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JUNE 2010
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CANONICAL FORMS FOR FAMILIES OF ANTI-COMMUTING
DIAGONALIZABLE LINEAR OPERATORS

SUMMARY

In this thesis, we examine canonical forms for families of anti-commuting
diagonalizable linear operators on finite dimensional vector spaces.

We begin with basic definitions, basic concepts of linear algebra and a review
of the structures of Clifford algebras. Then, we review a well-known result on
the simultaneous diagonalization of a family of commuting linear operators on a
finite dimensional vector space which asserts that an arbitrary family of commuting
diagonalizable operators can be simultaneously diagonalized.

In Section 2, we consider an anti-commuting family A of diagonalizable operators
on a finite dimensional vector space V . Real or complex representations of Clifford
algebras are typical anti-commuting diagonalizable (over C) families. In order to give
a motivation for general case, we give a detailed construction for two and three element
families of anti-commuting diagonalizable linear operators in Sections 2.1 and 2.2.

Our main result is that V has an A-invariant direct sum decomposition into subspaces
Vα such that the restriction of the family to each Vα summand either consists of a
single nonzero operator or it is a representation of some Clifford algebra. This result,
presented in Section 2.2, is derived directly from the fact that the squares of the
operators in A form a commuting family of diagonalizable operators whose kernels
are the same as the original family. One can then simultaneously diagonalize A ,
rearrange the basis and obtain subspaces on which there are families of non-degenerate
anti-commuting operators whose squares are constants.

Closing Section 2, we modify our results to a more general form of anti-commuting
families and replace the diagonalizability condition by the requirement that the square
of the family is diagonalizable. Then, we show that V has a direct sum decomposition
such that each summand is a representation of a degenerate or non-degenerate Clifford
algebra.

Since the classifications of Clifford algebras and their representations are well known,
it is thus in principle possible to give a complete characterization of anti-commuting
families of diagonalizable operators. In last section, we give some classifications of
real and complex representations of Clifford algebras.
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TERS-DEĞİŞMELİ KÖŞEGENLEŞTİRİLEBİLİR LİNEER
OPERATÖR AİLELERİ İÇİN KANONİK FORMLAR

ÖZET

Bu çalışmada, sonlu boyutlu bir vektör uzayı üzerinde ters-değişmeli
köşegenleştirilebilir lineer operatörler ailelerinin kanonik formlarını inceledik.

İlk bölümde Lineer cebir ve Clifford cebirlerinin temel tanımlamaları ve özellikleriyle
başladık. Ardından sonlu boyutlu vektör uzayında değişmeli bir lineer operatörler
ailesinin eş zamanlı köşegenleştirilmesi hakkında iyi bilinen bir sonucu verdik. Bu
sonuca göre herhangi bir değişmeli köşegenleştirilebilir operatörler ailesi eş zamanlı
köşegenleştirilebilir.

İkinci bölümde, sonlu boyutlu bir V vektör uzayı üzerinde ters-değişmeli
köşegenleştirilebilir bir A operatörler ailesini ele aldık. Clifford cebirlerinin reel veya
kompleks temsilleri ters-değişmeli (C üzerinde) köşegenleştirilebilir ailelerin tipik
örneklerindendir. Genel durum için bir yön çizmesi açısından 2.1 ve 2.2. bölümlerde,
iki ve üç elemanlı ters-değişmeli köşegenleştirilebilir lineer operatörler ailelerinin
inşası için detaylı bir yapı verdik.

Çalışmanın ana sonucu şu şekildedir: V ’nin Vα alt uzaylarına öyle bir A-invaryant
direkt toplam dekompozisyonu vardır ki A’nın her Vα’ya kısıtlanışı ya sıfırdan
farklı bir tane operatörden oluşur ya da bazı Clifford cebirlerinin bir temsilidir.
İkinci bölümde sunulan bu sonuç, direkt olarak A’daki operatörlerin karelerinin
aynı çekirdeklere sahip ama değişmeli bir köşegenleştirilebilir operatörler ailesi
oluşturmasından çıkarılmıştır. Bundan sonra A’yı eş zamanlı köşegenleştirme, baz
vektörlerini yeniden düzenleme işlemleri gerçekleştirilerek, kareleri sabit dejenere
olmayan ters-değişmeli operatörler ailelerinin bulunduğu V ’nin alt-uzayları elde
edilebilir.

2. Bölüm’ü kapatırken, bulgularımızı ters-değişmeli ailelerin daha genel bir formuna
modifiye ettik ve köşegenleştirilebilirlik koşulunu ailenin kendisinin değil karesinin
köşegenleştirilebilir olması gerekliliği ile değiştirdik. Bu durumda V ’nin öyle bir
direkt toplam dekompozisyonu vardır ki toplamın her bir elemanı bir dejenere veya
dejenere olmayan bir Clifford cebrinin bir temsili olur.

Clifford cebirleri ve temsillerinin sınıflandırması iyi bilindiği için, ters-değimeli
köşegenleştirilebilir operatör ailelerinin tam bir karakterizasyonunu vermek prensipte
mümkündür. Son bölümde, Clifford cebirlerinin reel ve kompleks temsillerinin
sınıflandırması ile ilgili bilgiler verdik.
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1. INTRODUCTION

1.1. Notation and Basic Definitions

In the following V is a finite dimensional real (R) or complex (C) vector space.

Linear operators on V will be denoted by upper case Latin letters A, B etc, and the

components of their matrices with respect to some basis will be denoted by Ai j, Bi j

respectively. Labels of operators will be denoted by single indices from the beginning

of the alphabet, for example Aa, a = 1, . . . ,n denotes elements of a family of operators.

A family A of operators is called an “anti-commuting family” if for every distinct

pair of operators A and B in the family, AB + BA = 0. The symbol δi j denotes the

Kronecker delta, that is δi j = 1, if i = j and zero otherwise. When we shall use

partitioning of matrices, lower case letters will denote sub-matrices of appropriate size.

R(n),C(n) and H(n) denote n×n matrices with real, complex and quaternionic entries

respectively. Now, we give definitions of basic algebraic structures.

Definition 1.1.1. A group G is a set closed under a binary operation ∗, satisfying the

following conditions

i. (a∗b)∗ c = a∗ (b∗ c), for all a,b,c ∈ G (associativity).

ii. There is e ∈ G such that e∗a = a∗ e = a for all a ∈ G (identity).

iii. There is a−1 ∈ G such that a∗a−1 = a−1 ∗a = e for all a ∈ G (inverse).

G is called abelian, if ∗ is a commutative operation, i.e a∗b = b∗a for all a,b ∈G [4].

Definition 1.1.2. A ring R is a set with two binary operations, addition + and

multiplication · such that

i. R is an abelian group with addition.

ii. Multiplication is associative.
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iii. a ·(b+c) = (a ·b)+(a ·c) and (a+b) ·c = (a ·c)+(b ·c) holds for all a,b,c∈ R.

A commutative division ring is called a field [4].

In this thesis, we will work exclusively with either the field of real or complex numbers,

R and C. In addition, we will also use the divison ring of quaternions which is

sometimes called a skew-field.

Definition 1.1.3. A vector space V over a field F is an abelian group under addition

with scalar multiplication of each element of V , i.e. vectors, by each element of F , i.e.

scalars, on the left satisfying the following conditions:

i. av ∈V.

ii. a(bv) = (ab)v.

iii. (a+b)v = av+bv.

iv. a(v+w) = av+aw.

v. 1v = v.

for all a,b∈ F and for all v,w∈V where scalar multiplication is a function: F×V →V

[4].

Definition 1.1.4. An algebra is a vector space V over a field F , with a binary operation

of multiplication of vectors in V satisfying the following three conditions:

i. (au)v = a(uv) = u(av).

ii. (u+ v)w = uw+ vw.

iii. u(v+w) = uv+uw.

for all a ∈ F and for all u,v,w ∈ V [4]. V is a division algebra over F if V has

a multiplicative identity and it contains a multiplicative inverse for every nonzero

element in V .

Definition 1.1.5. Let R be a ring. An R-module is an abelian group M with

multiplication of each element of M by each element of R on the left satisfying

2



i. (rv) ∈M.

ii. r(u+ v) = ru+ rv.

iii. (r + s)u = ru+ su.

iv. (rs)u = r(su),

for all r,s ∈ R and for all u,v ∈M [4].

Definition 1.1.6. Let V be a vector space over a field F and let vi, i = 1, . . . ,n be vectors

in V . Then X = c1v1 + · · ·+ cnvn where ci’s are in F , is called a linear combination of

the vectors vi. If U is a subset of V and if every vector of V is a linear combination of

the vectors in U , then we say that the vectors of U span V .

Definition 1.1.7. Let V be a vector space over a field F and U be a subset of V . If

c1v1 + · · ·+cnvn = 0 where ci’s are in F and vi’s are in U , implies that c1 = · · ·= cn = 0,

then vi’s are called linearly independent.

Definition 1.1.8. Let V be a vector space over a field F and U be a subset of V . If

U is linearly independent and if it spans V then it is called a basis of V . If V is finite

dimensional, then the number of vectors in any basis is the same and this common

number is called the dimension of V [4]. Note that, the definition of linear combination

involves a finite number of vectors. Thus, if U is a basis for V , then every vector in V

should be written as a finite linear combination of the vectors in U .

Next, we define linear operators.

Definition 1.1.9. Let V and W be vector spaces over the field F . A function L : V →W

satisfying

L(au+ v) = a(L(u))+L(v), ∀a ∈ F, ∀u,v ∈V (1.1)

is called a linear transformation of V into W . If especially W = V , then L is called a

linear operator on V [1].

Definition 1.1.10. Let L be a linear operator on a vector space V over a field F . If for

a ∈ F , there is a non-zero vector v ∈V satisfying the equation

(L−aI)v = 0 (1.2)

3



then a is called a characteristic value of L and v is called a characteristic vector

corresponding to a [1].

Lastly in this section, we define “quadratic form”s which will be used in defining

Clifford algebras.

Definition 1.1.11. A homogeneous polynomial of degree two in a number of variables

with coefficients from a field k is called a quadratic form over k and the associated

bilinear form of a quadratic form q is defined by

2q(v,w) = q(v+w)−q(v)−q(w). (1.3)

1.2. Basic Properties of Linear Operators

In this section, we give properties on diagonalizability which will be useful in

construction of theorems in Section 2.

Definition 1.2.1. Let D be a linear operator on a finite dimensional vector space V . If

there is a basis of V such that each basis vector is a characteristic vector of D, then D

is diagonalizable [1].

Definition 1.2.2. Let L be a linear operator on a vector space V over a field F . The

subset defined by

Ker(L) = {v ∈V : L(v) = 0} (1.4)

where 0 is the zero vector, is called the kernel of L.

Proposition 1.2.3. Let A be a linear operator on a vector space V . If A is

diagonalizable, Ker(A2) = Ker(A).

Proof. We choose a basis with respect to which A is diagonal. Then eigenvalues of A2

are squares of eigenvalues of A. Hence, obviously Ker(A2) = Ker(A).

Definition 1.2.4. The minimal polynomial p for a linear operator L over a field F is

uniquely determined by the following three conditions

i. p is monic over F which means that it has 1 as the highest coefficient.

4



ii. p(L) = 0.

iii. p has the smallest degree among polynomials satisfying (ii).

[1]. In this thesis we are concerned with minimal polynomials over C.

Definition 1.2.5. Let Mn(F) be a family of n× n matrices over a field F and let

A,B∈Mn(F). A is said to be similar to B if there exists a nonsingular matrix C∈Mn(F)

such that B = C−1AC. A Jordan block J (over C) is a lower (upper) triangular matrix

which has the form

J =


λ 0 · · · 0 0
1 λ 0 · · · 0

0 1 . . . . . . ...

0 0 . . . λ 0
0 0 · · · 1 λ

 . (1.5)

A Jordan matrix is a direct sum of Jordan blocks and a Jordan matrix which is similar

to a matrix A is called the Jordan canonical form of A [5].

The following proposition will be used in order to derive Corollary 2.3.1

Proposition 1.2.6. Let A be a non-diagonalizable linear operator. Then A2 is

diagonalizable (over C) if and only if each Jordan block Ji of A is either diagonal

or it satisfies J2
i = 0.

Proof. Assume that A has a non-diagonal Jordan block J with eigenvalue λ of size n

as in (1.5). Then J2 has the following form

J2 =


λ2 0 · · · 0 0

2ελ λ2 0 · · · 0

1 2λ
. . . . . . 0

0
... . . . λ2 0

0 0 1 2λ λ2

 . (1.6)

Recall that if J2 is diagonalizable, then its minimal polynomial has to be a product of

factors that are linear over the complex numbers. From (1.6) above it is clear that if

J2 is diagonalizable then J2−λ2 should be zero. The first subdiagonal consists of the

terms λ, so we should take λ equal to zero. Then the second subdiagonal consists of 1

and J2 = 0, hence the size of the Jordan blocks should be at most 2. The proof of the

converse is obvious.

5



1.3. Properties of Commuting and Anti-Commuting Families of Diagonalizable

Linear Operators

In this section, we give certain properties of commuting and anti-commuting families

of diagonalizable linear operators. We begin with the following remark

Remark 1.3.1. If A is a diagonalizable operator on a vector space V and V has an

A-invariant direct sum decomposition, then from Lemma 1.3.10 in [5] the restriction

of A to each invariant subspace is also diagonalizable. Furthermore if we have a

family of commuting (anti-commuting) operators on V and V has an A invariant direct

sum decomposition, then the restriction of the family to each summand is again a

commuting (anti-commuting) family of diagonalizable operators.

Now, we give Theorem 1.3.2 whose proof is adopted from [5].

Theorem 1.3.2. Let D be a family of diagonalizable operators on a finite dimensional

vector space V and A,B ∈ D . Then A and B commute if and only if they are

simultaneously diagonalizable.

Proof. Assume that

AB = BA (1.7)

holds. By a choice of basis we may assume that A is diagonal, that is Ai j = λiδi j,

i = 1, ...,k. From (1.7) we have

(λi−λ j)Bi j = 0, (1.8)

that is Bi j is nonzero unless λi = λ j. Rearranging the basis, we have a decomposition

of V into eigenspaces of A. This decomposition is B invariant, on each subspace A is

constant, B is diagonalizable, hence they are simultaneously diagonalizable.

Conversely, assume that A and B are simultaneously diagonalizable. Then, there is

a basis with respect to which their matrices are diagonal. Since diagonal matrices

commute, it follows that the operators A and B commute.

Remark 1.3.3. If A is diagonalizable, then A2 is also diagonalizable.Also if the pair

(A,B) anti-commutes then the pairs (A,B2) and (A2,B2) commute, since

AB2 =−B(AB) = B2A, A2B2 = A(AB2) = A(B2A) = (B2A)A = B2A2.

6



Thus given a family {A1, . . . ,AN} of anti-commuting diagonalizable operators the

families {A1,A2
2 . . . ,A2

N} and {A2
1, . . . ,A

2
N} are commuting diagonalizable families,

hence they are both simultaneously diagonalizable.

Remark 1.3.4. The family A of anti-commuting diagonalizable linear operators on an

n-dimensional vector space V is necessarily linearly independent and it contains N < n2

elements. Because if B is a linear combination of the Ai i = 1, . . . ,k, i.e, B = ∑
k
i ciAi

and B anti-commutes with each of the A j’s in this summation it is necessarily zero.

Furthermore, since the anti-commuting family cannot include the identity matrix, it

follows that N < n2 [6].

1.4. Clifford Algebras

One of the most interesting examples of anti-commuting families of linear operators is

the Clifford algebras that are defined below.

Definition 1.4.1. Let V be a vector space over a field k and q be a quadratic form on V .

Then the associative algebra with unit, generated by the vector space and the identity

1 subject to the relations

v · v =−q(v)1, (1.9)

for any v ∈V is called a Clifford algebra and denoted by Cl(V,q).

If the characteristic of k is not 2, then (1.9) can be replaced by

v ·w+w · v =−2q(v,w), (1.10)

for all v,w ∈V [2].

Every non-degenerate quadratic form on V =Rn is equivalent to q(v) = v2
1 + · · ·+v2

r +

· · ·−v2
r+1−·· ·−v2

r+s, n = r+s and every non-degenerate quadratic form on V =Cn is

equivalent to q(v) = v2
1 + · · ·+v2

n. Hence, Cl(Rn,q) are called the real Clifford algebras

and denoted by Cl(r,s) while Cl(Cn,q) are called the complex Clifford algebras and

denoted by Clc(n).

If {e1, . . . ,en} is an orthonormal basis for V , then by (1.10) the generators of Cl(r,s)

7



satisfy

e2
i =−1, i = 1, . . . r; e2

r+i = 1, i = 1, . . . s; eie j + e jei = 0, i 6= j,

and the generators of Clc(n) satisfy

e2
i =−1, i = 1, . . . n; eie j + e jei = 0, i 6= j.

Then the set

{ei1ei2 . . .eik| 1≤ i1 < i2 < · · ·< ik ≤ n}∪{1} (1.11)

spans both Cl(r,s) and Clc(n). Hence they are both 2n-dimensional vector spaces.

Definition 1.4.2. Let V be an (n + p)-dimensional vector space over the field k and

〈,〉 be a degenerate symmetric bilinear form (in characteristic not 2) on V . Then the

associative algebra with unit, generated by the vector space V and the identity 1 subject

to the relations in (1.10) for any v ∈V is called a degenerate Clifford algebra.

If {e1, . . . ,en, . . . , f1, . . . , fp} is an orthonormal basis for V , where { f1, . . . , fp} are basis

vectors for the restriction of 〈,〉 to the degenerate subspace of V while the rest refers

to the non-degenerate subspace of V , then the relations below

〈ei,e j〉=±δi j, 1≤ i, j ≤ n,

〈 fi, f j〉= 0, 1≤ i, j ≤ p. (1.12)

stand for the relations in (1.10) [7].

Definition 1.4.3. Let K be a division algebra containing the field F . A K-representation

of the Clifford algebra Cl(V,q) is an F-algebra homomorphism p from Cl(V,q) into the

algebra of linear transformations on a finite dimensional vector space W over K. Here,

W is a Cl(V,q)-module over K and p is an F-linear map, i.e. p(a1v1 + · · ·+ anvn) =

a1 p(v1)+ · · ·+anvn, ai ∈ F , vi ∈W for i = 1, . . . ,n, satisfying

p(ψφ) = p(ψ)◦ p(φ) (1.13)

[2].
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2. FAMILIES OF ANTI-COMMUTING DIAGONALIZABLE

LINEAR OPERATORS

2.1. A Pair of Anti-Commuting Diagonalizable Linear Operators

In order to comprehend the structure of anti-commuting families of linear operators,

we begin with a detailed examination of a family containing two anti-commuting

operators [6].

Let A be a family of two anti-commuting diagonalizable linear operators on an

n-dimensional vector space V and A,B ∈ A . One can always choose a basis with

respect to which either A or B is diagonal. Hence, without loss of generality we may

assume that A is diagonal, i.e. Ai j = λiδi j and substituting this into the equation

AB+BA = 0, (2.1)

we obtain

(λi +λ j)Bi j = 0. (2.2)

Thus if λi = λ j = 0, Bi j is free. Otherwise, Bi j is nonzero only if (λi +λ j) = 0, that is

for a pair of eigenvalues with the same absolute value but opposite sign. This suggests

that we should group the eigenvalues of A in three sets

{0}, {µ1, . . . ,µl}, {λ1,−λ1, . . . ,±λk,−λk},

where µi + µ j 6= 0 for i, j = 1, . . . , l. The corresponding eigenspaces will be denoted

respectively by

Ker(A), UA,1, . . . ,UA,l, W+
A,1,W

−
A,1, . . . ,W

+
A,k,W

−
A,k. (2.3)

It is easy to see that Ker(A) is B invariant, that is

B(Ker(A))⊂ Ker(A). (2.4)

For if AX = 0, then

A(BX) =−BAX =−B(AX) = 0. (2.5)
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From (2.2) it readily follows that B restricted to the UA,i is identically zero for

i = 1, . . . , l. Furthermore

B(W+
A,i)⊂W−A,i, B(W−A,i)⊂W+

A,i,

since if AX = λX , then A(BX) =−BAX =−λ(BX).

If the dimensions of the subspaces W±A,i are not equal, that is dim(W+
A,i) 6= dim(W−A,i),

then the restriction of B to WA,i = W+
A,i⊕W−A,i is necessarily singular. Because if B

were nonsingular on either W±A,i, it would map a linearly independent set to a linearly

independent set. But this is impossible if the dimensions are different. However, the

restriction of B can be singular even if the dimensions are equal. On the other hand if

B is nonsingular, then necessarily

dim(W+
A,i) = dim(W−A,i),

since bases of W+
A,i are mapped to bases of W−A,i and vice versa. Thus for each WA,i we

have a direct sum decomposition

WA,i = (Ker(B)∩W+
A,i)⊕ (Ker(B)∩W−A,i)⊕W̃+

A,i⊕W̃−A,i, (2.6)

where the W̃±A,i are subspaces of equal dimension on which B is nonsingular. It follows

that the restrictions of A and B to WA,i have the following block forms

A|WA,i =


λi 0 0 0
0 −λi 0 0
0 0 λi 0
0 0 0 −λi

 , B|WA,i =


0 0 0 0
0 0 0 0
0 0 0 B1
0 0 B2 0

 ,

where the first two diagonal blocks may have different dimensions but the last two

diagonal blocks in the restriction of A and the submatrices B1 and B2 in the restriction

of B are square matrices of the same dimension.

Incorporating this decomposition into (2.6), we can drop the tilde and we have a

direct sum decomposition of V adopted to the pair of anti-commuting diagonalizable

operators A and B as follows

V = (Ker(A)∩Ker(B))⊕UA⊕UB⊕W+
A,1⊕W−A,1⊕·· ·⊕W+

A,k⊕W−A,k, (2.7)

where B|UA = 0, A|UB = 0, and both A and B are nonsingular on the W±A,i, and

dim(W+
A,i) = dim(W−A,i) for i = 1, . . . ,k.

Next we will determine the forms of B1 and B2. To simplify the notation now let us
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fix i and let W = WA,i = W+⊕W−. Recall that A and B are both nonsingular on the

subspace W and diagonalize A and B2 simultaneously as in Remark 1.3.3. We choose

a basis {X1, . . . ,Xm} for W+, the +λ eigenspace of A. Thus

AXi = λXi, B2Xi = ηiXi, i = 1 . . . ,m (2.8)

and we define

Yi = BXi. (2.9)

Then

AYi = A(BXi) =−B(AXi) =−λ(BXi) =−λYi. (2.10)

Thus Yi belongs to the −λ eigenspace of A. Furthermore

BYi = B2Xi = ηiXi. (2.11)

It follows that with respect to the basis {X1, . . . ,Xm,Y1, . . . ,Ym}, the matrices of A, B

and B2 are as below.

A|WA,i =
[

λI 0
0 −λI

]
, B|WA,i =

[
0 D
I 0

]
, B2|WA,i =

[
D 0
0 D

]
,

where all submatrices are square, I is the identity matrix and D is a diagonal matrix.

If B2 has q distinct eigenvalues d1, . . . ,dq with eigenspaces of dimensions mi, we can

rearrange the basis so that

A|WA,i =


λ 0 · · · 0 0
0 −λ · · · 0 0
...

... . . . ...
...

0 0 · · · λ 0
0 0 · · · 0 −λ

 ,

B|WA,i =


0 d1 · · · 0 0
I 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 dq
0 0 · · · I 0

 , B2|WA,i =


d1 0 · · · 0 0
0 d1 · · · 0 0
...

... . . . ...
...

0 0 · · · dq 0
0 0 · · · 0 dq

 ,

where λ and di’s denote constant matrices of approporiate size. Hence W has a direct

sum decomposition

W = W1⊕·· ·⊕Wq (2.12)
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such that A2 and B2 restricted to each summand are constant matrices.

Recall that in the discussion above we have used W to denote an eigenspace of A on

which B was nonsingular.Repeating this, for each eigenspace of A, we have a direct

sum decomposition of V such that, except for their common kernel, on a summand

either A of B is nonzero or they are both nonsingular and have constant squares.

Relabeling these subspaces, we have now

V = (Ker(A)∩Ker(B))⊕UA⊕UB⊕W1⊕·· ·⊕Ws (2.13)

where on each Wi A and B are anti-commuting diagonalizable matrices whose squares

are constants. But this is exactly a representation of a 2-dimensional Clifford algebra.

We summarize these results in the following theorem.

Theorem 2.1.1. Let A and B be anti-commuting non-singular diagonalizable

operators on a finite dimensional vector space V . Then there is a direct sum

decomposition of V on which both A2 and B2 are nonzero constant matrices and on

each summand they form a representation of a 2-dimensional Clifford algebra.

In a family of N anti-commuting diagonalizable operators, once we fix an element A

and define the subspaces as in (2.5), on Ker(A) we have at family of at most (N− 1)

anti-commuting diagonalizable operators and the rest of the family is zero on the the

direct sum of the UA,i’s. It is thus only on the direct sum of the W±A,i’s that we may have

nontrivially a family of N anti-commuting operators.

We tried to proceed by refining this splitting by adding additional members of the

family, hoping to prove that given an N-element anti-commuting family, V has a direct

sum decomposition such that on each summand either we have an (N− k)-family of

anti-commuting matrices, or a representation of an N-dimensional Clifford algebra,

but this approach became cumbersome and we preferred the proof given in the next

sections [6].

12



2.2. Families of Anti-Commuting Diagonalizable Linear Operators

In the previous section we examined the structure of a two-element family of

anti-commuting diagonalizable linear operators and before dealing with the general

case, we will go on with the three-element family in this section [6].

Let A be a family of three anti-commuting diagonalizable linear operators on an

n-dimensional vector space V and A,B,C ∈ A . At that point, instead of adding an

operator to the previous case of two-element families, we choose to continue with a

decomposition by firstly separating the common kernels and then we aim to observe a

similar structure to the previous case.

We claim the following direct sum decomposition of V exists for the case of a

three-element family:

V = (Ker(A)∩Ker(B)∩Ker(C))⊕UA⊕UB⊕UC⊕W1⊕·· ·⊕Wt (2.14)

where B|UA
= 0, C|UA

= 0, A|UB
= 0, C|UB

= 0, A|UC
= 0, B|UC

= 0 and on each Wi A,

B and C are anti-commuting nonsingular diagonalizable operators whose squares are

constant. Here, we have a family of at most two diagonalizable operators on the direct

sums of UA, UB and UC and we name the direct sum where we have a family of three

diagonalizable operators as W .

Since the triples (A,B2,C2) and (A2,B2,C2) commute, they are simultaneously

diagonalizable. In section 3.1 we proved that we can choose a basis with respect

to which A and B are anti-commuting diagonalizable matrices whose squares are

constants on each W̃j for W = W̃1⊕·· ·⊕W̃s. Also, this direct sum is invariant under

the whole family. It is easy to see that W̃j is C invariant, that is

CW̃j ⊂ W̃j. (2.15)

For if AX± =±λX±, then

A(CX±) =−CAX± =−C(AX±) = C(∓λX±), (2.16)

where X± are eigenvectors corresponding to eigenvalues ±λ. Hence CW̃j ⊂ W̃j. Next,

we will show that there exists t for which

W = W1⊕·· ·⊕Wt , t ≥ s (2.17)
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On each W̃j any C anti-commuting with A and B has the form

C|W̃ j
=
[

0 −d jc
c 0

]
, C2|W̃ j

=
[
−d jc2 0

0 −d jc2

]
,

where d j is an eigenvalue of B and c2 is diagonal. If C2 has r distinct eigenvalues

e1, . . . ,er with eigenspaces of dimensions n j, we can rearrange the basis so that

A|W̃ j
=


λ 0 · · · 0 0
0 −λ · · · 0 0
...

... . . . ...
...

0 0 · · · λ 0
0 0 · · · 0 −λ

 , B|W̃ j
=


0 d j · · · 0 0
I 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 d j
0 0 · · · I 0

 ,

B2|W̃ j
=


d j 0 · · · 0 0
0 d j · · · 0 0
...

... . . . ...
...

0 0 · · · d j 0
0 0 · · · 0 d j

 , C2|W̃ j
=


e1 0 · · · 0 0
0 e2 · · · 0 0
...

... . . . ...
...

0 0 · · · er−1 0
0 0 · · · 0 er

 ,

where W̃j = W1⊕·· ·⊕Wr. This means that W has a direct sum decomposition

W = W1⊕·· ·⊕Wt , t ≥ s

such that on each Wi A2,B2 and C2 are constant and the direct sum (2.17) is verified.

Let A = {Ai}i=1...N be a family of N anti-commuting diagonalizable linear operators

on an n-dimensional vector space V . Using remark 1.3.3, we diagonalize the squared

family simultaneously, and rearranging the basis vectors we construct subspaces that

are common kernels of N, N−1, N−2 etc. of the A2
i ’s. Since Ai’s and A2

i ’s have the

same kernel it follows that V has a decomposition into subspaces on which we have

nonsingular families of anti-commuting operators.

Then, diagonalizing the squared family simultaneously and rearranging the

eigenvectors, we have subspaces on which all squared members are constant and

nonzero. But an anti-commuting family whose squares are constant is just a

representation of some Clifford algebra. Hence we have the following theorem which

is the generalized form of Theorem 2.1.1.

Theorem 2.2.1. Let {Ai}i=1...N be a family of finitely many anti-commuting

non-singular diagonalizable operators on a finite dimensional vector space V . Then
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there is a direct sum decomposition of V such that on each summand all matrices of

the operators A2
1, . . . ,A

2
N are nonzero constants and the family is a representation of an

N-dimensional Clifford algebra.

In fact we can prove a stronger result, which is related to the representations of

degenerate Clifford algebras. We will give this result in the following section.

2.3. Families of Anti-Commuting Square Diagonalizable Linear Operators

In previous sections, we examined the structure of a family of anti-commuting

diagonalizable linear operators, where the direct sum decomposition of the underlying

vector space was based on the simultaneous diagonalizability of the families of the

squared operators. Thus, in this section we consider an anti-commuting family A of

operators whose squares are diagonalizable.

This generalization arises in the following two contexts:

Firstly, the discussion on diagonalizability usually considered as diagonalizability over

complex numbers. If we are interested in the diagonalizability over the real numbers,

any linear operator whose square is proportional to negative of identity operator is

not diagonalizable over R. Thus if we are interested in diagonalizability over the real

numbers, we should allow families that involve elements which are not diagonalizable

but whose squares are diagonalizable.

Secondly, non-zero operators whose squares are zero are used in a number of places.

For example, “Grassmann numbers” used in many physical theories form an algebra

where the squares of the elements are zero. Also, degenerate Clifford algebras contain

elements whose squares are zero [7].

Most of our proof on simultaneous block diagonalization is based on the

diagonalizability of the squared family. By the remarks above, it looks like that a

square diagonalizable family of anti-commuting linear operators is more basic than a

diagonalizable family [6].

When we use Proposition 1.2.6 and review Theorem 2.2.1, we can omit the condition

for the family {Ai}i=1...N to be necessarily diagonalizable. Instead we assume that

the family {A2
i }i=1...N is diagonalizable. Then, since operators A2

i form a commuting
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family, they are simultaneously diagonalizable and we can split V into a direct sum of

subspaces on which each A2
i is equal to a constant, which may be zero. By definition

of degenerate Clifford algebras, Corollary 2.3.1 is obvious.

Corollary 2.3.1. Let {Ai}i=1...N be an anti-commuting family of finitely many linear

operators satisfying {A2
i }i=1...N is diagonalizable. Then there is a direct sum

decomposition of V such that on each summand all matrices of the operators A2
1, . . . ,A

2
N

are constant, including zero. This is just the representation of a degenerate Clifford

algebra.
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3. CANONICAL FORMS OF REPRESENTATIONS OF

CLIFFORD ALGEBRAS

We have seen that an anti-commuting family of diagonalizable linear operators can be

simultaneously block diagonalized and on each invariant subspace the family reduces

to a representation of some Clifford algebra, up to multiplicative constants. If the

family is diagonalizable over the complex numbers and we search for possibly complex

canonical forms, we can use more or less straightforward construction of complex

representations of Clifford algebras, discussed in Section 3.1. However, if the square

of some of the elements are negative, then over the real numbers the family is not

diagonalizable, but it is square diagonalizable. But the discussion of the previous

section shows that the reduction to the block diagonal form still works and on each

invariant subspace we have a representation of some non-degenerate Clifford algebra.

These constructions discussed in Section 3.2, are nontrivial for Clifford algebras which

contain no generator with a positive square.

3.1. Canonical Forms over Complex Numbers

When we allow canonical forms over the complex numbers, we can always assume that

there are two anti-commuting operators A and B such that they can be simultaneously

put to a canonical form. Then the rest of the family which commutes with both of these

two has to be of a specific form expressed in terms of matrices in the half dimension.

In this construction, since we can use complex numbers, whether the squares of the

elements are positive or not is irrelevant [6].

Lemma 3.1.1. Let A and B be trace zero anti-commuting linear operators on a

2n-dimensional vector space V , with minimal polynomials A2 +λ2I = 0 and B2 +µ2I =

0 where λ and µ are real or pure imaginary constants and I is the identity. Then there
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is a basis for V with respect to which

A = λ

[
0 I
−I 0

]
, B = µ

[
0 I
I 0

]
, (3.1)

where I denotes n×n identity matrices.

Proof. Since A and B are trace free, the ±λ eigenspaces of A are n-dimensional. Let

{X1, . . . ,Xn} be a basis for +λ eigenspace and let Yα =−(1/µ−1)BXα. Then it can be

seen that

AYα =−λYα (3.2)

and

BXα =−µYα, BYα = µXα. (3.3)

Then passing to the basis Zα = Xα + iYα and Tα = Xα − iYα we can complete the

proof.

Then, if we have a family of N operators, once we put any two of them into the

canonicals forms above, the requirement that the remaining anti-commute with these

two determines the rest as below.

Lemma 3.1.2. Let {Aα}α=1,...,N be a set of trace zero anti-commuting linear operators

on a 2n-dimensional vector space V with minimal polynomials A2
α + λ2

αI = 0, where

the λα’s are real or pure imaginary constants and I is the identity. Then there is an

orthonormal basis of V with respect to which

A1 = λ1

[
0 I
−I 0

]
, A2 = λ2

[
0 I
I 0

]
, Aα =

[
aα 0

0 −aα

]
(3.4)

where the aα are n×n matrices with minimal polynomials

a2
α +λ

2
αI = 0. (3.5)

Proof. Since Aα are trace zero the λα eigenspaces are n−dimensional. Then one can

take A = i
[

1 0
0 −1

]
⊗ I. Let X1, ...,Xn be an orthonormal basis for the +i eigenspace of A,

i.e. AXi = iXi and define Yi = BXi. Going on computations AYi = A(BXi) =−B(AXi) =

−iBXi = −iYi and BYi = B2Xi = −Xi which gives us the desired canonical forms of B

and C.
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3.2. Canonical Forms over Real numbers

If the family consists of matrices whose squares are negative, then the constructions

above fail. We shall describe a procedure for the construction of canonical forms. The

list of Clifford algebras that can be represented at a given dimension are presented in

Table 3.1 adopted from [3].

Table 3.1: Representations of Clifford algebras on different dimensions

R R(2) R(4) R(8) R(16)

Cl(0,0) Cl(1,0) Cl(2,0) Cl(3,0) Cl(4,0) Cl(5,0) Cl(6,0) Cl(7,0) Cl(8,0)

R(1) C(1) H(1) H(1)⊕H(1) H(2) C(4) R(8) R(8)⊕R(8) R(16)

Cl(0,1) Cl(1,1) Cl(2,1) Cl(3,1) Cl(4,1) Cl(5,1) Cl(6,1) Cl(7,1) Cl(8,1)

R(1)⊕R(1) R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16) R(16)⊕R(16)

Cl(0,2) Cl(1,2) Cl(2,2) Cl(3,2) Cl(4,2) Cl(5,2) Cl(6,2) Cl(7,2) Cl(8,2)

R(2) R(2)⊕R(2) R(4) C(4) H(4) H(4)⊕H(4) H(8) C(16) R(32)

Cl(0,3) Cl(1,3) Cl(2,3) Cl(3,3) Cl(4,3) Cl(5,3) Cl(6,3) Cl(7,3) Cl(8,3)

C(2) R(4) R(4)⊕R(4) R(8) C(8) H(8) H(8)⊕H(8) H(16) C(32)

Cl(0,4) Cl(1,4) Cl(2,4) Cl(3,4) Cl(4,4) Cl(5,4) Cl(6,4) Cl(7,4) Cl(8,4)

H(2) C(4) R(8) R(8)⊕R(8) R(16) C(16) H(16) H(16)⊕H(16) H(32)

Cl(0,5) Cl(1,5) Cl(2,5) Cl(3,5) Cl(4,5) Cl(5,5) Cl(6,5) Cl(7,5) Cl(8,5)

H(2)⊕H(2) H(4) C(8) R(16) R(16)⊕R(16) R(32) C(32) H(32) H(32)

Cl(0,6) Cl(1,6) Cl(2,6) Cl(3,6) Cl(4,6) Cl(5,6) Cl(6,6) Cl(7,6) Cl(8,6)

H(4) H(4)⊕H(4) H(8) C(16) R(32) R(32)⊕R(32) R(64) C(64) H(64)

Cl(0,7) Cl(1,7) Cl(2,7) Cl(3,7) Cl(4,7) Cl(5,7) Cl(6,7) Cl(7,7) Cl(8,7)

C(8) H(8) H(8)⊕H(8) H(16) C(32) R(64) R(64)⊕R(64) R(128) C(128)

Cl(0,8) Cl(1,8) Cl(2,8) Cl(3,8) Cl(4,8) Cl(5,8) Cl(6,8) Cl(7,8) Cl(8,8)

R(16) C(16) H(16) H(16)⊕H(16) H(32) C(64) R(128) R(128)⊕R(128) R(256)

In all constructions we shall need tensor products with the following matrices

σ =
[

1 0
0 −1

]
, τ =

[
0 1
1 0

]
, ε =

[
0 1
−1 0

]
. (3.6)

This construction is not unique, but our algorithm gives a precise way of construction

for each case. First we note that if the family contains at least one element whose
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square is negative and another element whose square is positive, then Lemma 3.1.1 is

valid for real numbers λ and µ. This is described as Case 1.

Case 1. Representations of Cl(r,s) with r ≥ 1, s≥ 1: Given A and B with A2 +λ2 = 0

and B2−µ2 = 0, By Lemma 3.1.1 ,we can choose a basis such that

A = λ

[
0 1
−1 0

]
, B = µ

[
0 1
1 0

]
, (3.7)

where 1 denotes the identity matrix in the half dimension. Then any other member of

the family is of the form

Ca = µ
[

ca 0
0 −ca

]
, (3.8)

where c2
a = ±γ2

a, according as the square of Ca is positive or negative. Thus the

representations of Cl(r,s) on R2N are obtained from the representations of Cl(r−1,s−

1) on RN by tensoring with the matrix σ =
[

1 0
0 −1

]
. That is we move diagonally

backward on Table 1.

The construction above ends up either with Cl(r,0) or Cl(0,s). Note that Cl(0,1) is

just R, thus we may start with s≥ 2.

Case 2. Representations of Cl(0,s) for s≥ 2: In this case, we can use the intermediate

steps in Lemma 5.1 and choose a basis such that

B1 = λ

[
1 0
0 −1

]
, B2 = µ

[
0 1
1 0

]
. (3.9)

Then any other member of the family Ba with B2
a = λ2

a, is of the form

Ba = λa

[
0 ba

−ba 0

]
, (3.10)

but now, b2
a =−λ2

a, that is they form a representation of the Clifford algebra Cl(s−2,0)

on the half dimension.

The problem is thus reduced to the construction of simultaneous canonical forms for

the real representations of Cl(r,0). These constructions differ for r = 8d, r = 8d + 1,

r = 8d + 3 and r = 8d + 7. We start with r = 1, r = 3 and r = 7 and then give the

algorithm for the construction in general.
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Case 3a. Representation of Cl(1,0) on R2: This is a complex representation on R2,

that is if

A = µ
[

0 1
−1 0

]
(3.11)

then the complex structure J is equal to A since it commutes with itself. We note that

there are exactly two matrices with positive squares that commute with A. These are τ

and σ.

τ = λ

[
0 1
1 0

]
, σ = µ

[
1 0
0 −1

]
. (3.12)

Case 3b. Representations of Cl(2,0) and Cl(3,0) on R4: Recall that Cl(2,0) and

Cl(3,0) are isomorphic respectively to H and H ⊕H hence their representations are

quaternionic. Let A1, A2 and A3 be as below.

A1 =


0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 −1 0

 , A2 =


0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0

 ,

A3 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

We will show that the representations of the generators of Cl(2,0) and Cl(3,0) will be

put respectively to the forms {A1,A2} and {A1,A2,A3} simultaneously. For this, let X

be any nonzero vector in R4, and choose a basis such that

X1 = X , X2 =−A1X , X3 =−A2X , X4 =−A1A2X . (3.13)

It can be checked that with respect to this basis, A1 and A2 have the forms above, hence

they can be put to the canonical forms above simultaneously. Then it can be checked

that the product A1A2 anti-commutes with both A−1 and A2, hence we can choose the

representation of Cl(3,0) as {A1,A2,A3}.

Note that

A1 = σ⊗ ε, A2 = ε⊗1, A3 = τ⊗ ε. (3.14)

The quaternionic structure is given by the following three matrices which commute
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Table 3.2: Action of generators of Cl(7,0) on basis vectors

X A1X A2X A3X A4X A5X A6X A7X

A1 A1X −X −A3X A2X −A5X A4X A7X −A6X

A2 A2X A3X −X −A1X −A6X −A7X A4X A5X

A3 A3X −A2X A1X −X −A7X A6X −A5X A4X

A4 A4X A5X A6X A7X −X −A1X −A2X −A3X

A5 A5X −A4X A7X −A6X A1X −X A3X −A2X

A6 A6X −A7X −A4X A5X A2X −A3X −X A1X

A7 A7X A6X −A5X −A4X A3X A2X −A1X −X

with the Ai’s.

J1 = 1⊗ ε, J2 = ε⊗ τ, J3 = ε⊗σ (3.15)

Case 3c. Representations of Cl(4,0), Cl(5,0), Cl(6,0) and Cl(7,0) on R8: We

shall describe how to construct canonical forms for representations of Cl(7,0). This

construction is based on Proposition 4.7, in [3], quoted below.

Proposition 1. Let Ai, i = 1, . . .7 be an anti-commuting set of matrices with squares

−1 satisfying A1 . . .A7 = 1. Then, the subgroup generated by the matrices

M1 = A1A2A3, M2 = A1A4A5, M3 = A2A4A6 (3.16)

is an abelian subgroup and has exactly one eigenvector X with an eigenvalue 1.

Then, starting with this specific X , we choose the basis

{X ,A1X ,A2X ,A3X ,A4X ,A5X ,A6X ,A7X}. (3.17)

Note that for the representation of Cl(3,0), the product of 3 matrices was a scalar. In

this case, the product of triples of Ai’s are not scalars, but their action on this specific

X is a scalar. It follows that the action of the Ai’s on these basis elements can be given

as in Table 3.2.

One can check that the corresponding matrices are represented as tensor products as

follows.

22



A1 =−σ⊗ (σε) =−σ⊗A1,

A2 =−σ⊗ (ε⊗1) =−σ⊗A2,

A3 =−σ⊗ (τ⊗ ε) =−σ⊗A3,

A4 =− ε⊗ (1⊗1) =−ε⊗1,

A5 =− τ⊗ (1⊗ ε) =−τ⊗ J1,

A6 =− τ⊗ (ε⊗σ) =−τ⊗ J3,

A7 =− τ⊗ (ε⊗ τ) =−τ⊗ J2.

Case 3d. Representation of CL(8,0) on R16: The construction of these representations

is straightforward. Represent on of the elements by A1 = ε⊗1 and the remaining 7 by

σ⊗Ai where Ai’s are as above.

For the general case, one can use Lemma 4.11 and the Table 2 in [3]
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4. CONCLUSIONS

In this thesis, families of anti-commuting diagonalizable linear operators on

a finite dimensional vector space are examined. A well-known property of

commuting diagonalizable linear operators on finite dimensional vector spaces,

which is simultaneous diagonalization, inspired us for analyzing the structure

of anti-commuting diagonalizable linear operators. It is also well known that

real or complex representations of Clifford algebras are typical anti-commuting

diagonalizable (over C) families.

Later on, we proved that if A is a family of of anti-commuting diagonalizable linear

operators on a finite dimensional vector V , then V has an A-invariant direct sum

decomposition into subspaces such that the restriction of the family to each summand

either consists of a single nonzero operator or it is a representation of some Clifford

algebra. Indeed we have shown that the diagonalizability condition can be replaced by

the requirement that the square of the family is diagonalizable.

Lastly, we discussed classifications of real and complex representations of Clifford

algebras which can be used to derive a complete characterization of families of

anti-commuting diagonalizable operators.
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