigid and 

symmetrical conformation [20]. They have been intensively studied because of their 

potential applications as high performance materials. Among them, the wholly 

aromatic thermotropic polyesters have generally received a considerable interest for 

technological applications due to their high use temperatures, excellent chemical 

resistance, relatively high glass transition temperatures, Tg, in addition to excellent 

processing and mechanical properties [21]. 

2.2.1.2.  Side chain liquid crystal polymers 

Side-chain liquid-crystalline polymers (LCPs), which represent a combination of 

liquid crystalline behavior and polymeric properties, have been the subject of 

intensive research during the last decade. Systematic investigation of the synthesis of 

side-chain LCPs began only after Ringsdorf and co-worker proposed that a flexible 

spacer should be inserted between the polymeric backbones and mesogenic side 

groups to decouple the motions of the backbone and side groups in the liquid 

crystalline state (Figure 2.18 c,d). On the basis of the spacer model, a large number 

of side-chain LCPs containing rod-like or disk-like mesogens were synthesized. 

Different smectic, chiral smectic, nematic and cholesteric mesophases are exhibited 
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by these polymers that are based on different mesogenic groups and polymer 

backbones [22]. 

In SCLCPs the flexible polymer backbone has a strong tendency to adopt a random, 

coiled conformation. When mesogenic units are attached to the flexible polymer 

backbone, they will have a strong tendency to adopt an anisotropic arrangement. If 

the mesogenic groups are directly attached to the backbone, then the dynamics of the 

backbone usually dominate the tendency  for the mesogenic groups to orient 

anisotropically; accordingly, mesomorphic behaviour is not usually generated [1]. 

SCLCPs can be synthesized three different methods; chain polymerization  reactions, 

step-growth polymerization reaction and polymer homologous reactions (Figure 

2.22). Monomers containing mesogenic groups are most frequently synthesized as 

methacrylates, acrylates, acrylamides, chloroacrylates and styrene derivatives. 

Therefore, the most convenient method to polymerize mesogenic monomers is by 

radical initiation [23]. In most cases, polymerization is performed in solution and 

initiated with common initiators such as AIBN or benzoylperoxide. 

 

Figure 2.22: General synthesis method of side chain liquid crystal polymers [17]. 
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If there  is a functional groups on the mesogens, SCLCPs can be synthesized by 

condensation reactions [19]. The two organic reactions frequently used to synthesize 

side chain liquid crystalline polymers by polymer homologous reactions are 

nucleophilic displacement and hydrosilation [23]. 

There is some important effect on liquid crystal phase ordering of polymers; effect of 

mesogenic units, spacer length and polymer backbone. 

2.2.2. Factors on  mesomorphic behaviour of  liquid crystal polymers    

2.2.2.1. The effect of the mesogen 

The mesogenic unit will have a great influence on the liquid crystal phases generated 

and the transition temperatures. The additional ordering on polymerization causes 

liquid crystal phases to be more ordered than for the monomeric analogue and 

transition temperatures and clearing points are higher. Generally, mesogenic units are 

formed  by biphenyl units or connecting with two or  more aromatic rings  to each 

other by means of functional groups. The polymers become more crystalline as the  

mesogen length increases. Different terminal chains in SCLCPs have not been 

investigated; terminal cyano-substituted SCLCPs are very common and so are 

alkoxy-substituted analogues. A longer terminal chain results in an enhancement of 

the smectic tendency. Polar terminal units (CN, NO2)  tend to generate smectic 

phases, whereas non-polar terminal units (CH3O, CH3) favour the nematic phase. 

The increased polarisability and increased molecular length in going from two to 

four  phenyl rings enhances the clearing points of polymers [1]. 

2.2.2.2.  The effect of the spacer length 

The actual flexible spscer is usually just a series of methylene (-CH2-) units with the 

only variation being in the unit that joins the spacer to the backbone at one end and to 

the mesogenic unit at the other end. However, different spacers, such as oxyethylene 

and siloxane, are commonly employed. The glass transition temperature decreases 

with increasing spacer length. Where polymers without spacer units exhibit liquid 

crystalline phases, they are of the smectic type and  formation of the liquid crystal 

phase is occured high temperatures. However; a short spacer usually generates a 

nematic phase which gives way to smectic phases as the spacer length increases [1]. 
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2.2.2.3.  The effect of the polymer backbone 

The backbone should not influence the mesomorphic properties of SCLCPs.  

However, decoupling is never perfect and the structural nature of the backbone has a 

considerable influence on mesomorphic properties of  SCLCPs. The most important 

aspect of a polymer backbone when liquid crystallinity is being discussed is the 

flexibility. As flexibility of the polymer backbone increases, the glass transition 

temperature is reduced, leading to the generation of a wider liquid crystal phase 

range. However, the clearing points often fall with increased flexibility, but not too 

significantly and not in all cases. The most  common backbones are employed in the 

synthesis of  SCLCPs are the flexible acrylates and methacrylates. Siloxane 

backbones are also very common in SCLCPs and are even more flexible than 

acrylates [1]. 

Table 2.2: The effect of the polymer backbone structure on mesophase stability [17]. 

 

The application fields of  SCLCPs are; optical data storage, non-linear optics, 

stationary phases for gas chromatography, supercritical-fluid chromatography and 

high-performance liquid chromatography, solid polymer electrolytes, separation 

membranes and display materials [22]. 

Another interesting type of liquid crystalline polymer is combined main-chain/side-

chain liquid- crystalline polymer (MCSCLCP), which is consisted of a main-chain 
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liquid crystalline backbone and side-chain mesogenic groups, and can form versatile 

liquid crystalline phase. The main chain of MCSCLCPs (Figure 2.18 e,f) can be 

either of rigid nature without containing any flexible spacers or of nonrigid character 

containing some flexible spacers. The pendant side-chain mesogenic groups can join 

to the rigid mesogen or flexible spacers of the main chain via flexible spacers [24]. 

2.2.3. Synthesis of  liquid crystal polymers via  non-covalent interactions 

A wide variety of self-organized molecular systems, such as liquid crystal, have 

attracted much attention because it has great potential as highly functional materials. 

Recently, new types of liquid-crystalline materials have been obtained by self-

assembly through specific molecular interactions. The molecular association of two 

or more molecular species by intermolecular interactions results in the formation of 

mesomorphic molecular complexes. Such material design for liquid crystals based on 

noncovalent interaction is related to supramolecular chemistry, an area of great 

current interest [25]. 

Many polymeric liquid-crystalline structures have been produced using covalent 

bond chemistry. More recently, however, molecular recognition processes between 

different molecular species using noncovalent bonded interactions have been 

reported for their versatility in constructing dynamically functional LC molecules. 

These self-assembly strategies including hydrogen bonds ,  ionic interactions ,  and 

charge-transfer complexes   have been used to construct liquid-crystalline polymers 

as “supramolecular” materials. Hydrogen bonding is particularly attractive since 

there are many natural models for it. The formation and dissociation of the hydrogen 

bonds play an important role in many biological processes. The use of hydrogen 

bonds has been demonstrated in building low-molecular weight liquid crystals as 

well as liquid-crystalline polymers of side-chain supramolecular assemblies ,  main-

chain complexes, networks [26], and combined structures. Self-assembly of 

polymers and small molecules as shown in Figure 2.23 [27]. 

Hyrogen-bonded systems are prepared using two suitably designed components that 

are commonly called H-bond donors and H-bond acceptors. Hydrogen bonding is the 

strongest of the non-covalent interaction forces between two molecules. The 

association between the ‘donor’ and ‘acceptor’ effectively induces hydrogen bonds 

that lead to a more stable structural organisation [28]. 
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Figure 2.23 : Schematic illustration of supramolecular polymers:(A) side-chain-type, 
(B) main-chain-type, (C) combined type, and (D) network type. 

SCLCPs are generally prepared by  covalently linking rigid mesogens to polymer 

backbones through flexible spacers. The function of the spacer is to decouple the 

motions of the polymer backbone from the self-ordering tendencies of the mesogens 

[29]. The mesogens in supramolecular side-chain liquid crystalline polymers 

(SCLCP) are attached onto the polymer backbone directly or via a flexible spacer. In 

these systems, liquid crystallinity is induced through hydrogen bonding interactions 

between complementary binding sites on the polymer main-chain and low molar 

mass rigid mesogens. A number of supramolecular SCLCPs have been prepared, 

among which H-bonds between pyridyl and carboxylic acid functional groups are the 

most frequently used.  Various synthetic strategies are used for the  preparation of 

supramolecular hydrogen- bonded SCLP polymers. A mesogenic low molar mass 

compound can be attached to a pendant binding site on the polymer main chain or the 

side chain with the mesogenic unit can be bound to the polymer backbone through an 

H-bond connector.  In both cases, a flexible spacer decouples the motion of the 

polymer main chain from the motion of the anisotropically oriented mesogenic side 
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chain [30]. Self-assembled SCLCPs have the advantage of being able to fine tune the 

liquid crystalline properties. Various molecular parameters, such as the nature of the 

rigid cores, the nature and the length of the terminal groups, and the spacer length, 

can be modified  with relative ease compared with covalently bonded systems [29]. 

The combination of bifunctional hydrogen bonding components is expected to lead 

to the formation of supramolecular main-chain polymers. Liquid crystalline behavior 

can be induced by the association of bifunctional components through the formation 

of triple and single hydrogen bonds [27]. Main-chain hydrogen-bonded liquid 

crystalline polymers are mostly based on bipyridyl and dicarboxylic acid fragments 

[28]. 

2.2.4. Characterization of  liquid crystal materials 

Several analytical techniques are in use at present for the characterization and 

identification of phase structures. In some liquid crystal phases the classification is 

relatively simple and these phases can be identified by employing just one technique. 

Whenever minimal differences exist in the phase structures the precise classification 

often requires the use of several different techniques. 

The structure is characterized by the arrangement and the conformation of the 

molecules and intermolecular interactions. The structural investigation is done 

mainly by X-rays supported by other methods like neutron scattering, nuclear 

magnetic resonance, infrared and Raman spectroscopy. The textures are pictures 

which are observed microscopically usually in polarised light and commonly in thin 

layers between glass plates. They are characterized by defects of the phase structure 

which are generated by the combined action of the phase structure and the 

surrounding glass plates. Depending upon the special experimental conditions for a 

given structure several different textures exist. This method allows a detailed 

classification of the mesophases. The textures are also known to exist in several 

phase types and with blurred pictures. Such textures do not allow the detailed 

classification of the phases. The miscibility properties have been used extensively by 

Halle liquid crystal group to classify the mesophases. In the course of their work they 

developed, as their main tool, the "miscibility rule" which states that the liquid 

crystals are of the same type if they are miscible in all proportions. As the miscibility 

studies can only give the probability [14]. 
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Polarizing microscopy is one of the essential tools for the characterization of newly 

synthesized mesogenic materials, together with differential scanning calorimetry 

(DSC) and x-ray investigations. While DSC is easily and quickly carried out, it 

merely provides information on phase transition temperatures and the order of the 

transitions. X-ray investigations for actual structural evaluation, i. e. determination of 

the phase type, have to be performed on macroscopically well oriented samples, 

which is often time consuming and sometimes hard to realize. Therefore x-ray 

studies are often carried out on unoriented samples, while the results only allow 

limited characterization of the structural features. Polarizing microscopy on the other 

hand can provide a determination of both phase transition temperatures and phase 

type [7]. 
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3. EXPERIMENTAL PART 

3.1 .  Materials and Chemicals 

1-Vinylimidazole (Fluka) and 4-Vinylpyridine (Acros) were distilled under vacuum 

before using. Poly(vinylpyrrolidone)(Acros), 4’-Hydroxybiphenyl-4-carbonitrile 

(Merck,Aldrich), 6-Chloro-1-hexanol (Aldrich), 8-chloro-1-octanol (Aldrich), 11-

bromo-1-undekanol (Acros), 2,2’-Azobis(2-methylpropionitrile) (Acros) were used 

as received. Benzene (J.T.Baker), Diethylether (Merck), Dioxane (Fluka), N,N-

Dimethylformamide (Merck), Dimethylsülfoxid (Merck), Potassium carbonate 

anhydrous (Fluka), NaOH (Merck), Toluene (Riedel-de Haen), Acetone, Ethanol. 

3.2 .  Instruments 

Nuclear Magnetic Resonance  Spectroscopy (NMR) 

1H-NMR analyses were recorded  on a Bruker 250 MHz spectrometer in CDCl3 

Fourier Transform Infrared Spectroscopy ( FT-IR) 

FT-IR spectra were recorded on Thermo Scientific Nicolet 380 Spectrometer 

Polarized Optical Microscopy (POM) 

LC behavior of the polymers was investigated by POM using Leica DM2500P 

equipped with a LTSE350 Liquid Crystal Prosystem TMS 94 Hot Stage (200x) 

Differantial Scanning Calorimeter (DSC) 

Thermal transitions in the polymers was determined by a Thermal Analysis (TA) 

Instrument Q1000 at a heating rate of 50C/min and 100C/min from room tempeature 

to 1500C  under nitrogen atmosphere. 
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3.3 .  Synthesis of Chemical Compounds 

3.3.1. Synthesis of hydrogen bond acceptor polymers 

3.3.1.1 . Synthesis of poly(N-vinylimidazole) 

PVI was synthesized by free radical polymerization of N-vinylimidazole in the 

presence of AIBN as  initiator. Distilled monomer ( 15 g, 160  mmol ) was dissolved 

in 100 ml of  DMF and polymerized at 700C under a nitrogen atmosphere for 8 h 

with 1.3 g ( 5 mmol ) of AIBN. The polymer was precipitated into acetone, filtered 

and dried under vacuum at room temperature ( white powder). The inherent viscosity 

of the polymer was measured in 0.1 M  NaCl as the solvent at 250C [31]. 

3.3.1.2 . Synthesis of poly(vinylpyrrolidone) 

Commercially obtained Poly(vinylpyrrolidone) was used. 

3.3.1.3 . Synthesis of poly(4-vinylpyridine)    

PVP was  synthesized  by free radical polymerization of  4-vinylpyridine in the 

presence of  AIBN as initiator. Distilled monomer ( 8.92g, 38  mmol ) was dissolved 

in 6 ml of Dioxane and polymerized at 800C for 8 h with 0.1g ( 3 mmol ) initiator. 

The polymer was precipitated into diethyl ether, filtered and dried under vacuum at 

room temperature (orange powder). The inherent viscosity of the polymer was 

measured in ethanol as solvent at 250C [32]. 

3.3.2. Synthesis of hydrogen  bond donor groups 

3.3.2.1 . Synthesis of 6-(4-cyanobiphenyl-4’-oxy)hexan-1-ol 

Under nitrogen atmosphere 6-Chloro-1-hexanol ( 20 mmol, 2.25 ml ) was added drop 

wise to a stirring mixture of 4’-Hydroxy-4-biphenylcarbonitrile ( 15.1 mmol, 3g) and 

anhydrous K2CO3 ( 15.5 mmol, 2g ) in 200ml of anhydrous DMSO. The reaction 

mixture was heated at 1100C for 3 h. After this process, the reaction mixture was 

added drop wise to 400 ml of %10 NaOH solution at room temperature and filtered. 

The resultant was dried at 400C in vacuum. It was recrystallized from benzene and 

dried under vacuum ( Yield; %48, white crystals ). 
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3.3.2.2 .  Synthesis of 8-(4-cyanobiphenyl-4’-oxy)octan-1-ol 

Under nitrogen atmosphere 8-Chloro-1-octanol ( 20 mmol, 3.4 ml ) was added drop 

wise to a stirring mixture of 4’-Hydroxy-4-biphenylcarbonitrile ( 15.1 mmol, 3g ) 

and anhydrous K2CO3 ( 15.5 mmol, 2g ) in 200 ml of anhydrous DMSO. The 

reaction mixture was heated at 1100C for 3 h. After this process, the reaction mixture 

was added drop wise to 400 ml of %10 NaOH solution at room temperature and 

filtered. The resultant was dried at 400C in vacuum. It was recrystallized from 

ethanol and dried under vacuum ( Yield; %52, white crystals ). 

3.3.2.3 .  Synthesis of 11-(4-cyanobiphenyl-4’-oxy)undecan-1-ol  

Under nitrogen atmosphere 11-bromo-1-undecanol ( 20 mmol, 2.25 ml ) was added 

drop wise to a stirring mixture of 4’-hydroxy-4-biphenylcarbonitrile ( 15.1 mmol, 3g) 

and anhydrous K2CO3 ( 15.5 mmol, 2g ) in 200 ml of anhydrous DMSO. The 

reaction mixture was heated at 1100C for 3 h. After this process, the reaction mixture 

was added drop wise to 400 ml of %10 NaOH solution at room temperature and 

filtered. The resultant was dried at 400C in vacuum. It was recrystallized from 

ethanol and dried under vacuum ( Yield;%52, white crystals ). 

3.4. Preparation of  Hydrogen-Bonded Side Chain Liquid Crystalline Polymers 

3.4.1. General procedure 

In a typical procedure to prepare H-bonded side chain liquid crystalline polymers, the 

slow evaporation technique is used. Solution of equimolar amount of H-bond donor 

(LC6, LC8 or LC11) in DMF  was added to solution of H-bond acceptor polymer 

(PVI, PVPy or PVP) in DMF. This mixture was stirred about 12 h at room 

temperature. After evaporation of DMF, precipitated polymer was  dried under 

vacuum. 
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4. RESULTS and DISCUSSION 

Side chain liquid crystalline polymers were prepared by using intermolecular 

hydrogen bonding concept. This study involves the preparation of three different 

polymers as  hydrogen bond acceptor and three different 4'-(hydroxyalkoxy)-4-

cyanobiphenyl derivatives as hydrogen bond donor. First, poly(vinyl 

imidazole)(PVI), poly(4-vinyl pyrrolidone) (PVPy) and poly(4-vinyl pyridine) (PVP) 

hydrogen bond acceptors were prepared by free radical polymerization of related 

monomers.. The hydrogen bond donors were synthesized by the reaction of hydroxy 

halides having different number of  methylene unit with hydroxy cyano biphenyl 

mesogens. The hydrogen bond donors were then attached to the proton acceptor 

polymers through H-bond interactions between the hydroxyl group of hydrogen bond 

donors and imidazole, pyrrolidone and pyridine groups of the hydrogen bond 

acceptors to yield the desired side chain liquid crystalline polymers. The details will 

be given below. 

4.1 .  Synthesis of Hydrogen Bond Donors  

6-(4-Cyanobiphenyl-4'-oxy) hexane-1-ol (LC6), 8-(4-Cyanobiphenyl-4'-oxy) octan-

1-ol (LC8) and 11-(4-Cyanobiphenyl-4'-oxy) undecan-1-ol (LC11) were synthesized 

according to the synthetic route illustrated in figure 4.1. 

The structure of the LC6, LC8 and LC11 were characterized by FT-IR and 1H-NMR 

spectroscopy.  Figure 4.2 shows the FT-IR spectrum of  LC6, LC8 and LC11. 

Characteristic absorbance bands for all the compounds were identified such as the O-

H streching at  3500-3224 cm-1, C-O-C streching at  1248-1050 cm-1 CN streching at 

2231-2200 cm-1  and H-C-H streching at 2900 cm-1 .  
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Figure 4.1: Synthesis and chemical structures of hydrogen bond donors 

.  

 

Figure 4.2 : FT-IR spectra of LC6 (a), LC8(b) and LC11(c) 
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1H-NMR spectra of the LC6, LC8 and LC11 exhibit the signals in the range of 1.24-

1.82 ppm corresponding to CH2 protons, 3.5- 4.03 ppm corresponding to CH2-O 

protons and 6.9- 7.7 ppm corresponding to aromatic protons. The 1H-NMR spectrum 

of the LC6  is given in the Figure 4.3. 

 
Figure 4.3 : 1H-NMR spectra of the LC6 

4.2. Synthesis of Hydrogen Bond Acceptors 

PVI and PVP  were prepared by  free radical polymerization of related polymers as 

illustrated in Figure 4.4.  

 

N

N

CHCH2

AIBN

DMF, 700C

N

N

CHCH2
n

                   N

CHCH2

AIBN

Dioxane, 800C

N

CHCH2
n

 
 
 

Figure 4.4 :  Schematic presentation of PVI(a)  and PVP(b) synthesis. 

Polymerization conditions and the results are summarized in Table 4.1. 

(a) (b) 
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Table 4.1 : Conditions and the results of the polymerization reactions. 

Code Monomer 
(M) 

Initiator 
(M) 

Solvent Temperature %Conv  ηinh
a     

PVI 1,6 AIBN 
(0,05) 

DMF 700C 90  23,95     

PVP 6,3 AIBN 
(0,05) 

Dioxane 800C 88  21,54     

            

a: ηinh is  the inherent viscosity value of polymers. 

4.3.  Preparation of Hydrogen-Bonded Side-Chain Liquid Crystalline Polymers 

4.3.1. Poly(vinyl imidazole)-based liquid crystalline polymers (HPVI-LC) 

PVI and LC6, LC8 or LC11 were employed as a hydrogen bond acceptor and a 

hydrogen bond donors, respectively to yield hydrogen bonded liquid crystalline 

polymers.  

The structure of the side chain liquid crystalline polymers formed by intermolecular 

H-bonding between nitrogen of PVI and hydroxyl group of the hydrogen donors is 

shown below: 

 

N

N

CHCH2
n

H O CH2 O CN
m

PVI-LC6 (m=6)
PVI-LC8 (m=8)
PVI-LC11 (m=11)  

Figure 4.5 : Chemical structures of  HPVI-LC 

IR spectroscopy is used to investigate the hydrogen bonds in polymers. Figure 4.6(c) 

shows the FT-IR spectrum of the HPVI-LC6. The broad spectral shape in the O–H 

stretching region at 3234 cm-1 should be an evidence for hydrogen-bond through the 

hydroxyl group on the LC6.  Similar results were found for the other H-bonded 

polymers. 
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Figure 4. 6 : FT-IR spectra of  PVI (a), LC6 (b) and HPVI-LC6 (c) 

4.3.2. Poly(vinyl pyrrolidone) - based liquid crystalline polymers (HPVPy-LC) 

Commercially obtained PVPy and LC6, LC8 or LC11 were employed as a hydrogen 

bond acceptor and a hydrogen bond donors, respectively to yield hydrogen bonded 

liquid crystalline polymers.  

The structure of the side chain liquid crystalline polymers formed by intermolecular 

H-bonding between carboxyl group of PVPy and hydroxyl group of the hydrogen 

donors is shown below: 

N O

CHCH2
n

H O CH2 O CN
m

PVPy-LC6 (m=6)
PVPy-LC8 (m=8)
PVPy-LC11 (m=11)  

Figure 4.7 : Chemical structures of HPVPy-LC 

The formation of the hydrogen bond in polymers was investigated by FT-IR 

spectroscopy. Figure 4.8 (c) shows the FT-IR spectrum of the HPVPy-LC6. The 

broad spectral shape in the O–H stretching region at 3221 cm-1 should be an evidence 
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for hydrogen-bonds through the hydroxyl group on the LC6. Similar results were 

found for the other H-bonded polymers. 

 

Figure 4.8 : FT-IR spectra of PVPy (a), LC6 (b) and HPVPy-LC6 (c) 

4.3.3. Poly(vinyl pyridine) - based liquid crystalline polymers (HPVP-LC) 

PVP and LC6, LC8 or LC11 were employed as a hydrogen bond acceptor and a 

hydrogen bond donors, respectively to yield hydrogen bonded liquid crystalline 

polymers.  

The structure of the side chain liquid crystalline polymers formed by intermolecular 

H-bonding between nitrogen of PVP and hydroxyl group of the hydrogen donors is 

shown below: 

N

CHCH2 n

H O CH2 O CN
m

PVP-LC6 (m=6)
PVP-LC8 (m=8)
PVP-LC11 (m=11)  

Figure 4.9 : Chemical structures of HPVP-LC 
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The formation of intermolecular hydrogen bond was shown in figure 4.10 (c). FT-IR 

spectrum of the HPVP-LC6 shows the broad spectral shape in the O–H stretching 

region at 3234 cm-1 should be an evidence for hydrogen-bonds through the hydroxyl 

group on the LC6.  Similar results were found for the other H-bonded polymers. 

 

Figure 4. 10 : FT-IR spectra of  PVP (a), LC6 (b) and HPVP-LC6 (c) 

4.4.  Investigation of Thermal and Mesomorphic Properties  

4.4.1. Thermal and mesomorphic properties of H-bond donors 

To confirm the liquid crystalline nature and to identify the phases of 4'-(n-

hydroxyalkoxy)-4-cyanobiphenyl derivatives LC6, LC8, LC11, differantial scanning 

calorimetry (DSC) and polarising optical microscopy (POM) were employed. The 

DSC transition temperatures, associated enthalpy change (∆H) and mesomorphic 

properties  were summarized in Table 4.2.  

Table 4. 2 : Thermal properties of LC6, LC8 and LC11 

 Phase Transitions °C(Corresponding Enthalpy Change Jg-1)a 

LC6 Cr  97.7 (50.78)   N 111.4 (3.199)  I 
LC8 Cr 76.2 (21.32) Cr 90.7 N 112.6 (0.9984) I 
LC11 Cr  92.2 (115.3) I 

a Determined by DSC 
b Cr= crystalline, N= nematic, I= clearing temperature 

Polarized optical microscopy studies show that LC6 and LC8 exhibit monotropic 

nematic schlieren textures on cooling from isotropic phase and enantiotropic 
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schlieren nematic textures, respectively. LC11 do not exhibit liquid crystalline phase. 

DSC curves and mesophases of LC6, LC8 and LC11 are shown in Figure 4.11, 4.12 

and 4.13, respectively.  

 

Figure 4.11 : DSC curve (second heating) and mesophase of LC6 

 

Figure 4.12 : DSC curve (second heating) and mesophase of LC8 
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Figure 4.13 : DSC curve (second heating) and crystal structure of  LC11 

As can be seen from the Figure 4.12 LC8 exhibits polymorphic crystalline forms. 

Polymorphic crystalline forms result from a subtle balance of intermolecular 

interactions. For most alkoxycyanobiphenyls it was observed that slow or delayed 

cooling gave rise to a lower melting crystalline polymorphic form, which then slowly 

converted into the higher melting stable crystalline structure [33]. For LC8 

polymorphism has been reported up to now only during slow evaporation of solvents 

from acetone–water or diethyl ether–methanol solutions [34]. In this case four 

different crystalline phases were found [35]: square plate, parallelepiped and needle 

crystal forms which are metastable, and the most stable crystalline phase that can be 

found in commercial powder specimens. 

4.4.2. Thermal and mesomorphic properties of H-bonded side chain liquid 

crystalline polymers  

The phase behaviour of all the hydrogen bonded liquid crystalline polymers was 

studied using a combination of POM and DSC.  DSC thermograms were obtained in 

second heating cycles. The samples were heated with a scan rate of 50C/min and 

10°C/min in an N2 atmosphere. POM studies also confirmed these DSC results along 
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with the results of phase transitions. The polymers exhibited enantiotropic 

mesomorphic behaviour. 

4.4.2.1 . Poly(vinyl imidazole) - based liquid crystalline polymers (HPVI-LC) 

Figure 4.14, 4.15 and 4.16 shows the DSC curves  for the HPVI-LC6, HPVI-LC8, 

HPVI-LC11 respectively. The DSC curves of the polymers exhibit endothermic 

transitions centered at between 90 - 110 C° due to the nematic-isotropic transition of 

the polymers. Glass transitions of the polymers can  not detected. The DSC results 

are summarised in Table 4.3. 

Table 4.3 : Thermal properties of poly(vinyl imidazole) - based liquid crystalline   
polymers 

Code Phase Transitions °C(Corresponding Enthalpy Change Jg-1)a 

HPVI-LC6 G nd          N  108.2    ( 1.681 )   I 
HPVI-LC8 G nd          N  102.33  ( 2.781)    I 
HPVI-LC11 G nd          N   91.38   ( 103.83 ) I 
 

a  The transition temperatures  determined by DSC.   

 b Cr= crystalline, N= nematic, I= clearing temperature 

 

Figure 4 .14 : DSC curve ( second heating) and mesophase of HPVI-LC6 
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Figure 4 .15 : DSC curve (second heating) and mesophase of HPVI-LC8 

 

Figure 4 .16 : DSC curve (second heating) and mesophase of HPVI-LC11 
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It was observed with a polarizing microscope that all the HPVI-LC polymers show 

an enatiotropic nematic phases. An isotropic-nematic phase separation 

was observed in the polymers.  

4.4.2.2 . Poly(vinyl pyrrolidone) - based liquid crystalline polymers (HPVPy-LC) 

Differential scanning calorimetry (DSC) of the HPVPy-LC6 (Fig 4.17) and HPVPy-

LC8(Fig 4.18) show endothermic  peak corresponding clearing temperature at 94.48 

°C and 84.540C, respectively. DSC curve of the HPVPy-LC11 (Fig.4.19) exhibits  

endothermic peaks due to the polymorphic crystalline forms of LC11 mesogenic 

units. The DSC results are summarised in Table 4.4. 

Table 4.4 : Thermal properties of poly(4-vinyl pyrrolidone) - based liquid crystalline 
polymers  

Code Phase Transitions °C(Corresponding Enthalpy Change Jg-1)a 

HPVPy-LC6 G   nd    N        94.48 (46.05)    I 
HPVPy-LC8 G   nd    N  nd  84.54 (37.26)    I 
HPVPy-LC11 G   nd    N  nd  97.20 (3.071)    I 
 

a  The transition temperatures  determined by DSC.  
b Cr= crystalline, N= nematic, I= clearing temperature 

 

 

Figure 4 .17 : DSC curve (second heating) and mesophase of  HPVPy-LC6 
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Figure 4 .18 : DSC curve (second heating) and POM images of HPVPy-LC8 

 

 

Figure 4 .19 : DSC curve (second heating) and POM images of HPVPy-LC11 
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The polymers was examined by polarizing optical microscopy. Upon cooling from 

the isotropic liquid, nematic droplets were observed for HPVPy-LC6. An isotropic-

nematic phase separation was observed in the HPVPy-LC6. Liquid crystalline phase 

transition was not observed for  HPVPy-LC8 and HPVPy-LC11.   

4.4.2.3 . Poly(4-vinyl pyridine) - based liquid crystalline polymers (HPVP-LC) 

The DSC heating traces of HPVP-LC6, HPVP-LC8 and HPVP-LC11 are reported in 

4.20, 4.21 and 4.22 respectively. As can be seen from the Fig. 4.20, DSC curve of 

HPVP-LC6 exhibit an endothermic transition at 66.1 °C due to the nematic-isotropic 

transition. The glass transition appears as a step at -6.1 °C. 

DSC curve of the HPVP-LC8 (Fig. 4.21) exhibits a glass transition at 23,2 °C and an 

endothermic peak at 86.7 °C corresponding to nematic-isotropic transition. 

Figure 4.22 show the DSC curve of HPVP-LC11. The  second heating scan of 

HPVP-LC11 shows an endothermic peak at 88.9 °C corresponding nematic-isotropic 

transition. Glass transition can not be detected. 

 

Figure 4 .20 : DSC curve (second heating) and mesophase of  HPVP-LC6 
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Figure 4 .21 : DSC curve ( second heating) and mesophase of  HPVP-LC8 

 

 

Figure 4 .22 : DSC curve (second heating) and mesophase of HPVP-LC11 
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Table 4. 5 : Thermal properties of poly(4-vinyl pyridine)-based liquid crystalline 
polymers  

Code Phase Transitions °C(Corresponding Enthalpy Change Jg-1)a 

HPVP-LC6 G   -6.1    N   66.1 (30.26)  I 
HPVP-LC8 G   23.2   N   86.7  (25.45)  I 
HPVP-LC11 G    nd     N   88.9  (78.21)  I 
a  The transition temperatures  determined by DSC.  
b Cr= crystalline, N= nematic, I= clearing temperature  

Comparing the glass transition temperature of the poly(4-vinylpyridine), which 

exhibits a glass transition at 145°C [36], with the those of H-bonded side chain liquid 

crystallline polymers, glass transition temperature of the poly(4-vinylpyridine) 

decrease. This could be attributed to the plasticization of the polymer backbone by 

the flexible side groups. 

The polymers was examined by polarizing optical microscopy. All the HPVP-LC 

polymers show an enatiotropic  nematic phases. An isotropic-nematic phase 

separation was observed in the polymers.     
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5. CONCLUSION 

The formation of H-bonding between the imidazole, pyrrolidon and pyridin groups 

of the  poly(vinyl imidazole), poly(vinyl pyrrolidon) and poly(4-vinyl pyridine) 

respectively with  hydroxyl groups in hydroxyalkoxycyanobiphenyl derivatives 

through hydrogen-bonding has  been confirmed using FTIR, DSC and POM studies. 

The hydroxyalkoxycyanobiphenyl derivatives were attached to the polymer 

backbones through hydrogen-bonding yielding H-bonded liquid crystalline polymers.    

The effect of spacer length on liquid crystalline properties is clearly observed in the 

PVI based H-bonded liquid crystalline polymers. The clearing temperature decreased 

and the temperature range of the LC  phase increased with increasing spacer length. 

In the PVPy based H-bonded liquid crystalline polymers, only HPVPy-LC6 has 

liquid crystalline properties and shows nematic mesophase, Liquid crystalline phase 

transition was not observed for  HPVPy-LC8 and HPVPy-LC11.   

All of the PVP based H-bonded liquid crystal polymers have liquid crystalline 

properties and show nematic mesophases. The clearing temperature increased with 

increasing spacer length. 
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