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NOMENCLATURES 

,i ia b    : Orthogonal unit base vector, 1, 2,3i = . 
/ /, , , (B A A B

ij i iC C C C )θ  : Direction cosine matrix, , 1, 2,i j 3= . 
3C    : Direction cosine vector. 

iθ    : Attitude angles for 1, 2,3i = . 
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SUMMARY 

Control problem of a spacecraft is an important topic in automatic control 
engineering. Many studies about attitude stabilization of satellite applications have 
been proposed. In this thesis, a three axis stabilized spacecraft –a communication 
satellite Intelsat V– is selected to investigate attitude dynamics, and to design linear 
and variable structure controllers. Spacecraft kinematics and dynamics are studied to 
recognize how the system operates in circular orbit for attitude motions. The 
satellite’s dynamic model is obtained via linearized rigid spacecraft attitude 
dynamics, gravity gradient torque, dynamic effects of flexible solar panels, a 
sinusoidal effect as external and internal disturbances. The designed passive pole 
placed linear controller, which models reaction wheels, stabilizes the satellite well 
with longer settling time. Additionally, active pole placed linear controller, which 
models thrust system, stabilizes the satellite precisely with short settling time. 
However, it operates continuously that is undesirable for the attitude control system 
due to the limited amount of propellant of the spacecraft. The combined linear 
controller model of flexible spacecraft is obtained with passive and active 
controllers, linearized rigid spacecraft attitude dynamics, a sinusoidal effect as a 
disturbance which consists of flexible solar panels vibration effects, gravity gradient 
torque, sun pressure and other unmodeled external or internal disturbances. On the 
other hand, both active and passive sliding mode controllers constitute combined 
sliding mode controller which stabilizes the system faster than the linear controllers 
according to selected sliding manifold which needs to be designed. The passive 
sliding mode controller supplies inner torques with continuous control signal 
produced by equivalent control term. Beside, the thrust system is used seldom and 
only a few on-off logic operations are done for precise stabilization of the designed 
model of the spacecraft. Nonlinear design for thrust system is sufficient model for 
on-off logic and it depends on the switching functions and selected sliding boundary 
layer. Although, this is a simple design described via a few blocks, it is a 
complicated mathematical model to be studied with. Nonlinear controller model 
includes passive and active controllers with the dynamic model of the satellite. The 
time responses are obtained from Matlab-Simulink block diagrams of the designed 
satellite attitude dynamic model, linear and sliding mode controllers which are given 
to illustrate the considered procedure. 
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ÖZET 

Uzay aracının kontrol problemi otomatik kontrol mühendisliğinin önemli bir 
başlığıdır. Uzay aracı uygulamalarının yönelme stabilizasyonu hakkında birçok 
çalışma sunulmuştur. Bu tezde üç eksende dengelenmiş bir uzay aracı olan 
haberleşme uydusu Intelsat V’in  yönelme dinamiklerini araştırmak, lineer ve kayma 
kipli köntrölcüler tasarlamak için seçilmiştir. Bu amaç ile uzay aracı kinematikleri ve 
dinamikleri sistemin dairesel yörüngedeki yönelme hareketlerini anlamak için 
çalışıldı. Uydunun dinamik modeli lineerleştirilmiş rijit uzay aracı yönelme 
dinamikleri, eğimin yerçekimi torku, güneş panellerin dinamik etkileri, sinüsoidal 
etki olarak iç ve dış bozucular ile elde edildi. Tasarlanan pasif kutup atanmış lineer 
kontrolcü, ki hareket tekerciklerini modeller, uyduyu uzun oturma süresi ile iyi denge 
konumuna getirmektedir. Ek olarak, aktif kutup atanmış doğrusal kontrolcü, ki itki 
sistemini modeller, uyduyu kısa oturma süresiyle tam olarak denge konumuna 
getirmektedir. Ancak, sürekli çalışması uzay aracının sınırlı yakıt hacminden dolayı 
yönelme kontrol sistemi için arzu edilmemektedir. Esnek uzay aracının birleştirilmiş 
lineer kontrolcü modeli pasif ve aktif kontrolcüler, doğrusallaştırılmış rijit uzay aracı 
yönelme dinamikleri, bozucu olarak sinüsoidal etkiyi oluşturan esnek panellerin 
salınım etkileri, eğimin yerçekimi torku, güneş basıncı ve diğer modellenmemiş dış 
ve iç bozucular ile elde edildi. Diğer yandan, her iki pasif ve aktif kayma kipli 
kontrolcüler birleştirilmiş kayma kipli kontrolcü oluştururlar ki tasarım gerektiren 
kayma manifolduna nazaran sistemi doğrusal kontrolcülerden süratli dengeler. Pasif 
kayma kipli kontrolcü iç torkları eşdeğer kontrol teriminin oluşturduğu sürekli 
kontrol sinyal ile sağlamaktadır. Yanısıra, itki sistemi nadiren kullanılır ve uzay 
aracının tasarlanmış modelinin kesin denge konumu için sadece birkaç açma-kapama 
mantığı işlemleri yapılmaktadır. İtki sisteminin doğrusal olmayan tasarımı açma-
kapama mantığı için yeterli bir modeldir ve anahtarlama fonskiyonu ile seçilen 
kayma sınır tabakasına bağlıdır. Birkaç blok ile ifade edilen  basit bir tasarım 
olmasına rağmen çalışılması karışık bir matematiksel modeldir. Doğrusal olmayan 
kontrol modeli pasif ve aktif kontrolcüler ile uydunun dinamik modelinin içerir. 
Tasarlanmış uydunun yönelme dinamiği modelinin, lineer ve kayma kipli 
kontrolcülerin Matlab-Simulink blok diagramlarından elde edilen zaman yanıtları 
gözönünde tutulan prosedürü örneklemek için verilmiştir. 
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1.  INTRODUCTION 

Control problem of a spacecraft is an important topic in automatic control 
engineering. A body orbiting the Earth in geosynchronous orbit has instabilities in 
attitude dynamics and disturbances caused by the Earth, the Moon, the Sun and other 
bodies in space. These effects force the body to lose initial orbit and attitude. Here 
the control system takes important part of spacecraft missions where it keeps the 
body in designed orbit and desired attitude. The control system consists of control 
elements and control algorithms. The control elements for a spacecraft in a 
geosynchronous orbit are thrusters, reaction or momentum wheels. The control 
algorithms are logics developed for the mission by control engineer. 

Thrusters and reaction wheels are commonly used spacecraft attitude control devices 
for geosynchronous orbits. In this thesis, thrusters are controlled via active control 
algorithms whereas reaction wheels are controlled via passive control algorithms. 
Thrusters or active controllers are used for rapid large attitude angles motions. On 
the other hand, reaction wheels or passive controllers are used for small attitude 
angles motions for precise determination. 

In this thesis two studies of control algorithms for the communication satellite 
Intelsat V are given. First, linear control method with pole placement is used to 
design both active and passive controllers. Second, sliding mode control method has 
designed active and passive controllers for better results. The performances and 
disadvantages are discussed in Section 5 and simulated in Appendices.  

The linear control procedure in the thesis is designed in two steps according to 
modern control theory. First, linearization of the system is given and then linear 
model is obtained. Next, controls and outputs for the linear system are given. Second 
step includes pole placement method, which stabilizes the system with desirable 
poles chosen by designer. In this design, control function is given as a pole placed 
matrix, thus, less calculations are required. The designed linear controllers for 
passive and active controls are in same logic and it is simple combination of them. 
The linear controllers have continuous control signal, but for active controllers that 
continuous control command may not be wanted since the operations of thrusters as 
on-off logic. 
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A study about linear attitude stabilization has been proposed by Franklin et al. 
(2002). A linear attitude control model of a communication spacecraft and a state-
variable example are given. According to that example, a similar linear model and 
control algorithms for yaw, roll and pitch axes are designed in the thesis. 

The sliding mode theory has an attention in the aerospace field. The technique 
permits the use of a lower order systems model for generating control commands. On 
the other hand, the system is robust with respect to the external disturbances and 
includes unmodelled dynamics, as well. 

The sliding mode control procedure in this thesis is designed in three steps. First, 
switching surfaces with desired properties are selected according to the spacecraft 
attitude dynamics. Next, control laws that will guarantee the existence of sliding 
mode on the switching surface for both active and passive controllers are designed. 
For passive controller, sliding mode control law is designed as equivalent control 
method to avoid from chattering problem and to generate continuous control 
command. On the other hand, for active controller, sliding mode control law is 
selected with some restrictions on thrusters for limited fuel usage. Finally, it is 
obtained that state trajectories can be forced toward the sliding manifold from any 
initial state. The above procedure is applied both to large and small attitude angles 
orientations for a spacecraft. For the active control algorithms chattering is an 
undesirable problem. Although a dead-band is included into the system depending on 
the switching surfaces and thrust magnitude, it may occur along the boundary layer 
bounded with the dead-band function. Avoiding chattering problem and keeping 
advantages of sliding mode, for large attitude angles orientations, the control law 
scheme firstly applies some pulses via thrusters until the state trajectories reach the 
sliding boundary layer, then reaction wheels that are used as a primary control 
elements, tune the system for fine attitude stabilization where the system is forced to 
reach the sliding manifold. 

A similar design for variable structure control topic was done by Vadali (1986) with 
quaternion representation for optimal sliding mode. Automatic controller for active 
nutation damping in momentum biased stabilized spacecraft is introduced by Sira-
Ramirez and Dwyer (1987), where robust feedback stabilization of roll and yaw 
angular dynamics are achieved successfully with prescribed qualitative 
characteristics for a spinning satellite. A maneuvering of a flexible spinning 
spacecraft is treated with variable structure control by Öz (1993) where system is 
stabilized perfectly in 100 seconds. Slotine and Li (1991) introduced boundary layer 
for sliding mode controllers. Also, some simple spacecraft thrust control algorithms 
were given as applied nonlinear control examples. 
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There are many nonlinear examples of controllers design for spacecrafts, where some 
of them are cited as follow. Somov et.al. (2004) has proposed a controller design for 
nonlinear model of a spacecraft with weak inner torques produced via reaction 
wheels which stabilize the system in 20 minutes. Yoon and Tsiotras (2002) have 
developed an algorithm for controlling the spacecraft attitudes in orbit while 
simultaneously tracking a desired power profile using a cluster of variable-speed 
single gimbaled control moment gyroscope which stabilizes the small spacecraft in 
10 minutes. Zhang and Li (2004) proposed a new Lyapunov based controller which 
stabilizes the system nearly in one hour. 

 
Figure 1.1 Communication satellite Intelsat V. 
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Designed nonlinear controllers stabilize the systems well; however, their settling 
times are very high. The designed sliding mode controllers studied in this thesis 
stabilize the system in 100 seconds maximum with passive control algorithms, and 
40 seconds maximum with combined control algorithms. 

The variable structure controller design procedures such as equivalent control term 
and modeling of second order systems and general form of sliding mode are studied 
by Utkin (1993), Utkin (1992), Hung (1993), Slotine and Li (1991). 

1.1 Spacecraft Specification 

The spacecraft in this thesis is chosen to be a communication satellite Intelsat V as 
shown in Figure 1.1. Three-axis stabilization has been employed for many 
geosynchronous communication satellites. The bias momentum provides gyroscopic 
stiffness to the environmental disturbances and primarily to the solar radiation 
pressure torque.  

1.2 Preliminary Design of Spacecraft 

Figure 1.2 shows an attitude control system configuration that consists of one 
reaction/momentum wheel at pitch axis and two reaction wheels on yaw and roll 
axes, Earth sensor that measures pitch and roll attitude references and thrusters that 
provide wheel momentum desaturation torques. The satellite also includes star 
tracker for fine attitude determination, optic gyroscopes that measures attitude angle 
rates and attitude errors, and sun sensor for solar array pointing operations.  

Table 1.1 Intelsat V technical specifications [1] 

Principle moments of inertias, I1, I2, I3 ………......
Main body dimensions, x-y-z………..………....…
Solar arrays………………………………..…..….
Max. torques supplied via R.W………..……........
Bias momentum…………………………..………
Liquid bi-propellant thrusters……………..……...
Array power………………………………..…..…

3026, 440, 3164 kg.m2 

1.5 x 1.7 x 2.2 m 
20 m (tip-to-tip) 
0.10 Nm 
91.4 Nms 
N2O4/MMH 
1.5 kW 

In Figure 1.2, the direction 1, yaw, is toward to the Earth; direction 2, pitch, is 
normal to the orbit plane and direction 3, roll, is nominally in flight direction. Roll, 
yaw and pitch control axes are coincided with the principle axes of the spacecraft. 

The increased demand of electrical power for communications and/or direct TV 
broadcasting leads to large flexible solar panel arrays for three axis stabilized 
spacecraft as shown in Figure 1.3. Consequently, the structural flexibility of the solar 
arrays have been one of the primary topics in the design of attitude control systems 
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for a certain class of the three axis stabilized spacecraft. For most cases, the 
structural flexibility of the solar arrays does not strongly interact with attitude control 

 
Figure 1.2 Attitude control elements configuration. 

systems. Thus, all of structural modes are often gain stabilized by the step rolloff at a 
frequency well below first structural frequency [1]. In this thesis, a case is selected 
which does not interact strongly with attitude control system but need to be 
considered in the control design procedure. For this case, flexibility of solar array is 
given in Table 1.2. 

Table 1.2 Single solar array flexibility model at 6 a.m. [1]. 

Coupling scalars, 2kg m⋅  Cantilever 
mode 
descriptiona

Cantilever 
frequency 
σ , rad/s Roll, 1δ  Pitch, 2δ  Yaw, 3δ  

OP-1 
OP-2 
OP-3 
OP-4 
T-1 
T-2 
T-3 
IP-1 
IP-2 

0.885 
6.852 

16.658 
33.326 
5.534 

17.668 
33.805 
1.112 

36.362 

0 
0 
0 
0 
0 
0 
0 

35.865 
2.768 

0 
0 
0 
0 

2.532 
0.864 
0.381 

0 
0 

35.372 
4.772 
2.347 
0.548 

0 
0 
0 
0 
0 

a : OP is out-of plane, T is torsion and IP is in-plane. 

Therefore a rigid body with flexible solar arrays may be modeled. In Section 2.4, the 
dynamic model of the solar arrays will be presented, and more realistic model of a 
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flexible spacecraft will be obtained. Only performances of sliding mode controllers 
with flexible solar panels model will be studied. In linear controllers design, 
flexibility will be assumed as a sinusoidal effect that consists of internal and external 
disturbances, as well. 

 
Figure 1.3 Intelsat V in orbit simulation. 
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2.  SATELLITE ATTITUDE DYNAMICS AND PROBLEM STATEMENT 

This section introduces a three-axis stabilized spacecraft motions in circular orbit to 
investigate attitude dynamics. The spacecraft attitude dynamics problem will firstly 
be introduced via rotational kinematics and then via rigid body dynamics. In 
kinematics, the orientation of a body is described as in rotational motion. This 
subject is somewhat mathematical in nature because it does not involve any forces 
associated with motion. The motion of a rigid body in space consists of the 
translational motion of its center of mass and the rotational motion of the body about 
its center of mass. Thus, a rigid body in space is a dynamic system with six degrees 
of freedom. However, this chapter is concerned with rotational motion of a rigid 
vehicle with or without the influence of gravitational and other external forces. 
Rotational kinematics include direction cosine matrix of the rigid spacecraft and 
gyrostat in circular orbit. In this subtopic rigid body dynamics, inertial matrix, 
Euler’s rotational equation of motion, rigid body and gyrostat in circular orbit will be 
given. Finally, more realistic option of flexibility of solar membranes will be studied.  

2.1 Rotational Kinematics 

Problem statement of spacecraft attitude dynamics and control includes rotational 
kinematics. Kinematics describe orientation of a rotating body. In this section, 
direction cosine matrix is described as rotation matrix between two directions. Also, 
the dynamic model called as kinematic differential equation for direction cosine is 
given. Finally, angular velocities are represented with dynamic model of direction 
cosine. 

2.1.1 Direction cosine matrix [1] 

Assume a reference frame A with a right-hand set of three orthogonal unit vectors 
{ } and a reference frame B with another right-hand set of three orthogonal 
unit vectors {

1 2 3, ,a a a

1 2 3, ,b b b } as shown in Figure 2.1. Basis vectors of B are expressed in 
terms of basis vectors of A as following: 

                (2.1.a) 1 11 1 12 2 13b C a C a C a= + + 3

3                (2.1.b) 2 21 1 22 2 23b C a C a C a= + +
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                (2.1.c) 3 31 1 32 2 33b C a C a C a= + + 3

where ij i jC b a≡ ⋅  is the cosine of the angle between ib  and , and is simply 
called the direction cosine. The matrix form of Equations (2.1) is as below: 

ja ijC

   
1 11 12 13 1 1

/
2 21 22 23 2

31 32 33 3 33

B A

b C C C a a
b C C C a C a

C C C a ab

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

2               (2.2) 

where  describes the orientation of B relative to A is called direction 
cosine matrix. It can be rewritten as 

/ [B A
ijC C≡ ]

]a

A

               (2.3) [
1 1 1 2 1 3 1

/
2 1 2 2 2 3 2 1 2 3

3 1 3 2 3 3 3

B A

b a b a b a b

C b a b a b a b a a

b a b a b a b

⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥

= ⋅ ⋅ ⋅ ≡ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

The direction cosine matrix  is also called the rotation matrix or coordinate 
transformation matrix to B from A which is shown as, . 

/B AC
/ :B AC B ←

 
Figure 2.1 Two reference frames A and B, and attitude angles  

The transformation matrix to A from B can be written as below, 

   
1 1 1 2 1 3 1

/
2 1 2 2 2 3 2 1 2 3

33 1 3 2 3 3

A B

a b a b a b a
C a b a b a b a b b b

aa b a b a b

⎡ ⎤⋅ ⋅ ⋅ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎡ ⎤= ⋅ ⋅ ⋅ ≡ ⋅⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⎣ ⎦⎢ ⎥⎣ ⎦

            (2.4) 
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The relation between  and  can be shown as follows: /B AC /A BC

                    (2.5) / 1 / /[ ] [ ]B A B A T A BC C C− = =

                   (2.6) / 1 / /A B A B T B A−[ ] [ ]C C C= =

In two sets of reference frames A and B consider an arbitrary vector  which can be 
expressed in terms of A and B as follows, 

H

   1 1 2 2 3 3 1 1 2 2 3 3H H a H a H a H b H b H b′ ′ ′= + + = + + .             (2.7) 

Thus, 

   ( )1 1 1 1 1 2 2 3 3H b H b H a H a H a′ ≡ ⋅ = ⋅ + +            (2.8.a) 

   ( )2 2 2 1 1 2 2 3 3H b H b H a H a H a′ ≡ ⋅ = ⋅ + +            (2.8.b) 

    ( )3 3 3 1 1 2 2 3 3H b H b H a H a H a′ ≡ ⋅ = ⋅ + +

1

2

3

H

H

           (2.8.c) 

The Equations (2.8) can be rewritten in matrix form as below, 

                (2.9) 
1 1 1 2 1 31 1

/
2 2 1 2 2 2 3 2

3 33 1 3 2 3 3

B A

b a b a b aH H
H b a b a b a H C H
H Hb a b a b a

⎡ ⎤⋅ ⋅ ⋅′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = ⋅ ⋅ ⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Therefore, the components of a vector H  are transformed to B from A using 
direction cosine matrix  defined in Equation (2.3) for the transformation of the 
orthogonal basis vectors. 

/B AC

Three elementary rotational revolution about first, second and third axes of the 
reference frame A are described by the following rotation matrices, respectively 

   1 1 1 1

1 1

1 0 0
( ) 0 cos sin

0 sin cos
C θ θ θ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

          (2.10.a) 

   
2 2

2 2

2 2

cos 0 sin
( ) 0 1 0

sin 0 cos
C

θ θ
θ

θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

          (2.10.b) 
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             (2.10.c) 
3 3

3 3 3 3

cos sin 0
( ) sin cos 0

0 0
C

θ θ
θ θ θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦1

where ( )i iC θ  implies the direction cosine matrix C  of an elementary rotation about 
the  axis of A with attitude angles thi iθ , 1, 2,3i =  as shown also in Figure 2.1. 

Equation (2.2) can be rewritten as 

                 (2.11) 
1 11

1
2 2

3 3 3

T

b ba
a C b C b
a b b

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2

1

2

3

b

b

The direction cosine matrix is a function of time because the two reference frames 
are rotating according to each other. Taking the time derivative of (2.11) in  and 
denoting it by over dot, results 

A

    

11 1

2 2 2

3 33

0
0
0

T T T T

bb b

C b C b C b C b

b bb

ω

ω

ω

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤×⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + = + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ×⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

2

 

                     (2.12) 
1 13 2

2 3 1

2 13 3

0
0

0

T T

b b

C b C b

b b

ω ω
ω ω
ω ω

⎡ ⎤ ⎡ ⎤−⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

where iω ,  are angular velocities of each axes and 1, 2,3i =

                  (2.13) 
11 12 13

21 22 23

31 32 33

C C C
C C C C

C C C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and defining a skew-symmetric matrix Ω  as 

   
3 2

3 1

2 1

0
0

0

ω ω
ω ω
ω ω

−⎡ ⎤
⎢ ⎥Ω = −⎢ ⎥
⎢ ⎥−⎣ ⎦

              (2.14) 

Therefore, 
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1

2

3

0
0
0

T T

b

C C b

b

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤− Ω =⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

              (2.15) 

from which it is obtained that 

                 (2.16) 0T TC C C C− Ω = +Ω =

which is called kinematic differential equation for the directional cosine matrix C . 
The angular velocities can be manipulated from Equation (2.16) as, 

              (2.17.a) 1 21 31 22 32 23 3C C C C C Cω = + + 3

13

3

             (2.17.b) 2 31 11 32 12 33C C C C C Cω = + +

             (2.17.c) 3 11 21 12 22 13 2C C C C C Cω = + +

2.2 Rigid-Body Dynamics 

The motion of a rigid body in space, which has six degrees of freedom, is defined 
with translation motion of the center of mass of the body and rotational motion of the 
body around the center of mass. This subchapter includes rotational motion of a rigid 
body in according to [1]. 

2.2.1 Inertia matrix 

Let ρ  (the position vector of small, infinitesimal, mass element ) be expressed as dm

   1 1 2 2 3 3b b bρ ρ ρ ρ= + +                (2.18) 

The inertia matrix I is defined as  

  
11 12 13

21 22 23

31 32 33

I I I
I I I I

I I I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

               (2.19) 

where ijI ( ) the moments of inertia are defined as i = j

  ( )2 2
11 2 3I dmρ ρ= +∫             (2.20.a) 

   ( )22 1 3
2 2I dmρ ρ= +∫             (2.20.b) 
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   ( )2 2
33 1 2I dmρ ρ= +∫             (2.20.c) 

and ijI ( ) the products of inertia are defined as i ≠ j

   12 21 1 2I I dρ ρ= = −∫ m             (2.20.d) 

   13 31 1 3I I dρ ρ= = −∫ m             (2.20.e) 

   23 32 2 3I I dρ ρ= = −∫ m              (2.20.f) 

2.2.2 Euler’s rotational equation of motion [1] 

Angular momentum equation of a rigid body about its center of mass is simply 
defined as 

  M H=                 (2.21) 

where  is the angular momentum vector of a rigid body about its mass center, H M  
is the external moment acting on the body about its mass center. Thus following 
equation can be written 

   B N

N B

dH dHH
dt dt

ω
⎧ ⎫ ⎧ ⎫

≡ = +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

H×              (2.22) 

where  

   B NH Iω=                 (2.23) 

Then, the rotational equation of motion of a rigid body about its center of mass is 
written as 

   B N

B

dHM H
dt

ω
⎧ ⎫

= +⎨ ⎬
⎩ ⎭

×               (2.24) 

For later use assume B Nω ω≡ , then Equation (2.24) becomes 

( ) ( )
B B B

d dI dM I I I
dt dt dt

ω Iω ω ω ω ω⎧ ⎫ ⎧ ⎫ ⎧ ⎫= ⋅ + × ⋅ = + + ×⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

ω⋅            (2.25) 

where { } 0
B

dI dt =  and { } { }B N
d dt d dtω ω ω= = . Thus, it results 

  M I Iω ω ω= ⋅ + × ⋅                (2.26) 
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which is called Euler’s rotational equation of motion. 

Let M  and ω  be expresses in terms of body-fixed basis vectors { }1 2 3, ,b b b  as 
follows: 

   1 1 2 2 3 3M M b M b M b= + +

b

              (2.27) 

   1 1 2 2 3 3b bω ω ω ω= + +

1

2

3

               (2.28) 

Substituting Equation (2.27), (2.28) and (2.19) into (2.26) results 

   
1 1 3 2

2 2 3 1

3 3 2 1

0
0

0

M H H
M H H
M H H

ω ω
ω ω
ω ω

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢= + −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎥
⎥⎦

            (2.29) 

Then, substituting Equation (2.23) into (2.29) results 

 
1 11 12 13 1 3 2 11 12 13 1

2 21 22 23 2 3 1 21 22 23 2

3 31 32 33 3 2 1 31 32 33 3

0
0

0

M I I I I I I
M I I I I I I
M I I I I I I

ω ω ω ω
ω ω ω ω
ω ω ω ω

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           (2.30) 

Thus, 

  I I Mω ω+Ω =                (2.31) 

where I  and  are defined with Equation (2.19) and (2.14), respectively; Ω

[ ]1 2 3
Tω ω ω ω=  and [ ]1 2 3

TM M M M= . 

For a principle-axis reference frame with a set of basis vector { }1 2 3, ,b b b , Euler’s 
rotational equation of motion of a rigid body becomes 

   1 1 2 3 2 3 1( )I I I Mω ω ω− − =            (2.32.a) 

   2 2 3 1 3 1 2( )I I I Mω ω ω− − =

( )

           (2.32.b) 

   3 3 1 2 1 2 3I I I Mω ωω− − =            (2.32.c) 

where 1 2 3, ,I I I  are the principle moments of inertia , iM M b= ⋅  and i bω ω= ⋅ . 
There are three coupled, nonlinear ordinary differential equations for state variables 

1 2 3, ,ω ω ω  of a rigid body. These dynamical equations and kinematical differential 
equations completely describe the rotation motions of a rigid body with three 
rotational degrees of freedom. 

 

 13



2.2.3 Rigid body in circular orbit 

Spacecraft dynamics and control solutions include gravitational forces and moments. 
Now, consider a rigid body in a circular orbit. A local vertical and local horizontal 
(LVLH) reference frame with its origin at the center of mass of the spacecraft had a 
set of unit vector { }1 2 3, ,a a a ; 1a  is along orbiting direction, also called as roll 
direction;  is perpendicular to the orbit plane, also called pitch direction; and 2a 3a  is 
towards the Earth, also called yaw direction as shown in Figure 2.2. The angular 
velocity of  with respect to  is as below: A N

   2
A N naω = −                 (2.33) 

where  is constant orbital rate. The angular velocity of the body-fixed reference 
frame 

n
B  with basis vectors { }1 2 3, ,b b b  is given by 

   2
B N B A A N B A naω ω ω ω= + = −              (2.34) 

where B Aω  is the angular velocity of B  relative A . 

 

Figure 2.2 Rigid body in circular orbit. 

The orientation of the body-fixed reference frame B  with the LVLH reference frame 
A  is in general described by the direction cosine matrix B AC C=  by Equation (2.2) 
or 

 14



   
1 11 11 12 13 11 21 31

2 21 22 23 2 12 22 32 2

3 31 32 33 13 23 333 3

T b ba C C C C C C
a C C C b C C C b
a C C C C C Cb b

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =

⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

          (2.35) 

where              (2.36.a) 1 11 1 21 2 31a C b C b C b= + + 3

3

3

             (2.36.b) 2 12 1 22 2 32a C b C b C b= + +

               (2.36.c) 3 13 1 23 2 33a C b C b C b= + +

The gravitational force acting on a small  element is given by [1]: dm

   
( )

3

c

c

3

R dmRdmdf
R R

µ ρµ

ρ

+
= − = −

+
             (2.37) 

where µ  is the gravitational parameter of the Earth, R  and ρ  are the position 
vectors of dm  from Earth’s center and the spacecraft’s mass center, respectively, and 

cR is the position vector of spacecraft’s center from earth’s center. 

   3
c

c

RM df dm
R

ρρ µ
ρ

×
= × = −

+
∫ ∫              (2.38) 

by some manipulations as in [1] gravity-gradient torque becomes as 

   2
3 35

3 3c c
c

M R I R n a I a
R
µ

= × ⋅ = × ⋅              (2.39) 

where 3
cn µ= R  is orbital rate and 3 c ca R R≡ − . 

The rotational equation of motion of a rigid body with an angular momentum 
B NH I ω= ⋅  ( B Nω ω≡ ) in circular orbit above is described with Equation (2.23), 

which can be rewritten similar to Equation (2.26) as below:  

   2
3 33I I n a Iω ω ω⋅ + × ⋅ = × ⋅a               (2.40) 

where ω   and  have expressed in terms of basis vectors of the body-fixed 
reference frame 

3a
B  by Equation (2.28) and (2.36.c), respectively. 

The orientation sequence 1 1 2 2 3 3( ) ( ) ( )C C Cθ θ θ← ←  to B  from  of the body-fixed 
reference frame 

A
B  with respect to the LVLH reference frame,  in terms of attitude 

angles 
A

iθ  ( )  becomes as below: 1,2,3i =
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           (2.41) 
1 11 12 13 1 2 3 2 3 2 1

2 21 22 23 2 1 2 3 1 3 1 2 3 1 3 1 2 2

31 32 33 3 1 2 3 1 3 1 2 3 1 3 1 2 33

b C C C a c c c s s a
b C C C a s s c c s s s s c c s c a

C C C a c s c s s c s s s c c c ab

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

where cosi ic θ≡  and sini is θ≡ .  

The angular velocity of B  relative to  is given as A

   1 1 2 2 3 3
B A b b bω ω ω ω= + +

1

2

3

              (2.42) 

where 

   
1 2

2 1 1 2

3 1 1 2

1 0
0
0

s
c s c
s c c

ω θ
ω θ
ω θ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

              (2.43) 

Substituting Equation (2.33) and (2.28) into Equation (2.24), B Nω  can be written as 

              (2.44) 
1 2 1

2 1 1 2 2 1 2 3

3 1 1 2 3 1 2 3

1 0
0
0

s c
c s c n s s s c c
s c c c s s s c

ω θ
ω θ
ω θ

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

2 3

1 3

1 3

s
+

+ −

The linear form of (2.44) is obtained as 

              (2.45) 
1 1 1

2 2 2

3 3 3

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

n
n

n

ω θ θ
ω θ θ
ω θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

where 

   
0 0
0 0 0

0 0

n
N

n

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

               (2.46) 

                  (2.47) 
0

0
N n

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

The derivative of angular velocity (2.45) is as below 
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1 1

2 2

3 3

1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0

n

n

1

2

3

ω θ θ
ω θ θ
ω θ θ

⎡ ⎤ ⎡−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

            (2.48) 

Finally, the differential equation of the kinematic (2.44) of an orbiting rigid body can 
be found as 

   
1 2 1 2 1 2 1

2 1 2 1 2 2
2 2

3 1 1 3

1 0
0

c s s c s s
nc c s c c c

c c
s c s s

θ ω
θ ω
θ ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

3

2 3

2 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3

           (2.49) 

The dynamic equation of motion about body-fixed principle axes becomes as shown 

  2
1 1 2 3 2 3 2 3 23 3( ) 3 ( )I I I n I I C Cω ω ω− − = − −          (2.50.a) 

   2
32 2 3 1 3 1 3 1 33 1( ) 3 ( )I I I n I I C Cω ω ω− − = − −          (2.50.b) 

   2
33 3 1 2 1 2 1 2 13 2( ) 3 ( )I I I n I I C Cω ωω− − = − −          (2.50.c) 

and define skew-symmetric direction cosine matrix Γ is defined as 

                  (2.51) 
33 23

33 13

23 13

0
0

0

C C
C C
C C

−⎡ ⎤
⎢Γ = −⎢
⎢ ⎥−⎣ ⎦

⎥
⎥

The matrix form of Equations (2.50) is as below 

   2
33I I n Iω ω−Ω = − Γ C               (2.52) 

where [ ]3 13 23 33
TC C C C= . The compact form of dynamic equation of motion 

about body-fixed principle axes (2.50) with linear angular velocity (2.45) and linear 
angular velocity rate (2.48) becomes 

   ( ) ( ) 2
33I N I N N n Iθ θ θ θ+ −Ω + + = − Γ C

( ) 2

         (2.53.a) 

Simplified mode of Equation (2.52) is as 

   33I IN I IN IN n ICθ θ θ+ −Ω −Ω −Ω = − Γ          (2.53.b) 
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2.2.4 Gyrostat in circular orbit [1] 

This section formulates the equation of motion of an Earth-pointing spacecraft 
equipped with reaction wheels. A rigid body, consisting of a main platform and 
spinning wheels, is often referred as a gyrostat.  

Assume a model of gyrostat equipped with two reaction wheels aligned along roll 
and yaw axes and a pitch momentum wheel as shown in Figure 2.3. The pitch 
momentum wheel is nominally spinning up along negative axis. As shown in the 
Figure 2.2 a LVLH reference frame  with its origin at the center of mass of a 
gyrostat has a set of unit vectors 

A
{ }1 2 3, ,a a a . Let { }1 2 3, ,b b b  be a set of a bias vector 

of a body-fixed reference frame B , which is assumed to be aligned with principle 
axes of the gyrostat. 

 

Figure 2.3 Gyrostat in circular orbit. 

Then the total angular momentum of a spacecraft is expressed similar to Equation 
(2.29) as below: 

   ( ) ( ) ( )1 1 1 1 2 2 2 2 3 3 3 3H I h b I h b I h bω ω ω= + + + + +            (2.54) 

where 1 2 3, ,I I I  are principle moments of inertia of the gyrostat spacecraft; 1 2 3, ,ω ω ω  
are body-fixed components of the angular velocity of the spacecraft;  
are the body-fixed components of the angular momentum of the three wheels;  is 

the nominal pitch bias momentum along the negative pitch axis. 

1 0 2, ,h H h h− + 3

0H

The rotational equation of motion is expressed before via Equation (2.28), such that 
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   B N

B

dHH H
dt

ω
⎧ ⎫

= + × =⎨ ⎬
⎩ ⎭

M               (2.55) 

where M  is the gravity-gradient torque acting on the vehicle. For the principle-axis 
frame B  the equation of motion can be rewritten as 

2
1 1 2 3 2 3 1 2 3 3 0 2 2 3 23 3( ) ( ) 3 ( ) 3I I I h h H h n I I C Cω ω ω ω ω− − + + − − + = − −        (2.56.a) 

 2
2 2 3 1 3 1 2 3 1 1 3 3 1 33 13( ) 3 ( )I I I h h h n I I C Cω ω ω ω ω− − + + − = − −

2
3

         (2.56.b) 

 3 3 1 2 1 2 3 1 0 2 2 1 1 2 13 2( ) ( ) 3 ( )I I I h H h h n I I C Cω ωω ω ω− − + + − + − = − −        (2.56.c) 

where ω  is described by Equation (2.49), and 
ii rh J wω= .  

2.2.5 Representation of Equation of Motion with θ 

Equations of motion for a rigid body about body-fixed principle axes with gravity 
gradient torque and for a gyrostat in circular orbit were derived in Equations (2.50) 
and (2.56), respectively. Substituting Equation (2.23.a) and (2.52) into (2.56), 
equation of motion depending on angular velocity, ω , is generated as below: 

   { } { } 2
33I h I h H n Iω ω+ −Ω + + = − Γ C              (2.57) 

The matrix form of Equation (2.57) is obtained as below 

  
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

I I I h
I I I h
I I I h

ω
ω
ω

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥ +⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

  
3 2 11 12 13 1 1

3 1 21 22 23 2 2 0

2 1 31 32 33 3 3

0 0
0

0 0

I I I h
I I I h H
I I I h

ω ω ω
ω ω ω
ω ω ω

− ⎧⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎫⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − + + − ⎥
⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭⎥⎦

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

 

               (2.58) 
33 23 11 12 13 13

2
33 13 21 22 23 23

23 13 31 32 33 33

0
3 0

0

C C I I I C
n C C I I I C

C C I I I C

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= − −⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

Substituting Equation (2.45) and (2.48) into (2.57) results 

 ( ) ( ) 2
3{ } { } 3I N h I N N h H n ICθ θ θ θ+ + −Ω + + + + = − Γ            (2.59) 

Equation (2.59) can be simplified as 
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   ( ) ( ) 2
33I N I IN H IN h h n ICθ θ θ+ +Ω −Ω +Ω + + +Ω = − Γ           (2.60) 

Matrix form of the Equation (2.60) is as below 

 
11 12 13 1 1 1

21 22 23 2 2 2

31 32 33 3 3 3

0 0
0 0 0

0 0

I I I n h
I I I h
I I I n h

θ θ
θ θ
θ θ

⎧ ⎫⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎪ ⎪⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎨ ⎬⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭

 

3 2 11 12 13 1 1

3 1 21 22 23 2 2

2 1 31 32 33 3 3

0 0 0
0 0 0

0 0 0

I I I n 0
0

0
I I I n
I I I n

ω ω θ θ
ω ω θ θ
ω ω θ θ

⎧ ⎛ ⎞⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +⎨ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠⎩

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

12 13 13

33 33

I C

 

1 33 23 11
2

2 0 33 13 21 22 23 23

3 23 13 31 32

0 0
3 0

0 0

h C C I I
h H n C C I I I C
h C C I I I C

⎫ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + − = − −⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎭

          (2.61) 

Equation (2.61) is obtained according to the orientation for sequence 

1 1 2 2 3 3( ) ( ) ( )C C Cθ θ θ← ←  to B  from  of the body-fixed reference frame A B  with 
respect to the LVLH reference frame  for a rigid body in circular orbit. A

2.3 Matrix of Rigid Body Dynamics 

The MATLAB-Simulink model of a spacecraft can be prepared via Equation (2.61) 
by setting θ  at left side and the other components at right side of the equation. The 
inertial matrix is assumed to be as 1 2 3[ , , ]I diag I I I= . Therefore, resulting equation is 
obtained as 

           (2.62) ( ) ( ) (1 1 1 2 1
33N I I I IN I IN n IC I h h Hθ θ θ− − − −= − − Ω + Ω + Ω − Γ − −Ω + )

Note that ( )ωΩ  is rewritten as a function of θ . Therefore, simplified form of the 

Equation (2.62) can be obtained by neglecting  and  as below  N H

  [ ] [ ] [ ] [ ]1 2 3 4A A A h Aθ θ θ= + + + h               (2.63) 

where 

  
( )

( )

1 0

1

3 0 3

0 0 1
0 0 0
1 0 0

n k H I
A

n k H I

− − +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− + +⎣ ⎦

1

            (2.63) 

  

2
1 0 1

2
2 2

0 3

4 0 0
0 3 0
0 0 2 3

n k nH I
A n k

n k nH I

⎡ ⎤− −
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

           (2.64) 
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1

3 2

3

1 0 0
0 1 0
0 0 1

I
A I

I

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

               (2.65) 

  
1

4

3

0 0
0 0 0

0 0

n I
A

n I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

               (2.66) 

2.4 Structural Dynamics 

This section introduces simple mathematical model for flexible solar panels based on 

reference [1]. The system is given into matrix form similar to the spacecraft’s 

dynamic model. 

2.4.1 Flexible frames 

The orientation of the solar arrays with respect to the spacecraft main body depends 

on orbital position and orbital time. Solar array orientation at 6 a.m. will be 

considered as a nominal configuration for the subsequent analysis and design. Orbit 

time of 6 a.m. and 6 p.m. yields out-of-plane bending modes in the yaw axis and in-

plane bending modes in the roll axis. Note that, low-frequency characteristics of the 

first in-plane bending mode is caused by array yoke deformation [1]. 

During on-orbit normal mode operations, both solar arrays are always pointing 

towards the sun, whereas the main body is pointing towards the Earth. This results in 

very slowly changing modal frequencies and modal shapes. For control design 

purposes, however, the spacecraft model will be treated as a time-invariant system 

with a known range of modal characteristics. The linearized equation of motion of 

the three axis stabilized spacecraft with flexible array is given in [1] as below. 

Rigid main body: 

  1 1 2 3 2 3 1 2 3 3 0 2 1 1 1( ) ( ) 2I I I h h H h q Mω ω ω ω ω δ− − + + − − + + =        (2.67.a) 

  2 2 3 1 3 1 2 3 1 1 3 2 2 2( ) 2I I I h h h q Mω ω ω ω ω δ− − + + − + =         (2.67.b) 

   3 3 1 2 1 2 3 1 0 2 2 1 3 3 3( ) ( ) 2I I I h H h h q Mω ωω ω ω δ− − + + − + − + =        (2.67.c) 
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Two solar arrays: 

 2
1 1 1 1 12 0q qσ δ θ+ + =             (2.68.a) 

 2
2 2 2 2 22 0q qσ δ θ+ + =             (2.68.b) 

 2
3 3 3 3 32 0q qσ δ θ+ + =             (2.68.c) 

where 1 2 3, ,δ δ δ  represents rigid-elastic coupling scalars of a single solar array, 

1 2 3, ,σ σ σ  are modal frequencies, and  are modal coordinates. 1 2 3, ,q q q

Note that, this model will be included only in designed block diagrams for spacecraft 
dynamics with sliding mode controllers. 

 

Figure 2.4 Flexible spacecraft Intelsat V [1]. 
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3.  LINEAR CONTROL SYSTEM DESIGN 

In this section, modern control theory will be used to design linear controllers for 
active and passive control algorithms of the spacecraft. Passive control is an attitude 
control application which orients a spacecraft to a reference under small external 
disturbances or errors. The passive linear control algorithms illustrate the speed 
control of internal small torquers so-called reaction or momentum wheels. These 
control elements produce required moment via rotating to stabilize the spacecraft. On 
the other hand, active linear control algorithms are used for large attitude angles 
orientations. The signal is applied to the thrust system, so burning the propellant 
through the nozzle produces the required external torques for an orientation. These 
torques are large of value than the internal ones, so the active linear control 
algorithms response fast than passive linear control algorithms. In this section, 
control signals of the thrust system are considered to be continuous. Therefore, it is 
assumed that the spacecraft has sufficiently enough propellant for these thrusters. It 
can be seen that active linear control algorithms are limited with the spacecraft’s 
amount of propellant. Also, passive control elements have a limited operation life 
due to mechanical failure as active control elements. As a result, when designing a 
spacecraft the life-time of the control elements should be chosen correctly.  

3.1 System Linearization 

Consider a system defined with Equations (2.50) with angular velocity (2.45). First 
step is linearization of attitude angles which are assumed to be as  

   1x θ=                  (3.1.a) 

   1 2x xθ= =                (3.1.b) 

   2x θ=                 (3.1.c) 

where [ ]1 2 3
Tθ θ θ θ=  describes the attitude angles, and ix  is (3 )-vector.  1×

Therefore state vector and output vector of the linear system are obtained as 

   1 1 2 2 3 3

T
x θ θ θ θ θ θ⎡ ⎤= ⎣ ⎦                (3.3) 
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   [ ]1 2 3y Tθ θ θ=                  (3.4) 

Hence a linear system can be defined with the following equation 

   x Ax Bu G= + +               (3.7.a) 

                  (3.7.b) y Cx Du= +

where x  is ( 6 1× )-state vector,  is (3y 1× )-output vector of the system,  is ( 3u 1× )-
control vector,  is ( )-system matrix, A 6 6× B  is ( 6 3× )-control matrix,  is (3C 6× )-
observer matrix,  is (3 )-matrix, and G is ( 6D 3× 1× )-disturbance vector. 

In light of Equation (2.53.b), the system without a control term of linear matrix form 
is defined as 

  [ ] [ ]
1 2

3 3 3 30

A A
x x

I × ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

             (3.8.a) 

   [ ] [ ][ ]3 3 3 30y I× ×= x              (3.8.b) 

where  and  are described by Equations (2.63) and (2.64), respectively, and 1A 2A 3 3I ×  

is (3 )-identity matrix. 3×

Thus, the linear form of the dynamic equation of motion about body-fixed principle 
axes is obtained above in Equation (3.8) without a control law. In next three sections 
passive, active and combined linear control law will be designed, respectively. 

3.2 Linear Controllers Design 

The linear controller will be design for reaction or momentum wheels as passive 

linear controller and for thrust mechanism as active linear controller. Finally, these 

two algorithms will be added to obtain combined linear controller. 

3.2.1 Passive linear controller design 

Passive linear controller applies continuous small torques to stabilize the attitude 
angle errors. In linear controllers design the angular momentum, , of reaction or 
momentum wheels will be neglected because the angular momentum rate  is larger 

-times than the angular momentum, where geostationary orbital rate, n , is 
approximately equal to 

h
h

n
57.2921 10 sec 1− −× . Thus, only effects of the angular 

momentum rate will be taken into account in passive linear controller which 
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simulates the speed control algorithm of reaction wheels. The control is assumed to 
be as 

                  (3.9) [1 2 3 1 2 3

T Tu h h h u u u⎡ ⎤= =⎣ ⎦ ]

where  is a (3 )-control vector. u 1×

Consider a system as gyrostat in circular orbit by means of Equation (2.57). The 
control should supply required internal moment to the system as below: 

   3 1

2

3 3 30

x Ax Bu
A u

x Ax u
u×

− =

⎡ ⎤ ⎡
⎢ ⎥ ⎢− = ⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

1

              (3.10) 

Then the linear system (3.8) with passive linear control becomes as below 

   [ ] [ ]
1 2 3

2

3 3 3 3 3 3 30 0
p

A A A u
x x u

I u× × ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢= + ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u

          (3.11.a) 

   [ ] [ ][ ] [ ]
1

3 3 3 3 3 3 2

3

0 0

p

u
y I x

u
× × ×

⎡ ⎤
⎢ ⎥= + ⎢ ⎥
⎢ ⎥⎣ ⎦

           (3.11.b) 

where  is defined by Equation (2.65). 3A

Consider a control law as 1 2u ς ω ς θ= +  [1], where θ  is attitude angles vector, ω  is 
angular velocities vector and 1ς  and 2ς  are constants. Note that, the relation between 
angular velocities and attitude angles according to Equation (2.44) is not linear. 
Beside, Equation (2.45) is a linear, so control function is linear according to feedback 
of the system (3.11). Therefore, linear control feedback can be chosen as 

   1 2pu xς ω ς θ ς= − − = −               (3.12) 

where, x  is the state vector and ς  is a constant matrix as  

                (3.13) 
11 21 11

12 22

13 13 23

0 0 0
0 0 0 0
0 0 0

n

n

ς ς ς
ς ς ς

ς ς

−⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦ς

⎥
⎥

The matrix form of Equation (3.12) becomes as 
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              (3.14) [ ]
1 11 21 11

2 12 22

3 13 13 23

0 0 0
0 0 0 0
0 0 0

p

u n
u x
u n

ς ς ς
ς ς

ς ς ς

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

where ijς ,  and , are constants to be selected. 1, 2i = 1,2,3j =

Therefore, the linear system (3.11) of a dynamic equation of motion about body-
fixed principle axis of a spacecraft is controlled with passive linear control signal 
defined in Equation (3.14). Note that, the designed control is a simulation of speed 
control of reaction or momentum wheels. 

The stability of control can be analyzed by substituting control law (3.12) into the 
system (3.7.a) without disturbance vector G  as following 

   ( )x Ax Bu Ax B x A B xς ς= + = − = −             (3.15) 

The system (3.15) is said asymptotically stable if matrix A Bς−  is Hurwitz-stable or 

the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can be found 
by using the following relation 

   0sI A Bς− + =                (3.16) 

For each  an eigenvalue can be found, and eigenvalue is i isλ ≡ . 

3.2.2 Active linear controller design 

Active linear controller algorithms are designed for large attitude angles orientations. 
The active linear controllers apply continuous torques via thrusters to stabilize the 
spacecraft. Therefore, thrusters should burn the propellant flow rate variably through 
nozzle. This method is not preferred because of limited amount of propellant during 
infinite burning at low flow rates caused by disturbances and unmodelled dynamics 
of attitude motions. However, let design an active linear controller as below. 

Assume the control to be as 

   [ ]1 2 3
Tu u u u=                (3.17) 

where  is (u 3 1× )-vector. 

Control is applied as a force to the system via thrusters. Therefore to obtain external 
moment, the distance between center of gravity of the spacecraft and the thruster 
position should be known. Assume that for principle axes, the distances are  
for axes 1, , respectively [2]. 

1 2 3, ,d d d
2,3
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Then the linear system (3.8) with active linear control takes the following form [2] 

   [ ] [ ]
1

1 2

2

3 3 3 3 3 3 3

diag( 1, 2, 3)

0 0
a

A A I d d d u1

x x u
I u

−

× × ×

⎡ ⎤⎡ ⎤ ⎡
⎢

⎤
⎥⎢ ⎥ ⎢= + ⎢

⎥
⎥⎢ ⎥ ⎢

⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦ ⎦

u

       (3.18.a) 

   [ ] [ ] [ ]
1

2
3 3 3 3 3 3 2

1
3

0 0
u

x
y I

x
u

× × ×

⎡ ⎤
⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

          (3.18.b) 

Linear control feedback can be chosen similar to (3.12) as 

                    (3.19) au κ= − x

where, x  is the state vector and κ  is a constant matrix defined as  

                (3.20) 
11 21 11

12 22

13 13 23

0 0 0
0 0 0 0
0 0 0

n

n

κ κ κ
κ κ κ

κ κ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦κ

3

The matrix form of Equation (3.19) becomes as 

              (3.21) [ ]
1 11 21 11

2 12 22

3 13 13 2

0 0 0
0 0 0 0
0 0 0

a

u n
u x
u n

κ κ κ
κ κ

κ κ κ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

where ,  and , are constants to be selected. ijκ 1,2i = 1, 2,3j =

The active linear controller is designed for system (3.18) as above. Note that, this 
active linear controller design is a continuous control during attitude orientations. 

The stability of active linear control can be analyzed similar to the previous 
controller design by substituting control law (3.19) into system (3.7.a) without 
disturbance vector  as G

   ( )x Ax Bu Ax B x A B xς κ= + = − = −             (3.22) 

The system (3.22) is said asymptotically stable if matrix A Bκ−  is Hurwitz-stable or 
the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can be found 
as below: 

   0sI A Bκ− + =                (3.23) 

for each  an eigenvalue can be found, and eigenvalue is i isλ ≡ . 
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3.2.3 Combined linear controller design 

The active and passive linear controllers are used together for global stability for 
large attitude angles orientations or small attitude errors. Passive (3.14) and active 
(3.21) linear control laws were designed above. In this part, these two controllers will 
be combined to work together. Then, combined linear control law is applied to the 
linear system as below: 

  p p a ax Ax B u B u G= + + +            (3.24.a) 

                (3.24.b) y Cx Du= +

G

Then the matrix form of Equation (3.24) becomes 

   

[ ] [ ]
1 2

3 3 3 3

1
3 1 1

2 2

3 3 3 3 3 3

0

diag( 1, 2, 3)
       

0 0
p a

A A
x x

I

A u I d d d u
u u
u u

× ×

−

× ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

        (3.25.a) 

   [ ] [ ][ ] [ ] [ ]
1 1

3 3 3 3 3 3 2 3 3 2

3 3

0 0 0

p a

u u
y I x u

u u
× × × × u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= + + ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

         (3.25.b) 

where  and  are control signals defined above with Equations (3.14) and (3.21), 
respectively, and  is disturbance vector. 

pu au
G

The stability of combined linear controller can be analyzed by substituting control 
laws (3.12) and (3.19) into system (3.7.a) without disturbance vector G  as 

  ( ) ( )( )x Ax Bu A B B x A B xς κ ς κ= + = − − = − +             (3.26) 

The system (3.26) is said asymptotically stable if matrix A B Bς κ− −  is Hurwitz-
stable or the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can 
be found as below: 

   ( )sI A B ς κ− + + = 0                (3.27) 

for each  an eigenvalue can be found, and eigenvalue is i isλ ≡ . 

 

 28



3.3 Pole Placement 

This method brings an easiness to control designers to stabilize the linear system at 
desired type and time. The method is placing system poles at desired values. 
Therefore, the linear system behaves in order of the chosen poles and characteristics. 
Linear controller law can be constructed as: 

                   (3.28) = − Tu g x

So, primary system (3.10) without disturbance vector, G , becomes as: 

   ( )( ) ( ) ( ) ( )= − = −T Tx t Ax t Bg x t A Bg x t             (3.29) 

The characteristic equation of open-loop system (3.29) is given by 

   0− =sI A   ⇒ 1 11 ... 0−+ − + + + =n n
n ns a s a s a           (3.30) 

where  are constant coefficients. Then, let define a (1,..., na a n n× )-matrix A  as: 

   

1 1

1 0

0 1

n na a

A

−− − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

a

              (3.31) 

Therefore, ( n n× )-matrix TBg  can be defined as: 

   

1

0

0 0

n

T 0
g g

Bg

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

               (3.32) 

Subtracting (3.31) from (3.32), ( n n× )-canonical matrix is obtained as  

   

( ) ( ) ( )1 1 1

* 1 0

0 1

n n n n

T

a g a g a g

A A Bg

− −− + − + − +
0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥= − =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          (3.33) 

For each  an eigenvalue can be found, and eigenvalue is i siλ ≡ . According to the 
these eigenvalues desired pole vector is selected as 

   [ ]1 nP λ λ=                (3.34) 

Then characteristic equation is represented in control canonical form as: 
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   * 0− =sI A   ⇒ * *
1 11 ... 0−

*+ − + + + =n n
n ns a s a s a           (3.35) 

comparing equation (3.33) and (3.35) get the following: 

                   (3.36) 

*
1 1 1

*
n n n

g a a

g a a

⎫= −
⎪
⎬
⎪= − ⎭

3.3.1 Pole placement for passive linear controller 

The linear system (3.8) with passive pole placed linear control method becomes as  

  [ ] [ ] [ ]
1 2

3 3 3 30

T

p

A A
x x Bg x

I × ×

⎡ ⎤
⎢ ⎥ ⎡ ⎤= − ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

          (3.37.a) 

[ ] [ ][ ]3 3 3 30y I× × x=             (3.37.b)   

The stability of passive pole placed linear controller can be analyzed by substituting 
control law (3.28) for passive linear controller into system (3.7.a) without 
disturbance vector  as G

   ( )( ) ( ) ( ) ( )T T

p p
x t Ax t Bg x t A Bg x t⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦            (3.38) 

The system (3.38) is said asymptotically stable if matrix  is Hurwitz-
stable or the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can 
be found as below: 

T

p
A Bg⎡ ⎤− ⎣ ⎦

   0T

p
sI A Bg⎡ ⎤− + =⎣ ⎦                (3.39) 

for each  an eigenvalue can be found, and eigenvalue is i isλ ≡ . 

3.3.2 Pole placement for active linear controller 

The linear system (3.8) with active pole placed linear control method becomes as  

  [ ] [ ] [ ]
1 2

3 3 3 30

T

a

A A
x x Bg x

I × ×

⎡ ⎤
⎢ ⎥ ⎡ ⎤= − ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

          (3.40.a) 

[ ] [ ][ ]3 3 3 30y I× ×= x             (3.41.b) 

 30



The stability of active pole placed linear controller can be analyzed by substituting 
control law (3.28) for active linear controller into system (3.7.a) without disturbance 
vector G  as 

   ( )( ) ( ) ( ) ( )T T

a a
x t Ax t Bg x t A Bg x t⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦            (3.42) 

The system (3.42) is said asymptotically stable if matrix  is Hurwitz-
stable or the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can 
be found as below: 

T

a
A Bg⎡ ⎤− ⎣ ⎦

   0T

a
sI A Bg⎡ ⎤− + =⎣ ⎦                (3.43) 

for each  an eigenvalue can be found, and eigenvalue is i isλ ≡ . 

3.3.3 Pole placement of combined linear controller 

The linear system (3.8) with combined pole placed linear control method becomes as  

   [ ] [ ] ( )[ ]
1 2

3 3 3 30

T T

p a

A A
x x Bg Bg

I × ×

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

x

[

         (3.44.a) 

] [ ][ ]3 3 3 30y I× × x=             (3.44.b)   

The stability of combined pole placed linear controller can be analyzed by 
substituting control law (3.28) for both active and passive linear controllers into 
system (3.7.a) without disturbance vector G  as 

  
( )

( )( )
( ) ( ) ( )

      ( )

T T

p a

T T

p a

x t Ax t Bg Bg x t

A Bg Bg x t

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦

             (3.45) 

The system (3.45) is said asymptotically stable if matrix ( )T T

p a
A Bg Bg⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦  is 

Hurwitz-stable or the eigenvalues of the matrix have negative sign. Thus, the 
eigenvalues can be found as below: 

   ( ) 0T T

p a
sI A Bg Bg⎡ ⎤ ⎡ ⎤− + + =⎣ ⎦ ⎣ ⎦              (3.46) 

for each  an eigenvalue can be found, and eigenvalue is i isλ ≡ . 
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4. VARIABLE STRUCTURE CONTROL DESIGN 

Sliding modes as a phenomenon may appear in a dynamic system governed by 
ordinary differential equations with discontinuous right-hand sides. Control as a 
function of the system state switched at high (theoretically infinite) frequency is 
called sliding mode, which is governed by a differential equation with order less than 
the order of the original system. If the control is a vector valued quantity and each 
component undergoes discontinuities in its own switching surface the sliding modes 
may appear in intersection of several surfaces, also called as multidimensional 
sliding modes. In general, sliding mode controls high-order nonlinear dynamic plants 
operating under uncertain conditions, such as spacecrafts defined in [5-9, 13]. 

   ( , , )x f x t u=                   (4.1) 

where , ,  and t  denotes the time.  nx∈ℜ nf ∈ℜ mu∈ℜ

The control is selected as discontinuous function of the state as 

   
( , ) if ( ) 0

( , ) if ( ) 0
i i

i
i i

u x t s x
u

u x t s x

+

−

⎧ >⎪= ⎨
<⎪⎩

 ( 1,...,i m= )              (4.2) 

where  and  are continuous state function with and 
 are continuous state functions. 

( , )iu x t+ ( , )iu x t− ( , ) ( , )i iu x t u x t+ −≠
( )is x

Giving a brief introduction about sliding mode, let first design the sliding surface for 
the sliding mode controllers. 

4.1 Design of Sliding Surfaces 

The equation of motion of a rigid spacecraft was described in Chapter 2 with 
Equations (2.50) and the evolution of spacecraft orientation in terms of attitude 
angles was given via Equation (2.49). Such that, attitude angles vector is sufficient to 
describe the motion if the spacecraft’s angular velocities are described via a function 
of the spacecraft’s attitudes. A control law subject to the constrained system given by 
Equation (2.49), ( )ω ω θ=  should be found to minimize the performance index [6, 7] 

as 
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   1
2

s

T T

t

J dθ θ ω ω
∞

⎡ ⎤= Ξ + Ψ⎣ ⎦∫ t                 (4.3) 

Note that, the trajectory may arrive at different switching surfaces at different times, 
but st  is the time of arrival at the sliding manifold. Ξ  and Ψ  are weighting matrices 
described as below: 

   [ ], ,diag ρ ρ ρΞ =                  (4.4) 

  
3 2

3 1

2 1

1
( ) 1

1

θ θ
θ θ θ

θ θ

−⎡ ⎤
⎢ ⎥Ψ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

                (4.5) 

After some assumptions and eliminations similar as in [7], the optimal switching 
surfaces are given as below 

   i i is k iω θ= +                   (4.6)  

where ik ρ= + , . For this special case, it can also be shown that the 
optimal cost of regulation (the value of integral given in Equation (4.3)) is given as 

1, 2,3i =

                     (4.7) * 2J k=

The dynamics of the attitude angles may be obtained first via linearization and then 
via modifying Equation (2.49) as follows 

1 2 1 3 3 1

2 1 2 3 2

3 1 3 2 3

1 0 0
0 1 1 0 0
0 1 0 0 0

n
n n

θ θ ω θ ω θ
θ θ ω ω θ
θ θ ω ω θ ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= − + = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

1

2

3

ω
ω

⎤
⎥+ ⎥
⎥⎦

i

            (4.8) 

From sliding manifold (4.6), angular velocity becomes i kω θ= −  for 0is = . 
Therefore, substituting the angular velocity into dynamic equation of attitudes into 
(4.8) results 

  
1 3 1 1 3 1

2 3 2 2 3 2 2

3 2 3 3 2 3 3

0 0
0 0 0 0
0 0 0 0

n k n
n k k

k k

θ ω θ ω θ θ
θ ω θ ω θ θ θ
θ ω θ ω θ θ θ

⎡ ⎤ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + = + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

1k
n

θ

1

3

 
1 3 2 3

2 3 1 2

3 2 1

k n k
k k n

k k

θ θ θ θ θ
θ θ θ θ
θ θ θ θ

⎡ ⎤ − + −⎡ ⎤
⎢ ⎥ ⎢= − +⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

⎥
⎥         
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1 1 3 2 1 1

2 2 3 1 2 2

3 3 2 1 3 3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

k n
k n

k

3θ θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= − + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

θ ⎤
⎥
⎥
⎥⎦

2

0

            (4.9) 

where 

  
3 2 1 1

3 1 2

2 1 3 3

0 0
0 0 0

0 0 0

θ θ θ
θ θ θ θ

θ θ θ

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= −⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

         (4.10.a) 

  
3 2

3 1

2 1

0
0

0

θ θ
θ θ
θ θ

−⎡ ⎤
⎢Ω = −⎢
⎢ ⎥−⎣ ⎦

⎥
⎥            (4.10.b) 

   
1

2

3

1 1 1
1 1 1 1
2

1 1 1

k
k
k

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

           (4.10.c) 

4.2 Sliding Mode Controllers Design 

In control system design of the satellite, continuous and discontinuous sliding mode 
controllers are used for passive and active control algorithms, respectively. Passive 
sliding mode controller applies a continuous control signal to the reaction wheels via 
equivalent control method which is idealization of chattering problem that keeps the 
state trajectory in the neighborhood of the sliding manifold. On the other hand, the 
discontinuous sliding mode control is used for active controller to burn out the 
propellant via thrusters in finite time. This control method may include switching at 
high gains during on-off logic operations. So, chattering problem may occur. To 
avoid this problem, discontinuous control is applied outside of the sliding boundary 

. 0 0( , )s s− +

4.2.1 Passive sliding mode controller design 

Passive sliding mode controller is designed to stabilize the spacecraft for small 
attitude errors and as a main control algorithm for geosynchronous communication 
satellites. The controller applies continuous small torques via reaction or momentum 
wheels for stabilization. Thus, spacecraft is forced to have desired attitudes in finite 
time. After giving brief information about passive sliding mode controller let design 
the control algorithm as follows. 
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Assume that the initial state vector of system (4.1) is in the intersection of all 
discontinuous surfaces in the manifold ( ) 0s x = , and sliding mode occurs with the 
state trajectories confined to this manifold for . Also assume that 0t > 0ds dt s= =  
since motion implies  for . Therefore, in addition to , 0s = 0t > ( ) 0s x = ( ) 0s x =  
may be used to characterize the state trajectories during sliding mode.  The time 
derivative of the vector on the state trajectories of system (4.1) is equal to zero [4, 5, 
7]: 

                  (4.11) ( , ) 0s G f x u= ⋅ =

where G s x= ∂ ∂  is a m  matrix with gradients of functions  as rows. Let a 
solution to the algebraic Equation (4.11) exists. The solution  is called as 
equivalent control. The continuous function is substituted for the discontinuous 
control u  into the system (4.1). Thus, system becomes 

n× ( )s x
( )equ x

   ( , )eqx f x u=                  (4.12) 

Equation (4.11) of the equivalent control method for system (4.1) is following 

                  (4.13) 0eqs Gf GBu= + =

where B  is a  matrix. Assuming GB  matrix as nonsingular for any n m× x , the 
equivalent control term becomes as 

                (4.14) ( ) 1( ) ( ) ( ) ( ) ( )equ x G x B x G x f x−= −

Substituting Equation (4.14) into (4.1), the sliding mode equation is formulated as 

   ( ) 1( ) ( ) ( ) ( ) ( ) ( )x f x B x G x B x G x f x−= −             (4.15) 

The real control does not satisfy Equation (4.13), and it may be found as 

                   (4.16) 1( )equ u GB s−= +

Therefore, the motion equation becomes 

  1( )eqx f Bu GB s−= + +               (4.17) 

For the physical meaning of equivalent control consider a -equations system with 
-controls defined as  

n
m

                 (4.18) 3 2 1 ( )a x a x a x u d t+ + = +
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where  is bounded disturbance and assume . Note that, in Equation 

(2.61), (angular momentum rate) and (angular momentum) are obtained from 
gyros. From Equations (2.50) for rigid body ,  and  parameters are found as 

( )d t 1
3a u u− →

h h
1a 2a 3a

                 (4.19.a) 3a = I

a I= Ω

2 Γ

               (4.19.b) 2

  , [1 3a n I= 3C θ→ (3 1×  vector)]         (4.19.c) 

Let  represent the sliding manifold as  s

  [ ]1 2 0T
ms s s s x cx= = + =              (4.20) 

and assume that the discontinuous control is 

                 (4.21) sign( )u M s= −

where M  is a constant parameter to be selected.  

Taking the derivative of Equation (4.20) results 

                   (4.22) s x cx= +

Substituting system (4.19) into sliding motion (4.22) results 

             (4.23.a) 1 1 1
2 3 1 3 3 ( ) 0s a a x a a x u a d t− − −= − − + + =

According to the reaching law, sliding motion is as 1 2sgn( ) ( )s s h sη η= − − , where 
any of  elements are  and ( )h s ( ) 0i i is h s > 1 1diag( )iη η= , 2 diag( )i2η η= . Also, 
reaching law is Lyapunov stable and it is proved below in Equation (4.34). Thus, 
using Equation (4.13) and reaching law, the sliding motion is obtained as 

              (4.23.b) ( )2 1 sgn( )s GB s sη η= − −

Therefore, equivalent control is the solution to equation 0s =  in terms of  under 
condition . Substituting 

u
0s = x cx= −  into Equation (4.23.a), equivalent control is 

obtained as 

                (4.24) 1 1
2 1 3 3( )equ a c a a x a d− −= − + − ( )t

As seen from Equation (4.24) equivalent control depends on  and disturbance 
. Extracting equivalent control by a low-pass filter may be used for 

improvement of feedback system. 

1 2,a a
( )d t
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Existence of sliding motion depends on the deviations from sliding surface s  and its 
time derivative should have opposite sign in the neighborhood of  switching surface 

 as [6, 7, 13] 0s =

      and              (4.25) 
0

lim 0
s

s
→+

<
0

lim 0
s

s
→−

>

The domain of sliding mode via substituting x cx= −  and 2x c x=  into Equation 
(4.18) and setting it to zero, sliding motion is obtained analytically as below: 

               (4.26) 2
3 2 1( ) sign( )s c a a c a x M s d= − + − − + ( )t

The domain of sliding mode for bounded disturbance 0( )d t d<  is given as 

   ( ) ( )
12

3 2 1 0x c a ca a M d
−

= − + − −              (4.27) 

Therefore, sliding mode exists with relation given in Equation (4.27). 

Extending Equation (4.18), setting x θ≡  and substituting Equation (4.16) the 
dynamic equation of motion about fixed principle of axes becomes 

  2 13 ( )eq ( )I I n I u GB s dω ω θ −−Ω + Γ = − + + t             (4.28) 

Substituting Equation (2.23b) into (4.28) the equivalent control is obtained as below 

           (4.29.a) 2
3 2 13 ( sgn( ))equ I I n I C s sω ω η η= − +Ω − Γ + − −

where 1 2,η η  are positive coefficients such that 0d 1η<  and unmodeled dynamics 2d sη< . 

Assume that  is a disturbance and includes unmodelled dynamics. Then, 

substituting Equation (4.8) and (4.10) into (4.29.a) the equivalent control term 

becomes 

( )d t

2 1
33 (equ I I n IC GBω ω −= − +Ω − Γ + ) s   

( ) 2
3 2 1    3 ( sgn( ))I k I n IC sθ ω η η= − − +Ω − Γ + − − s  

( )2 2
3 2 1    3 ( sgn( ))I k k I n IC s sθ θ ω η η= − − + +Ω − Γ + − −  

( )2 2
3 2 1    3 ( sgn( ))iI k k I n IC s sθ θ ω η η= − − + Ω +Ω − Γ + − −  

( ) ( )( )1 2
3 2 1    3 ( sgn( ))iI k k k I n IC sω θ ω η η−= − +Ω − − +Ω − Γ + − − s  

1 2
3 2 1    3 ( sgn( ))iIk I k I n IC s sω ω ω η η−= − + Ω +Ω − Γ + − −  

( )1 1 2
3 2 1    3 ( sgn( ))iI k k I I n IC s sω η η− −= − +Ω + Ω − Γ + − −         (4.29.b) 
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where  is a constant matrix to be selected during sliding manifold design. Finally, 
 can be determined by Equation (4.10.c). 

k

i

To analyze the stability, consider a positive definite Lyapunov function candidate, 
, for closed loop system as below: 0V >

   1
2

TV s= s                 (4.30) 

The time derivative of a positive definite Lyapunov function candidate along system 
trajectories via substituting Equation (4.8) for sliding motion, , is as below: s

   ( ))T TV s s s kω θ= = +               (4.31) 

If the system trajectories are far from sliding manifold, Equation (2.49) is used 
instead of (4.9). Substituting ω  and θ  from Equation (4.28) and (4.9), respectively, 
into (4.31) and including unmodelled dynamics and disturbances torques, time 
derivative of positive definite Lyapunov candidate becomes as: 

  ( )1 1( ( ))TV s I u d t I I kω θ− −= + − Ω +  

  ( )1 1 2   ( ( ))Ts I u d t I I k kω θ θ− −= + − Ω − +  

  ( )1 1 1   ( ( ) ( ))T
eqs I u GB s d t I I k kω ω θ− − −= + + + Ω + +  

  ( )1 1 1   ( ( ) ( ))T
eq is I u GB s d t I I k kω ω θ− − −= + + − Ω + + Ω  

  ( ( ) ( ) )11 1 1   ( ( ) ( ))T
eq is I u GB s d t I I k k k kω ω θ−− − −= + + − Ω + + Ω − −  

  ( )1 1 1   ( ( ) ( )) ( )T
eq is I u GB s d t I I k k 1ω ω ω− − −= + + − Ω + +Ω − −

2

 

   ( )(( )1 1 1
3   ( ) 3T

is I I k k I I n ICω− − −= − −Ω − + Ω + Γ

 ( ) ( ) )1 1
2 1      sgn( ) ) ( )d u is s d d I I k kη η ω− −+ − − + + + − Ω + +Ω −  

   ( )( 1 1 2
3   ( ) 3T

is k k I I n ICω− −= − −Ω − + Ω + Γ

 ( ) ( ) )1 1
2 1      sgn( ) ) ( )d u is s d d I I k kη η ω− −+ − − + + + − Ω + +Ω −  

  ( )2 1   ( sgn( ))T
ds s s dη η= − − +

   2 1   sgn( )T Ts s s sη η= − −

  2 1   Ts s sη η= − −                 (4.32) 
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From Equation (4.30) it can be seen that 1η  and 2η  are positive constants and  is 

always positive. Therefore, time derivative of positive definite Lyapunov candidate 
becomes negative defined as shown below 

Ts s

  2 1 0TV s s sη η= − − <                 (4.33) 

Hence, the passive sliding mode controller forces the system trajectories toward the 
sliding manifold asymptotically. In another words, it can be said that system is 
asymptotically stable in the domain with bounded disturbance specified via Equation 
(4.27) because of the existence conditions of equivalent control. The reaching law 
stability can be prove with any of  elements which are  via a positive 
definite Lyapunov function candidate 

( )h s ( ) 0i i is h s >
1 2 TV s= s  as  

 
( )

( ) ( )
1 2 1 2

1 2 1 2
1 1

sgn( ) ( ) sgn( ) ( )

   sgn( ) ( ) ( ) 0

T T T T

m m

i i i i i i i i i i i
i i

V s s s s h s s s s h s

s s s h s s s h s

η η η η

η η η η
= =

= = − − = − −

= − + = − + <∑ ∑
           (4.34) 

where 1iη  and 2iη  are positive scalars. Thus, it can be seen that reaching condition 

holds and system is asymptotically stable. 

4.2.2 Active sliding mode controller design 

Active sliding mode controller is designed for large attitude angles orientations and 
faster stabilization of any attitude errors for desaturation of passive sliding mode 
algorithms for communication satellites. The controller applies discontinuous 
external torques via thrusters for stabilization. So, spacecraft is forced to have a 
desired attitude position in finite time of limited thrust. After giving brief information 
about active sliding mode controller let design the control algorithm as follows.  

Control algorithm can be proposed as below 

   ( )sign( )u N s sγ= −                 (4.35) 

where  is a positive defined scalar to be select and N ( )sγ  is a function defined as 

                (4.36) 
0 0

0

0 0

,             
( )    0   ,          

,            

s s s s
s s

s s s s
γ

− >⎧
⎪= − < <⎨
⎪ + < −⎩

0s s

Sliding mode boundary layer is graphically shown in Figure 4.1. 
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Figure 4.1 Sliding mode boundary layer function γ(s). 

The function in Equation (4.36) and shown in Figure 4.1 is so-called dead-band 
function. Therefore, control function (4.35) forces system to sliding manifold and 
keeps it on sliding manifold boundary 0s s s0− < <  as described in [13].  

Consider a positive definite Lyapunov function candidate for closed loop system 
specified in Equation (4.30). The time derivative is obtained similar to (4.32) for 
active sliding mode controller (4.35) as below: 

 ( )1 1( ( ))TV s I u d t I I kω θ− −= + − Ω +  

  ( )1 1 2   ( ( ))Ts I u d t I I k kω θ θ− −= + − Ω − +  

  ( )1 1   ( ( ))T
is I u d t I I k kkω ω θ− −= + + Ω + + Ω  

 ( ( ) ( ) )11 1   ( ( ))T
is I u d t I I k k k kω ω θ−− −= + − Ω + + Ω − −  

  ( )1 1   ( ( )) ( )T
is I u d t I I k k 1ω ω ω− −= + − Ω + +Ω − −

2

 

   ( )(( )1 1 1
3   ( ) 3T

is I I k k I I n ICω− − −= − −Ω − + Ω + Γ

   ( )( )sign( ) )d uN s s d dγ+ − + + ( ) )1 1( )iI I k k ω− −+ − Ω + +Ω −  

   ( )( 1 1 2
3   ( ) 3T

is k k I I n ICω− −= − −Ω − + Ω + Γ

   ( )( )sign( ) )d uN s s d dγ+ − + + ( ) )1 1( )iI I k k ω− −+ − Ω + +Ω −  

                 (4.37) ( )   ( )sgn( )Ts N s sγ=

for  the time derivative of positive definite Lyapunov function candidate 

becomes   
0 0s s> >

 ( ) ( )0( ) sgn( ) ( )sgn( )T TV s N s s s N s s s Ns s s sγ= − = − − = − + 0
T          (4.38.a) 
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and for  the time derivative of positive definite Lyapunov function 

candidate becomes 
0 0s s< <

( ) ( )0( ) sgn( ) ( )sgn( )T TV s N s s s N s s s Ns s s sγ= − = − + = − − 0
T          (4.38.b) 

Design of sliding manifold boundary in respect to asymptotical stability is given in 
Equations (4.38). Therefore, setting 0V < , asymptotic stability is forced with 
relation as below:  

   0
Ts s Ns s<   and 0

TNs s s s− <              (4.39) 

Thus, sliding manifold boundary is obtained as 

   

0 0

0 0

0 0

1 ,        for s

( )      0,                    for s
1 ,     for s

T

T

s Ns s s
s

s

Ns s s s
s

γ

⎧ < >⎪
⎪⎪= −⎨
⎪
⎪− < < −
⎪⎩

s s< <             (4.40) 

where  is a scalar to be select in according to inequality (4.40). 0s

Under sliding manifold boundary conditions (4.40), derivative of positive definite 
Lyapunov function candidate in Equation (4.38) becomes as 

  0 0TV Ns s s s= − + <    (for , )       (4.41.a) 0 0s s> > 0N s>

  0 0V Ns s s s= − − <T    (for 0 0s s< < , )       (4.41.b) 0N s>

      (for 0V = 00s s s− < < )        (4.41.c) 

where (4.41.c) is off period of the active sliding mode controller and do not produce 
any external control torques. Thus, the system is asymptotically stable and the 
discontinuous controller forces the system for operational period to reach sliding 
boundary layer. 

4.2.3 Combined sliding mode controller design 

In spacecraft attitude orientations, such as communication satellites in 
geosynchronous orbits, the active and the passive sliding mode controllers are used 
together for global stability. Combined sliding mode controller consists of active and 
passive sliding mode controllers which are combined to work together. Now, 
combined sliding mode control law can be presented as follows: 
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( ) ( )1

1

( ) ( )sgn( )

  ( ) ( )sgn( )
passive active eq

eq

u u u u GB s N s s

u GB s N s s

γ

γ

−

−

= + = + + −

= + −
           (4.42) 

Therefore for stability analysis, consider a positive definite Lyapunov function 
candidate for closed loop system specified as in Equation (4.30). The time derivative 
is obtained similar to (4.32) and (3.37) for controller (4.42) as below: 

 ( )1 1( ( ))TV s I u d t I I kω θ− −= + − Ω +  

  ( )1 1 2   ( ( ))Ts I u d t I I k kω θ θ− −= + − Ω − +  

  ( )1 1   ( ( ))T
is I u d t I I k kkω ω θ− −= + + Ω + + Ω  

 ( ( ) ( ) )11 1   ( ( ))T
is I u d t I I k k k kω ω θ−− −= + − Ω + + Ω − −  

   
(

)

1 1

1 1

   ( ( ) ( )sgn( ) ( ))

            ( )

T
eq

i

s I u GB s N s s d t

I I k k

γ

ω ω ω

− −

− −

= + − +

− Ω + +Ω −

   
( )(

)

1 1 1 2
3 2 1

1 1

   ( ( ) 3 ( sgn( ))

            ( )sgn( ) ( )) ( )

T
i

i

s I I k k I I n IC s s

N s s d t I I k k

ω η η

γ ω ω ω

− − −

− −

= − −Ω − + Ω + Γ + − −

− + − Ω + +Ω −

   
( )(

( ) )

1 1 1 2
3 2 1

1 1

   ( ) 3 ( sgn( ))

            ( )sgn( ) ( )

T
i

d u i

s I I k k I I n IC s s

N s s d d I I k k

ω η η

γ ω

− − −

− −

= − −Ω − + Ω + Γ + − −

− + + + − Ω + +Ω −

    ( )2 1   ( sgn( )) ( )sgn( )Ts s s N sη η γ= − − − s

               (4.43) 2 1   sgn( ) ( ) sgn( )T T Ts s s s N s s sη η γ= − − −

For positive scalars 1η  and 2η , and sliding manifold boundary (4.41) conditions, 
Equation (4.43) becomes as 

             (4.44) 2 1 sgn( ) ( ) sgn( )T T T
passive activeV s s s s N s s s V Vη η γ= − − − = +

<

For passive and active sliding mode controllers, from Equation (4.33) and (4.41), 
respectively, the time derivative of each positive defined Lyapunov function 
candidate is negative in sign. Therefore, 

                  (4.45) 0passive activeV V V= +

The combined sliding mode controller forces the system trajectories asymptotically 
to reach the sliding manifold with continuous controller and the sliding boundary 
with discontinuous controller. 
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5.  ATTITUDE CONTROL DESIGN EXAMPLES 

In this chapter, firstly, the spacecraft sensors and control elements for attitude 
determination will be introduced. Then, spacecraft dynamics presented in Chapter 2 
will be applied on selected satellite in Chapter 1. Next, satellite attitude dynamics 
instability without controllers will be presented and necessity of attitude controllers 
design will be introduced. A linear model of the spacecraft will be obtained 
according to the given rules in Chapter 3. The active, passive and combined pole 
placed linear controllers will be applied for small and large attitude angles 
orientations, respectively. Moreover, non linear controller law will be introduced, 
separately, for active, passive and combined sliding mode controllers. Finally, small 
and large attitude angles orientations will be performed by the designed sliding mode 
controllers. 

5.1 Spacecraft Sensors and Control Elements 

5.1.1 Sensors 

For attitude determination of the chosen geosynchronous communication satellite, 
Intelsat V, the measurement elements are assumed to be Earth sensors, optic gyros 
and star trackers. Earth sensors measure the roll and pitch attitude errors of the 
satellite. Earth sensors are used for precise attitudes to the center of the Earth. Optic 
gyros measure the attitude angle rates and attitude errors. Star trackers measure 
attitude errors according to selected stars initialized during design procedure. Star 
trackers give precise attitudes for roll, yaw, and pitch axes and they are primary 
measurement devices for attitude determinations. On the other hand, Sun sensors are 
used for solar panel pointing, where the satellite supplies the required power for 
communication payload equipments and other devices. The solar panels are forced to 
follow the calculated Sun trajectory via sun sensors. Some sensors specifications and 
pictures are given in Appendix A4.1. 

5.1.2 Control elements 

Reaction wheels or momentum wheels are main inner torque supplier control 
elements for satellites. The supplied torque is continuous, but very small of value. 
These control elements are used for precise attitude orientations. On the other hand, 
thrusters are external torque suppliers which operate with nonlinear dynamics in real 
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procedures as described in [13]. For the satellite, bipropellant thrusters are chosen for 
large angle attitude orientations. Control elements specifications and figures are 
given in Appendix A4.2. 

5.2 Rigid Spacecraft in Circular Orbit 

Rigid spacecraft in circular orbit was described in Chapter 2 via Equations (2.50) and 
matrix form dependent on attitude angles θ  is given in Equation (2.53.b). The Inertia 
matrix is obtained from Table 1.1 for chosen satellite as below: 

   
1

2
2

3

0 0 3026 0 0
0 0 0 440 0
0 0 0 0 3164

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I
I I

I
kgm              (5.1) 

and inertia constants are calculated as 

   2 3
1

1

0.9002−
= = −

I Ik
I

             (5.2.a) 

   1 3
2

2

0.3136= = −k
I
−I I              (5.2.b) 

   1 2
3

3

0.8173= =k
I
−I I               (5.2.c) 

The orbital rate is calculated for one real day of the spacecraft to orbit the Earth with 
same angular velocity as 

 ( ) ( )
5 1

2 2
23 56 4.09054 23 3600 56 60 4.09054

  7.2921 10 sec

n
h m s s

π π

− −

= =
+ + × + × +

= ×

            (5.3) 

Therefore, required parameters are obtained for rigid body in circular orbit. A 
Matlab-Simulink model is given in Appendix 1.1 with Figure A1.1. The time 
responses of the spacecraft are given in Appendix 2.1. Figure A2.1 shows the small 
attitude errors motion as 1 5degθ = − , 2 7 degθ = , 3 10degθ = −  and angular velocity 
of this motion is given in Figure A2.2. Figure A2.3 shows the large attitude errors 
motion as 1 45degθ = − , 2 70degθ = − , 3 50degθ = −  and Figure A2.4 represents the 
angular velocity of that motion. Note that, these motions are not stable. At least one 
or more eigenvalues of the system have a positive sign as shown in the first column 
of Figure 5.1. These four figures show how the attitude angles and angular velocities 
get larger values in 4000 seconds of time period. If the chosen satellite is not 
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controlled, main goal will not been able to reach which is earth-satellite-earth 
communication or to broadcast the television and radio signals to designated area on 
Earth. As a result, a control algorithm is a must for such a body designed for this 
mission. 

5.3 Gyrostat in Circular Orbit 

The nutational frequency of the chosen spacecraft is 0.02rad/sλ =  [1] where 

0 11 3λ ≡ H I I 3 . Therefore, necessary momentum for momentum wheels is 
calculated as 

   0 11 33 0.02 3026 3164 61.8846H I I Nλ= = × = ms              (5.4) 

Thus, all rigid spacecraft parameters were obtained. 

5.4 Pole Placed Linear Controllers Design 

Firstly, linear model of the spacecraft have to be obtained via Equations (3.1) and 
(3.4) according to modern control theory as in Equation (3.8). The required system 
matrix, A, is obtained via Equation (2.63) and (2.64), and parameters were calculated 
in Equations (5.1), (5.2), (5.3) and (5.4). Then, a linear model as x Ax=  is obtained. 
The control term may be designed with pole placement method where Equation 
(3.14) and (3.21) become equal to ⎡ ⎤⎣ ⎦

T

p
g  and ⎡ ⎤⎣ ⎦

T

a
g  matrices specified in Equation 

(3.28), for passive and active linear control algorithm, respectively. The system 
matrix, , control matrices A T

a
g⎡ ⎤⎣ ⎦  and T

p
g⎡ ⎤⎣ ⎦ , and controllability matrices B  for 

passive and active linear controllers are given in Appendix A3.2. 

Pole placed control term (3.14) and (3.21) for passive and active linear controllers 
with orbital rate 57.2921 10 sec 1− −×  are obtained, respectively, as below: 

            (5.5.a) [ ] [ ]
1 11 21

2 12 2

3 1

0 0 0 0
0 0 0 0
0 0 0 0

ς ς
ς ς

ς ς

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= − = −⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T

p

p

u
u g x
u

2

3 23

x

2

3 23

x           (5.5.b) [ ] [ ]
1 11 21

2 12 2

3 1

0 0 0 0
0 0 0 0
0 0 0 0

κ κ
κ κ

κ κ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= − = −⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T

a

a

u
u g x
u

where 1ς j  and , , are feedback gains of attitude angles rates for yaw, 
pitch, and roll axes measured by optic gyro. 

1κ j 1,2,3=j

2ς j  and 2κ j , 1, 2,3=j , are feedback 
gains of attitude errors for yaw, pitch and roll axes measured by star tracker, Earth 
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sensor and optic gyro. Then, control design matrices ς  and  are selected as 
follows: 

κ

               (5.6.a) 
1 60 0 0 0 0
0 0 1 30 0 0
0 0 0 0 1 60

ς
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥

               (5.6.b) 
0.5 20 0 0 0 0
0 0 .4 10 0 0
0 0 0 0 0.5 20

κ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

These matrices are Hurwitz stable because eigenvalues of the matrices T
p pB g  and 

T
a aB g  have negative sign. Note that, selected matrices also stabilize system as 

described below because the systems , T
p pA B g− T

a aA B g−  and  are 
Hurwitz stable since eigenvalues have negative sign calculated via source code given 
in Appendix A3.3.1. The output of the program is shown in Table 5.1. 

T T
p p a aA B g B g− −

The time responses of attitude errors, angular velocities and control functions of the 
system with passive linear controller for small attitude angles orientation as 

1 5degθ = − , 2 7 degθ = , 3 10degθ = −  are obtained in Figure A2.5, A2.6 and A2.7, 
respectively. 

Table 5.1 Eigenvalues of the system and designed linear controllers. 

Eigenvalues of 
linear satellite model 

Eigenvalues active 
linear controller 

Eigenvalues passive  
linear controller 

Eigenvalues combined 
linear controller 

lamdaA = 
 
   0.0026           
  -0.0013 + 0.0023i 
  -0.0013 - 0.0023i 
  -0.0000 
   0.0001           
  -0.0001       

lamda_a = 
 
  -0.0037 + 0.0127i 
  -0.0037 - 0.0127i 
  -0.0027 + 0.0119i 
  -0.0027 - 0.0119i 
  -0.0114 + 0.0279i 
  -0.0114 - 0.0279i 

lamda_p = 
 
  -0.0251 + 0.0149i 
  -0.0251 - 0.0149i 
  -0.0234 + 0.0148i 
  -0.0234 - 0.0148i 
  -0.0783           
  -0.0580    

lamda_c = 
 
  -0.0284 + 0.0146i 
  -0.0284 - 0.0146i 
  -0.0266 + 0.0148i 
  -0.0266 - 0.0148i  
  -0.1091           
  -0.0500      

The system is stabilized in long period of time (more than 2000 seconds), which 
shows that passive linear controller takes so much time to stabilize the system 
precisely. On the other hand, if combined linear control method is applied the 
spacecraft is stabilized in 300 seconds. The Figure A2.8, A2.9 and A2.10 show the 
combined linear controller performances of attitude angles, angular velocities, and 
applied control functions to the system. The mixture of active and passive linear 
controllers is combined linear controller which is summation of each control 
algorithms. In combined linear controller case, both passive, main control algorithm, 
and active, desaturation of main control algorithm, linear controllers force the inner 
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and external torquers to stabilize the satellite. In Figure A2.10 combined applied 
torque is given with separated small plots of passive and active linear controllers. 
Thus, it can be seen that the performances of combined linear algorithms are ten 
times better than the performances of passive control algorithms for small attitude 
angles orientations of the linear spacecraft model. 

For large attitude errors as 1 45degθ = − , 2 70degθ = − , 3 50degθ = − , the system is 

stabilized after 2000 seconds relatively, which means that very small disturbances 
cause the system to be stabilized precisely near 4000 seconds. The performances of 
large attitude angles orientations of the passive linear controller are given in Figure 
A2.11, A2.12 and A2.13 as attitude angles, angular velocities and control functions, 
respectively. Thus, the thrust system is introduced for fastest attitude orientations. 
The performances of large attitude angles orientations of the combiner linear 
controller are given in Figure A2.14, A2.15 and A2.16 as attitude angles, angular 
velocities and control functions, respectively. Figure A2.16 shows the applied inner 
and external torques separately into combined control functions torque plot. The 
combined linear controller stabilizes successfully the system with required torques in 
250 seconds. 

However, active linear control algorithms, which is a part of combined linear 
controller, generates continuous control signal where propellant is used continuously 
even for very small attitude errors. During design procedure of satellites, amount of 
the propellant is optimized for conjectural attitude orientations and orbital 
maneuvers. As a result, active linear control algorithms may not be useful for such 
thrust system without any additions. The limits of the reaction wheels caused to use 
small control gain matrices for passive linear algorithms, so the control functions 
stabilized the system more slowly. However, matrices with high gains are required 
for passive linear controllers for faster orientations. 

5.5 Sliding Mode Controllers Design 

Sliding mode control system design is performed firstly by determining proper 
switching functions where the system trajectories will be caused to follow the sliding 
manifold, . Then equivalent control term will be used to model passive sliding 
mode control algorithms. Active sliding mode controller will be used to force 
satellite’s attitudes to reach determined boundary layer of the sliding manifold. 
Control system performances will be investigated for small and large attitude angles 
orientations.  

0s =

Sliding manifold design is performed via optimization of cost function (4.3). 
Physical sliding surface consists of input signals from Earth sensor for yaw and pitch 
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attitude angles, from star tracker for yaw, roll and pitch attitude angles, and from 
optic gyro for attitude angle rates and attitude errors. Selected sliding functions (4.6) 
stabilize the dynamic equation of attitude angles presented via Equation (4.9) in 
Figure A2.39 for small attitude angle errors as 1 5degθ = − , 2 7 degθ = , 3 10degθ = − ; 
and in Figure A2.40 for large attitude angle errors 1 45degθ = − , 2 70degθ = − , 

3 50degθ = − . The parameters , ik 1,2,3=i , are selected to minimize the cost 
function (4.3) for ik ρ= +  obtained as 0.3k = . Therefore, Equation (4.9) is 
optimized dynamic equation for sliding mode controllers. Associated design 
variables , , are obtained via Equation (4.10.c) with source code given in 
Appendix A3.5.2 as 

il 1,2,3=i

   [ ]1 2 3 [ 0.15 0.15 0.45]l l l = −                (5.7) 

Passive sliding mode controller may be modeled with general representation of 
equivalent control term selected in Equation (4.14).  Therefore, three equations with 
three controls are considered for each pitch, roll and yaw axes of dynamic system 
(2.50) for physical meaning of equivalent control. Final form of equivalent control 
for the spacecraft is given in Equation (4.29). The positive parameters 1η  and 2η  are 
selected according to the following criteria (5.8): 

  0 1 0                            0.0005sin( t)d dη ω< ⇒ =               (5.8.a) 

  unmodeled dynamics 2 unmodeled dynamics   max 0.005d s dη< ⇒ <                       (5.8.b) 

Equations (5.8) become for small angles orientations as 5degiθ < , , as  1, 2,3i =

1 0 10.0005sin( ) 0.0005      0.0005d tη ω η> = = ⇒ >             (5.9.a) 

5 5
2 unmodeled dynamics 2 0 21 10          0.3 0.0873 1 10s d kη η θ η− −×> = × ⇒ = × >       (5.9.b) 

where  and 4
1 0.01 5 10η −= > × 2

2 0.1 2.62 10η −= > ×  model the nominal moment and 
maximum torque, respectively,  produced by a reaction wheel. 

Thus passive sliding mode control term (4.16) becomes as 

1
2 1( ) ( ( )) (0.1 0.01 ( ))eq eq equ u GB s u s sign s u s sign sη η−= + = + + = + +            (5.10) 

Control function (5.8) describes the passive sliding mode control algorithm which 
simulates speed control of reaction wheels for designed non linear controller. The 
performance of passive sliding mode controller for small attitude errors as 

1 5degθ = − , 2 7 degθ = , 3 10degθ = −  are shown in Figures A2.17, A2.18, A2.19, 
A2.20 and A2.21 for attitude angle errors, angular velocities, switching functions, 
control functions and disturbances, respectively. The chosen spacecraft is stabilized 
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in 50 seconds precisely by passive sliding mode controller with 0.03 Nm maximum 
of inner torque. This is really excellent performance for spacecraft stabilization by 
variable structure control method according to the all possible modeled dynamics and 
bounded disturbances.  

The performance of large attitude errors of the passive sliding mode controller as 

1 45degθ = − , 2 70degθ = − , 3 50degθ = −  are shown in Figures A2.28, A2.29, A2.30 
and A2.31 for attitude angle errors, angular velocities, switching functions, control 
functions and disturbances, respectively. For that case, the satellite is stabilized in 
100 seconds by passive sliding mode controller with 0.15 Nm maximum of inner 
torque. The orientation is performed perfectly; however, required high torque may be 
produced from the second and/or third stand by inner torquers, where 0.075 Nm is 
shared by each reaction wheels. Then, the orientation is physically possible, which 
shows the power of the sliding mode control according to modeled dynamics and 
bounded disturbances with inner torquers for less time of period. 

 

Figure 5.1 Configuration of the attitude thrusters for design example. 

Next, the active sliding mode control algorithm is described with a sliding boundary 
layer where system trajectory is forced to arrive from any arbitrary point via thrusters 
mounted on the spacecraft as shown in Figure 5.1. 

The sliding boundary is selected for stability of the sliding mode controller by 
Equation (4.39). Therefore, sliding manifold boundary layer (4.40) could be 
calculated via source code given in Appendix A3.5.1. It is selected to be 
approximately at  of attitude angles for precise stabilization via passive 
sliding mode controller after system is forced to reach the sliding boundary. Thus, 
sliding boundary is calculated by the program code as 

4deg±

  ( ) [ ]0max 0.0209 0.0209 0.0209s =              (5.11) 
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This means that maximum value of  is 0.0209 rad/s. In design case, boundary layer 
is selected at  rad/s. Therefore, the thrust system will perform on logic with 
1 Nm thrust moment for initial conditions of angular velocity, 

0s

0 0.02s =
0ω = , and attitude 

errors, 3.8197degθ > . The applied torque will be equal to, thrust vector value times 
perpendicular distance of the thrust vector to the center of gravity, which is assumed 
to be unit length of 1 m for assumed configuration of mounted thrusters. The thrust 
system operates with on-off logic and constant thrust value. On-off algorithms are 
designed with variable structure control via setting a dead-band function as (4.36). 

Finally, the scenario of combined controller may be explained as follow. At any 
initial attitude and angular velocity errors with initial value of switching function 

, thrusters operate on logic until system reaches the sliding boundary layer. 
When system reaches the sliding boundary 

0.02>s

0= ±s s , passive sliding mode control 
algorithms force the system trajectories to reach sliding manifold  with very 
small inner torques in short time of period. The performances of small attitude angles 
orientations of the combined sliding mode controller as 

0=s

1 5degθ = − , 2 7 degθ = , 

3 10degθ = −  are shown in Figure A2.22, A2.23, A2.24, A2.25, A2.26 and A2.27 for 
attitude angle errors, angular velocities, switching functions, combined control 
functions, control functions of active and passive controllers and disturbances, 
respectively. It can be seen that the system is stabilized into 30 seconds precisely 
with 0.025 Nm maximum of applied inner torque and only a few thrust via thrusters 
as shown in upper part of Figure A2.26 Note that, the system trajectories are forced 
to reach the sliding boundary in 5 seconds by combined sliding mode controller. 
After stabilization on sliding boundary layer, system trajectories are forced to 
achieve the sliding manifold 0s =  in 25 seconds of time period.  

Orientation of large attitude errors as 1 45degθ = − , 2 70degθ = − , 3 50degθ = −  with 
combined sliding mode controller are shown in Figures A2.33, A2.34, A2.35, A2.36, 
A2.37 and A2.38 for attitude angles errors, angular velocities, switching functions, 
combined control functions, control functions of active and passive sliding mode 
controllers and disturbances, respectively. The spacecraft is precisely stabilized in 30 
seconds by combined sliding mode controller. While a thruster operates, it keeps 
system trajectory and forces them in less than a second on the sliding boundary. 
During on logic of active sliding mode controller, equivalent control term tries to 
affect the system possibly with high control commands larger than that reaction 
wheels may produce. So, gains of equivalent control term should be selected 
carefully. Performances of the thrusters are given in related plots with pulses less 
than 10 seconds. Hence limited propellant is used and precise orientation is done in 
very short time by using combined sliding mode controller. 
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6.  CONCLUSION 

Control problem of a spacecraft is an important topic in automatic control 
engineering. Many studies about attitude stabilization of satellite applications have 
been proposed. In this thesis, a three axis stabilized spacecraft –a communication 
satellite Intelsat V– is selected to investigate attitude dynamics, and to design linear 
and variable structure controllers. Spacecraft kinematics and dynamics are studied to 
recognize how the system operates in circular orbit for attitude motions. The 
satellite’s dynamic model is obtained via linearized rigid spacecraft attitude 
dynamics, gravity gradient torque, dynamic effects of flexible solar panels, a 
sinusoidal effect as external and internal disturbances. The designed passive pole 
placed linear controller, which models reaction wheels, stabilizes the satellite well 
with longer settling time. Additionally, active pole placed linear controller, which 
models thrust system, stabilizes the satellite precisely with short settling time. 
However, it operates continuously that is undesirable for the attitude control system 
due to the limited amount of propellant of the spacecraft. The combined linear 
controller model of flexible spacecraft is obtained with passive and active 
controllers, linearized rigid spacecraft attitude dynamics, a sinusoidal effect as a 
disturbance which consists of flexible solar panels vibration effects, gravity gradient 
torque, sun pressure and other unmodeled external or internal disturbances. On the 
other hand, both active and passive sliding mode controllers constitute combined 
sliding mode controller which stabilizes the system faster than the linear controllers 
according to selected sliding manifold which needs to be designed. The passive 
sliding mode controller supplies inner torques with continuous control signal 
produced by equivalent control term. Beside, the thrust system is used seldom and 
only a few on-off logic operations are done for precise stabilization of the designed 
model of the spacecraft. Nonlinear design for thrust system is sufficient model for 
on-off logic and it depends on the switching functions and selected sliding boundary 
layer. Although, this is a simple design described via a few blocks, it is a 
complicated mathematical model to be studied with. Nonlinear controller model 
includes passive and active controllers with the dynamic model of the satellite. The 
time responses are obtained from Matlab-Simulink block diagrams of the designed 
satellite attitude dynamic model, linear and sliding mode controllers which are given 
to illustrate the considered procedure. 
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Note that, the communication satellite Intelsat V is not operational anymore. 
However, it is similar to the communication satellites used in nowadays. In this 
thesis, the design of variable structure controllers are given as suggested main control 
algorithms for a there axis stabilized spacecraft. Linear controllers are designed to 
show effectiveness of the sliding mode controllers with performances shown in 
Appendices.  

In conclusion, variable structure controllers stabilize the spacecraft precisely in short 
time for considered spacecraft model with selected reaction wheels, thrusters and 
measurement elements such as earth sensors, star trackers, optic gyros and sun 
sensors. Moreover, variable structure controllers include unmodelled dynamics and 
disturbances as described under sliding mode controllers design. Hence, sliding 
mode controllers model the satellite sufficiently enough that makes them useful than 
linear control algorithms in attitude stabilization control of geosynchronous satellites. 
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APPENDICES 

Appendix 1. Controllers' Matlab-Simulink Block Diagrams 

A1.1 Block diagram of the dynamics system 

 

Figure A1.1 Block diagram of the dynamic system [file name: dynamic_system.mdl]. 

 
 

A1.2 Block diagram of the linear controllers 

 
Figure A1.2 Block diagram of the combined linear controller [f.n.: lineer_control.mdl]. 
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A1.3 Block diagram of the sliding mode controllers 

 

Figure A1.3 Block diagram of the sliding mode controller [file name: sliding_mode.mdl]. 

 

 

 

Figure A1.4 Block diagram of the sliding manifold dynamics [f.n.: sliding_manifold.mdl]. 
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Appendix 2. Time Responses of the System and Designed Controllers 

A2.1 Spacecraft Dynamics 

A2.1.1 Small attitude angles simulations for rigid spacecraft 

 
Figure A2.1. Time responses of small attitude errors 1 2 3, ,θ θ θ  of dynamic system.  

 

 

 

 
Figure A2.2 Time responses of angular velocities 1 2, , 3ω ω ω  for small attitude errors of 

dynamic system. 
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A2.1.2 Large attitude angles simulations for rigid spacecraft 

 
Figure A2.3. Time responses of large attitude errors 1 2 3, ,θ θ θ  of dynamic system. 

 

 

 

 
Figure A2.4 Time responses of angular velocities 1 2, , 3ω ω ω  for large attitude errors of 

dynamic system. 
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A2.2 Linear Controllers with Pole Placement 

A2.2.1 Small attitude angles simulations with passive linear controller for rigid 
spacecraft 

 

Figure A2.5 Time responses of attitude errors 1 2 3, ,θ θ θ  for small attitude angles orientation 

of passive linear controller. 

 

 

 

 

Figure A2.6 Time responses of angular velocities 1 2 3, ,ω ω ω  for small attitude angles 

orientation of passive linear controller. 
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Figure A2.7 Time responses of control functions  for small attitude angles 

orientation of passive linear controller. 
1 2 3, ,u u u

 

 

A2.2.2 Small attitude angle simulations with combined linear controller for rigid 
spacecraft 

 

Figure A2.8 Time responses of attitude errors 1 2 3, ,θ θ θ  for small attitude angles orientation 

of combined linear controller. 
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Figure A2.9 Time responses of angular velocities 1 2 3, ,ω ω ω  for small attitude angles 

orientation of combined linear controller. 

 

 

 

Figure A2.10 Time responses of control functions  for small attitude angles 

orientation. Note that, two small inside-plots have same time scale and 

torque scale as .  and  plots represent the passive and active 

control functions, respectively, of combined linear controller. 

1 2 3, ,u u u

( )u t pu au
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A2.2.1 Large attitude angles simulations with passive linear controller for rigid 
spacecraft 

 

Figure A2.11 Time responses of attitude errors 1 2 3, ,θ θ θ  for large attitude angles orientation 

of passive linear controller. 

 
 
 

 

Figure A2.12 Time responses of angular velocities 1 2, , 3ω ω ω  for large attitude angles 

orientation of passive linear controller. 
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Figure A2.13 Time responses of control functions  for large attitude angles 

orientation of passive linear controller. 
1 2 3, ,u u u

 

 

A2.2.2 Large attitude angles simulations with combined linear controller for rigid 
spacecraft 

 
Figure A2.14 Time responses of attitude errors 1 2 3, ,θ θ θ  for large attitude angles orientation 

of combined linear controller. 
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Figure A2.15 Time responses of angular velocities 1 2, , 3ω ω ω  for large attitude angles 

orientation of combined linear controller. 

 

 

Figure A2.16 Time responses of combined control functions  for large attitude 

angles orientation. Note that, two small inside-plots have same time scale 

and torque scale as .  and  plots represent the passive and active 

linear control functions, respectively, of combined linear controller. 

1 2 3, ,u u u

( )u t pu au
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A2.3 Sliding Mode Controllers 

A2.3.1 Small attitude angles simulations with passive sliding mode controller for 
flexible spacecraft 

 
Figure A2.17 Time responses of attitude errors 1 2 3, ,θ θ θ  for small attitude angles orientation 

of passive sliding mode controller. 

 

 

 

Figure A2.18 Time responses of angular velocities 1 2 3, ,ω ω ω  for small attitude angles 

orientation of passive sliding mode controller. 
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Figure A2.19 Time responses of sliding manifolds 1 2 3, ,s s s  for small attitude angles 

orientation of passive sliding mode controller. 

 

 

 

Figure A2.20 Time responses of control functions  for small attitude angles 

orientation of passive sliding mode controller. 
1 2 3, ,u u u
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Figure A2.21 Three in one plot: gravity gradient , flexible membrane effects ( )gG t ( )qM t  

and external disturbance effects such as sun pressure  for small attitude 

angles orientation for passive sliding mode controller. 

( )d t

 

 

A2.3.2 Small attitude angles simulations with combined sliding mode controller for 
flexible spacecraft 

 
Figure A2.22 Time responses of attitude errors 1 2 3, ,θ θ θ  for small attitude angles orientation 

of combined sliding mode controller. 
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Figure A2.23 Time responses of angular velocities 1 2 3, ,ω ω ω  for small attitude angles 

orientation of combined sliding mode controller. 

 

 

 

 

Figure A2.24 Time responses of sliding manifolds 1 2 3, ,s s s  for small attitude angles 

orientation of combined sliding mode controller. 
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Figure A2.25 Time responses of combined control functions  for small attitude 

angles orientation of combined sliding mode controller. 
1 2 3, ,u u u

 

Figure A2.26 Time responses of active  and passive  control 

functions of combined sliding mode controller. 
1 2 3, ,A Au u u A P1 2 3, ,P Pu u u
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Figure A2.27 Three in one plot: gravity gradient , flexible membrane effects ( )gG t ( )qM t  

and external disturbance effects such as sun pressure  for small attitude 

angles orientation for combined sliding mode controller. 

( )d t

 

 

A2.3.3 Large attitude angles simulations with passive sliding mode controller for 
flexible spacecraft 

 

Figure A2.28 Time responses of attitude errors 1 2 3, ,θ θ θ  for large attitude angles orientation 

of passive sliding mode controller. 
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Figure A2.29 Time responses of angular velocities 1 2, , 3ω ω ω  for large attitude angles 

orientation of passive sliding mode controller. 

 

 

 

Figure A2.30 Time responses of sliding manifolds 1 2 3, ,s s s  for large attitude angles 

orientation of passive sliding mode controller. 
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Figure A2.31 Time responses of control functions  for large attitude angles 

orientation of passive sliding mode controller. 
1 2 3, ,u u u

 

 

Figure A2.32Three in one plot: gravity-gradient , flexible membrane effects ( )gG t ( )qM t  

and external disturbance effects such as sun pressure  for large attitude 

angles orientation for passive sliding mode controller. 

( )d t
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A2.3.4 Large attitude angle simulations with combined sliding mode controller for 
flexible spacecraft 

 
Figure A2.33 Time responses of attitude errors 1 2 3, ,θ θ θ  for large attitude angles orientation 

of combined sliding mode controller. 

 

 

 

Figure A2.34 Time responses of angular velocities 1 2, , 3ω ω ω  for large attitude angles 

orientation of combined sliding mode controller. 
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Figure A2.35 Time responses of sliding manifolds 1 2 3, ,s s s  for large attitude angles 

orientation of combined sliding mode controller. 

 

 

 

Figure A2.36 Time responses of combined control functions  for large attitude 

angles orientation of combined sliding mode controller. 
1 2 3, ,u u u
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Figure A2.37 Time responses of active  and passive  control 

functions of combined sliding mode controller. 
1 2 3, ,A Au u u A P1 2 3, ,P Pu u u
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Figure A2.38 Three in one plot: gravity-gradient , flexible membrane effects ( )gG t ( )qM t  

and external disturbance effects such as sun pressure  for large attitude 

angles orientation for combined sliding mode controller. 

( )d t

 

 

 

A2.3.5 Dynamic equation of sliding mode for small attitude angles 

 

Figure A2.39 Time responses of dynamic Equation (4.9) for small attitude angles orientation. 
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Figure A2.40 Time responses of dynamic Equation (4.9) for large attitude angles orientation. 

 77



Appendix 3. Source Codes for Matlab-Simulink Block Diagrams 

A3.1 Dynamic System Initialization 

The source code below is required for ‘dynamics.mdl’ Matlab-Simulink block 

diagram file in Appendix 1.1. 

 dynamic_system_ini.m_ 
 
 clear; 
 clc; 
 
% spacecraft initialization 
 I11 = 3026; % kg.m2 
 I22 = 440;  % kg.m2 
 I33 = 3164; % kg.m2 
 I21 = 0; 
 I12 = 0; 
 I13 = 0; 
 I31 = 0; 
 I23 = 0; 
 I32 = 0; 
 I   = [I11 I12 I13; I21 I22 I23; I31 I32 I33]; 
 k1  = (I22-I33)/I11; 
 k2  = (I11-I33)/I22; 
 k3  = (I11-I22)/I33; 
 n   = (2*pi)/(23*3600 + 56*60 + 4.09054);  % Real Day 
 H_0 = 0;         % N.m.s 
 w_a = eye(3); 
 w_b = [0 0 -n; 0 0 0; n 0 0]; 
 w_c = [0; -n; 0]; 
 
%flexibility 
 s_x2= 1.112^2; % rad/s 
 s_y2= 5.534^2;  % rad/s 
 s_z2= 0.885^2;  % rad/s 
 d_x = 35.865;    % Vkg.m2 
 d_y = 2.532;     % Vkg.m2 
 d_z = 35.372;    % Vkg.m2  
 sq  = sqrt(2); 
 Sig2= [1/s_x2 0 0; 0 1/s_y2 0; 0 0 1/s_z2]; 
 Del = [1/(sq*d_x) 0 0; 0 1/(sq*d_y) 0; 0 0 1/(sq*d_z)]; 
 
% Initial attitude errors... 
 d1  = -5*(pi/180);  % deg => rad 
 d2  = 7*(pi/180);   % deg => rad 
 d3  = -10*(pi/180); % deg => rad 
 

A3.2 Linear Controllers and System Initialization 

The source code below is required for ‘linear.mdl’ Matlab-Simulink block diagram 

file in Appendix 1.2. 

 linear_control_ini.m_ 
 
 clear; 
 clc; 
 
% spacecraft initialization 
 I11 = 3026; 
 I22 = 440; 
 I33 = 3164; 
 I21 = 0; 
 I12 = 0; 
 I13 = 0; 
 I31 = 0; 
 I23 = 0; 
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 I32 = 0; 
 I   = [I11 I12 I13; I21 I22 I23; I31 I32 I33]; 
 k1  = (I22-I33)/I11; 
 k2  = (I11-I33)/I22; 
 k3  = (I11-I22)/I33; 
 d1  = 2.5; 
 d2  = 2; 
 d3  = 2.5; 
 H_0 = 0; 
 n   =(2*pi)/(23*3600 + 56*60 + 4.09054); % Real Day 
 
% Linear Model and Pole Placement 
 A   = [0 1 0 0 0 0; -4*n^2*k1-(n*H_0)/I11 0 0 0 -n*(1-k1)+(H_0/I11) 0; 
        0 0 0 1 0 0; 0 0 -3*n^2*k2 0 0 0; 
        0 0 0 0 0 1; 0 -n*(k3+1)+(H_0/I33) 0 0 -n^2*k3-(n*H_0)/I33 0]; 
 Ba  = [0 0 0; d1/I11 0 0; 0 0 0; 0 d2/I22 0; 0 0 0; 0 0 d3/I33]; 
 Bp  = [0 0 0; 1/I11 0 0; 0 0 0; 0 1/I22 0; 0 0 0; 0 0 1/I33]; 
 C   = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0]; 
 gTa = [1 60 0 0 0 0; 0 0 1 30 0 0; 0 0 0 0 1 60]; 
 gTp = [.1 20 0 0 0 0; 0 0 .1 10 0 0; 0 0 0 0 .1 20]; 
  
% Dfisturbance and attitude errors 
 Dt  = [1 0 1 0 1 0]'; 
 d   = [-45*pi/180; 0; -70*pi/180; 0; -50*pi/180; 0]; 
 

A3.3 Some Linear Controllers Functions 

A3.3.1 Stability check of pole placed linear systems 

The source code below computes the eigenvalues of the linearized system, and 
active, passive and combined linear controllers, respectively. 
 linear_stability.m_ 
 
% stability check for pole placed system 
 lamdaA  = eig(A) 
 lamda_a = eig(A-Bp*gTp) 
 lamda_p = eig(A-Ba*gTa) 
 lamda_c = eig(A-Ba*gTa-Bp*gTp) 
 

A3.4 Sliding Mode Controllers and System Initialization 

The source code below is required for ‘sliding_mode.mdl’ Matlab-Simulink block 

diagram file in Appendix 1.3.  

 sliding_mode_ini.m_  
 
 clear; 
 clc; 
 
% spacecraft initialization 
 I11 = 3026; 
 I22 = 440; 
 I33 = 3164; 
 I21 = 0; 
 I12 = 0; 
 I13 = 0; 
 I31 = 0; 
 I23 = 0; 
 I32 = 0; 
 I   = [I11 I12 I13; I21 I22 I23; I31 I32 I33]; 
 k1  = (I22-I33)/I11; 
 k2  = (I11-I33)/I22; 
 k3  = (I11-I22)/I33; 
 n   =(2*pi)/(23*3600 + 56*60 + 4.09054); % Real Day 
 H_0 = 0.02*sqrt(I11*I33); % N.m.s - Lamda = 0.02 nutation frequency, rad/s 
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% flexibility 
 s_x2= 1.112^2; 
 s_y2= 5.534^2; 
 s_z2= 0.885^2; 
 d_x = 35.865; 
 d_y = 2.532; 
 d_z = 35.372; 
 sq  = sqrt(2); 
 Sig2= [1/s_x2 0 0; 0 1/s_y2 0; 0 0 1/s_z2]; 
 Del = [1/(sq*d_x) 0 0; 0 1/(sq*d_y) 0; 0 0 1/(sq*d_z)]; 
 
% Main system 
 S_a = [0 0 -n*(1-k1)+(H_0/I11); 0 0 0; -n*(k3+1)+(H_0/I33) 0 0]; 
 S_b = [-4*n^2*k1-(n*H_0)/I11 0 0; 0 -3*n^2*k2 0; 0 0 -n^2*k3-(n*H_0)/I33]; 
 w_a = eye(3); 
 w_b = [0 0 -n; 0 0 0; n 0 0]; 
 w_c = [0; -n; 0]; 
 gg1 = [0 0 0; 0 0 -1; 0 1 0]; 
 gg2 = [0 0 1; 0 0 0; -1 0 0]; 
 gg3 = [0 -1 0; 1 0 0; 0 0 0]; 
 dwdt_a = eye(3); 
 dwdt_b = [0 0 -n; 0 0 0; n 0 0]; 
 
% Reaction wheel system 
 R_a = [-1/I11 0 0; 0 -1/I22 0; 0 0 -1/I33]; 
 R_b = [0 0 n/I11; 0 n/I22 0; -n/I33 0 0]; 
 
% Kontrol   => sarı 1, pembe 2, mavi 3; 
 K_1 = [.01 0 0; 0 .01 0; 0 0 .01]; % RW 
 K_0 = [.1 0 0; 0 .1 0; 0 0 .1]; % RW 
 K_T = [1 0 0; 0 1 0; 0 0 1];  % THRS 
 
% sliding manifold design... 
 k   = 0.3; 
 L   = [k 0 0; 0 k 0; 0 0 k];  % theta component 
 L1  = [1 0 0; 0 1 0; 0 0 1];  % w component 
 
% Initial attitude errors -> *** large angle 
 d1  = -45*(pi/180);  % deg => rad 
 d2  = -70*(pi/180);  % deg => rad 
 d3  = -50*(pi/180);  % deg => rad 
 

The source code below is required for ‘sliding_manifold.mdl’ Matlab-Simulink 

block diagram file in Appendix 1.3.  

 Sliding_manifold_ini.m_  
 
% DYNAMICS' VALUES 
 k = 0.3; 
 n =(2*pi)/(23*3600 + 56*60 + 4.09054); % Real Day 
 eff_1 = [0 0 0; 0 0 0; 0 0 n]; 
 eff_2 = [0 0 0; 0 0 0; 0 0 1]; 
 eff_3 = [0 1 0; -1 0 0; 0 0 0]; 
 
% Initial attitude errors -> * small angle 
 theta_e1 = -5*pi/180;  % deg => rad 
 theta_e2 =  7*pi/180;  % deg => rad 
 theta_e3 =-10*pi/180;  % deg => rad 
 

A3.5 Some Sliding Mode Controllers Functions 

A3.5.1 Selection of sliding boundary layer 

Note that, ‘sliding_mode_ini.m’ file has to be executed before the source code below 
run. 
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 sliding_boundary.m_  
 
% selecting max s0 
 w_ini     = abs([0; 0; 0]); 
 theta_ini = abs([d1; d2; d3]); 
 N1 = K_T(1,1); 
 N2 = K_T(2,2); 
 N3 = K_T(3,3); 
 N = [N1; N2; N3]; % always positive number 
 s_initial = w_ini + k*theta_ini; 
 s_0max = N.*(s_initial) 
 

A3.5.2 Calculating parameter  

The source code below calculates vector  in Section 4.1 
 sliding_man_l.m_  
 
% selecting l 
 l = 0.5*[-1 1 -1; -1 1 1; 1 1 1]*[k; k; k] 
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Appendix 4. Sensors and Control Elements  

A4.1 Sensors 

A4.1.1 Earth sensor [IRES-NE, InfraRed Earth Sensor] 
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A4.1.2 Earth sensor [STD -15], (www.sodern.fr) 
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A4.1.3 APS-based sun sensor [STD -15], (www.sodern.fr) 
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A4.1.4 Digital sun sensor [DSS2] 

   SPECIFICATIONS 

    FOV:      ±64°×±60° 

    Accuracy:     0.05°(0°- ±32°) 

    0.1°(±32°- ±64°) 

    Resolution:    28″ 

    Optic head mass:   350g 

    Optic head size:   86×50×30 

    Operating temperature:  -20℃ ～ +50℃ 

    Output:     16bits digital 

    Power dissipation:   0.5W 

    Lifetime:     15 years (in geostationary orbit) 
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A4.2 Control Elements 

A4.2.1 Reaction wheels [BBM/RW] (http://www.deldix.de) 

Ball Bearing Momentum and Reaction Wheels (Standard 
Products)  

TELDIX is the sole commercial manufacturer of ball bearing 
momentum and reaction wheels in Germany and leading 
manufacturer in Europe. 
TELDIX Ball Bearing Momentum and Reaction Wheels are the 
ultimate choice for advanced satellite stabilization. 

Reference Projects 
European Satellite Programs: 
Abrixas, Artemis, Astra-2B, -1K,  
Beppo-SAX, 
Demeter, DFS, 
ECS, ESSAIM, Eurasiasat 1, Europe*Star, EUROSTAR 2000+, 
EUROSTAR 3000 
Eutelsat II, Eutelsat W, 
GE-1E/Sirius-2, 
FBM, 
Hispasat 1A, 1B, 1C, Hot Bird, 
Inspector, ISO, Italsat, 
MARECS, MAROTS, Mars Express, Microscope, 
OTS, 
Parasol, Picard, Proba, Proteus/Jason, 
ROSAT, 
SAR-Lupe, Skynet 4, Spacebus, Stentor, Symphonie A/B, 
TDF-1, TDF-2, Telecom-1, Telecom II, TELE-X, 
TUBSAT-B, Turksat 1, TV-SAT, TV-SAT-2 

International Satellite Programs: 

Agila 2, Amos, Apple, Aqua (PM-1), Arabsat II, Arabsat III, AsiaStar, Aura 
(Chemistry), 
Beidou 1A, 1B, BSat 2a, 2b, 
Chandra (CXO), Chinasat 8, 22, 
DFH3, DFH4,  
Echostar VI, ETS-V, 
FBM, 
GE 5, GOES, 
Inmarsat II, Insat-1D, Insat-2, Insat-3, Intelsat V, Intelsat VII, IRAS, iSKY 
(KaStar) 
KaistSat, KitSat 3, 
METSAT, MOS-1, MS-T5, MT Sat, 
Nahuel, NATO IV, Nilestar, N-Star, NSS-6 (K-TV) 
OmegaSat, Orbcomm, Orion 1, Orion 2, 
PanAmSat 6, 7, 8, Pioneer, Planet-A, 
SBIRS Low, Sinosat, Sirius 1-3, Sky-1, Sky-2, ST-1, Step 4, Superbird, 
Telstar 5, Telstar 6-12, Tempo, Thaicom, 
Worldstar  

Currently 556 wheels installed in 226 launched satellites 
representing 2074 years of accumulated in orbit operation. 

(as of July 2004) 

Momentum and Reaction 
Wheel

RSI 12 4-12 Nms 
with integrated

Wheel Drive Electronics

Momentum and Reaction 
Wheel RSI 45 14-45 Nms 

with integrated
Wheel Drive Electronics

Momentum and Reaction 
Wheel

RSI 68 14-68 Nms 
with integrated

Wheel Drive Electronics

High Torque Momentum & 
Reaction Wheel HT-RSI 

14-68 Nms with integrated 
Wheel Drive Electronics

Momentum and Reaction 
Wheel RDR 68 14-68 Nms 

with external
Wheel Drive Electronics 
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A4.2.2 Thrusters (http://www.space.eads.net) 

 

 

 

 

 87



BIOGRAPHY 

Erkan Abdulhamitbilal was born in Balchik, Varna, Bulgaria in 1977. He was 
graduated from Astronautical Engineering department of Istanbul Technical 
University in 2002. He started his graduate education in ITU in Institute of Science 
and Technology, Aeronautical and Astronautical Engineering program in 2002.  

 

 88


