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DYNAMICAL ANALYSIS OF A PASSIVE DYNAMIC WALKING ROBOT 

SUMMARY 

The researches on Biped robots are promising a significant development both in 

robotic and medical fields. The dynamics of bipeds, or two-legged systems, is an 

attractive topic for researchers for many decades, since it reveals the mathematics 

and physics behind the human-walking. This yields many important applications 

such as improvement in design of prosthetics. 

 

Passive dynamic walking, which is a challenging design problem, is a case, where a 

biped mechanism walks only by the gravitational force on a shallow slope ground. 

Two-legged system repeats full walking cycle under the influence of the gravitational 

force. This idea is mostly being used for efficiency problem of bipeds, since 

researches on this area introduced improved design techniques. 

 

This thesis aims to study the dynamical analysis of a planar passive dynamic walking 

biped system using Spatial Operator Algebra (SOA). This method is very useful to 

compute kinematics and dynamics of all types of complex robotic systems, which 

also reveals the force and velocity distributions of links and joints. It is also known in 

the literature as a high performance algorithm. Therefore, it is important to utilize 

this method to have a true understanding of passive dynamical walking. To explain 

this method in steps, we have introduced first the SOA method for the kinematics of 

serial manipulators on a fixed platform. After that, the effect of moving platform has 

been discussed. In kinematic analysis, the equations also have been composed for the 

cooperating manipulators on a moving platform, which is  a complex system. 

 

This thesis is focused on a planar passive dynamic walker, which is modeled based 

on the aforementioned method. Since the system operates in 2D space, some required 

adjustments to make the SOA work on 2D space has been represented. Due to the 

nature of human legs, the biped is modeled with knees and a knee locking system 

using pseudo joint technique, which prevents the knees from folding forward. The 

most important contribution of this thesis is the calculation of constraint torques and 

forces on knees and the feet when both touch the ground, respectively. 

 

Consequently, we have implemented SOA method on a planar passive dynamic 

walking biped robot, which could provide deep insight of this kind of systems. The 

latter results show the dynamical analysis of the system. 
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ĠKĠ BACAKLI PASĠF DĠNAMĠK YÜRÜYEN BĠR ROBOTUN DĠNAMĠK 

ANALĠZĠ 

ÖZET 

İki bacakli robotlar üzerine yapılan çalışmalar robotik ve tıbbi alanda büyük 

gelişmeler yaratmaktalar. Uzun yıllardır devam eden bu calışmalar tıpta özellikle 

protez bacakların gelişimi, robotik alanda ise insansı robotlar üzerinde hatrı sayılır 

ölçüde yenilikler getirmiştir.  

 

İki bacaklı robotlar birçok yönden araştırma konusu olmakla birlikte, bu tez 

kapsamında bizim ilgilendiklerimiz pasif dinamik yürüyen robotlardır. Pasif dinamik 

yürüme kavramı ile ifade edilmek istenen şey, iki bacaklı bir sistemin yerçekimi 

kuvveti etkisinde eğimli bir yüzeyde yürüme hareketini gerçekleştirebilmesidir. 

Sistem sahip olduğu ağırlık ve üzerinde bulunduğu yüzeyin eğimi sayesinde eğim 

yönünde düşme hareketi yapar ve ilk konfigürasyona bağlı olarak bir bacak diğerini 

takip edecek şekilde harekete geçer. Hareketin başlangıcında yerde olan bacağın, 

diğer bacaktan sonra tekrar yerle temas etmesiyle yürüme hareketinin ilk devri 

tamamlanmış olur. Sistem devrilene kadar bu harekete devam eder. Burada dikkate 

çarpan kısım, yürüme hareketinin sistemin tasarımı gereği doğal bir hareket 

olduğudur. İki bacaklı bir sistem uygun başlangıç koşullarında sadece yerçekimi 

kuvveti ile yürüyebilir. 

 

Pasif dinamik yürüyen robotlar üzerinde yapılan araştırmaların getirdiği avantaj ise 

daha az enerji harcayan insansı robotların önünü açıyor olmasıdır. Kendiliğinden 

yürüme devrini tamamlayabilen bir sistem, daha az eyleyici ve kontrol 

mekanizmasıyla daha uzun mesafeleri yürüyebilecektir. Tüm bu tasarrufların yanı 

sıra, daha az enerji daha az güç üniteleri gerektireceğinden, insansı robotun taşıması 

gereken pil grubunun boyutları daha ufak olacaktır. Tüm bunlar daha karmaşık işleri 

daha az enerji ile yapabilen, yürüme kabiliyetine sahip insansı robotların gelişimine 

büyük katkı sağlamaktadır. 

 

Yaklaşık olarak pasif dinamik yürüme kavramının ortaya atılmasıyla aynı zamanlara 

rastlayan Uzaysal Operatör Algoritması (UOA) ise, karmaşık robotik sistemlerin 

kolayca modellenmesine olanak sağlayan, temeli Newton-Euler hesaplamalarına 

dayandığı için herhangi bir link veya eklemin kuvvet veya hız bilgilerini göz önüne 

serebilen, özyinelemeli yapısı sayesinde kendinden önceki algoritmalara oranla daha 

hızlı hesaplama yapabilen bir yöntemdir. Uzaysal kavramı, açısal ve doğrusal 

vektörlerin bir arada tanımlanması nedeniyle kullanılmaktadır. Özyinelemeli yapısı 

sayesinde n. dereceden,  n , hesaplama yapan algoritmalar sınıfına girmektedir. 

Normalde robotik sistemlerin kinematik ve dinamik hesaplamaları genelleştirilmiş 

koordinat sayısının, n, küpü şeklinde artmakta iken, özyinelemeli algoritmalarda 

doğrusal olarak artmaktadır. 
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Teze ilk olarak bu iki konu hakkında daha önceden yapılmış önemli çalışmaları ve 

sonuçlarıyla yaptıkları katkıları sıralayarak başlanmıştır. Ardından sırasıyla UOA 

yöntemi ve bu yöntemin pasif dinamik robotlara uygulanışı anlatılmıştır. 

 

UOA yöntemi tez içinde ikinci kısımda kinematik ve dinamik olmak üzere iki ana 

başlığa ayrılmıştır. Kinematik ifadeleri açıklarken öncelikle bir vektörün türevinin ne 

anlama geldiği; o vektörün, dönme veya öteleme ekseni ile vektörel çarpımıyla aynı 

şeyi ifade ettiği gösterildi. Ardından UOA için büyük önem teşkil eden hız yayılım 

matrisinin oluşturulması açıklandı. Ayrıca kuvvet dağılımında da kullandığımız bu 

matris, özyinemeli algoritmanın temelini oluşturmaktadır.  

 

Robotik sistemler için kinematik denklemlerin çıkarımına, daha basit bir sistem 

olduğu için hareketsiz platform üzerindeki n serbestlik dereceli seri robotlarla 

başlandı. Bütün linkler için hız denklemleri yazıldıktan sonra ortak matris gösterimi 

ile ifade edildi. Ardından uç işlevci ile robotun geri kalanı arasında bağlantı 

sağlanarak ileri kinematik ve sonrasında ters kinematik bağlantılarına ulaşıldı. 

Sonrasında hareketli bir platform üzerindeki seri robotun kinematiği incelendi ve üç 

boyutlu uzayda hareketli platformun bütün sisteme altı serbestlik derecesi daha 

kattığı görüldü. 

 

UOA yöntemi daha karmaşık sistemler için daha büyük bir fark yarattığından, ortak 

çalışan robotların kinematiği de bu tez kapsamında incelendi. Hareketsiz ve hareketli 

platform durumlarının ayrı ayrı dikkate alındığı bu kısımda, en dikkate çarpan yer 

kinematik sınırların belirlenmesidir. Ortak hareket eden manipülatör sisteminde, 

robotların tek bir yük taşıdığı örneğinden yola çıkarsak, bu yükün merkezinin yaptığı 

hareketi, izlenmesi gereken yörünge olarak kabul edebiliriz. Robotların uç işlevcileri 

ile katı cismin merkezi arasındaki mesafe sabit kalacağı gerçeği göz önüne alınarak 

oluşturulan kısıtlama ile bu merkez noktasından uç işlevcilere hız dağılımları 

gerçekleştirildi ve geri kalan işlemler tıpkı seri robotlarda olduğu gibi yapıldı. Sistem 

daha karmaşık ve çok sayıda robottan oluştuğu için, bildiğimiz ileri ve ters kinematik 

denklemlerini kullanabilmek ve işlemleri daha basit olarak gösterebilmek adına 

denklemler sonradan genelleştirilimiş matrisler şeklinde ifade edildi. 

 

Ardından dinamik denklemlerin çıkarımı incelendi. Başlangıç olarak yine hareketsiz 

düzlemdeki n serbestlik dereceli seri robotlar üzerinde çalışıldı. Sırasıyla 

eklemlerdeki ivme ve kuvvetlerin hesaplanması gösterildikten sonra, yine tüm sistem 

için genel matrissel ifade çıkarıldı.  

 

Üçüncü kısımda düzlemsel iki bacaklı robotik sistem örnek olarak ele alındı. Başta 

da bahsedildiği gibi pasif dinamik yürüme gerçekleştirebilen robot tasarımı ve bu 

robotun UOA kullanılarak incelenmesi amaçlanmıştır. Tezin içeriğinde UOA 

yöntemi üç boyutlu uzayı kapsayacak şekilde tanımlandığından ve iki boyutlu 

uzayda çalışan düzlemsel robotta bu yöntemin gereğinden fazla hesaplama yapacağı 

için, metodun örnek olarak seçilen modelin hareket ettiği iki boyutlu uzayda işlem 

yapmasını sağlayacak düzenlemeler gösterilmiştir. Pasif dinamik yürüyen robot ikisi 

ayak, ikisi diz, biri çatı olmak üzere beş dönel eklemden oluşmaktadır. Bu kısımda 

önemli olan bir diğer nokta ise diz kitleme mekanizmasıdır. Diz hareketinin doğal 

olarak taklit edilebilmesi için, dizin öne doğru bükülmesini engellemek amacıyla 

“sözde eklem” metodu kullanılmştır. Bu yönteme göre dizin üzerindeki bağlantı 
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(uyluk) ile altındaki bağlantı (baldır) arasındaki açı değeri sıfır olduguğunda, bu açıyı 

sıfır derecede tutacak düzlemsel torklar hesaplanıp sistem ona göre çalıştırılmıştır. 

 

Farklı çalışmalardan örneklerin de gösterildiği bu kısımda, tasarlanan robotun 

parametreleri ve yürüme hareketini sağlayacak sınırlamalara değinilmiştir. Şöyle ki, 

robot ayaklarından birini yerle temas ettirdiği anda bu ayak üzerindeki çizgisel hızlar 

sıfır tutulacak şekilde hesaplamalar yapılmıştır. Burada yapılan sınır kuvvetlerinin 

hesaplanması, bu tezin en can alıcı kısmını oluşturmaktadır. Genelde araştırmalar bir 

ayak yere bastığı an diğer ayağın otomatik olarak havaya kalktığını varsayarken, bu 

tezde ili ayağın da yerde oluğu durum, zincir sistemi, göz önüne alınmıştır. İlk adım 

atıldıktan sonra, arkada kalan ayağın, bizim tanımlamamıza göre taban noktası, 

yukarı yöndeki tepki kuvvetlerinin negatif değer aldığı ana kadar zaman boyunca 

zincir sistemi için gerekli hesaplamalar yapılmıştır. Bu sürenin sonunda arkada kalan 

ayağın adım atması gerekeceği için; uç ve taban noktaları başta olmak üzere sistemin 

tamamı aynalanmıştır. Buna tez içinde “değişim kuralı” adını verdik. Lineer bir T 

matrisi ile gerekli değerleri çarparak sistemin önceki taban noktasını yeni uç, eski uç 

noktasını yeni taban noktası olacak şekilde değiştirdik. Bu sayede robotun adım atan 

ayağı hep uç noktası olmuş oldu. 

 

Dizlerde ve yere basan ayakta gerekli sınır torkları ve kuvvetleri, o noktalardaki 

ivmeleri sıfırlayacak şekilde hesaplanmıştır. Pozisyonları da sıfırlamak için, dizlerde 

kitleme mekanizmasının, yere basan ayakta ise yerin karakteristiğini temsil edecek PI 

kontrolörler tasarlanmıştır. Dördüncü bölümde buna yer verilmiştir. 

 

Son bölümde sonuçlar ve önerilere yer verilmiştir. İlk sonuçlar robotun kinematik 

yeterliliği hakkındadır. Sonraki sonuçlar robotun dinamik analizini göstermektedir. 

Başlangıç koşullarından ziyade sınır tork ve kuvvetlerinin hesaplanması ve buna göre 

robotun analizinin yapılması tezin amacını oluşturduğu için, robotun adım atmasını 

sağlayacak herhangi bir başlangıç koşulu seçilmiştir. Simulasyonlar MATLAB-

Simulink ortamında gerçeklenmiş olup, yukarı yöne z, sağ yöne y, sayfa düzleminde 

bize doğru olan yöne de x, denilmiştir. Adım atan ayağın z yönündeki pozisyonu, 

dizlerde ve yere basan ayakta oluşan kısıt ve tepki kuvvetleri ve tabanda oluşan 

kuvvetler sonuçlar bölümünde sunulmuştur. Bu bölümde ayrıca gelecek araştırma 

fikirlerine yer verilmiştir. 
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1.  INTRODUCTION 

Robotic systems consist of several links connected with joints to each other. The 

movement of these systems is studied using kinematics and dynamics. Kinematics is 

a way to calculate the motion of a system without focusing on the causes of the 

movement. Dynamics, on the other hand, investigates the main reason of this 

movement. In real-life applications, the manipulators operate in a 3D task space, 

which means three angular, and three linear vectors, i.e. the information of velocity, 

acceleration, force and torque, for each component. For this reason, the spatial vector 

representation brings a great simplicity to understand the insight of the robotic 

system during an operation. Spatial operator algebra (SOA) is one of them, which is 

based on Newton-Euler formulation and allows analyzing the dynamics of a complex 

system. Since biped walking systems are two legged robots, they can be treated as 

one of them. 

In this thesis, we applied the SOA to complex systems, and then presented a 

methodology for dynamical analysis of a planar passive walking biped robot. 

1.1 Purpose of Thesis 

Dynamical analysis of biped walking is important for both robotic and medical 

research. The outcome of such studies in the medical area help certain group of 

patients to recover in a way to accomplish tasks like walking. Another important 

outcome is in the field of designing artificial limbs like prosthetic legs. However, the 

most challenging part of this design is efficiency. In this regard, research on passive 

walking dynamics holds an important place for designing efficient limbs. 

On the other hand, Spatial Operator Algebra (SOA) presented a novel improvement 

both mathematically and computationally on multi-body kinematics and dynamics of 

robotic systems. Since, it is based on Newton-Euler formulation; it provides insight 

into the structure of rigid-body by analyzing the system using vector representation. 

The propagation of velocity and force vectors in a recursive manner helps to speed 
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up the calculations by representing the kinematic and dynamic behavior of each rigid 

link. 

Generally speaking, using the SOA for passive dynamic walking systems would be 

more useful to investigate the force distributions on each component of entire body, 

and also it could propose a new outlook in this area. 

1.2 Literature Review 

Before starting to explain the methods and models that we have used in this thesis, it 

is important to look at the history in literature. This is not only useful for 

comprehension of the purpose of this study, but also for finding its place between 

relative studies. Therefore, this section is dedicated for literature review about spatial 

operator algebra method and passive dynamic walking, respectively. 

1.2.1 Spatial operator algebra 

The spatial operator algebra (SOA) is a method based on calculation of spatial 

vectors of a multi-body system. The spatial (rotational and translational) vectors have 

been used in many researches, mostly as advanced works of order n,  n , 

algorithms. The usual way of calculation the rigid body equations of a system uses 

order 
3n , which means the computation time increases as a cubic function of the 

number of system generalized coordinates, n. On the other hand, order n algorithms 

provide a linear relationship between number of numerical computations and the 

number of generalized coordinates [1]. 

The first studies in  n  formulation of multi-body dynamics were based on 

Newton-Euler formulation and Walker and Orin‟s study [2] was one of them. They 

also compared different methods for calculating the rigid body equations, and the 

results show that the recursive procedure provided a major improvement in 

decreasing the number of computations. Later on, Anderson and Critchley [3] 

improved their  n  method. More researches on  n   has been done, and Jain [5] 

showed that they are all related to each other. 

The roots of spatial operators come from the Ball‟s theory of screws [6]. 

Featherstone used first time spatial algebra to present his method based on   

algorithms, who also published a review paper [7], which reveals the development of 
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Newton-Euler based algorithms. Rodriguez [8] used a new method for calculation of 

robot dynamics using Kalman filtering and Bryson-Frazier fixed time-interval 

smoothing technique. His spatially recursive calculation method for link dynamics of 

a rigid-body system proposed not only better understanding of robot dynamics, but 

also improvement in computation efficiency, which became the base of SOA. He 

implemented his spatial recursive method on open- and closed-chain systems [9, 10]. 

Jain [5] shaped the spatial operator algebra (SOA) in his study, where he also built 

the connection between other methods on rigid body motion. Rodriguez, Jain and 

Kreutz-Delgado improved and implemented SOA for several types of the multi-body 

system design and dynamics [11-14]. Another research of Jain and Rodriguez [15] 

was on sensitivity analysis for rigid-body systems based on spatial operators. More 

recently, Yesiloglu [1] used SOA to model the complex topology systems with high 

efficiency. The mathematical equations and formulations in this thesis are mostly 

based on this study. One of his contributions, new “pseudo joint” concept, is also 

used in this thesis. 

Featherstone [16] and Jain [17] can be considered as base sources to understand the 

mathematical background of SOA. 

1.2.2 Passive dynamic walking 

Passive dynamic walking task for bipeds has been studied by the scientists for many 

decades. The basic idea was constructing a biped system, which can move, even 

walk only by using the gravitational force. Before starting the history of passive 

dynamic walking of two-legged systems, it would be wise to learn how the legged 

robots and the studies about them involved in time. For this purpose, Raibert‟s study 

constitutes a novel research in this field [18]. He showed a criminology starting from 

1850s with Chebyshev‟s works towards 1980s. These milestones have great 

importance to understand the development of the legged-machines and to link up all 

history towards the beginning of two-legged systems with passive dynamic walking. 

Completely actuated biped systems are not very efficient, since they hold actuators 

on their each joint. Hence, for the human-like robots it is important to carry out the 

passive dynamic walking principles. This term first used by Ted McGeer, who is one 

of the pioneers on passive walking area. The goal was constructing limbs, which are 

capable of holding and moving the body without any external source of energy, so 



4 

the need of actuators and their control would be minimized. The idea based on a two-

legged system, which can sustain a walking cycle on a shallow slope by using only 

the gravitational force. McGeer‟s studies presented that the analysis of the physics of 

two-legged 2D biped machines is straightforward and the results of theoretical facts 

are successfully applicable [19, 20]. He also stated that the passive dynamic walking 

makes powered machines more efficient while adding power sources to a passive 

walker, in his study they were small motors for clearance the feet during recovery, 

causes a negligible effect on the system. His further research [21] showed that the 

passive walking rules on 2D biped machine work also for 3D legged machines with 

knees on a shallow slope. His work presented the advantages of biped with knees in 

stability, efficiency and control of walking routine compared to biped with straight 

legs, since knee-jointed form did not need to be actuated for retraction of the legs. 

This study of him, which was inspired by Mochon et. al [22], also showed how to 

numerically generate different passive cycles based on a first impulse on the feet 

using a Poincaré map, or as he called, a stride function . Ruina et al. [23] confirmed 

McGeer‟s studies and showed that a 3D biped with unstable configuration can also 

move stably. Goswami et al. [24] worked on a similar system to McGeer‟s biped [3], 

which they called as compass gait walker, with same kinematics, but using the 

overlook of robotics. They indicated that perception of biped systems with a robotic 

look could be very helpful to understand the human locomotion, so they modeled the 

system as acrobat and pendubot, based on the same kinematics of a double pendulum 

system, which was used as the main model in previous researches. This research also 

differs from McGeer‟s study by means of using non-linear equations instead of 

linearized mathematical model. It showed that such a mechanism with non-linear 

dynamics could follow a stable limit cycle with unequal step lengths. An important 

outcome of this study was that only the slope of the inclined plane determines all the 

types of gaits. Garcia et al. [25] used a simpler two-legged model compared to 

McGeer‟s and Goswami‟s studies by splitting the mass of the system between hip 

and feet, and assuming the former is much greater than the latter one. This work 

presented that the dynamics of such a system relies mostly on design parameters like 

mass distribution and length rather than its control strategy and showed that the 

simplest passive dynamic walker can achieve a stable cyclic motion. Schwab and 

Wisse [26] used the region (or basin) of attraction of the motion and the cases when 

failure occurs for the simplest walking model. Their study presented that a stable 
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cycle of walking exists in a small boundary of slope angle. The results showed that 

the region of attraction of the simplest walking model, which is not directly related to 

the stability of the cycle motion, is very small; hence, in practical applications the 

model has to be initiated very carefully on a flat and rigid surface. An important 

outcome of this research revealed that the best robust design is always the one with 

largest region of attraction. Collins, Wisse and Ruina [27] have built the first two-

legged machine with human-like motions. Their 3D machine was inspired of 

McGeer's 2D passive walker and had counter-swinging arms linked to the opposing 

legs, which improved the stability in lateral directions. Wisse [28] presented the gait 

synthesis and designing steps of bipeds in his work. His study was a very useful 

source to see the bigger picture for evolution of the studies on human walking from 

the ancient times to present day. It includes the results of the studies that have been 

explaining from beginning of this chapter and analyzes several types of passive 

dynamic systems like skateboards and bicycles. There are also several studies [29-

31] that present how to apply passive dynamics of bipeds on several active 

humanoids by using less control and consuming less energy. Atkeson et al. [32] 

investigated the positive effect of swing leg retraction on gait stability, which 

resulted confirmatory when the speed of retraction is not rapid and in case of fast 

walking routine. Another research combines several efficient bipeds based on passive 

dynamic walkers from different universities [33]. An interesting research subject on 

passive dynamic walkers is the shape of the feet. In real applications, the shape of 

feet is usually semicircular or arc. Wisse and Anderson [34] proposed how this 

becomes an disadvantage for a standing position of a passive dynamic walker, and 

how to replace it by flat feet with a torsion spring. The results provided more human-

like look to this kind of systems. A similar study made by Wang et al. [35] and 

another one but with segmented feet design using toe joints [36]. Another research 

using flat feet and compliant ankles by Wang et al. [37] presented the role of ground 

contact angle in passive dynamic walking. Wisse et al. [38] studied the stability of 

simplest passive dynamic walkers by means of falling forward or backward. The 

results showed that there is no solution for falling backward; on the other hand, the 

falling forward problem could be solved by adjusting the swing leg speed. Passive 

dynamic walkers are sensitive mechanisms against the changes in environment, so 

called disturbances. Hobbelen and Wisse [39] indicated that the measurement of 

disturbance rejection is more important than measurement of speed or energy 
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efficiency. Therefore, this study introduced the idea of gait sensitivity, which is a 

measurement method of disturbance rejection based on disturbances and gait 

characteristics chosen by the designer. The proposed method showed improvement in 

calculation time and prediction of the disturbances for simple and more complex 

bipeds compared to previous researches, which mostly based on basin of attraction or 

Floquet multipliers. Another study of the same researchers [40] presented a way of 

avoiding from disturbances during the walking process of biped mechanism by using 

swing-leg retraction, which defines the backwards movement of swing leg prior to 

foot impact. The study has been implemented on three different types of passive 

dynamic walkers by also adding the idea of gait sensitivity, and results showed that 

the optimal case of rejection occurs when the retraction is on a mild-level speed. 

Wisse et al. [41] studied the case of passive walking biped machine with an upper 

body, which needed to be stabilized while the system was walking successfully. 

They presented bisecting hip mechanism as a solution, which behaves as an inverted 

pendulum and allows a passive swing leg movement in the same time. Another 

research on adding an upper body as a bisecting hip was done by Asano and Luo 

[42]. Additionally scientists used some control techniques on passive dynamic 

walking robots, like reinforcement learning [43] or dynamic programming [44]. The 

idea of passive dynamic running is also an interesting subject. The first studies 

inspired by McGeer again [45] and examined by different researchers in recent time 

[46, 47]. There are also another researches, which studies the effect of swinging arm 

on the biped walking. Collins, et al. [48] showed that arm swinging is a natural 

movement caused by walking, and has great impact on balancing the vertical torques. 

Actually the study revealed that: “Vertical ground reaction moment was most 

affected by arm swinging and increased by 63 per cent without it.” 

1.3 Notation 

The notation in this thesis is not different from S.Murat Yesiloglu‟s dissertation [1]. 

All left-superscripts indicate the numbers of associated manipulator, the left-

subscripts present the dimensions and the right-subscripts show the numbers of rigid 

link. Vectors in 3D represented with one arrow, in 6D they are shown with two 

arrows on the upside. The underlined vectors mean a serial of variables or vectors. 

The matrices are shown with bold capital letters or calligraphic fonts. The left-
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superscripts have been used only for the general representation. In application we 

have used only one manipulator system, hence there is no left-superscript in biped 

equations. 
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2.  KINEMATICS AND DYNAMICS OF MANIPULATORS USING SOA 

2.1 Purpose 

In this chapter, we will first investigate the velocity propagation on a rigid link. After 

that, we will derive the kinematic equations of an n DoF serial manipulator both on a 

fixed and moving platform, using spatial vectors. The main purpose of this chapter is 

obtaining the kinematic equations for p number of cooperating manipulators on a 

moving platform. In many robotic applications, the cooperating manipulators are 

being used in both industry and scientific researches. These systems consist of 

several serial manipulators, which are operating simultaneously and their tip points 

follow the same trajectory. For this reason, we will define a kinematic constraint, 

which will hold the tip points of different manipulators for a common task. Finally, 

we will calculate the dynamic equations of serial manipulators. The calculation steps 

for both kinematics and dynamics are inspired by S. Murat Yesiloglu‟s dissertation 

including the notation, and they are available in [1]. 

2.2 Basic Information and Calculation of Propagation Matrix 

A rigid multi-body system consists of rigid links. Hence, we will study first the 

velocity transformation across a rigid link. Let us consider the link in Figure 2.1: 

 

Figure 2.1 : Velocity propagation on a rigid link. 
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The angular velocity is same for all the points on a rigid link. Therefore, a b 
 

 

equality will be true. The linear velocity propagation depends on the time derivative 

of the vector from point a  to b  . It can be defined as, 

 
,

d

dt
b a a bv v l 

 
 (2.1)  

The second term on the right hand side of the equation (2.1) represents the time 

derivation of a vector. This concept is important, because we will use it in further 

calculations of both kinematics and dynamics. 

2.2.1 Time derivation of a vector 

Time derivation of a vector defines the change of its direction in time. Let say the 

vector P( )t


 is rotating around the axis of rotation, ω


, with a constant velocity θ  and 

radius r . The position of P( )t


 after t  time will change as in Figure 2.2:  

 

Figure 2.2 : Time derivation of a vector. 

The following calculations will lead us to the meaning of derivation of a vector. The 

change in P


can be described as 

 

P = P( ) - P( )t t t 
  

 

0

P( ) P
lim
t

d t

dt t 

 
  

 

 

 
(2.2)  

The arc s  is to be calculated as, 
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 = = r. θ s  P sin φ.  


 (2.3)  

If we follow the calculation steps as follow, 

 
0 0 0

PP( ) P P
lim lim lim
t t t

d t

dt t t t     

 
  

  

  

 (2.4)  

Then the following equation holds 

 
0 0

 P sin φ
lim P sin φ lim
t tt t

 

   

 


 




 (2.5)  

where 

 

0
lim P s
t 

 


 

0
ωlim

t t




 


 



  

(2.6)  

Therefore the magnitude of vector P( )t


 will be,  

 ω
P( )

P sin φ
d t

dt






 (2.7)  

The right hand side of (2.7) represents the cross product between vectors P( )t


 and ω


. 

Therefore, the time derivative of a vector is the cross product between its axis of 

rotation and itself, depending on the direction of rotation, 

 
P( )

ω P( )
d t

t
dt

 




 (2.8)  

2.2.2 Velocity translation on a rigid link and propagation matrix 

Now if we consider again the rigid link equation in (2.1), and a manipulator, which 

consists of multiple rigid links as in Figure 2.3.  

The angular and linear velocities will be propagated from one joint to another as 

 1

i i i i

k k k kh   
    (2.9)  

 1 1 1, 1 1, 1ω ωi i i i i i

k k k k k k k k kv v l v l          
    

 (2.10)  

where, i  represents the number of manipulators, k is the number of joints, and 
i

kh


represents the axis of rotation vector on joint k. 
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Figure 2.3 : Velocity propagation on a rigid link. 

Using the skew-symmetric property for cross product representation, (2.10) becomes 

 1 1, 1
ˆ ωi i i

k k k k kv v l   
 

 (2.11)  

where 

 

   

   

   

1, 1,

1, 1, 1, 1,

1, 1,

0

ˆ 0

0

z y

z x

z

i i

k k k k

i i i i

k k k k k k k k

i i

k k y k k

l l

l l l l

l l

 

   

 

 
 
    
 
  


  

If we define 6Vi

k 


  as spatial velocity vector, which consists of 3i

k 


  and  

3i

kv 


 , then the following expression will be true: 

 
1

11,

0
V  

ˆ 0

i i i
i ik k k

k ki ii

k kk k

I h

v vl I

 




      
        

       

 
   (2.12)  

The equation (2.12) represents the spatial velocity propagation on a rigid link from 

the predecessor joint to the successor one. We can put (2.12) into a matrix from, 

 , 1 1V V H  
i

i i i i
kk k k k k   

   
  (2.13)  

where , 1

i

k k
 
is the velocity propagation matrix from joint k-1 to k. H

i

k


 represents 

here the spatial rotation and translation matrix. 

2.3 Kinematics 

In this section, we will first derive the kinematic equations for a serial n DoF 

manipulator using spatial vectors. We will see how to calculate the velocities of each 
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joint from base through tip point in a recursive manner. After having the forward and 

inverse kinematic representation, we will apply the same algorithm for cooperating 

manipulators. 

2.3.1 Kinematics of a serial manipulator on a fixed platform 

If we consider that a manipulator consists of n rigid links, the velocity propagation 

for each joint can be calculated based on (2.13). Let us assume first that the 

manipulator stands on a fixed platform, which means the platform velocity is zero. 

 

Figure 2.4 : n DoF serial manipulator on a fixed platform. 

Then the spatial velocity equations for each joint will be as follows, 

 

0

11 1

2 1 22 2,1 1 2 2,1 1 2

V 0

V H  

V V H  = H  H

i

i
i i

i i i
i i i i i i i



  





    



 


     
  

  

  3 1 2 33 3,2 2 3 3,2 2,1 1 2 3V V H  = H  H H
i i i i

i i i i i i        
      

     (2.14)  

To improve this calculation step for next joint numbers, we need to examine the 

multiplication of 1,k k and , 1k k  matrices. 

 1, , 1

, 1 1, , 1 1,

0 0 0

ˆ ˆ ˆ ˆk k k k i i i i

k k k k k k k k

I I I

l I l I l l I
 

   

     
        

             

 (2.15)  

Since, 
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      , 1 1, , 1 1, 1, , 1 1, 1 1, 1
ˆ ˆ ˆi i i i i i i i

k k k k k k k k k k k k k k k kl l l l l l l l                          

By utilizing this in (2.15), 

 1, , 1 1, 1

1, 1

0

ˆk k k k k ki

k k

I

l I
   

 

 
     

  

 (2.16)  

Now, if we use this property of   matrix, (2.14) becomes, 

 1 2 3 1 2 33 3,2 2,1 1 3,2 2 3 3,1 1 3,2 2 3V = H  H H H H H
i i i i i i

i i i i i i i i i i i i              
      

       (2.17)  

If we keep doing this calculation for each joint, finally we get the velocity of the n
th

 

joint: 

 1 2,1 1 , 2 2V = H H  H
i i i

i i i i i i
nn n n n n      

   
    (2.18)  

If we put these equations in the matrix form, we get, 

 

11
1

22,12 2

3,1 3,2 333

,1 ,2 ,3

V H 0 0 00 0 0

0 0V 0 H 0 0

0V 0 0 H 0

V 0 0 0 H

ii
i

iii i

i i iii

i i i i
in n n ni

nn

I

I

I

I









   
     
     
     
      
     
     
         

     

 
  

 
   

          
 



 6nx1                       6nx6n                                            6nxn                   nx1



 
(2.19)  

Therefore, the general matrix form of spatial velocity vectors for each joint is, 

 V= Hi i i i   (2.20)  

where, Vi  is a 6n-by-1, i  is a 6n-by-6n, Hi  is a 6n-by-n, and i  is an n-by-1 

matrix.  

So far, we have found the spatial velocity vectors for each joint. To find the velocity 

vector of tip point of the manipulator, we need to define a propagation matrix, ,

i

t n  

from joint number n through tip point t: 

 
,V = Vi i i

t t n n
  

 (2.21)  

The velocity propagation from the first joint through the tip point will be then, 
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1

2

,
3

V

V

V = 0 0 0 V

V

i

i

i i
i

t t n

i

n

 
 
 
 

    
 
 
 
  




 




 (2.22)  

The matrix form will be, 

 V = Vi i i

t t


 (2.23)  

where 
,0 0 0i i

t t n
    

 
and it is a 6-by-6n matrix. Placing (2.20) into 

(2.23) will give us the relation between tip point velocities and joint velocities, which 

we call it Jacobian: 

 V = H = θ i i i i i i i

t t J  


   

  = Hi i i i

tJ    (2.24)  

As shown in (2.24), we will calculate the Jacobian Matrix using propagation 

matrices and spatial rotation and translation matrix. We wil use Jacobian both for 

forward dynamics, 

 V =i i i

t J 


  (2.25)  

and for inverse dynamics, 

 #= V i i i

tJ


  (2.26)  

where 
#Ji
 represents the pseudo inverse of Jacobian. 

2.3.2 Kinematics of a serial manipulator on a moving platform 

The moving platform, or base, brings six more DoF to the serial manipulator, which 

can be presented as an additional term to velocity of tip point. This term can be 

calculated using the propagation matrix from base through tip: 

 
,V = V +i i i i i

t t b bJ  
  

  (2.27)  

where, ,

i

t b
 
is the propagation matrix, and Vi

b


 is the spatial velocity vector of the 

platform.  
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Figure 2.5 : n DoF serial manipulator on a moving platform. 

There are two ways to calculate ,

i

t b  ; it could be either finding the ,

i

t bl


 by adding 

the lengths of each link together, 

 , , 1

0

n
i i

t b k k

k

l l 




 

  

 ,

,

0

ˆ
i

t b i

b t

I

l I

 
   

  

 (2.28)  

or we can use the multiplication property of matrix, as shown in (2.16), 

 ,

i i i i

t b t b      (2.29)  

where, 

 

1,0

0

0

i

i

b

 
 
  
 
 
  


  

2.3.3 Kinematics of cooperating manipulators 

The kinematic equations for each cooperating manipulator are the same with the 

equations of a serial manipulator. One crucial difference is the kinematic constraint, 

which will allow the manipulators to work together. 
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Figure 2.6 : Cooperating manipulators on a moving platform. 

We define a kinematic constraint, which makes the several manipulators to make the 

same operation like holding an object or tracking a trajectory together. Let us say the 

manipulators are holding a rigid object and carrying it while tracking a certain 

trajectory. The velocity vector of the object is Vc


. It is obviously that we can 

transform the velocity from the object to the tip points of the manipulators by 

defining a new   matrix: 

 
,V = Vi i

t t c c
  

 (2.30)  

The ,

i

t c  matrix will include the kinematic constraint. Since the manipulators are 

holding an object, the distance between the tip points and center of the rigid object 

will never change (Figure 2.6). For one manipulator, the ,

i

t c will be,  

 ,

,

0

ˆ
i

t c i

c t

I

l I

 
   

  

 (2.31)  

If we generalize (2.30) for p number of manipulators, the kinematic constraint of the 

system will be, 

 

1
1

,

2 2

,

3
3

,

,

V

V

= VV

V

t
t c

t t c

ct c
t

p

t cp

t

 
  
     
  
  
  
    

  








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,V = Vt t c c


 (2.32)  

So far, we calculated the spatial tip velocity vector of each manipulator. Now to find 

the kinematic equations of each arm, we will follow the same steps for each one, as 

we did for a serial manipulator. If we consider the cooperating manipulator system 

operates on a moving platform as in Figure 2.6, then we can utilize (2.27) for each 

manipulator, 

 

1 1 1 1

,

2 2 2 2

,

3 3 3 3

,

V = V

V = V

V = V

                        

 +

 +

 +

t t b b

t t b b

t t b b

J

J

J













  


  


  


  

  

 
,V = V +p p p p

t t b bJ  
  

  (2.33)  

If we reconfigure (2.33) into a matrix form, we get 

 

1
11 1

,

2 22 2
,

33 3
3

,

,

V
J 0 0 0

V 0 J 0 0

= V0 0 J 0V

0 0 0 J
V

 +

t
t b

t t b

bt b
t

pp p
t bp

t









 
     
         
     
    
    
          

  



  

     
  

 (2.34)  

This representation reveals the relationship between joints and tip velocities, yet it is 

different from the classical notation of forward dynamics, as in (2.25). For this 

reason, first, we need to redefine the following matrices as, 

 

1 1

2 2

V V

V

V      V

V

b b

p p



 



   
   
   
    
   
   
   
   

  


 

 


 (2.35)  

 

1 1

2 2

0 0 0

0 0

0 0

0 0

b

b

p p

b

I 
 
 

 
    
 
 
   







    



 (2.36)  
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1

2

0 0 0

0 H 0 0

H 0 0 H 0

0 0 0 Hp

I 
 
 
 
 
 
  







    



 (2.37)  

 

1

2

0 0 0

0 0 0

0 0 0

t

t

p

t

 
 

  
 
 

  





    



 (2.38)  

Therefore, the new Jacobian will be, 

 

1 1

,

2 2

,

,

0 0

0 0

0 0

t b

t b

p p

t b

J

J
J

J

 
 
 

 
 
  





    



 (2.39)  

Now, using the new representation we have the classic forward kinematics equation, 

 
V =t J
   

(2.40)  

2.4 Dynamics 

In this section, we will first start with basic information in dynamics of a particle and 

a rigid link. Later on, we derive the dynamic equations of a serial n DoF manipulator 

using spatial vectors. In the beginning, we calculate the joint accelerations, and later 

the joint forces. After that, we find the equation of motion in both forward and 

inverse dynamics form. 

2.4.1 Preliminaries in dynamics of a rigid link 

The dynamics of a particle infer its angular and linear momentums, which occur due 

to the torques and forces on the particle, respectively. Let us consider a particle on a 

rigid body in frame B, where the reference base frame is A (Figure 2.7). 

The mass of the particle will be, 

 
1

( )
2

m r d


   (2.41)  
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Figure 2.7 : Dynamics of a particle. 

where,  is the mass density and   is the volume. The kinetic energy will be, 

 
21

( )
2

T r v d


 


 (2.42)  

where v


 represents the linear velocity and, 

 P+Rrv 
    (2.43)  

where R is the rotation matrix. If we place (2.43) into (2.42), the kinetic energy 

equation becomes, 

 
2

T1 1
P

2 2
T m I  


 (2.44)  

where I is the inertia and, 

 
2 2( )I mr r r d



    (2.45)  

Now, we know that the time derivative of angular and linear momentum will give the 

torque and force, respectively: 

  
d

I
dt

    

  
d

f mv
dt

  (2.46)  

For the rigid body transformation, we will use the propagation matrix, which we 

found for kinematics.  In fact, Jain‟s table [17] would be very useful before we start 

to calculate link accelerations and forces: 

Particle

A
X


A
Z


A
Y


B
X


B
Y


B
Z


P


r

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Table 2.1 : Rigid body transformations [17]. 

 
Point k Point k+1 

Spatial Velocities Vk


 1 1,V Vk k k k 

  
 

Spatial Forces T

1, 1F Fk k k k 
  

 
1Fk


 

Spatial Inertias 
T

1, 1 1,M Mk k k k k k     1Mk  

Kinetic Energy 
T1

= V M V
2

k k k kT
  

 T

1 1 1 1

1
= V M V

2
k k k kT    

  
 

2.4.2 Calculation of link accelerations and forces of a serial manipulator 

In dynamic model of the system, first we need to take the time derivatives of the 

angular (2.9) and linear velocities (2.10). For the angular acceleration, 

 
1

i i i i i i

k k k k k kh h     
         

 1 1

i i i i i i

k k k k k kh        
       (2.47)  

where we utilized (2.8) for the time derivation of vector 
i

kh


and the relation in (2.9) 

 

i i i

k k kh h 
 

 

1

i i i i

k k k kh     
    

 

For the linear acceleration, we take the time derivative of (2.10) 

 
1 1 1, 1 1,ω ωi i i i i i

k k k k k k k kv v l l        
        

By using (2.8) for the time derivative of vector 
1,

i

k kl 


 

 1 1, 1 1 1 1,ω ω ( ω )i i i i i i i

k k k k k k k k kv v l l          
        (2.48)  

Now, if we put (2.47) and (2.48) into the matrix form to get the spatial acceleration 

vector, 

 
11

1, 1 1 1,

0
V  

ˆ 0 ( )

i ii i i
k ki ik k k

k kii i i i i
k kk k k k k k

I h

l Iv v l

  


 



   

        
           

            

             (2.49)  

The more general representation will be like, 

 
, 1 1V V H  + i i i i i i

k k k k k k ka   
         (2.50)  
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where, 
i

ka


represents the spatial bias accelerations. 

Now let us implement (2.50) for each link of the manipulator. First, we assume that 

the arm (manipulator) stands on a fixed platform. Hence, 0V 0i 


. The acceleration 

vectors of the other links are to be calculated as follows, 

 
 

 

0

1 1 1 1

2 2,1 1 2 2 2 2,1 1 1 1 2 2 2

3 3,2 2 3 3 3 3,2 2,1 1 1 1 2 2 2

V 0

V H

V V H H  + H  + 

V V H H  + H  + 

i

i i i i

i i i i i i i i i i i i i

i i i i i i i i i i i i i i i

a

a a a

a a a



  

  



 

      

         
  



    
                

                

   

3 3 3

3,1 1 1 1 3,2 2 2 2 3 3 3

H

     H  + H  + H

      

i i

i i i i i i i i i i i

a

a a a



  



     

  

          



  

    ,1 1 1 1 ,2 2 2 2V H  + H  + Hi i i i i i i i i i i i

n n n n n na a a        
               (2.51)  

Now if we stack up the entire link accelerations, 

 

1 1
1

2,12 2 2

3,1 3,2 3
33

,1 ,2 ,3

V H 0 0 00 0 0

0 0V 0 H 0 0

0 0 0 H 0V

0 0 0 HV

i i
i

ii i i

i i i
ii

i i i i
n n n ni

i
n

n

I

I

I

I









   
     
          
      
     
     
               

  
   

 
    

         
   

1

2

3

i

i

i

i

n

a

a

a

a

 
  
  
                    










 
(2.52)  

Moreover, the general matrix form of acceleration vectors for each links will be 

  V  Hi i i i ia    (2.53)  

For the forces, on the other hand, the calculations will be done from tip towards base, 

instead of from base towards tip as in the calculations of velocity propagation, 

because of the boundary conditions of a two point boundary value problem [1]. For 

the torque propagation, 

  1 , 1 1 , Ii i i i i i i i

k k k k k k c k k k k

d
l f l v m

dt
         

       (2.54)  
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where, 
,

i

k cl


 represents the distance vector from the origin of the link frame k  to the 

center of mass of the rigid link, and Ii

k  
is the link inertia. The term due to rotation 

can be expressed by using the idea of time derivation of a vector: 

  I I I I Ii i i i i i i i i i i

k k k k k k k k k k k

d

dt
         
         

The first and second terms of the right hand side of (2.54) come from the successor 

joint k+1, the third and last terms come from due to translation and rotation, 

respectively.  

For the force propagation, 

  1 ,

i i i i i

k k k k k k c

d
f f m v l

dt
   

  
 (2.55)  

where, 

    , , ,

i i i i i i i i i

k k k c k k k c k k k c

d
v l v l l

dt
          

         

Now, if we put (2.54) and (2.55) in the same matrix, we get the spatial forces, 

 F

i

ki

k i

kf

 
  
  


   

 
,1, 1

,, 3 31

ˆ II
F  

( )0

i i ii i ii ii
k k kk k c kki kk k

k i i i i ii i ii
k k k k k ck c k x kk

l mI l

v m lI l m I mf

  

 





        
         

             

    
   

 (2.56)  

which can also be shown as 

 T

1, 1F F M V  + i i i i i i

k k k k k k kb   
     

 (2.57)  

where, Fi

k


, Mi

k and 
i

kb


 
represents link spatial forces, link mass matrix and the 

remainder terms, respectively. 

Now if we implement (2.57) for each link of the manipulator starting from the n
th

 

link, we get the spatial forces for each link, 
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If we stack up the entire link spatial forces, 
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(2.58)  

The more generalized form will be, 

  T TF  M V Fi i i i i i i

t tb   


  (2.59)  

Now we have the spatial force equation of one rigid arm. To find the applied torques, 

let us first place (2.53) in (2.60) 

  T TF  M H M Fi i i i i i i i i i i i

t ta b      


  (2.60)  

Since the applied torques are the projections of the link spatial forces along the axis 

of rotation, 

 TH Fi i i   (2.61)  

If we place (2.61) in (2.62), we find the applied torque equation 

  T T T T T T TH M H H M H Fi i i i i i i i i i i i i i i i i

t ta b         

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 T Fi i i i i i

tC J   


  (2.62)  
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where, 
i , 

iC  and 
TiJ  represents generalized mass matrix, bias terms and 

transpose of Jacobian matrix, respectively. The equation of motion regarding the 

forward dynamic is, 

  1 T Fi i i i i

tJ  


   (2.63)  

where 

 i i iC     

2.4.3 Dynamics of a serial manipulator on moving platform 

In this case, we will consider a manipulator on a moving massless platform. We will 

configure our equations by adding the platform acceleration in (2.51), 
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where base point acceleration, the term Vi

b


, includes both platform and bias 

accelerations, 

 V Vi i

b p ba 
     

  

where, Vi

p


 is the platform acceleration and ba


 is the acceleration term that includes 

gravity. If we reconfigure the equations according to this idea, the equation of motion 

will be, 

 
T

 V Fi i i i i i i

b b tJ 
 
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 

      (2.65)  

where, 

 T TH M Hi i i i i i     
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 T TH Mi i i i i i iC a b   
 

T T

 H Mi i i i i i

b b     

For the dynamics of more complex systems, [1] can be referred. 
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3.  BIPEDS AND PASSIVE DYNAMIC WALKING 

3.1 Purpose 

The human locomotion has been an interesting topic to study for several decades. 

People, and of course scientists have curiosity on human-like robotic systems, which 

have human characteristics. Biped walking is one of these features, which is also a 

physical system to be investigated. The natural movement of human walking is an 

outcome of the gravity effect on the body; means on a shallow slope plane, a biped 

system can successfully make its walking cycle only using the gravitational force. In 

literature this kind of systems are called as “passive dynamic walkers” [19]. 

Obviously, achieving a walking routine without any external source or control 

mechanism is very useful for both robotic applications and development of the 

artificial prosthetic limbs. Since it will reduce the cost of operation, the biped or 

human-like-walking robots will have smaller battery packages and easier controllers, 

while people will use less energy to achieve the daily walking tasks, those need 

prosthetic legs for these purposes. 

In this chapter, we will use the spatial operator algebra on a 2D planar passive walker 

to analyze the force distribution on each joint and contact point, feet of the legs, with 

surface. The second section explains the design parameters and the model of the 

walker. Section three will show how to implement the SOA on the chosen model. 

Section four presents a novel approach, proposed by [1], and called “pseudo joint” 

method, which is used to constrain the movement of knees for knee-locking. In 

section five we have explained the closed-chain dynamics, which appears when the 

two feet of robot touches the ground. Once the force vector of the base point on 

direction has positive value, the kinematics of the robot has been reconfigured by 

switching rule using a transformation matrix, T, and walking period will continue in 

this order. The following chart in Figure 3.1 reveals the programming logic. 
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Figure 3.1 : Programming chart of walking session. 

3.2 Passive Dynamic Walking and Model Design 

In this section, we will explain how we chose the system model and the parameters. 

First of all, it is a planar passive dynamic walker, which makes only longitudinal 

motion, but no lateral. So the system will operate in  2D space, which means the task 

space will consist of 3 DoF element. Figure 3.2 shows the examples from different 

studies on planar kneed passive walkers. Our system, Figure 3.4, consists of one 5 

DoF manipulator. The first joint, also the base point, is the first foot; and the 5
th

 joint 

is second foot. The second and 4
th

 joints are knees, which have a special locking 

system. The third joint is the hip. 

The main purpose of using kneed-legged biped instead of simplest mechanism with 

straight legs, is first its appearance is more human like, and second; because of the 

„foot-scuffing‟ problem, as in Figure 3.3. 
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Figure 3.2 : Planar passive dynamic walkers with knees. 

       (a) McGeer [21], (b) Asano et al. [49]. 

In straight legged model, the swing leg remains below the floor level at around 

midstance. Knees will surely prevent from this case [28]. 

 

 

Figure 3.3 : Foot-scuffing problem [28]. 

Our legged system is shown in Figure 3.4, where the joints are rotational around x-

axis, and displacement occurs on y and z-axes.  

The first joint is the one of the foots and also the base point. The second and sixth 

joints represent the elasticy and the flexibility of the surface. The third and fifth 

joints are knees of biped system. The fourth joint is the hip. As it is seen from Figure 

3.4, the leg in contact with surface is called as stance leg, and the free leg is called as 

swinging leg. 
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Figure 3.4 : Passive dynamic walking biped robot. 

The paremeters used for simulations are chosen from [49], and listed in Table 3.1: 

Table 3.1 : Parameters of biped model. 

PARAMETER DEFINITION VALUE UNIT 

1m  Swinging Leg –Shank Mass 2.00 kg 

2m  Swinging Leg –Thigh Mass 3.00 kg 

3m  Stance Leg –Shank Mass 2.00 kg 

4m  Stance Leg –Thigh Mass 3.00 kg 

1l  Swinging Leg –Shank Length 2.00 m 

2l  Swinging Leg –Thigh Length 2.00 m 

3l  Stance Leg –Shank Length 2.00 m 

4l  Stance Leg –Thigh Length 2.00 m 

g  Gravity Acceleration 9.81 m/s
2
 

The center of mass and the geometric center of each leg are considered as coincide. 

 represents the slope angle.  

The one important point on biped design is specific cost of transportation. This 

dimensionless term means the amount of required energy to complete the walking 

task by carrrying the weight of the system over a distance. As in [29], it can be 

represented in equational form as 

hipknee
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 ( ) / (  )tc energyused weight range traveled    

where tc  represents the cost of transportation. One of the most efficient passive 

dynamic walking design was made by Collins, et al.[29] with 0.2tc  . “Cornell 

Ranger”, on the other hand, is a developed passive walking based robot and has the 

world record of 65.2 km non-stop walking [50],[51]. 

In this thesis we are interested in observing the force distributions of passive 

dynamic walking sequence using SOA. As a future work, the system can be 

developed for more efficient designs, using the knowledge of force and torque 

propagation on each elements by the help of SOA. 

3.3 Implementation of SOA Method for Planar Bipeds 

We considered our  planar passive dynamic walking system as a form of serial 

manipulator on a moving platform. In second chapter we gave detailed calculations 

for this kind of systems. However, SOA method was built on the idea that the task 

space of tip points has 6 DoF. For a 2D planar system, this space has to be reduced 

into 3 DoF.  

In task space we would write the forward kinematics like, 
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 (3.1)  

It is obvious that there is no need to calculate a part of Jacobian, which is covered by 

a red rectangle in (3.1), and which represents the rotations around y and z axes, and 

translation on x axis. Hence, the task space of tip point of a leg can be reduced into 3 

DoF space: 
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And this holds for each joint, 
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 (3.3)  

Another important point is that we need to reconfigure   and H  matrices for new 

configuration. In our model, all rotations are in x


, and translations on y


 and z


. 

Then H  matrix of each rotational joint will be, 

 

1

H = 0

0

k

 
 
 
  


 (3.4)  

and for translational joints, 
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according to the relevant axis. Then for the 5 DoF planar biped system, H matrix will 

be, 
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 (3.6)  

The calculation of   matrix was based on cross product of vectors (2.11) – (2.13), 

which was defined in 6 DoF task space. We need to find how to calculate   for a 

planar manipulator system. Let us start by obtaining   for a rigid link between joint 

a and joint b in 3D space. The length vector from joint b to a is, 
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l l
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Utilizing (2.11) – (2.13) , we can find the velocity propagation from joint b to a, 
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Since we ignored the rotation around y and z axes, and the translation on x axis, the 

equation (3.8) can be formed as follows, 
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(3.9)  

Therefore, 
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Since cross product is defined only for 3D space, we will define a cross product 

operation in 2D space as, 
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Additionally, we need to reconfigure the base point acceleration, bias accelerations, 

inertias, mass matrix for k
th

 joint, like 
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where, 
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 (3.17)  

 

3.4 Knee Locking Mechanism Using Pseudo Joint Technique 

In kneed-bipeds, the knee joint is designed with a constraint, which prevents from an 

abnormal movement, i.e. bending forward, as in Figure 3.5 (a), and it needs to be 

locked, as in Figure 3.5 (b). 

 

Figure 3.5 :  Knee locking. 

It is obvious that we have to constrain the knee joinst to make this possible. For this 

reason, we will use a novel approach, which was presented in [1], and called as 

“pseudo joint” method. Briefly, we will choose the knee joints as pseudo joinst and 

calculate the necessary torques to keep their angles at zero at all times before the 

retraction . 
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First, we need to obtain a linear operator, let us say S , to divide the joint space into 

two subspaces; real joints and pseudo joints. S  will be obtained by rearranging the 

rows of n n identity matrix, n I , where n is the total DoF including pseudo joints, 

which are the kneed-joints in our case. S  is an orthogonal matrix. 

In our model n=5 and pseudo joints are the 2
rd

 and 4
th

 ones. Let us first obtain the S

matrix, 

 5

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 1 0 0

     S0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0

I  

   
   
   
   
   
   
      

 (3.18)  

If we multiply S  with  , 

 

1 1

2 3

3 5

4 2

5 4

     S
p

 

 


  


 

 

   
   
     
        
      
   
   

  

 

 


  


 

 

 (3.19)  

Bu using the orthogonal property of S matrix, the rearranged form of the inverse 

dynamics becomes: 

 D E     

  TS SDS S SEaugmented augmented    (3.20)  

 
1 2 1

3 4 2pp

d d e

d d e





      
       

       



  (3.21)  

where, 
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5


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

 
 

  
 
 



 

    

2

4

p






 
  
 




   

Here, D and E  matrices are obtained for augmented system. Our purpose is to find 

the torques at other joints, which are not pseudo joints, where 0p  . Therefore, the 

equation of motion for no-pseudo joints is achieved as: 
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 D Er r r    (3.22)  

where, 

 

1

1 2 4 3

1

1 2 4 2

D

E

r

r

d d d d

e d d e





 

 
 (3.23)  

provided that 4d is full rank. 

With this method we only ensure that the pseudo joint accelerations will remain zero. 

In order to keep the joint velocity and the position at desired values, we need to find 

the applied torques by using PI controller. This will be mentioned in the following 

chapter. 

3.5 Chain Dynamics and Switch Rule 

In this section we will show how to calculate the dynamics of a closed-chain system, 

which occours when the both feet of the biped robot touch the ground. Since the base 

point is always touching the ground during the first step, we need to check the tip 

point coordination. If 0
ZtipL  , it means that the second foot is on the ground too. In 

this moment, we need to calculate the dynamics of this closed system, where the 

linear velocities and accelerations of the tip point should be zero, in order to prevent 

its movement in YZ plane. The Figure 3.7 shows the transition from a serial 

manipulator system to a closed-chain system. It is obvious that the rear leg will need 

to step forward to complete the movement. Therefore, we switched the base and tip 

points by using a switching rule, when 0
ZbaseF  .  

 

Figure 3.6 :  Closed-chain system. 

Tip
Base

Tip
Base
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In closed-chain condition, the linear velocities and accelerations of the tip point have 

to be zero. This constraint can be showed in (3.26) 

 
V 0

V ( ) 0

t

t

J

J J



 

 

  




  
 (3.24)  

where 

 
0 1 0

0 0 1
A

 
  
 

  

Also the external forces on the tip point need to be constrained in order to keep it on 

the ground, 

 F
ACCt cAf


 (3.25)  

By utilizing (3.24) and (3.25) in (2.64), we get the dynamic equation of the closed-

chain sytem: 
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
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     
1

1 T 1

cf A J J J C J 


       (3.26)  

Where 0  , and from [1]; 

 Ht tJ a        (3.27)  

The external forces on the tip point will be: 

 
0

F
ACCt

cf

 
  
 


 (3.28)  

However, this will also ensure to keep the tip point accelerations at zero, but not its 

velocity and position. As for the knee locking, we can use a PI controller to find the 

external forces on tip point. This is mentioned in the following chapter. 

The results will be valid from the first touch of the swinging feet to the ground and 

till 0
ZbaseF  . Once this happens, the base and tip points have to be replaced. Since 

the biped system is symmetrical in both kinematical and dynamical sense, we only 

need to define a transformation matrix to change the coordinate axes, the order of 

links, joints, angles, etc. Let us define this translation matrix, T, as following: 
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0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0
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 (3.29)  

First, the switch rule will be ensured using T for joint angles, velocities and 

accelerations as in (3.30) : 

 

T

T

T

 

 

 







 

 
 (3.30)  

After that, we need to switch the coordinates of each link. It is obvious from the 

design of biped system, the link distance between 5
th

 joint and tip point is zero, since 

5
th

 joint is also the tip point (Figure 3.7).  

 

Figure 3.7 :  The length of tip link is zero. 

 

In SOA calculations, we use t , which includes 
, 0n tl 


 , to calculate J  and other 

matrices. After taking a step, the base and tip points need to be changed as shwon in 

Figure 3.8 . 

By considering this fact, we defined another translation matrix, Tc only for the 

coordinate axis y and z. 

 

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

cT

 
 


 
  
 
 
  

 (3.31)  
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Figure 3.8 :  Joint numbers and links after taking a step. 

And now we can update the coordinates after taking a step: 

 
c

c

y yT

z zT




 (3.32)  

As a result of this method, the place of tip and base points will always change after 

chain dynamics completed. This also means that, if the front foot is the tip point at 

the initial conditions, then after first step the tip point will be the rear foot, and base 

point will be replaced in this manner. 
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4.  EXTERNAL FORCES DUE TO BOUNDARY CONDITIONS 

In this chapter, we focused on the calculation of external forces and torques due to 

the boundary conditions using PI controllers. In section 3.4, we have calculated the 

necessary torques on the knees to lock them using pseudo joint technique. This is 

shown as in 
p  

Figure (4.1). However, this will result only the torques, which keeps 

the knee joint accelerations at zero, but not its velocity or angle. For this reason, we 

designed a PI controller, which will simulate the effect of the latches on the knees. 

The P and I values of the controller depends on the characteristics of this latch or 

knee mechanism. Obviously, we have chosen high values for P compared to I to 

decrease the rising time, while keeping the overshoot in a admissible range and 

keeping the steady state error at zero. 

 

Figure 4.1 : Position control for knee joints. 

Similarly, to control the position in y and z directions of foot touching the ground, we 

have used PI controllers. In section 3.5, we have calculated the constraint forces to 

set zero the tip point accelerations. This is shown as 
ACCtF  in Figure 4.2.  However, 

this is not enough to keep the tip point at zero in z direction and at its last position in 

y direction. The PI controller in Figure 4.2 also represents the effect of ground like 

flexibility. Since we need to control the tip point in both directions, two different 

controllers have been created. But two of them are similar, hence we showed one 

general representation of these controllers in Figure 4.2, where d  indicates the 

current position in mentioned directions. The P and I values of the controllers depend 
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on the characteristics of the surface, and they have been chosen in the same logic as 

explained above for knees. 

 

Figure 4.2 : Position control for tip point (foot touching the ground). 
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5.  RESULTS, CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, we will show the results of our simulations. The purpose of this thesis 

was implementing a novel approach, SOA, on a promising area of robotics, passive 

dynamic walking. The first results have been achieved about the kinematics of the 

system, and it revealed that the system is kinematically sufficient. After that, we have 

tested the passive dynamic walking session. The gravitational force is applied as only 

external force to the system on a shallow slope ground. Since our purpose is to 

analyze the passive dynamic walking for biped robots; we did not pay attention on 

the initial conditions, but focused on constraint forces for touching the ground, chain 

system, taking step and also knee locking. The results showed that the SOA 

algorithm provides insight look of the system, which allowed us to find constraint 

forces, more importantly during both feet are on the ground. 

Finally, we have concluded our study and presented our recommendations including 

the possible future study ideas. 

5.1 Kinematics of a Biped System 

In this section, we will present the results of forward and inverse kinematics for 5 

DoF system. For this purpose, we commanded our biped to lift one of its legs, hold it 

for a while, and drop it to the starting position. This results are not directly related to 

the aim of this thesis, however before passive dynamic walking, we need to be sure 

that our codes generates true configuration matrices like H ,   and J . Figure 5.1 

shows the task, and Figure 5.2 presents the results.  

Figure 5.2 shows that our robotic design is kinematically sufficient. 
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Figure 5.1 : Example task for biped system. 

 

Figure 5.2 : Tip point results of leg lifting and dropping. 

5.2 Dynamics of  a Biped System 

In this part, we will present the dynamical results of the designed biped system 

during its passive dynamic walking session. The robot starts with its initial 

conditions, as given in Figure 5.3 and acts only under the gravitational force on a 

shallow slope surface with calculations explained in Section 3.3. Once the front foot, 

in this case the tip point, touches the ground, the chain system dynamics are 
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calculated. The calculations for first step continue, until the sign of reaction force on 

z direction of the base point become negative. This means that the switch rule needs 

to be applied to the system to change the moving foot, as shown in Section 3.5. and 

4.2. During whole process, the knee locking needs to be maintained, as explained in 

Section 3.4 and 4.1. 

 

Figure 5.3 : Taking a step of biped robot under the gravitational force. 

The results of this process have been shown in the following figures. Figure 5.4 

shows the level of tip point in z direction. Once the tip point touches the ground, the 

calculations for chain system dynamics take place for a short time, and then the first 

step is completed. After that switch rule takes place and the base and tip points are 

replaced by each other. 

In this case, shown as in Figure 5.3, the tip point is the foot, which touches the 

ground first. For this reason, there will be an impact force on it, when it touches the 

ground. Figure 5.5 shows this result. 

The reaction forces on base point (rare foot) are also important, because the sign of 

the force on z direction helps to decide when the switch rule needs to be applied. This 

decision is made only if the tip point is already touched the ground. The forces on 

base point have been shown in Figure 5.6. 
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Figure 5.4 : The level of the tip point of the robot. 

 

Figure 5.5 : Reaction forces on tip point (front foot). 

Besides all of these results, another important result of this case is about knee locking 

(Figure 5.7). As shown in Section 3.4 and 4.1, it is necessary to apply torques on 

knees, i.e. second and fourth joints, when knee locking is needed. This will simulate 

the effect of the latch, which would prevent the knees bending into forward. 

All simulations have been implemented in Matlab, using .m files, Simulink and 

VRML (3D Simulation) toolbox. Figure 5.8 shows an overview from VRML 

modeling, which is very close to Figure 5.3. 
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Figure 5.6 : Forces on base point (rare foot). 

 

Figure 5.7 : Applied torques on the joints. 
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Figure 5.8 : Taking a step. 

5.3 Conclusions and Recommendations 

In this section we conclude our work and give some recommendations for future 

studies. In this thesis, we studied the dynamics of a planar passive walking biped 

robot using Spatial Operator Algebra (SOA) method. The advantage of this 

technique is that it provides insight into the structure of rigid-body by analyzing the 

system using vectoral representation. Because of its recursive manner, the calculation 

steps are fast for any complex system. That is why, we introduced this method for 

both kinematics and dynamics of any kind of system, but focusing on the serial 

manipulators, since we modeled our biped robot based on it. We designed a 5 DoF 

biped robot in 2D space, including knees. Since knee locking is a natural mechanism 

for a human leg, we used “pseudo joint” technique to make this virtually possible. 

The rearrangement of SOA method for 2D space is important, because it prevents the 

unnecessary calculations, and more relevant to the purpose of this thesis, since we 

want to implement this method for a planar passive dynamic walking biped. The first 

Matlab-Simulink result is on the kinematics of a 5 DoF biped robot, and it revealed 

that SOA method successfully works for bipeds. The latter results are about the 

dynamical analysis of the aforementioned system. Since the purpose of this thesis is 

to analyze the dynamics of a passive walking biped robot, instead of finding its 

proper initial conditions, we have focused on the calculation of constraint forces and 

torques on foot touching the ground and knees, respectively.  

The pseudo joint technique to calculate the constraint torques to maintain the knee 

locking and chain system dynamics to find the constraint forces to keep the touching 

ground foot on the surface level are both efficient, when only the accelerations in 

aforementioned joints meant to be kept at zero. However, our purpose is to find the 

constraint torques and forces to keep their position at zero. For this reason, we have 
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used PI controllers, which also simulated the characteristics of the latches for knees 

and surface for the feet. The P value represented the stiffness of the material (latch or 

ground), and I value eliminates the steady state errors. 

For future studies, the 3D analysis of such systems with upper body and swinging 

arms can be done, since the SOA method has more advantage for more complex 

systems. This has been studied before by different scientists, however with SOA 

method we are able to analyze the forces on feet, joints and links of the biped system. 

This is important for designing this kind of systems. Besides, the realization of the 

system is also important, since this thesis focuses only the theoretical background of 

such systems and its implementation in Matlab-Simulink environment. 
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