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FUZZIFIED Q-LEARNING ALGORITHM IN THE DESIGN OF FUZZY PID  

CONTROLLERS 

SUMMARY 

In the traditional control theory, an appropriate controller is designed based on a 

mathematical model of the plant under the assumption that the model provides a 

complete and accurate characterization of the plant. However, in some practical 

problems, the mathematical models of plants are difficult or time-consuming to be 

obtained because the plants are inherently nonlinear and/or exhibit uncertainty. Thus, 

new methods are proposed to process these characteristics. In recent years, increased 

efforts have been centered on developing intelligent control systems that can perform 

effectively in real-time. These include the development of non-analytical methods of 

Artificial Intelligence (AI) such as neural networks, fuzzy logic and genetic 

algorithms. 

Fuzzy logic is a mathematical approach which has the ability to express the 

ambiguity of human thinking and translate expert knowledge into computable 

numerical data. It has been shown that fuzzy logic based modeling and control could 

serve as a powerful methodology for dealing with imprecision and non-linearity 

efficiently. Also, for real-time applications, its relatively low computational 

complexity makes it a good candidate. Therefore, fuzzy logic control has emerged as 

one of the most successful nonlinear control techniques. 

Fuzzy Logic Controllers (FLC) are based on if – then rules integrating the valuable 

experiences of human. These rules use linguistic terms to describe systems. Fuzzy 

logic controllers have shown good performances on the controlling of the complex, 

ill-defined and uncertain systems. 

Three types of fuzzy controllers are known as PI-, PD-, and PID-type controllers 

which behave somehow similarly to their classical counterparts. Fuzzy PI-type 

control is known to be more practical than fuzzy PD-type because it is difficult for 

the fuzzy PD to remove steady-state error. The fuzzy PI-type control is, however, 

known to give poor performance in transient response for higher order processes due 

to the internal integration operation. Theoretically, fuzzy PID type control should 

enhance the performance a lot. 

During the building of the FLC, the important tasks are the structure identification 

and parameters tuning. The structure identification of the FLC includes the input-

output variables of a controller, the rule base, the determination of the number of 

rules, the antecedent and consequent membership functions, the inference 

mechanism and the defuzzification method. The parameters tuning includes 

determining the optimal parameters of membership functions antecedent and 

consequent but also the scaling factors.  
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Several approaches have been presented to learn and tune the fuzzy rules to achieve 

the desired performance. These automatic methods may be devised into two 

categories of supervised and unsupervised learning by whether the teaching signal is 

needed or not. 

In the supervised learning approach, at each time step, if the input-output training 

data can be acquired, the FLC can be tuned based on the supervised learning 

methods. 

The other category contains reinforcement learning (RL) systems which are 

unsupervised learning algorithms with the self-learning ability. The RL-based FLCs 

are learning schemes which need a scalar response from the environment to provide 

the action performance, that value is easier to collect than the desired-output data 

pairs in the real application.  

The basic idea of the reinforcement learning is to learn, through trial-and-error 

interaction with a dynamic environment which returns a critic, called reinforcement, 

In reinforcement learning or learning with a critic the received signal is a behavior 

sanction (positive, negative or neutral); this signal indicates what you have to do 

without saying how to do it. The agent uses this signal to determine a policy 

permitting to reach a long-term objective. 

It exist several reinforcement learning algorithms. Some are based on policy iteration 

such as Actor Critic Learning (ACL) and others on value iterations such as Q-

learning. In this work we are interested by the Q-learning, which can be thought of as 

a reward or a punishment, the control actions to determine desired changes in the 

control output that will increase the index of performance. 

The Q-learning is the most used reinforcement learning algorithm in practice because 

of its simplicity and the proof of its convergence. In Q-learning algorithm, a Q-value 

is assigned to each state-action pair. The Q-value reflects the expected long-term 

reward by taking the corresponding action from the action set in the corresponding 

state in the state space. 

Reinforcement learning techniques assume that, during the learning process, no 

supervisor is present to directly judge the quality of the selected control actions, and 

therefore, the final evaluation of process is only known after a long sequence of 

action. Also, the problem involves optimizing not only the direct reinforcement, but 

also the total amount of reinforcements the agent can receive in the future. 

In this work, we investigate a method for tuning the parameters of the input 

membership functions and output singletons of fuzzy logic controllers by the Q-

learning algorithm in order to minimize or maximize a given cost function of the 

closed-loop system. 

In order to tune the membership functions of the FLC, we choose the vector of 

parameters to be optimized as universe of discourses of error, change of error and 

output singletons. To each parameter are associated several competing candidates 

and to each candidate, is associated a Q-value that is incrementally updated by the 

QLA. The learning process consists then in determining the best set of parameters, 

the one that will optimize the future reinforcements. 

Thus, as the quantities are initially unknown, the fuzzy controller has to explore and 

test several actions. The exploration phase is often long. Though, as fuzzy rules are 
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interpretable and tuning parameters have physical meaning, this phase can be 

drastically reduced by introducing knowledge in the initial fuzzy controller. 

The cost function, which quantifies the effectiveness of the fuzzy controller, is 

evaluated at the end of a step-response experiment. Without loss of generality, we 

take the sum of square error cost function or in other words, Integral Square Error 

(ISE). This cost function then is used to define the reward function of the QL 

algorithm which we consider it as a scalar reward function to assess the quality of the 

actions taken by the system. 

In this study we propose a manipulated reward function, instead of using a scalar 

reward function for the Reinforcement QL algorithm to improve both the 

performance and convergence criteria of the mentioned algorithm which incorporates 

a fuzzy structure (fuzzy inference system) including more elaborate information 

about the rewards/punishments assigned to each action in each state which is being 

taken in each step time by the agent. 

Firstly, we apply the proposed algorithm to two distinc second order linear systems, 

one with time delay and the other one without time delay, and obtain the 

corresponding unity step responses for the given systems. The obtained results 

obviously demonstrate a considerable improvement in the performance of the 

systems closed loop unity step responses in contrast with fuzzy controllers without 

any tunning schemes. 

In the next step, in order to show the effectiveness of the proposed method in a real 

time case, we apply the algorithm to a nonlinear system. The system to be examined 

is considered to be an Inverted Pendulum and our goal is to balance it on a vertical 

position. The resulting simulations clarify that the balancing time considerably 

reduces in comparison with controlling the system with a non-tuned fuzzy controller 

scheme.  
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BULANIK MANTIK KONTROLÖRÜN TASARIMINDA KULLANILAN 

BULANIK Q-ÖĞRENME ALGORİTMASI 

ÖZET 

Geleneksel kontrol kuramında, modelin sistemin tüm özelliklerini her an için 

sağladığı varsayılarak, sisteme ilişkin matematiksel model üzerinden uygun bir 

kontrolör tasarlanır. Ancak, sistemin matematiksel modelini elde etmek, sistemin 

lineer olmaması ve/veya sistem parametrelerindeki belirsizlikler yüzünden zor veya 

çok zaman alıcıdır. Bu nedenle, sistem kontrol tasarımında yeni çeşitli yöntemler 

önerilmektedir. Son yıllarda, etkili bir gerçek-zaman tasarım yöntemi bulmak için, 

akıllı kontrol sistemlerini kullanan birçok çalışma yapılmıştır. Sinir ağları, bulanık 

mantık ve genetik algoritma gibi yapay zeka kapsamında olan ve analitik olmayan 

yöntemler bu alanda yer almaktadır.   

Bulanık mantık bir matematiksel yaklaşımdır ki işlevi insan düşüncesinin anlam 

karmaşasını algılamak ve uzman bilimini hesaplanabilir biçimde sayısal veriye 

çevirmektir. Bulanık mantık ile modelleme ve kontrolün, belirsiz ve lineer olmayan 

sistemler ile ilgilenmek için,  güçlü bir yöntem olduğu daha önceden görülmüştür. 

Ayrıca, gerçek-zaman uygulamalarında, bulanık mantık ile hesaplama işlemlerinin 

sinir ağlarına nispetle daha az karmaşık olmasından ötürü, daha güçlü bir seçim 

olarak önerilmektedir. Böylelikle, bulanık mantık ile kontrol lineer olmayan 

sistemler açısından en başarılı yöntem olarak düşünülebilir. 

Bulanık Mantık Kontrolörleri “eğer-ise-o zaman” kurallarına uyarak insanın değerli 

tecrübelerini sistemlere uyarlamaktadır. Bu kurallar, öncelikle, dilsel değişkenleri 

kullanarak yapılacak işlemi ifade etmekte kullanılmaktadır. Bu tür kontrolörler 

karmaşık, eksik-tanımlanmış ve/veya belirsiz sistemlerde çok daha iyi bir başarım 

göstermektedir.  

Bulanık kontrolörün üç özel tipi,  PI-, PD- ve PID- tipi bulanık kontrolörler olup  

bunlar klasik PI, PD ve PID kontrolörlerine çok yakın davranışlar sergiledikleri 

gösterilmiştir. PD-tipi kotrolör ile sürekli hal hatasını ortadan kaldırmak zor 

olduğundan, pratikte, bulanık PI-tipi kontrolörler, bulanık PD-tipi kontrolörlere 

oranla  daha fazla kullanılır.  Ancak, bulanık PI-tipi kontrolörlerin yüksek mertebeli 

sistemlerin geçici hal yanıtları üzerindeki başarımı zayıftır. Teorik olarak, bulanık 

PID-tipi kontrolör yukarıda anlatılan sorunları gidermektedir. 

Bulanık mantık kontrolörlerin kurallarını arzu edilen başarıma yaklaştırmak için 

birçok yaklaşım önerilmiştir. Bu yöntemler gözetimli veya gözetlenmemiş öğrenme 

olmak üzere iki sınıfta incelenebilir. Eğer giriş-çıkış eğitim verileri her adımda elde 

edilebiliyorsa, Bulanık Mantık Kontrolü gözetimli öğrenim yöntemine bağlı olarak 

ayarlanabilir. Denetlenmiş öğrenim yaklaşımının her adımında, eğer giriş-çıkış 

veriler elde edilebiliyorsa, Bulanık Mantık Kontrolü denetlenmiş öğrenim yöntemine 

bağlı olarak ayarlanabilir. Gözetimsiz öğrenme algoritmaları ise pekiştirilmiş 
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öğrenme sistemlerini kapsamaktadır ki bu sistemler kendi kendisini eğitmek gücüne 

sahiptirler. 

Pekiştirilmiş öğrenme yöntemlerinin kullanıldığı Bulanık Mantık Kontrolörleri 

öğrenim yöntemi olarak davranış başarımını yükseltecek biçimde çevre ile 

etkileşimlerinden skalar yanıt almağa ihtiyaç duyarlar. Gerçek zaman 

uygulamalarında bu değerleri elde etmek istenen-çıktı verilerinin elde edilmesinden 

daha kolaydır. 

Pekiştirmeli öğrenmenin temel fikri çevre ile etkileşimde “deneme ve yanılma” 

yaklaşımının kullanılmasıdır. Pekiştirmeli öğrenmede alınan her işaret bir pozitif, 

negatif veya nötr davranış onayıdır; yani, bu işaret hangi işlemin yapılması 

gerektiğini nasıl yapılacağını söylemeden gösterir. Uzun vadeli amaçlara ulaşabilmek 

için varsayılan kontrolör bu işareti prensip oluşturmak için kullanır.   

Bir kaç pekiştirilmiş öğrenme algoritmaları mevcuttur. Bunlardan bazıları politika 

belirleme iterasyon prensipine uyarak (Actor Critic Learning gibi) diğer bazıları da 

değer atama iterasyon prensipine uyarak (QL gibi) çalışmaktalar. 

Bu tez kapsamında Q-öğrenme algoritması ele alınarak bulanık kontrolörün başarımı 

artırılmaya çalışılmıştır. Bu amaçla, bir ceza veya ödül ataması ile öğrenim 

sağlanmaya çalışılır. Bu öğrenim ile bir başarım ölçütünü iyileştirmek üzere sistem 

çıkışında arzu edilen değişiklikler kontrol çıkış işareti üzerinden yapılır.  

Q-öğrenme algoritması kolaylık ve iyi yakınmasından dolayı pratikte pekiştirilmiş 

öğrenme algoritmaları içinde en yaygın olandır. Q-öğrenme algoritmasında bir “Q-

değeri” her durum-eylem çiftine atanmaktadır. Q-değeri beklenilen uzun-vadeli ödül 

değerini yansıtmaktadır.  

Pekiştirilmiş öğrenim tekniğine göre, öğrenim aşamasında hiçbir yönetici veya 

uzman, seçilen kontrol faaliyetinin kalitesini değerlendirmek için bulunmamaktadır. 

Bu nedenle, prosedürün değerlendirmesi, sadece uzun bir faaliyet aşamasından sonra 

tanımlanıyor. Ayrıca problem sadece doğrudan takviye optimizasiyonu değil, belki 

operatörun(ajan) gelecekte kabul edebileceği tüm takviye’leri içeriyor. 

Bu çalışmada, kapalı-çevrimli bir sistemin belli bir davranış ölçütünü maksimize 

veya minimize etmesi amacıyla, bulanık mantık kontrolörlerinin giriş ve çıkış üyelik 

fonksiyon parametrelerini, Q-öğrenme algoritmasına dayalı olarak ayarlayan bir 

yöntem önerilmektedir.  

Bulanık Mantık Kontrolörün üyelik fonksiyonlarının parametrelerinin ayarlaması 

için optimize edilecek vektör parametreleri kontrolör girişi olan hata ve hatanın 

değişimi ve de çıkış olarak seçilmiştir. 

Her üyelik fonksiyon parametresi için birbiri ile rekabette olan çeşitli adaylar ve her 

bir aday için bir Q-değeri tanımlanmıştır. Bu Q-değerleri adım adım Q-öğrenme 

algoritması tarafından güncelleştirilmektedir. Böylece öğrenim prosedürü, en iyi 

üyelik fonksiyon parametre takımını belirlemektedir. Böylece ilk başta, üyelik 

fonksiyon parametre değerleri belirsizken, bulanık kontrolörün çeşitli şartlar altında 

çalıştırılmak ve denenmek zorundadır.  

Araştırma aşaması çoğu zaman uzundur. Ancak ayar parametreleri fiziksel bir anlam 

taşıyorsa bu faz kısaltılabilir. Davranış ölçütü kullanılarak farklı parametre değerleri 

ile elde edilen her basamak yanıtı sonunda bulanık kontrolörün etkinliği bir değer ile 

ölçülmüş olur. bu çalışmada davranış ölçütü olarak karesel hata integrali 

kullanılmıştır.  
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Bu çalışmada, literatürde ilk kez olarak Q-öğrenme algoritmasının ödül 

fonksiyonunda, skalar değerler ataması yerine bulanık çok değerli atama 

kullanılmıştır. Böylece öğrenme algoritması daha duyarlı hale gelmiş ve bunun 

sonucu olarak yakınsama hızlandırılmıştır.  

Bulanık kontrolörün üyelik fonksiyon ayarlamasında oluşturulan bulanıklaştırılmış 

Q-öğrenme algoritması kullanıldığında sistem yanıtlarındaki hataların azaldığı ve 

davranış ölçütünün çok daha küçük değerlere ulaştığı görülmüştür. 

İlk adımda, önerilen yöntem benzetim çalışmaları, iki farklı ikinci dereceden oluşan 

lineer sisteme uygulanmıştır. Birinci sistem zaman gecikmesi olan, diğeri ise zaman 

gecikmesi olmayan bir sistem.  

Bir sonraki adımda, önerilen yöntemin etkisini göstermek için, bu algoritma lineer 

olmayan bir sisteme uygulanmıştır. Adı geçen algoritma lineer olmayan ters sarkaç 

modeli üzerine uygulanmıştır. Amacımız Sarkaçın dikey bir durum’da, dengesini 

sağlamaktır. 

Sabit değerli Q-öğrenme algorirması kullanılan kontrolör, bulanıklaştırılmış Q-

öğrenme algoritması kullanılan  kontrolör ve ayarlanmamış bulanık kontrolör 

başarımları tüm sistemler üzerinde karşılaştırılmış ve bulanıklaştırılmış Q-öğrenme 

algoritması kullanılan  kontrolörün başarımının en yüksek olduğu gözlenmiştir. 
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1. INTRODUCTION 

The classical linear Proportional Integral Derivative Controllers (PIDCs) are widely 

used in industrial process control where over 90% of operating controllers are PIDCs 

[1]. This popularity is due to the simplicity of their structure and the familiarity of 

engineers and operators with PID algorithms. They are inexpensive and reasonably 

sufficient for many industrial control systems. 

However, the classical PIDCs cannot provide good enough performances in 

controlling highly complex processes and/or when their parameters are badly tuned, 

practically when handling MIMO (multiple inputs, multiple outputs) systems. 

Following the first fuzzy control application carried out by Mamdani [2],  fuzzy 

control [3, 4] has become, in the recent past, an alternative to conventional control 

algorithms to deal with complex processes and combine the advantages of classical 

controllers and human operator experience. 

In the literature, various types of fuzzy PID (including PI and PD) controllers have 

been proposed. In general, the application of fuzzy logic to PID controller design can 

be classified into two major categories according to the way they are constructed  

[5]: 

I. The gains of the conventional PID controller are tuned on-line in terms of the 

knowledge base and fuzzy inference, and then the conventional PID 

controller generates the control signal [6, 7]. 

II. A typical FLC is constructed as a set of heuristic control rules, and the 

control signal is directly deduced from the knowledge base and the fuzzy 

inference as it is done in McVicar-Whelan or diagonal rule-base generation 

approaches [8, 9, 10, 11]. 

The controllers in the second category are referred to as PID-type FLCs because, 

from the input–output relationship point of view, their structures are analogous to 

that of the conventional PID controller. 
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The formulation of PID-type FLC can be achieved either by combining PI- and PD-

type FLCs with two distinct rule-bases or one PD-type FLC with an integrator and a 

summation unit at the output. 

We can summarize the design parameters within two groups: 

i. Structural parameters 

ii. Tuning parameters 

Basically, structural parameters include input/output (I/O) variables to fuzzy 

inference, fuzzy linguistic sets, membership functions, fuzzy rules, inference 

mechanism and defuzzification mechanism. Tuning parameters include I/O scaling 

factors (SF) and parameters of membership functions (MF). Usually the structural 

parameters are determined during off-line design while the tuning parameters can be 

calculated during on-line adjustments of the controller to enhance the process 

performance, as well as to accommodate the adaptive capability to system 

uncertainty and process disturbance. 

The usage of fixed value scaling factors in the case of the real systems which 

featured nonlinearities, modeling errors, disturbances, parameter changes, etc., may 

not be sufficient to achieve the desired system performance. Therefore to overcome 

these kinds of disadvantages, a lot of heuristic and non-heuristic tuning algorithms 

for the adjustment of scaling factors of fuzzy controllers have been presented in 

literature [12, 13, 14, 15, 16, 17]. 

Besides the classical tuning methods, many other tuning methods for classical and 

fuzzy PID controllers are proposed in the literature; fuzzy supervisors [18, 19], 

genetic algorithms [20, 21, 22, 23], and the ant colony algorithms [24, 25]. All these 

methods are capable of generating the optimum or quasi-optimum parameters to the 

control system in a high-dimensional space, but at the cost of time. 

Some popular approaches design the fuzzy systems from input–output data based on 

the following methods [26]: 

i. a table look-up scheme 

ii. gradient-descent training 

iii. recursive least square 
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iv. clustering 

Unfortunately, the input-output data may not be readily available, and the above 

methods may belong to supervised learning methods. Another widely used method is 

to implement adaptive laws based on the Lyapunov synthesis approach [27]. 

However, a disadvantage of adaptive fuzzy control is that it requires some model 

information of the system and it may only aim at a specific class of systems. 

The automatic methods to learn and tune the fuzzy rules may be divided into two 

categories of supervised and unsupervised learning by whether the teaching signal is 

needed or not. In the supervised learning approach, at each time step, if the input-

output training data can be acquired, the FLC can be tuned based on the supervised 

learning methods. The artificial neural network (ANN)-based FLC can automatically 

determines or modifies the structure of the fuzzy rules and parameters of fuzzy 

membership functions with unsupervised or supervised learning by representing a 

FLC in a connectionist way such as ANFIS or other methods [28, 29]. 

The other category contains genetic algorithm (GA) [30, 31] and reinforcement 

learning (RL) systems [32, 33], which are unsupervised learning algorithms with the 

self-learning ability [34]. 

The difference between the GA-based and RL-based FLCs lies in the manner of 

state-action space searching. The GA-based FLC is a population based approach that 

encodes the structure and/or parameter of each FLC into chromosomes to form an 

individual, and evolves individuals across generations with genetic operators to find 

the best one. The RL based FLC uses statistical techniques and dynamic 

programming methods to evaluate the value of FLC actions in the states of the world. 

However, the pure GA-based FLC cannot proceed to the next generation until the 

arrival of the external reinforcement signal that is not practical in real time 

applications. In contrast, the RL-based FLC can be employed to deal with the 

delayed reinforcement signal that appears in many situations [35]. 

Reinforcement learning techniques assume that, during the learning process, no 

supervisor is present to directly judge the quality of the selected control actions, and 

therefore, the final evaluation of process is only known after a long sequence of 

action. Also, the problem involves optimizing not only the direct reinforcement, but 

also the total amount of reinforcements the agent can receive in the future. This leads 
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to the temporal credit assignment problem, i.e., how to distribute reward or 

punishment to each individual state-action pair to adjust the chosen action and 

improve its performance [36]. 

Supervised learning is more efficient than the reinforcement learning when the input-

output training data are available [37, 38]. However, in most real-world application, 

precise training data is usually difficult and expensive to obtain or may not be 

available at all [39]. 

For the above reasons, reinforcement learning can be used to tune the fuzzy rules of 

fuzzy systems. Kaelbling, littman and Moore [40], and more recently Sutton and 

Barto [33], characterize two classes of methods for reinforcement learning: methods 

that search the space of value functions and methods that search the space of policies. 

The former class is exemplified by the temporal difference (TD) method and the 

latter by the genetic algorithm (GA) approach [41]. 

To solve the RL problem, the most approach is TD method [42, 43]. Two TD based 

RL approaches have been proposed the Adaptive Heuristic Critic (AHC) [44, 45, 46, 

47]. 

The definition of controlable factors for the FPID in the reinforcemnt learning 

algorithms which has been led on discrete levels have been proposed in [48, 49] 

which are kept unchanged during learning. This is the basic idea of the most existing 

algorithms, which adopt Q-learning. In general, however, this is not case and then the 

algorithm may fail. Indeed, for complex systems like static converter, priori 

knowledge are not available, then it becomes difficult to determine a set of 

parameters in which figure the optimal controlable factors for each fuzzy rule and 

thus the FPID controller can’t accomplish the given task through FQL. To ensure a 

fine optimization of the FLC a continuous RL algorithm has been proposed [50]. 

This thesis is concentrated on the subject of tuning the fuzzy logic controllers by 

utilizing an unsupervised learning algorithm named reinforcement Q-learning. The 

proposed optimization method is applied to the input and output membership 

functions of the main control block, which here is a fuzzy controller, and tries to tune 

the universe of discourses of the mentioned membership functions. 

In order to improve the performance of the Q-learning algorithm an advanced reward 

function using fuzzy logic is proposed. 
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For demonstrating the effectiveness of the Q-learning algorithm, it is applied to both 

linear (with and without time delay) and nonlinear systems. The obtained results are 

compared simultaneously with that of non-tuned fuzzy controller and also GA 

method. 

The rest of the study is divided into 5 sections. In section 2, we firstly define some 

preliminaries of fuzzy logic and then extend the subject to the fuzzy controllers and 

introduce the structure of the standard PID-type fuzzy logic controller. In section 3, 

the concept of reinforcement learning and Q-learning algorithm is presented. Their 

application to fuzzy logic control is revealed in the final part of this section. 

Discussions and related computer simulations are incorporated in section 4. Finally 

in section 5, appropriate conclusions are drawn and future work is given. 
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2. FUZZY LOGIC AND CONTROL 

One of the more popular new technologies is intelligent control which is defined as a 

combination of control theory, operations research, and artificial intelligence (AI). 

To understand fuzzy logic, it is important to discuss fuzzy sets. In 1965, Zadeh [51] 

wrote a seminal paper in which he introduced fuzzy sets, nearly 10 years later the 

fuzzy control technique was first initiated by the pioneering research of Mamdani 

[52, 53, 54] for systems structurally difficult to model, which was motivated by 

Zadeh’s paper on system analysis with fuzzy sets theory. Since then, fuzzy control 

theory has become one of the most extensively studied areas in both academia and 

industry. Many theoretical developments and practical applications have been 

reported. It is an appealing alternative to conventional control methods since it 

provides a systematic and efficient framework to deal with uncertainties and 

nonlinearities in complex systems, when an accurate system analytical model is not 

available, not possible to obtain, or too complicated to use for control purposes. 

Today, in Japan, United States, Europe, Asia, and many other parts of the world, 

fuzzy control is widely accepted and applied. In many consumer products such as 

washing machines and cameras, fuzzy controllers are used to obtain intelligent 

machines (Machine Intelligence Quotient) and user-friendly products. 

A few interesting applications can be cited: control of subway systems, image 

stabilization of video cameras, image enhancement, and autonomous control of 

helicopters. 

2.1 Fuzzy Logic 

2.1.1 Fuzzy sets 

Zadeh introduced fuzzy set theory as a mathematical discipline, although the 

underlying ideas had already been recognized earlier by philosophers and logicians. 
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A broader interest in fuzzy sets started in the seventies with their application to 

control and other technical disciplines. 

In ordinary (non-fuzzy) set theory, elements either fully belong to a set or are fully 

excluded from it. Recall, that the membership   ( ) of x of a classical set A, as a 

subset of the universe X, is defined by: 

   ( ) = {
           
           

 (2.1) 

This means that an element x is either a member of set A (  ( )=1) or not 

(  ( )=0). This strict classification is useful in the mathematics and other sciences 

that rely on precise definitions. Ordinary set theory complements bi-valent logic in 

which a statement is either true or false. While in mathematical logic the emphasis is 

on preserving formal validity and truth under any and every interpretation, in many 

real-life situations and engineering problems, the aim is to preserve information in 

the given context. In these situations, it may not be quite clear whether an element 

belongs to a set or not. 

A fuzzy set is a set with graded membership in the real interval: 

   ( )  [   ] (2.2) 

That is, elements can belong to a fuzzy set to a certain degree. As such, fuzzy sets 

sets can be used for mathematical representations of vague concepts, such as low 

temperature, fairly tall person, expensive car, etc. 

By definition a fuzzy set A on universe (domain) X is a set defined by the 

membership function   ( ) which is a mapping from the universe X into the unit 

interval: 

   ( ): X →[   ] (2.3) 

A is completely characterized by the set of pairs: 

 A = {(    ( ))     } (2.4) 

When X is a finite set {        }, a fuzzy set on X is expressed as: 

                             (  )    + … +   (  )    =  ∑   (  )   
   
     (2.5) 
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When X is not finite, we write: 

 A=∫  ( )    (2.6) 

2.1.2 Operations on fuzzy sets 

Definitions of set-theoretic operations such as the complement, union and 

intersection can be extended from ordinary set theory to fuzzy sets. As membership 

degrees are no longer restricted to {0, 1} but can have any value in the interval [0, 1], 

these operations cannot be uniquely defined. It is clear, however, that the operations 

for fuzzy sets must give correct results when applied to ordinary sets (an ordinary set 

can be seen as a special case of a fuzzy set). 

2.1.2.1 Complement of a fuzzy set  

Let A be a fuzzy set in X. The complement of A is a fuzzy set, denoted  ̅, such that 

for each  x   X: 

   ̅( ) = 1-   ( )  (2.7) 

 

Figure 2.1 : Fuzzy set and complement of it. 

2.1.2.2 Intersection of fuzzy sets 

Let A and B be two fuzzy sets in X. The intersection of A and B is a fuzzy set C, 

denoted C = A ∩ B, such that for each x   X: 

   ( ) = min[  ( )   ( )]  (2.8) 
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Figure 2.2 : Fuzzy intersection. 

2.1.2.3 Union of fuzzy sets 

Let A and B be two fuzzy sets in X. The union of A and B is a fuzzy set C, denoted 

C = A ∪ B, such that for each x   X: 

   ( ) = max[  ( )   ( )]  (2.9) 

 

Figure 2.3 : Fuzzy union. 

2.1.3 Membership functions 

MFs are fuzzy sets that can be represented through mathematical expressions. In 

general, fuzzy sets can be of triangular, trapezoidal, Gaussian, or other form. In the 

transition regions, its MF parts can be linear, quadratic, or exponential, depending on 

the object of interest. 

The simplest MF has a triangular shape, which is a function of a support vector x and 

depends on three scalar parameters (a, b, and c). 

The MF is given by the following mathematical expression: 

  ( )   

{
 
 

 
 
                    
   

   
        

   

   
        

                   

  (2.10) 
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or, more compactly by: 

  ( ) = Max[   (
   

   
  

   

   
)   ]  (2.11) 

The parameters a and c locate the left and right limits of the support of the set and 

the parameter b locates the core. 

 

Figure 2.4 : Triangular membership function. 

The trapezoidal MF is a function of a support vector x and depends on four scalar 

parameters (a, b, c, and d). 

The mathematical expression of this MF is given by: 

    ( )  

{
 
 

 
 
                       
   

   
           

                 
   

   
           

                      

 (2.12) 

or, more compactly by: 

  ( ) = Max[   (
   

   
    

   

   
)   ]  (2.13)                                                         

The parameters a (b) and d (c) locate the left and right limits of the support. It is 

obvious that the triangular MF is a special case of the trapezoidal MF when b = c; 
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and if a = b = c = d, then a fuzzy singleton is obtained. Furthermore, a, b, c, and d 

represent lower modal, left spread, upper modal, and right spread, respectively. 

 

Figure 2.5 : Trapezoidal membership function. 

The generalized bell MF depends on three parameters (a, b, and c) as given by: 

  (       ) = 
 

    |
     

 
|
    (2.14) 

 

Figure 2.6 : Bell-shaped membership function. 

The S-shape MF is defined by three parameters (a, b, and c) and its general shape is 

shown in Figure 2.6. The mathematical form of an S-shape MF is given as: 

  (       ) = 

{
 
 

 
 
                                    

 (
   

   
)                 

   (
   

   
)
 

       

                                     

  (2.15) 
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Figure 2.7 : S-shaped membership function. 

The Z-shape MF is the asymmetrical polynomial curve open to the left as shown in 

Figure 2.7 and its mathematical function has the following form: 

  (       ) = 

{
 
 

 
 
                                     

    (
   

   
)
 

       

 (
   

   
)
 

               

                                     

  (2.16) 

 

Figure 2.8 : Z-shaped membership function. 
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2.2 Fuzzy Systems and Control 

A static or dynamic system which makes use of fuzzy sets and of the corresponding 

mathematical framework is called a fuzzy system. Fuzzy systems can serve different 

purposes, such as modeling, data analysis, prediction or control. 

Fuzzy sets can be involved in a system in a number of ways, such as: 

 In the description of the system: A system can be defined, for instance, as a 

collection of if-then rules with fuzzy predicates, or as a fuzzy relation. 

 In the specification of the system’s parameters: The system can be defined by 

an algebraic or differential equation, in which the parameters are fuzzy 

numbers instead of real numbers. 

 The input, output and state variables of a system may be fuzzy sets. Fuzzy 

inputs can be readings from unreliable sensors (“noisy” data), or quantities 

related to human perception, such as comfort, beauty, etc. Fuzzy systems can 

process such as information, which is not the case with conventional (crisp) 

systems. 

2.2.1 Structural design techniques for fuzzy systems 

Two common sources of information for building fuzzy systems are prior knowledge 

and data (measurements). Prior knowledge tends to be of a rather approximate nature 

(qualitative knowledge, heuristics), which usually originates from “experts”, i.e., 

process designers, operators, etc. In this sense, fuzzy models can be regarded as 

simple fuzzy expert systems 

Two main approaches to the integration of knowledge and data in a fuzzy model can 

be distinguished: 

1) The expert knowledge expressed in a verbal form is translated into a 

collection of if–then rules. In this way, a certain model structure is created. 

Parameters in this structure can be fine-tuned using input-output data. 

2) No prior knowledge about the system under study is initially used to 

formulate the rules, and a fuzzy model is constructed from data. It is expected 

that the extracted rules and membership functions can provide an a posteriori 

interpretation of the system’s behavior. An expert can confront this 
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information with his own knowledge, can modify the rules, or supply new 

ones, and can design additional experiments in order to obtain more 

informative data. This approach can be termed rule extraction. 

2.2.2 Fuzzy controller and its architecture 

A fuzzy controller is a controller that contains a (nonlinear) mapping that has been 

defined by using fuzzy if-then rules. 

The general form of the linguistic rules is: 

If premise Then consequent 

The premises (which are sometimes called “antecedents”) are associated with the 

fuzzy controller inputs and are on the left-hand-side of the rules. The consequents 

(sometimes called “actions”) are associated with the fuzzy controller outputs and are 

on the right-hand-side of the rules. Notice that each premise (or consequent) can be 

composed of the conjunction of several “terms” (e.g.“error is poslarge and change-

in-error is negsmall” is a premise that is the conjunction of two terms). 

A block diagram of a fuzzy control system is shown in Figure 2.9. The fuzzy 

controller is composed of the following four elements: 

1) A rule-base (a set of If-Then rules), which contains a fuzzy logic 

quantification of the expert’s linguistic description of how to achieve 

good control. 

2) An inference mechanism which emulates the expert’s decision 

making in interpreting and applying knowledge about how best to 

control the plant. 

3) A fuzzification interface, which converts controller inputs into 

information that the inference mechanism can easily use to activate 

and apply rules. 

4) A defuzzification interface, which converts the conclusions of the 

inference mechanism into actual inputs for the process. 
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Figure 2.9 : Fuzzy controller architecture. 

2.2.2.1 Fuzzification 

Fuzzification is the process of decomposing a system input and/or output into one or 

more fuzzy sets. Many types of curves can be used, but triangular or trapezoidal 

shaped membership functions are the most common because they are easier to 

represent in embedded controllers. Each fuzzy set spans a region of input (or output) 

value graphed with the membership. Any particular input is interpreted from this 

fuzzy set and a degree of membership is interpreted. The membership functions 

should overlap to allow smooth mapping of the system. The process of fuzzification 

allows the system inputs and outputs to be expressed in linguistic terms so that rules 

can be applied in a simple manner to express a complex system. 

2.2.2.2 Rule base 

The human operator can be replaced by a combination of a fuzzy rule-based system 

(FRBS). The input sensory (crisp or numerical) data are fed into the FRBS, where 

physical quantities are represented or compressed into linguistic variables with 

appropriate membership functions. These linguistic variables are then used in the 

antecedents (IF part) of a set of fuzzy rules within an inference engine to result in a 

new set of fuzzy linguistic variables, or the consequent (THEN part). 

2.2.2.3 Inference mechanism 

The cornerstone of any expert controller is its inference engine, which consists of a 

set of expert rules, which reflect the knowledge base and reasoning structure of the 

solution of any problem.  

Depending on the consequent of the fuzzy rule, the inference mechanism can be 

categorized into two commonly used methods: 
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Mamdani Inference Mechanism: Under Mamdani rules, the antecedents and the 

consequent parts of the rule are expressed using linguistic labels. 

Inputs   and    are crisp values and the max-min inference method is used. Based on 

the Mamdani implication method of inference, the aggregated output for the rules 

will be given by:   

    ( ) = Max[   [ 
  

 (  )    (  )]] for i = 1, 2,…, l  (2.17) 

If the max-product inference method is used the aggregated output for the rules will 

be given by: 

      ( ) = Max[ 
  

 (  )    (  )] for i = 1, 2,…, l  (2.18) 

Figure 2.10 and 2.11 show graphical illustration of Mamdani-type rules using max-

min and max-product inference, respectively, for l = 2, where   and    refer to the 

first and second fuzzy antecedents of the first rule and    refers to the fuzzy 

consequent of the first rule. Similarly,    and    refer to the first and second fuzzy 

antecedents of the second rule, respectively, and     refers to the fuzzy consequent of 

the second rule. 

 

Figure 2.10 : Graphical execution of a min-max inference in a Mamdani rule. 
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Figure 2.11 : Graphical execution of a min-product inference in a Mamdani rule. 

Takagi-Sugeno Inference Mechanism: Another form is Takagi-Sugeno rules, under 

which the consequent part is expressed as an analytical expression or equation. 

Figure 2.11 represents a graphical illustration of Takagi-Sugeno inference method. 

 

Figure 2.12 : Takagi-Sugeno inference mechanism. 

2.2.2.4 Defuzzification 

The result of fuzzy inference is the fuzzy set B′. If a crisp (numerical) output value is 

required, the output fuzzy set must be defuzzified. Defuzzification is a 

transformation that replaces a fuzzy set by a single numerical value representative of 

that set. Figure 2.12 shows one of the  most commonly used defuzzification methods: 

the center of gravity (CoG). 
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Figure 2.13 : The center-of-gravity defuzzification method. 

The COG method calculates numerically the y coordinate of the center of gravity of 

the fuzzy set B′. 

 y′=   
∑  

  
 
   (  )  

∑    
 
   (  )

  (2.19) 

Where F is the number of elements    in Y. Continuous domain Y thus must be 

discretized to be able to compute the center of gravity. 

2.2.3 Fuzzy control design 

One of the first steps in the design of any fuzzy controller is to develop a knowledge 

base for the system to eventually lead to an initial set of rules. There are at least five 

different methods to generate a fuzzy rule base [55]. 

1) Simulate the closed-loop system through its mathematical model. 

2) Interview an operator who has had many years of experience controlling the 

system. 

3) Generate rules through an algorithm using numerical input/output data of the 

system. 

4) Use learning or optimization methods such as neural networks or genetic 

algorithms to create the rules. 

5) In the absence of all of the above, if a system does exist, experiment with it in 

the laboratory or factory setting and gradually gain enough experience to 

create the initial set of rules. 
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2.2.3.1 Standard PID-type fuzzy logic controller 

A suitable choice of control variables is important in fuzzy control design. Typically, 

the inputs to the fuzzy controllers are the error and the change of error. This choice is 

physically related to classical PID controllers. Usually, a fuzzy controller is either a 

PD-or a PI-type depending on the output of fuzzy control rules; if the output is the 

control signal it is said to be PD-type fuzzy controller (FPDC) and if the output is the 

change of control signal it is said to be PI-type fuzzy controller (FPIC) [56, 57]. 

Fuzzy PI-type control is known to be more practical than fuzzy PD-type because it is 

difficult for the fuzzy PD to remove steady-state error. The fuzzy PI-type control is, 

however, known to give poor performance in transient response for higher order 

processes due to the internal integration operation. Theoretically, fuzzy PID-type 

control should enhance the performance a lot. It should be pointed out that, for fuzzy 

PID controllers, normally a 3-D rule base is required. This is difficult to obtain since 

3-D information is usually beyond the sensing capability of a human expert. To 

obtain proportional, integral and derivative control action all together, it is intuitive 

and convenient to combine PI and PD actions together to form a fuzzy PID 

controller. The formulation of PID-type FLC can be achieved either by combining 

PI- and PD-type FLCs with two distinct rule-bases or one PD-type FLC with an 

integrator and a summation unit at the output. 

A fuzzy PID controller is inherently a piecewise linear PID controller by the fuzzy 

rule base establishment and fuzzy inference mechanism. It has a better control 

capability than a conventional linear PID controller within the overall operating 

range, especially for nonlinear systems, since the nonlinear terms are initially 

included in the fuzzy rule table construction. In the region close to the origin, a fuzzy 

PID controller functionally behaves approximately as a linear PID controller. When 

the system cannot be represented by an explicit analytical model, a fuzzy PID control 

will provide its superior, effective performance and the ease of implementation for 

real-time application. Compared to other complicated fuzzy control strategies, a 

fuzzy PID controller has a simpler structural configuration and hence is more 

practically useful. 

Here we consider a standard fuzzy PID-type controller structure as it is shown in 

Figure 2.14. 
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The output of the fuzzy PID-type controller is given by: 

 u =  U+ ∫     (2.20) 

Where U is the output of the FLC. It has been shown in [16, 58] that the fuzzy 

controllers with product–sum inference method, center of gravity defuzzification 

method and triangular uniformly distributed membership functions for the inputs and 

a crisp output, the relation between the input and the output variables of the FLC is 

given by: 

 U = A + PE + D ̇  (2.21) 

Where E =     and  ̇ =    ̇. Therefore, from (2.20) and (2.21) the controller output 

is obtained as: 

                          u =  A +  At +     Pe +    De +     P ∫  dt +     ̇  (2.22) 

Thus, the equivalent control components of the PID-type FLC are obtained as 

follows: 

Proportional gain:    P +    D 

Integral gain:    P 

Derivative gain:     D 

 

Figure 2.14 : Closed loop control structure of standard PID-type FLC. 
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3. REINFORCEMENT LEARNING AND DYNAMIC PROGRAMMING 

In dynamic programming (DP) and reinforcement learning (RL), a controller (agent, 

decision maker) interacts with a process (environment), by means of three signals: a 

state signal, which describes the state of the process, an action signal, which allows 

the controller to influence the process, and a scalar reward signal, which provides 

the controller with feedback on its immediate performance. At each discrete time 

step, the controller receives the state measurement and applies an action, which 

causes the process to transition into a new state. A reward is generated that evaluates 

the quality of this transition. The controller receives the new state measurement, and 

the whole cycle repeats. This flow of interaction is represented in Figure 3.1 

  

Figure 3.1 : The flow of interaction in DP and RL. 

The DP/RL framework can be used to address problems from a variety of fields, 

including, e.g., automatic control, artificial intelligence, operations research, and 

economics. Automatic control and artificial intelligence are arguably the most 

important fields of origin for DP and RL. In automatic control, DP can be used to 

solve nonlinear and stochastic optimal control problems [59], while RL can 

alternatively be seen as adaptive optimal control. In artificial intelligence, RL helps 

to build an artificial agent that learns how to survive and optimize its behavior in an 

unknown environment, without requiring prior knowledge. Because of this mixed 

inheritance, two sets of equivalent names and notations are used in DP and RL, e.g., 

“controller” has the same meaning as “agent,” and “process” has the same meaning 

as “environment.” 
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DP algorithms require a model of the environment, including the transition dynamics 

and the reward function, to find an optimal policy. The model DP algorithms work 

offline, producing a policy which is then used to control the process. Usually, they do 

not require an analytical expression of the dynamics. Instead, given a state and an 

action, the model is only required to generate a next state and the corresponding 

reward. Constructing such a generative model is often easier than deriving an 

analytical expression of the dynamics, especially when the dynamics are stochastic. 

RL algorithms are model-free [60, 33] which makes them useful when a model is 

difficult or costly to construct. RL algorithms use data obtained from the process, in 

the form of a set of samples, a set of process trajectories, or a single trajectory. So, 

RL can be seen as model-free, sample based or trajectory based DP, and DP can be 

seen as model-based RL. While DP algorithms can use the model to obtain any 

number of sample transitions from any state-action pair, RL algorithms must work 

with the limited data that can be obtained from the process – a greater challenge. 

Note that some RL algorithms build a model from the data; we call these algorithms 

“model-learning. 

3.1 Deterministic Setting 

A deterministic setting for RL is defined by the state space X of the process, the 

action space U of the controller, the transition function f of the process (which 

describes how the state changes as a result of control actions), and the reward 

function r (which evaluates the immediate control performance). As a result of the 

action    applied in the state    at the discrete time step k, the state changes to     , 

according to the transition function f: X   U →X  

     = f(     )  (3.1)                                

At the same time, the controller receives the scalar reward signal     , according to 

the reward function r: X  U →R 

     =  (     )  (3.2) 
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The reward evaluates the immediate effect of action    namely the transition from 

   to     , but in general does not say anything about its long-term effects. The 

controller chooses actions according to its policy h: X →U, using: 

   = h(  ) (3.3) 

3.1.1 Optimality in the deterministic setting 

In DP and RL, the goal is to find an optimal policy that maximizes the return from 

any initial state   . The return is a cumulative aggregation of rewards along a 

trajectory starting at   . It concisely represents the reward obtained by the controller 

in the long run. Several types of return exist, depending on the way in which the 

rewards are accumulated. The infinite-horizon discounted return is given by: 

   (  ) = ∑    
         (3.4) 

Where    [0, 1) is the discount factor. The discount factor can be interpreted 

intuitively as a measure of how “far-sighted” the controller is in considering its 

rewards, or as a way of taking into account increasing uncertainty about future 

rewards. From a mathematical point of view, discounting ensures that the return will 

always be bounded if the rewards are bounded. The goal is therefore to maximize the 

long-term performance (return), while only using feedback about the immediate, 

one-step performance (reward). This leads to the so-called challenge of delayed 

reward, actions taken in the present affect the potential to achieve good rewards far 

in the future, but the immediate reward provides no information about these long-

term effects. 

3.1.2 Value functions and the Bellman equations in the deterministic setting 

A convenient way to characterize policies is by using their value functions. Two 

types of value functions exist: state-action value functions (Q-functions) and state 

value functions (V-functions). The Q-function    : X ×U → R of a policy h gives 

the return obtained when starting from a given state, applying a given action, and 

following h thereafter: 
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   (   ) =  (   ) +    ( (   ))  (3.5) 

Here,   ( (   )) is the return from the next state  (   ). 

The optimal Q-function is defined as the best Q-function that can be obtained by any 

policy: 

    (   ) = max  (   )  (3.6) 

Any policy    that selects at each state an action with the largest optimal Q-value, 

i.e., that satisfies: 

   ( )   arg max  (   )  (3.7) 

is optimal (it maximizes the return). The Q-functions    and    are recursively 

characterized by the Bellman equations, which are of central importance for value 

iteration algorithms The Bellman equation for    states that the value of taking 

action u in state x under the policy h equals the sum of the immediate reward and the 

discounted value achieved by h in the next state: 

                               (   ) =  (   ) +    ( (   )  ( (   )))  (3.8) 

The Bellman optimality equation characterizes   , and states that the optimal value 

of action u taken in state x equals the sum of the immediate reward and the 

discounted optimal value obtained by the best action in the next state: 

   (   ) =  (   ) +         ( (   )   )  (3.9) 

 

3.2 Model-Free Value Iteration and the Need for Exploration 

Here we consider RL, model-free value iteration algorithms, and discuss Q-learning, 

the most widely used algorithm from this class. Q-learning starts from an arbitrary 

initial Q-function    and updates it without requiring a model, using instead 

observed state transitions and rewards, i.e., data tuples of the form (  ,   , 
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    ,    ) [46, 47]. After each transition, the Q-function is updated using such a data 

tuple, as follows: 

    (     ) =   (     ) +   [             (      
 )    (     )]  (3.10) 

Where      (0, 1] is the learning rate. The term between square brackets is the 

temporal difference, i.e., the difference between the updated estimate     + 

        (      
 ) of the optimal Q-value of (     ) and the current 

estimate   (     ).  

3.3 Convergence 

As the number of transitions k approaches infinity, Q-learning asymptotically 

converges to   if the state and action spaces are discrete and finite, and under the 

following conditions [47, 62, 63]: 

 The sum ∑   
  

    produces a finite value, whereas the sum ∑   
 
    

produces an infinite value. 

 All the state-action pairs are (asymptotically) visited infinitely often. 

In practice, the learning rate schedule may require tuning, because it influences the 

number of transitions required by Q-learning to obtain a good solution. A good 

choice for the learning rate schedule depends on the problem at hand. 

The second condition can be satisfied if, among other things, the controller has a 

nonzero probability of selecting any action in every encountered state; this is called 

exploration. The controller also has to exploit its current knowledge in order to 

obtain good performance, e.g., by selecting greedy actions in the current Q-function. 

This is a typical illustration of the exploration-exploitation trade-off in online RL. 

A classical way to balance exploration with exploitation in Q-learning is  -greedy 

exploration [33], which selects actions according to: 

   = {
            (     )                                                               

                                                                                
 (3.11) 

Where     (0, 1), is the exploration probability at step k. 

 

p             ε  

  p           𝜀𝑘 
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3.4 Q-learning Algorithm 

1) initialize Q-function      

2) measure initial state    

3) for every time step k = 0,1,2, . . . do 

4)    = { 
            (     )                                                                                   

                                                                                                        
 

5) apply   , measure next state     and reward      

6)      (     ) =   (     ) +   [             (      
 )    (     )] 

7) end for 

Greedy action selection leads to exploring novel actions. Confidence intervals for the 

returns can be estimated, and the action with largest upper confidence bound, i.e., 

with the best potential for good returns, can be chosen. 

The idea of RL can be generalized into a model, in which there are two components: 

an agent that makes decisions and an environment in which the agent acts. For every 

time step t, the agent is in a state      X where X is the set of all possible states, and 

in that state the agent can take an action     U where U is the set of all possible 

actions in state   . As the agent transits to a new state      at time t + 1 it receives a 

numerical reward     . It up to date then its estimate of the evaluation function of the 

action   (     ) using the immediate reinforcement,     , and the estimated value 

of the following state,   
 
(      

 ),  

   
 
(      

 ) =        (      
 )  (3.12) 

Where         . The Q-value of each state/action pair is updated by 

     (     ) =   (     ) +   [        
 
(      

 )    (     )]  (3.13) 

This algorithm is called Q-Learning. It shows several interesting characteristics. The 

estimates of the function Q, also called the Q-values, are independent of the policy 

pursued by the agent. To calculate the evaluation function of a state, it is not 

necessary to test all the possible actions in this state but only to take the maximum 

  p             ε  (  p    ) 

p           ε          (  p    ) 
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Q-value in the new state  (3.14). However, the too fast choice of the action having 

the greatest Q-value can lead to local minima. 

    = arg       (       )  (3.14) 

To obtain a useful estimate of Q, it is necessary to sweep and evaluate the whole of 

the possible actions for all the states: it is what one calls the phase of exploration 

[33].  

3.4.1 Exemplification of QL by a simple robot problem 

In this part we introduce the concept of Q-learning through a simple but 

comprehensive numerical example.  The example describes an agent which uses 

unsupervised training to learn about an unknown environment. Suppose we have 5 

rooms in a building connected by doors as shown in the figure below.  We will 

number each room 0 through 4.  The outside of the building can be thought of as one 

big room (5). Notice that doors 1 and 4 lead into the building from room 5 (outside). 

 

 

 

 

 

Figure 3.2 : Structure of the environment. 

We can represent the rooms on a graph, each room as a node, and each door as a link. 
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Figure 3.3 : Graphical representation of environment. 

For this example, we would like to put an agent in any room, and from that room, go 

outside the building (this will be our target room). In other words, the goal room is 

number 5. To set this room as a goal, we will associate a reward value to each door 

(i.e. link between nodes). The doors that lead immediately to the goal have an instant 

reward of 100.  Other doors not directly connected to the target room have zero 

reward. Because doors are two-way (0 leads to 4, and 4 leads back to 0), two arrows 

are assigned to each room. Each arrow contains an instant reward value, as shown 

below: 

 

Figure 3.4 : Reward assigned to each action. 

Of course, Room 5 loops back to itself with a reward of 100, and all other direct 

connections to the goal room carry a reward of 100.  In Q-learning, the goal is to 

reach the state with the highest reward, so that if the agent arrives at the goal, it will 

remain there forever. 

Imagine our agent as a dumb virtual robot that can learn through experience. The 

agent can pass from one room to another but has no knowledge of the environment, 

and does not know which sequence of doors lead to the outside. 
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Suppose we want to model some kind of simple evacuation of an agent from any 

room in the building. Now suppose we have an agent in Room 2 and we want the 

agent to learn to reach outside the house (5). 

 

Figure 3.5 : Structure of the problem. 

The terminology in Q-Learning includes the terms "state" and "action", so we will 

call each room, including outside, a "state", and the agent's movement from one 

room to another will be an "action".  In our diagram, a "state" is depicted as a node, 

while "action" is represented by the arrows. 

Suppose the agent is in state 2.  From state 2, it can go to state 3 because state 2 is 

connected to 3.  From state 2, however, the agent cannot directly go to state 1 

because there is no direct door connecting room 1 and 2 (thus, no arrows).  From 

state 3, it can go either to state 1 or 4 or back to 2 (look at all the arrows about state 

3).  If the agent is in state 4, then the three possible actions are to go to state 0, 5 or 

3.  If the agent is in state 1, it can go either to state 5 or 3.  From state 0, it can only 

go back to state 4. 

We can put the state diagram and the instant reward values into the following reward 

matrix R. 

  

(3.15) 
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The -1's in the table represent null values where there isn't a link between nodes. 

Now we will add a similar matrix, "Q", to the brain of our agent, representing the 

memory of what the agent has learned through experience.  The rows of matrix Q 

represent the current state of the agent, and the columns represent the possible 

actions leading to the next state. 

The agent starts out knowing nothing, the matrix Q is initialized to zero.  In this 

example, for the simplicity of explanation, we assume the number of states is known 

(to be six).  If we didn't know how many states were involved, the matrix Q could 

start out with only one element.  It is a simple task to add more columns and rows in 

matrix Q if a new state is found. 

The transition rule of Q learning is updated according to (3.10) where   =1 as 

following: 

 (            )=  (            )+     [ (                      )] (3.16) 

Our virtual agent will learn through experience, without a teacher (this is called 

unsupervised learning).  The agent will explore from state to state until it reaches the 

goal. We'll call each exploration an episode.  Each episode consists of the agent 

moving from the initial state to the goal state.  Each time the agent arrives at the goal 

state, the program goes to the next episode. 

Algorithm to utilize the Q matrix: 

1. Set current state = initial state. 

2. From current state, find the action with the highest Q value. 

3. Set current state = next state. 

4. Repeat Steps 2 and 3 until current state = goal state 

To understand how the Q-learning algorithm works, we'll go through a few episodes 

step by step. We will start by setting the value of the learning parameter   = 0.8, and 

the initial state as Room 1. 

First we Initialize matrix Q as a zero matrix: 
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Look at the second row (state 1) of matrix R.  There are two possible actions for the 

current state 1: go to state 3, or go to state 5. By random selection, we select to go to 

5 as our action. 

Now let's imagine what would happen if our agent were in state 5.  Look at the sixth 

row of the reward matrix R (i.e. state 5).  It has 3 possible actions: go to state 1, 4 or 

5. By using (3.16) we will have: 

  (   ) =  (   ) +       [ (   )  (   )  (   )] = 100  (3.18) 

The next state, 5, now becomes the current state.  Because 5 is the goal state, we've 

finished one episode.  Our agent's brain now contains an updated matrix Q as: 

 

For the next episode, we start with a randomly chosen initial state.  This time, we 

have state 3 as our initial state. Look at the fourth row of matrix R (state 3) ; it has 3 

possible actions: go to state 1, 2 or 4.  By random selection, we select to go to state 1 

as our action. 

Now we imagine that we are in state 1.  Look at the second row of reward matrix R 

(i.e. state 1).  It has 2 possible actions: go to state 3 or state 5.  Then, we compute the 

Q value by utilizing (3.16): 

  (   ) =  (   ) +       [ (   )  (   )] = 80  (3.20) 

 

(3.17) 

(3.19) 
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Then the matrix Q is updated as: 

 

The next state, 1, now becomes the current state. We repeat the inner loop of the Q 

learning algorithm because state 1 is not the goal state. 

If our agent learns more through further episodes, it will finally reach convergence 

values in matrix Q like: 

 

Once the matrix Q gets close enough to a state of convergence, we know our agent 

has learned the most optimal paths to the goal state.  Tracing the best sequences of 

states is as simple as following the links with the highest values at each state. 

Finally the learned path can be depicted in the following graph:  

 

Figure 3.6 : Learned path. 

(3.21) 

(3.22) 
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4. QL-BASED FLC DESIGN 

In order to minimize or maximize a given cost function of the closed-loop system, 

QLA makes it practical to tune FPD/FPI/FPID controllers. 

The user can decide about the vector of the tuning parameters depending on the 

control objectives and the available knowledge. 

One can distinguish different types of tuning parameters: 

i. Parameter vector composed by the universe of discourses of error, change of 

error and control signal. 

ii. Parameter vector composed by the conclusions of fuzzy rules when the 

premise parameters are fixed. 

iii. Parameter vector composed by the positions of the triangular membership 

functions when the conclusions are fixed. 

iv. Parameter composed by all the parameters of both the premises and 

conclusions.  

To each candidate, is associated a Q-value that is incrementally updated by the QLA. 

The learning process consists then in determining the best set of parameters, the one 

that will optimize the future reinforcements. Thus, as the quantities are initially 

unknown, the fuzzy controller has to explore and test several actions. The 

exploration phase is often long. Though, as fuzzy rules are interpretable and tuning 

parameters have physical meaning, this phase can be drastically reduced by 

introducing knowledge in the initial fuzzy controller. 

4.1 Parameter discretization 

Consider the problem of representing a Q-function, not necessarily the optimal one. 

Since no prior knowledge about the Q-function is available, the only way to 
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guarantee an exact representation is to store distinct values of the Q-function (Q-

values) for every state-action pair, so it is required to have discretized parameters of 

states and actions. 

Let      and      mark the boundary of the variation domain of a parameter. The J 

parameter candidates are distributed in [         ]. Note that a very approximate 

knowledge permits to shrink this interval and/or to eliminate undesirable or 

physically nonsensical solutions. To simplify, we consider that the proposed values 

are equally distributed between these bounds. Let      
  ,     

  be the bounds of ith 

element of the parameters' vector P. Therefore, we can take: 

     =     
  ,     =     + 

    
      

 

   
 ,…,      =     

 
  (4.1) 

Different Q-values which have been stored for corresponding parameters (here 

namely P) are depicted graphically in figure (4.1) where we have our states and 

actions as x= {             } and u = {             }, respectively. 

In each state, among the available actions from the action set u, one action is selected 

according to a desired action selection policy and the resulting action is applied to 

the system and after that the corresponding Q-value is stored in the predetermined Q 

matrix. This process continues until all of the states from the state space are met or 

the convergence criteria of the algorithm has been satisfied. After that in each state, 

the maximum Q-value which exists among the all available Q-values is recognized 

by making the use of the updated Q matrix. This maximum Q-value is being 

considered to be the optimal Q function (optimum Q-value) and therefore the 

corresponding state-action pair which has been resulted to obtaining of the  optimal 

values of Q matrix is then choosen as the optimized values for the given parameter, 

namely, P. This procedure is called parameter discretization in a state and action 

space (set )and the outcome of this process is a kind of algorithmic parameter 

optimization through the Reinforcement Q-learning algorithm which will be used in 

our investigated method for optimizing the universe of discourses of the input-output 

membership functions of the fuzzy controller. 
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Figure 4.1 :  Q-values associated with each parameter P in each state. 

4.2 Reward Function 

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a 

special reward signal passing from the environment to the agent. At each time step, 

the reward is a simple number. Informally, the agent's goal is to maximize the total 

amount of reward it receives. This means maximizing not immediate reward, but 

cumulative reward in the long run. 

The use of a reward signal to formalize the idea of a goal is one of the most 

distinctive features of reinforcement learning. Although this way of formulating 

goals might at first appear limiting, in practice it has proved to be flexible and widely 

applicable. The best way to see this is to consider examples of how it has been, or 

could be, used. For example, to make a robot learn to walk, researchers have 

provided reward on each time step proportional to the robot's forward motion. In 

making a robot learn how to escape from a maze, the reward is often zero until it 

escapes, when it becomes +1. Another common approach in maze learning is to give 

a reward of -1 for every time step that passes prior to escape; this encourages the 

agent to escape as quickly as possible. To make a robot learn to find and collect 

empty soda cans for recycling, one might give it a reward of zero most of the time, 
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and then a reward of +1 for each can collected (and confirmed as empty). One might 

also want to give the robot negative rewards when it bumps into things or when 

somebody yells at it. For an agent to learn to play checkers or chess, the natural 

rewards are +1 for winning, -1 for losing, and 0 for drawing and for all nonterminal 

positions. 

You can see what is happening in all of these examples. The agent always learns to 

maximize its reward. If we want it to do something for us, we must provide rewards 

to it in such a way that in maximizing them the agent will also achieve our goals. It is 

thus critical that the rewards we set up truly indicate what we want accomplished. In 

particular, the reward signal is not the place to impart to the agent prior knowledge 

about how to achieve what we want it to do. For example, a chessplaying agent 

should be rewarded only for actually winning, not for achieving subgoals such taking 

its opponent's pieces or gaining control of the center of the board. If achieving these 

sorts of subgoals were rewarded, then the agent might find a way to achieve them 

without achieving the real goal. For example, it might find a way to take the 

opponent's pieces even at the cost of losing the game. The reward signal is your way 

of communicating to the robot what you want it to achieve, not how you want it 

achieved. 

According to the distribution of rewards in the space of states, reward function can 

be classified as two basic forms, dense function and sparse function. Sparse function 

takes advantage of the easy implementation, but its learning efficiency is relatively 

low. As for dense function, it is very difficult to design when the size of state space is 

very large. In response to these defects, we will present a methodology for designing 

a fuzzy reward functions by the use of fuzzy inference system. 

4.2.1 QL-based FLC with scalar reward function 

Consider a control system composed by a SISO unknown plant and a FPI or FPD 

controller. The cost function, which quantifies the effectiveness of the fuzzy 

controller, is evaluated at the end of a step-response experiment. Without loss of 

generality, we take the sum of square error cost function given by: 

 I =  
 

      
∑    

    
( )  (4.2) 
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Where N is the total number of samples,    is the number of transient samples and T 

the sampling time. 

In order to minimize the cost function I we use the reinforcement signal r given by: 

 r = {
            

            
  (4.3) 

where    and    are positive coefficient and    is a satisfaction threshold. The signal 

r is perceived as a reward or a punishment depending on whether it is superior or 

inferior to a satisfaction threshold.  

It is a simple form of a reward function and may ignore some useful information 

about the interactions between agent (controller) and environment (plant), which can 

result in an acceptable performance. In order to overcome this disadvantage we will 

suggest a methodology to invent an innovative kind of reward function which 

incorporates more elaborate information to how best achieve our goal. 

4.2.2 QL-based FLC with fuzzy reward function 

Instead of comparing the obtained cost function with a given satisfaction threshold 

(  ) and assigning a reward or a punishment to the reinforcement signal, we propose 

a fuzzy system which its inputs can be considered to be some features of the system’s 

closed loop response such as settling time, overshoot, rise time, etc. and reward 

signal r is seen as the output of the fuzzy inference system. 

4.3 Tuning FLCs by the FQL algorithm 

The discrete Q-Learning such as we described it uses a discrete space of states and 

actions which must have reasonable size to enable the algorithms to converge in an 

acceptable time in practice. In this case, a look-up table can be built up by listing the 

state/action pairs with their Q values. However in many applications, the number of 

state/action pairs is very large. Thus a method that is able to make Q-Learning 

applicable to the continuous problem domain is necessary. The Fuzzy Inference 

System (FIS) learner is one existing generalization methods which can be introduce 

generalization in the state space and generate continuous actions in the 

reinforcement-learning problem. 
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The principle of Fuzzy Q-Learning (FQL) proposed by Jouffe [64] is RL method that 

tunes with only the consequent part in an incremental way based only on 

reinforcement signals. Each fuzzy rule    has possible k discrete candidate 

consequents (actions)   = (  
   

 
       

 ) and it memorizes the parameter vector Q 

associated with each of these actions. Local actions (          ) selected from U 

compete with each other based on their Q-values so as to maximize the discounted 

sum of rewards obtained while achieving the task.  

Each Rule    of the FPID can be described as follow:  

If e is     and de is     then    is   
 with Q(s,   

 ) 

                                        Or    is   
  with Q(s,   

 ) 

                                               ….                    …. 

                                        Or    is   
  with Q(s,   

 ) 

Where     is linguistic label related to each input state,   
  is a rule consequent 

(action) which corresponds to the consequent part of i-th fuzzy rule    and has its 

own Q-value   
 
. 

In the previous method, the antecedent parameters are set using the a priori task 

knowledge of the user. To restrict a FPID optimization to the only tuning of the 

parameters of the consequent part is often insufficient to reach high performances. 

The principle of the FQL algorithm applied to the antecedent parameters will consist 

in selecting for each membership function a modal point from a possible discrete 

candidate modal points set basing on the evaluation function of the action Q(     ). 

Let us consider the FPID controller with the two input variables e or de. Each 

universe of discourse of e or de is partitioned in Nm   membership 

functions   
 :{ 

 
   

 
      

         
 }. Each   

  has a possible discrete modal 

point set A(   ):{    
   

   
        

              
 } where     

  is the kth point 

modal possible of the jth membership function of the input i.   
  and        

 are the 

cardinals of the set. 

Each Rule   of the FPID can be described as follow: 
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If e is   
 (  

   ) and de is   
 (  

   ) then u is   
  

or is   
 (  

   )         or is   
 (  

   )   

    …. …. 

or is   
 (  

   )          or is   
 (  

   )        

According to the FQL algorithm, local modal points 

(    
   

   
        

              
 ) selected from A(   ) compete with each other 

based on their q-values so as to maximize the discounted sum of rewards obtained 

while achieving the task. Global quality Q for the state    is then defined by the 

inference of these qualities locally elected: 

   (  ) = ∑ ∑   (  
 )

    
   

 
   .   

  
 
(  )  (4.4) 

Where   
  is the elected modal point at the time step t for the membership 

function   
  by an exploration-exploitation policy and   

  
 
(  ) is the membership 

degree of the input variable   (  =e,   =de) to   
  and it measures the contribution 

of the modal points to the generation of the global action. 

 

Figure 4.2 : FQL Structure for the antecedent part. 
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5. SIMULATION STUDIES 

5.1 Standard Fuzzy PID Controller 

In this study, we will deal with standard fuzzy PID controllers, formed using a fuzzy 

PD controller with an integrator and a summation unit at the output, as it is shown in 

Figure 5.1.  

 

Figure 5.1 : Closed-loop control structure for PID-type FLC.  

The output of the fuzzy PID controller is given by: 

 u =  U+ ∫     (5.1) 

The error e and the derivative of error  ̇ are used as the inputs and the change of the 

control signal U is used as the output of the FLC. The input scaling factors    for 

error and    for the derivative of error normalize the inputs to the range in which the 

membership functions of the inputs are defined. 

The corresponding symmetrical rule base which has beed used for the FLC is shown 

in Table 5.1. And also three equidistant triangular membership functions for the 

inputs of fuzzy controller and five singletons for the output of it have been utilized. 

 

Figure 5.2 : Input-Output MFs to the FLC. 
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Table 5.1 : Rule base for the FLC. 

e de 

   

 NB NS ZR 

 NS ZR PS 

 ZR PS PB 

In practice, fuzzy control is applied using local inferences. That means each rule is 

inferred and the results of the inferences of individual rules are then aggregated. The 

most common inference methods are: the max-min method, the max-product method 

and the sum-product method, where the aggregation operator is denoted by either 

max or sum, and the fuzzy implication operator is denoted by either min or product.  

Finally, a defuzzification method is needed to obtain a crisp output from the 

aggregated fuzzy result. Popular defuzzification methods include maximum 

matching and centriod defuzzification. The centroid defuzzification is widely used 

for fuzzy control problems where a crisp output is needed, and maximum matching is 

often used for pattern matching problems where we need to need to know the output 

class. In this thesis, the fuzzy reasoning results of outputs are gained by aggregation 

operation of fuzzy sets of inputs and designed fuzzy rules, where max-product 

aggregation method and average-sum defuzzification method are used. 

5.2 Application of fuzzified QL to membership function tuning 

The application of the QL algorithm for tunning the membership functions of the 

FLC is to optimize the universe of discourse of the input-output membership 

functions by the suggested method and finally update the table 5.1 for the rule base 

of the FLC. 

The cost function to be minimized, which quantifies the efficiency of the fuzzy 

controller, is evaluated at the end of a step-response experiment. Without loss of 

generality, we take the sum of square error cost function given by: 

 I =  
 

      
∑    

    
( )  (5.2) 
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Where N is the total number of samples,    is the number of transient samples and T 

is the sampling time. 

In order to demonstrate that the performance of the proposed QL method can be 

significantly improved by manipulating the reward function of the algorithm, we 

propose a fuzzy reward function for the QL algorithm which incorporates a fuzzy 

structure including more elaborate information about the rewards/punishments 

assigned to each action which is being taken in each step time and make use of this 

fuzzy reward function in our simulations. 

Besides enhancing the performance of the system’s unit step response, Q-learning 

with a fuzzy reward function reaches to its optimal value and meets its convergence 

criteria faster than the Q-learning with a scalar reward function. 

5.3 Structure of the proposed fuzzy reward function 

To build a fuzzy reward function for the QL algorithm, we consider the inputs to our 

fuzzy system to be Integral Square Error (ISE) and settling time(   ). Consequently, 

the output of the fuzzy system is considered to be reward/punishment. 

For our fuzzy reward function, three equidistant triangular membership functions for 

the inputs and seven singletons for the outputs have been used. The corresponding 

input MFs have been shown in the following: 

 

Figure 5.3 : Input MFs for fuzzy reward function. 
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The performance of the fuzzy reward function will be evaluated according to ISE and 

settling time of the given system. Therefore, we can build a desired fuzzy rule base 

according to these informations as the following: 

If ISE  is Small and    is Small then reward is Positive Large. 

If ISE  is Small and    is Medium then reward is Positive Medium. 

If ISE is Small and    is Large then reward is Positive Small. 

If ISE is Medium and    is Small then reward is Positive Small. 

If ISE is Medium and    is Medium then reward is Zero. 

If ISE is Medium and    is Large then reward is Negative Small. 

If ISE is Large and    is Small then reward is Negative Medium. 

If ISE is Large and    is Medium then reward is Negative Medium. 

If ISE is Large and    is Large then reward is Negative Large. 

The resulting rule base for our fuzzy reward function is assembled in the following 

table. 

Table 5.2 : Rule base for fuzzy reward function. 

ISE    

   

 PL PM PS 

 PS Z NS 

 NM NM NL 

 

5.4 Simulations 

At first we will apply the proposed method to two second order linear systems with 

and without time delay and their unity step responses will be demonstrated. After 

that, we consider a non-linear system and try to utilize the QL in order to tune the 

membership functions of the corresponding fuzzy controller. 
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Note that in all of the simulations in order to simulate the given plant and its 

corresponding time delay, Fourth-Order Runge-Kutta and Pade Approximation 

methods have been used, respectively. 

5.4.1 System I 

Firstly, we apply the method to a second order linear system without time delay: 

 G(s) = 
  

           
  (5.3) 

The scaling factors of the FLC are taken as   = 0.22,   = 1,   = 0.7,   = 0.2. The 

unit step response of the system is represented in the following figure: 

Figure 5.4 : Closed-loop unity step response for system I. 

As can be seen from the Figure 5.4, the overshoot of the response has been decreased 

to 2.2% and settling time has become 3.57 seconds by means of the proposed method 

with a fuzzy structure for its reward function. 

5.4.2 System II 

The other system to be considered is a second order plus dead time (SOPDT) linear 

system which is given by the following transfer function: 

 G(s) = 
       

           
  (5.4) 

The scaling factors for this system are taken as:   = 0.2,   = 0.4,   = 1,   = 0.1. The 

unit step response for the given plant is shown in the following figure: 
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Figure 5.5 : Closed-loop unity step response for system II. 

By comparing the results of the figure 5.5 it can be observed that  by the proposed 

method the overshoot of the response has been completely eliminated and also 

settling time has decreased significantly to 11.22 sec. 

The learned parameters and obtained rule bases for the FLC have been demonstrated 

in the following for both systems I and II. 

1) System I 

QL with fuzzy reward:   = |  | = 0.3,     = |  | = 0.02,      = |   | = 1 

QL with scalar reward:   = |  | = 0.4556,     = |  | = 0.1289, 

    = |   | = 0.45 

 

2) System II 

QL with Fuzzy reward:   = |  | = 1.864,     = |  | = 0.871,  

     = |   | = 1.578 

QL with scalar reward:   = |  | = 1.457,     = |  | = 0.743,  

     = |   | = 1.367 
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Table 5.3 : Learned rule bases for SysI (QL with fuzzy and scalar reward). 

e de 

N Z P 

 N -1 -0.5 0 

Z -0.5 0 0.5 

P 0 0.5 1 

 

Table 5.4 : Learned rule bases for SysII (QL with fuzzy and scalar reward). 

  

 

 

 

 

5.4.3 System III 

In this part we apply the proposed method to a nonlinear system. We consider the 

problem of stabilization of an inverted pendulum in the vertical position to 

demonstrate the efficiency of the proposed tuning method. We use a fuzzy PD 

controller as shown in figure 5.6 with triangular membership functions for inputs and 

singletons for output and try to tune the universe of discourse of input-output MFs. 

For our simulations we use an Inverted Pendulum which its dynamics is described by 

the following equations: 

  ̈ = 
              (

   ̅       ̇     

   
)

   (
 

 
   

 

 
     )

  (5.5) 

e 

e 

de 

N Z P 

N -0.45 -0.22 0 

Z -0.22 0 0.22 

P 0 0.22 0.45 

e de 

N Z P 

N -1.57 -0.78 0 

Z -0.78 0 0.78 

P 0 0.78 1.57 

e 

 

de 

N Z P 

N -1.36 -0.68 0 

Z -0.68 0 0.68 

P 0 0.68 1.36 
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  ̇̅       ̅        (5.6) 

 

Figure 5.6 : Fuzzy PD controller for balancing an Inverted Pendulum with scaling 

gains   ,    and h. 

As shown in figure 5.7, y denotes the angle that pendulum makes with the vertical (in 

radians), l is the half-pendulum length (in meters) and u is the force input that moves 

the cart (in Newtons). 

 

Figure 5.7 : Inverted Pendulum. 

Here, the first order filter on u to produce  ̅ represents an actuator. For our problem 

 ( ) takes different values  and  ̇( )=0. The initial condition for the actuator state is 

also zero. 

During the simulations scaling gains for the FPD are taken as:   = 12.23,   = 0.712 

and h = 0.601. 

We consider four different cases depending on the initial state of the pendulum’s 

vertical position and gradually increase it in order to observe both the output and 

control signal of the inverted pendulum’s behavior as following: 

  =0.2 (rad),   =0.4 (rad),   =0.5  (rad) and   =0.8 (rad). 
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i.  Initial state for the Pendulum’s vertical position is 0.2(rad) = 11.46(deg): 

 

Figure 5.8 : Inverted Pendulum balancing for case (i). 

 

Figure 5.9 : Control signal for case (i). 
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ii. Initial state for the Pendulum’s vertical position is 0.4(rad) = 22.92(deg): 

 

Figure 5.10 : Inverted Pendulum balancing for case (ii). 

 

                                      Figure 5.11 : Control signal for case (ii). 
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iii. Initial state for the Pendulum’s vertical position is 0.5 (rad) = 28.66 (deg): 

 

 

Figure 5.12 : Inverted Pendulum balancing for case (iii). 

 

 

Figure 5.13 : Control signal for case (iii). 
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iv. Initial state for the Pendulum’s vertical position is 0.8(rad) = 45.85(deg): 

 

Figure 5.14 : Inverted Pendulum balancing for case (iv). 

 

Figure 5.15 : Control signal for case (iv). 
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From the given figures, it is obviously observable that the balancing time of the 

Inverted Pendulum is considerably decreased when using the proposed QL method in 

comparison with the non-tuned FPD controller. 

The learned parameters and rule bases obtained by the QLA for the Inverted 

Pendulum balancing problem are given as following: 

1) Case (i) 

QL with fuzzy reward:    = |  | = 1.15,    = |  | = 0.884,  

   = |   | = 43.57 

QL with scalar reward:    = |  | = 1.318,    = |  | = 0.785,  

   = |   | = 46.79 

2) Case (ii) 

QL with fuzzy reward:    = |  | = 1.234,    = |  | = 0.883,  

   = |   | = 50 

QL with scalar reward:    = |  | = 1.56,    = |  | = 0.687,  

   = |   | = 30.07 

3) Case (iii) 

QL with fuzzy reward:    = |  | = 1.49,    = |  | = 1.08,  

   = |   | = 37.14 

QL with scalar reward:    = |  | = 1.58,    = |  | = 0.69,  

   = |   | = 43.57 

4) Case (iv) 

QL with fuzzy reward:    = |  | = 1.15,    = |  | = 1.1,  

   = |   | = 46.78 

QL with scalar reward:    = |  | = 1.23,    = |  | = 0.981,  

   = |   | = 43.58 
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         Table 5.5 :  Rule bases for case i (QL with fuzzy and scalar reward). 

 

 

          Table 5.6 :  Rule bases for case ii (QL with fuzzy and scalar reward). 

 

 

 

 

                       

 

 

           Table 5.7 : Rule bases for case iii (QL with fuzzy and scalar reward). 

 

 

 

 

 

 

 

  

e  de 

N Z P 

 N -43.57 -21.79 0 

Z -21.79 0 21.79 

P 0 21.79 43.57 

e de 

N Z P 

 N -46.79 -23.40 0 

Z -23.40 0 23.40 

P 0 23.40 46.79 

e  de 

N Z P 

 N -50 -25 0 

Z -25 0 25 

P 0 25 50 

e  de 

N Z P 

 N -30.07 -15.03 0 

Z -15.03 0 15.03 

P 0 15.03 30.07 

e  de 

N Z P 

 N -43.57 -21.79 0 

Z -21.79 0 21.79 

P 0 21.79 43.57 

e  de 

N Z P 

 N -37.14 -18.57 0 

Z -18.57 0 18.57 

P 0 18.57 37.14 
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          Table 5.8 : Rule bases for case iv (QL with fuzzy and scalar reward). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

e  de 

N Z P 

 N -43.58 -21.8 0 

Z -21.8 0 21.8 

P 0 21.8 43.58 

e  de 

N Z P 

 N -46.78 -23.39 0 

Z -23.39 0 23.39 

P 0 23.39 46.78 
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6. CONCLUSIONS AND RECOMMENDATIONS  

In this study an optimization method for tuning the parameters of membership 

functions of fuzzy logic controllers based on Reinforcement Learning (Q-Learning) 

is proposed. This approach is very powerful in stochastic control problems, and in 

those without an exemplary supervisor or a complete lack of model of the 

environment. In essence, the agent does not need to know the very nature of the 

controlled system but only rewards from interactions.  

Firstly, we applied the QL based optimization method to different second order linear 

systems with time delay and without time delay for tuning the universe of discourses 

of error, change of error and output singletons of triangular membership functions of 

the fuzzy controllers. The simulations revealed that the overshoot and settling time of 

the closed-loop unity step response has decreased in a considerable manner. 

Afterwards, the proposed algorithm is applied to a non-linear system and it has been 

observed that the reinforcement Q-learning algorithm with its very simple algorithm, 

is a systematic method that saves us a great deal of time in comparison with its 

counterparts when performing complex simulations and also its convergence is 

guaranteed. 

For future work, the proposed method might be applied to a practical system to 

explore the efficiency of it. The other area to be concentrated on can be proposing 

more sophisticated reward functions for the algorithm in order to examine its 

performance. Besides that there exist some other action-state selection methods other 

than greedy policy, which can be used in the suggested algorithm. 
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