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ÖZET 
 
 

Hesapsal Araçlarla Kilitli Nükleik Asitin (LNA) Yapısal Ve Fonksiyonel 
Özelliklerinin Araştırılması 

 
 
 

Kilitli nükleik asit (LNA) bir veya daha fazla LNA nükleotid monomeri içeren 
sentetik RNA türevidir. Şeker-fosfat ana hattında riboz kısmı yapısal olarak 2’-
oksijen ve 4’-karbon atomlarından metilen köprüsü ile sınırlandırılmıştır. Bu bağlantı 
şeker halkasını DNA ve RNA sekanslarına komplementer hibrid oluşumuna müsade 
eden 3’-endo (N-tip) konformasyonuna sabitler. Bu sayede LNA bisiklik furanoz 
birimine sahip RNA taklidi konformasyona kilitlenmiştir. Bu çalışmada kilitli 
nükleik asitin beş bazı (adenin, timin, urasil, guanin ve sitozin) gaz fazındaki farklı 
konformasyonları araştırılmıştır. Bu çalışmanın amacı her bir LNA bazının gaz 
fazındaki konformasyonal evreninden yola çıkarak literatürde deneysel olarak 
kanıtlanmış tanı ve tedavi yöntemlerinde LNA’ya avantaj getiren nedenleri saptamak 
ve ileriki çalışmalar için öngörülerde bulunmaktır. Bu yapıların yapısal ve elektronik 
karakterlerinin hesaplamaları ayrıntılı olarak öncelikle Spartan programı aracılığıyla 
moleküler mekanik düzeyde ve daha sonra Gaussian 03 sürüm C.02 programı 
aracılığıyla B3LYP/6-31G** ve HF/6-31G** düzeylerinde incelenmiştir. Çalışmada 
başlangıç konformasyonu Spartan programında Moleküler Mekanik opsiyonunda 
seçildi. Konformasyonel araştırma sistematik metotla değiştirildi. Her dönebilen bağ 
360° içinde 6 kere döndürüldü. Farklı konformasyonlar seçildi ve mümkün olan tüm 
yapılar çıkan sonuçlardan elde edildi. Bütün konformasyonlar yoğunluk fonksiyon 
teorisi düzeyinde B3LYP/6-31G** kullanılarak optimize edildi. Optimize olan 
yapıların tüm enerjileri, dipol momentleri, frekansları ve geometrileri karşılaştırıldı.  
Aynı ya da benzer olmayanlar konformasyon listesine eklendi.  Optimize olan tüm 
konformasyonlar için aynı prosedür Hartree-Fock ile HF/6-31G** düzeyinde tekrar 
yapıldı.  
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SUMMARY 
 
 

Investigation of Structural and Functional Properties of LNA 
(Locked Nucleic Acid) by Computational Tools 

 
 

 
Locked nucleic acid (LNA) is a synthetic RNA derivative containing one or more 
LNA nucleotide monomers. The ribose moiety in sugar-phosphate backbone is 
structurally constrained by a methylene bridge between the 2’-oxygen and the 4’-
carbon atoms.  The link ‘locks’ the sugar ring in the fixed 3’-endo (N-type) 
conformation preferable for the formation of hybrids with complementary DNA or 
RNA sequences. Five bases with locked nucleic acid (adenine, thymine, uracil, 
guanine, and cytosine) have been investigated for their different conformations. The 
aim of this study is to start with investigating the conformational space of each 
LNA’s completely in the gas phase to determine the advantages of LNA in the 
diagnostic and therapeutic applications proven in the literature and foresight further 
studies. These structures have been investigated in detail structural and electronic 
characteristics firstly at Molecular Mechanics as implemented in Spartan and 
secondly at B3LYP/6-31G** and HF/6-31G** levels as implemented in Gaussian 03 
Version C.02. In the study, an initial structure is chosen by using the Molecular 
Mechanics (MMFF conformer distribution) option in Spartan program with 
systematic method. Every flexible bond is rotated 6 times through 360°. Different 
conformers and all possible structures are found from the resultant output. All the 
conformers are optimized at the Density Functional Theory (DFT) by using 
B3LYP/6-31G**. Total energies, dipole moments, frequencies and geometries of the 
optimized structures are compared. If they are not same or similar, they are added to 
conformer list. The same procedure is done to optimize all the conformers by using 
HF/6-31G**. 
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1. INTRODUCTION 

 

Watson–Crick proposed nucleic acid recognition between two complementary 

nucleic acid strands by hybridization in 1953; this was a discovery that has proven to 

be the key to molecular biology and modern biotechnology. Various explorations and 

examinations of nucleic acid hybridization have been done, and a multitude of 

nucleic acid analogues have been synthesized. This research effort has been 

prompted by the promise of therapeutic applications, possible uses within 

biotechnology and sheer scientific curiosity. Modifications to native nucleic acids 

can be introduced in the nucleobase, the sugar ring or the phosphodiester backbone 

[1-4]. In an effort to increase binding affinity towards RNA by conformational 

restriction, many sugar modified nucleic acids have been prepared [2]. 
 

 

Especially, there is a great interest in synthesized oligonucleotides with a modified 

furanose sugar moiety. Recent researches have focused on restricting the 

conformation of the furanose ring into either an Southern- or Northern- type 

conformation (S-type, N-type) [3, 4]. Double-stranded RNA and DNA are generally 

favorable to forming A- and B-type helical structures, respectively. In each structure, 

the furanose moieties in RNA exist in an N-type and those in DNA generally exist in 

an S-type. When conformation is locked in N-type, it showed strong hybridization 

ability towards RNA complements, while conformation having a restricted S-type 

conformation, a linkage exhibited favorable features as an antisense/antigene 

molecule [4]. 
 

 

In 1998, laboratories in Japan and Denmark first described the synthesis and 

properties of a novel series of nucleotideanalogues called Locked Nucleic Acids 

(LNA). LNA is a synthetic RNA derivative containing one or more LNA nucleotide 

monomers in which the ribose moiety in sugar-phosphate backbone is structurally 

constrained by a methylene bridge between the 2’-oxygen and the 4’-carbon atoms 

(Figure 1.1). Initial research focussed on the ß–D-LNA form [5].
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Figure 1.1 :  Chemical structures of DNA, RNA and LNA nucleotide. 
 

 

 
 

Figure 1.2 : The structures of nucleotide monomers of DNA, LNA (TL : 
Base=thymin-1-yl) and α-L-LNA (αLTL : Base = thymin-1-yl). The conformational 
equilibrium between N-type and S-type conformers (the C3’-endo/3E north(N)-type 
and C3’-exo/3E south(S)-type) of an unmodified DNA monomer. Locked N-type 
(C3’-endo/3E) and S-type (C3’-exo/3E) furanose conformations of an LNA and an α-
L-LNA monomer, respectively [21]. 
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The link ‘locks’ the sugar ring in the fixed 3’-endo (N-type) conformation, which is 

preferable for the formation of hybrids with complementary DNA or RNA sequences 

[6] (Figure 1.2). Therefore, LNA has a bicyclic furanose unit locked in an RNA-

mimicking conformation. This feature gives the LNA probes very high binding 

affinity but does not compromise their sequence specificity [7-9].  
 

 

For DNA diagnostics it is important that LNA is stable against cleavage by 

nucleases, which might contaminate biogenic DNA analytes. Several studies have 

demonstrated that LNA-modified oligonucleotides exhibit unprecedented thermal 

stabilities when hybridized with their RNA target molecules [10-12]. Thus, an 

increase in melting temperature (Tm value) of +2 to +10°C per LNA monomer 

against complementary RNA compared to unmodified duplexes has been reported 

[11]. LNA analogues and derivatives have been designed and characterized in the 

studies. The main LNA analogues are 2'-amino-LNA [13, 14], 2'-thio-LNA [13,16, 

75], phosphorothioate-LNA [16], xylo-LNA [49, 50], L-LNA [50] and the 

diastereoisomeric α-L-LNA [21, 26, 35, 39, 41, 53, 75].  α-L-LNA is the most 

studied LNA stereoisomer which mimics DNA in contrast to LNA mimics RNA. It is 

also locked in a C-3'-endo conformation but it induces B-type duplex conformations 

wheras LNA induces A-type. α-L-LNA shows positive results, it is widely used in 

antisense studies. Higher affinity LNA hybridization has been tried towards DNA, 

RNA, LNA and α–L-LNA complementary sequences [13-28].   
 

 

The pre-organized conformation of the LNA nucleoside was predicted to be an N-

type sugar puckering (Figure 1.2), characteristic for A-type double helices, such as 

RNA-RNA duplexes. This assumption has been confirmed by NMR solution studies 

and X-ray crystallographic analysis [12, 29-46]. The LNA oligonucleotide 

conformational structure, examining both sugar puckering and oligonucleotide 

backbone, has been determined by two-dimensional NMR analysis. The preliminary 

LNA nucleoside spectra demonstrated the fixed N-type conformation of LNA [7, 8]. 

Subsequent NMR studies have analyzed the structure of LNA oligonucleotides, 

either as single stranded oligonucleotides or hybridized to complementary DNA and 

RNA [12, 31, 33, 35, 40]. The spectra confirmed the locked N-type conformation of 

the LNA sugar pucker, but also revealed that LNA monomers are able to twist the 

neighboring, unmodified nucleotides from an S-type towards an N-type 
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conformation in DNA/LNA mixmer oligos and LNA-containing duplexes. The fixed 

N-type (3'-endo) conformation of the LNA nucleoside, together with enhanced 

stacking of the nucleobases results in higher thermal stability of LNA-containing 

duplexes [38]. 
 

 

By changing the conformation of the helix and by increasing the stability of the 

duplex, the integration of LNA bases into oligo sequence opens new perspectives to 

DNA affinity based studies. Affinity determines the ability of the oligo to effectively 

compete with other molecules for binding to its target messenger RNA (mRNA) and 

dictates the half-life of the resulting complex. An increase in affinity, therefore, 

correlates positively with potency and broadens the number of sites in the target that 

the oligo can address. For instance, LNA may be used to improve techniques 

requiring high affinity probes as specific as possible like single nucleotide 

polymorphism (SNP) detection, expression profiling, and in situ hybridization [47-

72].  
 

 

The integration of LNA bases into probes changes the conformation of the duplex 

when the annealing with DNA bases occurs [38]. The integration of LNA moieties 

on every third position changes the structure of the double helix from the B to the A 

type. This conformation allows a much better stacking and then a higher stability. 

Therefore B-helix DNA has poor stacking and low stability on the other hand A-

helix DNA with LNA has good stacking and high stability as seen in Figure 1.3. 
 

 

By increasing the stability of the duplex, the integration of LNA monomers into the 

oligonucleotide sequence allows to increase consequently the Tm of the duplex. 

This characteristic allows reducing the size of the probes and, by the way, to increase 

the specificity of the probes. 

 

Every corporation of LNA increases the Tm of the duplex. The following table (Table 

1.1) shows the average Tm increase for DNA or RNA duplex with oligos containing 

LNA, RNA or PNA moieties [11]. 
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        B-helix DNA              A-helix DNA with LNA bases (red-colored) 
 

Figure 1.3 : B-helix DNA and A-helix DNA containing LNA bases 

 

Table 1.1 : A direct advantage of Tm increases of LNA versus RNA and PNA 
 

 LNA RNA PNA 

Tm  increase / monomer against DNA (°C) 2 - 6 -0.5 - 0.5 0.5 – 2 

Tm  increase / monomer against RNA (°C) 3 - 8 1 - 1.5 0.5 – 2 

 

 

1.1. Diagnostic Applications of LNA 

 

Application areas of LNA are wide in molecular biology for analytic and diagnostic 

purposes. LNA may be used to enhance Real-Time polymerase chain reaction (PCR) 

probes [60, 66, 67]; in situ hybridization probes [73]; primers for single, multiplex 

and allele specific PCR [48, 65], capture probes for SNP genotyping [52, 58, 59, 63, 

64, 66], for expression analysis [56, 85, 87] and to monitor exon skipping. LNA 

should be used in any hybridization assay, which requires high specificity and/or 

reproducibility. The LNA modification suits perfectly to SNP detection. First, the 

reduction of the size of the probe increases the impact of one mismatch in the 

stability of the duplex probe/target. Also, by designing probes with an LNA moiety 

in front of the variable position it becomes possible to discriminate very efficiently 

the allelic variations [58]. The mismatch would avoid the A helix structure 

stabilization and then decrease the Tm considerably. This modification increases the 

specificity of the probe but also its power of discrimination. 
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There are a lot of advantages of LNA use in vitro or in vivo experiments. First of all 

the affinity of LNA is higher than the other synthetic probes [11]. The thermal 

stability of duplexes is increased by LNA due to its RNA-like structure. LNA duplex 

formation constitutes the most stable Watson-Crick base pairing system [36]. Tm 

modulation of LNA is higher than the others. Depending on their position along the 

sequence, LNA bases allow to reach the desired Tm level without losing specificity. 

Introduction of LNA allows for shorter probes while maintains the same Tm. LNA 

enhances hybridization performance relative to native DNA, RNA or 

phosphorothioate. LNA lowers experimental error rates due to better mismatch 

discrimination. LNA improves signal-to-noise ratio. Also LNA is an enzyme 

compatible probe in the experiments [71]. It shows increased resistance to certain 

exo- and endonucleases thus leading to biostability [70]. DNA-LNA chimeras readily 

activate RNAse H. LNA acts as a substrate for standard molecular biology enzymes: 

T4 PNK, T4 DNA ligase, DNA polymerases.  LNA behaves like DNA, so it is easily 

transferable to DNA-based assays [48, 50, 70]. LNA is highly soluble in water, 

complies with oligonucleotide synthesis and analysis methods (QC, purification, etc) 

and exhibits the same salt dependence as DNA and RNA. 

 

 

1.2. Therapeutic Applications of LNA 

 

1.2.1  Human immunodeficiency virus (HIV) 
  

LNA antisense oligonucleotides can enhance inhibition of HIV-1 genome 

dimerization and inhibit virus replication [74, 75, and 77]. Antisense design and 

efficacy of LNA and DNA oligonucleotide (ON) mixmers have been evaluated 

targeting the conserved HIV-1 dimerization initiation site (DIS) in these studies. 

LNA is a high affinity nucleotide analog, nuclease resistant and elicits minimal 

toxicity. They show that inclusion of LNA bases in antisense ONs augments the 

interference of HIV-1 genome dimerization. The concomitant RNase H activates by 

six consecutive DNA bases in an LNA/DNA mixmer. ON uptake via receptor-

mediated transfection of a human T-cell line in which the mixmers subsequently 

inhibit replication of a clinical HIV-1 isolate. Thus, the technique of LNA/DNA 
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mixmer antisense ONs targeting the conserved HIV-1 DIS region may provide a 

strategy to prevent HIV-1 assembly in the clinic shown in Figure 1.4. 

 
The HIV genome is a homo-dimer of two sense RNA single strands. The DIS is a 

stem loop structure with six self-complementary nucleotides at the top. The loop is 

located between the primer binding site and the splice donor site at the end of the 

long terminal repeat (LTR) and is involved in the dimerization of the HIV-1 genome, 

packaging and proviral synthesis the aim is at increasing the potency of the DIS-

targeting ONs by exchanging DNA nucleotides for high affinity, nuclease resistance 

LNA in the DNA sequence creating LNA/DNA mixmers. 

 

 

    

 

Figure 1.4 : A) Schematic of HIV-1 dimerization and appearance of dimer and 

monomer on a gel. B) HIV-1 subtype A  dimerization initiation site (DIS). The six 

self-complementary bases are marked in bold. C) Schematic of RNase H activation 

[77]. 
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1.2.2 Chronic lymphocytic leukaemia (CLL) 
 

Santaris Pharma has a number of innovative new cancer drugs in development each 

of which targets a molecular mechanism known to be important in the development 

and progression of certain cancers.  

 

In clinical development of the cancer drugs, Phase III failures have with a number of 

undesired features that substantially limit their therapeutic use. These include 

insufficient biostability and low affinity for their target mRNA (both of which 

negatively affect potency) and a range of dose limiting toxicities that narrows their 

therapeutic window [76, 92]. 

 

The current development programs are based on antisense RNA drugs as seen in 

Table 1.2. Antagonist technology, termed Locked Nucleic Acid (LNA). To provide 

high quality manufactured product for these programs, Santaris Pharma has 

developed extensive and cost competitive manufacturing competencies. 

 

Table 1.2 : Current pipeline of new cancer drugs development in Santaris Pharma. 
(Retrieved in 04.24.2007) 
 

 
 

 

Improving the potency and safety of antisense oligos are needed to bring antisense 

therapy into mainstream therapeutics. The term RNA Antagonists signals the strong 

belief that they will transform antisense therapy into a robust drug platform. 
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For antisense applications, increased ON stability towards nuclease degradation is 

important. Other desired properties are high affinity for the target, RNaseH 

activation, and low toxicity along with good solubility and uptake. 

 

In May, 2005, the company´s most advanced drug candidate (SPC2996) entered a 

multi-center Phase I/II clinical study in patients with Chronic Lymphocytic 

Leukaemia (CLL). Further clinical studies will follow with two additional drug 

candidates, SPC3042 and SPC 2968, which are currently undergoing preclinical 

development. 

 

There are a lot of review papers from 1999 to date which states LNA as an antisense 

drug candidate [78-89], optimal oligo design of LNA as a diagnostic tool [90] and 

making LNAzymes by incorporating LNA-type monomers into DNAzymes to 

increase RNA cleavage [91]. 

  

In present study, locked nucleic acid has been chosen for investigation.  Adenine, 

guanine, cytosine, thymine and uracil bases have been chosen because LNA is a 

synthetic molecule that can be composed of either DNA or RNA bases.  There are 

some NMR and X-ray representations of LNA in the literature but there is not any 

conformational data in order to check the reliability and accuracy of the method 

used.  The aim of this study is to investigate the conformational space of each base 

completely in the gas phase. These structures will be investigated in detail in terms of 

their structural and electronic characteristics for possible implications in science. 
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2. THEORY 

 

Modelers study systems ranging from single isolated molecules to proteins 

containing thousands of atoms immersed in a sea of solvent molecules, yet at the 

heart of all these calculations is some procedure for calculating the energy of the 

system. Energies can be calculated using two basic methods known as quantum 

mechanics and molecular mechanics. Quantum mechanics (QM) offers the most 

fundamental approach but is restricted to relatively smaller systems. Molecular 

mechanics (MM) is particularly useful for modeling large molecules and assemblies 

of molecules [92]. Molecular mechanics (empirical energy calculation) have the 

great utility in the study of the structure, dynamics and thermodynamics of proteins 

and other biological macromolecules. For biomolecular systems, computational 

speed is premium, and the use of more complex terms (higher-order expansions, 

cross terms, etc.), as employed for accurate modeling of smaller systems, is not 

practical.  Simplicity of the method makes possible simulations of thousand of atoms 

in a nanosecond range. 

 

One methodological development in recent years has been the density functional 

theory (DFT) which enables accurate calculations to be performed much more 

efficiently than traditional quantum mechanical methods, at least for certain types of 

systems. DFT still uses the Hartree-Fock (HF) self-consistent field approach but does 

not rely on the wavefunction.  Instead, it calculates all the electron interactions in 

terms of the electron densities within the system.  This approach has the potential to 

give the system’s exact energy and is now being used to perform accurate 

calculations on crystalline solids, molecules on surfaces and large transition-metal 

complexes [93]. 

 

In Hartree-Fock theory the multi-electron wavefunction is expressed as a Slater 

determinant which is constructed from a set of N single-electron wavefunctions. DFT 

also considers single-electron functions. However, whereas Hartree-Fock theory does 
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indeed calculate the full N-electron wavefunction, DFT only attempts to calculate the 

full electronic energy and the overall electronic density distribution. The central idea 

underpinning DFT is that there is a relationship between the total electronic energy 

and the overall electronic density. 

 

In Hartree-Fock theory, the energy has the form: 

EHF = V + <hP> + 1/2<PJ(P)> - 1/2<PK(P)>                                     (2.1) 

where the terms have the following meanings: 

V: The nuclear repulsion energy. 

P: The density matrix. 

<hP>: The one-electron (kinetic plus potential) energy 

1/2<PJ(P)>: The classical coulomb repulsion of the electrons.  

-1/2<PK(P)>: The exchange energy resulting from the quantum (fermion) nature of 

electrons. 

 

In density functional theory, the exact exchange (HF) for a single determinant is 

replaced by a more general expression, the exchange-correlation functional, which 

can include terms accounting for both exchange energy and the electron correlation 

which is omitted from Hartree-Fock theory: 

 

EKS = V + <hP> + 1/2<PJ(P)> + EX[P] + EC[P]                         (2.2) 

where EX[P] is the exchange functional, and EC[P] is the correlation functional. 

 

Hartree-Fock theory is really a special case of density functional theory, with EX[P] 

given by the exchange integral -1/2<PK(P)> and EC=0.  The functionals normally 

used in density functional theory are integrals of some function of the density and 

possibly the density gradient: 

 

EX[P] = ∫f(ρα(r),ρβ(r),∇ρα(r),∇ρβ(r))dr                           (2.3)     
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where the methods differ in which function f is used for EX and which (if any) f is 

used for EC.  In addition to pure DFT methods, hybrid methods in which the 

exchange functional is a linear combination of the Hartree-Fock exchange and a 

functional integral of the above form have been developed and are widely used. 

Proposed functionals lead to integrals which cannot be evaluated in closed form and 

are solved by numerical quadrature. 

 

The true test of any theoretical technique is how well its predictions agree with the 

values obtained from the experiment.  The systems, bioscientists are interested in, are 

often so complex that experimental data are usually regarded as ‘definitive’. 

Quantum mechanics really scores for problems that involve the making or breaking 

of bonds and so has been extensively used to investigate the detailed mechanisms of 

reactions -the nature of the intermediate of the transition state that forms when 

molecules react.  Pople who was awarded the Nobel Prize for chemistry in 1998, 

aimed to make his empirical calculations produce answers that aspired to the more 

exact ab initio calculations and his “Gaussian” series of programs rapidly became the 

standard for ab initio calculations [93, 94].  Dewar also aimed at direct agreement 

with the experiment and developed the semi-empirical theories and incorporated 

them into series of packages which are also widely used around the world [92, 93].  

 

For larger molecules or assemblies of the molecules, quantum mechanics is not 

usually feasible; consequently such systems are the realm of the molecular 

mechanics, or force field methods. Molecular mechanics approach considers the 

energy of any arrangement of atoms, for example a particular geometrical shape 

governed by rotation of bonds, the conformation of a molecule which can be broken 

into several distinct parts. 

 

First, there is a contribution from the stretching or compressing of bonds.  Each of 

the bonds in the molecule has an ‘ideal’ value; the equilibrium value of the bond 

length and energy must be expended to force a bond to deviate from its ideal value. 

To reasonable first approximation can be modeled is the variation in the energy with 

the degree of stretching or compression Hooke’s law relationship.  
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The second contribution to the molecular mechanics energy is that due to the ‘angle 

bending’. As with the bond stretching, there is an ‘ideal’ value for each angle, and 

deviations from this ideal value for each angle, and deviations from this ideal value 

require the expenditure of energy.  A Hooke’s law of relationship is again employed, 

with ideal values for atoms having a tetrahedral arrangement of bonds.  

 

Most of the variation in the structure of a molecule comes not from bond-stretching 

or angle-bending, but from rotation about bonds.  It is well known that the energy of 

a molecule varies with its conformation, in other words, the particular 3-D 

configuration arising from bond rotation.  In the example of ethane (C2H6), as the 

carbon- carbon bond rotates, the interactions between the hydrogen atoms change, 

creating the three-fold periodicity in the energy of the molecule (Figure 2.1). To 

enable molecular mechanics to model behavior, a torsional potential is employed 

which enables the locations and relative magnitudes of the potential energy minima 

and maxima to be reproduced. The Potential energy surface (PES) is conceptual plot 

of molecular energy for all possible atomic configurations. 

 

 
 

Figure 2.1 :  Potential energy surface (PES) of ethane (C2H6) [95] 

 

The fourth contribution to the molecular mechanics energy rises from non-bonded 

forces. The non-bonded forces are usually modeled by a combination of electrostatic 

interactions and van der Waals interactions. The electrostatic forces arise from the 

interaction between permanent charges within the molecule due to uneven 

distributions of electron density in the atoms. Although the electron distribution 

around an atom is spherically symmetrical on average, the distribution at one instant 
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is non-uniform, leading to an instantaneous electric dipole. This instantaneous dipole 

can then induce a dipole in a neighboring atom. The two dipoles now attract together. 

As the atoms approach closer they attract more and more until energy minimum is 

reached, whereupon they start to repel each other.  

 

One of the most common applications of the molecular mechanics is the 

conformational analysis. This is the task of exploring all the ways in which the 

various parts of a molecule rotate in relation to each other, called conformational 

space, in order to identify the conformations with the lowest energy. There are 

obviously the conformations the molecule is mostly to have.  There are more than 

one minimum which correspond to more than one stable arrangement in the 

conformational energy surface. Moreover, one of these minima is more stable (lower 

in energy) than the others.  

 

The variation in the energy of a molecule as it changes its conformation can be 

linked to the way in which the height above sea-level on the Earth varies with the 

geographical location (Figure 2.2). The height is a function of just two variables (the 

longitude and latitude), whereas a molecule’s energy can be a function of many 

variables.  In the case of a molecule, the energy, which is equivalent to the altitude, 

varies with the torsion angle values of the rotatable bonds.  There three special types 

of points in both the geographical and the molecular systems. Points of maximum 

altitude correspond to the tops of fells; these may be either local or global. Local 

maximum is the highest peak in its locality but it is lower than the global maximum. 

The third important point of feature is the saddle points; these correspond to 

mountain passes and are the easiest path from one minimum to another.  On the 

molecular energy surface conformations corresponding to energy minima are 

interested in primarily because these are the most stable structures of a molecule.  It 

may also be important to take account of the actual energy value; only those 

conformations that are within a few kilojoules of the global energy minimum are 

likely to be accessible to any significant extent [92]. 

 



 15 

 
 

Figure 2.2 : 3-D PES for 1-chloro-ethane (C2H5Cl) [42]. 

 

There are several different ways to carry out a conformational search. Two of the 

simplest methods are known as the systematic research and the random search. The 

purpose of the methods such as those is to locate conformations of molecules in the 

region of conformational minima. These 3-Dimensional structures then passed to a 

minimization program which actually locates the true position of the nearest 

minimum energy structure. 

 

The possible conformers of LNA bases have been studied by the potential energy 

surface scan using the the Molecular Mechanics (MMFF) option in Spartan Program 

[96] (Figure 2.3).  The rotational analysis has been carried out through C–N, C–C, 

C–O and O-P bonds to locate all the conformers. The main torsional angles (OCNC, 

CCOP1, CCOP2, CCCN, CCCO, COPO, CCOC, OCNC, and NCNC) are varied in 

steps of 30˚ between 0˚ and 360˚ generating different number of initial points in each 

base. After that these structures have been carefully examined and different 

structures have been determined for further optimization.  The geometries were then 

optimized at the B3LYP level of theory and HF theory implementing the 6-31G** 

basis set by using the Gaussian03 series of programs [97].   
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Figure 2.3 : Chemical structures of bases 

 

 

 

 

                                                         ADENINE                 GUANINE  
 
 
 
 
 
 
 
 
 
 
 
 
 
CYTOSINE                    THYMINE                              URACIL 
 
 

Grey     : Carbon 
Red      : Oxygen 
Blue     : Nitrogen 
Purple  : Phosphorus 
White   : Hydrogen 
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3. METHODOLOGY 

 

In this study five bases with locked nucleic acid (adenine, thymine, uracil, guanine, 

and cytosine) have been investigated for their different conformations in the gas 

phase.  These structures have been investigated in detail for structural and electronic 

characteristics firstly with Molecular Mechanics as implemented in Spartan [96] and 

secondly at B3LYP/6-31G** and HF/6-31G** levels as implemented in Gaussian 03 

Version C.02 [97]. The theoretical procedure is given in the below list and the 

representations of two side views of LNA adenine base comparing with the literature 

data is given in the Figure 3.1.  

 

� Choose an initial structure 

� Using the Molecular Mechanics (MMFF conformer distribution) option in 

Spartan program perform an initial conformational search. The net charge is -

4 and multiplicity is 1. Conformation is altered with systematic method. 

Every flexible bond is rotated 6 times through 360°. The torsion increment is 

12 in the bicylic sugar oxygen.         

� Select different conformers and find all possible structures from the resultant 

output. 

� Optimize all the conformers at the Density Functional level (DFT) by using 

B3LYP/6-31G**. 

� Compare total energies, dipole moments and geometries of the optimized 

structures. 

� If they are not same or similar, add to conformer list. 

� Frequency calculations are done for all optimized conformers. When 

frequency is (+) and forces are lower from the threshold value, the exact 

conformer is handled. The others are saddle points.   

� Repeat same DFT procedure to optimize all the conformers at the Hartree 

Fock by using HF/6-31G**. 
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 Figure 3.1 Schematic structure of LNA in the literature and two side views of LNA 
in the study. (Order of numbering is based on the study of Jensen et al.) [38].   
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4. RESULTS AND DISCUSSION 

 

In this study, five bases with locked nucleic acid (adenine, thymine, uracil, guanine, 

and cytosine) have been investigated for their different conformations in the gas 

phase by using Molecular Mechanics as implemented in Spartan and the 

conformational space for each LNA base has been scanned to determine all possible 

conformers in the gas phase. All structures are taken which are determined by a 

Molecular Mechanics (MM) conformational search by using the graphical interface 

program Spartan [96]. All the structures are then fully optimized with Quantum 

Mechanics (QM) at B3LYP/6-31G** and HF/6-31G** levels as implemented in 

Gaussian 03 Version C.02 [97].  Also there are some exceptional structures which 

are reproduced by comparing the bases conformations taken from Gaussian results. 

The nature of all optimized structures is determined by the number of positive and 

negative frequencies in the Hessian matrix. Minima have all positive frequencies, 

whereas transition states are characterized by one and only one negative frequency.  

Two or more negative frequencies indicate a saddle point on the potential energy 

surface. We have shown the negative frequencies of the some structures in Tables 

4.2.1, 4.5.1 and Figures 4.2.3, 4.5.3 to emphasize that although similar structures can 

be obtained with the different methods, their characteristics and nature may be 

different.  

 

The computed energies, dipole moments, relative energies are given in the Tables 

4.1.1, 4.2.1, 4.3.1, 4.4.1 and 4.5.1.  The optimized structures are displayed in Figures 

4.1.1-4.1.3, 4.2.1-4.2.3., 4.3.1-4.3.3, 4.4.1-4.4.3 and 4.5.1-4.5.3. Some selected 

interatomic geometrical parameters are also shown on the structures. The following 

discussion will focus on comparisons of the base structures, their effects on the 

relative stability.  Computed results will be compared to the experimental and 

computational data in the literature where available. 
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4.1. Adenine LNA  

 

Adenine is one of the two purine nucleobases used in forming nucleotides of the 

nucleic acids. It has a variety of roles in biochemistry including cellular respiration, 

in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors 

nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD), 

and protein synthesis, as a chemical component of DNA and RNA. In DNA, adenine 

binds to thymine via two hydrogen bonds to assist in stabilizing the nucleic acid 

structures. In RNA, which is used in the cytoplasm for protein synthesis, adenine 

binds to uracil [95]. 

 
There are seven conformers in the Molecular Mechanics approach taken from 

Spartan program. The overall stability order of conformers has been determined to be 

1> 2 > 3 > 4 > 5 > 6 > 7 as seen in the Figure 4.1.1 and the Table 4.1.1. 3rd 

conformer of the MM approach gives the same result in each QM approaches (2nd 

conformer in DFT and HF) and it is the most stable conformer in DFT and HF. The 

second stable conformer is also the same in each approach (4th in MM, 2nd in DFT, 

2nd in HF). 5th and 7th conformers pairs with 3rd and 4th conformers of DFT. 1st, 2nd 

and 6th pairs with 5th of DFT and 3rd and 4th of HF conformers.  Dipole moments also 

give the same results because it presents the orientation of lone pairs, thus the 

electronegative O and N atoms.  The alignment in the same direction causes a large 

value whereas alignment in reverse direction results in a smaller dipole moment. 

 

There are five conformers in DFT taken from Gaussian program. The overall 

stability order of conformers has been determined to be 1> 2 > 3 > 4 > 5 as seen in 

the Figure 4.1.2 and the Table 4.1.1. In the most stable conformer, conformer 1, 

bases nitrogen is much closer to close phosphate than the second stable conformer, 

conformer 2. First four conformers show 2nd type of structure. When the distant 

phosphate group comes close to the base, the overall stability decreases (conformer 3 

and 4). In the 5th conformer first type of structure can be seen. There is not any 

proton transfer in the conformers of LNA adenine.  
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Figure 4.1.1 :  MM conformers of adenine LNA monomer 
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Figure 4.1.2 :  DFT conformers of adenine LNA monomer 
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Figure 4.1.3 : HF conformers of adenine LNA monomer 
 
There are four conformers in HF. The overall stability order of conformers has been 
determined to be 1> 2 > 3 > 4 as seen in the Figure 4.1.3 and the Table 4.1.1. First 
two conformers seem like first two conformers of DFT. 3rd conformer of DFT seems 
like 5th conformer of HF. 4th conformer of HF base nitrogen is further away from 
phosphate group, therefore it is less stable than 3rd conformer of HF.  HF calculations 
can find conformers which cannot be optimized by DFT 
 
 
 
 
 
 
 
Table 4.1.1 : Conformer Distribution (Conf), Heats of Formation (Energy, kcal/mol 
for MM), Total Electronic Energies (Energy, hartrees for DFT and HF), Relative 
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Energies (EREL, kcal/mol), and Dipole Moments (µ, Debye) of adenine LNA 
conformers 
 

 

. 

 

Adenine base ring structure does not allow become close to proton transfer from 

bases nitrogen to either close or distant phosphate group like other LNA bases shown 

in Figure 4.1.4. On the other hand all LNA guanine conformers have proton transfer 

shown in Figure 4.5.1 and 4.5.2. We can design our LNA sequence considering this 

information in the studies. 

 

    LNA Adenine   LNA Guanine 

 
Figure 4.1.4 : LNA adenine and LNA guanine monomer structures 

 

 

 

 

 

 

 

MM DFT HF 

Conf Energy EREL Conf Energy EREL µ Conf Energy  ERE L µ 
           

           

1 104.18 0.00     3 -2125.014 6.05 36.20 
2 104.88 0.69 5 -2134.275 7.92 30.14     
3 105.16 0.97 1 -2134.288 0.00 29.65 1 -2125.024 0.00 34.71 
4 105.75 1.56 3 -2134.283 2.94 30.06     
5 106.25 2.06 2 -2134.287 0.32 30.98 2 -2125.023 0.60 36.39 
6 106.34 2.16     4 -2125.013 6.88 36.63 
7 106.70 2.51 4 -2134.283 3.25 31.09     

           



 24 

 

 

 

4.2. Uracil LNA  

 

Found in RNA, it  pairs with adenine base and is replaced by thymine in DNA. 

Methylation of uracil produces thymine. It turns into thymine to protect the DNA and 

to improve the efficiency of DNA replication. Uracil can base pair with any of the 

bases depending on how the molecule arranges itself on the helix, but readily pairs 

with adenine because the methyl group is repelled into a fixed position. As stated, 

uracil pairs with adenosine through hydrogen bonding. Uracil is the hydrogen bond 

acceptor and can form two hydrogen bonds [95].  

 
There are seven conformers in the Molecular Mechanics approach taken from 

Spartan program. The overall stability order of conformers has been determined to be 

1> 2 > 3 > 4 > 5 > 6 > 7 as seen in the Figure 4.2.1 and the Table 4.2.1. 2nd and 4th 

conformers do not have proton transfer but they seem like a transition state. 1st 

conformer seems like unprotonated structure of 2nd conformer and 3rd conformer 

seems 4th one. 5th conformer pairs with 3rd conformer in DFT and 1st conformer of 

HF. 6th conformer cannot be found in DFT, it seems like 3rd conformer of HF. 7th 

conformer seems like 2nd conformer of DFT and 5th conformer of HF.     

 
There are five conformers in DFT taken from Gaussian program. The overall 

stability order of conformers has been determined to be 1> 2 > 3 > 4 > 5 as seen in 

the Figure 4.2.2 and the Table 4.2.1. There are proton transfers in the first two most 

stable conformers. The stability increases when the hydrogen of bases nitrogen group 

transferred to the phosphate group oxygen. The most stable conformer in the non 

transferred conformers, 3rd conformer, shows 2nd numbered structure type like 

adenine LNA conformer distribution. 4th conformer seems like unprototaned 

structure of the 1st conformer and 5th conformer seems like unprotonated structure of 

the 2nd conformer. 
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Figure 4.2.1  : MM conformers of uracil LNA monomer 
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Figure 4.2.2 : DFT conformers of uracil LNA monomer 
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Figure 4.2.3 : HF conformers of uracil LNA monomer 
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Table 4.2.1 : Conformer Distribution (Conf), Heats of Formation (Energy, kcal/mol 
for MM), Total Electronic Energies (Energy, hartrees for DFT and HF), Relative 
Energies (EREL, kcal/mol), and Dipole Moments (µ, Debye) and Frequencies (Freq) 
of uracil LNA conformers. 
 
 

 
There are three conformers in HF taken from Gaussian program. The overall stability 

order of conformers has been determined to be 1 > 2 > 3 seen in the Figure 4.2.3 and 

the Table 4.2.1. Conformers with the proton transfer cannot be seen in HF. The most 

stable conformer pairs with 3rd conformer of DFT. 2nd conformer pairs with 5th 

conformer of DFT. 3rd conformer does not pair with DFT and it is 3rd numbered type 

of structure; the distant phosphate group is closest to the base.  In HF and 1st and 2nd 

conformers each have one imaginary (negative) frequency indicating that they 

correspond to transition states. 3rd conformer of HF cannot be found by DFT.    

 
 

 

 

 

 

 

 

 

 

 

 

MM DFT HF 

Conf Energy EREL Conf Energy EREL Μ Conf  Energy EREL µ Freq 
            

            

1 10.45 0.00 4 -2081.776 46.02 23.61 2 -2072.969 5.67 26.69 (-) 
2 11.46 1.01 1 -2081.849 0.00 15.70      
3 11.69 1.24 5 -2081.772 48.48 23.55      
4 12.18 1.73 2 -2081.848 0.49 13.97      
5 12.28 1.83 3 -2081.788 38.26 25.41 1 -2072.978 0.00 27.72 (-) 
6 12.58 2.14          
7 18.00 7.56        3 -2072.967 7.29 18.83  
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4.3. Thymine LNA  

 

Thymine, also known as 5-methyluracil, is a pyrimidine nucleobase. As the name 

implies, thymine may be derived by methylation of uracil at the 5th carbon. Thymine 

is found in the nucleic acid DNA. In RNA thymine is replaced with uracil in most 

cases. In DNA, thymine (T) binds to adenine (A) via two hydrogen bonds to assist in 

stabilizing the nucleic acid structures [95]. 

 

There are seven conformers in the Molecular Mechanics approach taken from 

Spartan program. The overall stability order of conformers has been determined to be 

1> 2 > 3 > 4 > 5 > 6 > 7 as seen in the Figure 4.3.1 and the Table 4.3.1. There are six 

conformers in DFT taken from Gaussian program. The overall stability order of 

conformers has been determined to be 1> 2 > 3 > 4 > 5 > 6 as seen in the Figure 

4.3.2 and the Table 4.3.1. There are four conformers in HF taken from Gaussian 

program. The overall stability order of conformers has been determined to be 1> 2 > 

3 > 4 as seen in the Figure 4.3.3 and the Table 4.3.1.  

 

There are 5 conformers found in MM and all of them can also be located with DFT. 

HF can find 4th of them.  The most stable conformers are not same in DFT and HF. 

The most stable conformer in HF has a proton transfer from amino terminal to 

phosphate terminal. This transfer decreases the energy and dipole moment in both 

DFT and HF. Methyl group hydrogens of the base can interact with distant phosphate 

group oxygens. All conformers of thymine LNA are similar to uracil LNA. 5th 

conformer of uracil LNA does not found in thymine LNA with DFT and 4th 

conformer of thymine LNA cannot be found in uracil LNA with DFT but it can be 

found in HF. These conformers are designed again and 5th conformer of uracil LNA 

can be found in thymine LNA as a 6th conformer.  
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Figure 4.3.1 : MM conformers of thymine LNA monomer 
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Figure 4.3.2 : DFT conformers of thymine LNA monomer 
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Figure 4.3.3 : HF conformers of thymine LNA monomer 

 
 Table 4.3.1 : Conformer Distribution (Conf), Heats of Formation (Energy, kcal/mol 
for MM), Total Electronic Energies (Energy, hartrees for DFT and HF), Relative 
Energies (EREL, kcal/mol), and Dipole Moments (µ, Debye) of thymine LNA 
conformers. 
 

 

 

MM DFT HF 

Conf Energy EREL Conf Energy EREL µ Conf Energy EREL µ 
           

           

1 12.49 0.00 5 -2121.097 47.07 25.45 4 -2112.010 49.61 28.16 

2 13.05 0.56 1 -2121.172 0.00 17.33     

3 13.72 1.23 2 -2121.171 0.41 16.05 1 -2112.089 0.00 18.23 
4 14.18 1.70 3 -2121.114 36.02 27.79 2 -2112.022 41.88 30.02 
5 19.86 19.86 4 -2121.103 43.20 18.13 3 -2112.012 48.14 19.71 
   6 -2121.093 49.49 25.94     
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4.4. Guanine LNA  

 

Guanine, along with adenine and cytosine, is present in both DNA and RNA, 

whereas thymine is usually seen only in DNA and uracil only in RNA. It binds to 

cytosine through three hydrogen bonds. In cytosine, the amino group acts as the 

hydrogen donor and the C-2 carbonyl and the N-3 amine as the hydrogen-bond 

acceptors. Guanine has a group at C-6 that acts as the hydrogen acceptor, while the 

group at N-1 and the amino group at C-2 acts as the hydrogen donors [95]. 

 

There are six conformers in the Molecular Mechanics approach taken from Spartan 

program. The overall stability order of conformers has been determined to be 1> 2 > 

3 > 4 > 5 > 6 as seen in the Figure 4.4.1 and the Table 4.4.1. Although MM results 

show tendency for proton transfer, no proton transfer has been observed.  

 

There are five conformers in DFT taken from Gaussian program. The overall 

stability order of conformers has been determined to be 1> 2 > 3 > 4 > 5 as seen in 

the Figure 4.4.2 and the Table 4.4.1. Proton transfer occurs in all conformers like the 

4th numbered type of structure. Two oxygen of the close phosphate group can take 

proton from the bases’ nitrogen which can be seen in conformer 1, 2 and 3. 4th and 

5th conformers also transfers proton from close phosphate group.     

 

There is one conformer in HF taken from Gaussian program given in the Figure 4.4.3 

and the Table 4.4.1. HF can find only the most stable conformer it looks like 3rd 

conformer of DFT. MMFF conformers are so close to each other therefore DFT 

conformers shapes, energies and moments are also similar. Different initial 

conformers can be prepared related to the adenine base and new conformers can be 

investigated. Control conformers are designed for adenine and guanine from the 

point of adenine has two rings like guanine. But neither protonated adenine nor 

unprotonated guanine can be found. This information gives us a real difference 

between adenine and guanine and it differs in the specifity and affinity when bases 

make hydrogen bonds in the double helix.    
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Figure 4.4.1 : MM conformers of guanine LNA monomer 
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Figure 4.4.2 : DFT conformers of guanine LNA monomer 
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Figure 4.4.3 : HF conformers of guanine LNA monomer 
 

 
Table 4.4.1 : Conformer Distribution (Conf), Heats of Formation (Energy, kcal/mol 
for MM), Total Electronic Energies (Energy, hartrees for DFT and HF), Relative 
Energies (EREL, kcal/mol), and Dipole Moments of guanine LNA conformers. 
 

MM DFT HF 

Conf Energy EREL Conf Energy EREL µ Conf Energy µ 
          

          

1 14.78 0.00 1 -2209.621 0.00 22.13 1 -2200.000 23.22 
2 14.83 14.83 2 -2209.620 0.39 19.88    
3 21.72 21.72 5 -2209.608 8.20 24.67    
4 21.74 21.74        
5 22.65 22.65 3 -2209.614 4.29 19.54    
6 22.92 22.92 4 -2209.614 4.31 22.61    
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4.5. Cytosine LNA  

 

Cytosine is one of the five main nucleobases used in storing and transporting genetic 

information within a cell in the nucleic acids DNA and RNA. It is a pyrimidine 

derivative, with a heterocyclic aromatic ring and two substituents attached. [95]. 

 

There are five conformers in the Molecular Mechanics approach taken from Spartan 

program. The overall stability order of conformers has been determined to be 1> 2 > 

3 > 4 > 5 as seen in the Figure 4.5.1 and the Table 4.5.1. The first three conformers 

resemble a transition state for a proton transfer.  

 

There are five conformers in DFT taken from Gaussian program. The overall 

stability order of conformers has been determined to be 1> 2 > 3 > 4 > 5 as seen in 

the Figure 4.5.2 and the Table 4.5.1. First three conformers have proton transfers. 4th 

conformer is unprotonated structure 2nd numbered type of structure in correlation 

with the other bases the most stable uprotonated ones. In the 5th conformer phosphate 

groups look like parallel to the base, 1st type, and the bases nitrogen is close to 

phosphate group.  4th and 5th conformers of DFT look like 3rd and 4th conformers of 

HF and 4th and 5th conformers of MM. But the stability order is reverse in DFT.  

 

There are four conformers in HF taken from Gaussian program. The overall stability 

order of conformers has been determined to be 1 > 2 > 3 > 4 as seen in the Figure 

4.5.3 and the Table 4.5.1. There is not any proton transfer in HF results. The second 

most stable conformer in HF has negative frequency and it looks like a transition 

state for a proton transfer.  DFT calculations have more conformations and they are 

more reliable than HF. 
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Figure 4.5.1 : MM conformers of cytosine LNA monomer 
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Figure 4.5.2 : DFT conformers of cytosine LNA monomer 
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Figure 4.5.3 : HF conformers of cytosine LNA monomer 
 
Table 4.5.1 : Conformer Distribution (Conf), Heats of Formation (Energy, kcal/mol 
for MM), Total Electronic Energies (Energy, hartrees for DFT and HF), Relative 
Energies (EREL, kcal/mol), Dipole Moments (µ, Debye) and Frequencies (Freq) of 
cytosine LNA conformers. 
 

 
 

 
 
 

MM DFT HF 

Conf  Energy EREL Conf Energy EREL µ Conf Energy EREL µ Freq 
            

            

1 14.74 0.00 2 -2061.960 1.06 16.68 2 -2053.107 3.16 22.52 (-) 

2 19.17 4.44 3 -2061.960 1.11 17.67 4 -2053.101 7.34 25.14  

3 19.23 4.49 1 -2061.962 0.00 13.65      

4 21.28 6.55 5 -2061.878 52.50 24.75 3 -2053.105 4.46 27.40  

5 24.36 9.63 4 -2061.889 45.54 26.74 1 -2053.112 0.00 29.66  
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5. CONCLUSION  

 
The results for the gas phase conformers of five LNA bases; adenine, uracil, 

thymine, guanine and cytosine have been discussed in term of structure and 

energetics.  It has been found that the bicyclic sugar ring of LNA is a restricted 

structure therefore two phosphate groups and base affect the conformational changes 

of LNA. The stability of conformers mainly depends on the type, number and 

strength of the intramolecular hydrogen bonding and proton transfer. C-H bond in 

methyl group is more polar and stable than N-H bond, there is no proton transfer 

from methyl group to phosphate group. 

 

There are four types of interactions in LNA conformers. 

1. Base and phosphate groups are parallel 

2. Oxygens of close phosphate group interact with hydrogens of base 

3. Oxygens of distant phosphate group interact with hydrogens of base 

4. Proton transfer from amino group of base to oxygen of close phosphate group 

 

All conformational space have been scanned using MMFF, B3LYP/6-31G** and 

HF/6-31G** methods. Not only LNA base differences but also method differences 

are defined for LNA base conformations in the study.  

 

The most stable conformer is 4th type and the second most stable conformer is 2nd 

type when the base allow proton transfer. When the base does not allow proton 

transfer, like LNA adenine, the most stable conformer is 2nd type. MM approach 

cannot find proton transfer and gives a conformer like a transition state for a proton 

transfer and after this conformer, the most stable conformer is 1st type.  

 
LNA can be used in further experimental studies as a linker to bind nucleic acids and 

peptides. Not only it has a great specifity and affinity to nucleic acids like RNA anda 

DNA, but also it can interact with amino acids especially with its highly positively 

charged phosphate groups.   
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To describe the electronic nature of the complex components, charge analysis should 

be carried out.  If possible the studies should be extended to calculations in solution 

which will mimic the true physiological conditions in living systems. Our current 

results are promising and enforce us to carry out more detailed computations on 

similar systems for a better quantitative explanation of the structure and functional 

properties of LNA. 
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