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STATIC AND DYNAMIC ANALYSES OF PLATES USING DIFFERENTIAL
QUADRATURE METHOD

SUMMARY

In this study, static and dynamic analyses of isotropic and layered composite square
plates have been achieved using differential quadrature method (DQM). Differential
quadrature method is a highly efficient and a newly proposed numerical technique
compared to the conventional ones like finite element, finite difference and etc.
Using this method, isotropic and laminated composite thin plates are analyzed from
various aspects such as plate material and thickness. Two types of boundary
condition are analyzed: Simply supported and clamped on all four edges. For the
plate material, various isotropic and laminated composites are considered. Plates of
variable thickness are also analyzed.

In the first analysis section, deflection analysis has been achieved for the isotropic
and composite laminated plates of constant and varying thickness. After deriving the
analytical governing equations, the DQM analogue equations are obtained. In the
further sections, the mentioned way also followed for the free vibration and transient
analyses of aforementioned plates. In the section of transient analyses, plates are
assumed to be exposed to blast loading and the resulting DQM equations are solved
using Newmark time integration method. After all governing DQM analogue
equations are derived in the mentioned sections, the numerical results obtained by
using these equations are presented. Then, the obtained DQM results are compared to
mainly ANSYS results, and for some plate configurations, compared to
experimental, theoretical and some DQM results from the literature.

From the results presented in the relevant section, it can be concluded that DQM
provides result with adequate accuracy for the static, free vibrational and transient
analyses of both isotropic and laminated composite plates. Moreover, it is observed
that DQM can also be applied to tapered plates, successfully. Furthermore, the
formulation of DQM solutions is simple and the computer programming procedure is
also considerably straightforward. The computation time is also significantly less
than the finite element method. Consequently, DQM seems to have the potential to
be an alternative to the conventional numerical techniques like finite element and
finite difference.
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DIFERANSIYEL KARELEME YONTEMIi ILE PLAKLARIN STATIK VE
DINAMIK ANALAZI

OZET

Bu tezde, izotropik ve katmanli kompozit ince kare plaklarin diferansiyel kareleme
(DKY) yontemi ile statik ve dinamik analizleri gerceklestirilmistir. Plaklar, cesitli
izotopik ve kompozit malzemeler kullanilarak biitiin kenarlarindan ankastre ya da
basit mesnetli olmak iizere iki farkli sinir kosulu i¢in incelenmistir. Ayrica, plaklar
kalinliklar1 agisindan da analiz edilmistir. Sabit kalinlikli plaklarla beraber x-ekseni
yoniinde kalinlig1 lineer degisen izotropik ve katmanli kompozit ince kare plaklar
analizlerde kullanilmistir.

Tezin, ilk analiz boliimiinde s6zii edilen basit ve ankastre plaklarin ¢cokme analizleri
DKY kullanilarak gergeklestirilmistir. Sonraki boliimde ise, plaklarin serbest titresim
frekanslarini veren yonetici denklemler c¢ikarilmis ve ¢oziimde kullanilmak {izere,
DKY’ne gore benzesim denklemleri yazilmistir. Ayni siireg, plaklarin gecisli
analizlerinin yapildig1 son analiz boliimiinde de tekrarlanmistir. Gegisli analizlerde,
plaklarin, anlik basing yiikiine maruz oldugu kabulii yapilmis ve ilgili denklemler
Newmark sayisal integrasyon yontemi kullanilarak ¢oziilmiistiir. Sayisal sonuglarin
verildigi boliimde oOncelikle plaklar i¢in kullanilan izotropik ve kompozit
malzemelerin 6zellikleri verilmistir. Daha sonrasinda ise, her bir plak yapilandirmasi
icin elde edilen DKY denklemlerinin ¢6ziimii vasitasiyla elde edilen sayisal sonuglar
verilmistir. Sonuglar, her asgamada ANSYS yazilimi sonuglar ile ve ayni1 zamanda
bazi plaklar i¢in literatiirde bulunan bazi deneysel, teorik ve sayisal yontem sonuglari
ile karsilastirilmistir.

Elde edilen sayisal sonuglara dayanilarak denilebilir ki, diferansiyel kareleme
yontemi ile izotropik ve kompozit plaklarin statik, dinamik ve ge¢isli analizleri
basariyla gerceklestirilebilir. Ayn1 zamanda, yontemin, degisken kalinlikli plaklarin
analizine de basariyla uygulanabildigi goriilmiistiir. DKY kullanilarak sonuglarin
bilgisayarda elde edilme siiresi, sonlu elemanlar yontemine gore oldukca diisiik
oldugu da gozlenilmistir. Programlamasi basit ve az islem yikii ile yeterli
hassasiyette dogru sonuglar veren diferansiyel kareleme yontemi, miithendislikte ve
bilimde yogun olarak kullanilan sonlu farklar ve sonlu elemanlar gibi yontemlere
alternatif olarak gdsterilebilir.
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1. INTRODUCTION

In this study, static, free vibration and transient analyses of isotropic and layered
composite rectangular plates have been achieved using differential quadrature
method (DQM). After verifying the accuracy of the DQM solutions by obtaining
deflections and free vibration frequencies of isotropic and laminated composite
plates and comparing with other results, structural response of isotropic and
laminated composite plates subjected to air blast loading obtained by DQM and
compared to ANSYS results and some other available results in literature. That is to
say, this work mostly based on obtaining the structural response of plates subjected
to air blast load by DQM and verifying the accuracy of obtained results. As it will be
noted in the further sections, various plate configurations such as isotropic and

composite plates of constant and variable thickness are investigated by DQM.

Plates subjected to air blast load have been investigated by different researchers
widely. For example, Turkmen and Mecitoglu investigated nonlinear structural
response of laminated composite plates subjected to air blast load [1]. In the present
work some of the DQM results were compared to the theoretical and experimental

results given in the mentioned paper.

Differential quadrature method is a highly efficient and a newly proposed numerical
technique compared to the conventional ones like finite element, finite difference and
etc. It has been introduced in 1970s by R. Bellman and his associates for rapid and
more accurate solution of linear and nonlinear partial differential equations [2, 3]. In
the following years of 1970s, the method has been improved more by different
researchers and has been applied to many different engineering problems
successfully. For instance, it has been applied to the transport processes and multi-
dimensional problems by Civan and Sliepcevich [4,5] and to the nonlinear diffusion
by Mingle [6]. It was the first time when Bert and et al. used the method to solve a
problem from structural mechanics which involves fourth-order partial differential
equation [7]. Following this, Jang and et al. applied the method to the static analysis

of structural components; Wang and et al. applied to the problems of deflection,



buckling and free vibration of beams and plates; Malik and Bert applied to the
problem of free vibration of plates in a new respect, and Shu et al. applied to Navier-
Stokes equations. [8-13]. It also should be stated that the analytical results given in

the paper of Leisa [14] are used as reference for the obtained DQM results.

Not only simple thin plates, but also the plates involve some complicating effects
like thickness non-uniformity, material anisotropy, have been analyzed using DQM.
For instance, The Bert et al. solved free vibration problem of symmetrically
laminated cross-ply plates based on the first-order shear deformable plate theory
using DQM [15]. Turkmen investigated structural response of isotropic plates
subjected to air blast load comparing the theoretical and experimental results [16].
Farsa et al. obtained fundamental frequency of isotropic tapered plates [17]; Farsa
[18] and Farsa et al. [19] achieved fundamental frequency analysis of single specially
orthotropic, generally orthotropic and anisotropic rectangular layered plates by the
differential quadrature method. Tuna and Turkmen, used DQM to obtain structural
response of plates subjected to air blast load [20, 21]. Furthermore, Bert and et al.
accomplished static and free vibration analyses of isotropic and anisotropic plates by
DQM [22, 23]. Moreover, Bert and Malik utilized the DQM for irregular domains
and applied to plate vibration in another work [24] and also developed a semi-
analytical differential quadrature solution for plate problems in a few works [25, 26].
The papers referenced so far demonstrate that DQM is an efficient numerical
technique and capable of yielding results of high accuracy in computational
mechanics. It has been applied successfully to many problems in structural
mechanics by investigators. However, as stated by Bert and Malik [10], DQM is still
in a developing stage and the problems that the DQM applied to so far, have been
limited to smaller scale ones. Consequently, overcoming the limitations of applying
DQM to other type of problems or large scale problems offers challenges to future

DQM researchers.

As stated earlier, present work based mostly on obtaining the structural response of
plates subjected to blast loading by DQM. Blast loaded plates have also been
investigated by researchers formerly. For instance, as mentioned earlier, Turkmen
and Mecitoglu have also obtained nonlinear structural response of laminated
composite plates subjected to blast loading [1], and Turkmen investigated structural

response of isotropic plates subjected to blast loading [16]. In these studies,



experimental results are compared with theoretical method and FEM results by the
authors. Furthermore, Kazanci and Mecitoglu investigated the nonlinear damped

vibrations of composite plates subject to blast loading [27].

In this work, static, free vibration and transient analyses of plates are achieved using
DQM. Only, simply supported and clamped plates on all four edges are considered.
Various isotropic and laminated composite materials are employed in the analyses.
However, plates of linearly variable thickness are also analyzed using DQM in each
analyse section. For the each plate configuration, static, free vibration and transient
analyses are accomplished in the relevant sections. Before going into detail of
analyses, some basic definitions of DQM are given in the Section 2. In this section,
formulas relevant to obtaining the weighting coefficients of DQM and some
discussions related with incorporation of the boundary conditions into the DQM

solutions are introduced after the mathematical basis of the method is presented.

In the Section 3, deflection analysis has been achieved for the isotropic and
laminated composite plates of constant and variable thickness. After deriving the
analytical governing equations, the DQM analogue equations are obtained from
which the deflections are obtained. In the fourth section, free vibration analyses are
accomplished by DQM for the mentioned plates. After presenting of the governing
free vibration equations (eigenvalue equations) for each plate configuration, the
DQM analogue equations are derived. Once the DQM governing equations are

derived, the free vibration frequencies can be obtained for each mode.

The transient analyses of aforementioned plates are presented in the Section 5. In this
section, plates are assumed to be exposed to blast loading. Following the same way
again, the governing analytical equations are presented for each plate configuration
firstly. And then, DQM analogue equations are derived to be solved. However, it is
worth to express that the solutions of the governing equations in this section involves
using time integration tool differently from the previous sections. Therefore, the
obtained DQM equations are solved here using a time integration method. In this

work, the Newmark time integration method is employed in the solutions.

Numerical results are presented in the Section 6. In this section, numerical results for
the plates of constant thickness are given firstly. In the second subsection the
numerical results for plates of variable thickness are given. Before presenting the

numerical results, the material properties that used in the analyses are given. As it



will be noticed in this section, some results are given dimensionless whereas some
are given dimensional for convenience. The centre deflections are given firstly in this
section for the each plate configuration. The obtained results are tabulated in tables
to compare with ANSYS results and some available DQM and theoretical results
from the literature. Subsequently, the fundamental free vibration frequencies are
presented in tables with ANSYS and available results from the literature for

comparison.

The results of transient analyses are given using two different parameters: deflection
and strain of plate centres. That is, deflection-time and strain-time histories of plate
centres are obtained using DQM and compared to mainly ANSYS results, and for
some plate configurations, compared to experimental and theoretical results found in

the literature.

Experiences show that DQM is a highly efficient numerical technique for
investigating of plates of constant and variable thickness. Plates of laminated
composite are also easily analyzed and results with high accuracy can be obtained
using DQM. It is especially worth to express that transient analysis of isotropic and
composite plates subject to blast load is easily achieved by DQM. The solution time
with DQM is quite less than ANSYS solution, and developing of computer programs
for DQM solutions is quite simple. This would be a significant advantage through the
long-time transient analyses. As it will also be stated in the further section, once the
weighting coefficients in DQM solutions are obtained, they might be used in every
kind of problem regardless of problem type or boundary conditions which is an

efficient side of DQM.



2. DIFFERENTIAL QUADRATURE METHOD (DQM)

In this section, the differential quadrature method (DQM) is described briefly.
Firstly, the mathematical definition of DQM is presented and some significant
differences from other conventional numerical techniques are explained. Later, a tool
to obtain the weighting coefficients to be used in DQM solutions is explained and the
relevant formulas are given. Lastly, some discussions about implementation of the
boundary conditions in DQM solutions are introduced. Two commonly used
approaches for incorporating of boundary condition into DQM solutions among the

DQM researchers are illustrated briefly.

2.1 Mathematical Definition of DQM

In DQM, a partial derivative of a function with respect to a coordinate direction is
expressed as a linear weighted sum of all the functional values at all mesh points
along that direction. In other words, the DQM reduces the differential equations into
an analogous set of algebraic equations by expressing at each grid point the calculus
operator value of a function with respect to a coordinate direction at any discrete
point as the weighted linear sum of the values of the function at all the discrete points

chosen in that direction [10].

+ a F=Nx
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=Ny
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Fig. 2.1 Quadrature grid for a rectangular region



For instance, a function ¥ =w(x,y)which has a rectangular domain0<x<a,
0 < x <b like in the Fig. 2.1 can be considered. Assuming that the function values in
the solution domain are known or desired on a grid of sampling points, the r th-order
partial derivatives of the function yw/(x, y) with respect to x and y at points x = x; and
y = y;j along any lines y = y; and x = x; are expressed in terms of the DQM,

respectively, as following

r N,
TV S gy, = 12,0, (2.1a)
axr o k=1 /
ar N, . .

O =3BV, j=12.0, (2.1b)
(3)/ y=y

Above, A4 and BJ(,’ ' are the weighting coefficients of rth order x and y derivatives,

N, and N, are the number of grid points taken in the x and y directions in the domain,

respectively.

The method of differential quadrature uses a polynomial fitting at the selected points.
This is one of major differences of this method compared to other numerical methods
such as (higher order) finite difference which is mainly a Taylor expansion based
method. Another difference is that in the standard finite difference method a solution
value at a point is expressed as a function of the values at adjacent points only
whereas differential quadrature method takes all the function values at all the discrete
points in the domain. The finite element method, however, is based on weighted
residuals and provides a better approximation for irregular shaped systems compared
to the finite difference method. The shared principle of these methods is that both of
them have the discretization principle and divide the solution domain into many
simply shaped regions. Thus, solutions obtained by these methods have to be
computed using a large number of surrounding points to be able obtain a solution
with a high accuracy since the accuracy strongly depends on the nature and
refinement of the discretization of the domain. However, at most time, the
differential quadrature method provides solutions with high accuracy using only few
number of grid points compared to abovementioned methods. The computer
programming system of DQM solutions is also straightforward which provides a

significant efficiency through the solutions. Therefore DQM has the potential of



being an alternative to the conventional numerical techniques such as the finite

difference and finite element methods [10].

2.2 Calculation of Weighting Coefficients

One of the key points of DQM is to determine the weighting coefficients for a
discretization of a derivative of any order for the related domain. The weighting
coefficients are independent of the boundary conditions and therefore, need to be
calculated only once for a particular discretization. The method proposed by Shu and
Richards [13] in order to calculate the weighting coefficients, which has also been
utilized at the present work, provides solutions with adequate accuracy. The relevant
formulas developed by the mentioned method to calculate the weighting coefficients
given in the work of Bert and Malik [10] are also given here. Following formula may

be used to calculate the weighting coefficients of first-order derivatives

Nx

H ‘(xi _‘xu)

A = v=lv#i — fori, k=1,2,...Nyand i#k (2.2)
(x,‘_xk) H (xk_xu)

v=1, 0=k

The terms of weighting coefficients matrix of second- and higher-order derivatives

may be obtained through the following relationship

AU
A = {Aiﬁ"')A};) - k—} forik=1,2,...,Nyand k=i (2.3)

X, — X,
where 2<r<(N,-1). The diagonal terms of the weighting coefficient matrix are
given by

Nl;
AP == A fori=12,.. N, 2.4)

v=1,0#i
where 1<r<(N,-1). Following equation to calculate the coordinates of the
sampling points is used in the present study

. = 1‘°°S[("12)”/<Nx ) P S 2.5)




One may see the work of Bert and Malik [10] for other types of calculating the

coordinates of sampling points and other regarding matters.

2.3 Implementation of Boundary Conditions

Currently, there are two approaches are popular among DQM researchers for
implementation boundary conditions. Here, both approaches will be explained
briefly. Some references relevant to the topic will also be given for the interested

readers.

The first approach, which is also most widely used, has a general applicability in
many types of problems. This approach based on discretization of governing
equation on the grid points of domain and boundary conditions on the boundary grid

points, and finally assembling all of them to be solved.

Explaining the mentioned approaches on a one-dimensional problem may be more
convenient. Assume a freely vibrating Bernoulli-Euler beam which would has quite
general boundary conditions at both ends like simply supported, clamped or free end,
but let assume the beam simply supported at both edges for convenience. This
example will be a modified form of the one given in the work of Bert and Malik [10]
in which a freely vibrating cantilever Bernoulli-Euler beam analyzed by DQM in
detail. The linear free vibration of a thin prismatic Bernoulli-Euler beam is described
by the following eigenvalue differential equation
d*w P

dét

(2.6)

where w=w(&) is the dimensionless mode function of the lateral deflection, & is the
dimensionless coordinate along axis of the beam, &= x/L, and Q is the
dimensionless frequency of the beam vibrations, Q® = mL*w* / EI . Here, i is the
mass per unit length of the beam, L is the length of beam, wis the dimensional

frequency, and E and [ are the modulus of elasticity and moment of inertia of the

beam, respectively. The boundary conditions at both clamped ends are
w=d*w/dE* =0atE=0=1 (2.7)

As explained in Ref. [10], of the needed N quadrature analogue equations, four

equations should be obtained from Egs. (2.7) for the both ends, and the remaining



(N-4) equations from Eq. (2.6). Therefore, leaving two sampling points at each end
of beam, quadrature analogue of Eq. (2.6) be written as

N

YA w, =Q%w,; i=34,..,(N-2) (2.8)
j=1
which yields (N-4) equations. The quadrature analogues of the boundary conditions
Egs. (2.7) are written as

N

w, =0, ) APw; =0;i=1 at £=0 (2.9.2)
j=1
N

w, =0, > APw, =0;i=N at &= 1 (2.9.b)
j=l

The assembly of Eqgs. (2.8) through (2.9) gives following set of linear equations

1 0 0 0 0 .o 0 i
(2) (2) (2) (2) (2) (2)
A A Al(N—l) Ay A3 o Al(Nfz)
0 0 0 0 0 .- 1
(2) (2) (2) (2) (2) (2)
ANI AN2 AN(Nfl) ANN AN3 AN(Nfz)
X
4 4 4 4 4 4
A0 4y Al AN A4 e A,
4 4 4 4 4 4
47 4R AhL AN AR A2
(4) (4) (4) 4) (4) 4
_A( N-2)1 A( N-2)2 A(N—Z)(N—l) A(N—Z)N A(N—2)3 e A(N—z)( N-2) |
_ " _ C o0
Wy 0
Wv-1) 0
w 0
No=0? (2.10)
W3 W3
W4 W4
| Wiv-2) | | Wiv-2) |

Equation (2.10) may be written as

ol Bttt )



where subscript b indicates the grid points used for writing the quadrature analog of
the boundary conditions, d indicates the grid points used for writing the quadrature
analog of the governing differential equation. Eliminating the column vector {w},

Eq. (2.11) is reduced to following standard eigenvalue problem
[STw, }-Q*[1]{w, } = {0} 2.12)
where [S]=[S.]1-[Su1[Se ]_1 [Sy4] is of order (N-4)x (N-4).

The eigenvalues, which are the frequency squared values, and the eigenvectors {w,}
which describes the mode shapes of the freely vibrating beam may both be
determined from the [S] matrix. As it may be noted, boundary conditions are
incorporated into the solution by writing the quadrature analogs of equations of
boundary conditions at the boundary points and quadrature analog of governing
equation at the inner domain points. Assembling all of them give a set of linear

equations from which the eigenvalues are solved.

The second approach for applying the boundary conditions to the DQM solutions,
which is also utilized in the present work, is based on modifying the weighting
coefficients matrices during the formulation of problem. Here, the one dimensional
problem - freely vibrating beam given earlier is taken as reference and will be
employed to explain the second approach. The governing equation and relevant
boundary equations were given by Egs. (2.6) and (2.7), and their quadrature analogs
by (2.8) and (2.9). As described in Ref. [8], the boundary conditions will be

implemented during the formulation of the problem.

So, we modify the weighting coefficient matrice of second-order derivative since the
second boundary equation at the each end is of second-order. To do so, let the

original weighting coefficient matrice of second-order derivative being as follows

[ 42 2 2) ]
DAY A
@ 4 2)

(4] 4 A2 A @.13)
2 2 2
AV AV Ay
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To implement the boundary conditions d*w/d¢*=0at £=0and £=1 we zero the

first (1th) and the last (Nth) columns of [Alg.z)} matrix. So, representing the

modified matrix as [;115.2)} we obtain

0 A4y 437 - 0
0 Aé%) Ag) e 0

1072

[A2=l0 42 42 - o 2.14)
o0 AR A o

Using the recurrence relationship of weighting coefficient matrices
[A(l‘) ] — [A(l) ][A(r—l) ] — [A(r—l) IA(I)] (2.15)
we may obtain the modified weighting coefficient matrix of fourth-order derivative

in the following way
LAY =47 ][ 47 ] 2.16)

Consequently, let the quadrature analog of governing equation (2.8) be written in

terms of modified weighting coefficients as follows

N-1
D Aw, =Qw,; i=24,. (N-]) (2.17)
j=2

In equation (2.17), the boundary conditions d?w/d¢*=0at&=0and =1 are

built in by modifying the weighting coefficient matrices. In order to satisfy the zero

deflection boundary condition at each end of beam, w=0 at {=0and { =1, we

ignore the sampling points i=/ and i=N during writing the quadrature analog of

governing equation as can be noted from equation (2.17).

The assembly of equation (2.17) for all values of the indices i and j results in the

following eigenvalue equation which gives an (N —2)x (N —2) matrix
[S]{w}-@*[1]{w} = {0} (2.18)

The eigenvalue matrix [S] in equation (2.18) is comprised of modified weighting

coefficients. As a result, ignoring the sampling points i=/ and i=N enables satisfying

11



the zero deflection boundary condition at each end and, by modifying the second-
order weighting coefficient matrix the zero moment boundary condition at each end

is incorporated into the solution.

In this part of the present work, two commonly used approaches for implementing
the boundary conditions into DQM solutions were introduced. One may see the
reference [10] for the details of first explained approach for a beam problem. For the
second approach of boundary condition implementation into DQM solutions,
reference [8] is especially recommended for plate problems and also references [12]

and [22] may be advised.
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3. STATIC ANALYSIS OF PLATES BY DQM

In this section, static analyses of square plates are accomplished by DQM. Isotropic
and laminated composite plates of constant and variable thickness are statically
analyzed assuming the plates under distributed pressure force. Plates are assumed to
be simply supported and clamped at four edges. In each sub-section, firstly the
governing partial differential equation which gives the deflection of plate for the
relevant plate configuration is given. Later, the DQM analog equations of them are
presented using the rules given in section 2.1 to be solved. Numerical results that

obtained from the derived DQM analog equations are given in section 6.

3.1 Isotropic Plate of Constant Thickness

Under the Kirchhoff’s assumptions of the linear, elastic, small deflection theory of
bending for thin plates of constant thickness, the governing differential equation for
the deflections is as follows

o'w o'w  d'w p
Tt2 ot =
ox ox‘oy- oy° D

3.1)

where w=w(x,y) is the deflection function, p is the pressure applied to upper surface
of the plate and D = Eh’ /12(1—0”) is the flexural rigidity of the plate. Furthermore,

E, h and v are the modulus of elasticity, plate thickness and Poisson’s ratio,

respectively.

Before writing the DQM analogue equation of Eq. (3.1), it should be expressed in a
non-dimensional form for convenience. The non-dimensional form of Eq. (3.1)
would be expressed as following

4 4 4 4
6VI4/+2/12 62W2+/146W4/:pa
oX oX-0Y oY D

(3.2)
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where W =w/«a is the non-dimensional deflection (o being as a reference lenght);
X =x/a, Y=y/b are the non-dimensional coordinates; A =a/bis the aspect ratio
of the plate and lastly a, b are the length and width of the plate along x and y

coordinates, respectively.

In the all analyses of the present work two types of boundary conditions are
analyzed: Clamped (C-C-C-C) and simply supported (S-S-S-S) on all four edges. For
the clamped plate, the boundary conditions at each edge of plate can be expressed in

dimensionless form as following

W(X,0)=W(X,)=W(0,Y)=W(1,Y)=0 (3.32)
oW ow oW ow
7 O =" (1) =—2(X,0)=——(X.)=0 (3.3b)

Equation (3.3.a) expresses the zero deflection at each plate edge whereas (3.3.b)

states the zero slope at each plate edge.

Using same way, the boundary conditions of the simply supported plate on all four

edges may be expressed in dimensionless form as following

W(X,0)=W(X1)=W(0,Y)=W(,Y)=0 (3.42)
82W(o Y)= aZW(l Y)= oW (X,0) = oW (X,)=0 (3.4b)
ox: ox* "’ oy: oy’ )

Zero deflection and zero moment for the each simply supported edge of plate are

expressed by the equations (3.4.a) and (3.4.b), respectively.

Introduction of DQM approximation rules Egs. (2.1a) and (2.1b) into the
dimensionless governing equation Eq. (3.2) yields the following DQM analog

equation
N,-1 N,-1 N,-1 N,-1 pa4
24 2 72 7 (2 4 R (4
Do APW 222 AP BPwW,+2 D BPw, = (3.5)
k=2 k=2 1=2 1=2
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where i =23,...,(Ny-1)andj =23, ..., (N,-1). In the Eq. (3.5), Ny and N, are the
number of grid points taken along the X and Y directions in the domain; 11-(]:) and E’j(.;')

represent the modified weighting coefficients of x and y-type r-th order partial
derivatives, respectively. As stated earlier the second approach that explained in
section 2.3 is followed in this work for implementation of boundary conditions to the
DQM solutions. That is to say, zero slope boundary condition for the clamped edges
and zero moment for the simply supported edges is incorporated into the solution by
modifying the weighting coefficient matrices. However, the grid points along X=0,
X=1, Y=0 and Y=1 in Eq. (3.5) are ignored to take into account w=0 boundary
condition at each edge and so, all the boundary conditions for the four edges (given
by Egs. (3.3) or (3.4)) are actually built into the governing equation. See the
reference [8] for the details of the abovementioned boundary conditions

incorporating procedure.

Expanding Eq. (3.5) for all values of the indices i and j; a matrix of size

(N, —2)*x(N B —2)? is obtained to be solved in order to obtain the deflections at

each grid point taken on the plate. At the present study FORTRAN programs were
developed to solve all these types of DQM equations.

3.2 Layered Composite Plate of Constant Thickness

In this section, the governing differential equation and its DQM analog equation
regarding the deflection analysis of anisotropic plates are represented. The governing
differential equation for deflection analysis of orthotropic layered thin composite

plate may be expressed as following

o*w o'w o*w
o*w o'w )
4D, ———+ D, —=
26 8x5y3 2 ay4 p

In equation (3.6), the D;’s are the coefficients of flexural rigidity of the composite
plate. For the calculation of these coefficients one may see any textbook that
involves mechanics of composite structures, see for instance, reference [30]. We can
make use of the same approach used in the Section 3.1 in order to obtain the

dimensionless form of Eq. (3.6). So, we obtain

15



84W+ 44 Die o'W 2 (2D, +4D;) o'W vap D o'w

4 3 2 2 3 +
)¢ D,, 0X°0Y D, oX?oY D,, 0XoY
3.7
r D,, o'W _ pa’
D, oY* D,

Introduction of DQM approximation rules Egs. (2.1a) and (2.1b) into the
dimensionless governing differential equation Eq. (3.7) yields the following DQM

analog equation for the deflection analysis of layered composite plate

< - 2D, +4D, X -5 S
ZA;;)% +4/1 Dy ZA(S)ZBU)WM I Bt b A B(Z)W
11 k=2 Dll k=2 1=2 (3 8)
+4ﬂ,3 26 ZA(I)ZB(’IS)VVH _'_24 22 23(4)1/[/1 pd
11 k=2 11 1=2 11
fori=23,...,(N-1)andj=23,..., (N-1). In the case of a plate with specially

orthotropic material properties, the coupling vanishes between bending and twisting
stiffness components (i.e., D;s = D2s = 0) [18]. In this situation, the governing

equation, Eq. (3.8), simplifies to

N, -1 N, -1
~(k4)Vij Ve 2D12 +4D66 22(2)23(2)W
k=2 Dy, k=2
3.9
+ D < 7(4) pa’
) _
+2 D—ZBJ, Wy=""

In the present work all the plates that investigated are assumed to be specially-
orthotropic. The equations of applied boundary conditions are given by Egs. (3.3) for
fully clamped plate, and Eqs. (3.4) for fully simply supported plate. However, these
boundary conditions are incorporated into the solution by modifying the weighting

coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=I as

told in the section 2.3. We obtain a matrix of size (N)C—2)2><(Ny—2)2 from

expansion of Eq. (3.8) or (3.9) to be solved in order to obtain the deflections at each

grid point taken on the plate.
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3.3 Isotropic Plate of Variable Thickness

In this section, a rectangular isotropic plate with linearly varying thickness is
considered. For simplicity, the variation is assumed just along the x-axis. The
procedure given by Farsa [17] and Kukreti at al. [18] is quite convenient to follow in
order to obtain the governing differential equation for the deflection analysis of

tapered isotropic plate.

The general differential equation governing the deflection analysis of a genaral

tapered plate may be deduced from Ref. [17, 18] as follows

— *w a4w otw aD &w  OPw
DEG+2 s+ )2 ()
ox 6x o' ot ax o oxdy
30 3 27 A2 2
8D(8 8W)+6 D(8 W+06 w) (3.10)

oy axzay 8y ox?  ox? 8y2

o*D &*w oD, &*w *w
+ v +

oxdy oxdy oyt oxt &y’

+2(1-v) )=
where D is the flexural rigidity of the plate which is a function of x and y, and v is
the Poisson’s ratio. As were in previous sections we nondimensionalize the variables

and then apply the DQM rules to Eq. (3.10) and obtain the following DQM analog

equation

_ (N1 N,-1 N, -1 N, -1

D[Z AW, + 2/122A<2>ZB<2)% + z“ZBj;"VK,]
k=2 k=2 =2

12D x [Z APW, + ZZZA(”Z B<,2>WHJ
_ N,-1 N),—l N},—l
+2D (/12221;3)21?;}%, + i“ZEﬁ)Wi,J
k=2 =2 =2
__ N, -1 Nyl
+D xx (Z APW, + oA Z E}f)WﬂJ

k=2 1=2

@3.11)

N,-1
+2(1— u)ny)LZZA“) BYw,

k=2 =2

N, -1
+Dyy(u/122A(2)W +/14ZB(2)W:] pa’
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where B is the flexural rigidity function of the plate expressed with respect to
nondimensional X- and Y-coordinates. Other terms in the Eq. (3.11) had also been

explained in previous sections.

L J
i

&
¥

(a)

Fig. 3.1: Geometry of isotropic tapered plate:
(a) Plan view; (b) Half cross section A-A

As stated earlier, thickness variation is assumed to be along x-axis as shown in figure
3.1 (b). Considering the thickness variation as

h=hyg(x) 3.12)

where A, is the thickness at the origin; and
g(x)=1+ B2 for 0<x<a (3.13)
a

where [ is the taper ratio parameter which defines the thickness wvariation.
Nondimensionalizing the Egs. (3.12) and (3.13) yields
h=hG(X) 3.14)

G(X)=1+BX for 0< X <1 (3.15)
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Using this nomenclature we can express the nondimensional flexural rigidity of the

plate as follows
D=D,G*(X) for 0< X <1 (3.16)

where D, :hSE/IZ(l—uz). Here &y denotes the thickness at the plate origin.

Substituting Eqgs. (3.15) and (3.16) into Eq. (3.11) gives the governing equation of a

plate with linearly varying thickness along the x-axis for deflection analysis

N,-1 N,-1 N,-1 N,-1
(l+ﬂX,-){ZA$)%+2/122A,~12)ZB§?)%+ﬂ4ZB_§-Z”W-1J
k=2 k=2 =2 =2

N,-1 N,-1 N,-1
+68(1+BX)| Y ACW + 22D AL BYW, (3.17)
k=2 . k=2 =2 .
N1 ~ N, -l _ 19a4
+6,3° [; APw, +UAZIZ_;BJ(.,2)W1J =
fori=23,...,(Ne-1)andj=2,3,...,(N,-1). Equation (3.17) was solved for fully

simply supported and clamped plates. The related boundary conditions are given by
Egs. (3.3) or (3.4) are built into the governing equation via modifying the weighting
coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1. By

doing so, a matrix of size (N, — 2)* x(N b 2)? is obtained to be solved.

3.4 Layered Composite Plate of Variable Thickness

In this section, a different way is followed compared to the previous section due to
the material selection for the tapered plate. To explain the way briefly, the DQM
analog equations, which for composite plates of constant thickness, are written down
including the calculated flexural stiffness of plate, one by one, on each grid points of
the tapered plate. That is to say, the flexural stiffness, which changes linearly along
the x-axis of plate, is incorporated into the governing DQM analogue equation at
each grid point during the formulation. Following formulation can be proposed for

the regarding analysis:

(D), Kyj = Pa’ (3.18)

where
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N -1 N -1 N -1
X - D X - V -

Ky =2 A0, +42—< D AN BW, +
k=2 11 k=2 1=2

2D, +4D. N -~ " =
12 IZD 66 ZA[(/{Z)ZBJ(-/Z)VV/(/ +

11 k=2 =2
N, -1 N, -1 N, -1

D ~ ~ D~ -~
w2 N Ry B 22y B,

11 k=2 1=2 11 =2

fori=23,...,(Ne-1)andj =23, ..., (Ny-1). The i, j indices in the term (D”)ij

indicates that it is written with respect to the plate thickness of the regarding grid
point on the plate. As was in earlier sections the boundary conditions given by
equations (3.3) or (3.4) are built into the governing equation via modifying the
weighting coefficients matrices and ignoring the grid points along X=0, X=1, Y=0

and Y=1. By doing so, a matrix of size (Nx—2)2><(Ny —2)? is obtained to be

solved.
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4. FREE VIBRATION ANALYSIS OF PLATES BY DQM

Free vibration analyses of aforementioned plates have been achieved in this section.
For each plate configuration, the equations governing the free flexural vibration of
plates of constant thickness and variable thickness made of isotropic and layered
composite materials are given firstly. Furthermore, the DQM analog equations are
derived to be solved numerically applying the DQM rules to each governing equation

in the each sub-section.

4.1 Isotropic Plates of Constant Thickness

The differential equation governing the free flexural vibration of a thin rectangular

plate of isotropic materials, in terms of lateral displacement, w, can be written as

4 4 4 2

p[@mtern oty Oy, Sy @
ox ox~0y oy ot

where D is the flexural stiffness of the plate, p is the density of the plate material, /

is the plate thickness and ¢ represents the time. Assuming a function which gives
harmonically periodic time response for the displacement, for example taking

w(x, y,t) =w(x,y)coswt where @ is the dimensional circular frequency, and

substituting into Eq. (4.1) results

4 4 4
o212 ) e

Making the variables nondimensional in Eq. (4.2) yields

o'w 522 o'w Y o'w

+ QW =0 4.3
ox* oxX2oy? or* 4-3)

where W =W (X,Y) is the dimensionless mode function corresponds to the
dimensionless frequency Q; X =x/a, Y =y/b are dimensionless coordinates; a

and b are the lengths of the plate edges parallel to the x and y axes, respectively;

21



A=alb is the aspect ratio, and Q=wa*\/ph/D . Further, D=hE/12(1-0%)

where £ and o are the Young’s modulus and Poisson’s ratio, respectively.
Subsequently, applying the DQ rules Egs. (2.1) to Eq. (4.3) and using the boundary
condition approach used in the previous chapters in which the boundary conditions

are applied during formulation of the weighting coefficients yield

Nyl Nl Nyl N
Z APW, +22° Z AR Z BPW, + 2t Z BYW, -, =0 4.4)
k=2 k=2 =2 =2

fori=23,...,(Ne-1)andj=23,..., (N-1). The assembly of Eq. (4.4) for all

values of the indices i and j results in the following eigenvalue equation of size

(N, -2)x (N, -2)
[SHw}-@*[1]{w}=0 4.5)

where the eigenvalue matrix [S] is comprised of the modified weighting coefficients

[8]. Solving Eq. (4.5) numerically gives the dimensionless eigenvalues.

4.2 Laminated Composite Plates of Constant Thickness

The differential equation governing the free flexural vibration of a mid-plane
symmetric laminated orthotropic rectangular plate of constant thickness can be

written in dimensionless form as following [20]

OW , 0D OW (2D, +4Dy) O'W Dy W

+ —_—
ox* D, 6X’oY D, ox’oy’ D, 0XoY’
4 (4.6)
2t P2 O ooy
D, oY

where W=W(X)Y) is the dimensionless mode function corresponding to
dimensionless frequency Q; X=x/a, Y=)/b are dimensionless coordinates; A =a/b
is the aspect ratio; D;’s are the flexural rigidities of the composite plate; a and b are

the lengths of rectangular plates parallel to x and y axis, respectively. Furthermore,
Q’ =w’a*(ph/ D,)) where o is the dimensional circular frequency and /4 is the

plate thickness. DQM analog equation of Eq. (4.6) can be written as
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N,-1
4) 16 (3) R
ZAzk Vij+42’ ZAk Zle I/Vkl—i_

11 k=2 =2

) 2Dy, + 4D R Ly
Pl ZA;”szfm

41> P ZA(”ZB?)WH +

11k2

@.7)

/14 22 B(4)I/Vl Q2 g =0

11 122:
fori=2,3,...,(Ne-1)andj=2,3, ..., (Ny-1). The assembly of Eq. (4.7) for all
values of the indices i and j results in an eigenvalue equation of size
(N, =2)x(N, —2) like Eq. (4.5) to be solved. The free vibration frequencies of
simply supported (S-S-S-S) and clamped (C-C-C-C) laminated composite plates are

obtained by solving Eq. (4.7). Numerical results are given in section 6.

4.3 Isotropic Plate of Variable Thickness

We can utilize the same manner used in Section (3.3) in order to obtain the
governing equation for freely vibrating isotropic thin tapered plate. We again make
the same assumption for the motion of the plate that it is harmonically periodic in
time. Furthermore, we again assume that the thickness variation is just along the x-
axis and it is linear of which function is given by Eq. (3.12). Modifying Eq. (3.17)
for free vibration analysis of the plate results in following DQM analog eigenvalue

equation

N,-1
(1+BX)) (Z AW, +22° Z AP Z BOw, + 2 Z Bow, J
k=2
N, -1
s S ST s

N1 N,-1
+65° (Z AW, +o2? ZB},Z)VK]J—QZWU ~0

k=2 1=2
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fori=2,3,...,Ny-1)andj=2,3,...,(N-1). In Eq. (4.8), W=W(X)Y) is the
dimensionless mode function corresponding to dimensionless frequency Q; X=x/a,
Y=y/b are dimensionless coordinates; A =a/b is the aspect ratio; a and b are the
lengths of rectangular plates parallel to x and y axis, respectively. Furthermore,
O’ =w’a*(ph,/ D,) where @ is the dimensional circular frequency; pis the
density of plate material; 4, is the plate thickness at the plate origin (see figure 3.1),
and D, = hg E/12(1-0?). Again, the boundary conditions given by Egs. (3.3) or (3.4)
are built into the governing equation via modifying the weighting coefficients
matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1. By doing so, a

set of equations of size (N,—2)x(N,—-2) is obtained to be solved from the

assembly of Eq. (4.8) for all values of the indices i and ;.

4.4 Laminated Composite Plate of Variable Thickness

As was in section 3.4 a different approach is followed in this section compared to the
sections involve isotropic tapered plate in the analyses. In the Sections (3.3) and
(4.3), a linear function was assumed for the plate thickness and was substituted into a
general governing equation which involves the derivatives of the plate rigidities.
Consequently, a governing equation was obtained which just involves the plate taper
ratios at the grid points and the plate rigidity at the plate origin. However, the case
where a laminated composite plate takes place in the analyses of plates of variable
thickness might make the derivation of an analytical equation that governs the
behaviour of the regarding plate quite complex. In this case, we approached the
problem from a probable production way of such a plate. Noting that the governing
equation given in the Section 3.4 for the case of deflection analysis of tapered
laminated composite plates, the free vibration equation can also be written in the

following form:

Dy, 2
(7) KW, —Q W, =0 (4.9)
y

where

Q=a)a2\/; is a dimensional frequency parameter from which the circular

frequency @ can be obtained and
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2 2D, + 4Dy X ) "
T W Z/ﬂ”z BOw, + (4.10)
11 k=2 1=2
_ N,—
a3 2 Dy ZA(UZB(;)WH +/14 D, ZB(;UWH
11 k=2 11 =2

fori=23,...,(Ne-1)andj=2.3, . .., (N,-1). The i, / indices in the term (%j in
i

Eq. (4.9) indicates that it is written with respect to the plate thickness of the
regarding grid point on the plate. Again, the boundary conditions given by Egs. (3.3)
or (3.4) are built into the governing equation via modifying the weighting
coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1. By

doing so, a set of equations of size (N, —2)x (N, —2) is obtained to be solved.
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5. TRANSIENT ANALYSES OF PLATES BY DQM

This chapter concerns with transient analyses of the aforementioned square plates.
The plates are assumed to be exposed to air blast load. As were in the previous
chapter, four different plate configurations are analyzed: Isotropic and laminated
composite plates of constant and variable thicknesses. Plates are assumed to be fully
clamped and simply supported. For the analysis of air blast loading, a function that
approximates to the time variation of the blast pressure is assumed. The resulting
governing equations, which are all time-dependent, are solved numerically using the
Newmark time integration method. Hence, the Newmark time integration method is

also explained in the first section before going into details of reference problems.

5.1 Isotropic Plate of Constant Thickness

The differential equation that governs the forced flexural vibration of an isotropic

thin rectangular plate of Constant Thickness might be written as follows

D[84w(x;y,t) 49 84w(2x, yz,t) N 84w(x;y, Z)J > ﬁzw(x;y,t) —p (5.1)
ox Ox“0y oy ot

where D=RE/12(1-0%) is the flexural rigidity of the plate, w(x,y,t) is the

function governs displacement, m = ph is the mass per unit area of the plate, and p

is the external force exposes on the plate. Substituting W =w/<& (& is a reference

length), X =x/a, Y=y/b into Eq. (5.1) in order to make the variables

dimensionless yields

64W+2 , o'W 484W+£_62W_pa4

+ 5.2
ox* oxr’ ot D e’ D (52)

where A =a/b is the aspect ratio of the plate and a and b are the lengths of the plate
edges parallel to x and y axes, respectively. DQM analogue of Eq. (5.2) may be

written using the quadrature rules given by Egs. (2.1), as following
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Nyl Nyl N1
D APw,+24° Z ) Z BPw,+ 24> BPw,
k=2 k=2 =2 (5.3)
4
a pa
+—m(Wy) , Y
fori=2,3,...,(Ne-1)andj=2,3,..., (N,-1). As were in previous analyses, the

boundary conditions given by Egs. (3.3) or (3.4) are built into the governing equation
via modifying the weighting coefficients matrices and ignoring the grid points along

X=0, X=1, ¥Y=0 and Y=1. By doing so, a set of equations of size (N, —2)x(N, —2)

is obtained from the assembly of Eq. (5.3) for all values of the indices i and j to be

solved.

As was stated earlier, Newmark time integration method is used to solve Eq. (5.3).

The Newmark time integration method can be described briefly as following:

If we assume a governing equation like following, time-dependent with external

force,
Mo} + K {w} = {F] (5.4)

where {w} is the displacement vector; M is the mass matrix; w=0"w/0t’; K is the

stiffness matrix and {F} is the load vector. The Newmark method uses finite

difference expansions in the time interval Az, in which it is assumed that

(gt } = b, A= 8) {30, } + 57, | A (5.5)

(0,001 =, b+ o }Az{(__a){ v, }Atz (5.6)

where « and 6 are Newmark integration parameters. To be able to figure out the

displacements {w,,, }, the governing Eq. (5.4) is evaluated at time #+1 as

M. j+ K {w,. ) ={F] (5.7)

Rearranging Egs. (5.5) and (5.6) as

(W} = ag ({Wn+l}_{wn})_a2 {W,}—az {w,} (5.8)

i f = {0} + a6 {90, § + a7 {0, (5.9)
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where a,=1/aAt?>, a,=06/aAt, a,=1/art, ay=(1/2a)-1, a,=(5/a)-1,

as=(At/2){(6/a)-2}, ag=At(1-5), a; =5At and combining the equations for

{W,,1} and {w,,} with Eq. (5.7) yields the following equation from which the

displacement at time #,+; to be solved
(agM+K){w,, } ={F}+M(aq {w,}+a, {, } +as{i,}) (5.10)

Once a solution is obtained for the displacement at time fu11, {w,,,}, velocities and

accelerations are updated as described in Eq. (5.8) and Eq. (5.9) in order to obtain the
displacements at the further time steps. In the present transient analyses, the values
a=0.5 and 6=0.5 are assumed for the Newmark time integration parameters.

Furthermore, Af =0.0001 s is taken in the analyses.

It was stated earlier that the plate is assumed to be exposed to air blast load. For the
regarding air blast load analysis, an approximation to the time variation of the blast

pressure is given by Friedlander decay function as [1]

7at/tp

p(x,y,t)=p,, (l—t/tp)e (5.11)

In the present analyses, the parameters for the regarding Friedlander decay function
are taken as in the Ref. [1], that is, p, =28906 N/mz, a=0.35, t, =0.0018s .
Consequently, what we have as the final governing equation to be solved when we

apply the Newmark time integration method to the Eq. (5.3) and also substitute the
air blast load function Eq. (5.11) as follows

(aOM+a24Kj{wn+l}:{F}+M(a0{wn}+a2{wn}+a3{wn}) (5.12)
where

m 0 0

0 m O
M=

0 0 m
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I Ky K3 KZ(Ny—l) |
K = K.32 K.33 K3(1.Vy71)
_K(Nx—l)z K(Nx—1)3 K(Nx—l)(Ny—l)_
N1 N,-1 Ny -1 Ny-1
Ki=| Y APw,+222 > AP Y BPw, +2* S BYw,
k=2 k=2 =2 =2

fori=2,3,...,(Ny-1)andj=2,3,...,(N,-1)and

—at/tp

Fy=p,(1-t/t,)e
for t=0.0, 0.0001, 0.0002, ..., 0.01.

It should be noted that we obtain dimensional displacements from Eq. (5.12) since
the entire equation is multiplied by D/a*. The applied boundary conditions given
by Eq. (3.3) and Eq. (3.4) are built into the governing equation via modifying the
weighting coefficients matrices and ignoring the grid points along X=0, X=1, Y=0
and Y=I1. Furthermore, it can be noted that a matrix of size (V, —2)2 x(N,, —2)2 is

obtained at each time increment from the left-hand side of assembly of Eq. (5.12) of
which solution gives the displacements at the each grid point on the plate at each
time increment. In the present study, the strains are also calculated using the
displacements obtained at each time increment. The results are given in the next

chapter as displacement-time and strain-time history graphs.

5.2 Layered Composite Plate of Constant Thickness

We may write the governing equation in the form of DQM formulation for the

regarding analysis as following
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) 2Dy, + 4D R Ly
Dl ZA;”szfm

41> P ZA(”ZB?)WH +

11k2

(5.13)

2
At D 23(4)W +— W z_pa4
11 =2 ! atz D
fori=2,3,...,(Nw-1)andj=2,3,...,(V-1). Since all the terms in Eq. (5.13)
have also been described in the previous sections we directly move on to solution of
Eq. (5.13) applying the Newmark method explained in Section (5.1). Application of
the Newmark time integration method to the Eq. (5.13) yields

Dy, . ,

(aOM—i-a K){ Wy} ={F}+M(ag{w, } +a, {,} +a; {ii, }) (5.14)
where

m 0 0

0 m 0
M=

0 0 m

I Ky Ky KZ(Ny—l) ]
K = K.sz K.33 K3(].Vy—l)

_K(Nx71)2 K(Nx71)3 K(Nxfl)(Nyfl)_

N,-1
K, =S A0w, rap s A S BOW, +
k=2 11 k=2 =2

N,-1

Z A(Z) Z B(z)Wkl

Dll k=2 =2

v43 D26 Z AP Z BYW, +
11 k=2

D
4 e’} Z B('?)VVil
Dy, =2

A

fori=2,3,...,(Ny-1)andj=2,3,...,(N,-1)and
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7at/tp

Fy=p,(1-t/t,)e
for +=0.0, 0.0001, 0.0002, ..., 0.01.

It should be pointed out, again, that displacements that are acquired from Eq. (5.14)
are dimensional since the entire equation is multiplied by D),/ a*. The boundary

conditions given by Egs. (3.3) and Eq. (3.4) are built into the governing equation via
modifying the weighting coefficients matrices and ignoring the grid points along

X=0, X=1, Y=0 and Y=1. Furthermore, it can be noted that a matrix of size
(N, —2)*x(N ) —2)? is obtained at each time increment from the left-hand side of

assembly of Eq. (5.14) of which solution gives the displacements at the each grid
point on the plate at each time increment. In the present study, the strains are also
calculated using the displacements obtained at each time increment. The results are

given in the next chapter as displacement-time and strain-time history graphs.

5.3 Isotropic Plate of Variable Thickness

Making the same assumptions about the regarding plate as in the Sections (3.3) and
(3.4), that is, the thickness variation is just along the x-axis and linear, the governing
equation that governs the dynamic behaviour of an isotropic, tapered, thin

rectangular plate subjected to air blast load can be written in the following DQM

form

D . .
(aoM+a—2Kj{wnH}={F}+M(a0{wn}+a2{wn}+a3{wn}) (5.15)
where

my, 0 0
m=| 0 s O (5.16)

is the mass per unit area matrix, m, = ph)ij and
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K, =(+pX,) {Z A9, +2,122A<2>Z Bow, m“ZE};‘W,J
k=2 1=2
N,-1
+68(1+BX, )[Z ACW, + /122 A“’ZB(Z)WH] (5.17)

-1
+68° [ZA@’W +u/lzzl§f.,2)WﬂJ
2

fori=2,3,...,(Ny+-1)andj=2,3,...,(N,-1)and

—at/tp

F :pm(l—t/tp)e
for 1= 0.0, 0.0001, 0.0002, ..., 0.01.

It is worth to point out especially that the mass per unit area is not constant for the

regarding plate since it is tapered. Hence, the terms . are numbered in Eq. (5.16)

y

as can be noted in which each mj; correspond a grid point on the plate domain.

Furthermore, the term Dy in Eq. (5.15) denotes the flexural stiffness of the plate at

the plate origin and f represents the taper ratio of the plate as they were explained

in the related previous sections.

As were in the last two sections, in which transient analyses of plates are carried out,
the displacements that are acquired from Eq. (5.15) are dimensional. The boundary
conditions given by Eq (3.3) and (3.4) are built into the governing equation via
modifying the weighting coefficients matrices and ignoring the grid points along

X=0, X=1, Y=0 and Y=1. Furthermore, it can be noted that a matrix of size
(N, —2)?x(N ) —2)? is obtained at each time increment from the left-hand side of
assembly of Eq. (5.15) of which solution gives the displacements at the each grid
point on the plate at each time increment. In the present study, the strains are also

calculated using the displacements obtained at each time increment. The results are

given in the next chapter as displacement-time and strain-time history graphs.
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5.4 Laminated Composite Plate of Variable Thickness

As noted in Sections (3.4) and (4.4) a different approach is followed in the solution
of problem of a tapered laminated composite plate. The way that utilized in these
sections involves much more numerical treatment rather than deriving the governing
equations analytically and then the DQM analogues of them to be solved. The
governing equations that also derived before for a laminated, orthotropic composite
plate of constant thickness are utilized in a different way. To state more clearly, the
DQM analogue equations, which for plates of constant thickness, are written down
including the calculated flexural stiffnesses of plate, one by one, on each grid points
of the tapered plate. That is to say, the flexural stiffnesses, which change linearly
along the x-axis of plate, are incorporated into the governing DQM analog equation
at each grid point during the formulation. Remembering the equations derived in
earlier related sections, the governing equation to be used in the blast load analysis of

laminated composite tapered plate may be expressed as follows

D ) .
(%M{a—yj KJ{WM}:{F}+M(ao{Wn}+a2{wn}+a3{wn}) (5.18)
ij
where
iy, 0 0
M| O _0 (5.19)
0 0 iy

is the mass per unit area matrix, m, = ph)ij . However,

Ky Kys e Ky vy
K - K3, K3 o K31y
_K(Nx—l)Z Koveays 0 Kve-nyw-) |
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fori=2,3,...,(Ny-1)andj=2,3,...,(N,-1)and

—atlt p

Fy =pm(1—t/tp)e

C D :
for t=0.0, 0.0001, 0.0002, ..., 0.01. The i, j indices in the term (%j in Eq. (5.18)
a Ji
indicates that it is written with respect to the plate thickness of the regarding grid
point on the plate. Again, the boundary conditions given by Egs. (3.3) and (3.4) are
built into the governing equation via modifying the weighting coefficients matrices

and ignoring the grid points along X=0, X=1, Y=0 and Y=1. By doing so, a matrix of
size (N, — 2)*x(N y 2)* is obtained to be solved.
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6. RESULTS AND DISCUSSIONS

In the previous chapters, the DQM analog equations are derived from the governing
equations of static, free vibration and transient analyses of various rectangular plates.
Plates are analyzed from the aspects of material and plate thickness. Furthermore,
two boundary conditions are considered in analyses: Simply supported (S-S-S-S) and
clamped (C-C-C-C) on four edges. In this chapter, the numerical results that are
obtained using the DQM governing analog equations that are derived for each
analysis in the previous chapters are presented. Besides the obtained DQM results are
compared with results of ANSYS which is finite element method based software.
Additionally, some results have also been compared with some experimental,

theoretical results that are available in literature.

6.1 Numerical Results for The Plates of Constant Thickness

Before presenting the numerical results, the material properties of plates are
presented. In the analyses of this study two isotropic and three laminated composite
materials are used. The properties of isotropic and laminated composite materials are
given in Table 6.1 and Table 6.2, respectively. Laminated plates (M3 and M4) are
seven-layered and the ply orientation angle is 0° for each layer. Third laminated plate

(M5) is again seven layered and the stacking sequence is [0/90/0/90/0/90/0].

Table 6.1: Properties of isotropic materials.

Material E(GPa) | v p (kg/m’)
Aluminium (M1) 70 0.3 2700
Steel (M2) 207 0.3 7770
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Table 6.2: Properties of composite materials.

Material Bidirectional Unidirectional
(M3) (M4,M5)
Ei(GPa) | 2414 40
E» (GPa) 24.14 0
G12(GPa) 3.79 45
Vi2 0.11 0.27
p(kg/m’) 1800 2000

The dimensionless centre deflections of the isotropic and laminated composite plates
of constant thickness are given in Table 6.3 for the simply supported plate and in
Table 6.4 for the clamped plate. As it can be noted from these tables, a good
agreement is obtained between the results of DQM, ANSYS and literature for the
plates of isotropic materials. However, there is a small discrepancy between the
DQM and ANSYS results for the laminated composite plates. The dimensional
deflections for symmetric, cross-ply specially orthotropic laminated plates can be
obtained from w=W (pa*/D,,) (for isotropic materials D;; replaces with D).

Table 6.3: The dimensionless centre deflections (W) of the square plates (S-S-S-S)
of constant thickness.

Analytical [14] | DQM[9] | DQM ANSYS
M1,M2 0.00406 0.00400 | 0.00406 | 0.00405
M3 0.00575 | 0.00582
M4 0.00886 | 0.00901
M35 0.00699 | 0.00722

Table 6.4: The dimensionless centre deflections (W) of the square plates (C-C-C-C)

of constant thickness.

Analytical [14] | DQM [9] DQM ANSYS
M1,M2 0.00126 0.00126 | 0.00126 | 0.00127
M3 0.00146 | 0.00149
M4 0.00227 | 0.00231
MS5 0.00181 | 0.00187

The fundamental dimensionless frequencies of isotropic and composite plates are
given in Table 6.5 and Table 6.6 for simply supported and clamped plates of constant

thickness, respectively. The plate aspect ratio is one for all cases. In Table 6.7, the
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dimensionless free vibration frequencies for the first ten modes are given for
isotropic plates of constant thickness. The results show that the free vibration
frequencies are captured very well for the isotropic plates. The small discrepancy
between the DQM and ANSYS results for the laminated composite plates can be
attributed to the material model used in ANSY'S. The material model used in ANSYS
requires the material properties in the perpendicular direction to the plate. These
material properties are chosen considering the matrix is dominated in the
perpendicular direction and are given as E;=3 GPa, G3=Gx=1 GPa, vi3=v3=0.4
[20]. There are also two numerical experiments achieved in Ref. [20] that explain the
effect of the mentioned material model used in ANSYS on the results which might
be assumed the reason of discrepancy between the DQM and ANSYS results. The

dimensional frequency for symmetric, cross-ply specially orthotropic laminated
plates considered here can be obtained from w=(Q/a’)\/D,,/ ph , (for isotropic
materials D;; replaces with D).

Table 6.5: The first dimensionless frequencies (2 ) of the square plates (S-S-S-S)
of constant thickness.

Analytical [14] | DOM[8] | DQM ANSYS

M1,M2 19.739 19.738 19.739 19.709
M3 16.633 16.519
M4 13.339 13.228
MS5 15.070 14.827

Table 6.6: The first dimensionless frequencies (€2 ) of the square plates (C-C-C-C)

of constant thickness.

Analytical [14] | DQM[8] | DQM ANSYS

M1,M2 35.992 35.989 35.985 35.856
M3 33.564 33.326
M4 26.667 26.416
MS5 30.136 29.667
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Table 6.7: The dimensionless frequencies (€2 ) of the isotropic square plates
of constant thickness for the first ten modes.

C-C-C-C S-S-S-S

Mode DQM ANSYS DQM ANSYS
1 35.985 35.856 19.739 19.709
2 73.394 73.009 49.348 49216
3 73.394 73.009 49.348 49.216
4 108.216 107.147 78.957 78.499
5 131.581 130.731 98.696 98.339
6 132.205 131.402 98.696 98.339
7 164.999 162.911 128.305 127.268
8 164.999 162911 128.305 127.268
9 210.521 209.004 167.784 167.036
10 210.521 209.004 167.784 167.036

It can be seen in the Table 6.7 that the frequencies obtained using DQM are in an
agreement with the frequencies obtained using ANSYS. However, there are small
discrepancies at some modes. The free vibration frequencies obtained using DQM
for the simply supported isotropic plates are in better agreement with ANSY'S results
for the first ten modes compared to the clamped plate. Generally, the results indicate
that the stiffness of the laminated composite plate is predicted higher in DQM
analysis compared to the prediction of ANSYS. In the DQM analysis, 15 grid points
are used along the x and y axes on the plate domain (N, = N, = 15). In ANSYS, the
isotropic plates are modelled using 14x14=196 shell elements (Shell63), and the
laminated composite plates are modelled using 14x14=196 laminated shell elements

(Shell99).

The centre deflections of the simply supported laminated plates of constant thickness
are also obtained using the Navier’s solution choosing the first 9 terms in the series
solution. The results are given in Table 6.8. Results show that a better agreement is
obtained between the DQM and ANSYS results. Furthermore it can be concluded
that plates analyzed using Navier seem to behave stiffer than DQM and ANSYS.
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Table 6.8: The dimensionless centre deflections (W) of the square
laminated plates (S-S-S-S) of constant thickness including
the Navier’s solution.

DQM NAVIER ANSYS
M3 0.00575 0.00440 0.00582
M4 0.00886 0.00684 0.00901
M5 0.00699 0.00509 0.00722

The displacement-time and strain-time histories of the plate centres are obtained
using the DQM and ANSYS for isotropic and laminated composite plates of constant
thickness of clamped and simply supported at all edges. The strain values in this
section represent the values of ¢, for each plate. Figure 6.1 and Figure 6.2 show the
displacement-time and strain-time histories of centre of the clamped aluminium plate

(M1) of constant thickness, respectively. DQM results are found to be in an

agreement with ANSYS and the other results found in the literature.
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Figure 6.1: Displacement-time history of plate centre for the blast-loaded
clamped aluminium plate (M1) of constant thickness.
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Figure 6.2: Strain-time history of plate centre for the blast-loaded
clamped aluminium plate (M1) of constant thickness.

The strain-time history result obtained for the clamped aluminium plate of constant
thickness is also compared with the experimental result in Fig. 6.2 and a discrepancy
is found between the experimental and predicted results. This discrepancy is because
of the effect of nonlinear terms which are not included in the present study [20]. The
theoretical and experimental results given in Figs. 6.1 and 6.2 are taken from Ref.

[16].

Figure 6.3 and Figure 6.4 show displacement-time and the strain-time histories of the
centre of simply supported aluminium plate (M1) of constant thickness, respectively.
DQM results are found to be in an agreement with the ANSY'S results and theoretical
results taken from literature. The theoretical results for blast-loaded simply supported

isotropic plates appear in Fig. 6.3 and 6.4 are taken from Ref. [21].
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Figure 6.3: Displacement-time history of plate centre for the blast-loaded
simply supported aluminium plate (M1) of Constant Thickness.
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Figure 6.4: Strain-time history of plate centre for the blast-loaded simply
supported aluminium plate (M1) of Constant Thickness.
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The strain-time history result of the steel plate (M2) of constant thickness is shown in
Figure 6.5 for the clamped plate and in Figure 6.6 for the simply supported plate. A
better agreement is found between the experimental and predicted results for the steel
plate (M2). This is because of that the unused nonlinear terms are not very effective

on the solution and so the response of the steel plate seems to be still in the linear

range [20].
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Figure 6.5: Strain-time history of plate centre for the blast-loaded
clamped steel plate (M2) of constant thickness.
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Figure 6.6: Strain-time history of plate centre for the blast-loaded
simply supported steel plate (M2) of constant thickness.

Figure 6.7 and Figure 6.8 show the displacement-time and strain-time histories of the
centre of bidirectional laminated composite clamped plate (M3) of constant
thickness, respectively. The results indicate that a better agreement between the
predictions obtained using ANSYS and DQM is obtained compared to theoretical

result.
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Figure 6.7: Displacement-time history of plate centre for the blast-loaded
bidirectional laminated composite plate (M3) of constant
thickness with clamped boundary condition.
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Figure 6.8: Strain-time history of plate centre for the blast-loaded

bidirectional laminated composite plate (M3) of constant
thickness with clamped boundary condition.
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Figure 6.9 and Figure 6.10 show the displacement-time and strain-time histories of
bidirectional laminated composite plate (M3) of constant thickness with simply
supported boundary condition, respectively. The results again indicate an agreement

between the predictions obtained using DQM, ANSYS and theory.
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Figure 6.9: Displacement-time history of plate centre for the blast-loaded
bidirectional laminated composite plate (M3) of constant
thickness with simply supported boundary condition.
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Figure 6.10: Strain-time history of plate centre for the blast-loaded
bidirectional laminated composite plate (M3) of constant
thickness with simply supported boundary condition.

Figure 6.11 and Figure 6.12 show the displacement-time and strain-time histories of
unidirectional laminated composite plate (M4) of constant thickness with clamped
boundary condition, respectively. For the mentioned plate configuration only DQM
and ANSYS results are compared in the graphs. It can be concluded from these

graphs that DQM presents very close solutions compared to ANSYS.
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Figure 6.11: Displacement-time history of plate centre for the blast-loaded

unidirectional laminated composite plate (M4) of constant
thickness with clamped boundary condition.
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Figure 6.12: Strain-time history of plate centre for the blast-loaded

unidirectional laminated composite plate (M4) of constant
thickness with clamped boundary condition.
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Figure 6.13 and Figure 6.14 show the displacement-time and strain-time histories of
unidirectional laminated composite plate (M4) of constant thickness with simply
supported boundary condition, respectively. A good agreement between the results of

DQM and ANSYS is observed from the figures.
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Figure 6.13: Displacement-time history of plate centre for the blast-loaded
unidirectional laminated composite plate (M4) of constant
thickness with simply supported boundary condition.
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Figure 6.14: Strain-time history of plate centre for the blast-loaded
unidirectional laminated composite plate (M4) of constant
thickness with simply supported boundary condition.
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Figure 6.15 and Figure 6.16 show the displacement-time and strain-time histories of
unidirectional laminated composite plate (M5) of constant thickness with clamped

boundary condition, respectively. A good agreement between the results of DQM
and ANSYS is observed from the figures.
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Figure 6.15: Displacement-time history of plate centre for the blast-loaded
unidirectional laminated composite plate (M5) of constant

thickness with clamped boundary condition.
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Figure 6.16: Strain-time history of plate centre for the blast-loaded

unidirectional laminated composite plate (M5) of constant
thickness with clamped boundary condition.
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Figure 6.17 and Figure 6.18 show the displacement-time and strain-time histories of
unidirectional laminated composite plate (M5) of constant thickness with simply
supported boundary condition, respectively. The results indicate an agreement
between the predictions obtained using ANSYS and DQM. There is a discrepancy
observed between the strain-time histories obtained by DQM and theory for the
simply supported plates in the Figures 6.10, 6.14 and 6.18. However, a good
agreement is obtained for the displacement-time histories of the mentioned plates
using DQM and ANSYS. Furthermore, better solutions for both displacement-time
and strain-time histories are obtained by DQM in compare with of ANSYS for the
clamped plates.
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Figure 6.17: Displacement-time history of plate centre for the blast-loaded

unidirectional laminated composite plate (M5) of constant
thickness with simply supported boundary condition.

52



. \ Theory

1600 — ; b ~ - — - ANSYS
0
-1600 —

Microstrain
o
[\)
S
o
|

-4800 —

-6400 —

-8000 —

-9600

o 1 2 3 4 5 6 7 8 9 10
Time (msec)

Figure 6.18: Strain-time history of plate centre for the blast-loaded
unidirectional laminated composite plate (M5) of constant
thickness with simply supported boundary condition.

It can also be concluded from the figures that the bidirectional laminated plate seems
to be weaker against the blast loading in comparison to the unidirectional laminated
plate. Also, the stacking sequence has an important effect on the plate response. The
[0/90/0/90/0/90/0] stacking sequence is found to be more resistant to the blast
loading compared to the [0];. Lastly, it is observed from the figures that the structural
behaviour of plates obtained by DQM is less stiff than obtained by ANSYS at most

plate configuration.

6.2 Numerical Results for The Plates of Variable Thickness

In this section, numerical results for the tapered plates that obtained using DQM are
presented and compared to ANSYS results. The governing DQM equations for
tapered plates have been derived earlier for the each analysis in the Sections 3.3, 3.4,

4.3,4.4,53 and 5.4.

Two types of materials, one isotropic and one laminated composite material, are

considered for the analyses of tapered plates. The properties of the used isotropic
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material, aluminium (M1), are given in the Table 6.1. The taper ratio is assumed to

be 0.7, £ =0.7, and the aspect ratio is assumed to be 1, 4 =1, for the isotropic plate.

Shell 63 element is used in modelling of the isotropic tapered plate in ANSYS. The
finite element model of the isotropic tapered plate is represented in Figure 6.19.
Moreover, cross section of the regarding plate is also shown in Figure 6.20 which

illustrates the tapering along the x-axis.

Figure 6.19: Finite element model of the isotropic tapered plate

Figure 6.20: Cross section of the isotropic tapered plate.

In the Table 6.2, properties of the used laminated composite material (M3) are given.
As told in the sections of analysis an approach was followed that takes the possible
production method of such tapered laminated composite plate into consideration.
That is to say, the plate is assumed to be 2-layered at the thinnest edge, at X=0, and
14-layered at the thickest edge, at X=1. Tapering has been increased from 2 layers to
14 layers by using 2 more layers at each 2 elements (considering 15 grid points and

14 elements) along the x-axis. However, it should be expressed that at the points
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where the number of layers increase, the average of number of layers is taken as the
number of layers in order to obtain better approximation in DQM solutions. In other
words, at intersection points where extra layers are added the number of layers is
assumed to be average of old and new number of layers along x-axis. For instance, at
grid point 3 of Figure 6.22 the number of layer is assumed to be 3 whereas it is
assumed to be 5 layers at grid point 5. Following this manner the plate is assumed to
have 13 layers at grid point 13 and 14 layers at points 14 and 15. Experience shows
that the mentioned assumption related to the number of layers at intersection grid

points provides solutions with better accuracy in DQM analysis.

The ply orientation angle is assumed to be 0° for each layer for the mentioned
composite plate. The finite element model of laminated composite tapered plate is
represented in Figure 6.21. Moreover, cross section of the regarding plate is also
shown in Figure 6.22 which illustrates the tapering along the x-axis. As was in the
modelling of isotropic plate, Shell 63 element is used to model the laminated tapered

composite plate.

Figure 6.21: Finite element model of the laminated composite tapered plate.
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Figure 6.22: Cross section of the laminated composite tapered plate.

The dimensional centre deflections of the isotropic and laminated composite tapered
plates are given in Table 6.9 for the simply supported and clamped boundary
conditions. From the results given in the Table 6.9 it can be concluded that DQM
provides better solutions for clamped boundary condition than simply supported for
isotropic and composite tapered plates. The difference between the deflection results
of DQM and ANSYS is more than 20 percent for simply supported and clamped
tapered plates of (M1). A similar difference between the deflections obtained using
DQM and ANSYS is obtained for the simply supported tapered plate of (M3) which
is nearly 20 percent. However, the discrepancy between the DQM and ANSYS
results is less than 8 percent for the clamped tapered composite plate of (M3). In
these analyses, the distributed load is taken 2890.6 N/m” for the plates of (M3) and
28906 N/m” for the plates of (M1).

Table 6.9: The dimensional centre deflections (mm), w, of the square plates
of variable thickness.

(S-S-S-S) (C-C-C-C)
DQM ANSYS DQM ANSYS
M1 7.006 5.224 2.190 1.655
M3 3.099 2.465 0. 626 0.583

In Table 6.10, the dimensional free vibration frequencies are given for the first ten
modes for the simply supported and clamped tapered isotropic plate, (M1). As can be
noted, better agreement is obtained for the simply supported isotropic tapered plate.
In Table 11, however, the dimensional free vibration frequencies are given for the
first ten modes for the simply supported and clamped tapered laminated composite
plate, (M3). The fundamental frequencies obtained by DQM for the laminated
composite tapered plate have approximately 5 percent difference for the simply

supported and 10 percent for the clamped plate compared to the ANSY'S results.

56



Table 6.10: The dimensional frequencies (Hz), @, of the isotropic (M1)
square plate of variable thickness for the first ten modes.

C-C-C-C S-S-S-S
Mode DQM ANSYS DQM ANSYS
1 363.49 362.31 200.89 200.63
2 736.57 732.84 496.98 495.79
3 741.55 737.87 500.23 498.95
4 1096.70 1086.3 802.27 797.86
5 1306.52 1297.6 977.86 974.28
6 1331.52 1323.5 998.22 994.72
7 1668.57 1648.0 1299.57 1289.3
8 1678.48 1658.1 1307.45 1297.5
9 1758.25 20334 1632.18 1623.5
10 2051.57 2109.3 1695.17 1687.8

Table 6.11: The dimensional frequencies (Hz), @, of the laminated composite
(M3) square plates of variable thickness for the first ten modes.

C-C-C-C S-S-S-S

Mode DQM ANSYS DQM ANSYS
1 237.77 211.94 115.64 109.02
2 458.83 389.75 285.39 262.98
3 49541 424.33 313.38 272.89
4 693.98 611.52 475.24 448.44
5 726.71 626.13 543.58 449.01
6 785.41 750.46 648.58 560.67
7 821.02 869.48 780.65 668.86
8 894.72 924.72 784.39 702.43
9 1039.94 946.45 863.99 743.22
10 1064.46 1163.7 1094.80 921.20

Two types of strain-time histories are obtained for the each tapered plate since the

strains ¢, and &, are not equal due to the variation of plate thickness along one
direction. Both ¢, - and ¢, -time histories are given here for the isotropic (M)
tapered plate. On the other hand, &, -time history is given only for the laminated

composite (M3) tapered plate since the significant divergence of ¢, -time graphs

obtained using DQM compared to ANSYS. Although DQM provides a reasonable

convergence for both strains &, and &, in both direction for the isotropic tapered
plates, the &, -time histories, that computed along the x-direction where the tapering

exists, for the composite plates did not converge to the ANSYS results. These graphs

are not given here due to this reason. However, various researches are still carried on
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in order to clarify the reason of the mentioned discrepancy of the strain-time history

along the tapering direction of composite plates.

Figure 6.23, Figure 6.24 and Figure 6.25 show the displacement-time and strain-
time histories of the simply supported tapered aluminium plate (M1), respectively.
As can be noted, Figure 6.24 represents the strain-time history of center of tapered
isotropic plate along the x-direction whereas Figure 6.25 represents the strain-time
history of center of tapered isotropic plate along the y-direction. A reasonable
convergence is obtained in each graph using DQM compared to ANSYS for the
simply supported plate. The blast load parameter is taken as p,=28906.0 N/m” in the
analyses of isotropic (M1) tapered plates.
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Figure 6.23: Displacement-time history of plate centre for the blast-loaded

isotropic plate (M1) of variable thickness with
simply supported boundary condition.
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Figure 6.24: Strain-time (¢, ) history of plate centre for the blast-loaded

isotropic plate (M1) of variable thickness with simply
supported boundary condition.
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Figure 6.25: Strain-time ( &, ) history of plate centre for the blast-loaded

isotropic plate (M1) of variable thickness with
simply supported boundary condition.
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Figure 6.26 show the displacement-time history of blast loaded clamped isotropic

(M1) tapered plate. Figure 6.27 and 6.28 show the strain-time histories for ¢, and
g, of the clamped tapered aluminium (M1) plate, respectively. Again a reasonable

convergence is obtained in each graph using DQM compared to ANSYS for the
clamped tapered isotropic plate. However the discrepancy between the DQM and
ANSYS results is more apparent for the clamped tapered plate than the simply
supported one since there are more peaks in displacement- and strain-time graphs of

clamped plate as can be seen in Figure 6.26, 6.27 and 6.28.
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Figure 6.26: Displacement-time history of plate centre for the blast-loaded
isotropic plate (M1) of variable thickness with
clamped boundary condition.
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Figure 6.28: Strain-time ( &, ) history of plate centre for the blast-loaded

isotropic plate (M1) of variable thickness with clamped
boundary condition.

61



In Figure 6.29 and 6.30, the displacement-time and strain-time (&, ) histories are

given for the tapered laminated composite plate (M3) with simply supported

boundary condition.
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Figure 6.29: Displacement-time history of plate centre for the blast-loaded
bidirectional laminated composite plate (M3) of variable
thickness with simply supported boundary condition.
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Figure 6.30: Strain-time ( &, ) history of plate centre for the blast-loaded

bidirectional laminated composite plate (M3) of variable
thickness with simply supported boundary condition.

62



In Figure 6.31 and 6.32, the displacement-time and strain-time (&, ) histories are

given for the tapered laminated composite plate (M3) with clamped boundary
condition.
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Figure 6.31: Displacement-time history of plate centre for the blast-loaded

bidirectional laminated composite plate (M3) of variable
thickness with clamped boundary condition.
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Figure 6.32: Strain-time ( &, ) history of plate centre for the blast-loaded

bidirectional laminated composite plate (M3) of variable
thickness with clamped boundary condition.
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In the analyses of tapered laminated composite (M3) plates the blast load parameter

is taken as p, =2890.6 N/m’. It can be concluded from the Figures 6.29 to 6.32 that

the DQM do not exhibit a good convergence for the displacement- and strain-time

(&y) histories for the (M3) tapered laminated tapered plate although an
approximation to ANSYS results is obtained. Even, the strain-time (&, ) histories for

the mentioned plate obtained using DQM is quite erratic in comparison with ANSY'S

which is why these graphs were left out in the reported graphs of this work.

Generally, the results show that the DQM can be used for the prediction of transient
responses of both isotropic and composite plates. Experience shows that the
computer time is much lower with DQM compared to the computer time in the finite
element solution. This could be an advantage of DQM when analyzing the long time
transient response of plates. Although, some analyses need to be inspected on more,
DQM gives also accurate results for the tapered isotropic and laminated composite
plates. This means DQM can easily be utilized in analyzing of the complicating

affects in plates such as thickness variation and material anisotropy.
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7. CONCLUSION

Static, free vibration and transient analyses of various rectangular plates are
accomplished by differential quadrature method (DQM) in the present thesis. Plates
are analyzed from various aspects such as plate material and thickness. Various
isotropic materials and laminated composite materials are taken into consideration.
Two type of boundary conditions are considered for the regarding plates: Clamped
and simply supported on all four edges. In the analyses of plates of variable

thickness, the variation in the thickness is assumed to be just along the x-axis.

In the first section of the present study, contents of the present study are presented
together with a brief literature survey for the DQM. In the second section, DQM is
described from the mathematical aspect, and some assumptions and approaches
about DQM are expressed. The sections 3, 4 and 5 are all divided to four sub-parts
which analyze, respectively, isotropic and composite plates of constant thickness and
variable thickness. In Section 3, deflection analysis; in Section 4 free vibration
analysis and in Section 5 transient analysis are achieved for the mentioned plates
using DQM. In the section of transient analysis, all plates are assumed to be exposed
to blast loading and the resulting equations are solved by the Newmark numerical
time integration method. Furthermore, FORTRAN programs were developed in order

to solve the DQM governing analog equations in each section.

In section 6, the numerical results are presented together with the used material
properties. The numerical results are presented in two sub-sections, namely,
numerical results for plates of constant and variable thickness. In both sub-sections
the center deflections of isotropic and laminated composite plates are given firstly.
Further, the free vibration frequencies of each plate configuration are presented.
While the frequencies and deflections of plates of constant thickness are given as
dimensionless, they are given dimensional for the plates of variable thickness for
convenience. To see the accuracy of obtained results, the DQM results are mainly
compared to ANSYS software results; however, some available theoretical and

literature results are also employed in the comparisons.
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After the accuracy of DQM solutions is verified by comparing the deflection and
frequency of the regarding plate configurations with ANSYS results the DQM
solutions are extended to solve the equations that governs structural behaviour of
plates subjected air blast load. Displacement- and strain-time histories are obtained
for each plate configuration and compared mainly to ANSYS results and also for
some plate configurations theoretical and experimental results are employed in the

comparisons.

Very accurate results are obtained by DQM for the plates of constant thickness. The
center deflections and fundamental frequencies of each plate configuration of
constant thickness are obtained very close to ANSYS results. Furthermore,
displacement- and strain-time histories obtained using DQM for the plates of
constant thickness are found to be in a good agreement with ANSYS. However, a
discrepancy was observed between the strain-time histories of DQM and
experimental data for the fully clamped aluminium and steel plates. This discrepancy

can be attributed to the effect of nonlinear terms that are unused in the analyses.

The results obtained using DQM for the plates of variable thickness did not converge
very well for each plate configuration. For instance, there are approximately 30
percent differences between the center deflections obtained by DQM and ANSYS for
the isotropic tapered C-C-C-C and S-S-S-S plates although the fundamental
frequencies of mentioned plates are estimated very well. On the other hand, the

displacement- and strain-time (&, , &, ) histories of isotropic tapered plates obtained

X
using DQM exhibit reasonable convergence compared to ANSYS results. However,
this is not the case for the tapered laminated composite plate. There are considerable

differences observed in the strain-time (&, ) histories of the mentioned plates. As
mentioned in the previous section &, -time histories for the tapered laminated

composite plates were left out in the reported results of this work since the
divergence obtained was very significant. However, more reasonable results were

obtained in the static and free vibrational analyses of these plates.

In general, DQM provides solutions with acceptable accuracy in the analyses of
plates. Also, the results obtained in the static and free vibrational analyses of plates
are very accurate compared to ANSYS and other available results from the literature.

Furthermore, the results show that the DQM can be used for the prediction of
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transient responses of both isotropic and composite plates. The computer time is
much lower with DQM compared to the computer time in the finite element solution.
Although, some analyses need to be inspected on more, DQM gives also accurate
results for the tapered isotropic and composite plates. This means DQM can be
implemented in analyzing of the complicating affects in plates such as thickness
variation and material anisotropy, straightforwardly. As was stated by Bert and Malik
[10], DQM has the capability of producing highly accurate solutions with minimal
computational effort at some type of engineering problems, and therefore, has the
potential of being an alternative to the conventional techniques such as the finite
difference and finite element methods in the future. Therefore, in the future studies, it
is intended to involve the various nonlinear affects in the DQM analyses of plates
and also it is considered to implement the semi-analytical DQM solution into the

transient analyses of plates.
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