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STATIC AND DYNAMIC ANALYSES OF PLATES USING DIFFERENTIAL 
QUADRATURE METHOD 

SUMMARY 

In this study, static and dynamic analyses of isotropic and layered composite square 
plates have been achieved using differential quadrature method (DQM). Differential 
quadrature method is a highly efficient and a newly proposed numerical technique 
compared to the conventional ones like finite element, finite difference and etc. 
Using this method, isotropic and laminated composite thin plates are analyzed from 
various aspects such as plate material and thickness. Two types of boundary 
condition are analyzed: Simply supported and clamped on all four edges. For the 
plate material, various isotropic and laminated composites are considered. Plates of 
variable thickness are also analyzed. 

In the first analysis section, deflection analysis has been achieved for the isotropic 
and composite laminated plates of constant and varying thickness. After deriving the 
analytical governing equations, the DQM analogue equations are obtained. In the 
further sections, the mentioned way also followed for the free vibration and transient 
analyses of aforementioned plates. In the section of transient analyses, plates are 
assumed to be exposed to blast loading and the resulting DQM equations are solved 
using Newmark time integration method. After all governing DQM analogue 
equations are derived in the mentioned sections, the numerical results obtained by 
using these equations are presented. Then, the obtained DQM results are compared to 
mainly ANSYS results, and for some plate configurations, compared to 
experimental, theoretical and some DQM results from the literature.  

From the results presented in the relevant section, it can be concluded that DQM 
provides result with adequate accuracy for the static, free vibrational and transient 
analyses of both isotropic and laminated composite plates. Moreover, it is observed 
that DQM can also be applied to tapered plates, successfully. Furthermore, the 
formulation of DQM solutions is simple and the computer programming procedure is 
also considerably straightforward.  The computation time is also significantly less 
than the finite element method.  Consequently, DQM seems to have the potential to 
be an alternative to the conventional numerical techniques like finite element and 
finite difference. 
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DİFERANSİYEL KARELEME YÖNTEMİ İLE PLAKLARIN STATİK VE 
DİNAMİK ANALAZİ 

ÖZET 

Bu tezde, izotropik ve katmanlı kompozit ince kare plakların diferansiyel kareleme 
(DKY) yöntemi ile statik ve dinamik analizleri gerçekleştirilmiştir. Plaklar, çeşitli 
izotopik ve kompozit malzemeler kullanılarak bütün kenarlarından ankastre ya da 
basit mesnetli olmak üzere iki farklı sınır koşulu için incelenmiştir. Ayrıca, plaklar 
kalınlıkları açısından da analiz edilmiştir. Sabit kalınlıklı plaklarla beraber x-ekseni 
yönünde kalınlığı lineer değişen izotropik ve katmanlı kompozit ince kare plaklar 
analizlerde kullanılmıştır. 

Tezin, ilk analiz bölümünde sözü edilen basit ve ankastre plakların çökme analizleri 
DKY kullanılarak gerçekleştirilmiştir. Sonraki bölümde ise, plakların serbest titreşim 
frekanslarını veren yönetici denklemler çıkarılmış ve çözümde kullanılmak üzere, 
DKY’ne göre benzeşim denklemleri yazılmıştır. Aynı süreç, plakların geçişli 
analizlerinin yapıldığı son analiz bölümünde de tekrarlanmıştır. Geçişli analizlerde, 
plakların, anlık basınç yüküne maruz olduğu kabulü yapılmış ve ilgili denklemler 
Newmark sayısal integrasyon yöntemi kullanılarak çözülmüştür. Sayısal sonuçların 
verildiği bölümde öncelikle plaklar için kullanılan izotropik ve kompozit 
malzemelerin özellikleri verilmiştir. Daha sonrasında ise, her bir plak yapılandırması 
için elde edilen DKY denklemlerinin çözümü vasıtasıyla elde edilen sayısal sonuçlar 
verilmiştir. Sonuçlar, her aşamada ANSYS yazılımı sonuçları ile ve aynı zamanda 
bazı plaklar için literatürde bulunan bazı deneysel, teorik ve sayısal yöntem sonuçları 
ile karşılaştırılmıştır. 

Elde edilen sayısal sonuçlara dayanılarak denilebilir ki, diferansiyel kareleme 
yöntemi ile izotropik ve kompozit plakların statik, dinamik ve geçişli analizleri 
başarıyla gerçekleştirilebilir. Aynı zamanda, yöntemin, değişken kalınlıklı plakların 
analizine de başarıyla uygulanabildiği görülmüştür. DKY kullanılarak sonuçların 
bilgisayarda elde edilme süresi, sonlu elemanlar yöntemine göre oldukça düşük 
olduğu da gözlenilmiştir. Programlaması basit ve az işlem yükü ile yeterli 
hassasiyette doğru sonuçlar veren diferansiyel kareleme yöntemi, mühendislikte ve 
bilimde yoğun olarak kullanılan sonlu farklar ve sonlu elemanlar gibi yöntemlere 
alternatif olarak gösterilebilir. 
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1.  INTRODUCTION 

In this study, static, free vibration and transient analyses of isotropic and layered 

composite rectangular plates have been achieved using differential quadrature 

method (DQM). After verifying the accuracy of the DQM solutions by obtaining 

deflections and free vibration frequencies of isotropic and laminated composite 

plates and comparing with other results, structural response of isotropic and 

laminated composite plates subjected to air blast loading obtained by DQM and 

compared to ANSYS results and some other available results in literature. That is to 

say, this work mostly based on obtaining the structural response of plates subjected 

to air blast load by DQM and verifying the accuracy of obtained results. As it will be 

noted in the further sections, various plate configurations such as isotropic and 

composite plates of constant and variable thickness are investigated by DQM. 

Plates subjected to air blast load have been investigated by different researchers 

widely. For example, Turkmen and Mecitoğlu investigated nonlinear structural 

response of laminated composite plates subjected to air blast load [1]. In the present 

work some of the DQM results were compared to the theoretical and experimental 

results given in the mentioned paper. 

Differential quadrature method is a highly efficient and a newly proposed numerical 

technique compared to the conventional ones like finite element, finite difference and 

etc. It has been introduced in 1970s by R. Bellman and his associates for rapid and 

more accurate solution of linear and nonlinear partial differential equations [2, 3]. In 

the following years of 1970s, the method has been improved more by different 

researchers and has been applied to many different engineering problems 

successfully. For instance, it has been applied to the transport processes and multi-

dimensional problems by Civan and Sliepcevich [4,5] and to the nonlinear diffusion 

by Mingle [6]. It was the first time when Bert and et al. used the method to solve a 

problem from structural mechanics which involves fourth-order partial differential 

equation [7]. Following this, Jang and et al. applied the method to the static analysis 

of structural components; Wang and et al. applied to the problems of deflection, 
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buckling and free vibration of beams and plates; Malik and Bert applied to the 

problem of free vibration of plates in a new respect, and Shu et al. applied to Navier-

Stokes equations. [8-13]. It also should be stated that the analytical results given in 

the paper of Leisa [14] are used as reference for the obtained DQM results. 

Not only simple thin plates, but also the plates involve some complicating effects 

like thickness non-uniformity, material anisotropy, have been analyzed using DQM. 

For instance, The Bert et al. solved free vibration problem of symmetrically 

laminated cross-ply plates based on the first-order shear deformable plate theory 

using DQM [15]. Turkmen investigated structural response of isotropic plates 

subjected to air blast load comparing the theoretical and experimental results [16]. 

Farsa et al. obtained fundamental frequency of isotropic tapered plates [17]; Farsa 

[18] and Farsa et al. [19] achieved fundamental frequency analysis of single specially 

orthotropic, generally orthotropic and anisotropic rectangular layered plates by the 

differential quadrature method. Tuna and Turkmen, used DQM to obtain structural 

response of plates subjected to air blast load [20, 21]. Furthermore, Bert and et al. 

accomplished static and free vibration analyses of isotropic and anisotropic plates by 

DQM [22, 23]. Moreover, Bert and Malik utilized the DQM for irregular domains 

and applied to plate vibration in another work [24] and also developed a semi-

analytical differential quadrature solution for plate problems in a few works [25, 26]. 

The papers referenced so far demonstrate that DQM is an efficient numerical 

technique and capable of yielding results of high accuracy in computational 

mechanics. It has been applied successfully to many problems in structural 

mechanics by investigators. However, as stated by Bert and Malik [10], DQM is still 

in a developing stage and the problems that the DQM applied to so far, have been 

limited to smaller scale ones. Consequently, overcoming the limitations of applying 

DQM to other type of problems or large scale problems offers challenges to future 

DQM researchers. 

As stated earlier, present work based mostly on obtaining the structural response of 

plates subjected to blast loading by DQM. Blast loaded plates have also been 

investigated by researchers formerly. For instance, as mentioned earlier, Turkmen 

and Mecitoglu have also obtained nonlinear structural response of laminated 

composite plates subjected to blast loading [1], and Turkmen investigated structural 

response of isotropic plates subjected to blast loading [16]. In these studies, 
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experimental results are compared with theoretical method and FEM results by the 

authors. Furthermore, Kazanci and Mecitoglu investigated the nonlinear damped 

vibrations of composite plates subject to blast loading [27]. 

In this work, static, free vibration and transient analyses of plates are achieved using 

DQM. Only, simply supported and clamped plates on all four edges are considered. 

Various isotropic and laminated composite materials are employed in the analyses. 

However, plates of linearly variable thickness are also analyzed using DQM in each 

analyse section.  For the each plate configuration, static, free vibration and transient 

analyses are accomplished in the relevant sections. Before going into detail of 

analyses, some basic definitions of DQM are given in the Section 2. In this section, 

formulas relevant to obtaining the weighting coefficients of DQM and some 

discussions related with incorporation of the boundary conditions into the DQM 

solutions are introduced after the mathematical basis of the method is presented.   

In the Section 3, deflection analysis has been achieved for the isotropic and 

laminated composite plates of constant and variable thickness. After deriving the 

analytical governing equations, the DQM analogue equations are obtained from 

which the deflections are obtained. In the fourth section, free vibration analyses are 

accomplished by DQM for the mentioned plates. After presenting of the governing 

free vibration equations (eigenvalue equations) for each plate configuration, the 

DQM analogue equations are derived. Once the DQM governing equations are 

derived, the free vibration frequencies can be obtained for each mode. 

The transient analyses of aforementioned plates are presented in the Section 5. In this 

section, plates are assumed to be exposed to blast loading. Following the same way 

again, the governing analytical equations are presented for each plate configuration 

firstly. And then, DQM analogue equations are derived to be solved. However, it is 

worth to express that the solutions of the governing equations in this section involves 

using time integration tool differently from the previous sections. Therefore, the 

obtained DQM equations are solved here using a time integration method. In this 

work, the Newmark time integration method is employed in the solutions.  

Numerical results are presented in the Section 6. In this section, numerical results for 

the plates of constant thickness are given firstly. In the second subsection the 

numerical results for plates of variable thickness are given. Before presenting the 

numerical results, the material properties that used in the analyses are given. As it 
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will be noticed in this section, some results are given dimensionless whereas some 

are given dimensional for convenience. The centre deflections are given firstly in this 

section for the each plate configuration. The obtained results are tabulated in tables 

to compare with ANSYS results and some available DQM and theoretical results 

from the literature. Subsequently, the fundamental free vibration frequencies are 

presented in tables with ANSYS and available results from the literature for 

comparison.  

The results of transient analyses are given using two different parameters: deflection 

and strain of plate centres. That is, deflection-time and strain-time histories of plate 

centres are obtained using DQM and compared to mainly ANSYS results, and for 

some plate configurations, compared to experimental and theoretical results found in 

the literature. 

Experiences show that DQM is a highly efficient numerical technique for 

investigating of plates of constant and variable thickness. Plates of laminated 

composite are also easily analyzed and results with high accuracy can be obtained 

using DQM. It is especially worth to express that transient analysis of isotropic and 

composite plates subject to blast load is easily achieved by DQM. The solution time 

with DQM is quite less than ANSYS solution, and developing of computer programs 

for DQM solutions is quite simple. This would be a significant advantage through the 

long-time transient analyses. As it will also be stated in the further section, once the 

weighting coefficients in DQM solutions are obtained, they might be used in every 

kind of problem regardless of problem type or boundary conditions which is an 

efficient side of DQM. 
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2.  DIFFERENTIAL QUADRATURE METHOD (DQM) 

In this section, the differential quadrature method (DQM) is described briefly. 

Firstly, the mathematical definition of DQM is presented and some significant 

differences from other conventional numerical techniques are explained. Later, a tool 

to obtain the weighting coefficients to be used in DQM solutions is explained and the 

relevant formulas are given. Lastly, some discussions about implementation of the 

boundary conditions in DQM solutions are introduced. Two commonly used 

approaches for incorporating of boundary condition into DQM solutions among the 

DQM researchers are illustrated briefly. 

2.1 Mathematical Definition of DQM 

In DQM, a partial derivative of a function with respect to a coordinate direction is 

expressed as a linear weighted sum of all the functional values at all mesh points 

along that direction. In other words, the DQM reduces the differential equations into 

an analogous set of algebraic equations by expressing at each grid point the calculus 

operator value of a function with respect to a coordinate direction at any discrete 

point as the weighted linear sum of the values of the function at all the discrete points 

chosen in that direction [10]. 

 

Fig. 2.1 Quadrature grid for a rectangular region 
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For instance, a function ),( yxψψ = which has a rectangular domain ax ≤≤0 , 

bx ≤≤0  like in the Fig. 2.1 can be considered. Assuming that the function values in 

the solution domain are known or desired on a grid of sampling points, the r th-order 

partial derivatives of the function ( , )x yψ  with respect to x and y at points x = xi and 

y = yj along any lines y = yj and x = xi are expressed in terms of the DQM, 

respectively, as following 

( )

1

x

i

Nr
r

ik kjr
kx x

A
x
ψ ψ

==

∂
=

∂ ∑ ,      i = 1,2,...,Nx              (2.1a) 

( )

1

y

i

Nr
r

jl ilr
ly y

B
y
ψ ψ

==

∂
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∂ ∑ ,      j = 1,2,...,Ny              (2.1b) 

Above, ( )r
ikA  and ( )r

jlB  are the weighting coefficients of rth order x and y derivatives, 

Nx and Ny are the number of grid points taken in the x and y directions in the domain, 

respectively.  

The method of differential quadrature uses a polynomial fitting at the selected points. 

This is one of major differences of this method compared to other numerical methods 

such as (higher order) finite difference which is mainly a Taylor expansion based 

method. Another difference is that in the standard finite difference method a solution 

value at a point is expressed as a function of the values at adjacent points only 

whereas differential quadrature method takes all the function values at all the discrete 

points in the domain. The finite element method, however, is based on weighted 

residuals and provides a better approximation for irregular shaped systems compared 

to the finite difference method. The shared principle of these methods is that both of 

them have the discretization principle and divide the solution domain into many 

simply shaped regions. Thus, solutions obtained by these methods have to be 

computed using a large number of surrounding points to be able obtain a solution 

with a high accuracy since the accuracy strongly depends on the nature and 

refinement of the discretization of the domain. However, at most time, the 

differential quadrature method provides solutions with high accuracy using only few 

number of grid points compared to abovementioned methods. The computer 

programming system of DQM solutions is also straightforward which provides a 

significant efficiency through the solutions. Therefore DQM has the potential of 
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being an alternative to the conventional numerical techniques such as the finite 

difference and finite element methods [10]. 

2.2 Calculation of Weighting Coefficients 

One of the key points of DQM is to determine the weighting coefficients for a 

discretization of a derivative of any order for the related domain. The weighting 

coefficients are independent of the boundary conditions and therefore, need to be 

calculated only once for a particular discretization. The method proposed by Shu and 

Richards [13] in order to calculate the weighting coefficients, which has also been 

utilized at the present work, provides solutions with adequate accuracy. The relevant 

formulas developed by the mentioned method to calculate the weighting coefficients 

given in the work of Bert and Malik [10] are also given here. Following formula may 

be used to calculate the weighting coefficients of first-order derivatives 

(1) 1,

1,

( )

( ) ( )

Nx

i

ik Ny

i k k

i

k

x x
A

x x x x

υ

υ

υ υ

υ υ

= ≠

= ≠

−
=

− −

∏

∏
 for i, k = 1,2,…,Nx and i≠ k                                    (2.2)  

The terms of weighting coefficients matrix of second- and higher-order derivatives 

may be obtained through the following relationship 

 









−

−=
−

−

ki

r
ik

ik
r

ii
r

ik xx
A

AArA
)1(

)1()1()(  for i,k = 1,2,…,Nx and k≠ i                                      (2.3)  

where 2 ( 1)xr N≤ ≤ − . The diagonal terms of the weighting coefficient matrix are 

given by 

( ) ( )

1,

xN
r r

ii i
i

A Aυ
υ υ= ≠

= − ∑ for i = 1,2,…,Nx                 (2.4) 

where 1 ( 1)xr N≤ ≤ − . Following equation to calculate the coordinates of the 

sampling points is used in the present study 

[ ]
2

)1/()1(cos1 −−−
= x

i
Ni

x
π

a; i = 1,2,…,Nx                                                  (2.5) 
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One may see the work of Bert and Malik [10] for other types of calculating the 

coordinates of sampling points and other regarding matters. 

2.3 Implementation of Boundary Conditions 

Currently, there are two approaches are popular among DQM researchers for 

implementation boundary conditions. Here, both approaches will be explained 

briefly. Some references relevant to the topic will also be given for the interested 

readers.  

The first approach, which is also most widely used, has a general applicability in 

many types of problems. This approach based on discretization of governing 

equation on the grid points of domain and boundary conditions on the boundary grid 

points, and finally assembling all of them to be solved.  

Explaining the mentioned approaches on a one-dimensional problem may be more 

convenient. Assume a freely vibrating Bernoulli-Euler beam which would has quite 

general boundary conditions at both ends like simply supported, clamped or free end, 

but let assume the beam simply supported at both edges for convenience. This 

example will be a modified form of the one given in the work of Bert and Malik [10] 

in which a freely vibrating cantilever Bernoulli-Euler beam analyzed by DQM in 

detail. The linear free vibration of a thin prismatic Bernoulli-Euler beam is described 

by the following eigenvalue differential equation 

w
d

wd 2
4

4

Ω=
ξ

                    (2.6) 

where ( )w w ξ=  is the dimensionless mode function of the lateral deflection, ξ  is the 

dimensionless coordinate along axis of the beam, ξ = x/L, and Ω  is the 

dimensionless frequency of the beam vibrations, 2 4 2 /mL EIωΩ = . Here, m  is the 

mass per unit length of the beam, L is the length of beam, ω is the dimensional 

frequency, and E and I are the modulus of elasticity and moment of inertia of the 

beam, respectively. The boundary conditions at both clamped ends are 

2 2/ 0 at  = 0 = 1w d w dξ ξ= =                  (2.7) 

As explained in Ref. [10], of the needed N quadrature analogue equations, four 

equations should be obtained from Eqs. (2.7) for the both ends, and the remaining 
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(N-4) equations from Eq. (2.6). Therefore, leaving two sampling points at each end 

of beam, quadrature analogue of Eq. (2.6) be written as 

∑
=

Ω=
N

j
ijij wwA

1

2)4( ; i = 3,4,…,(N-2)                (2.8) 

which yields (N-4) equations. The quadrature analogues of the boundary conditions 

Eqs. (2.7) are written as 

0=iw  , (2)

1

0
N

ij j
j

A w
=

=∑ ; i = 1   at ξ = 0           (2.9.a) 

0=iw  , (2)

1

0
N

ij j
j

A w
=

=∑ ; i = N  at ξ = 1                    (2.9.b) 

The assembly of Eqs. (2.8) through (2.9) gives following set of linear equations 

(2) (2) (2) (2) (2) (2)
11 12 1 131( 1) 1( 2)

(2) (2) (2) (2) (2) (2)
1 2 3( 1) ( 2)

(4) (4) (4) (4) (4) (4)
31 32 3 333( 1) 3( 2)

(4) (4) (4) (4) (4) (4)
41 42 4 434( 1) 4( 2)

1 0 0 0 0 0

0 0 0 0 0 1
NN N

NNN N NN N N N

NN N

NN N

A A A A A A

A A A A A A

A A A A A A

A A A A A A

− −

− −

− −

− −

L

L

L

L

L

K

M M M M M L

(4) (4) (4) (4) (4) (4)
( 2)1 ( 2)2 ( 2)( 1) ( 2) ( 2)3 ( 2)( 2)N N N N N N N N NA A A A A A− − − − − − − −

 
 
 
 
 
 
 × 
 
 
 
 
 
  

M

L

 

1

2

( 1)

2

33

44

( 2)( 2)

0
0
0
0

N

N

NN

w
w

w

w
ww
ww

ww

−

−−

   
   
   
   
   
   = Ω   
   
   
   
   
     

MM

                (2.10) 

Equation (2.10) may be written as 

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }2

0bb bd b

db dd d d

S S w
S S w w

       =    
Ω        

               (2.11) 
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where subscript b indicates the grid points used for writing the quadrature analog of 

the boundary conditions, d indicates the grid points used for writing the quadrature 

analog of the governing differential equation. Eliminating the column vector {wb}, 

Eq. (2.11) is reduced to following standard eigenvalue problem 

[ ]{ } [ ]{ } { }02 =Ω− dd wIwS                 (2.12) 

where  [ ] [ ] [ ][ ] [ ]1
dd db bb bdS S S S S−= −  is of order (N-4)× (N-4). 

The eigenvalues, which are the frequency squared values, and the eigenvectors {wd} 

which describes the mode shapes of the freely vibrating beam may both be 

determined from the [S] matrix. As it may be noted, boundary conditions are 

incorporated into the solution by writing the quadrature analogs of equations of 

boundary conditions at the boundary points and quadrature analog of governing 

equation at the inner domain points. Assembling all of them give a set of linear 

equations from which the eigenvalues are solved. 

The second approach for applying the boundary conditions to the DQM solutions, 

which is also utilized in the present work, is based on modifying the weighting 

coefficients matrices during the formulation of problem. Here, the one dimensional 

problem - freely vibrating beam given earlier is taken as reference and will be 

employed to explain the second approach. The governing equation and relevant 

boundary equations were given by Eqs. (2.6) and (2.7), and their quadrature analogs 

by (2.8) and (2.9). As described in Ref. [8], the boundary conditions will be 

implemented during the formulation of the problem. 

So, we modify the weighting coefficient matrice of second-order derivative since the 

second boundary equation at the each end is of second-order. To do so, let the 

original weighting coefficient matrice of second-order derivative being as follows 

(2) (2) (2)
11 12 1
(2) (2) (2)

(2) 21 22 2

(2) (2) (2)
1 2

N

N
ij

NNN N

A A A

A A AA

A A A

 
 
   =   
 
  

L

L

M M L M

L

               (2.13) 
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To implement the boundary conditions 2 2/ 0 at 0 and 1d w dζ ξ ξ= = =  we zero the 

first (1th) and the last (Nth) columns of (2)
ijA 

   matrix. So, representing the  

modified matrix as (2)
ijA 

 
%  we obtain 

(2) (2)
12 13
(2) (2)
22 23

(2) (2) (2)
32 33

(2) (2)
2 3

0 0

0 0

0 0

0 0

ij

N N

A A

A A
A A A

A A

 
 
 
   =   
 
 
  

L

L
% L

M M M L M

L

                           (2.14) 

Using the recurrence relationship of weighting coefficient matrices 

[ ] [ ][ ] [ ][ ])1()1()1()1()( AAAAA rrr −− ==                (2.15) 

we may obtain the modified weighting coefficient matrix of fourth-order derivative 

in the following way 

 (4) (2) (2)
ij ij ijA A A     =     
% % %                 (2.16) 

Consequently, let the quadrature analog of governing equation (2.8) be written in 

terms of modified weighting coefficients as follows 

1
(4) 2

2

N

ij j i
j

A w w
−

=

= Ω∑ % ; i = 2,4,…,(N-1)              (2.17) 

In equation (2.17), the boundary conditions 2 2/ 0 at 0 and 1d w dζ ξ ξ= = =  are 

built in by modifying the weighting coefficient matrices. In order to satisfy the zero 

deflection boundary condition at each end of beam, 0w =  at 0 and 1ζ ζ= = , we 

ignore the sampling points i=1 and i=N during writing the quadrature analog of 

governing equation as can be noted from equation (2.17). 

The assembly of equation (2.17) for all values of the indices i and j results in the 

following eigenvalue equation which gives an ( 2) ( 2)N N− × −  matrix  

[ ]{ } [ ]{ } { }2 0S w I w−Ω =                 (2.18) 

The eigenvalue matrix [S] in equation (2.18) is comprised of modified weighting 

coefficients. As a result, ignoring the sampling points i=1 and i=N enables satisfying 
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the zero deflection boundary condition at each end and, by modifying the second-

order weighting coefficient matrix the zero moment boundary condition at each end 

is incorporated into the solution.  

In this part of the present work, two commonly used approaches for implementing 

the boundary conditions into DQM solutions were introduced. One may see the 

reference [10] for the details of first explained approach for a beam problem. For the 

second approach of boundary condition implementation into DQM solutions, 

reference [8] is especially recommended for plate problems and also references [12] 

and [22] may be advised.  
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3.  STATIC ANALYSIS OF PLATES BY DQM 

In this section, static analyses of square plates are accomplished by DQM. Isotropic 

and laminated composite plates of constant and variable thickness are statically 

analyzed assuming the plates under distributed pressure force. Plates are assumed to 

be simply supported and clamped at four edges. In each sub-section, firstly the 

governing partial differential equation which gives the deflection of plate for the 

relevant plate configuration is given. Later, the DQM analog equations of them are 

presented using the rules given in section 2.1 to be solved. Numerical results that 

obtained from the derived DQM analog equations are given in section 6. 

3.1 Isotropic Plate of Constant Thickness 

Under the Kirchhoff’s assumptions of the linear, elastic, small deflection theory of 

bending for thin plates of constant thickness, the governing differential equation for 

the deflections is as follows 

4 4 4

4 2 2 42w w w p
x x y y D

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                  (3.1) 

where w=w(x,y) is the deflection function, p is the pressure applied to upper surface 

of the plate and 3 2/12(1 )D Eh υ= −  is the flexural rigidity of the plate. Furthermore, 

E, h and υ  are the modulus of elasticity, plate thickness and Poisson’s ratio, 

respectively. 

Before writing the DQM analogue equation of Eq. (3.1), it should be expressed in a 

non-dimensional form for convenience. The non-dimensional form of Eq. (3.1) 

would be expressed as following 

4 4 4 4
2 4

4 2 2 42W W W pa
X X Y Y D

λ λ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                (3.2) 
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where /W w α=  is the non-dimensional deflection (α  being as a reference lenght); 

/ ,  /X x a Y y b= =  are the non-dimensional coordinates; /a bλ = is the aspect ratio 

of the plate and lastly a, b are the length and width of the plate along x and y 

coordinates, respectively. 

In the all analyses of the present work two types of boundary conditions are 

analyzed: Clamped (C-C-C-C) and simply supported (S-S-S-S) on all four edges. For 

the clamped plate, the boundary conditions at each edge of plate can be expressed in 

dimensionless form as following 

0),1(),0()1,()0,( ==== YWYWXWXW               (3.3a) 

0)1,()0,(),1(),0( =
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂ X

Y
WX

Y
WY

X
WY

X
W              (3.3b) 

Equation (3.3.a) expresses the zero deflection at each plate edge whereas (3.3.b) 

states the zero slope at each plate edge. 

Using same way, the boundary conditions of the simply supported plate on all four 

edges may be expressed in dimensionless form as following 

0),1(),0()1,()0,( ==== YWYWXWXW               (3.4a) 

0)1,()0,(),1(),0( 2

2

2

2

2

2

2

2

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂ X

Y
WX

Y
WY

X
WY

X
W             (3.4b) 

Zero deflection and zero moment for the each simply supported edge of plate are 

expressed by the equations (3.4.a) and (3.4.b), respectively. 

Introduction of DQM approximation rules Eqs. (2.1a) and (2.1b) into the 

dimensionless governing equation Eq. (3.2) yields the following DQM analog 

equation 

1 11 1 4
(4) 2 (2) (2) 4 (4)

2 2 2 2

2
y yx x N NN N

kj kl ilik ik jl jl
k k l l

paA W A B W B W
D

λ λ
− −− −

= = = =

+ + =∑ ∑ ∑ ∑% % % %              (3.5) 
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where i = 2,3, . . . , (Nx-1) and j = 2,3, . . . , (Ny-1). In the Eq. (3.5), Nx and Ny are the 

number of grid points taken along the X and Y directions in the domain; ( )r
ikA%  and ( )r

jlB%  

represent the modified weighting coefficients of x and y-type r-th order partial 

derivatives, respectively. As stated earlier the second approach that explained in 

section 2.3 is followed in this work for implementation of boundary conditions to the 

DQM solutions. That is to say, zero slope boundary condition for the clamped edges 

and zero moment for the simply supported edges is incorporated into the solution by 

modifying the weighting coefficient matrices. However, the grid points along X=0, 

X=1, Y=0 and Y=1 in Eq. (3.5) are ignored to take into account w=0 boundary 

condition at each edge and so, all the boundary conditions for the four edges (given 

by Eqs. (3.3) or (3.4)) are actually built into the governing equation. See the 

reference [8] for the details of the abovementioned boundary conditions 

incorporating procedure. 

Expanding Eq. (3.5) for all values of the indices i and j a matrix of size 
2 2( 2) ( 2)x yN N− × −  is obtained to be solved in order to obtain the deflections at 

each grid point taken on the plate. At the present study FORTRAN programs were 

developed to solve all these types of DQM equations. 

3.2 Layered Composite Plate of Constant Thickness 

In this section, the governing differential equation and its DQM analog equation 

regarding the deflection analysis of anisotropic plates are represented. The governing 

differential equation for deflection analysis of orthotropic layered thin composite 

plate may be expressed as following  

( )
4 4 4

11 16 12 664 3 2 2

4 4

26 223 4

4 2 4

4

w w wD D D D
x x y x y

w wD D p
x y y

∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂

∂ ∂
+ =

∂ ∂ ∂

               (3.6) 

In equation (3.6), the Dij’s are the coefficients of flexural rigidity of the composite 

plate. For the calculation of these coefficients one may see any textbook that 

involves mechanics of composite structures, see for instance, reference [30].  We can 

make use of the same approach used in the Section 3.1 in order to obtain the 

dimensionless form of Eq. (3.6). So, we obtain 
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( )4 4 4 4
12 664 2 316 26

4 3 2 2 3
11 11 11

4 4
4 22

4
11 11

2 4
4 4

D DD DW W W W
X D X Y D X Y D X Y

D W pa
D Y D

λ λ λ

λ

+∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
=

∂

                (3.7) 

Introduction of DQM approximation rules Eqs. (2.1a) and (2.1b) into the 

dimensionless governing differential equation Eq. (3.7) yields the following DQM 

analog equation for the deflection analysis of layered composite plate 

1 11 1 1
(4) (3) (1) 2 (2) (2)16 12 66

11 112 2 2 2 2

1 11 4
3 (1) (3) 4 (4)26 22

11 11 112 2 2

2 44

4

y yx x x

y yx

N NN N N

ik kj ik jl kl ik jl kl
k k l k l

N NN

ik jl kl jl il
k l l

D D DA W A B W A B W
D D

D D paA B W B W
D D D

λ λ

λ λ

− −− − −

= = = = =

− −−

= = =

+
+ +

+ + =

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

% % %% %

% % %

           (3.8) 

for i = 2,3, . . . , (Nx-1) and j = 2,3, . . . , (Ny-1). In the case of a plate with specially 

orthotropic material properties, the coupling vanishes between bending and twisting 

stiffness components (i.e., D16 = D26 = 0) [18]. In this situation, the governing 

equation, Eq. (3.8), simplifies to 

11 1
(4) 2 (2) (2)12 66

112 2 2
1 4

4 (4)22

11 112

2 4 yx x NN N

ik kj ik jl kl
k k l

N

jl il
l

D DA W A B W
D

D paB W
D D

λ

λ

−− −

= = =

−

=

+
+

+ =

∑ ∑ ∑

∑

% % %

%

               (3.9) 

In the present work all the plates that investigated are assumed to be specially-

orthotropic. The equations of applied boundary conditions are given by Eqs. (3.3) for 

fully clamped plate, and Eqs. (3.4) for fully simply supported plate. However, these 

boundary conditions are incorporated into the solution by modifying the weighting 

coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1 as 

told in the section 2.3. We obtain a matrix of size 2 2( 2) ( 2)x yN N− × −  from 

expansion of Eq. (3.8) or (3.9) to be solved in order to obtain the deflections at each 

grid point taken on the plate. 
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3.3 Isotropic Plate of Variable Thickness 

In this section, a rectangular isotropic plate with linearly varying thickness is 

considered. For simplicity, the variation is assumed just along the x-axis. The 

procedure given by Farsa [17] and Kukreti at al. [18] is quite convenient to follow in 

order to obtain the governing differential equation for the deflection analysis of 

tapered isotropic plate.  

The general differential equation governing the deflection analysis of a genaral 

tapered plate may be deduced from Ref. [17, 18] as follows 

4 4 4 3 3

4 2 2 4 3 2

3 3 2 2 2

2 3 2 2 2

2 2 2 2 2

2 2 2

( 2 ) 2 ( )

2 ( ) ( )

2(1 ) ( )

w w w D w wD
xx x y y x x y

D w w D w w
y x y y x x y

D w D w w p
x y x y y x y

υ

υ υ

∂ ∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ − + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂

             (3.10) 

 where D  is the flexural rigidity of the plate which is a function of x and y, and υ  is 

the Poisson’s ratio. As were in previous sections we nondimensionalize the variables 

and then apply the DQM rules to Eq. (3.10) and obtain the following DQM analog 

equation 

1 11 1
(4) 2 (2) (2) 4 (4)

2 2 2 2

11 1
(3) 2 (1) (2)

,

2 2 2

11
2 (2) (1) 4 (

,

2 2

2

2

2

y yx x

yx x

yx

N NN N

ik kj ik jl kl jl il
k k l l

NN N

X ik kj ik jl kl
k k l
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Y ik jl kl jl
k l

D A W A B W B W

D A W A B W

D A B W B

λ λ
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− −− −

= = = =

−− −

= = =

−−

= =

 
+ +  

 
 

+ +  
 

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

% % % %

% % %

% % %
1

3)

2

11
(2) 2 (2)
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2 2

11
2 (1) (1)
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2 2

11
2 (2) 4 (2) 4
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2 2
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−

=
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−−

= =
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 
  
 
 

+ +  
 
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 
+ + =  
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∑ ∑

∑ ∑
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            (3.11) 
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where D  is the flexural rigidity function of the plate expressed with respect to 

nondimensional X- and Y-coordinates. Other terms in the Eq. (3.11) had also been 

explained in previous sections. 

 

Fig. 3.1: Geometry of isotropic tapered plate:  

                      (a) Plan view; (b) Half cross section A-A  

 

As stated earlier, thickness variation is assumed to be along x-axis as shown in figure 

3.1 (b). Considering the thickness variation as 

0 ( )h h g x=                   (3.12) 

where h0 is the thickness at the origin; and 

( ) 1 xg x
a

β= +  for 0 x a≤ ≤                 (3.13) 

where β  is the taper ratio parameter which defines the thickness variation. 

Nondimensionalizing the Eqs. (3.12) and (3.13) yields 

0 ( )h h G X=                   (3.14) 

( ) 1  for 0 1G X X Xβ= + ≤ ≤                 (3.15) 
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Using this nomenclature we can express the nondimensional flexural rigidity of the 

plate as follows 

3
0 ( ) for 0 1D D G X X= ≤ ≤                 (3.16) 

where 3 2
0 0 /12(1 )D h E υ= − . Here h0 denotes the thickness at the plate origin. 

Substituting Eqs. (3.15) and (3.16) into Eq. (3.11) gives the governing equation of a 

plate with linearly varying thickness along the x-axis for deflection analysis 

1 11 1
2 (4) 2 (2) (2) 4 (4)

2 2 2 2

11 1
(3) 2 (1) (2)

2 2 2

1
2 (2) 2 (2)

2

(1 ) 2

6 (1 )

6

y yx x

yx x

x

N NN N

i ik kj ik jl kl jl il
k k l l

NN N

i ik kj ik jl kl
k k l

N

ik kj jl il
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X A W A B W B W

X A W A B W

A W B W

β λ λ

β β λ

β υλ

− −− −

= = = =

−− −

= = =

−

=

 
+ + +  

 
 

+ + +  
 

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

% % % %

% % %

% %
1 4

02

yN

l

pa
D

−

=

 
=  

 
∑

           (3.17) 

for i = 2,3, . . . , (Nx-1) and j = 2,3, . . . , (Ny-1). Equation (3.17) was solved for fully 

simply supported and clamped plates. The related boundary conditions are given by 

Eqs. (3.3) or (3.4) are built into the governing equation via modifying the weighting 

coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1.  By 

doing so, a matrix of size 2 2( 2) ( 2)x yN N− × −  is obtained to be solved.    

3.4 Layered Composite Plate of Variable Thickness 

In this section, a different way is followed compared to the previous section due to 

the material selection for the tapered plate. To explain the way briefly, the DQM 

analog equations, which for composite plates of constant thickness, are written down 

including the calculated flexural stiffness of plate, one by one, on each grid points of 

the tapered plate. That is to say, the flexural stiffness, which changes linearly along 

the x-axis of plate, is incorporated into the governing DQM analogue equation at 

each grid point during the formulation. Following formulation can be proposed for 

the regarding analysis: 

( ) 4
11 Kij ijD Pa=                  (3.18) 

where 
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for i = 2,3, . . . , (Nx-1) and j = 2,3, . . . , (Ny-1). The i, j indices in the term ( )11 ijD  

indicates that it is written with respect to the plate thickness of the regarding grid 

point on the plate. As was in earlier sections the boundary conditions given by 

equations (3.3) or (3.4) are built into the governing equation via modifying the 

weighting coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 

and Y=1.  By doing so, a matrix of size 2 2( 2) ( 2)x yN N− × −  is obtained to be 

solved. 
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4.  FREE VIBRATION ANALYSIS OF PLATES BY DQM 

Free vibration analyses of aforementioned plates have been achieved in this section.  

For each plate configuration, the equations governing the free flexural vibration of 

plates of constant thickness and variable thickness made of isotropic and layered 

composite materials are given firstly. Furthermore, the DQM analog equations are 

derived to be solved numerically applying the DQM rules to each governing equation 

in the each sub-section. 

4.1 Isotropic Plates of Constant Thickness 

The differential equation governing the free flexural vibration of a thin rectangular 

plate of isotropic materials, in terms of lateral displacement, w, can be written as 

4 4 4 2

4 2 2 4 2
( , , ) ( , , ) ( , , ) ( , , )2 0w x y t w x y t w x y t w x y tD h
x x y y t

ρ
 ∂ ∂ ∂ ∂

+ + + = 
∂ ∂ ∂ ∂ ∂ 

             (4.1) 

where D is the flexural stiffness of the plate, ρ  is the density of the plate material, h 

is the plate thickness and t represents the time. Assuming a function which gives 

harmonically periodic time response for the displacement, for example taking 

( , , ) ( , ) cosw x y t w x y tω=  where ω  is the dimensional circular frequency, and 

substituting into Eq. (4.1) results 

4 4 4
2

4 2 2 4
( , ) ( , ) ( , )2 ( , ) 0w x y w x y w x yD h w x y
x x y y

ρ ω
 ∂ ∂ ∂

+ + − = 
∂ ∂ ∂ ∂ 

             (4.2) 

Making the variables nondimensional in Eq. (4.2) yields 

 
4 4 4

2 4 2
4 2 2 42 0W W W W

X X Y Y
λ λ∂ ∂ ∂

+ + −Ω =
∂ ∂ ∂ ∂

                (4.3) 

where ( , )W W X Y=  is the dimensionless mode function corresponds to the 

dimensionless frequency Ω ; / ,  /X x a Y y b= =  are dimensionless coordinates; a 

and b are the lengths of the plate edges parallel to the x and y axes, respectively; 
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/a bλ =  is the aspect ratio, and 2 /a h Dω ρΩ = . Further, 3 2/12(1 )D h E υ= −  

where E and υ  are the Young’s modulus and Poisson’s ratio, respectively. 

Subsequently, applying the DQ rules Eqs. (2.1) to Eq. (4.3) and using the boundary 

condition approach used in the previous chapters in which the boundary conditions 

are applied during formulation of the weighting coefficients yield 

1 11 1
(4) 2 (2) (2) 4 (4) 2

2 2 2 2

2 0
y yx x N NN N

kj kl il ijik ik jl jl
k k l l

A W A B W B W Wλ λ
− −− −

= = = =

+ + −Ω =∑ ∑ ∑ ∑% % % %             (4.4) 

for i = 2,3, . . . , (Nx-1) and j = 2,3, . . . , (Ny-1). The assembly of Eq. (4.4) for all 

values of the indices i and j results in the following eigenvalue equation of size 

( 2) ( 2)x yN N− × −   

[ ]{ } [ ]{ }2 0S W I W−Ω =                   (4.5)  

where the eigenvalue matrix [S] is comprised of the modified weighting coefficients 

[8]. Solving Eq. (4.5) numerically gives the dimensionless eigenvalues. 

4.2 Laminated Composite Plates of Constant Thickness 

The differential equation governing the free flexural vibration of a mid-plane 

symmetric laminated orthotropic rectangular plate of constant thickness can be 

written in dimensionless form as following [20] 

( )4 4 4 4
12 664 2 316 26

4 3 2 2 3
11 11 11

4
4 222

4
11

2 4
4 4

0

D DD DW W W W
X D X Y D X Y D X Y

D W W
D Y

λ λ λ

λ

+∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
+ −Ω =

∂

            (4.6) 

where W=W(X,Y) is the dimensionless mode function corresponding to 

dimensionless frequency Ω ; X=x/a, Y=y/b are dimensionless coordinates; /a bλ =  

is the aspect ratio; Dij’s are the flexural rigidities of the composite plate; a and b are 

the lengths of rectangular plates parallel to x and y axis, respectively. Furthermore, 
2 2 4

11( / )a h Dω ρΩ =  where ω  is the dimensional circular frequency and h is the 

plate thickness. DQM analog equation of Eq. (4.6) can be written as 
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                (4.7) 

for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1). The assembly of Eq. (4.7) for all 

values of the indices i and j results in an eigenvalue equation of size 

( 2) ( 2)x yN N− × −  like Eq. (4.5) to be solved. The free vibration frequencies of 

simply supported (S-S-S-S) and clamped (C-C-C-C) laminated composite plates are 

obtained by solving Eq. (4.7). Numerical results are given in section 6. 

4.3 Isotropic Plate of Variable Thickness 

We can utilize the same manner used in Section (3.3) in order to obtain the 

governing equation for freely vibrating isotropic thin tapered plate. We again make 

the same assumption for the motion of the plate that it is harmonically periodic in 

time. Furthermore, we again assume that the thickness variation is just along the x-

axis and it is linear of which function is given by Eq. (3.12). Modifying Eq. (3.17) 

for free vibration analysis of the plate results in following DQM analog eigenvalue 

equation 

1 11 1
2 (4) 2 (2) (2) 4 (4)

2 2 2 2

11 1
(3) 2 (1) (2)

2 2 2

1
2 (2) 2 (2)

2

(1 ) 2

6 (1 )

6

y yx x

yx x

x

N NN N

i ik kj ik jl kl jl il
k k l l

NN N

i ik kj ik jl kl
k k l
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ik kj jl il
k

X A W A B W B W

X A W A B W

A W B W

β λ λ

β β λ

β υλ
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−− −

= = =

−

=

 
+ + +  

 
 

+ + +  
 
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−
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∑

             (4.8) 
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for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1). In Eq. (4.8), W=W(X,Y) is the 

dimensionless mode function corresponding to dimensionless frequency Ω ; X=x/a, 

Y=y/b are dimensionless coordinates; /a bλ =  is the aspect ratio; a and b are the 

lengths of rectangular plates parallel to x and y axis, respectively. Furthermore, 
2 2 4

0 0( / )a h Dω ρΩ =  where ω  is the dimensional circular frequency; ρ is the 

density of plate material; h0 is the plate thickness at the plate origin (see figure 3.1), 

and 3 2
0 0 /12(1 )D h E υ= − . Again, the boundary conditions given by Eqs. (3.3) or (3.4) 

are built into the governing equation via modifying the weighting coefficients 

matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1.  By doing so, a 

set of equations of size ( 2) ( 2)x yN N− × −  is obtained to be solved from the 

assembly of Eq. (4.8) for all values of the indices i and j.    

4.4 Laminated Composite Plate of Variable Thickness 

As was in section 3.4 a different approach is followed in this section compared to the 

sections involve isotropic tapered plate in the analyses. In the Sections (3.3) and 

(4.3), a linear function was assumed for the plate thickness and was substituted into a 

general governing equation which involves the derivatives of the plate rigidities. 

Consequently, a governing equation was obtained which just involves the plate taper 

ratios at the grid points and the plate rigidity at the plate origin. However, the case 

where a laminated composite plate takes place in the analyses of plates of variable 

thickness might make the derivation of an analytical equation that governs the 

behaviour of the regarding plate quite complex. In this case, we approached the 

problem from a probable production way of such a plate. Noting that the governing 

equation given in the Section 3.4 for the case of deflection analysis of tapered 

laminated composite plates, the free vibration equation can also be written in the 

following form: 

211 0ij ij
i

ij
j

D K W W
h

  −Ω = 
 

                            (4.9) 

where 

2aω ρΩ =  is a dimensional frequency parameter from which the circular 

frequencyω  can be obtained and 
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            (4.10) 

for i = 2,3, . . . , (Nx-1) and j = 2,3, . . . , (Ny-1). The i, j indices in the term 11

ij

D
h

 
 
 

 in 

Eq. (4.9) indicates that it is written with respect to the plate thickness of the 

regarding grid point on the plate. Again, the boundary conditions given by Eqs. (3.3) 

or (3.4) are built into the governing equation via modifying the weighting 

coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 and Y=1.  By 

doing so, a set of equations of size ( 2) ( 2)x yN N− × −  is obtained to be solved. 
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5.  TRANSIENT ANALYSES OF PLATES BY DQM 

This chapter concerns with transient analyses of the aforementioned square plates. 

The plates are assumed to be exposed to air blast load. As were in the previous 

chapter, four different plate configurations are analyzed: Isotropic and laminated 

composite plates of constant and variable thicknesses. Plates are assumed to be fully 

clamped and simply supported. For the analysis of air blast loading, a function that 

approximates to the time variation of the blast pressure is assumed. The resulting 

governing equations, which are all time-dependent, are solved numerically using the 

Newmark time integration method. Hence, the Newmark time integration method is 

also explained in the first section before going into details of reference problems.  

5.1 Isotropic Plate of Constant Thickness 

The differential equation that governs the forced flexural vibration of an isotropic 

thin rectangular plate of Constant Thickness might be written as follows 

4 4 4 2

4 2 2 4 2
( , , ) ( , , ) ( , , ) ( , , )2w x y t w x y t w x y t w x y tD m p
x x y y t

 ∂ ∂ ∂ ∂
+ + + = 

∂ ∂ ∂ ∂ ∂ 
             (5.1) 

where 3 2/12(1 )D h E υ= −  is the flexural rigidity of the plate, ( ), ,w x y t  is the 

function governs displacement, m hρ=  is the mass per unit area of the plate, and p 

is the external force exposes on the plate. Substituting /W w ξ=  (ξ  is a reference 

length), / ,  /X x a Y y b= =   into Eq. (5.1) in order to make the variables 

dimensionless yields 

4 4 4 4 2 4
2 4

4 2 2 4 22W W W a W pam
D DX X Y y t

λ λ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂
               (5.2) 

where /a bλ =  is the aspect ratio of the plate and a and b are the lengths of the plate 

edges parallel to x and y axes, respectively. DQM analogue of Eq. (5.2) may be 

written using the quadrature rules given by Eqs. (2.1), as following 
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y yx x N NN N

kj kl ilik ik jl jl
k k l l

ij tt

A W A B W B W

a pam W
D D

λ λ
− −− −

= = = =

+ +

+ =

∑ ∑ ∑ ∑% % % %

              (5.3) 

for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1). As were in previous analyses, the 

boundary conditions given by Eqs. (3.3) or (3.4) are built into the governing equation 

via modifying the weighting coefficients matrices and ignoring the grid points along 

X=0, X=1, Y=0 and Y=1.  By doing so, a set of equations of size ( 2) ( 2)x yN N− × −  

is obtained from the assembly of Eq. (5.3) for all values of the indices i and j to be 

solved. 

As was stated earlier, Newmark time integration method is used to solve Eq. (5.3). 

The Newmark time integration method can be described briefly as following:  

If we assume a governing equation like following, time-dependent with external 

force, 

{ } { } { }w w F+ =M K&&                               (5.4) 

where { }w  is the displacement vector; M is the mass matrix; 2 2/w w t= ∂ ∂&& ; K is the 

stiffness matrix and {F} is the load vector. The Newmark method uses finite 

difference expansions in the time interval t∆ , in which it is assumed that 

{ } { } { }1 1(1 )n n n nw w w w tδ δ+ + = − + ∆ & & && &&                 (5.5) 

{ } { } { } { } 2
1 1

1( )
2n n n n nw w w t w w tα α+ +

 = + ∆ + − + ∆  
& && &&               (5.6) 

where α  and δ  are Newmark integration parameters. To be able to figure out the 

displacements { }1nw + , the governing Eq. (5.4) is evaluated at time tn+1 as 

{ } { } { }1 1n nw w F+ ++ =M K&&                              (5.7) 

Rearranging Eqs. (5.5) and (5.6) as 

{ } { } { }( ) { } { }1 0 1 2 3n n n n nw a w w a w a w+ += − − −&& & &                (5.8) 

{ } { } { } { }1 6 7 1n n n nw w a w a w+ += + +& & && &&                                                   (5.9) 
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where 2
0 1/a tα= ∆ , 1 /a tδ α= ∆ , 2 1/a tα= ∆ , 3 (1/ 2 ) 1a α= − , 4 ( / ) 1a δ α= − , 

{ }5 ( / 2) ( / ) 2a t δ α= ∆ − , 6 (1 )a t δ= ∆ − , 7a tδ= ∆  and combining the equations for 

{ }1nw +&&  and { }1nw +&  with Eq. (5.7) yields the following equation from which the 

displacement at time tn+1 to be solved 

( ){ } { } { } { } { }( )0 1 0 2 3n n n na w F a w a w a w++ = + + +M K M & &&                      (5.10) 

Once a solution is obtained for the displacement at time tn+1, { }1nw + , velocities and 

accelerations are updated as described in Eq. (5.8) and Eq. (5.9) in order to obtain the 

displacements at the further time steps. In the present transient analyses, the values 

0.5α =  and 0.5δ =  are assumed for the Newmark time integration parameters. 

Furthermore, 0.0001t∆ =  s is taken in the analyses. 

It was stated earlier that the plate is assumed to be exposed to air blast load. For the 

regarding air blast load analysis, an approximation to the time variation of the blast 

pressure is given by Friedlander decay function as [1] 

( ) /( , , ) 1 / pt t
m pp x y t p t t e α−= −                (5.11) 

In the present analyses, the parameters for the regarding Friedlander decay function 

are taken as in the Ref. [1], that is, 228906 /mp N m= , 0.35α = , 0.0018pt s= . 

Consequently, what we have as the final governing equation to be solved when we 

apply the Newmark time integration method to the Eq. (5.3) and also substitute the 

air blast load function Eq. (5.11) as follows 

{ } { } { } { } { }( )0 1 0 2 34 n n n n
Da w F a w a w a w
a +

 + = + + + 
 

M K M & &&                       (5.12) 

where 

0 0
0 0
0 0

m
m

m

 
 
 =
 
 
 

M
O

O

O O O
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1 11 1
(4) 2 (2) (2) 4 (4)

2 2 2 2
2

y yx x N NN N

ij kj kl ilik ik jl jl
k k l l

K A W A B W B Wλ λ
− −− −

= = = =

 
 = + +
 
 
∑ ∑ ∑ ∑% % % %   

for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1) and 

( ) /1 / pt t
ij m pF p t t e α−= −  

for t = 0.0, 0.0001, 0.0002, …, 0.01.  

It should be noted that we obtain dimensional displacements from Eq. (5.12) since 

the entire equation is multiplied by 4/D a . The applied boundary conditions given 

by Eq. (3.3) and Eq. (3.4) are built into the governing equation via modifying the 

weighting coefficients matrices and ignoring the grid points along X=0, X=1, Y=0 

and Y=1. Furthermore, it can be noted that a matrix of size 2 2( 2) ( 2)x yN N− × −  is 

obtained at each time increment from the left-hand side of assembly of Eq. (5.12) of 

which solution gives the displacements at the each grid point on the plate at each 

time increment. In the present study, the strains are also calculated using the 

displacements obtained at each time increment. The results are given in the next 

chapter as displacement-time and strain-time history graphs. 

5.2 Layered Composite Plate of Constant Thickness 

We may write the governing equation in the form of DQM formulation for the 

regarding analysis as following 
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              (5.13) 

for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1). Since all the terms in Eq. (5.13) 

have also been described in the previous sections we directly move on to solution of 

Eq. (5.13) applying the Newmark method explained in Section (5.1). Application of 

the Newmark time integration method to the Eq. (5.13) yields 

 { } { } { } { } { }( )11
0 1 0 2 34 n n n n

Da w F a w a w a w
a +

 + = + + + 
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M K M & &&                       (5.14) 
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for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1) and 
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( ) /1 / pt t
ij m pF p t t e α−= −  

for t = 0.0, 0.0001, 0.0002, …, 0.01.  

It should be pointed out, again, that displacements that are acquired from Eq. (5.14) 

are dimensional since the entire equation is multiplied by 4
11 /D a . The boundary 

conditions given by Eqs. (3.3) and Eq. (3.4) are built into the governing equation via 

modifying the weighting coefficients matrices and ignoring the grid points along 

X=0, X=1, Y=0 and Y=1. Furthermore, it can be noted that a matrix of size 
2 2( 2) ( 2)x yN N− × −  is obtained at each time increment from the left-hand side of 

assembly of Eq. (5.14) of which solution gives the displacements at the each grid 

point on the plate at each time increment. In the present study, the strains are also 

calculated using the displacements obtained at each time increment. The results are 

given in the next chapter as displacement-time and strain-time history graphs. 

5.3 Isotropic Plate of Variable Thickness 

Making the same assumptions about the regarding plate as in the Sections (3.3) and 

(3.4), that is, the thickness variation is just along the x-axis and linear, the governing 

equation that governs the dynamic behaviour of an isotropic, tapered, thin 

rectangular plate subjected to air blast load can be written in the following DQM 

form 

{ } { } { } { } { }( )0
0 1 0 2 34 n n n n

Da w F a w a w a w
a +

 + = + + + 
 

M K M & &&                       (5.15) 

where 
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                           (5.16) 

is the mass per unit area matrix, ( )ij ijm hρ=  and  
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for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1) and  

( ) /1 / pt t
ij m pF p t t e α−= −  

for t = 0.0, 0.0001, 0.0002, …, 0.01. 

It is worth to point out especially that the mass per unit area is not constant for the 

regarding plate since it is tapered. Hence, the terms ijm  are numbered in Eq. (5.16) 

as can be noted in which each ijm  correspond a grid point on the plate domain. 

Furthermore, the term D0 in Eq. (5.15) denotes the flexural stiffness of the plate at 

the plate origin and β  represents the taper ratio of the plate as they were explained 

in the related previous sections. 

As were in the last two sections, in which transient analyses of plates are carried out, 

the displacements that are acquired from Eq. (5.15) are dimensional. The boundary 

conditions given by Eq (3.3) and (3.4) are built into the governing equation via 

modifying the weighting coefficients matrices and ignoring the grid points along 

X=0, X=1, Y=0 and Y=1. Furthermore, it can be noted that a matrix of size 
2 2( 2) ( 2)x yN N− × −  is obtained at each time increment from the left-hand side of 

assembly of Eq. (5.15) of which solution gives the displacements at the each grid 

point on the plate at each time increment. In the present study, the strains are also 

calculated using the displacements obtained at each time increment. The results are 

given in the next chapter as displacement-time and strain-time history graphs. 
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5.4 Laminated Composite Plate of Variable Thickness 

As noted in Sections (3.4) and (4.4) a different approach is followed in the solution 

of problem of a tapered laminated composite plate. The way that utilized in these 

sections involves much more numerical treatment rather than deriving the governing 

equations analytically and then the DQM analogues of them to be solved. The 

governing equations that also derived before for a laminated, orthotropic composite 

plate of constant thickness are utilized in a different way. To state more clearly, the 

DQM analogue equations, which for plates of constant thickness, are written down 

including the calculated flexural stiffnesses of plate, one by one, on each grid points 

of the tapered plate. That is to say, the flexural stiffnesses, which change linearly 

along the x-axis of plate, are incorporated into the governing DQM analog equation 

at each grid point during the formulation. Remembering the equations derived in 

earlier related sections, the governing equation to be used in the blast load analysis of 

laminated composite tapered plate may be expressed as follows 

{ } { } { } { } { }( )11
0 1 0 2 34 n n n n

ij

Da w F a w a w a w
a +

  + = + + +     
M K M & &&                     (5.18) 
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is the mass per unit area matrix, ( )ij ijm hρ= . However, 
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                        (5.20) 

for i = 2, 3, . . . , (Nx-1) and j = 2, 3, . . . , (Ny-1) and  

( ) /1 / pt t
ij m pF p t t e α−= −  

for t = 0.0, 0.0001, 0.0002, …, 0.01. The i, j indices in the term 11
4

ij

D
a

 
 
 

 in Eq. (5.18) 

indicates that it is written with respect to the plate thickness of the regarding grid 

point on the plate. Again, the boundary conditions given by Eqs. (3.3) and (3.4) are 

built into the governing equation via modifying the weighting coefficients matrices 

and ignoring the grid points along X=0, X=1, Y=0 and Y=1.  By doing so, a matrix of 

size 2 2( 2) ( 2)x yN N− × −  is obtained to be solved. 
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6.  RESULTS AND DISCUSSIONS 

In the previous chapters, the DQM analog equations are derived from the governing 

equations of static, free vibration and transient analyses of various rectangular plates. 

Plates are analyzed from the aspects of material and plate thickness. Furthermore, 

two boundary conditions are considered in analyses: Simply supported (S-S-S-S) and 

clamped (C-C-C-C) on four edges. In this chapter, the numerical results that are 

obtained using the DQM governing analog equations that are derived for each 

analysis in the previous chapters are presented. Besides the obtained DQM results are 

compared with results of ANSYS which is finite element method based software. 

Additionally, some results have also been compared with some experimental, 

theoretical results that are available in literature. 

6.1 Numerical Results for The Plates of Constant Thickness 

Before presenting the numerical results, the material properties of plates are 

presented. In the analyses of this study two isotropic and three laminated composite 

materials are used. The properties of isotropic and laminated composite materials are 

given in Table 6.1 and Table 6.2, respectively. Laminated plates (M3 and M4) are 

seven-layered and the ply orientation angle is 0° for each layer. Third laminated plate 

(M5) is again seven layered and the stacking sequence is [0/90/0/90/0/90/0]. 

Table 6.1: Properties of isotropic materials. 

Material E (GPa) υ  ρ (kg/m3) 
Aluminium (M1) 70 0.3 2700 

Steel (M2) 207 0.3 7770 
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Table 6.2: Properties of composite materials. 

Material Bidirectional 
(M3) 

Unidirectional 
(M4,M5) 

E1 (GPa) 24.14 40 
E2 (GPa) 24.14 10 
G12 (GPa) 3.79 4.5 

ν12 0.11 0.27 
ρ(kg/m3) 1800 2000 

 

The dimensionless centre deflections of the isotropic and laminated composite plates 

of constant thickness are given in Table 6.3 for the simply supported plate and in 

Table 6.4 for the clamped plate. As it can be noted from these tables, a good 

agreement is obtained between the results of DQM, ANSYS and literature for the 

plates of isotropic materials. However, there is a small discrepancy between the 

DQM and ANSYS results for the laminated composite plates. The dimensional 

deflections for symmetric, cross-ply specially orthotropic laminated plates can be 

obtained from 4
11( / )w W pa D=  (for isotropic materials D11 replaces with D). 

Table 6.3: The dimensionless centre deflections (W) of the square plates (S-S-S-S) 
                     of constant thickness. 

 Analytical [14] DQM [9] DQM ANSYS 
M1,M2 0.00406 0.00400 0.00406 0.00405 

M3 --- --- 0.00575 0.00582 
M4 --- --- 0.00886 0.00901 
M5 --- --- 0.00699 0.00722 

 
 

Table 6.4: The dimensionless centre deflections (W) of the square plates (C-C-C-C) 
                    of constant thickness. 

 Analytical [14] DQM [9] DQM ANSYS 
M1,M2 0.00126 0.00126 0.00126 0.00127 

M3 --- --- 0 .00146 0.00149 
M4 --- --- 0.00227 0.00231 
M5 --- --- 0.00181 0.00187 

 

The fundamental dimensionless frequencies of isotropic and composite plates are 

given in Table 6.5 and Table 6.6 for simply supported and clamped plates of constant 

thickness, respectively. The plate aspect ratio is one for all cases. In Table 6.7, the 
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dimensionless free vibration frequencies for the first ten modes are given for 

isotropic plates of constant thickness. The results show that the free vibration 

frequencies are captured very well for the isotropic plates. The small discrepancy 

between the DQM and ANSYS results for the laminated composite plates can be 

attributed to the material model used in ANSYS. The material model used in ANSYS 

requires the material properties in the perpendicular direction to the plate. These 

material properties are chosen considering the matrix is dominated in the 

perpendicular direction and are given as E3=3 GPa, G13=G23=1 GPa, ν13=ν23=0.4 

[20]. There are also two numerical experiments achieved in Ref. [20] that explain the 

effect of the mentioned material model used in ANSYS on the results which might 

be assumed the reason of discrepancy between the DQM and ANSYS results. The 

dimensional frequency for symmetric, cross-ply specially orthotropic laminated 

plates considered here can be obtained from 2
11( / ) /a D hω ρ= Ω , (for isotropic 

materials D11 replaces with D). 

Table 6.5: The first dimensionless frequencies (Ω ) of the square plates (S-S-S-S) 
                     of constant thickness. 

 Analytical [14] DQM [8] DQM ANSYS 
M1,M2 19.739 19.738 19.739 19.709 

M3 --- --- 16.633 16.519 
M4 --- --- 13.339 13.228 
M5 --- --- 15.070 14.827 

 
 

Table 6.6: The first dimensionless frequencies (Ω ) of the square plates (C-C-C-C) 
                     of constant thickness. 

 Analytical [14] DQM [8] DQM ANSYS 
M1,M2 35.992 35.989 35.985 35.856 

M3 --- --- 33.564 33.326 
M4 --- --- 26.667 26.416 
M5 --- --- 30.136 29.667 
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Table 6.7: The dimensionless frequencies (Ω ) of the isotropic square plates  
                          of constant thickness for the first ten modes. 

 
Mode 

C-C-C-C S-S-S-S 
DQM ANSYS DQM ANSYS 

1 35.985 35.856 19.739 19.709 
2 73.394 73.009 49.348 49.216 
3 73.394 73.009 49.348 49.216 
4 108.216 107.147 78.957 78.499 
5 131.581 130.731 98.696 98.339 
6 132.205 131.402 98.696 98.339 
7 164.999 162.911 128.305 127.268 
8 164.999 162.911 128.305 127.268 
9 210.521 209.004 167.784 167.036 
10 210.521 209.004 167.784 167.036 

 

It can be seen in the Table 6.7 that the frequencies obtained using DQM are in an 

agreement with the frequencies obtained using ANSYS. However, there are small 

discrepancies at some modes. The free vibration frequencies obtained using DQM 

for the simply supported isotropic plates are in better agreement with ANSYS results 

for the first ten modes compared to the clamped plate. Generally, the results indicate 

that the stiffness of the laminated composite plate is predicted higher in DQM 

analysis compared to the prediction of ANSYS. In the DQM analysis, 15 grid points 

are used along the x and y axes on the plate domain (Nx = Ny = 15). In ANSYS, the 

isotropic plates are modelled using 14x14=196 shell elements (Shell63), and the 

laminated composite plates are modelled using 14x14=196 laminated shell elements 

(Shell99). 

The centre deflections of the simply supported laminated plates of constant thickness 

are also obtained using the Navier’s solution choosing the first 9 terms in the series 

solution. The results are given in Table 6.8. Results show that a better agreement is 

obtained between the DQM and ANSYS results. Furthermore it can be concluded 

that plates analyzed using Navier seem to behave stiffer than DQM and ANSYS. 

 

 

 

  



 41

Table 6.8: The dimensionless centre deflections (W) of the square 
                        laminated plates (S-S-S-S) of constant thickness including 

                                  the Navier’s solution. 

 DQM NAVIER ANSYS 
M3 0.00575 0.00440 0.00582 
M4 0.00886 0.00684 0.00901 
M5 0.00699 0.00509 0.00722 

 

The displacement-time and strain-time histories of the plate centres are obtained 

using the DQM and ANSYS for isotropic and laminated composite plates of constant 

thickness of clamped and simply supported at all edges. The strain values in this 

section represent the values of Xε  for each plate. Figure 6.1 and Figure 6.2 show the 

displacement-time and strain-time histories of centre of the clamped aluminium plate 

(M1) of constant thickness, respectively. DQM results are found to be in an 

agreement with ANSYS and the other results found in the literature.  
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Figure 6.1: Displacement-time history of plate centre for the blast-loaded  
                             clamped aluminium plate (M1) of constant thickness. 
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Figure 6.2: Strain-time history of plate centre for the blast-loaded  
                   clamped aluminium plate (M1) of constant thickness. 

 

The strain-time history result obtained for the clamped aluminium plate of constant 

thickness is also compared with the experimental result in Fig. 6.2 and a discrepancy 

is found between the experimental and predicted results. This discrepancy is because 

of the effect of nonlinear terms which are not included in the present study [20]. The 

theoretical and experimental results given in Figs. 6.1 and 6.2 are taken from Ref. 

[16]. 

Figure 6.3 and Figure 6.4 show displacement-time and the strain-time histories of the 

centre of simply supported aluminium plate (M1) of constant thickness, respectively. 

DQM results are found to be in an agreement with the ANSYS results and theoretical 

results taken from literature. The theoretical results for blast-loaded simply supported 

isotropic plates appear in Fig. 6.3 and 6.4 are taken from Ref. [21]. 
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Figure 6.3: Displacement-time history of plate centre for the blast-loaded  

                             simply supported aluminium plate (M1) of Constant Thickness. 
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Figure 6.4: Strain-time history of plate centre for the blast-loaded simply 

           supported aluminium plate (M1) of Constant Thickness. 
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The strain-time history result of the steel plate (M2) of constant thickness is shown in 

Figure 6.5 for the clamped plate and in Figure 6.6 for the simply supported plate. A 

better agreement is found between the experimental and predicted results for the steel 

plate (M2). This is because of that the unused nonlinear terms are not very effective 

on the solution and so the response of the steel plate seems to be still in the linear 

range [20]. 
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Figure 6.5: Strain-time history of plate centre for the blast-loaded  
                                   clamped steel plate (M2) of constant thickness. 
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Figure 6.6: Strain-time history of plate centre for the blast-loaded  
                                   simply supported steel plate (M2) of constant thickness. 
 
 

Figure 6.7 and Figure 6.8 show the displacement-time and strain-time histories of the 

centre of bidirectional laminated composite clamped plate (M3) of constant 

thickness, respectively. The results indicate that a better agreement between the 

predictions obtained using ANSYS and DQM is obtained compared to theoretical 

result. 
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Figure 6.7: Displacement-time history of plate centre for the blast-loaded  
                             bidirectional laminated composite plate (M3) of constant 
                             thickness with clamped boundary condition. 
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Figure 6.8: Strain-time history of plate centre for the blast-loaded  
                                   bidirectional laminated composite plate (M3) of constant 
                                   thickness with clamped boundary condition. 
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Figure 6.9 and Figure 6.10 show the displacement-time and strain-time histories of 

bidirectional laminated composite plate (M3) of constant thickness with simply 

supported boundary condition, respectively. The results again indicate an agreement 

between the predictions obtained using DQM, ANSYS and theory. 
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Figure 6.9: Displacement-time history of plate centre for the blast-loaded  

                             bidirectional laminated composite plate (M3) of constant 
                             thickness with simply supported boundary condition. 
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Figure 6.10: Strain-time history of plate centre for the blast-loaded  

                                    bidirectional laminated composite plate (M3) of constant 
                                    thickness with simply supported boundary condition. 
 

 

Figure 6.11 and Figure 6.12 show the displacement-time and strain-time histories of 

unidirectional laminated composite plate (M4) of constant thickness with clamped 

boundary condition, respectively. For the mentioned plate configuration only DQM 

and ANSYS results are compared in the graphs. It can be concluded from these 

graphs that DQM presents very close solutions compared to ANSYS.  
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Figure 6.11: Displacement-time history of plate centre for the blast-loaded  
                              unidirectional laminated composite plate (M4) of constant 
                              thickness with clamped boundary condition. 
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Figure 6.12: Strain-time history of plate centre for the blast-loaded  
unidirectional laminated composite plate (M4) of constant       
thickness with clamped boundary condition. 
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Figure 6.13 and Figure 6.14 show the displacement-time and strain-time histories of 

unidirectional laminated composite plate (M4) of constant thickness with simply 

supported boundary condition, respectively. A good agreement between the results of 

DQM and ANSYS is observed from the figures. 
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          Figure 6.13: Displacement-time history of plate centre for the blast-loaded  
                                   unidirectional laminated composite plate (M4) of constant 
                                   thickness with simply supported boundary condition. 
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Figure 6.14: Strain-time history of plate centre for the blast-loaded  

                                    unidirectional laminated composite plate (M4) of constant 
                                    thickness with simply supported boundary condition. 
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Figure 6.15 and Figure 6.16 show the displacement-time and strain-time histories of 

unidirectional laminated composite plate (M5) of constant thickness with clamped 

boundary condition, respectively. A good agreement between the results of DQM 

and ANSYS is observed from the figures. 
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         Figure 6.15: Displacement-time history of plate centre for the blast-loaded  
                                  unidirectional laminated composite plate (M5) of constant 
                                  thickness with clamped boundary condition. 
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Figure 6.16: Strain-time history of plate centre for the blast-loaded  
unidirectional laminated composite plate (M5) of constant       
thickness with clamped boundary condition. 
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Figure 6.17 and Figure 6.18 show the displacement-time and strain-time histories of 

unidirectional laminated composite plate (M5) of constant thickness with simply 

supported boundary condition, respectively. The results indicate an agreement 

between the predictions obtained using ANSYS and DQM. There is a discrepancy 

observed between the strain-time histories obtained by DQM and theory for the 

simply supported plates in the Figures 6.10, 6.14 and 6.18. However, a good 

agreement is obtained for the displacement-time histories of the mentioned plates 

using DQM and ANSYS. Furthermore, better solutions for both displacement-time 

and strain-time histories are obtained by DQM in compare with of ANSYS for the 

clamped plates.  
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Figure 6.17: Displacement-time history of plate centre for the blast-loaded  
                              unidirectional laminated composite plate (M5) of constant 
                              thickness with simply supported boundary condition. 
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Figure 6.18: Strain-time history of plate centre for the blast-loaded 
                                    unidirectional laminated composite plate (M5) of constant 
                                    thickness with simply supported boundary condition. 
 
 

It can also be concluded from the figures that the bidirectional laminated plate seems 

to be weaker against the blast loading in comparison to the unidirectional laminated 

plate. Also, the stacking sequence has an important effect on the plate response. The 

[0/90/0/90/0/90/0] stacking sequence is found to be more resistant to the blast 

loading compared to the [0]7. Lastly, it is observed from the figures that the structural 

behaviour of plates obtained by DQM is less stiff than obtained by ANSYS at most 

plate configuration. 

6.2 Numerical Results for The Plates of Variable Thickness 

In this section, numerical results for the tapered plates that obtained using DQM are 

presented and compared to ANSYS results. The governing DQM equations for 

tapered plates have been derived earlier for the each analysis in the Sections 3.3, 3.4, 

4.3, 4.4, 5.3 and 5.4. 

Two types of materials, one isotropic and one laminated composite material, are 

considered for the analyses of tapered plates. The properties of the used isotropic 
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material, aluminium (M1), are given in the Table 6.1. The taper ratio is assumed to 

be 0.7, 0.7β = , and the aspect ratio is assumed to be 1, 1λ = , for the isotropic plate. 

Shell 63 element is used in modelling of the isotropic tapered plate in ANSYS. The 

finite element model of the isotropic tapered plate is represented in Figure 6.19. 

Moreover, cross section of the regarding plate is also shown in Figure 6.20 which 

illustrates the tapering along the x-axis. 

 

 

Figure 6.19: Finite element model of the isotropic tapered plate 

 

 

Figure 6.20: Cross section of the isotropic tapered plate. 

 

In the Table 6.2, properties of the used laminated composite material (M3) are given. 

As told in the sections of analysis an approach was followed that takes the possible 

production method of such tapered laminated composite plate into consideration. 

That is to say, the plate is assumed to be 2-layered at the thinnest edge, at X=0, and 

14-layered at the thickest edge, at X=1. Tapering has been increased from 2 layers to 

14 layers by using 2 more layers at each 2 elements (considering 15 grid points and 

14 elements) along the x-axis. However, it should be expressed that at the points 
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where the number of layers increase, the average of number of layers is taken as the 

number of layers in order to obtain better approximation in DQM solutions. In other 

words, at intersection points where extra layers are added the number of layers is 

assumed to be average of old and new number of layers along x-axis. For instance, at 

grid point 3 of Figure 6.22 the number of layer is assumed to be 3 whereas it is 

assumed to be 5 layers at grid point 5. Following this manner the plate is assumed to 

have 13 layers at grid point 13 and 14 layers at points 14 and 15. Experience shows 

that the mentioned assumption related to the number of layers at intersection grid 

points provides solutions with better accuracy in DQM analysis.  

The ply orientation angle is assumed to be 0° for each layer for the mentioned 

composite plate. The finite element model of laminated composite tapered plate is 

represented in Figure 6.21. Moreover, cross section of the regarding plate is also 

shown in Figure 6.22 which illustrates the tapering along the x-axis. As was in the 

modelling of isotropic plate, Shell 63 element is used to model the laminated tapered 

composite plate. 

 

 

Figure 6.21: Finite element model of the laminated composite tapered plate. 
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Figure 6.22: Cross section of the laminated composite tapered plate. 

 

The dimensional centre deflections of the isotropic and laminated composite tapered 

plates are given in Table 6.9 for the simply supported and clamped boundary 

conditions. From the results given in the Table 6.9 it can be concluded that DQM 

provides better solutions for clamped boundary condition than simply supported for 

isotropic and composite tapered plates. The difference between the deflection results 

of DQM and ANSYS is more than 20 percent for simply supported and clamped 

tapered plates of (M1). A similar difference between the deflections obtained using 

DQM and ANSYS is obtained for the simply supported tapered plate of (M3) which 

is nearly 20 percent. However, the discrepancy between the DQM and ANSYS 

results is less than 8 percent for the clamped tapered composite plate of (M3). In 

these analyses, the distributed load is taken 2890.6 N/m2 for the plates of (M3) and 

28906 N/m2 for the plates of (M1). 

Table 6.9: The dimensional centre deflections (mm), w, of the square plates 
                          of variable thickness. 

 (S-S-S-S) (C-C-C-C) 
DQM ANSYS DQM ANSYS 

M1 7.006 5.224 2.190 1.655 
M3 3.099 2.465 0. 626 0.583 

 

In Table 6.10, the dimensional free vibration frequencies are given for the first ten 

modes for the simply supported and clamped tapered isotropic plate, (M1). As can be 

noted, better agreement is obtained for the simply supported isotropic tapered plate. 

In Table 11, however, the dimensional free vibration frequencies are given for the 

first ten modes for the simply supported and clamped tapered laminated composite 

plate, (M3). The fundamental frequencies obtained by DQM for the laminated 

composite tapered plate have approximately 5 percent difference for the simply 

supported and 10 percent for the clamped plate compared to the ANSYS results. 
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    Table 6.10: The dimensional frequencies (Hz), ω , of the isotropic (M1) 
 square plate of variable thickness for the first ten modes. 

 
Mode 

C-C-C-C S-S-S-S 
DQM ANSYS DQM ANSYS 

1 363.49 362.31 200.89 200.63 
2 736.57 732.84 496.98 495.79 
3 741.55 737.87 500.23 498.95 
4 1096.70 1086.3 802.27 797.86 
5 1306.52 1297.6 977.86 974.28 
6 1331.52 1323.5 998.22 994.72 
7 1668.57 1648.0 1299.57 1289.3 
8 1678.48 1658.1 1307.45 1297.5 
9 1758.25 2033.4   1632.18 1623.5 
10 2051.57 2109.3 1695.17 1687.8 

 
 

  Table 6.11: The dimensional frequencies (Hz), ω , of the laminated composite 
       (M3) square plates of variable thickness for the first ten modes. 

 
Mode 

C-C-C-C S-S-S-S 
DQM ANSYS DQM ANSYS 

1 237.77 211.94 115.64 109.02 
2 458.83 389.75 285.39 262.98 
3 495.41 424.33 313.38 272.89 
4 693.98 611.52 475.24 448.44 
5 726.71 626.13 543.58 449.01 
6 785.41 750.46 648.58 560.67 
7 821.02 869.48 780.65 668.86 
8 894.72 924.72 784.39 702.43 
9 1039.94 946.45 863.99 743.22 
10 1064.46 1163.7 1094.80 921.20 

 

Two types of strain-time histories are obtained for the each tapered plate since the 

strains Xε  and Yε  are not equal due to the variation of plate thickness along one 

direction. Both Xε - and Yε -time histories are given here for the isotropic (M1) 

tapered plate. On the other hand, Yε -time history is given only for the laminated 

composite (M3) tapered plate since the significant divergence of Xε -time graphs 

obtained using DQM compared to ANSYS. Although DQM provides a reasonable 

convergence for both strains Xε  and Yε  in both direction for the isotropic tapered 

plates, the Xε -time histories, that computed along the x-direction where the tapering 

exists, for the composite plates did not converge to the ANSYS results. These graphs 

are not given here due to this reason. However, various researches are still carried on 
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in order to clarify the reason of the mentioned discrepancy of the strain-time history 

along the tapering direction of composite plates.  

     Figure 6.23, Figure 6.24 and Figure 6.25 show the displacement-time and strain-

time histories of the simply supported tapered aluminium plate (M1), respectively. 

As can be noted, Figure 6.24 represents the strain-time history of center of tapered 

isotropic plate along the x-direction whereas Figure 6.25 represents the strain-time 

history of center of tapered isotropic plate along the y-direction. A reasonable 

convergence is obtained in each graph using DQM compared to ANSYS for the 

simply supported plate. The blast load parameter is taken as pm=28906.0 N/m2 in the 

analyses of isotropic (M1) tapered plates. 
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Figure 6.23: Displacement-time history of plate centre for the blast-loaded 
                              isotropic plate (M1) of variable thickness with  
                              simply supported boundary condition. 
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Figure 6.24: Strain-time ( Xε ) history of plate centre for the blast-loaded 
                                isotropic plate (M1) of variable thickness with simply 
                                supported boundary condition. 
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Figure 6.25: Strain-time ( Yε ) history of plate centre for the blast-loaded 

                                isotropic plate (M1) of variable thickness with  
                                simply supported boundary condition. 
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Figure 6.26 show the displacement-time history of blast loaded clamped isotropic 

(M1) tapered plate. Figure 6.27 and 6.28 show the strain-time histories for Xε  and 

Yε  of the clamped tapered aluminium (M1) plate, respectively. Again a reasonable 

convergence is obtained in each graph using DQM compared to ANSYS for the 

clamped tapered isotropic plate. However the discrepancy between the DQM and 

ANSYS results is more apparent for the clamped tapered plate than the simply 

supported one since there are more peaks in displacement- and strain-time graphs of 

clamped plate as can be seen in Figure 6.26, 6.27 and 6.28. 
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Figure 6.26: Displacement-time history of plate centre for the blast-loaded 

                              isotropic plate (M1) of variable thickness with  
                              clamped boundary condition. 
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Figure 6.27: Strain-time ( Xε ) history of plate centre for the blast-loaded 

                                isotropic plate (M1) of variable thickness with clamped  
                                boundary condition. 
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Figure 6.28: Strain-time ( Yε ) history of plate centre for the blast-loaded 
                                isotropic plate (M1) of variable thickness with clamped  
                                boundary condition. 
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In Figure 6.29 and 6.30, the displacement-time and strain-time ( Yε ) histories are 

given for the tapered laminated composite plate (M3) with simply supported 

boundary condition.  
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Figure 6.29: Displacement-time history of plate centre for the blast-loaded 
                              bidirectional laminated composite plate (M3) of variable 
                              thickness with simply supported boundary condition. 
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Figure 6.30: Strain-time ( Yε ) history of plate centre for the blast-loaded 
                                bidirectional laminated composite plate (M3) of variable 
                                thickness with simply supported boundary condition. 
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In Figure 6.31 and 6.32, the displacement-time and strain-time ( Yε ) histories are 
given for the tapered laminated composite plate (M3) with clamped boundary 
condition. 
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Figure 6.31: Displacement-time history of plate centre for the blast-loaded 
                              bidirectional laminated composite plate (M3) of variable 
                              thickness with clamped boundary condition. 
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Figure 6.32: Strain-time ( Yε ) history of plate centre for the blast-loaded 
                                bidirectional laminated composite plate (M3) of variable 
                                thickness with clamped boundary condition. 
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In the analyses of tapered laminated composite (M3) plates the blast load parameter 

is taken as 2890.6mp =  N/m2. It can be concluded from the Figures 6.29 to 6.32 that 

the DQM do not exhibit a good convergence for the displacement- and strain-time 

( Yε ) histories for the (M3) tapered laminated tapered plate although an 

approximation to ANSYS results is obtained. Even, the strain-time ( Xε ) histories for 

the mentioned plate obtained using DQM is quite erratic in comparison with ANSYS 

which is why these graphs were left out in the reported graphs of this work.   

Generally, the results show that the DQM can be used for the prediction of transient 

responses of both isotropic and composite plates. Experience shows that the 

computer time is much lower with DQM compared to the computer time in the finite 

element solution. This could be an advantage of DQM when analyzing the long time 

transient response of plates. Although, some analyses need to be inspected on more, 

DQM gives also accurate results for the tapered isotropic and laminated composite 

plates. This means DQM can easily be utilized in analyzing of the complicating 

affects in plates such as thickness variation and material anisotropy. 
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7.  CONCLUSION 

Static, free vibration and transient analyses of various rectangular plates are 

accomplished by differential quadrature method (DQM) in the present thesis. Plates 

are analyzed from various aspects such as plate material and thickness. Various 

isotropic materials and laminated composite materials are taken into consideration. 

Two type of boundary conditions are considered for the regarding plates: Clamped 

and simply supported on all four edges. In the analyses of plates of variable 

thickness, the variation in the thickness is assumed to be just along the x-axis.  

In the first section of the present study, contents of the present study are presented 

together with a brief literature survey for the DQM. In the second section, DQM is 

described from the mathematical aspect, and some assumptions and approaches 

about DQM are expressed. The sections 3, 4 and 5 are all divided to four sub-parts 

which analyze, respectively, isotropic and composite plates of constant thickness and 

variable thickness. In Section 3, deflection analysis; in Section 4 free vibration 

analysis and in Section 5 transient analysis are achieved for the mentioned plates 

using DQM. In the section of transient analysis, all plates are assumed to be exposed 

to blast loading and the resulting equations are solved by the Newmark numerical 

time integration method. Furthermore, FORTRAN programs were developed in order 

to solve the DQM governing analog equations in each section.  

In section 6, the numerical results are presented together with the used material 

properties. The numerical results are presented in two sub-sections, namely, 

numerical results for plates of constant and variable thickness. In both sub-sections 

the center deflections of isotropic and laminated composite plates are given firstly. 

Further, the free vibration frequencies of each plate configuration are presented. 

While the frequencies and deflections of plates of constant thickness are given as 

dimensionless, they are given dimensional for the plates of variable thickness for 

convenience. To see the accuracy of obtained results, the DQM results are mainly 

compared to ANSYS software results; however, some available theoretical and 

literature results are also employed in the comparisons. 
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After the accuracy of DQM solutions is verified by comparing the deflection and 

frequency of the regarding plate configurations with ANSYS results the DQM 

solutions are extended to solve the equations that governs structural behaviour of 

plates subjected air blast load. Displacement- and strain-time histories are obtained 

for each plate configuration and compared mainly to ANSYS results and also for 

some plate configurations theoretical and experimental results are employed in the 

comparisons.  

Very accurate results are obtained by DQM for the plates of constant thickness. The 

center deflections and fundamental frequencies of each plate configuration of 

constant thickness are obtained very close to ANSYS results. Furthermore, 

displacement- and strain-time histories obtained using DQM for the plates of 

constant thickness are found to be in a good agreement with ANSYS. However, a 

discrepancy was observed between the strain-time histories of DQM and 

experimental data for the fully clamped aluminium and steel plates. This discrepancy 

can be attributed to the effect of nonlinear terms that are unused in the analyses. 

The results obtained using DQM for the plates of variable thickness did not converge 

very well for each plate configuration. For instance, there are approximately 30 

percent differences between the center deflections obtained by DQM and ANSYS for 

the isotropic tapered C-C-C-C and S-S-S-S plates although the fundamental 

frequencies of mentioned plates are estimated very well. On the other hand, the 

displacement- and strain-time ( Xε , Yε ) histories of isotropic tapered plates obtained 

using DQM exhibit reasonable convergence compared to ANSYS results. However, 

this is not the case for the tapered laminated composite plate. There are considerable 

differences observed in the strain-time ( Yε ) histories of the mentioned plates. As 

mentioned in the previous section Xε -time histories for the tapered laminated 

composite plates were left out in the reported results of this work since the 

divergence obtained was very significant. However, more reasonable results were 

obtained in the static and free vibrational analyses of these plates.  

In general, DQM provides solutions with acceptable accuracy in the analyses of 

plates. Also, the results obtained in the static and free vibrational analyses of plates 

are very accurate compared to ANSYS and other available results from the literature. 

Furthermore, the results show that the DQM can be used for the prediction of 
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transient responses of both isotropic and composite plates. The computer time is 

much lower with DQM compared to the computer time in the finite element solution. 

Although, some analyses need to be inspected on more, DQM gives also accurate 

results for the tapered isotropic and composite plates. This means DQM can be 

implemented in analyzing of the complicating affects in plates such as thickness 

variation and material anisotropy, straightforwardly. As was stated by Bert and Malik 

[10], DQM has the capability of producing highly accurate solutions with minimal 

computational effort at some type of engineering problems, and therefore, has the 

potential of being an alternative to the conventional techniques such as the finite 

difference and finite element methods in the future. Therefore, in the future studies, it 

is intended to involve the various nonlinear affects in the DQM analyses of plates 

and also it is considered to implement the semi-analytical DQM solution into the 

transient analyses of plates.  
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