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DYNAMICAL ANALYSIS OF A PASSIVE DYNAMIC WALKING ROBOT

SUMMARY

The researches on Biped robots are promising a significant development both in
robotic and medical fields. The dynamics of bipeds, or two-legged systems, is an
attractive topic for researchers for many decades, since it reveals the mathematics
and physics behind the human-walking. This yields many important applications
such as improvement in design of prosthetics.

Passive dynamic walking, which is a challenging design problem, is a case, where a
biped mechanism walks only by the gravitational force on a shallow slope ground.
Two-legged system repeats full walking cycle under the influence of the gravitational
force. This idea is mostly being used for efficiency problem of bipeds, since
researches on this area introduced improved design techniques.

This thesis aims to study the dynamical analysis of a planar passive dynamic walking
biped system using Spatial Operator Algebra (SOA). This method is very useful to
compute kinematics and dynamics of all types of complex robotic systems, which
also reveals the force and velocity distributions of links and joints. It is also known in
the literature as a high performance algorithm. Therefore, it is important to utilize
this method to have a true understanding of passive dynamical walking. To explain
this method in steps, we have introduced first the SOA method for the kinematics of
serial manipulators on a fixed platform. After that, the effect of moving platform has
been discussed. In kinematic analysis, the equations also have been composed for the
cooperating manipulators on a moving platform, which is a complex system.

This thesis is focused on a planar passive dynamic walker, which is modeled based
on the aforementioned method. Since the system operates in 2D space, some required
adjustments to make the SOA work on 2D space has been represented. Due to the
nature of human legs, the biped is modeled with knees and a knee locking system
using pseudo joint technique, which prevents the knees from folding forward. The
most important contribution of this thesis is the calculation of constraint torques and
forces on knees and the feet when both touch the ground, respectively.

Consequently, we have implemented SOA method on a planar passive dynamic

walking biped robot, which could provide deep insight of this kind of systems. The
latter results show the dynamical analysis of the system.
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iKi BACAKLI PASIF DINAMIK YURUYEN BiR ROBOTUN DINAMIK
ANALIZI

OZET

Iki bacakli robotlar iizerine yapilan calismalar robotik ve tibbi alanda biiyiik
gelismeler yaratmaktalar. Uzun yillardir devam eden bu calismalar tipta ozellikle
protez bacaklarin gelisimi, robotik alanda ise insansi robotlar iizerinde hatr1 sayilir
Olciide yenilikler getirmistir.

Iki bacakli robotlar bir¢ok ydnden arastirma konusu olmakla birlikte, bu tez
kapsaminda bizim ilgilendiklerimiz pasif dinamik yiiriiyen robotlardir. Pasif dinamik
yirlime kavrami ile ifade edilmek istenen sey, iki bacakli bir sistemin yergekimi
kuvveti etkisinde egimli bir yiizeyde ylirlime hareketini gerceklestirebilmesidir.
Sistem sahip oldugu agirlik ve iizerinde bulundugu yiizeyin egimi sayesinde egim
yoniinde diisme hareketi yapar ve ilk konfigiirasyona bagl olarak bir bacak digerini
takip edecek sekilde harekete gecer. Hareketin baslangicinda yerde olan bacagin,
diger bacaktan sonra tekrar yerle temas etmesiyle yiirime hareketinin ilk devri
tamamlanmis olur. Sistem devrilene kadar bu harekete devam eder. Burada dikkate
carpan kisim, yiirime hareketinin sistemin tasarimi geregi dogal bir hareket
oldugudur. Iki bacakli bir sistem uygun baslangi¢ kosullarinda sadece yergekimi
kuvveti ile yiirtiyebilir.

Pasif dinamik yiirliyen robotlar {izerinde yapilan arastirmalarin getirdigi avantaj ise
daha az enerji harcayan insansi robotlarin oniinii agiyor olmasidir. Kendiliginden
yiuriime devrini tamamlayabilen bir sistem, daha az eyleyici ve kontrol
mekanizmasiyla daha uzun mesafeleri yiiriiyebilecektir. Tiim bu tasarruflarin yam
sira, daha az enerji daha az giic liniteleri gerektireceginden, insansi robotun tagimasi
gereken pil grubunun boyutlar1 daha ufak olacaktir. Tiim bunlar daha karmasik isleri
daha az enerji ile yapabilen, yiirlime kabiliyetine sahip insansi robotlarin gelisimine
biiyiik katki saglamaktadir.

Yaklagik olarak pasif dinamik yiiriime kavraminin ortaya atilmasiyla ayn1 zamanlara
rastlayan Uzaysal Operator Algoritmast (UOA) ise, karmasik robotik sistemlerin
kolayca modellenmesine olanak saglayan, temeli Newton-Euler hesaplamalarina
dayandig i¢in herhangi bir link veya eklemin kuvvet veya hiz bilgilerini g6z 6niine
serebilen, O6zyinelemeli yapisi sayesinde kendinden 6nceki algoritmalara oranla daha
hizli hesaplama yapabilen bir yontemdir. Uzaysal kavrami, acisal ve dogrusal
vektorlerin bir arada tanimlanmasi nedeniyle kullanilmaktadir. Ozyinelemeli yapisi
sayesinde n. dereceden, o(n), hesaplama yapan algoritmalar sinifina girmektedir.

Normalde robotik sistemlerin kinematik ve dinamik hesaplamalar1 genellestirilmis
koordinat sayisinin, n, kiipii seklinde artmakta iken, 6zyinelemeli algoritmalarda
dogrusal olarak artmaktadir.
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Teze ilk olarak bu iki konu hakkinda daha 6nceden yapilmis 6nemli ¢alismalar1 ve
sonuclariyla yaptiklar katkilari siralayarak baglanmistir. Ardindan sirastyla UOA
yontemi ve bu yontemin pasif dinamik robotlara uygulanisi anlatilmistir.

UOA yontemi tez icinde ikinci kisimda kinematik ve dinamik olmak iizere iki ana
basliga ayrilmistir. Kinematik ifadeleri agiklarken oncelikle bir vektoriin tiirevinin ne
anlama geldigi; o vektoriin, donme veya Oteleme ekseni ile vektorel ¢arpimiyla aym
seyi ifade ettigi gosterildi. Ardindan UOA igin biiylik 6nem teskil eden hiz yayilim
matrisinin olusturulmasi agiklandi. Ayrica kuvvet dagiliminda da kullandigimiz bu
matris, 6zyinemeli algoritmanin temelini olusturmaktadir.

Robotik sistemler i¢in kinematik denklemlerin ¢ikarimina, daha basit bir sistem
oldugu i¢in hareketsiz platform tizerindeki n serbestlik dereceli seri robotlarla
baslandi. Biitiin linkler i¢in hiz denklemleri yazildiktan sonra ortak matris gosterimi
ile ifade edildi. Ardindan ug islevci ile robotun geri kalani arasinda baglanti
saglanarak ileri kinematik ve sonrasinda ters kinematik baglantilarima ulagildi.
Sonrasinda hareketli bir platform iizerindeki seri robotun kinematigi incelendi ve ii¢
boyutlu uzayda hareketli platformun biitiin sisteme alti serbestlik derecesi daha
kattig1 gorildii.

UOA yontemi daha karmagik sistemler i¢in daha biiyiik bir fark yarattigindan, ortak
calisan robotlarin kinematigi de bu tez kapsaminda incelendi. Hareketsiz ve hareketli
platform durumlarinin ayr1 ayr1 dikkate alindigi bu kisimda, en dikkate ¢arpan yer
kinematik smirlarin belirlenmesidir. Ortak hareket eden manipiilatér sisteminde,
robotlarin tek bir yiik tasidig1 6rneginden yola ¢ikarsak, bu yiikiin merkezinin yaptigi
hareketi, izlenmesi gereken yoriinge olarak kabul edebiliriz. Robotlarin ug islevcileri
ile kat1 cismin merkezi arasindaki mesafe sabit kalacagi gercegi goz Oniine alinarak
olusturulan kisitlama ile bu merkez noktasindan ug¢ islevcilere hiz dagilimlar
gerceklestirildi ve geri kalan islemler tipki seri robotlarda oldugu gibi yapildi. Sistem
daha karmasik ve ¢ok sayida robottan olustugu i¢in, bildigimiz ileri ve ters kinematik
denklemlerini kullanabilmek ve islemleri daha basit olarak gosterebilmek adina
denklemler sonradan genellestirilimis matrisler seklinde ifade edildi.

Ardindan dinamik denklemlerin ¢ikarimi incelendi. Baslangic olarak yine hareketsiz
diizlemdeki n serbestlik dereceli seri robotlar iizerinde ¢alisildi. Sirasiyla
eklemlerdeki ivme ve kuvvetlerin hesaplanmasi gosterildikten sonra, yine tiim sistem
icin genel matrissel ifade ¢ikarildi.

Ucgiincii kisimda diizlemsel iki bacakli robotik sistem 6rnek olarak ele alindi. Basta
da bahsedildigi gibi pasif dinamik yiirlime gergeklestirebilen robot tasarimi ve bu
robotun UOA kullanilarak incelenmesi amacglanmistir. Tezin igeri§inde UOA
yontemi ii¢ boyutlu uzayr kapsayacak sekilde tanimlandigindan ve iki boyutlu
uzayda calisan diizlemsel robotta bu yontemin gereginden fazla hesaplama yapacagi
i¢in, metodun ornek olarak segilen modelin hareket ettigi iki boyutlu uzayda islem
yapmasini saglayacak diizenlemeler gosterilmistir. Pasif dinamik yiiriiyen robot ikisi
ayak, ikisi diz, biri ¢at1 olmak iizere bes donel eklemden olugmaktadir. Bu kisimda
onemli olan bir diger nokta ise diz kitleme mekanizmasidir. Diz hareketinin dogal
olarak taklit edilebilmesi i¢in, dizin 6ne dogru biikiilmesini engellemek amaciyla
“sozde eklem” metodu kullanilmstir. Bu yonteme gore dizin ilizerindeki baglanti
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(uyluk) ile altindaki baglanti1 (baldir) arasindaki a¢1 degeri sifir oldugugunda, bu agiy1
sifir derecede tutacak diizlemsel torklar hesaplanip sistem ona gore galistirilmistir.

Farkli caligmalardan Orneklerin de gosterildigi bu kisimda, tasarlanan robotun
parametreleri ve yiirlime hareketini saglayacak sinirlamalara deginilmistir. Soyle ki,
robot ayaklarindan birini yerle temas ettirdigi anda bu ayak iizerindeki ¢izgisel hizlar
sifir tutulacak sekilde hesaplamalar yapilmistir. Burada yapilan sinir kuvvetlerinin
hesaplanmasi, bu tezin en can alict kismini olusturmaktadir. Genelde arastirmalar bir
ayak yere bastig1 an diger ayagin otomatik olarak havaya kalktigin1 varsayarken, bu
tezde ili ayagin da yerde olugu durum, zincir sistemi, goz dniine alimmistir. ilk adim
atildiktan sonra, arkada kalan ayagin, bizim tanimlamamiza goére taban noktasi,
yukar1 yondeki tepki kuvvetlerinin negatif deger aldigi ana kadar zaman boyunca
zincir sistemi igin gerekli hesaplamalar yapilmistir. Bu siirenin sonunda arkada kalan
ayagin adim atmasi gerekecegi icin; uc ve taban noktalar1 basta olmak iizere sistemin
tamami aynalanmistir. Buna tez ig¢inde “degisim kurali” admi verdik. Lineer bir T
matrisi ile gerekli degerleri ¢arparak sistemin dnceki taban noktasini yeni ug, eski u¢
noktasini yeni taban noktasi olacak sekilde degistirdik. Bu sayede robotun adim atan
ayagi hep ug noktas1 olmus oldu.

Dizlerde ve yere basan ayakta gerekli sinir torklar1 ve kuvvetleri, o noktalardaki
ivmeleri sifirlayacak sekilde hesaplanmistir. Pozisyonlar1 da sifirlamak icin, dizlerde
kitleme mekanizmasinin, yere basan ayakta ise yerin karakteristigini temsil edecek PI
kontroldrler tasarlanmistir. Dordiincii boliimde buna yer verilmistir.

Son boliimde sonuglar ve dnerilere yer verilmistir. Ilk sonuclar robotun kinematik
yeterliligi hakkindadir. Sonraki sonuglar robotun dinamik analizini gostermektedir.
Baslangi¢ kosullarindan ziyade sinir tork ve kuvvetlerinin hesaplanmasi ve buna gore
robotun analizinin yapilmasi tezin amacini olusturdugu icin, robotun adim atmasini
saglayacak herhangi bir baslangi¢ kosulu segilmistir. Simulasyonlar MATLAB-
Simulink ortaminda ger¢eklenmis olup, yukar1 yone z, sag yone Y, sayfa diizleminde
bize dogru olan yone de X, denilmistir. Adim atan ayagin z yoniindeki pozisyonu,
dizlerde ve yere basan ayakta olusan kisit ve tepki kuvvetleri ve tabanda olusan
kuvvetler sonuglar boliimiinde sunulmustur. Bu bélimde ayrica gelecek arastirma
fikirlerine yer verilmistir.
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1. INTRODUCTION

Robotic systems consist of several links connected with joints to each other. The
movement of these systems is studied using kinematics and dynamics. Kinematics is
a way to calculate the motion of a system without focusing on the causes of the
movement. Dynamics, on the other hand, investigates the main reason of this
movement. In real-life applications, the manipulators operate in a 3D task space,
which means three angular, and three linear vectors, i.e. the information of velocity,
acceleration, force and torque, for each component. For this reason, the spatial vector
representation brings a great simplicity to understand the insight of the robotic
system during an operation. Spatial operator algebra (SOA) is one of them, which is
based on Newton-Euler formulation and allows analyzing the dynamics of a complex
system. Since biped walking systems are two legged robots, they can be treated as

one of them.

In this thesis, we applied the SOA to complex systems, and then presented a

methodology for dynamical analysis of a planar passive walking biped robot.

1.1 Purpose of Thesis

Dynamical analysis of biped walking is important for both robotic and medical
research. The outcome of such studies in the medical area help certain group of
patients to recover in a way to accomplish tasks like walking. Another important
outcome is in the field of designing artificial limbs like prosthetic legs. However, the
most challenging part of this design is efficiency. In this regard, research on passive
walking dynamics holds an important place for designing efficient limbs.

On the other hand, Spatial Operator Algebra (SOA) presented a novel improvement
both mathematically and computationally on multi-body kinematics and dynamics of
robotic systems. Since, it is based on Newton-Euler formulation; it provides insight
into the structure of rigid-body by analyzing the system using vector representation.
The propagation of velocity and force vectors in a recursive manner helps to speed



up the calculations by representing the kinematic and dynamic behavior of each rigid
link.

Generally speaking, using the SOA for passive dynamic walking systems would be
more useful to investigate the force distributions on each component of entire body,

and also it could propose a new outlook in this area.

1.2 Literature Review

Before starting to explain the methods and models that we have used in this thesis, it
is important to look at the history in literature. This is not only useful for
comprehension of the purpose of this study, but also for finding its place between
relative studies. Therefore, this section is dedicated for literature review about spatial

operator algebra method and passive dynamic walking, respectively.

1.2.1 Spatial operator algebra

The spatial operator algebra (SOA) is a method based on calculation of spatial
vectors of a multi-body system. The spatial (rotational and translational) vectors have

been used in many researches, mostly as advanced works of order n,o(n),
algorithms. The usual way of calculation the rigid body equations of a system uses

order n®, which means the computation time increases as a cubic function of the
number of system generalized coordinates, n. On the other hand, order n algorithms
provide a linear relationship between number of numerical computations and the

number of generalized coordinates [1].

The first studies in o(n) formulation of multi-body dynamics were based on
Newton-Euler formulation and Walker and Orin’s study [2] was one of them. They
also compared different methods for calculating the rigid body equations, and the
results show that the recursive procedure provided a major improvement in
decreasing the number of computations. Later on, Anderson and Critchley [3]

improved their o(n) method. More researches on o(n) has been done, and Jain [5]
showed that they are all related to each other.
The roots of spatial operators come from the Ball’s theory of screws [6].

Featherstone used first time spatial algebra to present his method based on
algorithms, who also published a review paper [7], which reveals the development of



Newton-Euler based algorithms. Rodriguez [8] used a new method for calculation of
robot dynamics using Kalman filtering and Bryson-Frazier fixed time-interval
smoothing technique. His spatially recursive calculation method for link dynamics of
a rigid-body system proposed not only better understanding of robot dynamics, but
also improvement in computation efficiency, which became the base of SOA. He
implemented his spatial recursive method on open- and closed-chain systems [9, 10].
Jain [5] shaped the spatial operator algebra (SOA) in his study, where he also built
the connection between other methods on rigid body motion. Rodriguez, Jain and
Kreutz-Delgado improved and implemented SOA for several types of the multi-body
system design and dynamics [11-14]. Another research of Jain and Rodriguez [15]
was on sensitivity analysis for rigid-body systems based on spatial operators. More
recently, Yesiloglu [1] used SOA to model the complex topology systems with high
efficiency. The mathematical equations and formulations in this thesis are mostly
based on this study. One of his contributions, new “pseudo joint” concept, is also

used in this thesis.

Featherstone [16] and Jain [17] can be considered as base sources to understand the

mathematical background of SOA.

1.2.2 Passive dynamic walking

Passive dynamic walking task for bipeds has been studied by the scientists for many
decades. The basic idea was constructing a biped system, which can move, even
walk only by using the gravitational force. Before starting the history of passive
dynamic walking of two-legged systems, it would be wise to learn how the legged
robots and the studies about them involved in time. For this purpose, Raibert’s study
constitutes a novel research in this field [18]. He showed a criminology starting from
1850s with Chebyshev’s works towards 1980s. These milestones have great
importance to understand the development of the legged-machines and to link up all
history towards the beginning of two-legged systems with passive dynamic walking.
Completely actuated biped systems are not very efficient, since they hold actuators
on their each joint. Hence, for the human-like robots it is important to carry out the
passive dynamic walking principles. This term first used by Ted McGeer, who is one
of the pioneers on passive walking area. The goal was constructing limbs, which are

capable of holding and moving the body without any external source of energy, so



the need of actuators and their control would be minimized. The idea based on a two-
legged system, which can sustain a walking cycle on a shallow slope by using only
the gravitational force. McGeer’s studies presented that the analysis of the physics of
two-legged 2D biped machines is straightforward and the results of theoretical facts
are successfully applicable [19, 20]. He also stated that the passive dynamic walking
makes powered machines more efficient while adding power sources to a passive
walker, in his study they were small motors for clearance the feet during recovery,
causes a negligible effect on the system. His further research [21] showed that the
passive walking rules on 2D biped machine work also for 3D legged machines with
knees on a shallow slope. His work presented the advantages of biped with knees in
stability, efficiency and control of walking routine compared to biped with straight
legs, since knee-jointed form did not need to be actuated for retraction of the legs.
This study of him, which was inspired by Mochon et. al [22], also showed how to
numerically generate different passive cycles based on a first impulse on the feet
using a Poincaré map, or as he called, a stride function . Ruina et al. [23] confirmed
McGeer’s studies and showed that a 3D biped with unstable configuration can also
move stably. Goswami et al. [24] worked on a similar system to McGeer’s biped [3],
which they called as compass gait walker, with same kinematics, but using the
overlook of robotics. They indicated that perception of biped systems with a robotic
look could be very helpful to understand the human locomotion, so they modeled the
system as acrobat and pendubot, based on the same kinematics of a double pendulum
system, which was used as the main model in previous researches. This research also
differs from McGeer’s study by means of using non-linear equations instead of
linearized mathematical model. It showed that such a mechanism with non-linear
dynamics could follow a stable limit cycle with unequal step lengths. An important
outcome of this study was that only the slope of the inclined plane determines all the
types of gaits. Garcia et al. [25] used a simpler two-legged model compared to
McGeer’s and Goswami’s studies by splitting the mass of the system between hip
and feet, and assuming the former is much greater than the latter one. This work
presented that the dynamics of such a system relies mostly on design parameters like
mass distribution and length rather than its control strategy and showed that the
simplest passive dynamic walker can achieve a stable cyclic motion. Schwab and
Wisse [26] used the region (or basin) of attraction of the motion and the cases when

failure occurs for the simplest walking model. Their study presented that a stable



cycle of walking exists in a small boundary of slope angle. The results showed that
the region of attraction of the simplest walking model, which is not directly related to
the stability of the cycle motion, is very small; hence, in practical applications the
model has to be initiated very carefully on a flat and rigid surface. An important
outcome of this research revealed that the best robust design is always the one with
largest region of attraction. Collins, Wisse and Ruina [27] have built the first two-
legged machine with human-like motions. Their 3D machine was inspired of
McGeer's 2D passive walker and had counter-swinging arms linked to the opposing
legs, which improved the stability in lateral directions. Wisse [28] presented the gait
synthesis and designing steps of bipeds in his work. His study was a very useful
source to see the bigger picture for evolution of the studies on human walking from
the ancient times to present day. It includes the results of the studies that have been
explaining from beginning of this chapter and analyzes several types of passive
dynamic systems like skateboards and bicycles. There are also several studies [29-
31] that present how to apply passive dynamics of bipeds on several active
humanoids by using less control and consuming less energy. Atkeson et al. [32]
investigated the positive effect of swing leg retraction on gait stability, which
resulted confirmatory when the speed of retraction is not rapid and in case of fast
walking routine. Another research combines several efficient bipeds based on passive
dynamic walkers from different universities [33]. An interesting research subject on
passive dynamic walkers is the shape of the feet. In real applications, the shape of
feet is usually semicircular or arc. Wisse and Anderson [34] proposed how this
becomes an disadvantage for a standing position of a passive dynamic walker, and
how to replace it by flat feet with a torsion spring. The results provided more human-
like look to this kind of systems. A similar study made by Wang et al. [35] and
another one but with segmented feet design using toe joints [36]. Another research
using flat feet and compliant ankles by Wang et al. [37] presented the role of ground
contact angle in passive dynamic walking. Wisse et al. [38] studied the stability of
simplest passive dynamic walkers by means of falling forward or backward. The
results showed that there is no solution for falling backward; on the other hand, the
falling forward problem could be solved by adjusting the swing leg speed. Passive
dynamic walkers are sensitive mechanisms against the changes in environment, so
called disturbances. Hobbelen and Wisse [39] indicated that the measurement of

disturbance rejection is more important than measurement of speed or energy



efficiency. Therefore, this study introduced the idea of gait sensitivity, which is a
measurement method of disturbance rejection based on disturbances and gait
characteristics chosen by the designer. The proposed method showed improvement in
calculation time and prediction of the disturbances for simple and more complex
bipeds compared to previous researches, which mostly based on basin of attraction or
Floquet multipliers. Another study of the same researchers [40] presented a way of
avoiding from disturbances during the walking process of biped mechanism by using
swing-leg retraction, which defines the backwards movement of swing leg prior to
foot impact. The study has been implemented on three different types of passive
dynamic walkers by also adding the idea of gait sensitivity, and results showed that
the optimal case of rejection occurs when the retraction is on a mild-level speed.
Wisse et al. [41] studied the case of passive walking biped machine with an upper
body, which needed to be stabilized while the system was walking successfully.
They presented bisecting hip mechanism as a solution, which behaves as an inverted
pendulum and allows a passive swing leg movement in the same time. Another
research on adding an upper body as a bisecting hip was done by Asano and Luo
[42]. Additionally scientists used some control techniques on passive dynamic
walking robots, like reinforcement learning [43] or dynamic programming [44]. The
idea of passive dynamic running is also an interesting subject. The first studies
inspired by McGeer again [45] and examined by different researchers in recent time
[46, 47]. There are also another researches, which studies the effect of swinging arm
on the biped walking. Collins, et al. [48] showed that arm swinging is a natural
movement caused by walking, and has great impact on balancing the vertical torques.
Actually the study revealed that: “Vertical ground reaction moment was most

affected by arm swinging and increased by 63 per cent without it.”

1.3 Notation

The notation in this thesis is not different from S.Murat Yesiloglu’s dissertation [1].
All left-superscripts indicate the numbers of associated manipulator, the left-
subscripts present the dimensions and the right-subscripts show the numbers of rigid
link. Vectors in 3D represented with one arrow, in 6D they are shown with two
arrows on the upside. The underlined vectors mean a serial of variables or vectors.

The matrices are shown with bold capital letters or calligraphic fonts. The left-



superscripts have been used only for the general representation. In application we
have used only one manipulator system, hence there is no left-superscript in biped

equations.






2. KINEMATICS AND DYNAMICS OF MANIPULATORS USING SOA

2.1 Purpose

In this chapter, we will first investigate the velocity propagation on a rigid link. After
that, we will derive the kinematic equations of an n DoF serial manipulator both on a
fixed and moving platform, using spatial vectors. The main purpose of this chapter is
obtaining the kinematic equations for p number of cooperating manipulators on a
moving platform. In many robotic applications, the cooperating manipulators are
being used in both industry and scientific researches. These systems consist of
several serial manipulators, which are operating simultaneously and their tip points
follow the same trajectory. For this reason, we will define a kinematic constraint,
which will hold the tip points of different manipulators for a common task. Finally,
we will calculate the dynamic equations of serial manipulators. The calculation steps
for both kinematics and dynamics are inspired by S. Murat Yesiloglu’s dissertation

including the notation, and they are available in [1].

2.2 Basic Information and Calculation of Propagation Matrix

A rigid multi-body system consists of rigid links. Hence, we will study first the

velocity transformation across a rigid link. Let us consider the link in Figure 2.1:

Figure 2.1 : Velocity propagation on a rigid link.



The angular velocity is same for all the points on a rigid link. Therefore, @, = @,
equality will be true. The linear velocity propagation depends on the time derivative

of the vector from point a to b . It can be defined as,

d -
V=V +—I (2.1)
b a dt a,b

The second term on the right hand side of the equation (2.1) represents the time
derivation of a vector. This concept is important, because we will use it in further

calculations of both kinematics and dynamics.

2.2.1 Time derivation of a vector

Time derivation of a vector defines the change of its direction in time. Let say the

vector P(t) is rotating around the axis of rotation, &, with a constant velocity 6 and

radius r. The position of P(t) after At time will change as in Figure 2.2:

R [5=0

r
r
D S
r

B(r) P(t+Ar)

N\ -~

Figure 2.2 : Time derivation of a vector.

The following calculations will lead us to the meaning of derivation of a vector. The

change in P can be described as

AP = P(t+At) - P(t)
@: “m[Aﬁj (2.2)

The arc s is to be calculated as,
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S-r.A0- Hﬁusin 0.A0 (2.3)

If we follow the calculation steps as follow,

PO _| i AP _ i [4P) — i 127 (2.4)
dt At—0 At At—0|| At At—0 At
Then the following equation holds
At—0 At At—0 At
where
fim[AP] s
(2.6)
lim 2% — 6 g
At—0 At
Therefore the magnitude of vector P(t) will be,
dP(t) 1B
at =[P[la]sine (2.7)

The right hand side of (2.7) represents the cross product between vectors P(t) and .

Therefore, the time derivative of a vector is the cross product between its axis of

rotation and itself, depending on the direction of rotation,

— = dxP(t) (2.8)

2.2.2 Velocity translation on a rigid link and propagation matrix

Now if we consider again the rigid link equation in (2.1), and a manipulator, which

consists of multiple rigid links as in Figure 2.3.

The angular and linear velocities will be propagated from one joint to another as

—

ié}k = i&)k—l + ihk i‘9'|< (2.9)

i i~ i _ i i
Ve =V, + 'O < gy =V, =g < o (2.10)

where, i represents the number of manipulators, k is the number of joints, and ‘ﬁk

represents the axis of rotation vector on joint k.

11



Figure 2.3 : Velocity propagation on a rigid link.

Using the skew-symmetric property for cross product representation, (2.10) becomes

Ve =Via— ill—l,k ‘B4 (2.11)
where
0 _il(k—l,k)z il(k—l,k)y
Ty = lex= II(k—l,k)z 0 _Il(k—l,k)x
_Il(k—l,k)y Il(k—l,k)z 0

If we define i\:/k e R® as spatial velocity vector, which consists of '@, e R® and

'V, e R®, then the following expression will be true:

i\:/k=|:i€')kj|=|: .Al Oj||:i€)k_1i|+{iﬁk:| ie'k (212)
IVk _Ilk—l,k I IVk—1 0

The equation (2.12) represents the spatial velocity propagation on a rigid link from
the predecessor joint to the successor one. We can put (2.12) into a matrix from,

W, ='®,, 'V, + HG, (2.13)

where id>k,kfl is the velocity propagation matrix from joint k-1 to k. "He represents

here the spatial rotation and translation matrix.

2.3 Kinematics

In this section, we will first derive the kinematic equations for a serial n DoF

manipulator using spatial vectors. We will see how to calculate the velocities of each

12



joint from base through tip point in a recursive manner. After having the forward and

inverse kinematic representation, we will apply the same algorithm for cooperating
manipulators.

2.3.1 Kinematics of a serial manipulator on a fixed platform

If we consider that a manipulator consists of n rigid links, the velocity propagation
for each joint can be calculated based on (2.13). Let us assume first that the

manipulator stands on a fixed platform, which means the platform velocity is zero.

Fixed Platform

Figure 2.4 : n DoF serial manipulator on a fixed platform.

Then the spatial velocity equations for each joint will be as follows,

I

i 0:0
V- Fg
i\:/?_ = iCDMi\::/lﬁ-iﬁzigz = iq)uiﬁliél + iﬁz iéz

i\73 = (Ds,z ivz + iﬁ?’ i‘93, = (D3,2 ((Dz,linl iél + inz i‘9-2)4' iﬁe’ iés (2-14)

To improve this calculation step for next joint numbers, we need to examine the

multiplication of @, ,, and @, , matrices.

| 0 I 0 | 0
Dy Pps =| 42 in = i (2.15)
o Ik,k+1 ]| - Ik—l,k I B Ik,k+1 o Ik—l,k I

Since,
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ir i i i _ i i i __ir
—hejr = Neak —(_ by iir X)_( b1 X)—_( le-sp + Ik,k+1)x =X =—"h 1

By utilizing this in (2.15),
I 0
(Dk+l,kq)k,k—l = i = q)k+l,k—l (2.16)
- Ik—l,k+1 I
Now, if we use this property of ® matrix, (2.14) becomes,
W= ‘D, D, FLG + Dy, Ha6,+ Ha'l, = 'y, Fi G+ Dy, Ha 0, + Fa'd), (2.17)
If we keep doing this calculation for each joint, finally we get the velocity of the n"
joint:

V,= ', Hi'g+'®,, , H 6+ ..+ Hn'd, (2.18)

n,n-2

If we put these equations in the matrix form, we get,

V| T | 0 0 - 0] Hi 0 o - 0 —ie'l_

iaz iq)z,l I 0 -+ 0] 0 Iﬁz o - 0 iéz

i ”3 = cDBl (D:3,2 | 0 0 0 Iﬁs . 0 I€3 (219)
= ‘o, '©, 'O, .. | i— 1o

v 2 ° Lo 0 0 - Hl M

6nx1 6nx6n 6nxn nx1

Therefore, the general matrix form of spatial velocity vectors for each joint is,
'V="®d'H'9 (2.20)

where, 'V is a 6n-by-1, '® is a 6n-by-6n, 'H is a 6n-by-n, and '@ is an n-by-1

matrix.

So far, we have found the spatial velocity vectors for each joint. To find the velocity

vector of tip point of the manipulator, we need to define a propagation matrix,‘th’n

from joint number n through tip point t:
V="p ! (2.21)

The velocity propagation from the first joint through the tip point will be then,
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V=[0 00 - '@,] (2.22)

w

1L oo

>

The matrix form will be,
V=g 'V (2.23)

where '@, =[0 00 - ‘cDm] and it is a 6-by-6n matrix. Placing (2.20) into

(2.23) will give us the relation between tip point velocities and joint velocities, which
we call it Jacobian:

i\z/t: ithi(DiHie =319
'J="®,'O'H (2.24)

As shown in (2.24), we will calculate the Jacobian Matrix using propagation
matrices and spatial rotation and translation matrix. We wil use Jacobian both for

forward dynamics,
'V=J'9 (2.25)
and for inverse dynamics,

9 =13"1, (2.26)
where 'J* represents the pseudo inverse of Jacobian.

2.3.2 Kinematics of a serial manipulator on a moving platform

The moving platform, or base, brings six more DoF to the serial manipulator, which
can be presented as an additional term to velocity of tip point. This term can be

calculated using the propagation matrix from base through tip:
i\:/t:ijié +i(Dt’bi\:/b (2.27)

where, '®,, is the propagation matrix, and 'V, is the spatial velocity vector of the

platform.
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Moving Platform
Figure 2.5 : n DoF serial manipulator on a moving platform.

There are two ways to calculate id>t’b ; it could be either finding the iTt,b by adding

the lengths of each link together,

_ { | o}
D= (2.28)

or we can use the multiplication property of matrix, as shown in (2.16),

', ='D,'D'D, (2.29)
where,
@,
iCDb _ 0
0

2.3.3 Kinematics of cooperating manipulators

The kinematic equations for each cooperating manipulator are the same with the
equations of a serial manipulator. One crucial difference is the kinematic constraint,

which will allow the manipulators to work together.
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€ 0 Moving Platform 0 N

Figure 2.6 : Cooperating manipulators on a moving platform.

We define a kinematic constraint, which makes the several manipulators to make the
same operation like holding an object or tracking a trajectory together. Let us say the
manipulators are holding a rigid object and carrying it while tracking a certain
trajectory. The velocity vector of the object is VC. It is obviously that we can

transform the velocity from the object to the tip points of the manipulators by

defining a new @ matrix:

W='o, V. (2.30)

tc

The '®,, matrix will include the kinematic constraint. Since the manipulators are

holding an object, the distance between the tip points and center of the rigid object

will never change (Figure 2.6). For one manipulator, the id)t’cwill be,

_ {l o}
D = o (2.31)

If we generalize (2.30) for p number of manipulators, the kinematic constraint of the

system will be,

1

[N
|

1

—_

t.c

H

N
-
N

t.c

t,c c

w
H
11
w
- B

—_

TRERD

PO

—
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V=0, V, (2.32)

So far, we calculated the spatial tip velocity vector of each manipulator. Now to find
the kinematic equations of each arm, we will follow the same steps for each one, as
we did for a serial manipulator. If we consider the cooperating manipulator system
operates on a moving platform as in Figure 2.6, then we can utilize (2.27) for each

manipulator,

1\2:13 0 +lq)t,b\:}b
Z\Z/t:z‘] ‘0 +2q)t,b\:/b
3\:/1:3‘] %0 +3(Dt,b\::/b

PV,=P P +Pd, W, (2.33)

If we reconfigure (2.33) into a matrix form, we get

S - ]
0 0 - 0l ‘o,

V|0 23 0 01 % 2D, |

3:t =l0 0 3 - 0] %+ D, |V, (2.34)
o _0 0 o .- PJ__pé)_ _Pq)t’b_

L t_|

This representation reveals the relationship between joints and tip velocities, yet it is
different from the classical notation of forward dynamics, as in (2.25). For this

reason, first, we need to redefine the following matrices as,

v, v,
v '0

\_/: 2V 6= 29 (235)
PV PO

o 0 O 0 |

'‘od, '® 0 0

O=|’dd, 0 *® .- 0 (2.36)
PO®, 0 O PO
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I 0 O 0 ]
0 'H 0 0
H=l0 0 ?H -~ 0 (2.37)
0 0 0 PH |
0 '®, 0 0
0 0 ?*® -+ 0
®= : : :t . : (2.38)
0 0 0 P,

Therefore, the new Jacobian will be,

‘o, J 0 ... 0
‘d, 0 23 ... 0

J= : ' : oo : (2.39)
o, 0 0 ... PJ

Now, using the new representation we have the classic forward kinematics equation,

V=30 (2.40)

2.4 Dynamics

In this section, we will first start with basic information in dynamics of a particle and
arigid link. Later on, we derive the dynamic equations of a serial n DoF manipulator
using spatial vectors. In the beginning, we calculate the joint accelerations, and later
the joint forces. After that, we find the equation of motion in both forward and

inverse dynamics form.

2.4.1 Preliminaries in dynamics of a rigid link

The dynamics of a particle infer its angular and linear momentums, which occur due
to the torques and forces on the particle, respectively. Let us consider a particle on a

rigid body in frame B, where the reference base frame is A (Figure 2.7).

The mass of the particle will be,

m= % ([ p(NdQ (2.41)
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Figure 2.7 : Dynamics of a particle.

where, p is the mass density and Q is the volume. The Kkinetic energy will be,
1 12
T=2[p(n[Fdo (2.42)
Q

where V represents the linear velocity and,

v =P+Rr (2.43)

where R is the rotation matrix. If we place (2.43) into (2.42), the Kinetic energy

equation becomes,

1 = 1 -
T=_mlp| +-o"lo (2.44)
2 2
where | is the inertia and,
| =mr? =Ip(r)r2dQ (2.45)
Q

Now, we know that the time derivative of angular and linear momentum will give the

torque and force, respectively:

f =—(mv) (2.46)

For the rigid body transformation, we will use the propagation matrix, which we
found for kinematics. In fact, Jain’s table [17] would be very useful before we start

to calculate link accelerations and forces:
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Table 2.1 : Rigid body transformations [17].

Point k Point k+1
Spatial Velocities :k \:/k+1 = <I)k+1yk\:/k
Spatial Forces IZZk = (DTk+1,k_|_::k+1 IZZk+1
Spatial Inertias M, =®",, M, @, .., M1
Kinetic Energy T, :%\:/kTMk\:/k TM:% :|<T+1Mk+1\:/k+1

2.4.2 Calculation of link accelerations and forces of a serial manipulator

In dynamic model of the system, first we need to take the time derivatives of the

angular (2.9) and linear velocities (2.10). For the angular acceleration,

& =0+ 'R+ D, (247)

iﬁk iék = i@ - i(?)k—l
For the linear acceleration, we take the time derivative of (2.10)
i\_.ik = i\_.ik—l + ié)k—l x il_l;—l,k + ia)k—l x ii;—l,k
By using (2.8) for the time derivative of vector I, ,,

i i i i & i i~ i
Vo=V, = b X0+ @ x (o x T gy) (2.48)

Now, if we put (2.47) and (2.48) into the matrix form to get the spatial acceleration

vector,

i\i/ =|:i&')k}=|: I OHié)k_l}{iﬁk} i 4+ iC?’k—lxiﬁ?’k (2.49)
‘ 'V, _Ilk—l,k Vs 0 ‘ i@k—lx(i@kxilk—l,k) .

The more general representation will be like,

i\:/k = i(Dk,k—li\:/kfl-i_ ! ﬁ'k iék + igk (2.50)
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where, ‘&, represents the spatial bias accelerations.

Now let us implement (2.50) for each link of the manipulator. First, we assume that

the arm (manipulator) stands on a fixed platform. Hence,‘\*/0 =0. The acceleration

vectors of the other links are to be calculated as follows,

e

i 0:0
iﬁlziﬂliél"'igi
V=0, e B+ = 0, () G+,

i\i/n:i (‘: H,'6 + ai) ('ﬁziéz + i§2)+...+iﬁn‘én+i§n (2.51)

.1 | 0 0 0 IH1 0 0 0 iél _'51_
"V, | |'®,, i 0 o/l 0 'H, 0 04| |5
iv |~ ICDsl ICDs,z I 0 0 0 iﬁg 0 IHS + Ié:s (252)
3 . .
D, D, '© | g |z
i ! ? : 0 0 0 A, - LE

Moreover, the general matrix form of acceleration vectors for each links will be

'V="o('H'd+ a) (2.53)

For the forces, on the other hand, the calculations will be done from tip towards base,
instead of from base towards tip as in the calculations of velocity propagation,

because of the boundary conditions of a two point boundary value problem [1]. For
the torque propagation,

i i Fooir i d i i
IR R AR A mk+a( I a’k) (2.54)
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where, 'l . represents the distance vector from the origin of the link frame k to the

center of mass of the rigid link, and 'I, is the link inertia. The term due to rotation

can be expressed by using the idea of time derivation of a vector:

dii i T T PR S PO I PO I
a( Ika)k): Lo+ 1o =a x|, g+l a

The first and second terms of the right hand side of (2.54) come from the successor
joint k+1, the third and last terms come from due to translation and rotation,
respectively.

For the force propagation,
'f =1, 1Jr‘mki(‘\7k+ @ x I, ) (2.55)
+. dt ,C
where,
d i i i i i i i i iT
a( V, + '@ x |k,c)= Vo + '@ x|+ '®, x( @, % Ik,c)

Now, if we put (2.54) and (2.55) in the same matrix, we get the spatial forces,

i|3:k= z}
|fk

R I [E RN
0 I T _Ilk,cxlmk axal M, \A 'm'd x (‘@ x', ) l

which can also be shown as

Py

T i i i i
k — (D k+1,k I:k+l+ I\/lk V +

I

(2.57)

where,'F,,'M,and 'b, represents link spatial forces, link mass matrix and the

remainder terms, respectively.

Now if we implement (2.57) for each link of the manipulator starting from the n"

link, we get the spatial forces for each link,
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iI:::l: icI)Tt,liI:::t_'_iq)-rn,l(ilvlni\::/n + iB:nj—i_iq)-rn—l,l(iI\/In—li\:/n—l + ign—1)+"'+il\/lli\:/l + iﬁl

If we stack up the entire link spatial forces,

i'j:i i i i i ial _I:—

B e, ey, o, 1I'Mm, o o o] 2| "

‘Bl o 1 o, 'd, (|| 0 'M, 0 0 ||'V,| | b ~

iE [=[0 0 | ‘D, 0 0 '™ 0 ||.& |+ g [+'®"F

; | IR VT (288)
= o o o | 0o 0 0 ™, | E

The more generalized form will be,
= i®T(iMi\Z+ib+i®tTi|§t) (2.59)

Now we have the spatial force equation of one rigid arm. To find the applied torques,
let us first place (2.53) in (2.60)

'F= ‘cDT(iM‘QDiHiQ+‘MiCI)‘§+iQ+iCDtTiIZZt) (2.60)

Since the applied torques are the projections of the link spatial forces along the axis
of rotation,

'z="H"'F (2.61)

If we place (2.61) in (2.62), we find the applied torque equation

izziHTiq)TiMiq)iHié—FiHTiQ)T(iMiq)i§+ib)+iHTi(DTi(DtTi|:::t

(2.62)
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where, 4, 'C and 'J7 represents generalized mass matrix, bias terms and
transpose of Jacobian matrix, respectively. The equation of motion regarding the

forward dynamic is,
0= ml(‘f—‘J“E) (2.63)
where
'T="r-'C

2.4.3 Dynamics of a serial manipulator on moving platform

In this case, we will consider a manipulator on a moving massless platform. We will

configure our equations by adding the platform acceleration in (2.51),

'H,'d, + ‘51)Jr‘<13,]2(ilf|2‘92 + ‘52)+...+'Hnién+‘§n (2.64)

Il
S
<
+

i)
T

where base point acceleration, the term i\7b, includes both platform and bias

accelerations,

1

<

b p+

Hu

where, i\7p is the platform acceleration and &, is the acceleration term that includes

gravity. If we reconfigure the equations according to this idea, the equation of motion

will be,
B i/l/l(if—‘/l/{b‘:b—i:l”:t) (2.65)
where,

i/l/{:iHTiQTiMi®iH
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iC= iHTi®T(iMiq)ia+ib)
M — iHTiq)TiMi(Di(Db

For the dynamics of more complex systems, [1] can be referred.
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3. BIPEDS AND PASSIVE DYNAMIC WALKING

3.1 Purpose

The human locomotion has been an interesting topic to study for several decades.
People, and of course scientists have curiosity on human-like robotic systems, which
have human characteristics. Biped walking is one of these features, which is also a
physical system to be investigated. The natural movement of human walking is an
outcome of the gravity effect on the body; means on a shallow slope plane, a biped
system can successfully make its walking cycle only using the gravitational force. In
literature this kind of systems are called as “passive dynamic walkers” [19].
Obviously, achieving a walking routine without any external source or control
mechanism is very useful for both robotic applications and development of the
artificial prosthetic limbs. Since it will reduce the cost of operation, the biped or
human-like-walking robots will have smaller battery packages and easier controllers,
while people will use less energy to achieve the daily walking tasks, those need

prosthetic legs for these purposes.

In this chapter, we will use the spatial operator algebra on a 2D planar passive walker
to analyze the force distribution on each joint and contact point, feet of the legs, with
surface. The second section explains the design parameters and the model of the
walker. Section three will show how to implement the SOA on the chosen model.
Section four presents a novel approach, proposed by [1], and called “pseudo joint”
method, which is used to constrain the movement of knees for knee-locking. In
section five we have explained the closed-chain dynamics, which appears when the

two feet of robot touches the ground. Once the force vector of the base point on T
direction has positive value, the kinematics of the robot has been reconfigured by
switching rule using a transformation matrix, T, and walking period will continue in

this order. The following chart in Figure 3.1 reveals the programming logic.
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Initial Parameters

v
F=0, =0

oth

Feet on
Ground

Switch Rule

N
v Calculate
Calculate T~ Calculate E F and 1
Y Y Y
System Dynamics: Q — A (z- -C —JTE)

Figure 3.1 : Programming chart of walking session.

3.2 Passive Dynamic Walking and Model Design

In this section, we will explain how we chose the system model and the parameters.
First of all, it is a planar passive dynamic walker, which makes only longitudinal
motion, but no lateral. So the system will operate in 2D space, which means the task
space will consist of 3 DoF element. Figure 3.2 shows the examples from different
studies on planar kneed passive walkers. Our system, Figure 3.4, consists of one 5
DoF manipulator. The first joint, also the base point, is the first foot; and the 5™ joint
is second foot. The second and 4™ joints are knees, which have a special locking

system. The third joint is the hip.

The main purpose of using kneed-legged biped instead of simplest mechanism with
straight legs, is first its appearance is more human like, and second; because of the

‘foot-scuffing’ problem, as in Figure 3.3.
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(a) (b)

Figure 3.2 : Planar passive dynamic walkers with knees.
(@) McGeer [21], (b) Asano et al. [49].

In straight legged model, the swing leg remains below the floor level at around
midstance. Knees will surely prevent from this case [28].

Figure 3.3 : Foot-scuffing problem [28].

Our legged system is shown in Figure 3.4, where the joints are rotational around x-

axis, and displacement occurs on y and z-axes.

The first joint is the one of the foots and also the base point. The second and sixth
joints represent the elasticy and the flexibility of the surface. The third and fifth
joints are knees of biped system. The fourth joint is the hip. As it is seen from Figure
3.4, the leg in contact with surface is called as stance leg, and the free leg is called as

swinging leg.
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Figure 3.4 : Passive dynamic walking biped robot.

The paremeters used for simulations are chosen from [49], and listed in Table 3.1:

Table 3.1 : Parameters of biped model.

PARAMETER DEFINITION VALUE UNIT
m, Swinging Leg —Shank Mass 2.00 kg
m, Swinging Leg —Thigh Mass 3.00 kg
m, Stance Leg —Shank Mass 2.00 kg
m Stance Leg —Thigh Mass 3.00 kg

4

Swinging Leg —Shank Length ~ 2.00 m
Swinging Leg —Thigh Length 2.00 m

Stance Leg —Shank Length 2.00 m
1, Stance Leg —Thigh Length 2.00 m
g Gravity Acceleration 9.81 m/s

1

N

|
|
|3

2

The center of mass and the geometric center of each leg are considered as coincide.

y represents the slope angle.

The one important point on biped design is specific cost of transportation. This
dimensionless term means the amount of required energy to complete the walking
task by carrrying the weight of the system over a distance. As in [29], it can be

represented in equational form as
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C, = (energy used) / (weight x range traveled)

where c, represents the cost of transportation. One of the most efficient passive
dynamic walking design was made by Collins, et al.[29] with c, =0.2. “Cornell

Ranger”, on the other hand, is a developed passive walking based robot and has the
world record of 65.2 km non-stop walking [50],[51].

In this thesis we are interested in observing the force distributions of passive
dynamic walking sequence using SOA. As a future work, the system can be
developed for more efficient designs, using the knowledge of force and torque
propagation on each elements by the help of SOA.

3.3 Implementation of SOA Method for Planar Bipeds

We considered our planar passive dynamic walking system as a form of serial
manipulator on a moving platform. In second chapter we gave detailed calculations
for this kind of systems. However, SOA method was built on the idea that the task
space of tip points has 6 DoF. For a 2D planar system, this space has to be reduced
into 3 DoF.

In task space we would write the forward kinematics like,

_wal J(UXZ wa3 ‘](ux4 Wy ] o
0 0 o0 0 0%
a1l llo o o o of|%
i 17llo o o o oll% (3.1)
: .
J A J V\ J A J V\ J A" 0'4
v Yo Y3 2 Y5 95
J Vz1 J sz J VZ3 J VZ4 J V25 - h

It is obvious that there is no need to calculate a part of Jacobian, which is covered by
a red rectangle in (3.1), and which represents the rotations around y and z axes, and
translation on x axis. Hence, the task space of tip point of a leg can be reduced into 3
DoF space:

}: vV (3.2)
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And this holds for each joint,

(3.3)

Another important point is that we need to reconfigure @ and H matrices for new
configuration. In our model, all rotations are in %, and translations on y and Z.

Then H matrix of each rotational joint will be,

1
H.=0 (3.4)
0
and for translational joints,
0 0
H.=|0|orH =1 (3.5)
1 0

according to the relevant axis. Then for the 5 DoF planar biped system, H matrix will
be,

1 00 000 0O0O0OOO OO0 O]
0 0010O0O0OO0OO0OO0OOOSOO0OOQO
H™=l0 0 0 0001 000O0O0O0TO 0O (3.6)
0O 000O0O0OOOOOI1O0O0OO0OO0ODO
/0 000 0O0O0OO0OOOOOT1O0 0}

The calculation of ® matrix was based on cross product of vectors (2.11) — (2.13),
which was defined in 6 DoF task space. We need to find how to calculate @ for a
planar manipulator system. Let us start by obtaining @ for a rigid link between joint

a and joint b in 3D space. The length vector from joint b to a is,

IX
Lo =1, (3.7)
IZ

Utilizing (2.11) — (2.13) , we can find the velocity propagation from joint b to a,
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Do | T2 0 0 0 Of %

@, 0 1 0 0 0 0| @,

, 0 1 000

v lo I, -, 100 \a,:,b: (38)
v, -, 0 L 010y

v, I, -, 0 00 1] v,

Since we ignored the rotation around y and z axes, and the translation on x axis, the

equation (3.8) can be formed as follows,

— | o
o | T1 0 0 b o0 0]
|
@yt 0 — - — 00
| a)ax 1 O O a)bx
_a_)az_____o___D___{l__h_O__O__%z__
= | | — v, |=|-l, 1 0|y (3.9
v, |10 4,40 ofy | 1 o s "
v, 0 b1y Ve ’ e
o I T T N
_VaZ 4 - Y IX | | __Vbz
Therefore,
1 0 O
®,=-1, 10 (3.10)
I 0 1

Since cross product is defined only for 3D space, we will define a cross product

operation in 2D space as,
- . -,
Ib,a>< = Ib,a = I (311)

Additionally, we need to reconfigure the base point acceleration, bias accelerations,

inertias, mass matrix for k™ joint, like

0
a,=| gsiny (3.12)
| gcosy
[0 0
a=|-1 0 9I<2—1E<—1,k (3.13)
10 -1
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b =m|-1 0 |6, (3.14)
0 -1
e =my [l (3.15)
2y
‘Ikc Ikc
M, =m"" ’ (3.16)
Ik@ 2x2|
where,
- 1
‘Ik,c ZEHIk—l,kH (3.17)

3.4 Knee Locking Mechanism Using Pseudo Joint Technique

In kneed-bipeds, the knee joint is designed with a constraint, which prevents from an
abnormal movement, i.e. bending forward, as in Figure 3.5 (a), and it needs to be
locked, as in Figure 3.5 (b).

hi
movement P movement

hip _— _—

knee
knee

foot

foot
(a) (b)
Figure 3.5 : Knee locking.

It is obvious that we have to constrain the knee joinst to make this possible. For this
reason, we will use a novel approach, which was presented in [1], and called as
“pseudo joint” method. Briefly, we will choose the knee joints as pseudo joinst and
calculate the necessary torques to keep their angles at zero at all times before the

retraction .
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First, we need to obtain a linear operator, let us say S, to divide the joint space into
two subspaces; real joints and pseudo joints. S will be obtained by rearranging the

rows of nxnidentity matrix, |, where n is the total DoF including pseudo joints,

n

which are the kneed-joints in our case. S is an orthogonal matrix.

In our model n=5 and pseudo joints are the 2 and 4™ ones. Let us first obtain the S

matrix,
1 0 0 0 0] (1 0 0 0 O]
01000 00100
s=[0 01 00/ - S=/0 0001 (3.18)
00010 01000
10 0 0 0 1] 10 001 0]
If we multiply S with @,
_491_ _01_
92 03 9
6=\4,| - S6=|4 :{9_} (3.19)
0, 6, -°
_05_ _6?4_

Bu using the orthogonal property of S matrix, the rearranged form of the inverse

dynamics becomes:
=D7+E

(SDST) Tougmened + SE (3.20)

augmented

6| [d, d,|[7] [e
Lv-Hdg N o2

where,

Here, Dand E matrices are obtained for augmented system. Our purpose is to find

the torques at other joints, which are not pseudo joints, where 9p =0. Therefore, the

equation of motion for no-pseudo joints is achieved as:
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6 =D,7+E (3.22)
where,

D, =d, —d,d;'d,

o (3.23)
E, =e —d)d,®e

provided that d, is full rank.

With this method we only ensure that the pseudo joint accelerations will remain zero.
In order to keep the joint velocity and the position at desired values, we need to find
the applied torques by using PI controller. This will be mentioned in the following
chapter.

3.5 Chain Dynamics and Switch Rule

In this section we will show how to calculate the dynamics of a closed-chain system,
which occours when the both feet of the biped robot touch the ground. Since the base
point is always touching the ground during the first step, we need to check the tip

point coordination. If L, =0, it means that the second foot is on the ground too. In

this moment, we need to calculate the dynamics of this closed system, where the
linear velocities and accelerations of the tip point should be zero, in order to prevent
its movement in YZ plane. The Figure 3.7 shows the transition from a serial
manipulator system to a closed-chain system. It is obvious that the rear leg will need
to step forward to complete the movement. Therefore, we switched the base and tip

points by using a switching rule, when F,_, <0.

ase; —

-

Base

Figure 3.6 : Closed-chain system.
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In closed-chain condition, the linear velocities and accelerations of the tip point have
to be zero. This constraint can be showed in (3.26)

V,=J6=0
. (3.24)
V,=(36+36)=0
where
010
A=
0 01
Also the external forces on the tip point need to be constrained in order to keep it on
the ground,
R = Af, (3.29)

By utilizing (3.24) and (3.25) in (2.64), we get the dynamic equation of the closed-

chain sytem:
IM™MT-3T'R)+3b=0
(IAMIT)ATE =IM T+ 30
f,=A(IMNT) (I (z-C)+ 30) (3.26)
Where 7 =0, and from [1];
JO=dda+dDOHI (3.27)

The external forces on the tip point will be:

= _[o
- _{ f } (3.28)

c

However, this will also ensure to keep the tip point accelerations at zero, but not its
velocity and position. As for the knee locking, we can use a Pl controller to find the
external forces on tip point. This is mentioned in the following chapter.

The results will be valid from the first touch of the swinging feet to the ground and
till R, <0. Once this happens, the base and tip points have to be replaced. Since

the biped system is symmetrical in both kinematical and dynamical sense, we only
need to define a transformation matrix to change the coordinate axes, the order of

links, joints, angles, etc. Let us define this translation matrix, T, as following:
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[0 0 0 0 -1
0 0 0 -1 0
T=[0 0 -1 0 0 (3.29)
0 -1 0 0 0
-1 0 0 0 O]

First, the switch rule will be ensured using T for joint angles, velocities and

accelerations as in (3.30) :

0=T6

0=T6 (3.30)

0=T0
After that, we need to switch the coordinates of each link. It is obvious from the
design of biped system, the link distance between 5™ joint and tip point is zero, since
5% joint is also the tip point (Figure 3.7).

Figure 3.7 : The length of tip link is zero.

In SOA calculations, we use ®,, which includes I, =0 , to calculate J and other

matrices. After taking a step, the base and tip points need to be changed as shwon in
Figure 3.8 .

By considering this fact, we defined another translation matrix, T, only for the

coordinate axis y and z.

[0 0 0 -1 0
0 0 -1 0 0
T.=|0 -1 0 0 O (3.31)
-1 0 0 0 0
0 0 0 0 -1
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Figure 3.8 : Joint numbers and links after taking a step.

And now we can update the coordinates after taking a step:

y=yT,

z=1T, (3:32)

As a result of this method, the place of tip and base points will always change after
chain dynamics completed. This also means that, if the front foot is the tip point at
the initial conditions, then after first step the tip point will be the rear foot, and base

point will be replaced in this manner.
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4. EXTERNAL FORCES DUE TO BOUNDARY CONDITIONS

In this chapter, we focused on the calculation of external forces and torques due to
the boundary conditions using PI controllers. In section 3.4, we have calculated the
necessary torques on the knees to lock them using pseudo joint technique. This is

shown as in 7, Figure (4.1). However, this will result only the torques, which keeps

the knee joint accelerations at zero, but not its velocity or angle. For this reason, we
designed a PI controller, which will simulate the effect of the latches on the knees.
The P and | values of the controller depends on the characteristics of this latch or
knee mechanism. Obviously, we have chosen high values for P compared to | to
decrease the rising time, while keeping the overshoot in a admissible range and

keeping the steady state error at zero.

TP
9?‘6 =0 + Qerror o) Tc)é'l' Tk System 9
\ + Dynamics

Figure 4.1 : Position control for knee joints.

Similarly, to control the position in y and z directions of foot touching the ground, we
have used Pl controllers. In section 3.5, we have calculated the constraint forces to

set zero the tip point accelerations. This is shown as F__ in Figure 4.2. However,

this is not enough to keep the tip point at zero in z direction and at its last position in
y direction. The PI controller in Figure 4.2 also represents the effect of ground like
flexibility. Since we need to control the tip point in both directions, two different
controllers have been created. But two of them are similar, hence we showed one
general representation of these controllers in Figure 4.2, where d indicates the

current position in mentioned directions. The P and | values of the controllers depend
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on the characteristics of the surface, and they have been chosen in the same logic as
explained above for knees.

dref‘ = 0 T derror

Figure 4.2 : Position control for tip point (foot touching the ground).

System d
Dynamics
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5. RESULTS, CONCLUSIONS AND RECOMMENDATIONS

In this chapter, we will show the results of our simulations. The purpose of this thesis
was implementing a novel approach, SOA, on a promising area of robotics, passive
dynamic walking. The first results have been achieved about the kinematics of the
system, and it revealed that the system is kinematically sufficient. After that, we have
tested the passive dynamic walking session. The gravitational force is applied as only
external force to the system on a shallow slope ground. Since our purpose is to
analyze the passive dynamic walking for biped robots; we did not pay attention on
the initial conditions, but focused on constraint forces for touching the ground, chain
system, taking step and also knee locking. The results showed that the SOA
algorithm provides insight look of the system, which allowed us to find constraint

forces, more importantly during both feet are on the ground.

Finally, we have concluded our study and presented our recommendations including

the possible future study ideas.

5.1 Kinematics of a Biped System

In this section, we will present the results of forward and inverse kinematics for 5
DoF system. For this purpose, we commanded our biped to lift one of its legs, hold it
for a while, and drop it to the starting position. This results are not directly related to
the aim of this thesis, however before passive dynamic walking, we need to be sure
that our codes generates true configuration matrices like H, ® and J. Figure 5.1

shows the task, and Figure 5.2 presents the results.

Figure 5.2 shows that our robotic design is kinematically sufficient.
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Tip
Base Tip Base Base Tip
POSITION OF TIP POSITION OF TIP POSITION OF TIP
X 0 X 0 X 0
Y | Lsin(pi/4)+1,sin(pi/4) Y | Lsin(pi/4)+l;sin(pi/4) Y | Lsin(pi/4)+1,sin(pi/4)
z 0 z I z 0
|=I,=l,=l,=1,=0.5

Figure 5.1 : Example task for biped system.
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Figure 5.2 : Tip point results of leg lifting and dropping.
5.2 Dynamics of a Biped System

In this part, we will present the dynamical results of the designed biped system
during its passive dynamic walking session. The robot starts with its initial
conditions, as given in Figure 5.3 and acts only under the gravitational force on a
shallow slope surface with calculations explained in Section 3.3. Once the front foot,

in this case the tip point, touches the ground, the chain system dynamics are
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calculated. The calculations for first step continue, until the sign of reaction force on
z direction of the base point become negative. This means that the switch rule needs
to be applied to the system to change the moving foot, as shown in Section 3.5. and
4.2. During whole process, the knee locking needs to be maintained, as explained in
Section 3.4 and 4.1.

Initial Conditions

0 rd
1 0
62 -/l rd
6, Vs . 1 =eeeeteceeaeeoTE
94 8 rd Allinitial velocities are zero.
95 0 rd
}/ -0.2 rd
g 981 .

Figure 5.3 : Taking a step of biped robot under the gravitational force.

The results of this process have been shown in the following figures. Figure 5.4
shows the level of tip point in z direction. Once the tip point touches the ground, the
calculations for chain system dynamics take place for a short time, and then the first
step is completed. After that switch rule takes place and the base and tip points are

replaced by each other.

In this case, shown as in Figure 5.3, the tip point is the foot, which touches the
ground first. For this reason, there will be an impact force on it, when it touches the

ground. Figure 5.5 shows this result.

The reaction forces on base point (rare foot) are also important, because the sign of
the force on z direction helps to decide when the switch rule needs to be applied. This
decision is made only if the tip point is already touched the ground. The forces on

base point have been shown in Figure 5.6.
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Figure 5.4 : The level of the tip point of the robot.
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Figure 5.5 : Reaction forces on tip point (front foot).

Besides all of these results, another important result of this case is about knee locking
(Figure 5.7). As shown in Section 3.4 and 4.1, it is necessary to apply torques on
knees, i.e. second and fourth joints, when knee locking is needed. This will simulate

the effect of the latch, which would prevent the knees bending into forward.

All simulations have been implemented in Matlab, using .m files, Simulink and
VRML (3D Simulation) toolbox. Figure 5.8 shows an overview from VRML
modeling, which is very close to Figure 5.3.
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Figure 5.6 : Forces on base point (rare foot).
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Figure 5.7 :

Applied torques on the joints.
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Figure 5.8 : Taking a step.
5.3 Conclusions and Recommendations

In this section we conclude our work and give some recommendations for future
studies. In this thesis, we studied the dynamics of a planar passive walking biped
robot using Spatial Operator Algebra (SOA) method. The advantage of this
technique is that it provides insight into the structure of rigid-body by analyzing the
system using vectoral representation. Because of its recursive manner, the calculation
steps are fast for any complex system. That is why, we introduced this method for
both kinematics and dynamics of any kind of system, but focusing on the serial
manipulators, since we modeled our biped robot based on it. We designed a 5 DoF
biped robot in 2D space, including knees. Since knee locking is a natural mechanism
for a human leg, we used “pseudo joint” technique to make this virtually possible.
The rearrangement of SOA method for 2D space is important, because it prevents the
unnecessary calculations, and more relevant to the purpose of this thesis, since we
want to implement this method for a planar passive dynamic walking biped. The first
Matlab-Simulink result is on the kinematics of a 5 DoF biped robot, and it revealed
that SOA method successfully works for bipeds. The latter results are about the
dynamical analysis of the aforementioned system. Since the purpose of this thesis is
to analyze the dynamics of a passive walking biped robot, instead of finding its
proper initial conditions, we have focused on the calculation of constraint forces and
torques on foot touching the ground and knees, respectively.

The pseudo joint technique to calculate the constraint torques to maintain the knee
locking and chain system dynamics to find the constraint forces to keep the touching
ground foot on the surface level are both efficient, when only the accelerations in
aforementioned joints meant to be kept at zero. However, our purpose is to find the

constraint torques and forces to keep their position at zero. For this reason, we have
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used PI controllers, which also simulated the characteristics of the latches for knees
and surface for the feet. The P value represented the stiffness of the material (latch or

ground), and I value eliminates the steady state errors.

For future studies, the 3D analysis of such systems with upper body and swinging
arms can be done, since the SOA method has more advantage for more complex
systems. This has been studied before by different scientists, however with SOA
method we are able to analyze the forces on feet, joints and links of the biped system.
This is important for designing this kind of systems. Besides, the realization of the
system is also important, since this thesis focuses only the theoretical background of

such systems and its implementation in Matlab-Simulink environment.
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