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A MATLAB TOOLBOX for HYBRID SYSTEMS

SUMMARY

Hybrid systems contain both analog (continuous) and logical (discrete, switching)
dynamics. The class of discrete event systems essentially consists of systems that
contain a finite number of resources (e.g. machines, communication channels
or processors) that are shared by several users(e.g. product types, information
packets or jobs) all of which contribute to the achievement of some common
goal(e.g. the assembly of products, the end-to-end transmission of a set of
information packets or a parallel computation).

In the first main chapter, we will introduce the Max-Plus Algebra and
Max-Plus-Linear (MPL) systems. Also in this part we will explain the differences
between Max-Plus-Linear systems with other discrete event system modeling
tools like Automata Theory and Petri Net approach.

In the second main chapter of this master thesis, we will consider
some specific subclasses of hybrid systems and their relations: Piecewise
Affine systems (PWA) , Mixed Logical Dynamical (MLD) systems, Linear
Complementarity (LC) systems, Extended Linear Complementarity (ELC)
systems and Max-Min-Plus-Scaling (MMPS) systems.

For both MPL systems and the mentioned subclasses of hybrid systems we will
consider the implementation of the model predictive control(MPC) scheme.

In the last main chapter we will explain developed functions with examples.
These function can be grouped in three main groups. The first group consists of
functions to convert hybrid system subclasses to each other. The second group of
functions is used to implement Mr. Frau’s and Mr. Benschop’s functions to our
toolbox. The last group of functions aims to build an general model predictive
controller algorithm for Max-Min-Plus-Scalar (MMPS) systems with limitations
on input.
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HİBRİT SİSTEMLER için B İR MATLAB ARAÇ KUTUSU

ÖZET

Hibrit sistemler hem analog (sürekli) hem de lojik (ayrık, anahtarlamalı)
dinamikler içerir. Ayrık olay sistemleri sınıfı, makine, iletişim kanalları ve
işlemciler gibi sınırlı sayıda kaynak içeren sistemleri içerir. Bu kaynaklar; ürün
çeşitleri, iletişim paketleri ve iş gibi çeşitli kullanıcılar arasında paylaşılır. Bu
kullanıcılar çeşitli ortak hedeflerin sağlanması için; bir dizi iletişim paketinin
başlangıçtan sona kadar iletimi veya paralel hesaplama gibi; çalışır.

Tezin ilk bölümünde Max-Plus cebri ve Max-Plus-Lineer (MPL) sistemler
incelenmiştir. Ayrıca bu bölümde Max-Plus-Lineer sistemler ile Automata
theorisi ve Petri Ağı yaklaşımları gibi diğer ayrık olay sistemi modelleme araçları
arasındaki farklar açıklanmıştır.

Tezin ikinci bölümünde hibrit sistemlerin çeşitli alt sınıflarını ve bu alt sınıfların
birbirleri ile ilişkilerini incelenmiştir. Bu alt sınıflar sırası ile Piecewise Affine
(parçalı ilgin) (PWA) sistemler, Mixed Logical Dynamical ( karışık lojik dinamik)
(MLD) sistemler, Linear Complementarity (lineer tümlemeli) (LC) sistemler,
Extended Linear Complementarity ( genişletilmiş lineer tümlemeli) sistemler ve
Max-Min-Plus-Scaling (MMPS) sistemlerdir.

Hem Max-Plus-Linear (MPL) sistemler hem de yukarıda belirtilen hibrit sistem
alt sınıfları için model öngörmeli kontrolörün uygulamaları incelenmiştir.

En son ana bölümde geliştirilmiş fonksiyonlar örneklerle açıklanmaktadır. Bu
fonksiyonlar üç ana grup altında toplanabilir. İlk grup hybrit sistem alt sınıflarını
birbirlerine çeviren fonksiyonları içermektedir. İkinci grup ise A. Frau ve
G.J. Benschop’un çalışmalarını birleştiren fonksiyonlardan oluşur. Son gruptaki
fonksiyonlar ise giriş işaretleri üstünde sınırlamalar içeren Max-Min-Plus-Scaling
(MMPS) sistemler için genel bir model öngörücülü kontrolör algoritması
geliştirilmesini amaçlar.

viii



1. INTRODUCTION

Hybrid systems contain both analog (continuous) and logical (discrete, switching)

dynamics. Typical examples are manufacturing systems,telecommunication and

computer networks,traffic control systems, digital circuits and logistics systems.

The class of discrete-event systems essentially consists of man-made systems that

contain a finite number of resources(e.g. machines, communication channels or

processors) that are shared by several users(e.g. product types, information

packets or jobs) all of which contribute to the achievement of some common

goal(e.g. the assembly of products, the end-to-end transmission of a set of

information packets or a parallel computation).

This project aims to develop a MATLAB toolbox for a number of classes of hybrid

and discrete event systems using previously built functions and algorithms.

The first class of system that we will consider are max-plus linear(MPL) systems.

MPL systems are a subclass of discrete event systems for which the model

becomes linear when formulated in the max-plus algebra, which has maximization

and addition as its basic operations. Discrete-event systems in which only

synchronization and no concurrency or choice occur, can be modeled using the

maximization operations (corresponding to synchronization: a new operation

starts as soon as all preceding operations have been finished) and addition

(corresponding to durations: the finishing time of an operation equals the starting

time plus duration). This leads to a description that is linear in the max-plus

algebra.

In the second part of this project we consider some specific subclasses

of hybrid systems: piecewise affine systems, mixed logical dynamical

systems, complementarity systems, extended complementarity systems and

max-min-plus-scaling systems. Note that some of these classes are equivalent,
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possibly under mild additional assumptions related to well-posedness and

boundedness of input,state,output or auxiliary variables.

For both MPL systems and the mentioned subclasses of hybrid systems we will

consider the implementation of the model-predictive control(MPC) scheme. In

the last decades MPC has shown to respond effectively to control demands

imposed by tighter product quality specifications, increasing productivity

demands, new environmental regulations and fast changes in the market. As

a result, MPC is now widely accepted in the industry.

2



2. MAX-PLUS-LINEAR (MPL) SYSTEMS AS A MODELING APPROACH
FOR DISCRETE EVENT SYSTEMS

2.1 Background of Discrete Event Systems

Most of the systems can be modeled with time difference equations like heating

systems. These systems are called as Time Systems or Time driven Systems

because they are driven by time. Unlike Time systems, a great majority of

automation systems are not time-driven systems. These systems can not be

modeled with time difference equations because the state of the system can change

only and only if certain events which are time-independent occur. These systems

which are driven by events are called as Event driven Systems or Event Systems.

Checkers can be given as an example of event systems because only the play

decisions can change the state of the game.

Event systems whose state’s set are discrete are called as Discrete Event Systems

(DES). Our previous example,checkers, can be given as an example of discrete

event systems.

2.2 Automata Theory

Before definition of Automata we must define the term ”Language”. Let

E be set of events of a discrete event system. A language is a set of

finite-length strings of this E and its symbol is L. As a language can only

contain finite-length strings of events, the number of elements of a language

can be infinite. For example, we assume that our event set is E1 = {a,b,c}.

As the first language L1 = {a,aa,aab} has finite number of elements,the second

language L2 = {All possible finite-length strings which begin with event a} has

infinite elements. [1]

3



Figure 2.1: An Automaton example

Automata theory use the term ”state” which means an overall discrete status of

the system like ”motor is on” or ”the phase a is on”. To find current state of the

system it uses tokens.

Definition 2.1 [1]A Deterministic Automaton, denoted by G, is a six-tuple

G = (X ,E, f,Γ,x0,Xm)

where:

X is the set of states

E is the finite set of events associated with the transitions in G

f : X ×E → X is the transition function

Γ : X → 2E is the active event function (2E means the set of all subsets of E.)

x0 is the initial state

Xm ⊆ X is the set of marked states.

In Fig.2.1, we can see that X = {0,1,2}, E = {a,b,g}, x0 = 0, Xm = {1},

f(0,b) = 0 f(1,a) = 1 f(2,a) = 0

f(0,a) = 1 f(1,g) = 2 f(2,g) = 2 (2.1)

Γ(0) = {a,b} Γ(1) = {a,g} Γ(2) = {a,g}

4



A deterministic Automata build two languages, generated language L(G) and

marked language Lm(G). As the generated language consists of all strings s of

events where f(x0,s) is defined, the marked language consists of all strings s of

events where f(x0,s) = Xm.

2.3 Petri Net Theory

Although states which are an overall discrete status of the system and events are

used by automata theory, Petri net use ”places” and ”transitions”. A place can be

defined as a status of a part of the system like ”motor 1 on the phase b” however

transition and event are similar. It is obvious that a set of all places create a

state. [1]

The arcs of Petri nets are bipartite. This means that the arcs can go from places

to transitions or from transitions to places. Weight of an arc determines the

number of token which the arc transfers.

Definition 2.2 [1]A Petri net graph is a weighted bipartite graph

(P,T,w,A)

where

P is the finite set of the places

T is the finite set of transitions

A ⊆ (P×T )∪ (T ×P) is the set of arcs from the places to transitions and from

transitions to places

w : A →{1,2,3, ...} is the weight function of the arcs

In Figure2.2 it can be seen that P={p1, p2, p3, p4},T = {t1, t2, t3},A={(p1, t1),

(p2, t2),(p3, t3),(p4, t2),(t1, p2),(t2, p3),(t3, p1)}

w(p1, t1) = 1 w(p2, t2) = 2 w(p3, t3) = 1

w(p4, t2) = 1 w(t1, p2) = 1 w(t2, p3) = 1 (2.2)

w(t2, p3) = 1 w(t3, p1) = 2

5



Figure 2.2: A Petri net example

As the transition t1 occur,the transition gets 3 tokens but transfer only one token

to p3. On the other hand transition t3 transfers 2 tokens to p1 as it gets one token.

This examples show us that the number of tokens can change as a transition

occurs.

Petri net graphs can be modeled via state equation. Let the kth state of the

system be x(k)=[ p1(k) p2(k) p3(k) ... pn(k) ] and kth fired transition vector

be u(k)=[ t1(k) t2(k) t3(k) ... tm(k) ]. The state equation of the system can

be written as

x(k +1) = x(k)+A∗u(k) (2.3)

ai j = w(ti, p j)−w(p j, ti) where ai j = (A)i j (2.4)

where A is incidence matrix. The incidence matrix A for the previous example is





−1 1 0 0
0 −2 1 −1
2 0 −1 0



 (2.5)

2.4 Max-Plus-Linear (MPL) Systems as a Modeling Tool

Autonomous discrete event systems are discrete event systems where an event

immediately occurs when its conditions are supplied. Therefore event times play

an important role on the system. Event (occur) times can be used to analyze

autonomous discrete event systems. Max-Plus-Linear (MPL) is developed for

this purpose and it use event times. [2] [3]

6



2.4.1 Background of MPL System:Max-Plus Algebra

To analyze Max-Plus-Linear systems, we must study on Max-Plus algebra which

is the core of these systems. We want to introduce Max-Plus algebra in this

subsection.

Definition 2.3 [3] A semi ring is a nonempty set R with the binary operations

⊗R and ⊕R where these binary operations must satisfy the following conditions:

• ⊕R is associative and commutative with the zero element εR;

• ⊗R is associative,distributive over ⊕R and has a unit element eR;

• eR is absorbing for ⊗R;

Definition 2.4 [3] Max-Plus algebra is the set Rmax := R∪ ε with following

binary operations ⊕ and ⊗ where e=0 and ε = ∞ and is denoted as Rmax =

{Rmax,⊕,⊗,e,ε}.

a⊕b = max(a,b) (2.6)

a⊗b = a+b (2.7)

The max-plus algebra have some algebraic properties:

• Commutativity:

∀x,y,z ∈ Rmax a⊕b = b⊕a and a⊗b = b⊗a

• Associativity:

∀x,y,z ∈ Rmax x⊕ (y⊕ z) = (x⊕ y)⊕ z and x⊗ (y⊗ z) = (x⊗ y)⊗ z

• Distributivity of ⊗ over ⊕:

∀x,y,z ∈ Rmax x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z)

• Existence of the zero element:

∀x ∈ Rmax x⊕ ε = x

7



• Existence of the unit element:

∀x ∈ Rmax x⊗ e = x

• The zero absorbing for ⊗ :

∀x ∈ Rmax x⊗ ε = ε

• Idem potency of ⊕:

∀x ∈ Rmax x⊕ x = x

• x⊗n =de f x⊗ x⊗ ...⊗ x
︸ ︷︷ ︸

ntimes

The Matrix operations ⊕ and ⊗ are defined as:

• ⊕ operation on Matrices:

[A⊕B]i j = ai j ⊕bi j = max(ai j,bi j) (2.8)

• ⊗ operation on Matrices where Am×l and Bl×n:

[A⊗B]i j =
l⊕

k=1

aik ⊗bk j = max
k∈l

(aik +bk j) (2.9)

2.4.2 Max-Plus-Linear Systems

Due to Baccelli, the event systems which can be described as follows are called

as Max-Plus-Linear Systems. [3]

x(k +1) = A⊗ x(k)⊕B⊗u(k)
y(k) = C⊗ x(k)

(2.10)

In Figure 2.3, the raw material can be sent to machine A if and only if both of

following conditions are satisfied.

• The previous raw material must have been sent to machine A at least 2 minutes

before.

• The raw material must wait on the production line at least 1 minute.

The raw material can be sent to machine B if and only if all the following

conditions are satisfied.

8



Figure 2.3: A MPL model of a production system

• The previous raw material must have been sent to machine A at least 5 minutes

before.

• The previous raw material must have been sent to machine B at least 3 minutes

before.

• The raw material must wait on the production line at least 2 minutes.

The raw material can be sent to machine C if and only if all the following

conditions are satisfied.

• The previous raw material must have been sent to machine A at least 8 minutes

before.

• The previous raw material must have been sent to machine B at least 4 minutes

before.

• The previous raw material must have been sent to machine C at least 1 minute

before.

• The raw material must wait on the production line at least 3 minutes.

Let assume that sending time to machine A,sending time to machine B and

sending time to machine C are events x1,x2,x3 respectively. So we can say that

laying time of the raw material on the production line will be our input u. The

production time,y, will be the sending time of raw material to machine C.

9



The system can be written as

x1(k +1) = max{x1(k)+2;u(k)+1}

x2(k +1) = max{x1(k)+5;x2(k)+3;u(k)+2}

x3(k +1) = max{x1(k)+8;x2(k)+4;x3(k)+1;u(k)+3}

y(k) = x3(k) (2.11)

or in Matrix form

x(k +1) =





2 ε ε
5 3 ε
8 4 1



⊗ x(k)⊕





1
2
3



⊗u(k)

y(k) =
[

ε ε 0
]
⊗ x(k) (2.12)

2.4.3 An Extension to MPL systems: Switching MPL Systems

An extension to MPL system model is required to model most of the systems

because these systems have different operation modes. Switching MPL system

model enable us to switch between these operation modes with the help of so

called switching mechanism. So we can describe the switching max-plus-linear

systems [4]

x(k) = A(l(k))⊗ x(k−1)⊕B(l(k))⊗u(k) (2.13)

as the switching mechanism z(k) is described as

z(k) = Φ(x(k−1), l(k−1),u(k),v(k)) (2.14)

where l(k-1) is the previous mode and v(k) is additional variable.

10



3. HYBRID SYSTEMS

3.1 Introduction to Hybrid Systems

Hybrid systems contain both analog (continuous) and logical (discrete) dynamics.

Typical examples of hybrid systems are manufacturing systems, communication

and computer networks, traffic controls, digital circuits and logistic systems.

Although there are many theories concerned linear differential systems and

discrete event systems, a generalized theory about hybrid systems can not be

found.

3.2 Subclasses of Hybrid Systems

Some methods are developed to analyze and control for some subclasses of hybrid

systems. In this section we will introduce some subclasses of hybrid systems.

3.2.1 Piecewise-Affine (PWA) Systems

Piecewise affine (PWA) systems are described by Sontag as

x(k +1) = Aix(k)+Biu(k)+ fi
y(k) = Cix(k)+Diu(k)+gi

f or

[
x(k)
u(k)

]

∈ Ωi (3.1)

where Ωi is a convex polyhedral. This convex polyhedral Ωi is formed by

inequalities in the input/state space. [5] [6]

Piecewise affine systems are simplest extension of linear systems which perform

hybrid system behavior. PWA systems are one of the most analyzed subclasses

of hybrid systems. Saturation (3.1) can be modeled as Piecewise affine system

like

y(t) =







−3 i f x(t) ≤−3
x(t) i f −3 < x(t) < 3

3 i f x(t) ≥ 3
(3.2)

11
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Figure 3.1: Saturation

3.2.2 Mixed Logical Dynamical (MLD) Systems

Mixed logical dynamical systems are analyzed by Bemporad and Morari as

x(k +1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k) (3.3)

y(k) = Cx(k)+D1u(k)+D2δ (k)+D3z(k) (3.4)

E1x(k)+E2u(k)+E3δ (k)+E4z(k) ≤ g5 (3.5)

where x(k) =
[

xT
t (k) xT

b (k)
]T

with xt(k) ∈ Rnr and xb(k) ∈ {0,1}nb , where z(k) ∈

Rrr and δ (k) ∈ {0,1}rb are auxiliary variables. [5] [7]

3.2.3 Linear Complementarity (LC) Systems

Linear Complementarity systems are analyzed at first by Heemels and described

as

x(k +1) = Ax(k)+B1u(k)+B2w(k) (3.6)

y(k) = Cx(k)+D1u(k)+D2w(k) (3.7)

v(k) = E1x(k)+E2u(k)+E3w(k)+ g4 (3.8)

0≤ v(k)⊥w(k) ≥ 0

with v(k),w(k) ∈ Rs where v(k) and w(k) are orthogonal to each other. The

variables v(k) and w(k) are called as complementarity variables. [5]

Heemels’s example [8] (3.2) will give us an detailed explanation on “Linear

Complementarity System”. The left cart is attached to a wall by a spring. The

12



Figure 3.2: Heemels’s example

motion of the left cart is constrained by a completely inelastic stop.

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t)+ x2(t)+u(t)

ẋ4(t) = x1(t)− x2(t)

y(t) := x1(t)

0≤ u(k) ⊥ y(k) ≥ 0 (3.9)

where u(k) is reaction force of the stop. The last condition is satisfied because

the reaction force of the stop u(t) exists only when y(t) = 0.

3.2.4 Extended Linear Complementarity (ELC) Systems

Extended linear complementarity(ELC) systems are analyzed by De Schutter and

De Moor and described as

x(k +1) = Ax(k)+B1u(k)+B2d(k) (3.10)

y(k) = Cx(k)+D1u(k)+D2d(k) (3.11)

E1x(k)+E2u(k)+E3w(k) ≤ g4 (3.12)
p

∑
i=1

∏
j∈Φi

(g4−E1x(k)−E2u(k)−E3d(k)) j = 0 (3.13)

where d(k) ∈ Rr is a auxiliary variable. The last condition can be written as

∏
j∈Φi

(g4−E1x(k)−E2u(k)−E3d(k)) j = 0 (3.14)

due of the inequality condition. [5]

The PWA system [5]

x(k +1) =

{
x(k)+u(k) i f x(k) ≥ 0
−x(k)+u(k) i f x(k) < 0

(3.15)
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can be remodeled as ELC system like

x(k +1) = −x(k)+u(k)+2d(k)

−d(k) ≤ 0

x(k)−d(k) ≤ 0

0 =
(
x(k)−d(k)

)(
−d(k)

)
(3.16)

3.2.5 Max-Min-Plus-Scaling (MMPS) Systems

Max-Min-Plus-Scaling (MMPS) systems are analyzed by De Schutter and Van

den Boom.

Definition 3.1 [5] [2] [9] A Max-min-plus-scaling expression f of the variables

x1,...,xn is defined as

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|β fk (3.17)

where fk, fl are MMPS expressions. Max-Min-Plus-Scaling (MMPS) systems are

described as

x(k +1) = Mx(x(k),u(k),d(k))
y(k) = My(x(k),u(k),d(k))
Mc(x(k),u(k),d(k)) ≤ c

(3.18)

where Mx,My,Mc are MMPS expressions.

The MMPS functions have some properties:

• Distribution of the addition over both minimum and maximum:

min( f1, f2)+ f3 = min( f1 + f3, f2 + f3)
max( f1, f2)+ f3 = max( f1 + f3, f2 + f3)

(3.19)

• Multiplication:

β min( f1, f2) = min(β f1,β f2)
β max( f1, f2) = max(β f1,β f2)

(3.20)

−α min( f1, f2) = max(−α f1,−α f2)
−α max( f1, f2) = min(−α f1,−α f2)

(3.21)

• Nestings of min(max) operations can be simplified in the following way:

min

(

min
(

...,
(

min( f1, f2), f3
)
...

)

, fk

)

= min( f1, f2, ..., fk) (3.22)
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• Expressions in the form min()+...+min() can be reduced in the following

way(it holds for maximization):

l

∑
i=1

min( fi j) = min
( j1,..., jl)∈{1,..,k1}×...×{1,..,kl}

(
l

∑
i=1

fi ji) (3.23)

• Minimization is distributive with respect to maximization and vice versa:

min
(

max( f1, f2),max( f3, f4)
)

=
max

(
min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4)

)

max
(

min( f1, f2),min( f3, f4)
)

=
min

(
max( f1, f3),max( f1, f4),max( f2, f3),max( f2, f4)

)

(3.24)

3.3 Canonical forms of MMPS functions

All MMPS expressions can be written in canonical form. To write MMPS function

into canonical forms will reduce the computational time.

Definition 3.2 [10] An MMPS function is in conjunctive form if it is written

as

min
j∈1,...,l

(
max
i∈I j

(αT
i x+bi)

)
(3.25)

or in disjunctive form if it is written as

max
j∈1,...,l

(
min
i∈I j

(αT
i x+bi)

)
(3.26)

where I1, ..., Il ⊆ {1, ...,N} are index sets and there are N components in the form

αT
i x+bi.

Definition 3.3 [10] A level-n expression is an expression with n-1 nesting. The

number n equals the maximum number of min and max operations encountered

in each MMPS expression before arriving at an argument of the form αT
i x+bi.

Some properties about conjunctive and disjunctive forms are given:

• The expression max( f1, ..., fk)+min(g1, ...,gl) can be written as:

max( f1, ..., fk)+min(g1, ...,gl)
= max

(
min( f1 +g1, ..., f1+gl), ...,

min( fk +g1, ..., fk +gl)
)

= min
(

max( f1 +g1, ..., fk +g1), ...,
min( f1 +gl, ..., fk +gl)

)

(3.27)
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• A conjunctive form can be converted to disjunctive form and vice versa:

min
(

max( f11, ..., f1k1), ...,max( fl1, ..., flkl)
)

= max
(

min( f11, f21, ..., fl1), ...,min( f1k1, f2k2, ..., flkl)
) (3.28)

• The expression min
(
max(),max(),...,min(),min()

)
can be easily written in

conjunctive form:

min
(

max( f1, f2),min( f3, f4)
)

= min
(

max( f1, f2), f3, f4
)

= min
(

max( f1, f2),max( f3, f3),max( f4, f4)
)

(3.29)

• The expression max
(

min
(

max( f1, f2), f3
)
, f4

)

can be written in conjunctive

form:
max

(

min
(

max( f1, f2), f3
)
, f4

)

= max
(

max
(

min( f1, f3),min( f2, f3), f4
))

= max
(

min( f1, f3),min( f2, f3), f4
)

= min
(

max( f1, f2, f4),max( f1, f3, f4), ....,max( f3, f4)
)

= min
(

max( f1, f2, f4),max( f3, f4)
)

(3.30)

3.4 Equivalence of Hybrid System’s subclasses

Previously we have said that there are methods to analyze and control of some

hybrid system’s subclasses. In order to analyze and control hybrid systems

some generalized methods must be developed. Therefore we must show the

relationships between hybrid system’s subclasses. In this section we will analyze

these relationships.

Figure 3.3: Graphical representation of the equivalences of hybrid systems. (*) means
condition.
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3.4.1 MLD and LC systems

Proposition 3.1 [5]Every MLD system can be written as an LC system.

Proof At first, we must remember the condition δ (k)∈ {0,1}rb which implies 0≥

δi(k)⊥1−δi(k) ≤ 0. If the variable v1(k) is determined as v1(k) = e−δ (k) where

e denotes the vector for which all entries all equal to one,it can be easily shown

that δ (k)⊥v1(k). It is indicated that binary constraints on xb(k+1),ub(k),yb(k)

are included in complementarity condition.

We can define v2(k) by using (3.4). Let us define v2(k) as

v2(k) = g5−E1x(k)−E2u(k)−E3δ (k)−E4z(k) (3.31)

It can be seen v2(k) ≥ 0 since the inequality 3.5 . The inequality implies that a

w2(k) exists such that

0≤ v2(k)⊥w2(k) ≥ 0 (3.32)

Auxiliary variable z(k) is not allowed in LC systems where only nonnegative

complementarity variables are possible. Therefore, we must split the variable

z(k) in its negative and positive parts.

z(k) := z+(k)− z−(k)

z+(k) = max(0;z(k)) (3.33)

z−(k) = max(0;−z(k))

It is obvious that 0≤ z+(k)⊥z−(k) ≥ 0 . In addition to that, we add two extra

auxiliary vectors v3(k) = z+(k) and v4(k) = z−(k).

At least we have written our MLD system as an LC system:

x(k +1) = Ax(k)+B1u(k)+
[

B2 0 B3 −B3
]

w(k)

y(k) = Cx(k)+D1u(k)+
[

D2 0 D3 −D3
]

w(k)






v1(k)
v2(k)
v3(k)
v4(k)







︸ ︷︷ ︸

=:v(k)

=







e
g5−E1x(k)−E2u(k)
0
0







+







−I 0 0 0
−E3 0 −E4 E4

0 0 0 I
0 0 I 0













δ (k)
w2(k)
z+(k)
z−(k)







︸ ︷︷ ︸

=:w(k)

0≤ v(k) ⊥ w(k) ≥ 0 (3.34)

17



Proposition 3.2 [5] Every LC system can be written as an MLD system,

provided that the variables w(k) and v(k) are (component wise) bounded.

Proof The complementarity condition say that 0≤ v(k)⊥w(k) ≥ 0 . To satisfy

this condition one of vi(k) and wi(k) must be equal to zero for each i ∈ {1, ...,s}

as the other variable is nonnegative. To produce δ (k) ∈ {0,1}s we represent v(k)

and w(k) as

w(k) ≤ Mwδ (k) v(k) ≤ Mv(e−δ (k))

w(k) ≥ 0 v(k) ≥ 0 (3.35)

where Mw and Mv are diagonal matrices containing upper-bounds on w(k) and

v(k) respectively. By setting z(k)=w(k) and replacing v(k) in the inequality 3.8.

we can easily rewrite LC system as a MLD model

x(k +1) = Ax(k)+B1u(k)+B2z(k)

y(k) = Cx(k)+D1u(k)+D2z(k) (3.36)






0
E1

0
−E1







x(k) +







0
E2

0
−E2







u(k)+







−Mw

Mw

0
0







δ (k)+







I
E3

−I
−E3







z(k) ≤







0
Mve−g4

0
g4







3.4.2 LC and ELC systems

Proposition 3.3 [5] Every LC system can be written as an ELC system

Proof It can be written as

x(k +1) = Ax(k)+B1u(k)+B2 w(k)
︸︷︷︸

=d(k)

y(k) = Cx(k)+D1u(k)+D2w(k) (3.37)

−E1x(k) − E2u(k)−E3w(k) ≤ g4

−w(k) ≤ 0
p

∑
i=1

∏
j∈Φi

(g4 + E1x(k)+E2u(k)+E3w(k)) j(w(k)) j = 0
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3.4.3 PWA and MLD systems

Proposition 3.4 [5] Every well-posed PWA system can be rewritten as an MLD

system assuming that the set of feasible states and inputs is bounded.

As MLD model only allows non strict inequalities in 3.5 , by rewriting

discontinuous PWA systems as an MLD model strict inequalities like x(k) < 0.

This variable x(k) must be approximated by x(k) ≤ −ε for a positive number

ε that implies -ε < x(k) < 0 cannot occur. By continuous PWA systems this

inequality can be written non strictly or ε= 0.

Proposition 3.5 [5] A completely well-posed MLD system can be rewritten as

a PWA system.

3.4.4 MMPS and ELC systems

Proposition 3.6 [5] The classes of MMPS and ELC systems coincide.

Proof

• Expressions of the form f = xi, f = α , f = fk + fl and f = β fk results in linear

equations of the form 3.10 and 3.11 .

• An expression of the form f = max( fk; fl) =−min(− fk;− fl) can be written as

f− fl ≥ 0 f− fk ≥ 0 (f− fk)(f− fl) = 0 (3.38)

which is an expression of the form 3.12 and 3.13 .

It can be shown that two or more ELC systems can be combined into a large

ELC system. So every MMPS can be rewritten as an ELC system.

The conditions 3.10 and 3.11 can be easily written as MMPS expression without

max and min operations of the form 3.18 . The condition 3.12 show that

(g4−E1x(k)−E2u(k)−E3d(k)) j ≥ 0 for each j (3.39)
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The condition 3.13 show that (g4 − E1x(k) − E2u(k) − E3d(k)) j ≥ 0 for ∀ ∈

{1,2, ..., p} : ∃ j ∈ Φi . This condition can be rewritten as

min
j∈Φ

(g4−E1x(k)−E2u(k)−E3d(k)) j ≥ 0 f or i = 1,2, ..., p (3.40)

The condition 3.12 can be rewritten for as

min
j∈Ψ

(g4−E1x(k)−E2u(k)−E3d(k)) j ≥ 0 (3.41)

where Ψ = { j ∈ {1,2, ...,q}|∀i ∈ {1,2, ..., p} : j /∈ Φi}. So conditions 3.13 and 3.12

can be rewritten as the last two previous conditions respectively.

3.4.5 MLD and ELC systems

Proposition 3.7 [5] Every MLD system can be rewritten as an ELC system.

Proof If we make an abstraction of the range of the variables then 3.3-3.5 coincide

with 3.10-3.12 with d(k)=[δ T (k) zT (k)]T . The condition δi(k) ∈0,1 is equivalent

to the ELC conditions

−δi(k) ≤ 0 δi(k) ≥ 1 δi(k)(1−δi(k)) = 0 (3.42)

So every MLD system can be rewritten as ELC system.

The condition δi(k) ∈0,1 is equivalent to the MMPS condition

min(δi(k);1−δi(k)) = 0 (3.43)

Proposition 3.8 [5] Every ELC system can be written as an MLD

system,provided that the quantity g4−E1x(k)−E2u(k)−E3d(k) is (component

wise) bounded.

Proof

(g4) j − (E1x(k)−E2u(k)−E3d(k)) j ≤ M jδ j(k) j ∈ Φi

∑
j∈Φi

δ j(k) ≤ mi −1 (3.44)
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where δ i(k) ∈0,1 are auxiliary variables and M j is the upper-bound for

(g4) j − (E1x(k)− E2u(k)− E3d(k)) j.For some j=h; (g4) j=h − (E1x(k)− E2u(k)−

E3d(k)) j=h = 0.

At least by defining z(k)=d(k) we can rewrite ELC system as an MLD system.

3.4.6 PWA and MMPS systems

Theorem 3.9 If f is a continuous PWA function, then there exist sets I1,...,Il ⊆

{1, ...,N} such that

f = max
j∈{1,...,l}

min
i∈Ii

(αix+βi) (3.45)

It is used two strategies to rewrite the continuous PWA systems as MMPS system:

Gorokhovik-Zorko strategy and Ovchinnikov strategy.

3.4.6.1 Gorokhovik-Zorko strategy

Definition 3.4 Hypograph is a region above or below the graph and it’s symbol

is hyp(.).

Proposition 3.10 I j ⊆ {1, ...,M} is an index set for the MMPS function y in

3.45 , and so I j ∈ {I1, ..., Il} if and only if

min
i∈I j

fi ≤ f (3.46)

or equivalently

hyp(min
i∈I j

fi) ⊆ hyp f (3.47)

Let us consider a PWA function f : X → R with X ′ ⊂ Rn, where X ′ is a closed

polyhedron. So there exists a polyhedral partition
{

Xi j
}

i∈{1,...,M}, j∈{1,...,mi}
of X’

such that f (x) = αT
i x + βi on each X ′

i j for every i ∈1, . . .,M and j=1, . . .,mi,

where mi is the number of polyhedral in which the affine term αT
i x+βi is defined

and M is the number of affine terms. [11]

The hypograph of each min term can be computed as the intersection of

hypographs of all its argument since every min term is a concave function.
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Therefore the hypograph of the PWA function can be rewritten as the union

of the polyhedra Hi, for i=1,...,M where we define Hi as follows [11]:

Hi = hyp( fi)∩ ((∪ j=1,...,miX
′
i j)×R) (3.48)

and so

hyp f = ∪i=1,...,MHi (3.49)

Definition 3.5 The power set of a set R is the set of all its subsets, and it is

denoted as P(R).

So we can rewrite a continuous PWA as MMPS system due to Gorokhovik-Zorko

strategy [11] with the help of following algorithm [10]:

Algorithm 1

1. Let I = {1, ...,M} and S a set defined as S = P(I)− /0;

2. for each set I j ∈ S do;

3. if hyp(mini∈I j fi) * hyp f , then remove I j from S;

4. endfor;

3.4.6.2 Ovchinnikov Strategy

Let f : X ′ → R be the continuous PWA function, so we can define f with X ′ ⊂ Rn,

where X ′ is a closed polyhedron. The affine components of f can be denoted as

fi for i = 1, ...,M.

The hyperplanes that are nonempty solution sets of the equation in the form

fi = f j for i < j and have nonempty intersections with the interior of X ′ form

an hyperplane arrangement H. As the arrangement is n dimensional, these

hyperplanes are (n-1) dimensional. Corollary, these hyperplanes generate a

polyhedral partition in X ′ and the set of these polyhedral partition is denoted

as T .

Definition 3.6 [12]A facet is a (n-1) dimensional face of a polyhedron in Rn.

Definition 3.7 [12]Two polyhedral regions are adjacent if they have a facet in

common.
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At first we will choose all the pairs of affine component fp, fq of f on P such that

the following conditions are satisfied:

1. There is a pair of adjacent regions P,Q ∈ T such that fp = f on P and fq = f

on Q.

2. f = max( fp, fq) on P∪Q

Then the hyperplanes that are nonempty solution sets of the equations in the

form fp = fq and for each pair fp, fq that satisfies the previous condition build

an arrangement. This hyperplane arrangement is denoted as H ′ where H ′ ⊆

H. Corollary, The set of regions obtained through the subdivision of X ′ by the

hyperplanes in H ′ is denoted as T ′.

If the regions of T ′ are denoted as T ′
1, ...,T

′
t and for each j = 1, ..., t the index set

S j is denoted as S− j =
{

i ∈ {1, ...,M} : fi(x) ≥ f (x),∀x ∈ T ′
j

}

, we can represent

the function f by the following equivalent MMPS function y:

y = max
j=1,...,t

min
i∈S j

fi (3.50)

.

Figure 3.4: An Ovchinnikov strategy example

The PWA system in Fig.3.4 is given as:

f (x) =







2x+1 f or x < −1
3x+2 f or −1≤ x < 0
−3x+2 f or 0≤ x

(3.51)

23



We can divide the PWA system in 3 parts and we can rewrite the PWA system

as:

f (x) =







min(2x+1;−3x+2) f or x < −1
min(3x+2;−3x+2) f or −1≤ x < 0
min(3x+2;−3x+2) f or 0≤ x

(3.52)

At the end of Ovchinnikov strategy PWA system can be rewritten as an MMPS

system:

f (x) = max(min(2x+1;−3x+2);min(3x+2;−3x+2)) (3.53)

We can rewrite PWA systems as MMPS systems due to Ochinnikov strategy [12]

with the help of following algorithms [10]:

Algorithm 2

1. Let X ′ be the domain of the function f ;

2. for each pair of adjacent polyhedral regions Xik,X jl ∈ X ′, with i < j, do;

3. if fi ≥ f j on Xik and fi ≤ f j on X jl, insert the hyperplane that splits the two

regions in H ′;

4. endfor;

5. Let T ′ the set of regions given by the intersection of X ′ with the regions of the

hyperplane arrangement H ′;return T ′;stop;

Algorithm 3

1. Let T ′ be the region set returned by Algorithm 2;

2. for each region T ′
j ∈ T ′, with j = 1, ...,M, do;

3. if fi ≥ f on T ′
j , then insert the index i in the index set S j;

4. endfor;

5. return the index sets S j for j = 1, ..., t;

Now we can rewrite the continuous PWA function as in 3.50 .
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4. MODEL PREDICTIVE CONTROL (MPC) AND ITS APPLICATION TO
HYBRID SYSTEMS

4.1 Model Predictive Control

Mostly used PID controllers use error,derivative of error and integral of error

as control parameters. Although PID controllers can maintain suitable robust

optimized control solutions for linear dynamical systems,it can not promise

suitable robust solutions for hybrid systems. One of the most important reasons

of this situation is that PID controllers only use present and previously errors.

Therefore PID controllers can not be easily adapted to systems whose reference

signal are high-frequency signals. [13]

To developed a more suitable control solution the reference signal must be

predicted for a period. Therefore Model-Predictive Controller are developed. The

main idea of MPC is to predict oncoming reference signal for a finite period with

the help of previous reference signals. MPC can be easily adapted to limitations

on the control signal. On the other hand,one of the most important handicaps of

MPC is that we must wait to build database of previous reference signals in order

to predict oncoming reference signals. Another important handicap of MPC is

that the prediction horizon must be updated for each step. Therefore we can

only use the first control signal for each step although the control sequence of

prediction horizon has been computed. [13]

It is used two time intervals by MPC so called prediction horizon and

control horizon. Prediction horizon is the predicted reference signal interval

and symbolized as Np. As shorter prediction horizons can cause inaccurate

predictions,longer prediction horizons cause long computation times and

inaccurate predictions. The decision of the prediction horizon is an important

matter. To enable smooth response and control signals it is used constant control
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signals or constant control signal derivatives for interval [Nc,Np]. The time interval

[0,Nc] is called as control horizon.

Bordons & Camacho(1995) show that our MPC problem can be written as

ỹ(k) = Hũ(k)+g(k) (4.1)

where

ỹ(k) =






ŷ(k +1|k)
...

ŷ(k +Np|k)




 , r̃(k) =






r(k +1)
...

r(k +Np)




 , ũ(k) =






u(k)
...

u(k +Np −1)




 (4.2)

H =








CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CANp−1B CANp−2B · · · CB








,g(k) =








CA
CA2

...
CANp








(4.3)

A performance index or cost function J,which penalize reference tracking errors

and control inputs size, is used in MPC to optimize the controlled system output.

J = Jout +λJm =
Np

∑
j=1

‖ŷ(k + j|k)− r(k + j)‖2 +λ
Np

∑
j=1

‖u(k + j−1)‖2 (4.4)

Additional linear constraints are described as

E(k)ũ(k)+F(k)ỹ(k) ≤ h(k) (4.5)

We must remember control horizon rule too

u(k + j) = u(k +Nc −1) f or j = Nc,Nc+1, ... (4.6)

The parameters Np,Nc and λ are the three basic MPC tuning parameters. The

prediction horizon Np is related to the length of the step response of the process

where the time interval (1,Np) should contain the dynamics of the system. The

control horizon Nc is taken equal to the system order where Np ≥ Nc. The

parameter λ ≥ 0 makes a connection between tracking errors and control effort.

The parameter λ is chosen as small as possible because the controller will be

more stable as this parameter is decreasing.

26



4.1.1 MPC for MPL systems

It can be shown the similarity of plus-times systems and max-plus-linear

systems. [4] [6] So we can write

ŷ(k + j|k) = C⊗A⊗ j ⊗ x(k)⊕⊕
j−1
i=0C⊗A⊗ j−i ⊗B⊗u(k + i) (4.7)

or
ỹ(k) = H ⊗ ũ(k)⊕g(k)

H =








C⊗B ε · · · ε
C⊗A⊗B C⊗B · · · ε

...
...

. . .
...

C⊗A⊗Np−1⊗B C⊗A⊗Np−2⊗B · · · C⊗B








g(k) =








C⊗A
C⊗A⊗2

...
C⊗A⊗Np








(4.8)

The control horizon rule of MPC for MPL can be written as

δu(k + j) = δu(k +Nc) f or j = Nc,Nc+1, ...,Np−1 (4.9)

or

δ 2u(k + j) = 0 f or j = Nc,Nc+1, ...,Np−1

So our standard MPC-MPL problems obtained as

min
ũ(k)

J = min
ũ(k)

Jout,p1 +λJin,p2 (4.10)

subject to

ỹ(k) = H ⊗ ũ(k)⊕g(k) (4.11)

E(k)ũ(k)+F(k)ỹ(k) ≤ h(k) (4.12)

δu(k + j) = δu(k +Nc) f or j = Nc,Nc+1, ...,Np−1 (4.13)

δ 2u(k + j) = 0 f or j = Nc,Nc+1, ...,Np−1 (4.14)

De Schutter& Van den Boom(2001) suggest relaxed MPC method to solve this

problem. It can be shown that objective function J and ỹ are monotonically

nondecreasing functions. So we can rewrite the condition as

E(k)ũ(k)+F(k)ỹ(k) = −h(k) (4.15)
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Theorem 4.1 Let the objective function J and mapping ỹ → F(k)ŷ be

monotonically nondecreasing functions of ỹ. Let (u∗, ỹ∗) be an optimal solution

of the relaxed MPC problem. If we define ỹ# = H ⊗ ũ∗⊕ g(k) then (u∗, ỹ#) is an

optimal solution of the original MPC problem.

4.1.2 MPC for switching MPL Systems

The procedure to find best MPC for MPL systems can be adapted to MPC for

switching MPL systems. The additional constraint v(k) and timing problem of

events reasoned some modifications on the procedure.

Due to correspondence of the input u(k) on the event times x(k) it can be written

∆u(k + j) = u(k + j)−u(k + j−1) ≥ 0 f or j =
{

0,1, ...,Np
}

(4.16)

It is wanted that the change rate of the input in the interval [Nc −1,Np] will be

constant.

∆u(k +m) = ∆u(k +Nc −1) f or m =
{

Nc, ...,Np
}

(4.17)

Additional constraint v(k) will not change in the interval [Nc −1,Np].

∆v(k + j) = 0 f or j =
{

Nc, ...,Np −1
}

(4.18)

Additional criteria on u(k) and output y(k) can be written as

Ac(k)ũ(k)+Bcỹ(k) ≤ cc(k) (4.19)

So our problem can be described as

min
{ũ(k)∈U,ṽ(k)∈U(k)}

J(k) (4.20)

where

x(k) = A(l(k))⊗ x(k−1)⊕B(l(k))⊗u(k)
Φ(k + j−1), l(k + j−1),u(k + j),v(k + j) ∈ Z(l(k+ j)) f or j = 0, ...,Np −1

∆u(k + j) = u(k + j)−u(k + j−1) ≥ 0 f or j =
{

0,1, ...,Np
}

∆u(k +m) = ∆u(k +Nc −1) f or m =
{

Nc, ...,Np
}

∆v(k + j) = 0 f or j =
{

Nc, ...,Np −1
}

Ac(k)ũ(k)+Bcỹ(k) ≤ cc(k)
(4.21)

If the constraint v(k) is a binary value,the problem will be an integer optimization

problem where global minimum search algorithms like genetic algorithms or
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tabu search can be used. Some cases can be solved via mixed integer linear

programming (MILP). If the constraint v(k) has a real value, the problem can be

solved via ELCP. [4]

Another problem in this optimization is that event times are not strict because

of constraint v(k). An event time estimator mechanism is proposed to annihilate

this problem. [4]

4.2 Application of MPC for Hybrid system’s subclasses

In this section we will discuss two applications of MPC for hybrid system’s

subclasses: Max-Min-Plus-Scaling systems and Mixed Logical Dynamical

systems.

4.2.1 MPC for MMPS systems

Theorem 4.2 A scalar-valued MMPS function f can be written into the min-max

canonical form

f = mini=1,...,Kmax j=1,...,ni(α
T
(i, j)x+β(i, j)) (4.22)

or into the max-min canonical form

f = max
i=1,...,L

max
j=1,...,mi

(γT
(i, j)x+δ(i, j)) (4.23)

for some integers K,L,ni,mi; vectors αi,γi; real numbers βi,δi. For vector-valued

MMPS functions the above statements hold component wise. [10] [14]

In MMPS-MPC we compute each step k an optimal control input that minimize

the cost function over the period [k,k+Np-1] where Np is the prediction horizon.

We assume that for each step k current state can be measured or estimated. We

can estimate y(k +j|k) of the output after step k+j based on the state x(k-1) and

future inputs u(k+i) . We obtain y(k+j|k)=Fj(x(k-1),u(k),u(k+1),...,u(k+j)) for

as a MMPS function.

The cost function J(k) = Jout(k) + λJin(k) used in MMPS-MPC where λ is a

nonnegative weight parameter.

ũ(k) =
[

uT (k) ... uT (k +Np −1)
]

r̃(k) =
[

rT (k) ... rT (k +Np −1)
]

ỹ(k|k) =
[

yT (k|k) ... yT (k +Np −1|k)
]

(4.24)
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In the practice, there are constraints on input and output signals. These

constraints are modeled in MMPS as Cc(k,x(k−1), ũ(k), ỹ(k)) ≥ 0.

In MMPS-MPC is used the control horizon Nc which means that the input signal

is constant after sample step k+Nc.

u(k + j) = u(k +Nc −1) ∀ j ∈ [Nc,Np −1] (4.25)

A more smaller control horizon Nc implies more smoother signal. On the other

hand, the control horizon must be so wide that the controller has enough degrees

of freedom to reach the constraints.

Some of the optimization algorithms to solve MMPS-MPC problem can be

multi-start nonlinear optimization based on sequential programming (SQP) and

method based on the extended linear complementarity problem (ELCP). SQP

uses large number of initial start points and perform several optimization runs

to find optimal solution. In addition, the objective functions in the MMPS-MPC

problem are non-differentiable and PWA makes SQP less suitable for this

problem. On the other hand, ELCP needs exponentially growing compute time

for large numbers of input and state signals.

De Schutter & Van den Boom’s algorithm for MMPS-MPC problem: [9] [14] [2]

Due to theorem in this subsection the objective function can be written in

min-max canonical form as

J(k) = min
i=1,...,L

max
j=1,...,ni

(αT
(i, j)u(k)+β(i, j)(k)) (4.26)

for appropriately defined integers L,ni,vectors α(i, j)(k) and integers β(i, j).Note that

the transformation into canonical form has performed and redundant terms are

removed.

The derivation below is similar to the cutting-plane algorithm for convex

optimization. The control horizon constraint is linear in ũ(k). The original MPC

constraint Cc(k,x(k−1), ũ(k), ỹ(k))≥ 0 will be not linear in ũ(k) after substitution

of ỹ. Therefore we assume that there are only linear constraints on the input:

P(k)ũ(k)+q(k) ≥ 0 (4.27)
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In practice such constraints occur if we have to guarantee that the control signal

or control signal rate will stay within certain bounds. The optimization algorithm

used below can also deal with convex constraints.

Optimization problem to obtain the optimal MPC input signal at sample step k

is

min
˜u(k)

min
i=1,...,L

max
j=1,...,ni

(αT
(i, j)u(k)+β(i, j)(k)) (4.28)

subject toP(k)ũ(k)+q(k) ≥ 0

or

min
i=1,...,L

min
˜u(k)

max
j=1,...,ni

(αT
(i, j)u(k)+β(i, j)(k)) (4.29)

subject toP(k)ũ(k)+q(k) ≥ 0

The subproblem minũ(k) maxj=1,...,ni(αT
(i, j)u(k) + β(i, j)(k)) subject to P(k)ũ(k) +

q(k) ≥ 0 is equivalent to the following LP problem:

min
t(k),ũ(k)

t(k) subject to

{
t(k) ≥ αT

(i, j)u(k)+β(i, j)(k) ∀ j ∈ [1,ni]

P(k)ũ(k)+q(k) ≥ 0
(4.30)

This LP can be solved efficiently using a simplex algorithm or an interior-point

algorithm.After the LP problem for all i ∈ [1,L] is solved,we will select ũopt
i where

αT
(i, j)ũ

opt
i (k)+β(i, j)(k) is minimum.

4.2.2 MPC for MLD systems

Definition 4.1 [7] A vector xe ∈ Rn ×{0,1}nl is said to be an equilibrium state

for MLD system and the input ue ∈Rml ×{0,1}ml if [x′e,u
′
e]
′ ∈C and x(t, t0,xe,ue) =

xe,∀t ≥ t0,∀t0 ∈ Z. The pair (xe,ue) is called as an equilibrium pair.

Definition 4.2 [7] Let (xe,ue) be an equilibrium pair for a MLD system and let

the system be well posed. Assume that g = limt→∞ gt exists. For i ∈ g and j ∈ g,

let δe,i,ze, j the corresponding equilibrium auxiliary variables. An auxiliary vector
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δ (or z) is said to be definitely admissible if δi = δe,i,∀i ∈ g,(z j = ze, j,∀ j ∈ g) and

∃te such that

E2tδ +E3tz ≤ E1tue +E4txe +E5t ,∀t ≥ te (4.31)

Model predictive control of MLD systems depends on equilibrium pair (xe,ue) and

their corresponding equilibrium auxiliary variables (δe,ze). If the components

δe,i,ze, j, i /∈ g, j /∈ g correspond to desired steady-state values for the indefinite

auxiliary variables, then our problem [7] can be written as

min
vT−1

0

J(vT−1
0 ,x(t)) ≡

T1

∑
k=0

‖v(k)−ue‖
2
Q1

+‖δ (k|t)−δe‖
2
Q2

+

+‖z(k|t)− ze‖
2
Q3

+‖x(k|t)− xe‖
2
Q4

+ (4.32)

+‖y(k|t)− ye‖
2
Q5

subject to
x(T |t) = xe

x(k +1|t) = Ax(k|t)+B1v(k)+B2δ (k|t)+B3z(k|t)
y(k|t) = Cx(k|t)+D1v(k)+D2δ (k|t)+D3z(k|t)

E2δ (k|t)+E3z(k|t) ≤ E1v(k)+E4x(k|t)+E5

(4.33)

where Q1 = Q′
1 > 0,Q2 = Q′

2 ≥ 0,Q3 = Q′
3 ≥ 0,Q4 = Q′

4 ≥ 0,Q5 = Q′
5 ≥ 0, x(k|t) ≡

x(t + k,x(t),vT−1
0 ) and δ (k|t),z(k|t),y(k|t) are similarly defined. Only the first

element of input vector v(k) is applied to the system.

u(t) = v∗t (0) (4.34)

The defined control law in 4.33 is called as mixed integer predictive control(MIPC)

law. MIQP solvers are used to find reliable solution.
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5. PREVIOUS MATLAB IMPLEMENTATIONS

In this chapter we will analyze the previous works on implementation of model

predictive control of hybrid systems on Matlab. One of the most comprehensive

implementation works on Matlab is “Multi-Parametric Toolbox(MPT)” [15] which

specializes on analysis and control of PWA and MLD systems. On the other hand,

Andre Frau’s master thesis analyze the equivalence of PWA and MMPS systems

and minimization of MMPS functions [10]. An another work on hybrid systems,

G.J. Benschop’s master thesis, analyze minimization of MMPS function and MPC

for hybrid system’s subclasses [14].

5.1 Multi-Parametric Toolbox

MPT toolbox enables not only to model PWA systems with the help of Hybrid

Identification Toolbox, MLD systems with the help of Hybrid System Description

Language and to model nonlinear systems but also to analyze and control these

systems. Toolbox designs model predictive controller for these systems. Toolbox

contain various solvers like mpMILP and mpLP. The most important reason of

the popularity of MPT toolbox is that the controller can be implemented by real

systems with the help of “Real Time Workshop” of Matlab. Another important

reason of this popularity is that these toolbox is developing still.

To model PWA and MLD systems MPT toolbox is using “HYSDEL” which has

two main parts. [16] The first one, called INTERFACE, contains the declaration of

all variables and parameters, so that it is possible to make the proper type checks.

The second part, IMPLEMENTATION, is composed of specialized sections where

the relations among the variables are described.

AUX SECTION: The HYSDEL section AUX contains the declaration of the

auxiliary variables used in the model. These variables will become the ä and z

variables in the MLD model.
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AD SECTION: The HYSDEL section AD allows one to define Boolean variables

from continuous ones, and is based exactly on the same semantics of the event

generator (EG) described earlier. HYSDEL does not provide explicit access to

the time instance, however this limitation can be easily overcome by adding a

continuous state variable t such that t ′ = t +Ts, where Ts is the sampling time.

LOGIC SECTION: The section LOGIC allows one to specify arbitrary functions

of Boolean variables: In particular the mode selector is a Boolean function and

therefore it can be modeled in this section.

DA SECTION: The HYSDEL section DA defines continuous variables according

to “if then else” conditions on Boolean variables. This section models part of the

switched affine

CONTINUOUS SECTION: The CONTINUOUS section describes the linear

dynamics, expressed as difference equations.

LINEAR SECTION: HYSDEL allows also one to define a continuous variable as

an affine function of continuous variables in the LINEAR section. This section,

together with the CONTINUOUS and AD sections allows more flexibility when

modeling the SAS. This extra flexibility allows algebraic loops that may render

undefined the trajectories of the model. The HYSDEL compiler integrates a

semantic checker that is able to detect and report such abnormal situations.

AUTOMATA SECTION: The AUTOMATA section specifies the state transition

equations of the finite state machine (FSM) as a collection of Boolean functions.

OUTPUT SECTION: The OUTPUT section allows one to specify static linear

and logic relations for the output vector y = [yr yb ]. Finally HYSDEL allows one

more section:

MUST SECTION: This section specifies arbitrary linear and logic constraints on

continuous and Boolean variables, and therefore it allows for defining the sets

Xr, Xb, Ur, Ub, Yr, Yb (more generally, the MUST section allows also mixed

constraints on states, inputs, and outputs).
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For example the system

x(k +1) =







2∗ x(k) if x(k) ≥ 0
x(k)+u(k)−1 if x(k) < 0&x(k)+u(k)−1 < 0

2 if x(k) < 0&x(k)+u(k)−1≥ 0
(5.1)

can be written in HYSDEL as:

SYSTEM sample {

INTERFACE {

STATE {

REAL xr [-10, 10]; }

INPUT {

REAL ur [-2, 2]; }

}

IMPLEMENTATION {

AUX {

REAL z1, z2, z3;

BOOL de, df, d1, d2, d3; }

AD {

de = xr ≥ 0;

df = xr + ur - 1 ≥ 0; }

LOGIC {

d1 = d̃e & d̃f;

d2 = de;

d3 = d̃e & df; }

DA {

z1 = {IF d1 THEN xr + ur - 1 };

z2 = {IF d2 THEN 2 * xr };

z3 = {IF d3 THEN 2 }; }

CONTINUOUS {

xr = z1 + z2 + z3; }

} }
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5.2 Continuous PWA and MMPS systems

Andre Frau’s master thesis contains two main theme, to convert continuous PWA

systems into MMPS systems and vice versa and minimization of MMPS functions.

Two strategies is used to convert continuous PWA systems into MMPS systems.

First strategy to convert continuous PWA systems is the Gorohkovik-Zorko

strategy. This strategy has given good results but the code depends on the number

of affine components of PWA systems. On the other hand, the Ovchinnikov

strategy is faster than Gorohkovik-Zorko strategy while it’s efficiency is not so

good [10]. According to Frau, these strategies can be developed to increase their

efficiency. Minimization of MMPS functions is an important theme because it

will decrease the computation time of analyze and control programs.

5.3 Minimization of MMPS expression

Definition 5.1 [10] The function f is in its minimal realization if there does not

exist a function

f1(x) = min
j∈{1,...,l′}

max
i∈I j

(αT
i x+bi) (5.2)

with l’<l, such that f (x)≡ f1(x), and next, if we cannot remove any entry in some

of the index sets I j without modifying the meaning of the function.

We can reduce the number of max functions. The expression maxi∈Il1
can be

removed if

max
i∈Il1

(αT
i x+bi) ≥ max

i∈Il2

(αT
i x+bi) (5.3)

5.4 Comparison of MPC for hybrid systems

According to Benschop’s master thesis and De Schutter(2004) MPC for

MMPS problem can be solved most efficiently by nonlinear constraint

optimization(SQP). [14] [9] It is stated in Benschop’s master thesis that other

MPC for hybrid system’s subclasses are not so efficient. Although there are

very effective methods to compute the global optima of MPC for MLD problem,

the computational time depends on the size of the problem(N) and prediction

horizon(T). The problem has a complexity of N2T . [7] On the other hand, the
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solver can be interrupted at any intermediate step (t+1) to obtain a suboptimal

solutionu∗t which satisfies

J(U∗
t+1,x(t +1)) ≤ J(U1,x(t +1)) (5.4)
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6. MATLAB TOOLBOX

Our motivation in this master thesis is to develop a MATLAB toolbox for hybrid

system’s subclasses especially for MMPS systems. We must solve the following

problems to develop a toolbox:

• Conversion of hybrid system’s subclasses

• Integration of previously built functions and algorithms to the new toolbox

• Some improvements on the computational time of controllers

6.1 Conversion of hybrid system’s subclasses

We have developed at first functions getELCstruct and getLCstruct to

test Extended Linear Complementarity and Linear Complementarity system

classes,respectively.

After we developed test functions for ELC and LC systems, we developed

functions to convert hybrid system’s subclasses.

6.1.1 lc2elc

This function is developed to convert Linear Complementarity systems to

Extended Linear Complementarity systems. We can convert the following Linear

Complementarity system to an Extended Linear Complementarity system:

x(k +1) =







0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0







x(k)+







0
0
1
0







u(k)+







0
0
0
0







w(k)

y(k) =
[

1 0 0 0
]

x(k)

v(k) =
[

1 0 0 0
]

x(k)

w(k) = u(k)

0≤ v(k) ⊥ w(k) ≥ 0 (6.1)
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In MATLAB, we have followng result:

b.A =







0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0







b.B1 =







0
0
1
0







b.B2 =







0
0
0
0







b.C =
[

1 0 0 0
]

b.D1 = 0 b.D2 = 0

b.E1 =

[
−1 0 0 0
0 0 0 0

]

b.E2 =

[
0
0

]

b.E3 =

[
0
−1

]

b.G4 =

[
0
0

]

b.Phi = {
[

1 2
]
} (6.2)

6.1.2 lc2mld

This function is developed to convert Linear Complementarity systems to Mixed

Logical Dynamical systems. We can convert the Linear Complementarity system

in the previous example to Mixed Logical Dynamical system. As result we have

c.A =







0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0







c.B1 =







0
0
1
0







c.B2 =







0
0
0
0







c.C =
[

1 0 0 0
]

c.D1 = 0 c.D2 = 0

c.E1 =







0 0 0 0
1 0 0 0
0 0 0 0
−1 0 0 0







c.E2 =







0
0
0
0







c.E3 =







−10
10
0
0







c.E4 =







1
0
−1
0







c.G5 =







0
3
0
0







(6.3)

The bug of the function is that the function does not check if the argument is a

Linear Complementarity system which has been converted from a Mixed Logical

Dynamical system. If the argument is a Linear Complementarity system which

has been converted from a Mixed Logical Dynamical system, the new Mixed

Logical Dynamical system will be much complicated system than the original.

6.1.3 mld2elc

This function is developed to convert Mixed Logical Dynamical systems to

Extended Linear Complementarity systems. The following system can be written
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as Extended Linear Complementarity system:

x(k +1) =

[
1 2
3 4

]

x(k)+

[
0
1

]

u(k)+

[
0
1

]

δ (k)+

[
0
0.2

]

z(k)

y(k) =
[

1 0 0 0
]

x(k)
[

1 0
]

x(k) + u(k)−2δ (k) ≤ 1 (6.4)

In MATLAB, we had the following results:

b.A =

[
1 2
3 4

]

b.B1 =

[
0
1

]

b.B2 =







0 0
1 0
0 0
0 0.2







b.C =
[

1 0
]

b.D1 = 0 b.D2 =

[
0 0
0 0

]

b.E1 =





0 1
0 0
0 0



 b.E2 =





1
0
0



 b.E3 =





1 0
−1 0
0 −2





b.G4 =





1
1
0



 b.Phi : [23] (6.5)

6.1.4 mld2lc

This function is developed to convert Mixed Logical Dynamical systems to

Linear Complementarity systems. We can convert the Mixed Logical Dynamical

system in the previous example to Linear Complementarity system.

b.A1 =

[
1 2
3 4

]

b.B1 =

[
0
1

]

b.B2 =

[
0 0 0 0
1 0 0.2 −0.2

]

b.C =
[

1 0
]

b.D1 = 0 b.D2 =
[

0 0 0 0
]

b.E1 =







0 0
0 −1
0 0
0 0







b.E2 =







0
−1
0
0







b.E3 =







−1 0 0 0
2 0 0 0
0 0 0 1
0 0 1 0







b.G4 =







1
1
0
0







(6.6)

The bug of the function is that the function does not check if the argument

is a Mixed Logical Dynamical system which has been converted from a Linear

Complementarity system. If the argument is a Mixed Logical Dynamical system
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which has been converted from a Linear Complementarity system, the new system

will be much complicated system than the original.

6.2 Integration of Mr. Frau’s and Mr. Benschop’s functions

We have developed the function frau2ben to convert struct formated MMPS

functions; the form which is used by Mr. Frau; to cell formated MMPS functions,

the form which is used by Mr. Benschop. The function ben2frau is developed to

convert cell formated MMPS functions to struct formated MMPS functions.

6.3 Functions for MMPS systems

We have developed the function mmpscalc to calculate the value of the MMPS

function. As mmpscalc can be used only for a MMPS function for only entry

of states and inputs, the function sisresp is developed to calculate the system

response of a MMPS system to a series of inputs and initial values of the states.

Example:

x1(k +1) = max
[
min

(
4x1x(k)+ x2(k)+max[x2(k),x1(k)]+3,2x2(k)

)
,2x1(k)

]

x2(k +1) = max(x1(k),x2(k)+0.5u(k)+1)

y(k) = max(x1(k),x2(k)) (6.7)

In MATLAB:

b = mmpscalc(a{1},{′x1′,′ x2′,′ u′}, [2;3;7])

b = 6 (6.8)

[out,sta] = sisresp({′x1′,′ x2′}, [2;3],{′u′}, [7,10,7,9],{′y′},a)

out =
[

3 7.5 15 30
]

sta =

[
2 6 15 30 60
3 7.5 13.5 18 30

]

(6.9)

Our aim is to develop a function to calculate model predictive controller for

MMPS systems without limitations on outputs and states. We will use van

den Boom & de Schutter’s linear programing based model predictive controller

algorithm. As we mention previous chapter we must calculate the cost function
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cost f unc = PMat(i,1)∗ |J(y− r)|i,1 +RMat(i,1)∗ |J(y− r)|i,in f +

QMat(i,1)∗ |J(u)|i,1 +SMat(i,1)∗ |J(u)|i,in f (6.10)

To calculate the cost function we develop the function “find_cost”. Example:

b{1} = {′min′,{′+′,′ x′,{′∗′,2,′ u′},1},{′+′,{′∗′,1.5,′ x′},′ u′}}

b{2} = ′x1′

c = f ind_cost([0], [1], [0], [0],{′x′},{′y′},{′u′},2,b)

c = max[min(x+2u(0)+1,1.5x+u(0))− r1(2),r1(2)

−min(x+2u(0)+1,1.5x+u(0)),x− r1(1),r1(1)+ x] (6.11)

In order to apply linear programing based model predictive controller algorithm

we must rewrite our cost function in the conjunctive form. For this purpose we

are using by mr. Benschop developed function can_form_mmps. Sometimes

the function mplusm which is called in can_form_mmps because the function

can be to complicated that “length” function which is a original Matlab function

can not handle the number of variables. After the MMPS function converted

into conjunctive form, the MMPS (cost)function in conjunctive form can be

converted easily to struct formated MMPS functions with the help of the

function ben2frau. If we continue previous example:
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d = can_ f orm_mmps(c,1,′ con j′)

disp_mmps(d)

min
[

max
(
1+−r1(2)+2u(0)+ x,1+−r1(2)+2u(0)+ x),

max
(
− r1(1)+ x,−r1(1)+ x

)
,

max
(
r1(1)+−x,r1(1)+−x

)
,

max
(
−1+ r1(2)+−2u(0)+−x,−1+ r1(2)+−2u(0)+−x

)
,

max
(
r1(2)+−u(0)+−1.5x,r1(2)+−u(0)+−1.5x

)
,

max
(
− r1(2)+u(0)+1.5x,−r1(2)+u(0)+1.5x

)
,

max
(
− r1(1)+ x,−r1(1)+ x

)
,max

(
r1(1)+−x,r1(1)+−x

)
,

max
(
−1+ r1(2)+−2u(0)+−x,−1+ r1(2)+−2u(0)+−x

)
,

max
(
r1(2)+−u(0)+−1.5x,r1(2)+−u(0)+−1.5x

)]
(6.12)

e = ben2 f rau(d)

e.al pha =























−1 2 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 −1 0
0 0 −1 0
0 0 −1 0
0 0 −1 0
0 0 −1.5 0
0 0 −1.5 0
0 0 1.5 0
0 0 1.5 0























e.beta =























1
1
0
0
0
0
−1
−1
0
0
0
0























e.degisken = {′r_1(2)′,′ u(0)′,′ x′,′ r_1(1)′}

e.terms = {[1,2][3,4][5,6][7,8][9,10][11,12]} (6.13)

43



The function duz_costfunc enables us to separate inputs from other variables

(references and initial values of states). So our system can be written as

f = duz_cost f unc(e,{′x′},{′r_1(1)′,′ r_1(0)′},{′u′},2)

f .al pha : [12x1double]

f .beta : [12x1double]

f .betanew : [12x3double]

f .degisken : {′u(0)′,′ u(1)′}

f .terms : {[1,2], [3,4], [5,6], [7,8], [9,10], [11,12]} (6.14)

So our mpc-mmps problem can be written as

min
t(k),ũ(k)

t(k) subject to







t(k) ≥ f .al phaT
(i, j)u(k) + f .beta(i, j)(k)

+ f .betanew∗

[
stateinitials
re f erences

]

∀ j ∈ [1,ni]
A_ex∗u(k) ≤ b_ex
A_eq∗u(k) = b_eq

(6.15)

where A_ex,b_ex,A_eq,b_eq are additional limitation matrices on inputs. This

problem can be solved with the help of the function mpc_mmps.
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7. CONCLUSION

In the second chapter we have analyzed discrete event system models. As

widely used discrete event system modeling tools automata theory and petri

nets approach use the state of entire system as main point, Max-Plus-Linear

(MPL) systems are concentrating on event times. This structure of MPL systems

enables to develop a modeling tool for hybrid systems that have both discrete

event systems and time systems characteristics at the same time.

In the third chapter we have introduced hybrid system’s subclasses and their

relationships. It can be shown that hybrid system’s subclasses are equivalent

under some assumptions [5]. In the fourth chapter we have given a short

introduction to model predictive control. After the main idea and mechanism

of model predictive control have been explained, implementations of MPC on

MPL and some hybrid system’s subclasses are given.

In the fifth chapter we have shown some comprehensive MATLAB applications

related hybrid systems. the most important and comprehensive work is absolutely

“Multi-Parametric Toolbox (MPT)”. MPT has features as to design MPC for

PWA and MLD systems in addition to some more complex features. The other

important MATLAB implementations that we are analyzed are A.Frau’s master

thesis and G.J. Benschop’s master thesis. As A.Frau’s thesis is concentrating

on conversion between continuous PWA and MMPS systems and minimization

of MMPS systems, G.J. Benschop’s thesis is concentrating on MPC for hybrid

system’s subclasses and their comparison.

In the last main chapter we have explained the functions which we have developed

to achieve our goals. These three goals were

• Conversion of hybrid system’s subclasses

• Integration of previously built functions and algorithms to the new toolbox
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• Some improvements on the computational time of controllers

We have developed functions to convert hybrid system’s subclasses to each other.

We can say that functions ben2frau and frau2ben help us to integrate A.Frau’s and

G.J. Benschop’s works to each other and the whole toolbox. We have developed

a model predictive controller algorithm for MMPS systems with limitations on

inputs.

The most important future work is to develop a model predictive controller

algorithm for MMPS systems with limitations on states and outputs. Another

important future work can be a model predictive controller algorithm for switched

MPL systems and for other hybrid system’s subclasses. In the future it can

be developed functions to convert ELC systems to MLD and MMPS systems.

Functions to convert MMPS systems to ELC systems are required too. The bug

which we explained in the subsection mld2lc and lc2mld can be corrected.
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