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VIBRATION ANALYSIS AND SHAPE CONTROL OF A BEAM WITH 
PIEZOELECTRIC PATCHES 

SUMMARY 

Piezoelectric materials have been affirmative subjects to be investigated and very 
popular in engineering applications in the latest researches.  Piezoelectric structures 
are commonly less rigid, so they are more sensitive to enormous vibration problems 
and that is why they are increasingly needed for aerospace applications, likewise they 
provide new important capabilities in military and civilian aerospace applications. In 
particular, there are plenteous studies, which are aimed to estimate to control the 
vibration characteristics of structures with piezoelectrics. In this thesis, first of all, 
shape analysis and control of a beam with piezoelectric patches are examined with 
considering both Euler Bernoulli Beam Theory (EBT) and Timoshenko Beam 
Theory (TBT).  In the determination of structural models, all solutions are performed 
analytically to a beam subjected to different boundary conditions. Moreover, the 
effects of not only different voltage but also piezoelectric patch position on 
frequency and on shape functions of beam are interrogated. With a view to control 
the shape of beam in a good manner and obtaining better results, the errors are 
minimized. Furthermore, how the piezoelectric patches can impose the shape of a 
beam is shown by the obtained solutions.  In addition to all, equations of motion and  
natural frequencies of beams with piezoelectric patches are achieved by means of 
Euler Bernoulli Beam Theory (EBT). 
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PİEZOELEKTRİK YAMALI BİR KİRİŞİN TİTREŞİM ANALİZİ VE ŞEKİL 
KONTROLÜ 

ÖZET 

Günümüzde kullanım alanları oldukça genişleyen piezoelektrik malzemeler, 
araştırma ve geliştirme için uygun konu olarak algılayıcı, kumanda elemanı ve akıllı 
yapıların kullanımında sıklıkla karşımıza çıkmaktadırlar. Piezoelektrik malzemeler 
elektriksel alana maruz kaldıklarında boyutlarında değişiklikler olmakta ve tersi 
durumda boyutsal şekil değişikliklere zorlandıklarında da elektrik sinyalleri 
üretmektedirler. Mekanik gerilmeye maruz kaldıklarında elektrik alan oluşturan 
piezoelektrik malzemeler, yüksek elastisite modülleri sayesinde ana yapının katılık 
ve kütle matrislerine ihmal edilebilir boyutta bir artış sağladığından ana yapıda çok 
sayıda kullanılıp titreşim ve şekil kontrolünün sağlanması işlevini görmektedirler. 
Yan sistemlerin desteğini almaksızın sağladıkları bu özellikleri ile piezoelektrik 
malzemeler havacılık ve uzay sanayinde aktif titreşim kontrolünde yaygın olarak 
tercih edilmektedirler. Bu çalışmada, piezoelektrik yamalı bir kirişin farklı sınır 
koşulları ve farklı yükler altında titreşim analizinin yapılması amaçlanmaktadır. 
Buna bağlı, piezoelektik yamalı bir kirişin Euler-Bernoulli Kiriş Teorisi ve 
Timoshenko Kiriş Teorisi göz önünde bulundurularak şekil fonksiyonu ve şekil 
kontrol analizleri yapılmıştır. Farklı sınır koşulları için kiriş davranışının 
inceleneceği teorik çalışmada, piezoelektrik yama yer değişimi etkisi ve farklı voltaj 
uygulamlarının sonuçları araştırılmıştır. Piezoelektrik yama içeren, farklı sınır 
koşullarına maruz kalmış bir kirişin hareket denklemleri çıkartılmış ve doğal frekans 
hesapları yapılmıştır. Teorinin literatür çalışmaları ile doğrulanmasının amaçlandığı 
bu çalışma ile ülkemizde piezoelektrik malzeme teknolojisinin geliştirilmesi; bu 
sayede bilim ve mühendislik alanlarında kullanımının daha da yaygın hale gelmesi 
sağlanacaktır. 
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1.  INTRODUCTION 

1.1 Background to the Study 

From  the beginning of the world, materials technology has had such a exhaustive 

effect on the evolution of human civilization that  the name of time periods have 

been defined by the materials such as the Stone Age, the Bronze Age, etc. Moreover 

today, with the huge advancement of different material technologies which can be 

called as bio technology, biomimetics, nanotechnology, and information technology, 

can be declared as the Smart Materials Age. [1]  

Smart Materials, which can be described as materials that can significantly change 

their shape, stiffness, viscosity and some other mechanical properties, or their 

thermal, optical, or electromagnetic properties, to give the predictable and 

controllable feedback to their environments. Materials that perform sensing and 

actuating functions, including piezoelectrics, electrostrictors, magnetostrictors, and 

shape-memory alloys.  

The function of smart structures for future aircrafts and space systems is expected to 

implement new and creative methods in military and civilian aerospace applications. 

Piezoelectric materials which can be counted as one of the most important smart 

materials has been  increasingly needed for aerospace applications because of being 

light and less rigid, more sensitive to enormous vibration problems. In particular, 

there are plenteous studies which is aimed to estimate to control the vibration 

characteristics of structures with piezoelectrics. 

1.2 Contents and Scope of This Study  

The goal of this research is to do vibration analysis and shape control of a beam with 

piezoelectric patches, which are exposed to different boundary conditions.  

Chapter 2 gives a detailed literature survey contains two parts. The first part explains 

historical development of piezoelectricity briefly and the second part includes 
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researches about structural modeling of piezoelectric materials, use of piezoelectric 

materials, and recent developments. 

Chapter 3 investigates the trends in the application of the smart structures including 

with both different smart materials and piezoelectric actuators. The theory of 

piezoelectricity, classification of piezoelectric materials and the characteristics of 

piezoelectric materials such as physical, dielectric properties and thermal  

considerations are discussed. Moreover, classification, properties and the 

applications of modern composite materials are explained in this section. 

In chapter 4, first of all, Euler Bernoulli Beam Theory (EBT) and Timoshenko Beam 

Theory (TBT) are explained in detail. And then, relationships between EBT and TBT 

with considering related examples. Furhermore, dynamic analysis of a beam with 

piezoelectric patches is presented. Firstly, equation of motion is obtained and then 

solved. Natural frequencies are calculated. 

Chaper 5 performs that shape analysis and control of a beam with piezoelectric 

patches are examined with considering both Euler Bernoulli Beam Theory (EBT) and 

Timoshenko Beam Theory (TBT).  In the determination of structural models, all 

solutions are performed analytically to a beam subjected to different boundary 

conditions. Additionaly, the numerical analysis of natural frequencies of a beam with 

piezoelectric patches and shape analysis of beams with piezoelectric patches with 

using both EBT and TBT are demonstrated. 
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2.  LITERATURE SURVEY 

2.1 Historical Development of Piezoelectricity 

Historical details about piezoelectricity can be easily found in literature, meanwhile 

the word piezoelectricity derives its name from the Greek language piezo or piezin, 

which means to squeeze or press, and the literal translation of piezoelectricity is 

pressure electricity with this prefix piezo-. In science, it exactly shows the certain 

materials and substances which have the special characteristics of generating a 

charge or voltage when they are exposed to pressure.  And oppositely, when an 

electrical field is applied to these materials, there occurs some specific changes on 

their shapes.  

In the mid-18th century Carl Linnaeus and Franz Aepinus studied the pyroelectric 

effect which means if a temperature change occurs in a material, then in response, an 

electric potential is generated.  Due to this knowledge, René Just Haüy and Antoine 

César Becquerel postulated a correlation between mechanical stress and electric 

charge; aside from the experiments which were found inconclusive by both 

scientists.  

Furthermore, The brothers Pierre Curie and Jacques Curie presented the first 

demonstration of the direct piezoelectric effect was in 1880. Comparing and 

understanding the pyroelectricity and crystal structures, they got the ability for 

predicting crystal behavior, and demonstrated the effect using crystals of tourmaline, 

quartz, topaz, cane sugar, and Rochelle salt (sodium potassium tartrate tetrahydrate) 

in which the piezoelectricy is exhibit most in Quartz and Rochelle salt. 

However, the converse piezoelectric effect was not predicted by The Curies, Gabriel 

Lippmann mathematically deduced from fundamental thermodynamic principles in 

1881. And immediately the existence of the converse effect was confirmed by The 

Curie Brothers, and they obtained quantitative proof of the complete reversibility of 

electro-elasto-mechanical deformations in piezoelectric crystals. 

From its discovery until early in the twentieth century, piezoelectricity was 

predominatelya scientific curiosity. [2]During World War I, sonar which was the first 

http://en.wikipedia.org/wiki/Tourmaline�
http://en.wikipedia.org/wiki/Quartz�
http://en.wikipedia.org/wiki/Topaz�
http://en.wikipedia.org/wiki/Sugar_cane�
http://en.wikipedia.org/wiki/Sugar�
http://en.wikipedia.org/wiki/Rochelle_salt�
http://en.wikipedia.org/wiki/Gabriel_Lippmann�
http://en.wikipedia.org/wiki/Gabriel_Lippmann�
http://en.wikipedia.org/wiki/Gabriel_Lippmann�
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practical application for piezoelectric devices first developed. In France in 1916, Paul 

Langevin and his friends developed an ultrasonic submarine detector which is the  

first engineering use of piezoelectricity. While the device was quite cheap and 

simple, it was the prototype to the sonar devices in widespread use today. 

The success of using piezoelectricity in sonar created great interest of development 

in piezoelectric devices. Over the next few decades, new piezoelectric materials and 

new applications for those materials were investigated and developed. The 

microphone and the crystal phonograph pickup were improved during the  1930’s 

and in the mid-1930’s, The crystal ADP (ammonium-dihydrogen-phosphate) was 

developed which has the strong piezoelectric characteristics of Rochelle salt. EDT 

(ethylene diamine tartrate) , DKT (dipotassium tartrate) ,BaTiO3(), and ADP are the 

significant materials among the many piezoelectric crystals to be discovered during 

the period of time from the 1930's through the 1950's. [2] 

From the invention of piezoelectricity to nowadays, countless complex theories have 

been suggested about piezoelectricity which  is very popular subject among 

scientists. First researches about piezoelectricity in literature are on finite and infinite 

various geometries such as thin beams, plates, disks and circular  or cylindrical 

shells. Likewise, there are numerous studies on static or dynamic analysis of both 

whole piezoelectric materials and beams or plates which have piezoelectric layers or 

patches. With all these researches, a wide range of piezoelectric devices have been 

developed and applied multifarious usage areas. 

2.2 Structural Modeling of Piezoelectric Materials 

Since Pierre Curie first discovered the piezoelectric effect in 1880, nowadays the 

piezoelectricity finds wide application areas in the electrical, mechanical and 

aerospace engineering. Moreover, a number of piezoelectric devices which have 

been researched with huge involvement by scientists, have been generated and a 

great deal of  complicated theories about piezoelectricity has been suggested.  

First studies about piezoelectric effects have been about finite and infinite different 

geometrical structures such as thin beams, plates, disks and circular cylindrical 

shells. Also, there are plenty of researches about static or dynamic analysis of  both 

whole piezoelectric materials and some structures which contain piezoelectric 

materials as bonding layers or adhesive patches. 
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In 1987, Crawley and Louis presented a study, which is the initiator of both analytic, 

and experimental searches about beams contain piezoelectric actuators. [3] They 

proposed a viable concept covers analytical solution for various actuator geometries 

on the purpose of vibration suppression. It is important cause of including 

investigation about not only isotropic but also composite beams and the derived 

static models are compared at each case.  

There are numerous studies for the use of piezoelectric materials on beams in 

aerospace. Especially, to examine the vibration analysis of beams, which have 

piezoelectric actuators/sensors, appears in literature. Abramovich and Livshits 

studied the dynamic behavior of composite beams, which have uniform piezoelectric 

layers. They considered a First-order Timoshenko type analysis and presented 

numerical results for a variety of parameters of laminated beams with piezoelectric 

layers. [4] 

In later years, Waisman and Abramovich suggest an active stiffening strategy. In the 

model, they studied the influence of the induced strains generated by piezoelectric 

patches on the dynamic behavior of a laminated composite beam, mode-shapes are 

numerically obtained and the results are compared with finite element analysis code. 

[5] And more, Abramovich et al developed different studies to realize the effects of 

piezoelectric usage which are about investigating the static behavior of piezoelectric 

actuated beams, explaining natural frequencies of beams contains piezoelectric 

patches, damping composite beams with piezoelectric layers and controlling the 

deflection of laminated composite beams with piezoceramics. [6] Also, Fridman and 

Abramovich researched the structural behavior of laminated composite beams consist 

of piezoelectric layers under axial compression using both analytically and 

numerically. [10] 

Nir and Abramovich suggested a new design concept for smart wing. They used an 

airfoil skin made of passive composite materials combined with active layers of 

piezoceramic material in their design. The airfoil twists and its aerodynamic 

characteristics changes when an electric field is applied on the piezoelectric layers. 

These help to develop the optimization of design and to get high actuation twist 

angles and to be rigid enough to take on aerodynamics loads with minimum 

deflection. [11]  

The active control of panel flutter including linearized potential flow aerodynamics is 

investigated by using direct rate feedback (DRFB) control scheme. This is 
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implemented by using a piezoelectric transducer simultaneously as a sensor and 

actuator. [12] 

In the work of Lim et al, examination of the vibration controllability of structures, 

which feature piezoelectric sensors and actuators with finite element analysis in the 

frequency domain, is displayed. [13] 

Tzou and Ye examined not only pyroelectric but also thermal strain effects of pvdf 

and pzt devices using a new 3D thin piezothermoelastic solid finite element on a 

piezoelectric laminated square plate. Their analyses suggest that the pyroelectric 

effect of PVDF sensors is much more prominent than the thermal strain effect, on the 

other hand the PZT sensors exhibit the opposite phenomena. [14] 

Brennan et al worked on strategies for the active control of flexural vibration on a 

beam. In their study, a model of the secondary source array is developed and coupled 

into the beam dynamics by using the wave approach to explain the behavior of the 

beam when three active control strategies are applied. [15] 

In 1995, Hall and Prechtl designed a servoflap which has a piezoelectric bender to 

deflect a training edge flap use on a helicopter rotor blade which is an improvement 

of a study developed previously at MIT.  [16] Furthermore, the paper about shape 

and placement of piezoelectric sensors for panel flutter limit-cycle suppression is 

presented in 1995. A method to design sensors (position and rate sensor) for panel 

flutter suppression is implied and the shape and location of sensors are depended on 

the control feedback gain. By using the shaped sensors  designed with this recent 

approach,  numerical simulation is illustrated for panel flutter suppression. [17] 

Zhang and Kirpitchenko, in 2000, clarified a new model for understanding dynamics 

of passive structural control of a continuous structure with piezoelectric patches by 

means of suppression analysis of cantilevered beam subjected to an existing force. 

[18] 

Lee and Elliott studied on active position control of a beam with piezoceramic 

actuators bonded on either side using control strategy  that is based on internal model 

control architecture in 2000. [19] Another different study shows a new model for 

robust design of flexible structures by the use of piezoelectric actuators to do 

structural control with finite element analysis via using Hamilton’s principle. [20] 

A year after in 2001, Yaman et al presented a study about an active vibration control 

technique applied to a smart beam with surface bonded piezoelectric (PZT) patches. 

They implied the effects of element selection of the finite element modeling by using 
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ANSYS package program. An active vibration controller, which effectively 

suppresses the vibrations of the smart beam due to its first two flexural, is designed 

and H∞ controllers’ application achieved the vibration suppression. [21] 

Sloss et al illustrated an integral equation approach for piezoelectric patch control in 

2001. In their research, it is shown that there is an equivalence between the Eigen 

solutions of the differential equation formulation of the problem and the Eigen 

solutions of a certain integral equation. [22] Also, Li et al formulated a new optimal 

design methodology for the placement of piezoelectric actuator and the feedback 

gains in vibration suppression of flexible structure and the procedure that they 

developed leads to solutions that are independent of initial conditions of the flexible 

structure. [23] 

Wang observed the ability of controlling vibration of beam structures with 

piezoelectric actuators and asserted that the optimal placement of piezoelectric 

actuators can be determined with his new method. [24] 

In 2002, Park studied on the modeling of the resonant shunting damper that includes 

the additional damping mechanism generated by the shunt damping effect. The 

problem is solved using Hamilton’s principle and the theoretical model is verified 

experimentally. As a result, it is achieved that resonant shunting damper obtains an 

effective means for vibration control. [25] 

Singh et al introduced some new strategies for active control of vibrations and they 

compared their theory with the other methods of modal space control which are the 

independent modal space control (IMSC) and modified independent modal space 

control (MIMSC)in 2002. [26] At the same year, Wang and Quek presented the use 

of a pair of piezoelectric layers in increasing the flutter and buckling capacity of a 

column subjected to a follower force with considering a string at the end of the beam 

which has piezoelectric patches. [27] 

One year after in 2003, Moon and Kim demonstrated a new optimal active/passive 

hybrid control design with piezoceramic actuators to achieve suppression of 

nonlinear panel flutter using finite element methods. [28] Numerical and 

experimental results of active compensation of thermal deformation of a composite 

beam using piezoelectric ceramic actuators is studied by Song et al, in 2003, and they 

considered a beam which has two film heaters are bonded to only one side, with the 

aim of introducing thermal distortion using thermally conductive materials.[29] 
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According to Tsai, structural vibration suppression via piezoelectric shunted network 

is less temperature dependent compared with mechanical passive damping and 

additionally he examined general modeling of a resonant shunting damper which has 

been made from piezoelectric materials. [30] 

Another interesting paper is presented in 2003 by Dadfarnia et al. [31] They 

proposed a control strategy which is observed based and modeled as a flexible 

cantilever beam with translational base support for modeling the problem of a 

Cartesian robot arm. 

In 2004, Lin and Nien investigated the modeling and vibration control of a smart 

beam using piezoelectric damping-modal actuators/sensors. [32] And Suleiman and 

Costa searched the active aero elastic control using piezoelectric actuators to full 

aircraft configurations and the application of piezoelectric shunts. [33] 

Han et all involved active flutter suppression of a sweptback cantilevered lifting 

surface using piezoelectric actuation by finite element method, panel aerodynamic 

method, and the minimum state–space realization in 2005. [34] 

Shih et al, in 2005, presented the general opto-piezothermoelastic equations for 

simulating multifield-coupled behavior of photostrictive optical actuators. By the 

help of these models, the capability to estimate the response of the structural member 

to a command illumination applied to the patched photostrictive actuator is obtained. 

[35]  

Besides in 2005, Kapuira and Alam developed the coupled efficient layer wise 

(zigzag) theory  and they analyzed  the dynamic analysis of hybrid piezoelectric 

beams of an one-dimensional beam finite element with electric degrees of freedom. 

[36] And also, Moon and Hwang presented a study to improve a model to suppress 

the flutter of a supersonic composite panel using piezoelectric actuators [37] 

In 2006, Lin and Liu illustrated a study to minimize structural vibration using 

collocated piezoelectric actuator/sensor pairs with the help of a novel resonant fuzzy 

logic controller (FLC) and enhance the performance of a flexible structure with 

resonant response.[38] 

As well in 2006, Nyugen and Pietrzko explained a simulation of adaptive structures 

with shunt circuits using Finite Element Analysis with an experiment which consists 

in an aluminum cantilever beam actuated by a PZT patch. [39] More, Moon 

contemplated  an active control law which depended on finite element modal 

analysis and have direct output feedback, with the aim of analyzing the for flutter 
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suppression of the composite plates with piezoelectric layers exposed to not only 

aerodynamic but also thermal loads by aerodynamic heating. [40] 

Raja et al illustrated a paper about flutter control of a smart plate with multilayered 

piezoelectric actuators based on the theory of Linear Qaudratic Gaussian output 

controller in 2006.[41] 

Maurini et al, in 2006, investigated different numerical methods for modal analysis 

of a stepped piezoelectric  beams modeled by Euler-Bernoulli Beam Theory and the 

numerical results are validated with experimental data. [42] 

In 2007, Bhadbhade et al. [43] investigated a new type of vibrating mass gyroscope 

consists of a vibrating mass, which is driven in a primary direction, and attached to a 

rotating base. In their new model, there are piezoelectric actuators placed on the 

surface of the beam that induce the flexural vibration. 

Kıral et al presented a study on active control the residual vibrations of a clamped-

free beam subjected to a moving load. They considered both experimental and 

numerical methods by using finite element analysis package ANSYS in 2007. [44] 

With the aim of modeling the axial and transverse response caused by the 

piezoelectric actuator and the characteristics of the voltage-generated piezoelectric 

forces, a different approach to exciting a one-dimensional structure with 

discontinuities using a piezoelectric actuator is examined. [45] 

Qui and et al studied the design of an acceleration sensor based active vibration 

control for a cantilever beam with bonded piezoelectric patches. Suppression of the 

vibrations of a flexible beam by using a non-collocated acceleration sensor and 

discrete PZT patch sensor/actuator is aimed in this workout. Moreover, they 

presented acceleration sensor based control methods and compared with both 

experimental results and commercial finite element code ANSYS. [46] 

Mahieddine and Ouali developed a model of finite elements for beams with 

piezoelectric sensors and actuators found on first order Kirchoff theory with 

considering lateral strains in 2008. [47] 

Another effective method for suppressing the vibration of flexible structures with the 

sensors/actuators is based on the Linear Quadratic Gauss (LQG) optimal control 

method in 2010. [48] 

In addition to all above, researching into shape control of beams with piezoelectric 

materials is the needed answer for a lot of analytical problems and important for the 

design and analysis of such a piezoelectric smart structure. In 1996, Donthireddy and 
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Chandrashekhara developed a layerwise theory for laminated composite beams with 

piezoelectric actuators and demonstrated the influence of various parametric studies 

such as boundary conditions, ply orientation, etc., on the change in shapes of beams 

with piezoelectric materials. [49] Moreover, Wang et al, in 1999, figured out the 

shape control of laminated beams with piezoelectric actuators with a formulation 

adopted the first order shear deformation beam theory of Timoshenko (1921). [50] 

Subsequently, Yang and Ngoi presented analytical solutions of the deflection of a 

beam induced by not only piezoelectric actuators but also external forces, and they 

gave the detailed local shape information activated by piezoelectric materials for 

different boundary conditions. [51] 
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3.  PIEZOELECTRIC MATERIALS 

3.1 Smart Structures with Different Smart Materials  

Recent years, as a result of increasing space activities, the use of lightweight and 

flexible structures is becoming more efficient to lessen the high cost of lifting the 

mass into orbit. , the vibrations once submitted to grow to large amplitudes owing to 

the flexibility in the system. Adding external passive damping to the system is not 

productive and desirable because of having more weight.  This makes studies 

orientate to search the active and passive control.  

Shen [52] gives the definition of “adaptive structures” or “smart structures” as the 

types of structures that are lighter, stronger, more durable and can be applied to a 

number of flight vehicles ranging from helicopters to interplanetary spacecraft, plus 

which are able to sense, to respond, and to control their own characteristics and 

states, so as to achieve much higher levels of operational performance to meet 

mission requirements. 

Smart Materials can be defined as the materials that have one or more properties that 

can be significantly altered in a controlled fashion by external stimuli; such has 

electrical fields, magnetic fields, stress, moisture etc. Smart Materials convert one 

form of energy to another, so it can be said that they are a kind of transducers. 

Piezoelectric materials, Shape Memory Alloys, Electrostrictive Materials, 

Magnetostrictive Materials, Electrorheological (ER) Fluids, Magnetorheological 

(MR) Fluids, and Fiber Optic Sensors are the main smart material types. 

• Shape memory alloys (SMA): These materials are a special class of metallic 

alloys that exhibit a shape transformation when temperature changes. If a shape 

memory alloy is inclined in its low temperature condition and the stresses are 

removed, it reaches again its original shape by phase transformation to its high 

temperature condition when exposed to heat. In addition, the process is repeatable 

with great accuracy. 
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In addition, some materials such as copper, nickel, titanium and zinc alloys along 

with others can exhibit the shape recovery effect.  Shape memory alloys are used 

almost merely used as an actuator material, the most popular SMA material is Nickel 

Titanium Alloy, or Nitinol, which is useable in the form of wires and films. [53]  

SMAs can be plastically deformed at relatively low temperature and their ability can 

provide a low mass and power structure. 

• Electrostrictive materials: These materials behave like piezoelectric materials 

but they differ from piezoelectrics in their response to the electric field and they are 

not poled. Although they have better strain capability and  exhibit quicker response 

time than piezoelectric materials, the Electrostrictive materials shows more 

sensitivity to temperature variaton. Electrostrictive materials strain proportionally to 

the square of the applied voltage of the applied electric field. One of the most 

common materials is Lead-Magnesium-Niobate or PMN. [53]  

• Magnetostrictive materials : Magnetostriction can be defined as  the material 

property that causes a material to change its dimensions when it is exposed to an 

electro-magnetic field. Nominately, Magnetostrictive materials produce mechanical 

stress when subjected to magnetic field or vice versa. 

Due to characteristics of magneto strictive materials they can be executed as 

actuators by applying a magnetic field, or sensors by measuring the magnetic field 

that they produce that is why they can be used as both actuators and sensors. The 

main advantage of these materials is the high force capability while its brittleness, 

heavy weight and high hysteresis in their response to the applied magnetic field are 

the some disadvantages of them.  

One of the most popular Magnetostrictive materials is Terfenol-D, which produces 

relatively low strains, moderate forces over a wide frequency range, and has giant 

magnetostriction at room temperatures. [54] 

• Electrorheological (ER) fluids :These fluids are a special fluids that has phase 

change characteristic transforming to solid when they exposed to an electric field. 

They give response to electricity in their viscosity, elasticity, and plasticity behavior. 

Besides, they have has a very fast response characteristic to the electric field and 

hence wide control bandwidth. They appear in research activities in the development 
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of various engineering applications including shock absorbers, engine mount and 

smart structures. [55] 

Electrorheological  fluids behave like Newtonian fluids under no electric field 

conditions, but with the implementation of an electric field, these fluids behave 

similarly to Bingham plastics which behave as a rigid body at low stress but flow as 

viscous fluid at high stress. 

• Magnetorheological (MR) fluids : These fluids are similar to Electrorheological  

fluids, when they subjected to a magnetic field, their apparent viscosity greatly 

increases to become a viscoeleastic solid. Magnetorheological Fluids have extremely 

higher densities  and lower voltage requirements than Electrorheological  fluids. [55] 

• Fiber optic sensors: Fiber Optics are special type of sensors that transmit a light 

signal through the fiber and measure the return signal with the change of the signal 

properties determining the effects at the site of the sensor. Based on the light 

intensity, phase, frequency or the polarization, there are four types optical fiber 

sensors that are referred as intensiometric, interferometric, polarimetric and 

modalmetric sensors. [54] 

3.2 Piezoelectricity 

3.2.1 Theory of piezoelectricity 

The piezoelectric effect can be defined as the linear electromechanical interaction 

between the mechanical and the electrical state in crystalline materials. To 

understand well,  A piezoelectric ceramic can be considered which is a mass of 

perovskite crystals. In the piezoelectric ceramic  each crystal is composed of a small, 

tetravalent metal ion placed inside a lattice of larger divalent metal ions and O2, as 

shown in Figure 1. At section (a),  The unit cell has cubic geometry above the Curie 

temperature is shown and at section (b), the unit cell structure is tetragonal with Ba2+ 

and Ti4+ ions displaced relative to the O2-  below the Curie temperature is 

demonstareted. [56] 
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Figure 3.1:  The crystal structure of perovskite barium titanate before and after 

polarization  [56] 

Fine powders of the component metal oxides are mixed in specific proportions and 

then this mixture is heated to form a uniform powder to prepare a piezoelectric 

ceramic. An organic binder is mixed with the powder and is formed into certain 

shapes such as discs, rods, plates. After, these elements are exposed to heat for a 

specific time, this process gives that the powder particles sinter and the material 

forms a dense crystalline structure. The elements are then cooled and, if needed, 

trimmed into specific shapes. Finally, electrodes are applied to the appropriate 

surfaces of the structure. [57] 

Curie temperature which can be defined as  the temperature at which spontaneous 

polarization is lost on heating is the critical point for piezoelectric crystals. Above 

this critical temperature each perovskite crystal in the heated ceramic element 

exhibits a simple cubic symmetry  with no dipole moment, as demonstrated in Figure 

3.2 on left.  As it seen in the 3.2 on right, each crystal has tetragonal symmetry and 

eventually  a dipole moment at temperatures below the Curie temperature which 

means that this compliance gives a net dipole moment and a net polarization.  

As represented in Figure 3.2  (a) there is a random directional of polarization among 

neighboring domains and the ceramic element has no overall polarization.  



 

  15 

 

Figure 3.2: The polarization process of piezoelectric structure  [56] 

When a strong, DC electric field is exposed to the element, the domains in a ceramic 

element are aligned as shown at Figure 3.2 (b) at a temperature slightly below the 

Curie temperature. This is called the poling process and after the poling treatment, 

domains most nearly aligned with the electric field expand at the expense of domains 

that are not aligned with the field, and the element expands in the direction of the 

field. 

Finally, Figure 3.2 (c) demonstrates the behavior of poles after the electric field is 

removed. Most of the dipoles are locked into a configuration of near alignment. 

Now, it seems that a permanent polarization occurs and the increase in the length of 

the element, however, is very small, usually within the micrometer range.  

If piezoelectric material is subjected to a force, surface charge is induced by the 

dielectric displacement, hence an electric field is occurred. As it appears in Figure 

3.3, on applied electrodes this field can be distributed as electrical voltage or like 

Figure 3.4, if the electrodes are shorted, the surface charge balance out by a current. 

This effect explains exactly the direct piezoelectric effect.   
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Figure 3.3: The direct effect with the piezoelectric material in open circuit. [56] 

 

 

Figure 3.4: The direct effect with the piezoelectric material shorted. [56] 

The mechanical behavior of a piezoelectric ceramic element and the properties of 

being poled are shown in Figure 3.5. Giving mechanical tension or compression to 

the piezoelectric element makes change into the dipole moment, creates voltage. If 

the material is subjected to compression along the polarization direction, or tension 

perpendicular to the polarization direction, it creates voltage of the same polarity as 

the poling voltage as seen in the Figure 3.5 (b).  

On the other hand, as it clearly seems in  the Figure 3.5 (c) that having tension along 

the direction of polarization, or compression perpendicular to that direction, 
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generates a voltage with polarity opposite to that of the poling voltage. This 

phenomenon explains how the device is being used as a sensor, , the ceramic element 

transforms the mechanical energy of compression or tension into electrical energy. 

If the ceramic element is being applied  a voltage of the same polarity as the poling 

voltage, as demonstrated in the Figure 3.5 (d), it will lengthen and so its diameter 

will become smaller Besides, if a voltage of polarity opposite to that of the poling 

voltage is applied, the element will become shorter and broader Figure 3.5 (e).  

 

Figure 3.5: The reaction of a poled piezoelectric element. [56] 

 

3.2.2 Classification of piezoelectric materials 

Nowadays with the help of high technology, a variety of piezoelectric materials are 

being synthesized and optimized. As a consequence piezoelectric-based devices are 

undergoing a revolutionary development, specially for medicine and aerospace 

applications.  There are several  types of applications in piezoelectric materials usage 

areas which can be asserted as piezoelectric ceramics, piezoelectric single crystals, 

piezoelectric thin films, piezoelectric polymers , piezoelectric composites and 

piezoelectric coatings.   

Variations of lead zirconate titanate and Barium titanate are the most commonly used 

piezoceramic materials in structural control and  sensing and acoustics applications. 

The properties of these materials vary significantly due to small alterations in the 

constituent materials. A huge number of piezoceramic materials have been produced 

by small variations and additions to the constituent material over the past 50 years . 

They can be behaved like not only piezoelectric sensors, but also piezoelectric 

actuators.  
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Direct piezoelectric effect which can be simply described as w a piezoelectric 

transducer is mechanically stressed, it generates a voltage makes piezoelectric 

transducers suitable for sensing applications. Piezoelectric sensors which are 

compact, easy to embed and require moderate signal conditioning circuitry also 

suitable for applications that involve measuring low strain levels. They can be 

described as devices that use the piezoelectric effect to measure pressure, 

acceleration, strain or force by converting them to an electrical signal. 

Meanwhile, piezoelectric actuators convert electrical energy into a mechanical 

displacement or stress using a piezoelectric effect.  Various types of piezoelectric 

actuators utilizing the piezoelectric effect of piezoelectric elements have been 

developed in recent years by the mean of good responsiveness and conversion 

efficiency of piezoelectric elements. They have the advantage of a high actuating 

precision and a fast reaction. 

3.2.2.1 Piezoelectic ceramics 

It can be said that from the lead zirconate titanate (PZT) family comprises the usage 

of most of the piezoelectric materials, because of their excellent piezoelectric 

parameters, thermal stability, and dielectric properties. Additionally the properties of 

this family can be modified by changing the zirconium to titanium ratio or by 

addition of both metallic and non-metallic elements. Furthermore, piezoelectric 

ceramics can be divided two types depending on the by different formulations; which 

are soft and hard piezoceramics. Soft ceramics are characterized by large 

electromechanical coupling factors, large piezoelectric constants, high permittivity, 

large dielectric constants, high dielectric losses, low mechanical quality factors, and 

poor linearity. Moreover, soft ceramics produce larger displacements and wider 

signal band widths, relative to hard ceramics, but they exhibit greater hysteresis, and 

are more susceptible to depolarization or other deterioration. Lower Curie points 

which is generally below 300°C, dictate that soft ceramics be used at lower 

temperatures, large values for permittivity and dielectric dissipation factor restrict or 

eliminate soft ceramics from applications requiring combinations of high frequency 

inputs and high electric fields. Consequently, soft ceramics are used primarily in 

sensing applications, rather than in power applications. 

Hard ceramics which  have characteristics generally opposite soft ceramics, 

including Curie points  above 300°C, small piezoelectric charge constants, large 
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electromechanical coupling factors, and large mechanical quality factors are difficult 

to polarize or depolarize. Hard piezoceramics cannot produce the same large 

displacements in spite of generally being more stable than soft piezoceramics. Hard 

ceramics are capable of withstanding high mechanical stress and high electrical 

excitation levels. These materials are well suited for application of high voltage, or as 

high power generators and transducers. These materials generally have low loss 

factors and high mechanical quality. 

Characteristic Soft Ceramic Hard Ceramic 
Piezoelectric Constants Larger Smaller 
Permittivity Higher Lower 
Dielectric Constants Larger Smaller 
Dielectric Losses Higher Lower 
Electromechanical Coupling Factors Larger Smaller 
Electrical Resistance Very High Lower 
Mechanical Quality Factors Low High 
Coercive Fields Low Higher 
Linearity Poor Better 
Polarization/Depolarization Easier More difficult 
 
In addition to all above, ternary ceramic materials, lead metaniobate, as well as, 

barium and modified lead titanates are popular piezoceramic materials. 

Some characteristics of piezoceramic materials can be seen in Table 3.2, where Qm 

is the mechanical quality factor, Tc is the Curie point, d31 is the the transverse charge 

coefficient, and kp, kt and k31 are the electromechanical coupling factors for planar, 

thickness, and transversal mode respectively. 

Material Property PZT 
modified 

Lead 
metaniobate 

PSZNT 
31/40/29 

PZT, 
x=0.5 

PSN-
PLT 

Qm 350 40 222 74 41 
Tc (oC) 290 462  369 152 
d31 (×10

-12
  C/N)     -79 

kp 0.5  60  30.7 
kt  0.32  0.438 - 
k31  0.21  0.263 17.9 
 

Additionally, the latest development in piezoceramic fibers is the modification of the 

viscous-suspension-spinning process (VSSP) for the production of continuos 

Table 3.1: The properties of soft ceramics and hard ceramics.  

Table 3.2: The selective parameters for piezoceramic materials. [67] 
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piezoelectric ceramic fibers for smart materials and active control devices, such as 

transducers, sensor/actuators and structural-control devices. 

Synthesis of reactive PZT precursor powder by the oxalate coprecipitation technique 

has also been developed. The precursor transforms to phase pure PZT at or above 

850 °C the PZT obtained by this technique showed a Curie temperature of 355 °C. 

The advantages of the coprecipitation technique are the lack of moisture sensitive 

and special handling precursors. 

Although new materials have been investigated with the purpose of create 

replacements for ceramics, there has been a great improvement in their properties 

and, current research is focused in the development of new techniques for both 

synthesis and processing.  

3.2.2.2  Piezoelectric single crystals 

Berlinite, Cane sugar, Quartz, Rochelle salt, Topaz and Tourmaline-group minerals 

are Naturally-occurring crystals which helped the discover the piezoelectric effect 

and they also have been proves of piezoelectricity in early years.  

Meanwhile, there are other numerous natural materials such as dry bone, exhibit 

some piezoelectric properties Tendon, Silk, Wood due to piezoelectric texture, 

Enamel, Dentin and some man-made crystals,  quartz analogic crystals such as 

Gallium orthophosphate (GaPO4) and Langasite (La3Ga5SiO14).  Also  the fast 

development of the electronic technology necessitate new piezoelectric crystals with 

a high thermal stability and large electromechanical coupling factors. 

While the piezoceramics dominate the single crystal materials in usage, single 

crystals piezoelectrics continue to make important contributions both in price-

conscious consumer market and in performance - driven defense applications. Areas 

such as frequency stabilized oscillators, surface acoustic wave devices and filters 

with a wide pass band, are still dominated by single crystals. 

3.2.2.3  Piezoelectric thin films 

In recent days, deposition of piezoelectric thin films have had huge interest, within  

Micro Systems Technology (MST) or MEMS (Microelectromechanical systems) 

devices applications; while the aim is to investigate sensors and actuators based on 

PZT films with Si semiconductor-based signal processing; and for surface acoustic 

wave (SAW) devices. The main goal is to achieve higher electromechanical coupling 
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coeffcient and temperature stability. The development of suitable measurement 

facilities to characterise the materials functional properties is complicated by the fact 

that the film is often attached to a substrate which acts to clamp the film thus 

affecting the system performance.  

3.2.2.4 Piezoelectric polymers 

In 1969, Kawai et al  observed the strong piezoelectricity of polyvinylidene fluoride 

(PVDF) and  this invention of piezoelectricity in polymeric materials was considered 

as an indication of a renaissance in piezoelectricity. PVDF is a highly non-reactive 

and pure thermoplastic fluoropolymer and it is stated that the piezoelectric 

coefficient of poled thin films of the material 10 times larger than that observed in 

any other polymer. [59] 

PVDF exhibits piezoelectricity several times compared to quartz. When an electric 

field is applied, it behaves unlike ceramics, where the crystal structure of the material 

creates the piezoelectric effect, in polymers the intertwined long-chain molecules 

attract and repel each other. 

It is stated that the degree of crystallinity and the morphology of the crystalline 

material have profound effects on the mechanical behavior of polymers. 

Additionally, in order to induce a piezoelectric response in amorphous systems the 

polymer is poled by application of a strong electric field at elevated temperature 

suffcient to allow mobility of the molecular dipoles in the polymer. Recent 

approaches have been focused in the development of cyano-containing polymers, due 

to the fact that cyano polymers could have many dipoles which can be aligned in the 

same direction. [58] 

3.2.1.5 Piezoelectric composites 

Piezocomposites  have been accomplished by the combination of piezoelectric 

ceramics and polymers, the concluding material posses both the high piezoelectric 

properties of ceramics and the processability of polymers. Different type of 

piezocomposites have found wide applications as medical and industrial ultrasonic 

transducers. Polishing and poling are the following steps in order to achieve the final 

thickness and properties. 

Additionaly, piezoelectric composites specify  the advantage of wider bandwidth and 

reduction or elimination of unwanted modes of vibration in low frequency 
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transducers. These dispositions are particularly advantageous in applications where 

low aspect ratios are a necessity due to the contrast requirements of beam angle and 

operating frequency. The piezoelectric composites were determined for underwater 

hydrophone applications in the low-frequency range, where the dimensions of the 

sample are much smaller than the acoustic wavelength.  

It has been highlighted that certain composite hydrophone materials are two to three 

orders of magnitude more sensitive than single phase PZT ceramics, while assuring 

other requirements. [60] 

The usage of composite materials has been enlarged to other applications, such as 

ultrasonic transducers for acoustic imaging, thermistors with both negative and 

positive temperature coefficients of resistance, and active sound absorbers.  

3.2.1.6 Piezoelectric coatings 

It is demonstrated that lots of potential applications correspond which require film 

thickness of 1 to 30 μm. Also there are some certain examples of these macroscopic 

devices involving ultrasonic high frequency transducers, fiber optic modulators and 

for self controlled vibrational damping systems. ZnO and PZT have been benefited 

for piezoelectric fiber optic phase modulators fabrication. Plus, sol-gel technique for 

thick PZT films and  Piezoelectric polymer coatings for high-frequency fiber-optic 

modulators have been also developed. [58] 

3.3 Characteristics of Piezoelectric Materials 

3.3.1 Linear theory of piezoelectricity 

The behavior of piezoelectric materials in the linear range can be justified by the 

linear theory of piezoelectricity which is illuminated in this section. the linear theory 

of piezoelectricity  is very accurate in the case of non-ferroelectric materials, like 

quartz. However, in the case of ferroelectric materials, it is necessary to take into 

account the limitations of the application which is discussed later. The application of 

linear theory of piezoelectricity is limited for the resonance of the materials, their 

depolarization and for other non-linear effects such as hysteresis as a general rule. 
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3.3.1.1 Conventional assignment  

IEEE Standard on Piezoelectricity which contains many equations based upon the 

analysis of vibrations in piezoelectric materials having simple geometrical shapes 

and all the material constants listed in the data sheets are standard values determined 

on defined bodies corresponding to the IEEE Standard on Piezoelectricity 1978, [61]. 

In accordance with this convention, orthogonal X,Y and Z (also 1,2,3) axes are 

customarily used as a basis for identifying the elasto-piezo-dielectric coefficients of a 

material. The Z direction is determined as the polarization direction. The numbers 4, 

5 and 6 describe the mechanical shear stress which acts tangentially to the areas 

defining the co-ordinate system. As represented in the Figure 3.6, they can be 

understood as rotations around each axis. 

 

 

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

Figure 3.6: The conventions for axes 

3.3.1.2 Basic equations  

In general, the Direct Piezoelectric Effect (so-called Sensor effect) in a single crystal 

can be described by a matrix which explains the polarization developed by the crystal 

when an external stress (normal, T1 to T3 , and shear, T4 to T6) is applied onto the 

piezoelectric material. 

A particular case of the direct piezoelectric effect is when the measure of the 

polarization is made at external electric field E=0 (shorted). In this case, the 
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polarization developed is equal to the free charge q appeared in the electrodes, as 

given by equation (3.1) 

 (3.1) 

In equation (3.1), qi represents the linear free charge developed at the normal surface 

to the i direction. Equation (3.1) can also be expressed as: 

 (3.2) 

In equations (3.1) and (3.2), the polarization vector is equal to the free charge in the 

electrodes due to the hypothesis of external electric field zero or piezoelectric 

shorted. 

Previous equation (3.1) is completely true in single crystals and, in such a case, it 

represents the polarization generated in the material when a mechanical stress is 

applied. The piezoelectric coefficients, dij, will indicate the intensity of polarization 

in each direction. 

When a ferroelectric material is used, a change in the spontaneous polarization (PS)i 

replaces Pi. If the consideration of linear range is taking into account, the equivalent 

expression for ferroelectric materials is given by 

 (3.3) 

In practice PS is considered only in the poling direction because in the transversal 

directions is negligible. Thus (PS)i = P3. 

The Converse Piezoelectric Effect (so-called Actuator effect) described the strain 

generated in a piezoelectric material when it is subjected to an external electric field 

Ei. In particular if the material is not clamped (free-displacement condition, Tij=0), 

the converse effect can be expressed as:  

 (3.4) 

Or more explicitly: 
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 (3.5) 

In the previous equations (3.4) and (3.5), the coefficient ,T dij q is called, the charge  

piezoelectric coefficient. This coefficient indicates the intensity of the deformation in 

the i-direction, Si, when a electric field is applied in the direction j, Ej. Its dimension 

is: [m/V ] The superscript indexes are used to indicate the quantities that are kept 

constant or zero. The piezoelectric coefficient dij are identical to those for the direct 

effect. 

3.3.1.3 Constitutive equations  

In general, a linear dielectric can withstand at the same time external conditions of 

temperature, mechanical stress and electric field. In this case, it is possible to analyse 

the mechanical and the electrical behavior of the material and later coupling both 

results. In addition, piezoelectric effect highly depends on directions as discussed 

above sections. 

Mechanical behavior of a piezoelectric material 

Piezoelectric materails have specailty about developing an electric charge when they 

ar exposed to mechanical stress and in constrat they producemechanical extension 

when they are subjected to electric charge. An applied electric field generates in 

these materials a linearly proportional strain.  

With the aim of understanding the mechanical behavior of a piezoelectric material, it 

can be started with their equations of motion in matrix form. The strain S describes 

the mechanical linear behavior (Hooke law approximation) of a piezoelectric 

material subjected to an electric field E, a stress T and a thermal variation D.  

This is shown in the next matrix as: 
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(3.6) 

The coefficient is the thermal expansion coefficient, defined as: 

 (3.7) 

Electric behavior of a piezoelectric material 

Similarly, the electric response of the material is described by the linear polarization 

P generated in the material due to mechanical, electrical or thermal deformation, and 

is given by equation (3.8) : 
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(3.8) 

The coefficient p is the pyroelectric coefficient, defined as;  

 (3.9) 

Coupling of both mechanical and electrical behavior 

The piezoelectric coefficients, dij, are identical for both electrical and mechanical 

response. This means that piezoelectricity involves the interaction between the 

electrical and mechanical behavior of the medium. 

Hence, it is possible to express the global response by a matrix that coupled both 

behaviors. 

This matrix is called the elasto-piezo-dielectric matrix, and is indicated in equation 

(3.10). 
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(3.10) 

The previous matrix is so-called d-form constitutive equation and usually is 

represented in a compact form as shown equation (3.11) in Table 3.1. The choice of 

independent variables (one mechanical, T, and one electrical, E) is arbitrary. A given 

pair of piezoelectric matrix equations corresponds to a particular choice of 

independent variables. Equations (3.11) to (3.14) show other possible constitutive 

matrix-equations using different independent variables. 

Independent 
Variables 

Type Piezoelectric Relation Form 

[T], [E] Extensive      (3.11) 
d-form 

[S], [D] Intensive    (3.12) 
h-form 

[T], [D] Mixed    (3.13) 
g-form 

[S], [E] Mixed       (3.14) 
e-form 

 

Table 3.3: The set of constitutive equations for a piezoelectric material. 
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As a particular case, if the material is non-piezoelectric, dij = 0, the electrical and 

mechanicalbehavior are no-coupled. 

[E] and [D] (so called electric tensors) are first-order tensors (vectors); [S] and [T] 

(so-called mechanical tensors) are second-order tensors (matrix 3×3); [d],[g],[e] and 

[h] (the piezoelectric coefficients) are third-order tensors (matrix 6×3); [ ], [ ] (the 

dielectric coefficients) are secondorder tensors (3×3 matrix), and [s],[c] (elastic 

coefficients) are four-order tensors (6×6 matrix). 

In the above mentioned constitutive equations, thermal effect has not been 

considered and it must be included if pyroelectric materials are considered. 

3.3.2 Interpretation of the elasto-piezo-dielectric coefficients 

3.3.2.1 Piezoelectric coefficients 

The piezoelectric coefficient dij is known as piezoelectric strain coefficient. Since 

the d coefficient is equivalent for the direct and the converse effect, it is possible to 

use two equivalent expressions to define it, as shown equation (3.15). 

 

 

(3.15) 

Since piezoelectric material can be anisotropic, their physical constants (elasticity, 

permittivity and piezoelectric coefficients) are tensor quantities and relate to both the 

direction of the applied stress, electric field, etc., and to the directions perpendicular 

to these. For this reason the coefficients are generally given with two subscript 

indices which refer to the direction of the two related quantities (e.g. stress and strain 

for elasticity, displacement and electric field for permittivity). A superscript index is 

used to indicate a quantity that is kept constant. For piezoelectric coefficients, which 

refer an electric quantity and a mechanical quantity, the first subscript indicates the 

direction of the considered electrical quantity (displacement or electric field) and the 

second subscript indicates the direction of the considered mechanical quantity (stress 

or strain). 
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The next matrix indicated the structure off the d-matrix for three important cases of 

piezoelectric materials: the single crystal quartz, the ferroelectric ceramics PZT and 

the ferroelectric polymer PVDF. 

Mono-crystal α-Quartz 

 

 

 

(3.16) 

BaTiO3, PZT, PLZT, and other polycrystalline ferroelectrics.(Poling axis = 3) 

 (3.17) 

PVDF ( piezoelectric polymer ) 

 (3.18) 

The rest of piezoelectric coefficients have an analogous definition, as is indicated in 

the next equations;  

Piezoelectric voltage coefficient; 

 

 

 (3.19) 

Piezoelectric stiffness coefficient; 

 (3.20) 

Piezoelectric e coefficient  

 (3.21) 
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3.3.2.2 Elastic coefficients 

In order to express the relation between the mechanical strain and the stress, two 

elastic coefficients can be considered: the compliance and the stiffness. 

The compliance s of a material is defined as the strain produced per unit of applied 

stress. It can be measured at electric field constant or at electric charge constant as is 

indicated in the next equations. 

Elastic compliance coefficient sij : 

 

 

 

(3.22) 

The first subscript refers to the direction of strain, the second to the direction of 

stress. For example:  is the compliance for a normal stress about axis 3 and 

accompanying strain in direction 2 under conditions of electric field constant (o 

zero). 

Similarly it is defined the stiffness coefficient as: 

Elastic stiffness coefficient cij : 

 

 

(3.23) 

3.3.2.3 Dielectric coefficients 

The absolute permittivity (or dielectric constant) is defined as the dielectric 

displacement per unit of electric field. It is followed of two subscripts: the first 

subscript gives the direction of the dielectric displacement, the second gives the 

direction of the electric field. It can be measured at free displacement (T=0) or at 

blocking force (S=0) as is illustrated in equation (3.24). 



 

  32 

 

 

(3.24) 

The data handbook tables give values for the relative permittivity , i.e. the ratio 

of absolute permittivity to the permittivity of free space (8.85×10-12F/m). 

It is also possible to define another dielectric coefficient as: 

 

 

(3.25) 

3.3.3 Linear theory limitations 

It has been previously commented that different aspects limit the application of the 

linear theory of piezoelectricity.At the following each of them have been considered. 

3.3.3.1 Electrostriction 

In general the response of piezoelectric materials has a quadratic component which is 

superposed to the linear behavior. This component depends on a coefficient called 

electrostrictive coefficient. For piezoelectric materials this coefficient is usually 

lower than the linear piezoelectric coefficient but they can be very significant when 

the electric field is increased. 

3.3.3.2 Depolarization 

After its poling treatment a PZT ceramic will be permanently polarized, and care 

must therefore be taken in all subsequent handling to ensure that the ceramic is not 

depolarized, since this will result in partial or even total loss of its piezoelectric 

properties. The ceramic may be depolarized electrically, mechanically or thermally. 

Electrical depolarization: Exposure to a strong electric field of opposite polarity to 

the poling field will depolarize the material. The field strength required for starting 



 

  33 

the depolarization depends, among other things, on the material grade, the time the 

material is subjected to the depolarizing field and the poling temperature. 

Mechanical depolarization: Mechanical depolarization occurs when the mechanical 

stress on a piezoelectric element becomes high enough to disturb the orientation of 

the domains and hence destroy the alignments of the dipoles. The safety limits for 

mechanical stress vary considerably with material grade. 

Thermal depolarization: If a piezoelectric element is heated to its Curie point, the 

domains become disordered and the element becomes completely depolarized. A 

piezoelectric element can therefore function for long period without marked 

depolarization only at temperatures well below the Curie point. A safe operating 

temperature would normally be about half way between 0ºC and the Curie point. 

3.3.3.3 Frequency limitations 

All the physical systems have an associate frequency natural of vibration. When the 

system is exposed to a periodic serial of impulses (such as electrics, mechanics, 

acoustics, etc) with a frequency in the vicinity of the natural frequency, the system 

will oscillate with very high amplitudes. In general a body mechanically exited will 

response with a mechanical resonance. 

However, if the material is piezoelectric an electrical resonance can be achieved 

when the material is driven with a mechanical field. On the other hand, high 

mechanical deformations can be produced when the material is electrically driven. 

Hence, an electrical signal with a frequency very close to the mechanical natural 

frequency of the system will produce a resonance. 

Figure 3.7 shows the typical frequency response of a piezoelectric disc. It displays 

the different resonance peaks. In general the linear response can be considered up to 

a half of the first resonance of the system. The resonance frequency will depend on 

the characteristics of the piezoelectric material and the mechanical and electrical 

conditions of environment. 
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Figure 3.7: The impedance of a PZT disc as a function of frequency. [56] 

3.3.3.4 Coupling factor  

Piezoelectric materials couple electric and mechanic fields. Thus, it is possible to use 

this kind of materials introducing an electrical energy and obtaining a mechanical 

one, or vice versa. Then, it is necessary to have a coefficient for measuring the 

effectiveness with which electrical energy is converted into mechanical energy or the 

opposite case. This coefficient is the coupling factor keff and is defined at frequencies 

below the resonant frequency of the piezoelectric body as: 

 (3.26) 

 

In the direct piezoelectric effect, the coefficient k is defined as: 

 

 (3.27) 

 

As for the converse piezoelectric effect, k will be defined as: 

 (3.28) 

 

A study of the values of keff shows that for modern piezoelectric ceramics, up to 50% 

of the stored energy can be converted at low frequencies. The values of   quoted 

in tables, however, are usually theoretical maxim, based on precisely defined 
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vibration modes of ideal (i.e. unrealistic) specimens of the material. In practical 

transducers, the coupling factors are usually lower. 

The coupling coefficient keff describes energy conversion in all directions. When 

only conversions in specific directions are taken into account, the resulting coupling 

factor is indicated by subscripts. For instance, k33 is the coupling factor for 

longitudinal vibrations of a very long, very slender rod (in theory infinitely long, in 

practice, with a length/diameter ratio > 10) under the influence of a longitudinal 

electric field. k31 is the coupling factor for longitudinal vibrations of long rod under 

the influence of a transverse electric field, and k15 describe shear mode vibrations o a 

piezoelectric body. Special cases of the coupling factor are the planar coupling factor 

kp and the thickness coupling factor kt. The planar coupling factor kp of a thin disc 

represents the coupling between the electric field in direction 3 (parallel to the disc 

axis) and simultaneous mechanical effects in directions 1 and 2 (Figure 3.8) that 

result in radial vibrations. This is known as radial coupling.  

 

 

Figure 3.8:  Planar oscillations of a thin disc of piezoelectric material 

The thickness coupling factor kt represents the coupling between an electric field in 

direction 3 and the mechanical vibrations in direction 3 of a thin, planar object of 

arbitrary contour (i.e. an object whose surface dimensions are large compared with 

its thickness). 

The resonant frequency of the thickness mode of a thin planar object is far higher 

that of its transverse mode. 

The coupling factor  can be expressed as a quotient of energy densities. 

 (3.29) 

In the equation (2.29), the term  represents the total stored energy density for 

the freely deforming piezoelectric body (T=0). The term  represents the 

3 
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electrical energy density when the body is constrained (s=0). The difference between 

these two terms (numerator) equals the stored, converted, mechanical energy. 

This energy can often be extracted and the unconverted energy can also be 

recovered. 

Although a high k is desirable for efficient transduction, k2 should not be thought of 

as a  measure of efficiency (this is defined as the ratio of the usefully converted 

power to the input power), since the unconverted energy is not necessarily lost 

(converted into heat) and can in many cases be recovered. 

The real efficiency is the ratio of the converted useful energy to the energy taken up 

by the transducer, and a properly tuned and well-adjusted transducer operating in its 

resonance region can achieve efficiencies of well over 90%. Well outside its 

resonance region, however, its efficiency could be very low. 
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4.  DYNAMIC BEHAVIOR OF BEAMS 

4.1 Introduction 

There are a number of beam theories that are used to present the kinematics of 

deformation. To descrie the various beam theories, the following coordinate system 

has been introduced. The -coordinate is taken along the length of the beam, -

coordinate along the thickness (the height) of the beam, and the -coordinate is taken 

along the width of the beam. In a general beam theory, all applied loads and 

geometry are such that displacements  along the coordinates  are 

only functions of the  and  coordinates. It is further assumed that the displacement 

 is identically zero. 

The simplest beam theory is the Euler-Bernoulli Beam Theory (EBT), which is based 

on the displacement field. 

Where  is the transverse deflection of the point of a point on the mid-plane 

(i.e. , ) of the beam. The displacement field in Eq (4.1) implies that straight 

lines normal to the mid-plane after deformation, as shown in Figure 4.1a . These 

assumptions amount to neglecting both transverse shear and transverse normal 

strains. 

 (4.1) 

 (4.2) 



 

  38 

 

Figure 4.1: The deformation of a typical transverse normal line in EBT and TBT  

Timoshenko Beam Theory (1921) is based on the displacement field 

 (4.3) 

 (4.4) 

Where denotes the rotation of the cross section (see Figure 4.1b). In the 

Timoshenko Beam Theory the normality assumpiton of the Euler-Bernoulli beam 

theory is relaxed and a constant state of transverse shear strain (and thus constant 

shear stress computed from the constitutive equation) with respect to the thickness 

coordinate is included. The Timoshenko beam theory requires shear correction 

factors to compensate for the error due to this constant shear stress assumption. As 

stated earlier, the shear correction factors depend not only on the material and 

geometric parameters but also on the loading and boundary conditions. 
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4.2 Euler-Bernoulli  Beam Theory  

The virtual strain energy   of a beam is given by  

 (4.5) 

where  is the variational symbol,  the cross-sectional area of uniform beam,  the 

length of the beam,  the axial stress, and  the normal strain. Note that the strain 

energy associated with the shearing is zero in the Euler-Bernoulli Beam Theory. 

Using the linear strain-displacement relation (see Eq. (4.1)) 

 (4.6) 

In Eq (4.5) it is obtained that; 

 (4.7) 

where  is the bending moment 

 (4.8) 

Assuming that the transverse load q(x) acts at the centroidal axis of the beam and that 

are no other applied loads, the virtual potential energy of the load q is given by 

 (4.9) 

The principle of virtual displacements states that if a body is in equilibrium, then the 

total virtual work done, , is zero. Thus, it is obtained that; 

 (4.10) 

Integration by parts of the first term in Eq. (4.10) twice leads to 

 (4.11) 
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Since  is arbitrary in (  the equilibrium equation is recovered as 

for    (  (4.12) 

It is useful to introduce the shear force  and rewrite the equilibrium equation 

(4.12) in the following form 

 (4.13) 

The form of the boundary conditions of the Euler-Bernoulli theory is provided by the 

boundary expression in Eq. (4.11). It is clear that either the displacement  is 

known or the shear force  is specified at a point on the boundary. In 

addition, either the slope   is specified or the bending moment is known 

at a boundary point. Using Hooke’s law, it can be written that; 

 (4.14) 

where  is the modulus of elasticity. Thus, 

 

 

(4.15) 

where   is the flexural rigidity of the beam and  the second 

moment of area about  axis.  

Some standard boundary conditions associated with the Euler- Bernoulli beam theory 

are given below: 

Simple support: The transverse displacement  is prescribed as zero and the 

transverse shear force  is unknown. In addition, the bending moment  

should be specified while the slope   is not specified. 

Clamped: The transverse deflection  as well as the slope  are specified 

to be zero. The shear force and bending moment are unknown. 

Free: The transverse deflection   as well as the slope  are not specified. The 

shear force and bending moment  should be specified. 
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4.3 Timoshenko Beam Theory  

In view of the displacement field, the strain displacement relations are given by 
 

 

 
(4.16) 

 

 
(4.17) 

 
Note that the transverse shear strain is nonzero. Hence, the virtual strain energy  

includes the virtual energy associated with the shearing strain 

 

 

 

  

 

 
(4.18) 

 

Here,   is the normal stress  the transverse shear stress, and  and are the 

bending moment and shear force, respectively 

 (4.19) 

As before, assuming that the transverse load  acts at the centroidal axis of the 

Timoshenko beam, the virtual potential energy of the transverse load  is given by 

 (4.20) 

Substituting the expressions for  and , into , and carrying out 

integration by parts to relieve  and of any differentiation, it is obtained that 
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(4.21) 

Setting the coefficients of and   in (  to zero, the following 

equilibrium equations are obtained 

 (4.20) 
 

(4.22) 

4.4 Vibration Analysis of  Beams 

4.4.1 Free vibration analysis 

The natural frequencies of a simple beam model can be determined by considering 

free vibration motion equations. The free motion equation for isotropic beam can be 

seen in the Eq. (4.23). In this equation, E refers elasticity modulus, I inertial 

momemt,  is density, A the areo of section, t is time and, W(x,t) means the 

deflection depends on time and  location. 

 (4.23) 

With considering harmonic motion acception, the natural frequencies and mod 

shapes for a beam can be investigated in Eq. (4.24). Therefore, Eq. (4.25) is obtained 

from these convertion. 

 (4.24) 

 (4.25) 

  

tugbatan
Metin Kutusu

tugbatan
Metin Kutusu
(4.22)   
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Integration by parts of equation (4.25) gives the final equation which includes the 

natural frequencies of beam. Finally, the equation of natural frequencies can be 

written as Eq. (4.27) in which can be determined from the boundary conditions of 

the beam. 

 (4.26) 

 (4.27) 

4.4.2 Effects of piezoelectric patches 
Adopting the Euler Bernoulli beam theory, the dynamic equation (4.28) is given by 

where EI is the flexural rigidity of the beam,  the density of the beam, A the cross 

sectional area of the beam,  the transverse displacement of the beam, t the 

time, f (t) the external force vector, and  induced moment provided by the 

piezoelectric actuators. 

 (4.28) 

 

(4.29) 

Eq. (4.29) shows the moment definition, which ba is the width of piezoelectric 

actuator,  is the transformed reduced elastic modulus measured at constant 

electrical potential, the transformed reduced piezoelectric constant, va the 

electrical potential provided to the piezoelectric actuator, h the half thickness of the 

beam and the thickness of piezoelectric actuator. 

Substituting Eq. (4.29) into Eq. (4.28) and considering harmonic motion acception, 

the natural frequencies and mod shapes for a beam can be investigated in Eq. (4.24), 

the equation of motion of a beam with piezoelectric patches is obtained. 
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(4.30) 

 (4.31) 

 (4.32) 

 (4.33) 

 

(4.34) 

For a clamped-free beam which has mode two piezoelectric patch, which has 

dimensions 325x2x20 mm for beam and 25x1x20 mm for piezoelectric patches, and 

of which material characteristics can be seen in the Table 4.1 and Table 4.2 natural 

frequencies calculated as seen in Table 4.2. 



 

  45 

 BM532 (PZT-5H) Aluminum Beam 

E (N/m2) - 17.52 

Density (kg/m3) 7500 2716 
Poisson ratio - 0.32 

 

 BM532 (PZT-5H) 

C11 (N/m2)         12.6 x 1010 
C12 (N/m2)         7.95 x 1010 
C13 (N/m2)         8.41 x 1010 
C33 (N/m2)         11.7 x 1010    
C44 (N/m2)         2.33 x 1010    
E31 (C/m2)         -6.5 x 1010    
E33 (C/m2)         23.3 x 1010    
E15 (C/m2)         17 x 1010    
ε11 (F/m)         1.503 x 10-8    
ε22 (F/m)         1.503 x 10-8    
ε33 (F/m)          1.3 x 10-8    

 

 

Natural 
frequencies(Hz) 

Passive Beam 
 Smart BeamClamped-free 

beam with 
piezoelectric patches 

f1 15.30 17.52 
f2 95.89 105.48 
f3 268.58 284.92 

 

 

 

 

 

Table 4.1: The characteristics for BM532 (PZT-5H) and aluminium  

Table 4.2: The material characteristics for BM532 (PZT-5H)  

Table 4.3:  The comparision of the frequencies of passive and smart beam 
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5.  SHAPE CONTROL OF BEAMS  

Figure 5.1: A beam with n patches of piezoelectric actuators bonded on it. 

Figure 5.1 shows a beam with n patches of piezoelectric actuators bonded on it. Each 

pair of piezoelectric actuators consists of one actuator bonded on the top surface of 

the beam and the same type of actuator symmetrically bonded on the bottom surface 

of the beam. This symmetric distribution of piezoelectric actuators was commonly 

adopted in literature. The length, width, and thickness of the beam are l0, b, and ts , 

respectively. The width and thickness of each piezoelectric actuator are b and ta , 

respectively. The left and right end of the kth pair of piezoelectric actuators are lk1 

and lk2, far away from the left end of the beam. The voltage applied to each actuator 

of the kth pair of piezoelectric actuators is Vk . The two actuators of the kth pair of 

piezoelectric actuators are polarized so that a pure bending actuation effect can be 

produced by Vk , where k =1, 2, . . . , n. Ys and Ya are Young’s modulus of the beam 

and the piezoelectric actuators, respectively. The piezoelectric strain constant of the 

piezoelectric actuators is d31. NL and ML and NR and MR are the constrained forces 

and moments acting on the left and right ends of the beam, respectively.  

5.1 Euler- Bernoulli Beam Theory Method 

In the Euler- Bernoulli Beam Theory, as discussed above, it can be written such as If 

the excitation of the electric field in one of the piezoelectric patches is behaved as 

normal external excitation forces acting on the actuator, and simultaneously the 
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actuator is regarded as a pure elastic body, the excitation forces act on the two ends 

of the actuator with the intensity of d31YaVk / ta and are in the axis x. Then the 

excitation of the voltage applied to kth pair of actuators behaves as two equal and 

opposite bending moments acting on the two ends of the pair of actuators. The 

bending moments MBk can be obtained by 

 

 
 
 
 
 
 
 
 
Figure 5.2: The definition of the problem; a beam with two piezoelectric patches 
 
Bending moments can be written as        
 
 

 

 

(5.1) 

 (5.2) 

  (5.3) 

 (5.4) 

 (5.5) 

 

 

 
(5.6) 

 

 
(5.7) 

- 
 d31YaVk / ta 

 

d31YaVk / ta 
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(5.8) 

The moment relation with the shape function can be written as follows; 
 

 
 (5.9) 

Now, for  Substituting Eqs. (5.2) and (5.3) into Eq. (5.9) and integrating it, we obtain 

For  

  

  

 (5.10) 

 (5.11) 

 

 

 (5.12) 

For  similarly, 
 

 

 

 (5.13) 

 
For  
 

  

Where  
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(5.14) 

 
For  

 (5.12) 

 
For   
 

 (5.13) 

For    
 

 (5.14) 

 
Integrating  5.12 5.13 5.14  wrt x; 
 
For  
 

  

 (5.15) 

For case   
 

 

And finally, for case  
 

 (5.16) 



 

  51 

 

 

 
 

 

Re-writing all equations for all conditions; 

(5.17) 

For  the shape function can be called  instead of the general 

fuction  ,so following the equations may become easier. 

 (5.18) 

Like as the specification above, for the boundary condition , the 

general function  can be named as  

 

(5.19) 

And for , the shape function  can be entitled as  with the 

aim of tracing calculations. 

 (5.20) 

 

 
, , , , ,  are the constants of integration and will be determined by 

the boundary conditions and continuity conditions of the deflection and slope of the 

beam together with  and . 
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For clamped fixed end:  
 
 

(5.21) 

 (5.22) 

Derivation of equation 5.18 wrt x; 
 

  

  

  

 (5.23) 

Continuity relations can be shown as belows; 
 

 (5.24) 

     
(5.25) 

 (5.26) 

  
(5.27) 

 
Substituting Eq.  (5.27) – Eq. (5.25) 

 

(5.28) 
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Re-arranging the equation and dividing it the term  

 

(5.29) 

As it can be seen in the Eq. (5.30), has been described. 
 

 (5.30) 

Therefore, 

  (5.31) 

 

Taking  into the parenthesis 

 
(5.32) 

The Eq. (5.32) has been obtained for a beam with one piezoelectric patch. 

Generalizing Eq. (5.32) to solve the behaviour of a beam with n piezoelectric 

patches; 

 

(5.33) 

 

Taking the co-efficient from Eq. (5.27) 
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(5.34) 

 
Composing Eq. (5.34) again; 
 

 
(5.35) 

Generalization of Eq. (5.35); 
 

 
(5.36) 

Substituting Eq. (5.33) into the Eq. (5.36) 

 

(5.37) 

 
For the boundary conditions of clamped free ended beam, as it can be seen in the 

equation (5.21), taking  in the Eq. (5.18) 

 (5.38) 

And providing the continuity relations, 

 (5.39) 
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Again for a beam with one piezoelectric patch, (i.e. k=1) 

 

(5.40) 

 (5.41) 

 

(5.42) 

Substituting Eq. (5.42) to Eq. (5.40) 

 

(5.43) 

Aligning above equation with arranging  the terms with  to left hand side; 

 

(5.44) 
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Leaving the co-efficient  alone in the right hand side; 

 

 

(5.45) 

Multiplying Eq. (5.45) with also considering following equation (5.46), 

the following equations (5.47) and (5.48)  are obtained; 

 (5.46) 

 

 

(5.47) 

 
  

(5.48) 
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Multiply the Eq. (5.48) with  

 
  

 

1  
 

 0  

1  
 

1
1  2
 

1
1  2  

 
  

(5.49)

0
1

1  2  

 
  

(5.50)

 
To substitute all co-efficient for obtaining  in the Eq. (5.47); 
 
 

1
1  

 
6 2

 0
1

1  2  

 

 0  

1  
 

1
1  2
 

1
1  2  

 

  0 0  

 

(5.51)



 

  58 

Rewrite Eq. (5.51) 

 

  

 

 

  

(5.52) 

With the aim of attaining , to consider the equations (5.41) and (5.42) 

 (5.41) 

 

(5.42) 

 

 

(5.43) 

For evaluating following equations are calculated.  
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(5.54) 

 
 

(5.55) 

 

 

(5.56) 
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Arranging the coefficients in the Eq. (5.56) 

 

 

(5.57) 

 

For simply supported: 

(5.58) 

 (5.59) 

 (5.60) 

 

 
 

 (5.61) 

 

 (5.62) 
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The continuity relations can be seen in the following; 

 
 

 (5.58) 

 
 (5.63) 

  
 

 
 (5.64) 

 

 

 

To simplify the equations taking   and  is suitable. The following 

equations are obtained as a result of these boundary conditions.  

 
 (5.65) 

 
 (5.66) 

 

 
(5.67) 

 

 
(5.68) 

 
 

 
(5.69) 
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(5.70) 

Re-arranging Eq. (5.65); 

 
 

 
(5.71) 

Substituting Eq. (5.66) into Eq. (5.68) , new  state of Eq. (5.68) 

 

 

 

(5.72) 

Extracting Eq. (5.67) from Eq. (5.72) 

 

 

(5.73) 

 

 

(5.74) 

For obtaining  from the Eq. (5.69) 

 (5.75) 

 

 (5.76) 

Same calculation for  from the Eq. (5.70) 

 (5.77) 

Dividing Eq. (5.74) to  
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(5.78) 

 
Subsitute Eq. (5.76) and Eq. (5.77) into Eq. (5.78) 
 

 

 

(5.79) 

Settiing out the Eq. (5.79) 

 

 

 

(5.80) 

Now,  has been calculated and if it replaces into the Eq. (5.76) 
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(5.81) 

Arranging the Eq. (5.81) 

 

 

(5.81) 

 
Remembering Eq. (5.77) for t he coefficient  

 

 

 
(5.77) 

Writing   into Eq. (5.77); 

 
 

 

  

(5.78) 
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(5.78) 

 
 from Eq. (5.66); 

 
 

  
(5.79) 

Writing   into Eq. (5.79) and adjusting the Eq. (5.80); 

 

  

(5.80) 

Considering the Eq. (5.67) for  and ,  ,   into Eq. (5.81) 
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(5.82) 

 

 

  
(5.83) 

For a beam with the boundary conditions of simply supported;  ,  

are considered.  

 
 

  
(5.84) 

  (5.85) 

 
  (5.86) 

 
  (5.87) 
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  (5.88) 

 
  

(5.89) 

Similarly, taking  ,  are zero for clamped free beam; 

 
  

(5.90) 

 
  (5.91) 

 
 (5.92) 

 
  (5.93) 

 
  (5.94) 

 
  (5.95) 

 
Finally, the general shape functions for a beam with clamped free boundary 

conditions; 

 

 (5.96) 

 
  (5.97) 

 
  (5.98) 

The shape functions for a beam with clamped free boundary conditions; 

 
 

  
(5.99) 

Describe as following and re-arrange the equation ; 

 

 



 

  68 

 
(5.100) 

 

  

 
  (5.101) 

 
   

The shape functions for a beam with simply supported  boundary conditions; 

 

  (5.102) 

 

  

 

(5.103) 

 

  (5.104) 
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Table 5.1: The shape functions for different boundary conditions 
 
Simply supported 

 
Clamped Free 

 

 

 
 

 

 

 

 

 

 
 

 
 

5.2 Timoshenko Beam Theory Method 

 
 
 
 

 
 

Figure 5.3: The definition of the problem; a beam with two piezoelectric patches 
 
As discussed in last section, the bending moment is calculated like followings; 
 

 (5.2) 

  (5.3) 

 (5.4) 

 (5.5) 

- 
 

d31YaVk / ta 
 

d31YaVk / ta 
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 (5.6) 

 (5.7) 

 

 
(5.8) 

 
Moreover, Timoshenko Beam Theory gives the moment equation which can be seen 

in the Eq. (5.104) 

 

       (5.104) 

where; 
 

 (5.105) 

     

 (5.106) 

      

 

(5.107) 

 
   

 
(5.108) 

 

 

(5.109) 

 

 

(5.110) 

 

 

 
(5.111) 
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 (5.112) 

 

 (5.113) 

 (5.114) 

 

 

(5.115) 

 

 

(5.116) 

 

 
For  

(5.117) 

 

  (5.118) 

For      
 

 

(5.119) 

 
For  
 

 
(5.120) 

 
, , , , ,  are the constants of integration and will be determined by 

the boundary conditions and continuity conditions of the deflection and slope of the 

beam together with  and  

 only for 1 patch  
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 (5.121) 

 

 

(5.122) 

 

 (5.123) 

 

 (5.124) 

 (5.125) 

 (5.126) 

 
The boundary conditions for a beam with clamped-free ended;  
 

  (5.127) 

  (5.128) 

 (5.128) 

 

 

(5.129) 

 
Dividing the Eq. (5.129) to  
 
 
 



 

  73 

 
 

 

(5.130) 

 

 (5.131) 

 

 

(5.132) 

Dividing the Eq. (5.132) to    
 

 

(5.133) 

 
 (5.134) 

 

 

(5.135) 

  
  (5.136) 
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(5.137) 

 
 (5.138) 

 

 (5.139) 

 
 

 

(5.140) 

 

(5.141) 

 

 

(5.142) 

 
(5.143) 

 
Writing   from the Eq. (5.138) into the Eq. (5.143) 
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(5.144) 

Re-arranging above equation step by step; 

 

 

 
(5.145) 

Dividing Eq. (5.145) to  

 (5.146) 

 

Generalizing the Eq. (5.146) for k=1,2,..,n 

 
 

 

(5.147) 
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Writing  into the Eq. (5.143) 

 

(5.148) 

 

 

 

 

 

(5.149) 

Generalizing Eq. (5.149) for n patches; 
 

 

 

(5.151) 
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For finding  ,replace  , ,  into Eq. (5.140); 

 

 

(5.152) 

 

 

(5.153) 

 
 

 

(5.154) 
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(5.155) 
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(5.156) 

For a beam with one patch; assume that all functions came from integrating basic 

equations are zero;  

 (5.157) 

 (5.158) 

 

 (5.159) 

 (5.160) 

 (5.161) 
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(5.162) 

Considering Timoshenko Beam Theory , the shape functions  for a beam with one 

piezoelectric patch and having clamped free boundary condition are as followings; 

 
 (5.163) 

 

 (5.164) 

 

 

 

(5.165) 
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5.3 Numerical Results 

The goal of this research is to do vibration analysis and shape control of a beam with 

Piezoelectric Patches which are exposed to different boundary conditions. Firstly, the 

dynamic analysis of a beam with piezoelectric patches, equation of motion is 

obtained and then solved. Natural frequencies are calculated and compared with 

literature. Then shape analysis and control of a beam with piezoelectric patches are 

examined with considering both Euler Bernoulli Beam Theory (EBT) and 

Timoshenko Beam Theory (TBT).  In the determination of structural models, all 

solutions are performed analytically to a beam subjected to different boundary 

conditions. The numerical analysis of natural frequencies of a beam with 

piezoelectric patches and shape analysis of beams with piezoelectric patches with 

using both EBT and TBT.  

Furthermore, how the piezoelectric patches can impose the shape of a beam is shown 

by the obtained solutions.  Figure 5.4 shows the relative longtidunal distance to 

normalized deflection for both simply supported and clamped free beam with 

piezoelectric patches. These shape functions have been found with good agreement 

in the literature. [50]. With these results, the deflections of a beam with piezoelectric 

patches of which are exposed to diffrent boundary conditions can be easily 

investigated. 

Moreover, Figure 5.5 can be the resource for understanding the effectcs of voltage on 

a clamped-free beam with piezoelectric patches. It is seen in this figure that the 

effects of actuator voltage on transverse deflection of a cantilevered beam which 

have piezoelectric patches. The increased voltage makes the transverse deflection 

raise.  
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Figure 5.4: The deflections of the beam for different boundary conditions 

 

 

 
Figure 5.5 : The effects of different voltages on transverse deflection for 

cantilevered beam 
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Figure 5.6 : The comparison of EBT and TBT for cantilevered beam 

In this thesis, the shape functions for a beam with piezoelectric patches are obtained 

for different boundary conditions. This study has been performed by using two 

different methods, which are Euler-Bernoulli beam theory and Timoshenko beam 

theory. The shape functions for a cantilevered beam with piezoelectric patches are 

obtained both Euler-Bernoulli beam theory and Timoshenko beam theory, also. 

Furthermore, Figure 5.6 shows the comparison of these two obtained beam theory for 

a clamed-free beam with piezoelectric patches. It seems in this figure that, these 

functions behave in same manner until the end of the beam. Only a small amount of 

difference is attained about the ending of the beam. 
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6.  CONCLUSIONS 

In this study, Euler Bernoulli Beam Theory (EBT) and Timoshenko Beam Theory 

(TBT) are explained in detail and shape analysis and control of a beam with 

piezoelectric patches are examined with considering both Euler Bernoulli Beam 

Theory (EBT) and Timoshenko Beam Theory (TBT).  In the determination of 

structural models, all solutions are performed analytically to a beam subjected to 

different boundary conditions. The numerical analysis of natural frequencies of a 

beam with piezoelectric patches and shape analysis of beams with piezoelectric 

patches with using both EBT and TBT are demonstrated. 

Finally, the effects of not only different voltage but also piezoelectric patch position 

on frequency and on shape functions of beam are interrogated and also compared 

with literature and found to be in good agreement. With a view to control the shape 

of beam in a good manner and obtaining better results, the errors are minimized.  

The comparision between Euler-Bernoulli beam theory and Timoshenko beam theory 

is performed for a beam with piezoelectric patches of which has been exposed to 

clamped-free boundary conditions. Also the effects of different voltage of a 

cantilevered beam is studied.  The shape funtions are found for both Euler-Bernoulli 

beam theory and Timoshenko beam theory. 
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APPENDICES 

 
 

 
 
 

APPENDIX A.1 : Mathematica Codes for Figure 5. 
 
MB=100; 
lambda2=1; 
L0=12; 
L1=L0/4; 
L2=3*L0/4; 
W2 Euler 
Plot[( MB/(2*lambda2))*(x-L1)^2,{x,L0/4,3*L0/4}] 
(*W2 Timoshenko*) 
Plot[(- MB/(2*lambda2))*(x-L1)^2,{x,0,1}] 
W3 Euler 
Plot[( MB/lambda2)*(L2-L1)*(x-(L1+L2)/2),{x,3*L0/4,}]; 
W1Euler=Plot[( MB/lambda2)*(L2-L1)*(((L1+L2)/(2*L0))-1)*x,{x,0,0.25}]; 
 
W2Euler=Plot[( MB/(2*lambda2))*(x^2 +(((L2^2-L1^2)/L0) -2 L2)*x 
+L1^2),{x,0.25,0.75}]; 
 
W3Euler=Plot[( MB/2*lambda2)*(L2^2-L1^2)*(x/L0-1),{x,3/4,1}]; 
Plot[Piecewise[{{0,x<0.25},{( 1/(2*1))*(x-0.25)^2,x<0.75},{( 1/1)*(0.75-
0.25)*(x-(0.25+0.75)/2),x>0.75}}],{x,0,1}];Plot[Piecewise[{{x*(0.75-0.25) 
(((0.75+0.25)/(2*1))-1),x<0.25},{( 1/(2*1))*((x^2) +(((0.75^2-0.25^2)/1) -
2*0.75)*x +0.25^2),0.25<x<0.75},{( 1/2*1)*(0.75^2-0.25^2)*(x-
1),x>0.75}}],{x,0,1}]; 
 
Plot[{Sin[x],Sin[2 x],Sin[3 x]},{x,0,2 Pi}]; 
Table[Plot[{Piecewise[{{0,x<0.25},{( 1/(2*1))*(x-0.25)^2,x<0.75},{( 
1/1)*(0.75-0.25)*(x-(0.25+0.75)/2),x>0.75}}],Piecewise[{{x*(0.75-0.25) 
(((0.75+0.25)/(2*1))-1),xlambda0.25},{( 1/(2*1))*((x^2) +(((0.75^2-0.25^2)/1) 
-2*0.75)*x +0.25^2),0.25<x<0.75},{( 1/2*1)*(0.75^2-0.25^2)*(x-
1),x>0.75}}]}, 
Table[Plot[Sin[x],{x,0,2 
Pi},PlotStyleps],{ ps,{ Red,Thick,Dashed,Directive[Red,Thick]} } ]; 
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