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THREE-DIMENSIONAL ANALYSIS OF THE FLOW AROUND AN 
OSCILLATING FLAT-PLATE 

SUMMARY 

Recently, flapping-wing aerodynamics has generated a great deal of interest and an 
important research effort is being made due to its potential application to Micro-Air 
Vehicles. The low speed and small aspect ratios generate low Reynolds number 
flows that are still not well understood. The objective of this study was to perform 
three-dimensional CFD (Computational Fluid Dynamics) analyzes of the flow 
developing around an oscillating flat-plate. The commercial software Fluent was 
used to carry out the computations based on the Reynolds Averaged Navier-Stokes 
(RANS) equations.  

The aim was to highlight the three dimensional flow structure and the effect that 
some of the kinematics parameters have on the flow and performance parameters. To 
account for the unsteady flow features a turbulence model had to be incorporated. 
The kω-sst model was chosen as it includes a treatment of low-Reynolds number 
flows and proved to provide reliable results for these types of flows. A near-wall 
modelling approach was adopted since the flow had to be properly resolved 
throughout the viscosity-affected region.  

The Reynolds number was fixed to 60 000 and the parametric studies consisted in 
varying the aspect ratio of the flat-plate, the mean flow angle, the amplitude ratio and  
the reduced frequency, independently from one another. The results highlighted the 
presence of an excessive amount of separation, resulting mainly in drag-producing 
motions. The tip vortex played a positive role by controlling and limiting the 
spreading of the leading-edge vortex (LEV) to the downstream. It is by increasing 
the reduced frequency that a thrust-producing configuration was achieved, for which 
a stronger tip vortex developped and the amount of separation was considerably 
reduced.  
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SALINIM YAPAN DÜZ LEVHA ETRAFINDAKI ÜÇ-BOYUTLU AKIŞIN 
ANALİZİ 

ÖZET 

Son zamanlarda, kanat-çırpma aerodinamiği büyük bir ilgi toplamış ve mikro-hava 
taşıtlarına uygulanabilirlik açısından büyük bir potansiyel teşkil ettiğinden, konu 
üzerindeki araştırmalar yoğunlaşmıştır. Düşük hızlar ve düşük en-boy oranları, halen 
tam anlaşılamamış düşük Reynolds-sayılı akışlar yaratmaktadırlar. Bu çalışmanın 
amacı, salınım yapmakta olan düz bir plaka etrafındaki üç-boyutlu akışın HAD 
(Hesaplamalı Akışkanlar Dinamiği) yöntemiyle incelenmesidir. Reynolds Ortalamalı 
Navier-Stokes Denklemlerinin çözümü için ticari bir program olan Fluent 
kullanılmıştır. 

Hedef, üç boyutlu akış karakteristiklerinin ve bazı kinematik parametrelerin akış ve 
performans üzerindeki etkilerinin vurgulanmasıdır. Süreksiz akış özelliklerinin 
çözümlenebilmesi için bir türbülans modelinin kullanılması gerekmektedir. Düşük 
Reynolds-sayılı akışları da kapsayan bir yöntem olduğundan ve bu tür akışlar için 
güvenilir sonuçlar verdiği bilindiğinden, k-ω sst modeli kullanılmıştır. Viskozitenin 
etkili olduğu bölgelerin düzgün olarak çözümlenebilmesi için duvar kenarı modelli 
bir yaklaşım uygulanmıştır. 

Çalışma boyunca Reynolds sayısı 60 000’e sabitlenmiş, en-boy oranı, ortalama akış 
açısı, genlik oranı ve indirgenmiş frekans değerleri birbirlerinden bağımsız olarak 
değiştirilerek parametrik çalışmalar yapılmıştır. Sonuçlar, genel olarak sürükleme 
hareketine yol açan hareketlerin aşırı miktarda sınırı tabak ayrılmalarına yol açtığını 
göstermiştir. Uç vorteksinin (girdap), hücum-kenarı vorteksini kontrol etmek ve 
dağılmasını sınırlamak suretiyle, aşağı akış üzerinde olumlu bir etkisi vardır. 
İndirgenmiş frekans değerinin artırılması yoluyla, kuvvetli bir uç vorteksi 
oluşturulabilmiş, sınır tabak ayrılması büyük ölçüde azaltılmış ve itki meydana 
getiren bir konfigürasyon elde edilebilmistir. 
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1. INTRODUCTION TO LOW-REYNOLDS NUMBER FLOWS 

1.1 Presentation of the Subject 

1.1.1 Motivations and applications of Micro-Air Vehicles 

Over the past decade, Micro Air Vehicles (MAVs) have received an increasing 

amount of attention in view of potential applications to both the civilian and military 

markets. MAVs are referred to as flight vehicles with a characteristic length of at 

most 15 cm which makes them barely detectable to the naked eye. Combined to their 

low noise and radar cross section, these capabilities make them prime candidates for 

carrying out surveillance, reconnaissance, communication and detection missions. 

Once equipped with miniaturized electronic and detector sensor equipment of a total 

payload mass of less than 18 g, they may be used in numerous situations. Real-time 

data acquisition collected with the help of cameras for instance can be crucial to 

hostage rescue, counter-drug operations, or surveillance of urban areas. MAVs 

outfitted with very small sensors are able to undertake missions such as the sensing 

of nuclear materials or any type of biological agent. These operations may extend to 

a very wide range of environments and may have to be carried out in the jungle or 

the desert for example. Therefore, MAVs should be able to perform in all weather 

conditions and be equipped with a collision avoidance system. All these 

requirements may sometimes constitute technical barriers that need to be overcome 

for MAVs to reach the objectives in terms of performances. In this project we will be 

focusing on the aerodynamic aspect of the problem as the airfoil section and wing 

geometry are of major concern while designing MAVs. However, the aerodynamics 

of small-scale flight is not so well understood since the flow regime of MAVs is very 

different than for conventional aircrafts. Consequently the particular features and 

structure of the flow that characterize these scales have not yet been thoroughly 

studied. Thus, the design methods that have been developed over the past decades are 

inadequate since the wing aerodynamics affect in tern the static, dynamic and 

aeroelastic stability of the vehicles. The starting point is therefore to focus on the 
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flow effects as they constitute a critical point of the design process.  This brings us to 

consider first of all the various types of wing arrangements that can be used.  

Three distinct types of configurations are possible which include fixed wings, 

flapping wings and rotary wings. Each of them present benefits and disadvantages 

according to the range of Reynolds numbers. The Reynolds number can be defined 

as the non-dimensional ratio of the inertial and viscous forces. Because of the small 

length scales involved and an operating speed around 10 m/s, the Reynolds number 

is very low and typically, Re = 103 - 105. Therefore, viscous forces become dominant 

with respect to the inertial forces, and will have a strong influence on the flow 

characteristics. Fixed wing MAVs have proved to have deteriorating performances as 

the Reynolds number drops below 105. For this reason, this class of MAVs usually 

flies within the upper range of Reynolds numbers around 105. An example for the 

design of fixed-wing vehicle is given on Figure 1.1 a).  

 
Figure 1.1 :  a) Fixed-wing MAV [1] b) Rotary-wing MAV [2] 

Rotary-wing MAVs are usually used to fly at Reynolds numbers around 104. These 

present key advantages compared to the other two due to their ability to hover, 

allowing them to evolve vertically and remain in a still position. This can be a huge 

advantage in many circumstances as their manoeuvrability exceeds by far the other 

classes of vehicles. In many imaging applications for instance, the limitations of 

conventional wing configurations on the minimum flight speed are problematic. In 

addition to the flexibility of their flight-path, rotary wings are less sensitive to 

crosswind gusts and therefore more stable. However, due to poor aerodynamic 

efficiency of the rotor, the power requirements are very hard to achieve. This is due 

to the degradation of the airfoil performances related to low Reynolds number 
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effects, such as flow separation at low incidences. As a result, the power output 

reached by rotary-wing MAVs is much lower than for full-scale helicopters. On 

Figure 1.1 b) an example of rotary-wing design is given. This MAV was named 

mesicopter, referring to its very small scale made obvious on the picture by the 

comparison with a coin. Indeed, the thrust required by the rotor in order to maintain 

level flight is equal to the vehicle’s weight whereas for a vehicle in forward flight it 

is substantially less due to the lift generated by the wing. The aim in this study 

conducted by Kroo [2] was to diminish the differences in terms of power requirement 

by reducing the scale of the vehicle.      

These considerations bring us to consider the flapping wing design which is of 

interest in this study. The increasing research effort is motivated by the fact that a 

small scale flapping wing, compared to a fix wing model offers unique aerodynamic 

advantages. We recall that the earliest flight trials were highly inspired by birds. 

However, Sir George Cayley in 1799 put an end to the flapping wing concept by 

introducing the model based on a fixed wing airplane equipped with a propulsive 

system. The flapping wing studies became secondary and the main focus was to 

develop human-carrying airplanes based on this new approach. Nevertheless, 

research on flapping wing propulsion continued. One of the main points for the 

aerodynamicists has been to understand how the vortices may increase the lift, thrust 

and efficiency. Solutions to these problems can first of all be obtained by using 

different sophisticated numerical approaches, such as computational fluid dynamics 

or also inviscid panel methods that impose some vortex behaviour. Secondly, to 

further understand the aerodynamic behaviour of flapping wing creatures, 

experimentalists are reproducing them and building mechanical replicas. These 

models allow the scientists to observe the vortex shedding process by means of non-

intrusive visualisation methods. More precisely, the vortex structure and scale of an 

unsteady airfoil has been observed and the flapping wing aerodynamics better 

understood, such that the challenging problem in mimicking these complex 

mechanisms could start to be possible.  

The fundamental advantages that this configuration shares with rotary wings, is that 

lift and thrust may be generated with a reasonable size and weight. Indeed, it is 

thought that approaching the agility and endurance of birds and insects is possible by 

adopting a flapping wing mechanism, defined as a combination of pitching and 
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plunging. This is motivated by the fact that flapping wings may offer unique 

aerodynamic advantages over fixed wings, as they are able to generate propulsion 

and lift without any additional propulsive device. These unique attributes lead us to 

further explore the unsteady aerodynamic features that provide these advantages over 

fixed wing designs.  

 

Figure 1.2 :  a) Flexible-flapping wing [3] b) Bi-plane configuration of a flapping 
wing [4] 

Animal flight analyzes have highlighted the complexity of the wing movement, 

which may include spanwise wing folding as a consequence of muscle actuation. 

This additional complexity has up to now only been useful in the case of animal fight 

mimicking. We will focus on a simplified oscillating rigid-wing. In reality, bird or 

insect wings are flexible which affects the separation and transition positions [5]. 

Although there is growing interest in understanding the physics of flexible wing 

flapping, it is for the moment mainly limited to the use of membranes in fixed wings. 

On Figure 1.2 a) is represented a model for which the plunging motion is imposed 

whereas the pitching mode is implemented passively thanks to the flexible wings. As 

a result from this degree of flexibility, the thrust and efficiency were increased. 

These improvements are due to the ability of flexible wings to facilitate passive 

shape adaptation. This results in delayed stall as membrane wings stall at much 

higher angles of attack. However, to simulate the flow over a flexible surface a 

structural model will need to be coupled to the Navier-Stokes equations in order to 

model the transient behaviour of the flexible surface which considerably adds 

complexity to the problem. Finally, more complex arrangements have been designed 

that combine different types of configurations as illustrated on Figure 1.2 b). Here, 

the thrust is provided by the flapping-wings in bi-plane arrangement at the back of 

the vehicle. These are mounted very close to the fixed wing that provides the 



 5

required lift. To conclude we may say that this project solely focuses on the 

aerodynamic properties of the flow that develops around a rigid flapping wing. We 

will now present the objectives of the study that is based on a CFD analysis of the 

flow past an oscillating three-dimensional wing.     

1.1.2 Challenges and objectives 

We will see later that although the shedding process allowing the generation of thrust 

is essentially an inviscid phenomenon, at low Reynolds numbers the viscous effects 

cannot be neglected as the propulsive efficiency greatly depends on them.  The 

boundary layer thickens due to the high viscous forces and remains laminar over the 

majority of the surface. At higher angles of attack, the flow decelerates due to the 

adverse pressure gradients it encounters. The flow near the surface becomes very 

sensitive to the shear stress. Because of the absence of momentum transfer in 

between the layers, the flow may then separate in the leading edge region. Generally, 

the laminar boundary layer soon reattaches as a turbulent boundary layer. As a result 

of the transition from laminar to turbulent, a laminar separation bubble appears, 

usually located near the leading edge. As the wing oscillates this LEV is utilized by 

insects for instance to increase the efficiency of lift and thrust generation. The LEV 

is the defining characteristic of flapping wing aerodynamics. As our study will be 

numerical, we should insist on the fact that prediction of the separation and transition 

plays a critical role in determining the development of the boundary layer. In turn 

this affects the aerodynamic performance of the wing so we may conclude that 

properly dealing with the sensitive boundary layer is essential to design a vehicle at 

low Reynolds numbers.  

MAV wings are also characterized by low aspect ratios that usually do not exceed 4. 

Consequently, the flow past the finite wing is highly influenced by the wing tip 

vortex that forms on the upper surface for positive lift. In general we may say that tip 

vortices are of major concern in aeronautical applications due to their drag 

contribution at low speeds and unexpected effects on aircraft safety. Indeed, the 

process of tip vortex formation is extremely complicated because of the flowfield 

being turbulent and three-dimensional. It is caused by the mixing at the wing tip of 

the high and low pressures of the two surfaces. In addition, the pressure change at the 

tip affects the spanwise lift distribution. A few studies have focused on these three-

dimensional effects and in general it has been found that the efficiency is 
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overestimated in 2D as the tip vortices lead to a loss in energy. We may conclude by 

saying that the three-dimensional flows around flapping-wings are significantly more 

complex than in the simplified two-dimensional case as the wing tips greatly modify 

the wake flow.  

The objective of this project consists in solving computationally the flow around a 

finite flapping wing. The flat-plate geometry has been chosen in common with other 

experimental studies. Indeed, it can be very valuable to later compare the two sets of 

results. The aim will be to make use of the experimental data once available, in order 

to validate the numerical approach. We may add that CFD analyzes have been rarely 

conducted in this range of Reynolds numbers. The final objective is to later consider 

Computational Fluid Dynamics as a valuable tool to investigate the flow experienced 

by Micro-Air Vehicles.  

The current aim is not only to perform a computational validation of low Reynolds 

number flows but also to thoroughly investigate the complex three-dimensional flow 

structure. Indeed, low Reynolds number flows are well understood from a theoretical 

point of view but not as well from a computational perspective. In order for the flow 

solver to gain credibility we must insure that the flow physics are correctly 

represented. Determining the forces on the wing will be sufficient to characterize the 

performance. Results for several mean flow angles of attack will be compared. The 

wing’s spanwise dimension will be modified in order to study the impact of the 

aspect ratio on the solution. Finally, we will also perform a parametric study. Several 

of the flapping parameters will vary within a range allowing us to deduce their effect 

on the flow structure and performance parameters. 

1.1.3 Organization 

We will introduce the subject of this thesis by briefly presenting the flow physics, 

while giving particular attention to the low Reynolds number effects and the three-

dimensional effects. Preceding the treatment of the underlying flow physics, we will 

give the critical parameters related to the oscillatory motion. In addition to the 

flapping parameters that define the flapping motion itself, the performance 

parameters that are used to judge the efficiency reached by the vehicle while 

generating thrust will also be discussed. These are based on the aerodynamic 

coefficients that we will also present to complete this section. Once all the 
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terminology useful to the subject and the physics related to low Reynolds number 

flows is presented, we will summarize the important historical developments that 

were achieved and the critical results obtained in previous works. We will mainly 

focus on numerical studies which have most of the time been carried out in two-

dimensions, sufficient to investigate the effect of the kinematics parameters. 

However, a few studies have been three-dimensional which will help us to gain 

deeper insight into the 3D effects before starting our own computations. 

In the second chapter of the thesis, the methodology that we have applied to conduct 

the CFD analysis of the flow around the oscillating flat-plate is presented. It is 

composed of several steps, from the grid generation to the preparation of the 

simulation. The method employed for creating the mesh surrounding the rectangular 

flat-plate is presented in detail. The assumptions allowing the problem to be 

simplified are discussed as the computational effort required to solve the unsteady 

three-dimensional flow needs to be limited as much as possible. The governing 

equations are given along with a brief introduction to the Finite Volume method. The 

simulation parameters are fixed according to the requirements imposed by low 

Reynolds number flows. Particular attention is given to the modeling of turbulence 

and to the near-wall approach necessary to accurately capture the unsteady 

aerodynamic features.  

In the last chapter, the results obtained from the computations are given. As a 

preparation to the simulations, a mesh sensitivity analysis was conducted. Once the 

overall mesh density was considered suitable, the kinematics of the flapping motion 

was verified and the appropriate time step determined. The calculations are post-

processed by examining the aerodynamic coefficients and other flow properties.  

1.2 Governing Parameters of the Flow and Flapping Motion 

1.2.1 Critical parameters of oscillating airfoils 

We wish to identify the critical parameters useful in the study of flapping-wing 

aerodynamics, first of all by fully defining the flapping motion. In this section we 

will also highlight the objectives as far as the performance of the MAVs is 

concerned, that represent the critical parameters to be optimized.  
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1.2.1.1 Kinematics 

Figure 1.3 illustrates the two degree of freedom motion prescribed to a flapping 

airfoil. We will be applying both the plunging and pitching movements sinusoidally 

with a frequency f. 

 

Figure 1.3 :  Two-degree-of-freedom motion 

The two movements are illustrated below on Figure 1.4 along with the equations 

governing the kinematics: 

 

Figure 1.4 :  Two-degree-of-freedom motion 

These two are limited by the pitch and vertical plunge amplitudes, denoted as 

1 and hα respectively. h is the ratio of the plunge amplitude 1z  and airfoil chord c, 

and is therefore non-dimensionalized. The angle 0α  corresponds to the mean angle 

of attack between the airfoil and the incoming free-stream. We notice that the 

pitching motion imposes a sinusoidal oscillating movement to the airfoil for which a 

pitching axis needs to be defined. On the above figure, it is denoted as PX that 

represents the pivot location from the leading edge, again with respect to the chord c.  

In addition, it has been proved that shifting one of the motions in time compared to 

the other has a significant impact on the critical parameters we wish to optimize. 

Therefore, a phase angle ϕ is introduced in the equation that describes the pitching 

motion. If this angle is positive we say that the pitching is leading the plunging by an 

angle ϕ .  
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1.2.1.2 Flapping parameters 

One of the key parameters is the non-dimensional reduced frequency that is defined 

as follows:    

: , :fc fAreduced frequency k Strouhal number Sr
U U
π

∞ ∞

= =  (1.1)

However, since the flow fields that develop around a flapping airfoil are usually 

wake-dominant flows, the Strouhal number is often taken into account. As a 

reference length it uses the wake’s width instead of the chord, where A  is the 

oscillatory amplitude of the trailing edge.  It has a very similar meaning that of the 

reduced frequency.  

Among the simulation parameters, we will often encounter the product of the 

reduced frequency and plunge amplitude kh.  It represents the maximum non-

dimensional flapping velocity. It can be related to the Strouhal number as follows: 

( )2kh a A Srπ=  (1.2)

Both the Strouhal number and the value of kh indicate the angle of attack that is 

induced by the flapping motion. Indeed, we have:   ( )1 arctan khα =  

1.2.1.3 Thrust generation 

The purpose of flapping wings is to produce a forward thrust while simultaneously 

supporting the weight. The amount of thrust is measured in terms of the mean thrust 

coefficient defined as follows:  

( )1:
t T

Tmean D
t

mean thrust coefficient C C t dt
T

+

= − ⋅∫  (1.3)

It is very important that the wing produces thrust in an economic way. Therefore, it 

has to minimize the drag penalty as well as mechanical losses, which are the 

counterpart of thrust optimization. Consequently, it is crucial to also account for the 

efficiency of the airfoil.  
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1.2.1.4 Propulsive efficiency 

One of the key objectives is to minimize the power consumption of flapping wings 

under optimum conditions. It has been shown [6] that the mechanical power output 

for steady level flight follows a U-shaped curve. This quantity corresponds to the rate 

of increase of the kinetic energy of the air caused by the passage of the wing. In the 

case of birds, the speed is controlled by variation of the wingbeat frequency and 

amplitude. Considering that the work required for flight is related to the flight 

muscles controlling the movement of the wings, the efficiency of bird flight is 

expected to vary with the speed flight. At the contrary, it can be possible to maintain 

efficiency for an MAV by respecting some design constraints on the actuators 

responsible for the wing movement. The measured performance criteria representing 

the propulsive efficiency, is defined as the ratio of the power output to the power 

input. It is given by:  

T

P

power output TU C
power input P C

η ∞= = =  (1.4) 

The power output corresponds to the product of the thrust and free stream velocity 

and the power input is the time rate of work done to the wing. The propulsive 

efficiency can be put into a non-dimensional form and becomes the ratio of the thrust 

coefficient to the power coefficient. The most important loss is by far the work that is 

necessary to harmonically accelerate the mass of the wings at high frequencies. This 

is when the observation of the natural movement can be crucial to diminish these 

losses. Indeed, it has been observed that birds use aerodynamic forces by making 

minor pitch and camber changes in order to facilitate the acceleration process.  

We may conclude by saying that a compromise between thrust generation and 

efficiency needs to be reached, according to the requirements in terms of 

performances. Indeed, these depend on the type of mission the MAV is most lightly 

to be carrying out. Considering extreme cases, if a high degree of maneuverability is 

required then the amount of thrust available needs to be maximized. At the contrary 

if the vehicle is to mainly evolve in forward flight, it is the efficiency that needs to be 

optimized. Therefore, the efforts should be orientated towards satisfying these 

priorities such that appropriate wing design and kinematic parameters are 

determined. 
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1.2.2 Non-dimensional parameters 

Non-dimensionalized flow characteristics allow us to compare results under the same 

dynamic conditions, whether they are numerical or experimental even though these 

are collected for different scale models. However, the scale effect is to be eliminated. 

The non-dimensionalization of the Navier-Stokes equations leads to two key non-

dimensional parameters, namely the Mach number and the Reynolds number.  

1.2.2.1 Mach number 

The free-stream Mach number M∞  relates the free-stream velocity V∞  to the local 

speed of sound a∞  as follows:  

,VM speed of sound a RT
a

γ∞
∞ ∞ ∞

∞

= → =  (1.5)

where the local speed of sound is defined in terms of γ  the ratio of specific heats of 

the fluid, R  the gas constant and T  the temperature of the fluid. The Mach-number 

is a dimensionless value that is used to analyze fluid flow dynamics problems. It 

indicates the significance of the compressibility effects and characterizes the flow 

regime. Applied to MAVs, the operating speeds are relatively low, therefore so will 

be the Mach number. It is necessarily smaller than 0.3 for which the density changes 

are usually negligible. Consequently, the subsonic flow ( 1M∞ < ) can be treated as 

incompressible.  

1.2.2.2 Reynolds number 

The Reynolds number Re  is a non dimensional parameter that relates the viscous 

and inertial forces as follows:  

Re V c Inertial forces
Viscous forces

ρ
μ
∞ ∞= ≈  (1.6)

where c is the chord length taken as a reference, ρ∞  and V∞  are the free-stream 

density and velocity respectively and μ  the absolute viscosity of the fluid. 

Considering that for MAVs both the chord length and the flight velocity are 

relatively small, the flight regime under consideration is characterized by a low-
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Reynolds number. From these observations we deduce that the viscous forces 

dominate which results in a relatively thick boundary layer.  

To allow comparison, it is essential that the scale effect is suppressed. For the 

boundaries of the flow to be close to identical, a constant ratio has to be conserved in 

between the characteristic quantities of the two arrangements. Thus, this principle 

needs to be applied not only to the model’s dimensions but to the flow properties as 

well. If the flow is not exactly similar but only approximately, the information 

becomes unreliable. A ‘scale effect’ exists and must not be underestimated. The first 

assumption was to assume that none of the physical properties of the fluids has any 

influence on the shape of the flow pattern or on the fluid forces, despite the density 

of the fluids. Therefore, the mass force of the particles is the only force and needs to 

be equalized. Indeed, for a viscous flow, it is arranged so that the pressure forces and 

viscous forces are in equilibrium with the mass force. To obtain the criterion for the 

similarity of flows, two of the three forces need to be changed by an identical ratio 

(mass and viscosity forces), in order to maintain equilibrium. The mass forces are 

changed in the ratio 2 2
2 2 2

2 2
1 1 1

V l
V l

ρ
ρ

 and the viscous forces with 2 2 2

1 1 1

V l
V l

μ
μ

. Hence the condition 

for an exact model test is: 

2 2
2 2 2 2 2 2 1 1 1 2 2 2

1 22 2
1 1 1 1 1 1 1 2

Re ReV l V l V l V l
V l V l

ρ μ ρ ρ
ρ μ μ μ

⎛ ⎞
= ⇒ = ⇔ =⎜ ⎟

⎝ ⎠
 (1.7) 

The equality of the two Reynolds numbers ensures the dynamic similarity of the 

flows. It is only if in addition the two bodies are geometrically similar that the 

similarity is perfect. 

1.2.2.3 Amplitude ratio 

The amplitude ratio corresponds to the non-dimensional ratio of the pitching and 

plunging amplitudes:  

1

12k z c
αλ =
⋅

 (1.8) 

This parameter is often given along with the non-dimensional plunge amplitude h 

such that the pitching amplitude can be deduced since the reduced frequency k is 
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necessarily known. It is a comparative parameter that gives us an idea of the 

importance of the motions with respect to each other, in terms of amplitudes.   

1.2.2.4 Aspect ratio 

Figure 1.5 below represents a wing viewed from the top looking down on the wing. 

The ends of the wing are called the wing tips and the distance from one tip to the 

other is caller the span s. The wing geometry does not present any sweep just like the 

flat-plate we will be modeling. Indeed, for a rectangular wing the chord length 

remains constant along the span.  

 

Figure 1.5 :  Wing planform and aspect ratio 

The planform corresponds to the shape of the wing when viewed from above looking 

down onto the wing. The wing area A is bounded by the leading and trailing edges 

and the wing tips. It is defined as the projected area of the planform. The Aspect ratio 

AR of a wing is defined as the square of the span divided by the wing area.  

1.3 Flow-Physics of Low Reynolds-Number Flows  

1.3.1 Shear stress and boundary layer separation 

As we mentioned in the introduction, at low-Reynolds numbers the performance of 

the airfoils rapidly deteriorates due to boundary layer separation. The Aerodynamic 

efficiency is defined as the lift to drag ratio ( )maxL DC C  and for three-dimensional 

wings it is less than for airfoil sections when the aspect ratio is less than 2. For these 

reasons the airfoil section and wing planform are a critical part of the design 

procedure. It has been proved that in these regimes where the Reynolds number is 

less than 105, thick airfoils (above 6%) present significant hysteresis in the lift and 

drag forces due to laminar separation and transition to turbulent flow. Furthermore, 

to reach higher values the wings must imitate bird and insect airfoils and be very fine 
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with a small amount of camber. The aim in this section is to discuss the formation of 

the separation bubble and its effect on the flow. To do so, we should first of all 

introduce the concept of boundary layer, in conjunction with the notion of shear 

stress as it leads to the separation of the boundary layer.   

In reality, when fluid particles come close to the surface their velocity slows down 

due to the viscous friction. Viscosity is a physical property that affects stresses of a 

fluid due to fluid motion. In the case of a viscous fluid flowing past a body, it 

adheres to the body surface and frictional forces retard a thin layer of fluid adjacent 

to the surface. The velocity then becomes a function of the distance from the surface 

and it is only at a certain distance that it is equal to the free-stream velocity. The 

distance (δ) required by the fluid to reach 99% of U∞, is known as the boundary layer 

thickness and is represented on Figure 1.6 a). As a result, the velocity inside the 

boundary layer is less than the velocity at its outer edge. The existence of this 

velocity deficit is a necessary condition for separation. At the outer edge of the 

boundary layer viscous forces are negligible, and there is an exact balance between 

inertia and pressure gradient, as expressed by the Bernoulli equation. In the case of 

an airfoil, the curvature of the top surface caused by the angle of attack forces the 

flow to first accelerate around the leading edge and then decelerate. 

 

    Figure 1.6 :  a) Boundary layer thickenss δ b) Flow separation  

While the pressure increases as the particle moves downstream, it is accompanied by 

a decrease in velocity. The inertia of the particles near the wall may not be sufficient 

to overtake the pressure forces, causing the velocity vector to change direction. This 

velocity deficit indicates separation. Figure 1.6 b) illustrates the different stages 

leading to separation. As we can see, the process can only be initiated by a 

sufficiently strong adverse pressure gradient. On the schema, it first increases up to 

an inflection point known as the separation point. The wall shear stress is exactly 

zero. As the unfavourable pressure gradient increases, the velocity gradient at the 
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wall decreases and may become negative indicating the occurrence of reversed flow. 

The boundary layer has detached from the surface, resulting in a region of 

recirculating flow.  

They are two types of boundary layer represented on Figure 1.7 a) which can either 

be laminar or turbulent with a transition phase in between. Laminar boundary layers 

are relatively thin and are characterized by low levels of mixing between the adjacent 

layers. At the contrary, turbulent boundary layers are quite thick and present 

significant mixing in between the layers.  

 

Figure 1.7 :  a) Boundary layer profiles  [7] b) Transitional separation bubble 
(Horton 1968) 

Due to the important viscous effects, the boundary layer is very lightly to separate 

and form a shear layer as it is very sensitive to the shear stress because of the absence 

of mixing. At Reynolds numbers greater than 50 000, transition from laminar to 

turbulent takes place within the shear layer and if there is enough energy it may 

reattach to the surface. A region of recirculating flow forms, often referred to as a 

transitional separation bubble since it causes the boundary layer to trip. At low 

Reynolds-numbers, the bubble can be relatively long and cover from 15 to 40% of 

the airfoil’s surface. This phenomena is illustrated on Figure 1.7 b).  At Reynolds 

numbers below 50 000, the separated shear layer does not always reattach. An 

accurate prediction of the existence and extent of the separation bubble is crucial to 

the design of low-speed wings.  

The shear stress is the physical force that resists to the flow and tends to slow it 

down. It is tangential to the surface and is related to the absolute viscosity μ  of the 

fluid as follows: 
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τ μ τ μ⎛ ⎞∂ ∂ ∂
= ⋅ + → ≈ ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (1.9) 

It can be approximated at the wall by wτ , represented on Figure 1.7 a) above. The 

local shear stress varies in the chordwise direction, and it is convenient to define the 

dimensionless skin friction coefficient as follows:  

1 2
w

fC
V

τ
ρ ∞ ∞

=
⋅

 (1.10) 

We will now see that the skin friction plays an important role in the aerodynamic 

properties of an airfoil as the shear stress greatly contributes to the lift and drag 

forces, especially at low Reynolds numbers.   

1.3.2 Aerodynamic coefficients 

The forces and moments of a wing are obtained by integrating the local values of 

pressure and shear stress acting on the surface of the wing. The two components, 

related to pressure and friction, are added to obtain the total forces and moments. 

Once again these are non-dimensionalized in order to bring the values back to a 

known scale of reference. In addition, the coefficients can then be compared to other 

values obtained in the same conditions. The coefficients for lift LC , drag DC  and 

moment MC  are defined on Figure 1.8 where the lift, drag and moment forces are 

denoted as L , D  and M  respectively.    

 

Figure 1.8 : Definition and representation of the aerodynamic coefficients 

We will now give a few explanations about the origin of these quantities. First of all 

we should state that a wing’s aerodynamic force may be separated into lift and drag 
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components that intersect with its chord line at the centre of pressure. No 

aerodynamic moments exist at the centre of pressure since the line of action of the 

aerodynamic forces passes through this point. The moment measures the tendency of 

the wing to rotate about its centre of gravity, under the action of the aerodynamic 

forces. Let us explain the origin of the two pressure and viscous components of the 

lift and drag forces, by taking the total drag force as an example. As fluid flows past 

a wing, it will tend to drag it along in the direction of fluid flow which slows it down. 

The drag comprises two components, the first one being the pressure drag. It is based 

on the pressure difference between the upstream and downstream surfaces of the 

wing, and corresponds to the resultant of resolved forces normal to the surface of the 

wing. The second component, namely the skin friction drag, results from the viscous 

shear of the fluid flowing over the surface of the wing. It is the resultant of resolved 

forces tangential to the surface. The total drag on the wing is known as the profile 

drag and is the sum of the pressure and skin friction drag. Let us formulate the 

procedure allowing us to calculate the lift and drag forces. The first step is to 

calculate the pressure (press) and skin friction (skin) forces in the normal (n) and 

tangential (t) directions:  
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[ ]
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,
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 (1.11)

In correspondence to Figure 1.8 above, the tangential and normal forces are referred 

to as A and N respectively. By combining these two, the resultant force R is obtained. 

The drag and lift are the projection of R along the horizontal and vertical axis 

respectively, thus depending on the angle of attack of the airfoil with respect to the 

incoming flow.  The lift and drag can be obtained directly to the tangential and 

normal forces and inversely:  

sin cos cos sin
cos sin cos sin

t n n

t n t

L F F F L D
D F F F D L

α α α α
α α α α

= − ⋅ + ⋅ = +⎧ ⎧
⎨ ⎨= ⋅ + ⋅ = −⎩ ⎩

 (1.12)

This is the procedure we will later adopt in order to obtain the performance 

parameters as they are based on the aerodynamic coefficients. Indeed, the pressure 

and shear stress will be made available from the CFD analyze. We will now briefly 
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mention about the dependence of the force and moment coefficients on the flow 

conditions. The characteristics of the NACA 0012 airfoil are represented on Figure 

1.9 for 6Re 10=  and 0,1M = .  

 

Figure 1.9 : Aerodynamic coefficients with respect to the angle of attack a) CL / α b) 
CD / α c) CM / α            

Let us consider the variation of the lift coefficient versus the angle of attack on 

Figure 1.9 a). We observe that when α increases so does the lift, along with the 

suction force present on the upper surface, as the flow is accelerating more and more. 

However, at very high angles the lift suddenly drops, related to the separation of the 

boundary layer mentioned previously. Around 16α = °  the wing is said to have 

stalled. Simultaneously we see on Figure 1.9 b) that the drag dramatically increases 

in the separation region, with a significant contribution coming from the pressure 

drag. For lower angles, the pressure drag is much less and the skin friction drag 

dominates. The drag is minimized at zero angle of attack. Finally, on Figure 1.9 c) 

the behaviour of the moment coefficient is plotted and indicates very well the 

occurrence of stall. We see that the wing pitches up prior to the boundary layer 

separation and then dramatically pitches down as the wing stalls due to the sudden 

loss in lift.    

1.3.3 Reynolds-number effects 

We have already mentioned about many of the Reynolds number effects related to 

MAVs, however we shall make a summary of their impacts. In the type of 

applications we are looking into it is clear by now that the small size of the MAVs 

associated to their low flight speeds, brings us to consider low-Reynolds numbers. 

Consequently, the viscous effects are much higher than for conventional aircraft 

applications, resulting in a thicker boundary layer. The shear stress present along the 

surface is more important and so will be the skin friction. From these statements, we 

can easily conclude that the skin friction component of the lift and drag forces is 
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much higher at low Reynolds numbers. In addition, the flow often remains laminar 

on a large portion of the wing and can degrade the performance of the wing if a long 

laminar separation bubble appears. Indeed, this is more and more lightly to occur as 

the Reynolds number decreases.  

 

Figure 1.10 : Effect of the Reynolds-number on the maximum lift coefficient [7] 

On Figure 1.10 above, the maximum lift coefficient for the NACA 64-210 is plotted 

as a function of the free-stream Mach number for several Reynolds numbers. Its 

value clearly decreases along with the Reynolds number due to the fact that 

separation occurs at lower angles of attack. This last observation adds up to the other 

undesirable effects related to low-Reynolds numbers. The characteristic L/D ratio 

decreases, showing how flight at low-Reynolds numbers is much less efficient than 

at higher values since the available power is a limiting factor at small scales.  

1.3.4 Static and dynamic stall types 

1.3.4.1 Static stall 

The static stall of a wing is a basic phenomenon which refers to the sudden major 

loss in lift, increase in drag and change in pitching moment at a specific angle of 

attack known as the stall angle. We have seen that for low-Reynolds numbers, stall is 

associated to the separation of the boundary layer due to the viscous effects. It results 

in a recirculation region on the upper surface, where the pressure is higher than in the 
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attached flow case, therefore leading to the loss in lift force. These can be of two 

different types and an airfoil may present stall characteristics of more than one kind.  

The trailing edge stall is usually associated to thick airfoils. The section is 

characterized by a leading edge with a large radius of curvature, therefore limiting 

the amount of suction as well as the negative pressure values along the airfoil. Thus 

the boundary layer tends to remain attached for reasonable angles of attack. 

However, as the incidence increases, flow separation may appear close to the trailing 

edge and move towards the leading edge as the angle further increases. Full-stall is 

delayed whereas the drag starts to increase significantly well before. This causes the 

lift curve to flatten due to the progressive reduction of the effective amount of lifting 

surface. An example of the progression is given on Figure 1.11 a).    

 

Figure 1.11 : a) Progression of the trailing-edge stall b) Reattachment of the LSB  

The airfoil may also experience a leading edge stall often observed for thinner 

profiles which present a much smaller radius of curvature at the leading edge. At 

first, the energy might be sufficient to allow the boundary layer to reattach as 

turbulent; this situation is illustrated on Figure 1.11 b). As the angle becomes larger, 

so does the extent of the laminar separation bubble, the reattachment point moves 

downstream towards the trailing edge. The lengthening of the laminar separation 

bubble causes the lift slope to flatten. As it further increases the adverse pressure 

gradient is high enough to prohibit reattachment, at which point the airfoil is fully-

stalled. This is known as the ‘bursting’ of the laminar separation bubble and as its 

name indicated it is a much more abrupt phenomenon.  
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1.3.4.2 Dynamic stall 

Unlike for static stall cases, dynamic stall occurs when the airfoil is subjected to an 

unsteady motion that includes a time-dependent angle of attack. This is typically the 

case for flapping airfoils. This phenomenon is a non-linear unsteady aerodynamic 

effect that takes place when the incidence is changing rapidly. The pronounced 

features of the process are vortex shedding and the delay of stalling. The rapid 

change causes a concentrated vortex to form in the leading-edge region. The reasons 

associated to the creation of the vortex will be discussed in detail later while 

presenting the historical development achieved for flapping airfoils. This vortex then 

separates and convects downstream over the airfoil. It induces a pressure wave that 

further increases the lift force and this for an angle superior to the static stall angle. 

However, once the vortex passes beyond the trailing edge, the lift collapses and the 

airfoil is back to a normal stall situation. When the airfoil pitches down reattachment 

is initiated starting from the leading edge to the trailing edge until the flow is fully 

attached.  

 

Figure 1.12 : Vortex shedding taking place during dynamic stall  

This process is repeated periodically, thus creating a vortex shedding pattern as 

illustrated on Figure 1.12. Dynamic stall can be a way to improve the wing’s 

manoeuvrability since the power available increases with the dynamically induced 

lift increase. These advantages will be mentioned again as we present results of 

previous studies in the section of this chapter.    

1.3.5 Vortex shedding allowing thrust generation 

Knoller [8] and Betz [9] in 1909 and 1912 respectively, were the first to observe that 

a pitching and plunging airfoil creates an angle of attack such that an aerodynamic 

force is generated. Let us consider Figure 1.13 down below.   
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Figure 1.13 : First theory describing the generation of thrust from a flapping airfoil 

They used quasi-steady arguments by considering an airfoil that is flying with the 

velocity U∞  and descending with the velocity w  such that the airfoil acquires a 

certain incidence with respect to the flow defined by the following angle of attack: 

w Uα ∞= . A pressure difference is created between the upper and lower surfaces of 

the airfoil that results into the generation of a force N . It decomposes into lift and 

thrust components. During both the downstroke and upstroke movements of the 

wing, positive thrust components are created so that the time averaged thrust force T  

is positive. Katzmayr [10], by positioning a stationary wing into a sinusoidal 

oscillating wind stream, verified the Knoller-Betz effect experimentally in 1922. 

However, the theory of Knoller-Betz did not take into account the vorticity that is 

shed into the wake of the airfoil and Birnbaum [11] realized that they had omitted a 

critical aspect of the flow physics describing airfoil flapping, namely the shedding of 

starting vortices at the airfoil’s trailing edge. By investigating the problem he showed 

that it was governed by the ratio of two characteristic speeds. He was the first to 

introduce the similarity parameter k  that we previously defined. A few years later, 

Birnbaum identified the condition leading to flutter or to thrust generation and 

suggested an alternative solution to conventional propeller, by the use of a plunging 

airfoil. In their book, Kuchemann and Weber [12] commented that the propulsive 

efficiency of a flapping airfoil is much greater than a classic propeller model due to 

the disadvantageous trailing vortex system that is generated by the propeller.     

We now wish to fully understand what is physically occurring when the airfoil’s 

incidence suddenly changes. As the speed or the incidence of an airfoil is modified, a 

so called starting vortex is formed close to its trailing edge. Let us first consider a 

symmetric airfoil at zero degrees incidence. On Figure 1.14, the upper and lower 

boundary layers present clockwise and anticlockwise vorticity respectively.  
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Figure 1.14 : Surface and wake vortex sheet 

At the trailing edge the two boundary layers merge and form a wake. Whenever the 

angle of attack suddenly changes, a larger amount of vorticity is created on both the 

upper and lower surfaces. However, the amounts that up to now were the same 

between the clockwise and anticlockwise vortices become unbalanced. The change in 

angle of attack results as we know in lift production but also in a change of 

circulation bound to the airfoil.  

Prandtl [13] is considered to be the pioneer in the field of unsteady low-speed airfoil 

flows. The approach he presented in 1922 consisted in neglecting the effect of 

viscosity and therefore to solve the Laplace equation as the governing equation. His 

study was based on Kelvin’s theorem that states that any change in lift has to be 

accompanied by the detachment of a vortex from the airfoil’s trailing edge.  

 

Figure 1.15 : Starting Vortex resulting from a sudden incidence change 

Indeed, according to the theorem, the total vorticity in the region surrounding the 

airfoil must remain zero. When the aircraft wing starts moving, it sheds a vortex 

which therefore leads to the generation of an equivalent circulation of opposite sign 

that provides the swirl required for the creation of lift.  Indeed, if for example a 

positive angle difference is introduced, the anticlockwise vorticity of the lower 
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boundary layer dominates for a certain time. After accumulating at the trailing edge, 

the anticlockwise vortex separates and is shed from the trailing edge. Figure 1.15 

above was obtained experimentally and illustrates this phenomenon. 

Prandtl pointed out that consequently, any change in lift is necessarily accompanied 

by a vortex that detaches from the airfoil’s trailing edge. In order to solve the 

incompressible flow past an airfoil subject to small amplitude sinusoidal oscillations, 

Prandtl used a small perturbation approach therefore limiting the analysis to flat 

plates, oscillating with small amplitude.  

In the following years, Gottingen and Theodorsen [14] at NACA Langley developed 

solutions for incompressible inviscid flows past thin oscillating airfoils. They were 

based on Prandtl’s original small perturbation proposal, still of great value today. 

The solution showed to be valid for the complete reduced frequency range.  

Based on Theodorsen’s flat-plate theory, in 1936 Garrick [15] provided the first 

numerical prediction of thrust force and propulsive efficiency of oscillating airfoils. 

His formulations were at first valid for a pure plunge motion and suggested that the 

thrust is proportional to the product of frequency squared and the plunge amplitude 

squared.  We now know that the airfoil sheds a vortical wake of a certain 

wavelength. During one oscillation, the vortex shed from the trailing edge travels a 

distance 2U fπ∞ , such that the reduced frequency also compares the wavelength to 

the airfoil chord. Figure 1.16 represents the vortical wake for two different reduced 

frequency values.  

 

Figure 1.16 : Vortical wake induced by sinusoidal plunge oscillation a) k = 0.5 b) k 

= 1.0 

As expected, the higher the reduced frequency, the smaller the wavelength. Indeed, 

on Figure 1.16 b) the reduced frequency is increased up to 1.0 compared to the first 

situation where it was equal to 0.5. As the vortical wavelength is reduced to half of 

its value on Figure 1.16 a), we observe that the unsteadiness of the flow has 

considerably increased.   
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In 1935, Von Karman and Burgess [16] modelled the wake of the flow past bluff 

bodies at low Reynolds numbers, by an infinite row of alternating vortices. Indeed, 

as we mentioned already, every change in angle of attack will produce a starting 

vortex that is then shed from the trailing edge. Sinusoidal plunge motion therefore 

produces a vortex street. This representation is known as a von Karman Vortex Street 

and led to a theoretical explanation of the generation of thrust and drag by observing 

the location and orientation of the shed vortices. In a situation where the flow is 

flowing from the left, the upper row of vortices will rotate clockwise and the lower 

row counter clockwise. As a result a momentum deficit is introduced in the wake 

compared to the upstream flow and the airfoil experiences a so called ‘drag 

producing wake’. 

 

Figure 1.17 : a) Drag producing wake for a stationary  NACA0012 airfoil b) Thrust 
producing wake for a NACA0012 airfoil undergoing pure plunging 
motion 

The experimental results collected by Lai and Platzer [17] illustrate the case just 

described on Figure 1.17 a). In contrast, as the airfoil undergoes a sinusoidal 

plunging motion it produces a wake in which the upper and lower row of vortices 

rotate counter clockwise and clockwise respectfully. This introduces a momentum 

surplus in the wake compared to the upstream flow. Consequently the airfoil is 

placed in a configuration referred to as a ‘thrust producing wake’ as illustrated on 

Figure 1.17 b).  

 

Figure 1.18 : Vortex Street indicative of a jet-like flow 

The flapping airfoil is acting like a ‘jet-engine’. As the flow is being entrained 

between the two vortex rows, the time-averaged velocity distribution can be 
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observed on Figure 1.18. It is plotted in a plane perpendicular to the airfoil, and a jet-

like velocity profile is obtained.  

In the 1960’s, thanks to the increasing computer resources, the next big advance in 

the analysis of unsteady flows was achieved since large systems of linear equations 

could be solved in a reasonable amount of time. Therefore the limitations imposed by 

the small disturbance theory were removed and the effects of airfoil shapes and 

amplitudes could be taken into account. Nevertheless, the potential flow assumption 

was still retained.  

It was Hess and Smith [18] that were the pioneers of the Panel method capable of 

modelling inviscid steady incompressible airfoil flows. The airfoil geometry effects 

are taken into account by distributing a number of sources and vortices all along the 

airfoil surface. By satisfying the tangency condition for every panel as well as 

satisfying the Kutta condition that insures that the pressure difference at the trailing 

edge is zero, a system of equations for the unknown source and vortex strengths is 

obtained.  

 

Figure 1.19 : Comparison of time-averaged velocity profiles 

K.D Jones, CM. Dohring and M.F. Platzer [19] have compared the experimental 

results to those provided by the inviscid unsteady panel method. As we can see on 

Figure 1.19, the velocity profiles are in remarkable agreement.  

Later in the 1960’s, it was realized that the computation of the viscous effects could 

be greatly improved by using finite difference solutions, for instance the viscous-
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inviscid interaction methods enabled to predict separation bubbles and lift and drag 

characteristics of airfoils subject to an incompressible steady flow.  

Finally, in the 1980’s, it became possible to drop the inviscid flow assumption and to 

achieve flow solutions based on the Navier-Stokes equations. The Reynolds-

averaged Navier-Stokes equations could be solved, implemented with the most 

appropriate turbulence model.  As a result of the important developments that took 

place in the last few decades, three methods can be used to analyse low-speed airfoil 

flows, namely Panel methods, Viscous-inviscid interaction methods and Navier-

Stokes methods.  

1.4 Previous Work on Unsteady Low-Speed Aerodynamics 

Since aerodynamicists provided an explanation for the thrust generation of 

oscillating airfoil, many numerical analyzes and experimental studies have 

investigated the effect of the flapping parameters on the propulsive efficiency and 

thrust generation. Our aim is to now review the progress of CFD analysis in the area 

of flapping wing aerodynamics, while also considering some experimental works as 

references. We will first of all present the studies that have been undertaken on pure 

plunge and pitch motions and finally the research that concerns combined pitching 

and plunging motions. We will see that both the computational and experimental 

studies have investigated the effect of flow parameters such as the Reynolds number 

(Re) but also the kinematic parameters such as the reduced frequency (k), the 

amplitudes of the motions and the phase difference between pitching and plunging 

(ϕ ), on the thrust generation and propulsive efficiency. The objective was to 

determine the optimum values of flapping frequency and flapping amplitude that 

would either generate a maximum thrust coefficient with a reasonable propulsive 

efficiency or the opposite.  

1.4.1 Plunging airfoils  

The earliest studies concerning flapping airfoils were restricted to pure plunging 

airfoils. Indeed, it is very instructive to observe the changes that occur in the vortex 

shedding of an airfoil that is oscillating in a pure plunge mode.  

We recall Garrick’s prediction of thrust and efficiency based on the incompressible 

potential flow assumption and Kutta condition imposed at the trailing edge. His 
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formulations were functions of the reduced frequency k and of the maximum non-

dimensional flapping velocity kh. He demonstrated that airfoils undergoing a pure 

plunging motion would generate thrust which would always be proportional to the 

square of the maximum non-dimensional flapping velocity kh. However, for a 

reduced frequency smaller than four (kh < 4), an additional dependence on k exists.  

Tuncer and Platzer [20] have investigated the flow past the NACA 0012 airfoil using 

a Navier-Stokes solver for a Reynolds number of 3 x 106. The reduced frequency was 

taken as [ ]0.2 3k ∈ −  and the plunging amplitude as [ ]0.1 0.4h ∈ − . The maximum 

propulsive efficiency was found to be obtained for a maximum non-dimensional 

flapping velocity of 1.2. They also investigated the effect of positioning a stationary 

airfoil in tandem with the oscillating one, separated by two chord lengths. This had a 

significant impact on the maximum efficiency and thrust coefficient that were 

increased by 40 % and 33 % respectively.  

Jones et al. [21] in 1997 used a 2D incompressible panel code to solve the flow 

around several airfoil sections. The values of reduced frequency were taken as 

[ ]0.01 10k ∈ −  and the plunging amplitudes considered were [ ]0.1 0.4h ∈ − . They 

noticed that changing the thickness of the airfoil had very little influence on the 

behaviour of the propulsive efficiency and thrust generation. Therefore the values of 

k and h that maximize these parameters were found to be the same for all of the 

airfoil section considered.  

Lai and Platzer [22] explored the flow field downstream of the NACA 0012 airfoil 

that was oscillating sinusoidally in pure plunge.  

 

Figure 1.20 : Transition from normal to reverse Karman vortex street as kh increases 
a) kh = 0 b) kh = 0.1 c) kh = 0.2 d) kh = 0.4 

They performed dye flow visualization and single-component laser Doppler 
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velocimetry. As we can see on Figure 1.20, a certain value of kh needs to be 

exceeded for the transition from a drag-producing Karman vortex street to an inverse 

Karman vortex street to occur. This limit was found to be approximately equal 

to 0.25kh = . They also showed that the separation region that develops in the 

trailing edge region is crucial and requires a viscous flow analysis. Indeed, an 

unsteady panel method would eliminate the trailing edge separation region. In 

addition, at a Reynolds number of 20 000, multiple vortices per half cycle were 

revealed experimentally and also predicted by the Navier-Stokes solver. At the 

contrary, the inviscid solution totally eliminates them. As far as the Navier-Stokes 

calculations are concerned, the turbulence model under-predicted the extent of the 

separation region, whereas the laminar model led to realistic results. 

Windte et al. [23] investigated the flow field experienced by an airfoil undergoing 

pure plunge motion. The start- and stop-vortices that are shed at the TE and convect 

in the main flow were observed. These vortices induce velocities on the airfoil which 

lead to a phase shift between the force and motion, caused by viscous effects. The 

phase shift grows as the reduced frequency k increases. Figure 1.21 a) shows that Cx 

coefficient always remains positive and therefore no net thrust is ever produced. Just 

like Kussner [24] proved for the inviscid flow around a flat plate, the efficiency 

decreases as k increases. Without any propulsive device, they concluded that flying 

at Re = 6000 using pure plunge motion is impossible.  

 

Figure 1.21 : a) Cx, Cz and αeff for one plunge period b) Division of the h-k plane at 
k = 0.35 

In 1998, the study of Tuncer et al. [25] consisted in a computational investigation of 

the effect caused by dynamic stall on a flapping airfoil. The flow experienced by the 
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NACA 0012 airfoil was solved with a 2D compressible Navier-Stokes solver at a 

Reynolds number of 106.  Their first result showed that the thrust increases with 

increasing frequency and amplitude of oscillation. They showed that the maximum 

non-dimensional flapping velocity kh should be kept under 0.35 to avoid dynamic 

stall which causes the efficiency and thrust to drop dramatically. This value was 

found to hold for a wide range of reduced frequencies and amplitudes as shown on 

Figure 1.21 b). As we can see, the flows on the left-hand side of this limit remain 

attached and at the contrary those on the right-hand side are separated which 

corresponds to a stalled-flow. Under these conditions, the dynamic stall is present 

and the loss in performance is consistent with expectations. Therefore, as long as kh 

is smaller than this critical value, a large reduced frequency and a small plunging 

amplitude can be selected or the opposite. However, as shown by the experimental 

results obtained by Lai and Platzer [22] presented previously,   kh has to remain large 

enough for the case to maintain a thrust-producing reverse Karman vortex street.  

This study was completed by Platzer et al. [26], that made calculations with a 

Navier-Stokes solver at a Reynolds number of 20 000. Their observations were based 

on the behaviour of the thrust and efficiency as a function of the reduced frequency 

and amplitude of oscillations. The following two graphs compare Garrick’s linear 

theory to panel code results for both planar (Garrick’s wake) and deforming wake 

(allowing shed vorticity to evolve in time), as well as Navier-Stockes analyses 

performed by Lewin and Haj-Hariri [27] and Young [28].  

 

Figure 1.22 : Thrust coefficient and propulsive efficiency as a function of the 
reduced frequency 

We observe from Figure 1.22 that while the thrust increases with the reduced 

frequency k, the propulsive efficiency that is of equal interest is decreasing. On one 
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hand, as k increases more starting vortices are being shed and therefore the induced 

thrust force is more important. On the other hand, it also leads to shortening the 

wavelength of the wake vortices. Consequently, the vortices remain closer to the 

airfoil for a longer period. Due to this increased interaction, the efficiency drops. To 

conclude we may say that although the plunging motion of the airfoil at high 

frequency generates high thrust values, the power requirement increases much faster 

than the thrust. Considering the critical value of kh equal to 0.35, the question is to 

determine the best combination of frequency and amplitude. Platzer et al. argued that 

the best configuration is to operate at a high frequency and low amplitude in order to 

minimize the effect of the leading-edge vortex. Lewin and Hariri numerically 

examined the flow experienced by an elliptical plunging airfoil at a Reynolds number 

of 500.  In agreement, they found that by varying the reduced frequency k, the 

leading edge vortices have an important impact on both the thrust and efficiency of 

the airfoil. On Figure 1.23, we may observe how the LEV created during the 

upstroke and positioned underneath the airfoil is going to evolve during downstroke. 

As we can see, it advects downstream and interacts with the TEV that rotates in the 

opposite direction.  

 

Figure 1.23 : a) Vorticity field for k = 2 (downstroke) b) Vorticity k = 6.667 
(downstroke)  

Eventually, the LEV, its secondary vortex and the TEV form a single vortex. For a 

higher frequency, the LEV reaches the trailing edge just as the TEV is being created, 

such that the vortex deposited into the wake is much weaker. Whenever the LEV 

detaches and interacts with the TEV, the forces acting on the airfoil drop 

substantially. As the frequency increases further, the LEV remains near the leading 

edge during a substantial part of the stroke as seen on Figure 1.23 b). Its strength 

diminishes by dissipation due to its interaction with the airfoil. The LEV being 

dissipated instead of shed produces large increases in efficiency. These results are in 
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agreement with Gustafson and Leben that stated that the vorticity contained in the 

LEV is partly recaptured by the airfoil. It also appeared that the transition regions 

were characterized by asymmetric and aperiodic flows. In addition, they observed 

that for high values of k and kh, the simulations produced aperiodic results. The first 

one to observe these deflected vortex wakes was Bratt [29]. Jones et al. [19] 

commented on the nonsymmetric vortex shedding and compared the experimental 

results to those provided by the panel code. 

 

Figure 1.24 : a) Flow visualization b) Panel code prediction, kh = 1.5 

As we can see by comparing Figure 1.24 a) to b), the panel mode was able to predict 

this phenomenon which suggested that this kind of vortex shedding was due to 

inviscid effects.  

Young and Lai also investigated the effect of leading edge flow separation and 

showed that not only kh had to be considered as a controlling parameter but also k 

needs to be taken into account independently.  In 2007, Ashraf et al. [30] solved the 

flow field around a NACA 0012 airfoil by using an unsteady compressible Navier-

Stokes solver (CFD package Fluent). A much wider range of frequencies and 

amplitudes were considered, such that k = 0.5 to 24 and h = 0.0125 to 48. Their 

results confirm the observations of Young and Lai as we can observe on Figure 1.25.  

 

Figure 1.25 : a) Variation of CTmean with kh for h = 0.175 b) Variation of ηP with kh 
for h = 0.175 
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Indeed the values taken by &P TmeanCη  depend on both the reduced frequency and 

maximum non-dimensional plunging velocity. It was also confirmed that operating at 

high frequency and low plunging amplitude is more advantageous rather than the 

opposite. This avoids leading edge separation that results in a very low propulsive 

efficiency. 

1.4.2 Pitching airofoils 

According to Garrick’s [15] prediction of thrust generation based on Theodorsen’s 

method, for a purely pitching airfoil thrust is only generated above a certain reduced 

frequency k that depends on the pivot point location. For instance if the pitching axis 

is located at 1 4 c⋅ , then the critical value corresponds to: 3.25k = . Figure 1.26 a) 

illustrates the theoretical results he obtained:  

 

Figure 1.26 : a) Ratio of E/K as a function of 1/k [15] b) Experimental verification 
of Garrick's predictions [31]  

The ratio E K  represents the energy per unit time released in the wake to the work 

per unit time that is required to maintain the oscillations. For thrust to be generated, 

which corresponds to [ ]0 ;1E W ∈ , the reduced frequency k has to be very large 

(small 1 k ). For any values outside of this range, drag is produced. These results 

were then experimentally verified by Koochesfahani [31] as we may observe on 

Figure 1.26 b). Due to the lower level of thrust generated, not many studies have 

investigated the behaviour of pure pitching airfoils. There has not been much work 

done on the effect of the important parameters that govern this motion alone. 

Amongst them, the mean pitching angle, the Reynolds number and pitch axis 

location may be critical. Sarkar and Venkatraman [32] have investigated the 

influence of various flow and airfoil motion parameters on the behaviour of the wake 
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and thrust generated. They have investigated the effect of the reduced frequency k, 

the pitching amplitude 1α , the mean angle of attack mα  and the location of the 

pitching axis, on the mean thrust coefficient _T meanC . To solve the flow, the 

incompressible Navier-Stokes equations were used and the unsteadiness was 

simulated thanks to a discrete vortex technique. The Reynolds number was fixed to 

104, two pitch amplitudes were selected such that 1 2.5 5andα = ° °  and the mean 

angles of attack that were considered were: 0 , 5 ,10 ,15mα = ° ° ° ° . The frequency of 

oscillation ω  varied between 5 and 10 since smaller values do not produce any 

thrust.  

 

Figure 1.27 : Results collected by [32] a) Frequency variation b) α0 variation c) CT  
Vs. k 

The results are presented on Figure 1.27 from a) to c). The first two illustrate the 

mean velocity profiles which are indicative of the momentum excess or deficit on the 

airfoil thus indicating net drag or thrust. These plots show firstly that the thrust 

increases as the reduced frequency becomes higher and secondly that the opposite 

effect is obtained when the mean angle of attack increases since the thrust decreases, 

eventually for 15mα = ° drag was obtained. These results are confirmed on Figure 

1.27 c). The conditions to obtain a jet-like pitching airfoil have shown to be 

relatively constraining.    

While presenting the purely plunging airfoils, we mentioned that Katzmayr [10] had 

experimentally verified the Knoller and Betz effect. In reality he performed two 

different experiments.  The first one simulating pure plunging consisted in holding an 

airfoil stationary in an oscillatory flow, and the results were satisfactory. In the 

second one, the airfoil was pitching in a uniform flow and at the contrary it proved to 

be unsuccessful since no thrust was measured.  When it comes to an airfoil 

undergoing pure pitch oscillations it is essential to take into account the flutter 
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phenomena that are potentially disastrous. Let us consider an airfoil mounted on 

torsion spring in a two-dimensional flow, subject to this motion about its leading 

edge as shown on Figure 1.28 a).  

 

Figure 1.28 : a) Rigid airfoil in pure pitch b) Pressure distributions (pitching motion) 

As the airfoil is put into motion, starting vortices are being shed from the trailing 

edge and affect the pressure distribution plotted on Figure 1.28 b). The NACA 0012 

airfoil is a symmetric airfoil and therefore at zero angle of attack the upper and lower 

pressure distributions would coincide. However, when the airfoil is excited into a 

pitching oscillation, this motion and the starting vortices induce a lag effect on the 

pressure distributions such that the upper and lower distributions differ.   

In the case of a low reduced frequency (k = 0.04), the pressure exerted on the upper 

surface is less than on the lower surface. This is a direct consequence of the lag 

effect, and at low frequencies only vortices of same sign are inducing these 

pressures. Consequently, the motion is reinforced at each pitching cycle due to the 

induced moment that is in the direction of the motion. This case is referred to as a 

dynamically unstable ‘flutter’ motion. At the contrary, for higher frequencies, both 

the clockwise and counter clockwise vortices affect the pressure distributions, such 

that a positive damping moment is created.   

To conclude we may say that it is critical to accurately predict the vortex shedding 

taking place. The flutter phenomenon may induce disastrous consequences and has to 

be avoided. 

1.4.3 Combined pitching and plunging airfoil 

Birds, flying animals or insects do not solely use a pure plunging or pitching motion 

to fly but at the minimum combine pitching and plunging. In the case of many 

insects for instance, the movement is actually more complex since the wings flip 
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during the cycle. However we are limiting the scope of this study to simple forward 

flight. Indeed, all examples of flapping wing propulsion in nature combine both 

motions, although as we have just seen throughout the presentation of plunging 

airfoils, both are not required for producing thrust; however it enhances the 

propulsive performance. As a result of this combination we will see that the number 

of parameters controlling the movement increases. For instance, the phase angle 

between pitch and plunge motions is critical and so are their amplitudes. To better 

understand the interest that the flapping mode for oscillating airfoils represents, let us 

observe what physically occurs as far as the effective angle of attack is concerned. 

Indeed, it is a key parameter and indicates whether the airfoil is creating thrust or 

extracting power from the flow. 

The first systematic approach for analysing flapping-wing propulsion of airfoils 

combining pitching and plunging was achieved thanks to Garrick’s [15] linear 

approach. Indeed, the following equation was able to predict the thrust coefficient tC  

while taking the two degrees of freedom into account:   

( )2
t G t th tcC k C C Cαπ= + +  (1.13) 

The coefficients ,t th tcC C and Cα  represent the contributions of pitch, plunge and 

combined effects respectively, on the thrust. We will now present as we did for the 

pure plunging motion, the recent experimental and numerical studies of the flow over 

a 2D combined pitching and plunging motion.  

In 2001, Jones et al. [33] compared the thrust, power and efficiency computed by 

Garrick’s linear theory to theirs obtained with the panel code. These parameters are 

plotted on Figure 1.29 a) as a function of the phase angle ϕ  between the pitching and 

plunging motions. We note that the two horizontal lines represent the thrust 

coefficient and efficiency for an airfoil undergoing a pure plunging motion. As 

expected these performance parameters are highly dependent on the phase angle. For 

values approximately between 60 and 165 degrees, the efficiency tη  exceeds the 

corresponding value 
Pt

η  of a pure plunge motion.  
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Figure 1.29 : a) Numerical predictions as a function of ϕ  [33] b) Pη  as a function of 
k and ϕ [34] 

It is within this range that the advantages of a combined motion appear, resulting in 

enhanced performance of the airfoil. The highest value of tη  is achieved when pitch 

leads plunge by about 90 degrees. Indeed, Tuncer et al. [34] came to the same 

conclusion. They investigated the flow over the NACA 0012 airfoil at a Reynolds 

number of 105 for which the pitching amplitude was 1 10α = °  and the plunging 

amplitude was 1h =  . The aim of this study was to determine the optimum phase 

angle, for which the reduced frequency would vary in the range [ ]0.3 ;1k ∈ . The 

results showed that the peak in propulsive efficiency is independent of the frequency 

and always appears at ϕ  equal to 90 degrees. In any case, it is the pitching motion 

that has to lead the plunging motion. These results could be compared to those 

collected by Isogai et al. [35] that carried out their own computations under the same 

conditions. The propulsive efficiency is plotted as a function of the phase angle ϕ  

and the reduced frequency k for both sets of results on Figure 1.29 b). Again this 

result is confirmed since the optimum efficiency always occurs when the pitching 

leads the plunging by about 90 degrees.  

Young and Lai [28] also studied the combined motion of an oscillating airfoil. Their 

computational conditions were chosen identical to those of Anderson et al. [36] in 

order to compare the results to experimental data. The objective was to investigate 

the effects of Strouhal number on the thrust generation and propulsive efficiency of 

the NACA 0012 airfoil. Figure 1.30 shows the case where the plunge amplitude is 

equal to 0.75, the pitch amplitude is 15 degrees, the phase angle is 90 degrees and the 

Reynolds number is 40 000.  
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Figure 1.30 : Propulsive efficiency as a function of Strouhal number [28] 

The Navier-Stokes and experimental results both indicate a peak in propulsive 

efficiency for Strouhal numbers within the interval [ ]0.1 ; 0.2 . However, they also 

showed that the Strouhal number alone is insufficient to characterize the efficiency 

of flapping airfoils. Firstly, an optimal Strouhal number does not select an optimum 

frequency since both the frequency and plunging amplitude can vary to fix the 

Strouhal number.  

Most importantly, the leading-edge vortex shedding has a significant impact on the 

propulsive efficiency. To better understand the role of the unsteady aerodynamics on 

the selection of a preferred range of frequencies, Z. Jane Wang [37] focused on the 

frequency selection process in forward flapping flight.The optimal flapping was 

defined as being the one that produces the maximum thrust coefficient. The Reynolds 

number dependence was expected to be relatively weak, therefore the parameter was 

fixed to 1 000.  Two Strouhal numbers were defined:  

0 0a cSt fA u and St fc u= =  (1.14) 

Sta measures the ratio of the maximum flapping and forward velocities and Stc is the 

usual dimensionless flapping frequency. We will see that both parameters are 

necessary to select an optimal flapping frequency. Sta was shown experimentally to 

be a scaling variable, at first it was held constant while Stc varied. First of all, some 

general observations were made. The thrust and lift coefficients were computed for 

different Strouhal numbers. It was shown that for Stc equal to 4, the trailing-edge 
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vortex is too weak and a drag-producing wake is obtained. As Stc decreases, the 

trailing-edge vortex grows and we switch to a thrust-producing wake. Finally, as Stc 

further decreases the leading-edge vortices start shedding which reduces the thrust 

force since they have the opposite sign to the trailing edge-vortex. Figure 1.31 

illustrates the vorticity contours for the thrust-producing Strouhal numbers.  

 

Figure 1.31 : Contour plot of the wake vorticity for different k values [37] a) St=2.0, 
b) St=1.0, c) St=0.5.  

The intermediate value of Stc equal to 1 led to the optimal thrust and efficiency. To 

better understand these vortex dynamics, the vortices’ growth and the forces were 

observed. Firstly, the time-dependent lift coefficient was computed to illustrate the 

unsteady behaviour of the airfoil.  

 

Figure 1.32 : Vorticity contour plot and CL for α = 40° and Re = 1000 [37] 
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On Figure 1.32 we observe its evolution as well as the vorticity contour plot. The 

behaviour of Cl indicates three different regions. Region A corresponds to the 

diffusion of the boundary layer vorticity just after the impulsive start, region B 

represents the growth of the trailing edge vortex and formation of the attached 

leading edge vortex. In region C, the lift reaches a quasi-steady state while the 

vortices are convected downstream. At a much later time, the leading and trailing 

vortices interact which leads to the von Karman wake corresponding to the ups and 

downs of the lift force, illustrated top-right. The characteristic time τ is of major 

importance, and it clearly appears that the airfoil needs to flap slowly enough for the 

vortex to have sufficient time to grow. The importance of the leading-edge vortex 

was investigated by varying the angle of attack. It was shown that when the leading-

edge vortex remains attached it induces a lower pressure region which increases the 

lift. For instance, when α is taken as 4.5 and 72 degrees, both leading and trailing-

edge vortices are shed leading to less lift, unlike the case where α is equal to 42.5 

degrees and the leading-edge vortex is bound. Figure 1.33 illustrates the thrust 

window for different angles of attack.  

 

Figure 1.33 : a) Evolution of CD in time (Δα) [37] b) Evolution of Cx as a function 
of α [37] 

On Figure 1.33 a), it appears that thrust is only produced above a certain angle of 

attack, equal to 20 degrees in this case (negative values of CD are required). The 

thrust force generated is time-dependent and can be maximized across the stroke. 

Indeed, it only occurs within a certain time window, equal to [ ]0.2 ;1.5St ∈ . 

Physically, the lower bound corresponds to the necessary time required for the 

sufficient growth of the trailing-edge vortex. As for the upper bound, it is the time 
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scale from which the leading-edge vortex is no longer attached and starts to shed. 

Figure 1.33 b) shows the maximum angle at which the thrust starts to drop as a 

consequence of this shedding process. By collecting all this information, we deduce 

that the maximum angle of attack should be contained in the interval 45°-60° to 

obtain a high thrust as seen on part a) of the figure. This range is equivalent to 

selecting a Strouhal number contained in [ ]0.16 ; 0.27  which is in agreement with 

other studies. Secondly, the time taken by the stroke should be well contained in the 

thrust window. This second requirement imposes restrictions on the selected 

frequency. Coming back to the previous observations, we recall for instance that f 

equal to 2 Hz ( 4cSt = ) would produce drag instead of thrust. This can now be 

explained since this frequency would mean that St  is smaller than the lower bound 

characterizing the thrust window. Finally, the propulsive efficiency is dependent on 

both Sta and Stc as shown on the following Figure 1.34:  

 

Figure 1.34 : Thrust and efficiency as functions of Stc for various Sta values [37] 

Its behaviour is similar to the thrust since peaks are observed within a certain Stc 

interval. The dependency of these optimum Stc values with Sta is relatively weak. We 

may conclude by saying that the optimum flapping frequency Stc for a fixed Sta will 

be chosen according to the two time scales that govern the growth of the trailing-

edge vortex and the shedding of the leading-edge vortex.   

All these series of results were later confirmed by other studies. Guglielmini and 

Blondeaux [38] extended these investigation and studied the Low Reynolds number 

effects over a flapping NACA 0012 airfoil, by means of numerical solution of the 

vorticity equation. The calculations were undertaken for a Reynolds number of 1100. 
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The highest efficiencies were of about 0.45 for high pitching amplitudes between 30° 

and 40° and for kh within the range [ ]0.94 ;1.25  which corresponds to Strouhal 

numbers around [ ]0.3 ; 0.4  as we can see on Figure 1.35.  

 

Figure 1.35 : Propulsive efficiency as a function of St for several angles [38] 

As had been proved by Anderson et al. [36] the curves are characterized by a slow 

decrease once the maximum Strouhal number maxtS  is exceeded whereas the Pη  

drops quickly for smaller values. The flow visualizations confirmed that high 

efficiencies and significant thrust values are accompanied by the generation of 

moderately strong leading edge vortices, which then amalgamate with the trailing 

edge vortices. Consequently, the vortex structures result in a reverse Karman street. 

Again it was shown that the phase angle is critical since it determines the timing of 

the formation and shedding of the leading edge with the trailing edge vortices of 

same sign, shed at the trailing edge. They found that the maximum propulsive 

efficiency is obtained at a phase angle of 80 degrees. An investigation of the effect of 

different flapping parameters was undertaken. The pitching axis was varied from -0.5 

to 2 chord lengths and the location maximizing the efficiency was found to be 1/3 

chord lengths from the leading edge. Finally, the Reynolds number was increased up 

to 3300 and a 20% increase in efficiency was obtained compared to the previous Re 

of 1100.    

For the same Reynolds number of 1100, Ramamurti and Sandberg [39] computed the 

flow around the NACA 0012 airfoil using an incompressible Navier-Stokes solver. 

The pitching axis was fixed to ¼ of the chord length. Their results indicated that kh 

was more of a critical parameter than k. The phase angle was varied from 30 to 140 
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degrees and the optimum values to maximize the propulsive efficiency and thrust 

were found to be 90 and 120 degrees respectfully.    

Young and Lai [40] investigated the flow past the NACA 0012 airfoil in flapping 

motion for Reynolds numbers in between 20 000 and 40 000. Navier-Stockes 

computations were presented and the main focus was brought on the mechanisms 

that influence the efficiency of these oscillating airfoils. Indeed, it has been shown up 

to now that optimum propulsive efficiencies exist within the range 0.2 0.4St< < . 

Therefore, in this study the effects of flow separation were investigated, by 

restricting the case to large-amplitude pitching and plunging motions. The evolution 

of the propulsive efficiency as a function of the Strouhal number was once again 

found to be identical to previous studies and we may refer to Figure 1.35 for 

instance. Young and Lai stated that for lower St values, the drop in efficiency is 

partly caused by the increasingly large viscous drag. As for the peak in propulsive 

efficiency, its magnitude and Strouhal number at which it occurs are influenced by 

many mechanisms. As we know already, the leading-edge separation will reduce the 

efficiency at higher Strouhal numbers, but it may have the same effect at lower 

Strouhal number, depending on the motion. As for the flow separation, it depends on 

the reduced frequency that limits the time available for vortex formation and 

convection of the vortex. For the peak itself, its magnitude, width and location 

depend on the type of motion considered. It may emerge at any location within the 

range [0.1; 0.4]. We may conclude by saying that the Strouhal number alone has 

proved to be insufficient when it comes to characterizing the aerodynamics of 

flapping airfoils, especially when leading or trailing edge separations are present.    

Read et al. [41] performed experiments on the NACA 0012 airfoil to determine the 

propulsive efficiency that produces high thrust values. The variation of the principal 

parameters was undertaken such as the plunge amplitude, Strouhal number, angle of 

attack and phase angle. At first the plunge amplitude was fixed to 0.75 and the phase 

angle to 90 degrees. A study of the effect of the pitch amplitude and kh parameter 

was made and it was shown that the highest efficiency, equal to 0.715, is obtained 

for 1 15 0.502and khα = ° = . However the resulting thrust coefficient was found to be 

very small 0.18TC = .  Therefore, they then tried to obtain high thrust with 
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reasonable efficiency values. Very high values up to 2.43TC =  were obtained with 

an efficiency of 0.49 for the following conditions: 11.88 , 35 100 .kh andα ϕ= = ° = °  

A better compromise between propulsive efficiency and thrust values was obtained 

for 11.25 , 20 90 .kh andα ϕ= = ° = °  Finally one of the objectives of this study was to 

asses the capabilities of the airfoil to produce lateral forces for manoeuvring 

purposes. Side force coefficients of 5.5 were measured, which would allow the airfoil 

to have very satisfactory manoeuvring capabilities.   

To systematically search for the optimum conditions, Tuncer and Kaya [42] coupled 

the Navier-Stokes solver to a numerical optimization algorithm. The optimization 

procedure was based on the steepest decent method. The objective function was 

defined as the thrust and/or propulsive efficiency of a pitching and flapping airfoil, 

such that the resulting solutions are maximized values of this function. The 

optimization parameters were chosen to be the amplitudes of the pitching and 

plunging sinusoidal motions, as well as the phase angle between them. Parallel 

processors were used to solve the problem. Figure 1.36 part a) tabulates the 

optimization cases and starting conditions and part b) the results.     

 

Figure 1.36 : a) Optimization cases and starting conditions [42] b) Optimization 
results [42] 

We note that β controls the performance criteria considered by the objective function. 

For 1β =  it is set to a maximized propulsive efficiency, 0β =  to a maximized thrust 

coefficient and for 0.5β =  both are to be maximized at the same time which means 

a compromise is to be made. By observing the instantaneous particle traces, the 

results could be related to the physics of the flow. The thrust could be maximized for 

large plunging amplitudes that lead to the formation and shedding of large leading 

edge vortices. At the contrary, the propulsive efficiency is increased by reducing the 
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plunging amplitude and the effective angle of attack. This avoids the formation of 

leading edge vortices which correlates the previously established observations.  

The results that were obtained throughout this literature survey of plunging, pitching 

and flapping airfoils are all summarized in the tables that can be found in Appendix 

A.  

1.4.4 Three-dimensional flow effects 

The extension to three-dimensions is accompanied by several additional flow 

features that are neglected in two-dimensional flows. The simplification is easily 

made numerically by only considering an airfoil section in the (x-y) plane. This is 

also possible experimentally by placing endplates at the extremities of the wing 

which will eliminate any wing tip effects as if the wing was of infinite span.  We 

should however mention that totally suppressing the corner flow effects created by 

the endplates is impossible but three-dimensional approximations can be achieved by 

averaging several spanwise measurements. 

The main effect of a three-dimensional finite wing is the formation of vortices at the 

tips of the wing. These are unavoidable because of the difference in pressure that 

exists between the upper and lower surface. Due to the fact that pressure is a 

continuous function these must equalize at the wing tips.  

 

Figure 1.37 : a) Equalizing of pressure at the wing tips b) Tip vortices in three-
dimensions          

This is made possible by the movements of air particles around the tips, from the 

region of high pressure to the region of low pressure corresponding to the lower and 

upper surfaces of the wing respectively in the case of positive lift. The air movement 

is shown on Figure 1.37 a). Combined to the incoming free-stream flow, an inclined 

inward flow movement is created on the upper surface and an inclined outward one 

on the lower surface. The spanwise effects dominate at the tips and slowly damp out 
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as we get closer to the mid-span plane where tip vortices have little effect and the 

flow characteristics are close to two-dimensional. The inclination of the flow results 

in the formation of helical air movements illustrated on Figure 1.37 b) and known as 

vortices that form around the quarter-chord of the wing and gain strength along the 

chord. In three-dimension, these combine into two cylindrical vortices referred to as 

‘tip vortices’, rolling towards each other in the wake of the wing and eventually 

dissipating further away. The spanwise lift distribution is of course affected by the 

pressure differences in the third dimension and a loss in lift may be observed at the 

wing tips. The tip vortices introduce downwash in the wake within the wingspan, due 

to the inward movement of the vortices. At the contrary, upwash is observed outside 

of the vortex system as the air moves upwards. These effects are represented on 

Figure 1.38.  

 

Figure 1.38 : Tip vortex system in the wake of an aircraft 

This last remark does not apply to MAVs but for conventional scale aircrafts, the 

disturbances caused by the tip vortex system in the wake of the plane needs to be 

taken very seriously. Indeed, if another plane flies through it, it can experience strong 

downwash forces and have a large tendency to roll over. Between takeoff and 

landings, appropriate distances are to be respected as tip vortices can extend up to 

eight kilometres and still have a strong effect.  

There has been significant work done in order to expand the results valid for two-

dimensional unsteady aerodynamics into the third dimension. At first, they were 

limited to High-Reynolds number flows. Back then, the existing methods fell into 

three different categories: first of all, blade-element-type computations, for which the 

model is represented by a number of two-dimensional entities, secondly lifting-line 

computations for which the model is represented by filaments of vorticity bound 
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along the span and finally panel codes, where the model is represented by panels 

along which singularities are distributed. 

More recently, the Euler and Navier-Stokes approaches became available and are 

now able to solve the three-dimensional flow features that are generated by finite-

span flapping wings. The full study of the problem in all three dimensions can 

provide us with a more realistic understanding of the flow physics that occur in the 

thrust generation of flapping wings. Indeed, the finite–span effects cannot be 

omitted. We will now present the results that have been obtained in previous works 

in order to highlight the structure of the flow.   

Neef and Hummel [43] investigated the three-dimensional flow past a NACA 0012 

airfoil with an aspect ratio of 8, using Euler solutions. They chose to flap the wing 

about its root section with a pitching axis positioned at the leading edge. The only 

difference with the two-dimensional case as far as the pitching and plunging motions 

are concerned is that their amplitudes are now dependent on not only time but also 

the lateral coordinate y. The leading edge in the y direction is represented by a 

straight line, the angle with respect to the (x-y) plane is defined as the flapping angle:  

( ) ( )1 cos 2t ftψ ψ π=  (1.15)

The twisting angle is increasing along the span and therefore depends on both time 

and y. As for the pitching and plunging motions, an angle difference may be defined 

between the flapping and twisting angles which can vary along the span. In this case 

the angle Φ  was fixed to 90 degrees such that the flapping angle is given by:  

( ) ( ) ( ) ( )1 1 1,
**, * cos 2 , : * 90tip

yy t y ft where y and
b

α α π α α= +Φ = Φ = °  (1.16)

The aim was to reproduce the flight conditions of large birds, therefore the 

parameters were fixed accordingly: 1 15 0.1and kψ = ° = . Also we should mention 

that these conditions insure that the flow remains attached throughout the flapping 

cycle. The mean angle of attack 0α  and twist amplitude 1,tipα varied linearly in the y 

direction. Figure 1.39 a) represents the wing geometry while b) gives us a few 

pressure distributions along the span.  
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Figure 1.39 : a) Wing geometry and parameters [43] b) Pressure distributions along 
the span [43] 

Considering that the effective angle of attack increases along the span, higher 

differences in Cp values are found as we get closer to the wing tip. In general the 

values of propulsive efficiency are lower in the three-dimensional case. Indeed, the 

two-dimensional method of calculation overestimates efficiency, because it takes 

into account only the energy of cross-stream wake vorticity (parallel to the direction 

of motion). In reality, due to the effective angle of attacks, instantaneous tip vortices 

are formed behind the wingtip. These vortices lead to a loss in energy which 

decreases the efficiency.  

 

Figure 1.40 : a) Effect of twisting on CT [43] b) Effect of twisting on ηP [43] 
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As the effective angle increases, additional lift is generated leading to a large induced 

drag and associated tip vortex that further decreases the efficiency and thrust output. 

This can be observed on Figure 1.40 a) and b) that represent the thrust coefficient 

and efficiency respectively.  It was shown that by choosing the appropriate kinematic 

parameters, thrust generation is nevertheless possible. Also, by selecting low-

frequencies it is possible to considerably reduce the interference between the starting 

and stopping vortices and the unsteady vortex system caused by the finite span.  

Hall and Hall [44] under similar conditions used a vortex lattice method combined 

with a variational method computing the minimum power circulation distribution 

along the span. They showed that the configuration minimizing the energy losses 

caused by the vortex system is optimized when the flapping frequency is such that 

the wing flaps slightly less than once per wingspan forward. This corresponds to 

Strouhal numbers within the range [ ]0.2 ; 0.4 . The flow structure behind a heaving 

and pitching finite span-wing was observed by Von Ellenrieder [45] using dye flow 

visualisation technique. These experiments highlighted the presence of vortex rings 

that are being shed. Blondeaux et al. [46] undertook Navier-Stokes computations for 

comparison to these experiments and confirmed these observations. Figure 1.41 a) 

and b) illustrate plan and side views respectfully, computed for one of the 

isosurfaces.  

 

Figure 1.41 : a) Plan view of 3D flapping airfoil [46] b) Effect of twisting on ηP [46] 

As we can see on part a), the three-dimensional wing generates a series of vortex 

rings of alternating sign. Figure 1.42 represents schematically this particularity of the 

flow structure.    
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Figure 1.42 : Shed vorticity behind a three-dimensional flapping wing 

By observing these shed vortices from a mid-span view, the figure indicates that the 

pattern corresponds to a reverse Karman vortex sheet.  
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2. METHODOLOGY APPLIED TO THE COMPUTATIONAL ANALYSIS 

The objective of this study consists in solving computationally the flow around a 

given geometry consisting in a flat-plate. The model was chosen in common with 

other studies which will perform an experimental investigation of the flow. Indeed as 

we have previously pointed out, it is not simple to correctly model the flow at such 

low Reynolds numbers. Thus it can be very valuable to compare the two sets of 

results. In future studies, the aim will be to make use of the 2D or 3D experimental 

data in order to validate the numerical simulations. 

They are several steps that need to be fulfilled to properly perform a CFD Analysis. 

First of all, an appropriate mesh must be generated around the geometry such that the 

flow features can accurately be resolved. We may add that reducing the 

computational effort required to solve the flow, especially in our case which is three-

dimensional, is fundamental. While presenting the geometry of the model, we will 

see that it is possible to considerably reduce the size of the problem by applying the 

appropriate assumptions. The technique employed to create the mesh will be 

presented in detail and we will give the important parameters characterizing it. 

Following this, we will present a brief introduction on Computational Fluid 

Dynamics focusing on the method we will be using, namely the Finite Volume 

Method. From the basic principles of conservation, we will develop the mathematical 

basis leading to the governing equations of fluid flow. Although the low Reynolds 

number flows under consideration are mainly laminar, it will be shown that these low 

Reynolds number effects are better represented by including turbulence modeling. 

Indeed, we will be solving flows in which transition takes place across laminar 

separation bubbles. Thus the numerical approach must include transition prediction 

and allow other flow features to be correctly predicted by our computational set-up. 

In addition to the appropriate turbulence model for these particular flow effects, we 

will explain what the various possibilities are as far as the wall treatment is 

concerned and what led us to choose the near-wall approach. Finally, we will 

conclude on the methodological aspect of the project by going through the setting up 

procedure of the simulation. Our CFD problem will be defined in terms of initial and 
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boundary conditions. The implementation of the boundary conditions will be 

described such that the flow physics combined to the simplifying assumptions are 

incorporated into the model. The parameters that were used to define the unsteady 

simulation in the CFD code FLUENT will be summarized. Finally, the flapping 

motion was applied to the model by making use of a user-defined function. The 

procedure used to prescribe the unsteady motion will be explained. This chapter will 

give us the general methodology that is to be respected in order to prepare the CFD 

simulation suitable to our problem. To solve the flow for a particular case, all these 

steps must be carried out, applied to the specific flow conditions and motion 

parameters.    

2.1 Generation of the Mesh 

2.1.1 Definition of the model 

The geometry that was tested consists of a flat plate of 117 mm chord. Its thickness is 

of 2.7 mm and all edges are rounded with a radius of 1.350 mm. The technical 

drawing of the geometry that will be used in the experiments is the following:  

 

Figure 2.1 : Technical drawing of the flat-plate geometry 

As can be seen on the drawing of Figure 2.1, the experimental model presented a 

cylindrical part along the center line of the flat plate useful solely for its positioning. 

Therefore it is not relevant to us and has not been represented in the numerical 

model. We may add that on the above drawing, the span of the model is not precisely 
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given, instead two possible widths are specified, 117 and 234 mms. We have chosen 

to simulate the flow around both models in order to investigate the effect that the 

aspect ratio has on the results. For the parameter variations however, these are 

performed based on the 2:1 width scale model that is for an aspect ratio equal to 2.   

In addition, we consider the geometrical attributes of the model in order to eventually 

simplify the problem to be solved. Indeed, the flat plate is symmetric. As we consider 

it positioned such that the main direction of the incoming flow is along the x-axis, it 

appears sufficient to represent only half of the flat plate. This operation consists in 

cutting the plate along one of its central axis (x-axis for instance). This implies 

necessarily that the main stream flow is to be specified along this same axis. The 

plane used to divide the plate into two identical parts will need to be defined as a 

symmetric plane in order to counter for this simplification. We will later mention 

about the boundary conditions in further detail once the mesh generation approach 

has been presented.  

2.1.2 Presentation of Gridgen 

For the generation of the mesh surrounding the flat plate, we decided to use the 

software Gridgen. Since 1984, Gridgen has been used to create three dimensional 

grids for complex geometries in a production environment. The software origins are 

in the demanding US aerospace industry where it has a great reputation. It is known 

for creating high quality grids which is vital for reliable simulations. Due to the 

enhanced quality of the mesh, it leads to more accurate solutions and faster 

convergence. Now days, the software is used worldwide in aerospace, automotive, 

power generation, chemical process and many other industries for which CFD is an 

integral part of the design process. Gridgen is not limited to any type of geometry, 

and the resulting mesh can be exported to any type of analysis software to carry out 

computational fluid dynamics or finite element analyzes for example. We will start 

by describing the framework that allows any modification to spread throughout the 

various levels that define the mesh. Indeed, as we construct it we will always be 

working on a certain level of the data hierarchy of Gridgen, corresponding to one of 

the four types of data.  

The foundation of the data hierarchy is the database. It corresponds to the geometry 

data that defines the shape of the model around or on which the grid is to be 
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generated. Typically, the database, consisting of points, curves surfaces …etc, is 

created thanks to a computer aided design software and then imported to Gridgen. In 

our problem, the flat plate’s geometry does not rely on a database as it is created by 

various operations such as translations, revolutions …etc, that we will later describe.  

The other three grid entities of Gridgen’s hierarchy are connectors, domains and 

blocks. These elements are listed in their hierarchical order. Indeed, connectors are at 

the first level, and correspond to curves along which the grid points are distributed. 

For these to be completely defined, the shape of the segments composing the curve 

and the number of grid points must be defined. In addition, the point distribution 

needs to be specified, for instance we might decide to have a uniform distribution of 

points or to apply a certain distribution depending on the connector.  

Gridgen’s mid-level grid elements are domains that represent surface grids. Any type 

of domain is based on connectors which is why these cannot be created before 

completely defining its connectors. These can either be structured or unstructured 

depending on whether quadrilateral or triangular cells are more advantageous. A 

structured domain is delimited by four edges, each of them composed of one or more 

connectors. The points are projected to the opposite edge so the two sets of edges 

must necessarily have the same number of points i and j, the minimum and maximum 

values. Therefore the domain is an array of IxJ elements. On the other hand, the 

perimeter of an unstructured domain is defined by an outside edge and possibly an 

interior edge if it contains holes.  

Finally, at the top of the hierarchy are blocks that are based on the previous level of 

Gridgen, consisting of domains. These represent volume grids in our case since we 

are constructing a three-dimensional grid. Once again, these may either be structured 

or unstructured. In the case where it is structured, the block will be composed of 

IxJxK number of hexahedral elements. As for an unstructured block, it consists of 

tetrahedral cells or a combination of tetrahedral cells and pyramids. As soon as this 

highest level of Gridgen’s hierarchy of grid elements is fulfilled, the boundary 

conditions can be specified. While setting them, the groups of domains to which the 

same type of boundary conditions will be applied should be created. The domains 

within a certain group are selected and a specific boundary condition can be chosen 

such as ‘velocity inlet’ or ‘wall’ if we have selected all the domains composing the 

geometry’s surface. It is actually not mandatory at this stage to decide on the type of 



 55

boundary condition since this can be done once the grid is exported to the analysis 

software, however we should at least regroup the domains and create a custom 

boundary condition. The last step is to export the grid to the appropriate analysis 

software which in our case is the 3D version of Fluent.  

2.1.3 Grid generation technique 

The mesh surrounding the flat plate has been generated with the software Gridgen 

that we have just briefly introduced. To obtain the final three-dimensional model and 

the mesh surrounding it, successive operations had to be undertaken. As mentioned 

in the previous paragraph, instead of importing the model and from there generating 

the mesh, we have created the geometry and the grid simultaneously. We will now 

present the procedure step by step, as well as the important mesh parameters such as 

the dimensions of the computational domain, the height of the first mesh from the 

plate’s surface, etc… At this stage of the project two meshes were generated for an 

aspect ratio of 1 and referred to as ‘flat_plate.gg’ and ‘flat_plate_finer.gg’ and 

corresponding to the coarser and finer grid respectively. These will be used to 

perform the grid dependence study that consists in determining how sensitive the 

results are to the grid. Whenever a certain parameter differs between the two, both 

values will be specified. We should highlight however that the grid generation 

technique is identical in both cases, only certain parameters are modified to make the 

grid ‘flat_plate_finer.gg’ finer than ‘flat_plate_finer.gg’. We will now describe one 

after the other the various steps that led us to the final mesh.  

Let us first of all present the three necessary steps. The objective in the first step was 

to generate the 2D domain later used to create the rounded-edge that defines the tip 

of the flat-plate. Indeed, we may obtain such a geometry by rotating a half section of 

the flat-plate. The following figures created in Catia give us an idea of the revolution 

operation that is carried out in the second step. These have been included to illustrate 

the 2D half section of the flat-plate on Figure 2.2, and the 3D geometry that is 

obtained as a result of the operation, on Figure 2.3, as these could be hardly 

distinguished in the real Gridgen mesh.    
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Figure 2.2 :  Half section of the flat-plate model 

    

Figure 2.3 :  a) Flat-plate tip after rotation of the 2D section b) Inside view of the 
rounded edge 

In the final step, the top and bottom surfaces of the flat-plate in the span-wise 

direction were created. This could be done by translating the flat surface of the 

rounded edge shown on Figure 2.3 b) by a distance equal to half of the full span. As 

we can see, the edges that define the domain have been highlighted in orange. By 

applying these three steps successively, the full geometry of the numerical model, 

from the tip to the symmetry plan, was defined as shown on Figure 2.4. Once again 

this is only an illustration of what we obtain in Gridgen.  

 

Figure 2.4 : Final geometry after applying the translational operation (AR = 1) 

Now that the method applied to obtain the final geometry has been explained, we 

will focus on the mesh that was generated. However we should always bear in mind 

that these were achieved simultaneously.  
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2.1.3.1 Extrusion from the 2D section 

In this first step, the half 2D flat-plate section was obtained but only at the very end. 

Indeed, we now have to concentrate on obtaining a good quality grid and this 

especially holds for the region surrounding the flat-plate surface since it will present 

the strongest flow gradients. As we have seen in the first part of this report, we 

expect the unsteady flow to develop a reversed von Karman Vortex street in the 

wake of the flat-plate due to the shedding of leading and trailing edge vortices. 

Therefore, the grid close to the surface and in the wake must be defined with great 

attention; otherwise these flow features will not be accurately predicted. To insure 

that these are captured correctly, the grid elements must remain small enough. Of 

course, considering the geometry it is evidently better to create a structured domain 

in the close surrounding of the flat-plate and needless to say that the quadrilateral 

cells should remain as square as possible by limiting their skewness. The best way to 

achieve these objectives appeared to be by making use of the extrusion tool of 

Gridgen. The structured domain was therefore generated by extrusion from an edge, 

corresponding to the edge of the complete flat-plate section, as shown on Figure 2.5 

below.     

 

Figure 2.5 : Extrusion from the edge of the flat-plate section 

At this point, the extrusion parameters had to be specified. These are critical values 

since the viscous effects related to the boundary layer must be correctly resolved. To 

do so, the first mesh must be at an appropriate distance from the surface. This 

depends on the wall treatment and can be calculated accordingly. This aspect of the 

mesh will be thoroughly discussed in a later section that focuses on the wall 

approach. Here we will only specify the values assigned to the first height. The 

second important parameter to enter is the growth rate applied from one mesh to the 

other. Figure 2.6 illustrates the extrusion process and the importance that should be 

given to the growth rate:   
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Figure 2.6 : Extrusion operation and growth rate 

This parameter must be fixed depending on how stretched we allow the elements to 

be. Close to the surface these must remain very small, but since the first height is so 

small we should allow the cells to stretch rapidly for the first few iterations, the 

growth rate is therefore fixed to about 1,1. As soon as these have attained the 

maximum size that we would allow in the region very close to the surface, they 

should not increase any further and a growth rate close to 1 is applied. Naturally, as 

we get sufficiently far from the model, the growth rate slowly increases since the 

elements can slowly get larger without affecting the results. We will later summarize 

these numbers for both meshes. We recall that only half of the flat-plate section is 

useful, so once the extrusion processes is completed, we delete half of the domain as 

it is symmetric. After extrusion, the resulting mesh around the half geometry is 

represented on Figure 2.7.  

 

Figure 2.7 : Mesh surrounding the half flat-plate resulting from the extrusion process 
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In the next two figures we have zoomed in that region, first Figure 2.8 part a) shows 

us the mesh around the complete 2D section of the flat-plate and part b) focuses on 

the leading edge. We observe that the quadrilateral elements are of good quality as 

they are not at all skewed, and leave the flat-plate surface orthogonally which is 

crucial. In addition, we may comment on the point distribution that was applied 

along the flat-plate connectors. The number of points had to be limited as much as 

possible since it spreads across the entire domain first in 2D and then in 3D once 

steps 2 and 3 are carried out. As a result, these numbers can make a huge difference 

on the total number of nodes of the final grid. For these reasons only 65 points were 

created on the upper and lower connectors and 22 along the leading edge. However, 

at the trailing edge we had to bear in mind that the number of points should be high 

enough to have a sufficient concentration in the wake of the plate since these spread 

to downstream of the model. Consequently, we defined 33 points along the trailing 

edge. The points were distributed in such a way that their number would increase as 

we get closer to the leading and trailing edge since those regions are where the higher 

flow gradients will appear.      

 

Figure 2.8 : a) Mesh surrounding the flat-plate model b) Mesh around the LE 

At this stage, the size of the computational domain was decided as the other domains 

defining the 2D grid around the half flat-plate section are based on those outside 

connectors. We know that the free-stream conditions are theoretically at an infinite 

distance from the airfoil. Evidently, while the geometrical characteristics of the CFD 

domain are to be defined, the outer boundaries have to be fixed at a finite distance 

from the profile. When CFD calculations are undertaken, the dimensions of the CFD 

domain are of major importance. We will be imposing boundary conditions on those 

edges, corresponding to the free-stream conditions. Consequently, if they are not 
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carefully defined, it will affect the results irreversibly. We could be positioning them 

very far from the model in order to approach real conditions but at a great cost. The 

computational effort would be unnecessarily high since time and memory would be 

wasted.  A distance too large is not desired but on the other hand if it is too small we 

will be introducing errors into the solution. This leads us to choose reasonable 

dimensions for the CFD domain, for which we know the error is acceptable. As we 

know, the presence of the flapping plate will particularly affect the flow in its wake. 

Considering these features, the distance between the plate and the downstream 

boundary should be large enough. We have positionned it 13 chord lengths away 

from the model, at a distance of 1521 mm. As for the upstream boundary, it does not 

need to be so far, it was defined at 5 chords lenghts that is 819 mm away.  Our 

references indicated that the following distances are sufficiently far not to affect the 

results. Figure 2.9 corresponds to the 2D mesh that was obtained at the end of step 1. 

This is the grid that is used directly in step 2 and rotated around the x-axis.  

 

Figure 2.9 : 2D mesh obtained at the end of step 1 

We may make a few comments on the reasons that brought us to create several 

domains the way we did on the above picture. The half circular domain at the center 

results from the extrusion process. This fine region was limited to less than 1 chord 

length in radius since we are trying to limit the number of nodes as much as possible. 

However, the mesh must remain fine especially in the wake of the flat-plate. To do 

so, we created a second circular structured domain. This was done since we could 

control the point distribution along the outside connector. Thus, the appropriate 

starting intervals were set and as we get closer to the trailing edge, an increasing 

density of points could be defined. The rectangular band downstream of the flat-plate 
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was needed so that enough points would be conserved all across the wake. The 

rectangular domain upstream on the other hand was created for a different reason. 

Indeed, while applying the rotation in step 2, the domains in contact with the 

rotational axis (x axis), need to be structured. The rest of the front part of the 2D 

mesh was completed by a structured domain also since the number of points in that 

region was low. At the contrary, it appeared that filling the space downstream with a 

structured domain would be too costly. This is due to the important number of nodes 

that had to be created in the downstream direction so that enough nodes are present 

in the wake. Necessarily these would have to be projected to all the radial connectors 

including those in the front part of the grid of course. This can be avoided by creating 

an unstructured domain instead which decreases significantly the final number of 

nodes. Finally, the link between the domains and particularly those in contact with 

the circular ones could be very much improved by applying Gridgen’s elliptic solver. 

As we can see on Figure 2.10 a), as it is now some of the elements at the domain 

boundaries are very distorted.  

 

Figure 2.10 : a) Mesh before applying the elliptic solver b) Mesh after applying the 
elliptic solver   

To improve the grid quality in those regions we may apply various grid methods 

available to structured domains. One of them and the easiest to use is the elliptic 

PDE method that is based on an iterative solution of the elliptic partial differential 

Poisson equation. As we can see on Figure 2.10 b), after applying it for about 40 

iterations to the two circular structured domains, the smoothness, clustering and 

orthogonality of the grid has been greatly improved.  Step 1 of the grid generation 

methodology is now complete and we may go on to step 2.  
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2.1.3.2 Creation of the flat-plate tip by revolution 

In this second step, the final grid obtained previously and represented on Figure 2.9 

was used. Up to now we have only completed the second hierarchical level of 

Gridgen by creating the domains. The analysis software, that is Fluent 3D, has been 

selected already, therefore to create blocks we must generate volume elements. We 

recall that a revolution of this 2D mesh is necessary to create the round edge that 

constitutes the tip of the flat-plate. It is by carrying out this operation represented on 

Figure 2.11 that the first block is created.  

 

Figure 2.11 : Rotation of the 2D mesh surrounding the half flat-plate section 

The extrusion tool of Gridgen’s highest hierarchical level is chosen and all the 

domains contained in the 2D mesh are selected.  

 

Figure 2.12 : a) Total rotational angle of 180 degrees b) Block resulting from the 
revolution operation            
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At this point all the extrusion attributes need to be specified. First of all the type of 

extrusion was chosen to be a rotation. The rotation axis is the x-axis and the total 

rotation angle is equal to 180 degrees. An important parameter is now fixed, that is 

the number of iterations performed to reach the total angle. This number is 

particularly important since our objective is to accurately capture the tip vortices 

forming in the region surrounding the rounded edge of the flat-plate. We should add 

that it naturally affects the total number of nodes, and different numbers were chosen 

for the ‘flat_plate_finer.gg’ and ‘flat_plate_finer.gg’ meshes. It was fixed to 16 and 

20 respectively. On Figure 2.12 a) and b) we observe first of all the extrusion process 

achieved by rotation of the 2D mesh for 180 degrees and secondly the block that was 

obtained by revolution.  

2.1.3.3 Flat-plate surface by translation 

The rectangular top and bottom surfaces of the flat-plate are created in this last step 

that leads to the final grid used for the computations. It is once again thanks to the 

extrusion tool that we create this second block. However, the extrusion is carried out 

by translation this time, and the selected domains are all those contained in the x-y 

plane of the mesh obtained at the end of step 2. These are highlighted on Figure 2.13 

taken as we were carrying out the translation operation. The translational direction is 

also indicated corresponding to the z-axis.   

 

Figure 2.13 : a) Selected domains to be translated b) Sub-connector used during the 
translation operation 

As the extrusion attributes, the total distance must be specified which corresponds to 

half of the span. As it was the case for the revolution, the number of iterations 

determines the translation interval applied until this distance is reached. However, we 

have used a different approach since the points must be concentrated towards the tip 

of the flat-plate in order to capture the tip effects. In the advance settings, it is 
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possible to define a sub-connector along which the translation is carried out. We 

have therefore chosen the connector that goes from the tip plane to the symmetry 

plane separated by a half-span distance. It is orientated in the z direction and goes 

along the leading edge with (x,y) equal to (0,0). The advantage of defining a sub-

connector is that the translational interval does not have to remain uniform. By 

selecting it while defining the advance attributes, the extrusion follows its point 

distribution. The number of points and the starting interval had to be decided while 

creating the connector. Depending on the grid, different numbers were entered, equal 

to 25 and 35 for the number of nodes and the intervals were fixed to 0,3 and 0,15 mm 

for the coarse and fine grid respectively. As a result, the geometry is finally 

completed as shown on Figure 2.14.   

 

Figure 2.14 : Projection of the 2D flat-plate section along the sub-connector 

The final grid is obtained, Figure 2.15 was taken for the grid ‘flat_plate.gg’ but for 

such a global view of the mesh there is no noticeable difference with the finer one.    

 

Figure 2.15 : View of the final grid 
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The characteristics that distinguish the two grids are summarized in Table 2.1 below. 

For each step, the important parameters are mentioned. The coarse mesh and finer 

mesh refers to ‘flat_plate.gg’ and ‘flat_plate_finer.gg’ respectively.  

Table 2.1: Characteristic parameters of the coarse and fine grids 

  COARSE Mesh FINER Mesh 

step 1: 2D EXTRUSION First height 0,1 mm 0,05 mm 

  Growth rate - Nº of iterations 1,1  -  20 1,1  /  30 

    1,01  -  40 1,01  /  50 

    1,025  -  25 1,025 / 12 

    1,05  -  12 1,05 / 14 

step 2: REVOLUTION Type of distribution uniform uniform 

  N. of iterations 16 22 

step 3: TRANSLATION Type of distribution sub-connector 
sub-
connector 

  Sub-connector: Nº of points 25 35 

  Sub-connector: starting interval Δs 0.3 mm 0.15 mm 

NUMBER OF CELLS   836 224 1 247 310 

NUMBER OF NODES   837 180 1 244 390 

2.2 Finite Volume Method 

2.2.1 Introduction to Computational Fluid Dynamics 

The use of computational fluid dynamics to solve internal and external flows has 

dramatically increased in the last decade. About twenty years ago, solving fluid flow 

problems numerically was mainly conducted in research environments but following 

the wide spread availability of computers combined to the increasing efficiency of 

solution algorithms, commercial CFD codes have been developed and are now 

widely used in research, design and development in industry. Computer-based 

simulations are nowadays used for the analysis of all kinds of systems that involve 

fluid flow, heat transfer and associated phenomena such as chemical reactions. We 

may give a few examples:  

• marine engineering: loads on off-shore structures 

• environmental engineering: distribution of pollutants 
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• external/internal environment of buildings: wind loading, heating and 

ventilation 

• meteorology: weather prediction 

• turbomachinery: flows inside compressors, diffusers etc. 

• hydrodynamics of ships 

• aerodynamic of air and ground vehicles: lift and drag forces 

• biomedical engineering: blood flows though arteries and veins  

• design of internal combustion engines 

As we can see from the list above, the technique is very powerful and spreads across 

a wide range of application areas. CFD is progressively becoming a vital component 

in the design of products and processes. Over experiment-based approaches to the 

design of fluid systems, the use of CFD leads to a precious reduction in time and 

cost. For instance, systems that are impossible to study experimentally may be 

modeled and solved numerically. Very large volumes of results can be produced at 

virtually no cost, making parametric studies much easier to perform.  

In this project we will be using the commercial code Fluent which just like any CFD 

code is structured around the numerical algorithms that are able to solve fluid flow 

problems. Like most of the currently available codes, it is based on the finite volume 

method. To make the program more user-friendly, it is equipped with a user-interface 

such that the input parameters may be entered, the algorithm run and once the 

simulation has ended, the results can be examined. Indeed, the code is composed of 

three elements namely a pre-processor, a solver and a post-processor. Thanks to the 

pre-processor, the user may specify the inputs of the flow problem through the user-

interface and these are then transformed in a form that is suitable for the solver. At 

this point we should mention that the solver is based on one of the following 

numerical solution techniques: finite difference, finite element, spectral methods and 

the finite volume method. The differences rely on the way the flow variables are 

discretized and the discretisation techniques. The first two make use of local 

approximations that are gathered by means of point samples and simple piecewise 

functions respectively. On the other hand spectral methods are valid throughout the 

entire computational domain by approximating the unknowns using truncated Fourier 
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series or series of Chebyshev polynomials. Finally the last method which is of 

interest to us is fundamentally different. Indeed, the finite volume method is 

characterized by the formal integration of the governing equations of fluid flow over 

all the finite control volumes of the computational domain. The integral equations are 

then converted into a system of algebraic equations by replacing the terms by finite-

difference approximations. The solution of the algebraic system is then recovered 

iteratively. In the next paragraph we will explain why the finite volume method is 

much more attractive and give the governing equations of the flow. The last element 

of the CFD code is the post-processor. It is also possible to post-process the data 

using a different program. In our case we have chosen to use the software Ensight. 

Since our calculations are unsteady, the appropriate variables such as velocity, 

vorticity or pressure are exported during the run. To avoid having an enormous and 

unnecessary amount of data, we have chosen to save these 50 times per period. This 

gives us more than enough information about the time variation of the flow 

properties throughout a cycle. The data visualization tools include domain geometry 

and grid display, contour plots, 2D and 3D surface plots, vector plots, particle 

tracking, etc. In addition, the post-processing may include animations. This feature 

can be especially useful for our problem in order to dynamically display the unsteady 

flow patterns.  

2.2.2 Governing equations given in conservative form 

The governing equations of fluid dynamics can be obtained in various different 

forms which for a given CFD algorithm can make a huge difference. Indeed, the 

particular form of the equations can lead to success whereas using an alternate form 

may lead to oscillations resulting in incorrect results or instabilities. As we know, 

fluid dynamics is based on the three fundamental physical principles, which are the 

conservation of mass and energy as well as Newton’s second Law. For resolving any 

fluid problem, we will be confronted to the mathematical statements of the 

corresponding governing equations of continuity, momentum and energy. Finite 

volume methods are closely related to finite difference methods. Often it is possible 

to interpret a finite volume method as a finite difference approximation to the 

differential equation. However, there is a major difference since they are derived on 

the basis of the integral form of the conservation law. By using a method in this form 

guarantees that the discrete solution will be conservative. The integral form forms the 
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basis for the mathematical theory of weak solutions. Especially in the treatment of 

discontinuities, the conservative form is much more advantageous. In these type of 

problems, particularly if a shock-capturing method is used, for which the shock 

naturally appears, the equations written in non-conservative form would experience 

the large discontinuity due to the large jump in density and be considerably affected. 

At the contrary, in the conservative form the mass flux remains constant across the 

shock. Consequently the finite volume approach is much more appropriate if a stable 

and accurate scheme is desired. Let us now derive the equations that are obtained in 

relation to the three conservation laws.  

2.2.2.1 Mass conservation 

This first law states that the mass of a fluid is conserved which brings us to consider 

the following mass balance:  

Rate of increase of mass in the fluid element = Net rate of flow of mass into the fluid element 

We consider a small element of fluid and denote the sides as ,dx dy  and dz . On 

Figure 2.16 are represented the mass flows that enter and exit the element.  

 

Figure 2.16 : Mass flows in and out of the element [47]  

Let us first write the net outflows in all three directions:  

( ) ( ) ( ):
u u

x direction u dx dydz u dydz dxdydz
x x
ρ ρ

ρ ρ
∂ ∂⎡ ⎤

− + − =⎢ ⎥∂ ∂⎣ ⎦
 (2.1) 
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By summing all of these we deduce the Net mass flow:  

The time rate of mass decrease corresponds to the following:  

We then equate these two quantities and deduce:  

The above equation corresponds to:  

The partial differential equation form of the continuity equation in conservation form 

is given as follow:  

2.2.2.2 Momentum conservation 

Newton’s second law states that the rate of change of momentum of a fluid particle is 

equal to the sum of the forces that are applied to the particle. This equality can be 

written as follows:  

Rate of increase of momentum of the fluid particle = Sum of the forces on the fluid particle 

( ) ( ) ( ):
v v

y direction v dy dxdz v dxdz dxdydz
y y
ρ ρ

ρ ρ
∂ ∂⎡ ⎤

− + − =⎢ ⎥∂ ∂⎣ ⎦
 (2.2)

( ) ( ) ( ):
w w

z direction w dz dxdy w dxdy dxdydz
z z
ρ ρ

ρ ρ
∂ ∂⎡ ⎤

− + − =⎢ ⎥∂ ∂⎣ ⎦
 (2.3)

( ) ( ) ( )u v w
dxdydz

x y z
ρ ρ ρ∂ ∂ ∂⎡ ⎤

+ +⎢ ⎥∂ ∂ ∂⎣ ⎦
 (2.4)

( ) ( )dxdydz dxdydz
t t

ρρ∂ ∂
− = −
∂ ∂
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( ) ( ) ( ) ( )u v w
dxdydz dxdydz

x y z t
ρ ρ ρ ρ∂ ∂ ∂⎡ ⎤ ∂

+ + = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 (2.6)

( ) ( ) ( ) 0
u v w

t x y z
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In this section we will only derive the momentum equation in the x-direction but the 

procedure to obtain the two other equations in the y and z directions is identical. 

Figure 2.17 below illustrates the forces that are present in the x-direction:  

 

Figure 2.17: Forces in the x-direction [47] 

The x component of Newton’s second law is expressed as: mx xF a= . The force in 

the x-direction is a combination of the body forces and surface forces. The first kind 

acts from a distance and can be the gravity force, a centrifugal force or a magnetic 

force for example. The surface forces act directly on the surface of the fluid element 

and are of two types, firstly the pressure forces caused by the outside fluid 

surrounding the element and secondly the viscous forces related to the shear and 

normal stresses acting on the surface also due to the surrounding fluid. A common 

practice is to include the body forces in the source terms while the surface sources 

are kept separately. The rate of increase of momentum in x per unit volume is equal 

to the density times the time rate of change of the x-component of velocity u. 

Therefore it is given by: Du
Dt

ρ .  

We may express the body force acting on the element as follows:  

( )xBody force in the x direction f dxdydzρ=  (2.9) 
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where xf  is the x-component of the body force per unit mass acting on the fluid 

element. By adding-up all the forces that are represented on the figure above, we 

deduce the net surface force in the x-direction:  

We obtain the total force in the x direction by adding the net surface force and body 

force in the x-direction. It is denoted as xF  and corresponds to: 

Finally, we deduce the momentum equation in the x-direction by equating the total 

force to the rate of increase of momentum. The three momentum equations are given 

as follows:  

2.2.2.3 Energy conservation 

The third physical principle states that energy is conserved. This is nothing more 

than the first law of thermodynamics which says that:  

 

As previously, the rate of increase of energy is equal to the density multiplied by the 

time rate of change of the total energy E. There are two contributions to the energy, 
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the internal energy caused by the random molecular motion and the kinetic energy 

related to the translational movement of the element. Thus the total energy is equal 

to: 2 2E e V= + , such that the rate of increase of energy is equal to:    

Let us first of all obtain an expression for the rate of work done by the surface forces 

on the fluid element. It corresponds to the product of the force and velocity 

component in the direction of the force. On Figure 2.18 further down are represented 

the energy fluxes in the x-direction. Below are given the net rate of work done by the 

pressure and the shear stresses in the x-direction:  

These quantities are obtained the same way for the two other directions, and by 

adding all of them up in addition to the body force contribution, we obtain the total 

net rate of work done on the fluid element:  

We now focus on the first term that is the net rate of heat added to the fluid element. 

It can be caused by volumetric heating such as the emission of radiations or heat 

transfer across the surface due to temperature gradients. It corresponds to the 

( )2 2DRate of increase of energy e V
Dt

ρ= +  (2.13) 

( ) ( )Net rate of work up up
up up dx dydz dxdydz

due to pressure x x
⎡ ⎤∂ ∂⎛ ⎞

= − + = −⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
 (2.14) 

( ) ( )yx yx
yx yx

u uNet rate of work
u dy u dxdz dx

due to the shear stresses y y
τ τ

τ τ
⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥= + − =⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 

(2.15) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

yxxx zx

xy yy zy yzxz zz

uup vp wp u u
x y z x y z

dxdydz
v v v ww w
x y z x y z

f Vdxdydz

ττ τ

τ τ τ ττ τ

ρ

⎡ ⎤∂∂ ∂ ∂ ∂ ∂⎛ ⎞
⎢ + + + + + + ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎝ ⎠ ⎥− ⎢ ⎥∂ ∂ ∂ ∂∂ ∂⎢ ⎥+ + + + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ⎦⎣

+ ⋅
 

(2.16) 



 73

difference between the rates of heat input and of heat loss. We will denote q
i

 as the 

rate of volumetric heat addition per unit mass. Thus the volumetric heating of the 

fluid element is given by: q dxdydzρ
i

 

 

Figure 2.18 : Energy fluxes in the x-direction  

By observing Figure 2.18 once again, we calculate the net heat that is transferred in 

the x-direction by thermal conduction:  

As we consider the heat transferred across all faces of the fluid element, the total 

heating by thermal conduction is obtained:  

Finally, the net rate of heat added is the summation of the volumetric heating and the 

heating by thermal conduction .It is equal to:  

x x
x x
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Fourier’s Law of heat conduction states that the thermal conduction is proportional to 

the local temperature gradient with k the thermal conductivity such that: 

Therefore we may now express the term above in terms of temperature gradients:  

We have all the necessary terms that constitute the energy conservation equation. It 

is expressed as:  

2.2.2.4 Navier-Stokes equations 

To summarize we may say that the equations that we have derived are the three 

fundamental principles on which fluid dynamics is based. We will be taking into 

account the viscous effects, therefore friction, thermal conduction and mass diffusion 
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ρ
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need to be included in the governing equations. All of these are dissipative 

phenomena and have been represented in the derivations we have carried out except 

for the mass diffusion. This transport quantity appears in flows that contain different 

chemical species as it is the case for chemically reacting flows for instance or non-

homogeneous mixures. This does not apply to our problem which is why the 

equations have been simplified. To conclude let us give these again as a system of 

equations that we refer to as the Navier-Stokes equations (for viscous flows). These 

are valid for an unsteady, three-dimensional and compressible viscous flow:  

Continuity equation 

( ) 0V
t
ρ ρ∂
+∇ ⋅ =

∂
 

Momentum equations 
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Energy equation 
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2.2.3 Turbulence modeling 

2.2.3.1 Introduction 

Almost all fluid flow which we encounter in daily life is turbulent. The flow around 

bluff bodies such as cars, aeroplanes, buildings...etc, are turbulent. The flow within 

combustion engines, in both piston and gas turbine engines as well as combustors, is 
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highly turbulent. Air movements in rooms are also turbulent, at least along the walls 

where wall-jets are formed. Thus, while computing the fluid flow, it will almost 

always appear to be turbulent. In our case the boundary layer that develops over the 

flat-plate might also become turbulent as it reattaches and the turbulent trailing 

vortices should also be correctly modeled. So what is the nature of turbulence? It can 

first of all be considered as a broadband existing over a wide range of spatial and 

temporal scales. Turbulence is not at all a bad thing for many applications. For 

instance, it is helpful in most combustion engines since it efficiently mixes the fuel 

and the oxidizer. It is also much better able to resist boundary layer separation and 

wing stall in aircraft applications. However, it comes with a high friction drag 

penalty. Turbulent flows have a certain number of characteristics that we can briefly 

describe.  

First of all, turbulent flows are ‘irregular’, random and chaotic. The flow consists in 

a spectrum of different scales known as eddy sizes. The largest eddies are of the 

order of the flow’s geometry, for instance the boundary layer thickness with length 

scale l  and velocity scale U . The scales extract kinetic energy from the mean flow. 

The large scales interact with slightly smaller scales to which the kinetic energy is 

lost. It is through this cascade process that kinetic energy is transferred from the 

larger scales to the smaller scales.  The smallest scales where dissipation occurs are 

called Kolmogorov scales. At this level, the friction forces become larger and most 

of the kinetic energy transferred from the larger scales is finally dissipated into 

internal energy. The characteristic scales of these small eddies are the velocity 

scale v , the length scale l  and the time scale τ . Since the kinetic energy is 

destroyed by the viscous forces, we naturally suppose that viscosity plays a part in 

determining these scales. Also we know that the amount of energy to be dissipated 

is ε . Therefore, we assume that these scales are determined by both viscosity ν and 

dissipation ε .   

The ‘diffusivity’ of turbulent flows increases. Consequently, the spreading rate of 

boundary layers, jets, etc. increases as the flow becomes turbulent. On one hand in a 

laminar boundary layer, the flow takes place in layers as exchanges of mass and 

momentum only occur between adjacent layers on a microscopic scale. On the other 

hand a turbulent boundary layer is marked by mixing across the layers, now 

occurring at a macroscopic scale. If the flow experiences adverse pressure gradient at 
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the wall it will cause the flow to slow down. In the case of a turbulent boundary 

layer, separation is delayed since the velocities are higher at the wall. The velocity 

distribution takes longer to reach the inflection point that characterizes the transition 

to separation.  

Turbulent flow occurs at ‘high Reynolds numbers’. For example the transition to 

turbulent flows in pipes occurs when Re 2300D , and in boundary layers 

at Re 100000x . Although we will be simulating flows at low Reynolds numbers 

the laminar transition bubble and the vortices require the modeling of turbulence.   

The flow is always ‘three-dimensional’. However, simplification to two-dimensions 

can be very helpful for the understanding of certain problems, but does remove some 

important physical mechanisms. It is usually recognized as significantly different 

from the full turbulence problem.  

It has a ‘dissipative’ aspect as we briefly introduced while presenting the large and 

smaller scales. It causes the kinetic energy to transfer from the large eddies to the 

small eddies. This process of transferred energy from the largest turbulent scales to 

the smallest is called cascade process.  

Finally, even though turbulent flow is composed of small scales as well, they are 

much larger than the molecular scale and we can treat the flow as ‘continuum’.     

2.2.3.2 Turbulence models 

It is necessary to decompose the instantaneous variables into a mean value and a 

fluctuating value. X represents the time-averaged part and is independent of time 

for a steady mean flow, whereas x is the fluctuating part. For example, the pressures 

and velocities are rewritten as: & i i iP P p U U u= + = + . 

Indeed, this decomposition is useful because while measuring the flow, we are 

interested in the mean values of these variables and not their time history. For 

numerical resolutions, if the flow was always to be considered as time dependant, 

which is always the case since turbulent flows are unsteady by nature, it will require 

a very fine resolution in time. Therefore, when experimental and numerical results 

are compared, it is the mean values of pressure, temperature..., etc. that we compare. 

For instance, the pressure probes’ computerized system is automatically averaging 
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the values in time, just like the steady numerical simulation is doing. To solve the 

flow, the Navier-Stokes equations are considered:    

As far as the notations are concerned, ‘,i’ and ‘,j’ indices refer to the term’s 

derivative with respect to xi and xj respectfully. The next step is to replace the 

decomposed variables into equations (2.23) and (2.24). We make the assumption that 

the flow is incompressible, meaning that density does not depend on pressure. We 

obtain the time averaged Navier-Stokes equations:  

The dilatation term of equation (2.24) was neglected due to incompressible effects 

and an additional stress term 
i ju u appears in (2.26) due to turbulence, created by the 

fluctuating velocities existing within the flow.  This term, called the Reynolds stress 

tensor is unknown and needs to be determined to close the equation system. Indeed 

we have ten unknowns (3 velocity components, 6 stresses and the pressure) for only 

four equations (continuity equation and the 3 components of the momentum 

equation). This is known as the closure problem.  To close the equation system, 

several levels of approximations can be used, thus generating different types of 

turbulent models that we will now briefly describe.   

For zero-equation models, an assumption is needed to relate the Reynolds stresses to 

the velocity gradients via the turbulent viscosity. This relation is called the 

Boussinesq assumption and allows us to replace the Reynolds stress tensor by the 

product of the turbulent viscosity times the velocity gradients. The turbulent 

viscosity is often referred to as eddy viscosity and leads to eddy viscosity models. The 

particularity of these models is that they do not require the solution of any additional 

,( ) 0i iU
t
ρ ρ∂
+ =

∂
 (2.23) 

, , , , , ,
2( ) [ ( )]
3

i
i j j i i j j i i j k k j

U U U P U U U
t

ρ ρ μ δ∂
+ = − + + −

∂
 (2.24) 

, ,( ) 0i iU
t
ρ ρ∂
+ =

∂
 (2.25) 

,
,, , , ,, ,( ) [ ( )]i
ii j i j j ij i j j

U U U P U U u u
t

ρ ρ μ ρ∂
+ = − + + −

∂
 (2.26) 



 79

equation and are calculated directly from the flow variables. These models are very 

useful for simple flow geometries or initial phases of a computation but are too 

simple for general situations. They are not able to account properly for convection 

and diffusion of turbulent energy.   

For one equation models, a transport equation is solved for a turbulent quantity 

which is usually the turbulent kinetic energy. The equation for the turbulent kinetic 

energy 1 2 i ik u u=  is derived from the Navier-Stokes equations after making several 

simplifications which assume that the viscosity is steady, incompressible and 

constant. A second turbulent quantity is obtained and usually it is the unknown 

turbulent length scale that is needed. As for the turbulent viscosity it is again 

calculated thanks to the Boussinesq assumption. 

For two equation types of model, two transport equations are solved which describe 

the transport of two scalars, usually the turbulent kinetic energy k and its dissipation 

ε. The eddy viscosity is obtained from k and ε. Finally, the Reynolds stress tensor is 

again obtained by assuming a certain assumption relating the tensor to the velocity 

gradients and the eddy viscosity.  

Up to now, eddy-viscosity based models have been dominating in the context of 

industrial flow computations. However, the required degree of accuracy and the flow 

complexity are both becoming increasingly challenging. For example situations 

where separation is combined with flow control in highly curved surfaces need more 

complex models. Standard eddy-viscosity models usually under predict separation 

tendency. Indeed, the Boussinesq assumption appears to be rather crude. For 

Reynolds stress models, the aim is to remove the linear Boussinesq hypothesis, and 

replace it with a more general anisotropy relation. Up to then, the production model 

of the eddy-viscosity based models was insensitive to system rotation. This new and 

more precise assumption allows the Reynolds stress models to get much closer to the 

flow physics occurring in reality.  

The order in which we have listed these different types of turbulence models has its 

importance since they are becoming more and more complex and expensive in terms 

of computational time. We have chosen to use the k-ω turbulence model as it has 

proved to be very accurate for these types of flows.  
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2.2.4 Wall treatment 

The numerical approach we use close to the wall is of major importance because 

large gradients in temperature and velocity occur in that region. Consequently, walls 

are the main source of turbulence. Near them, the flow is fully turbulent; while 

further away the turbulence is increasingly intermittent. The boundary layer can be 

divided into three layers. 

2.2.4.1 Viscous sublayer 

At the wall the turbulent fluctuations have to disappear completely so that the no slip 

boundary condition is satisfied. Therefore, in a region very close to the wall called 

the viscous sublayer, the fluctuations are assumed to be very small and the time 

averaged flow must approximately respect this condition, expressed as follows:  

We will need a variable depending on the velocity gradient and the viscosity, it is 

called the friction velocity and is defined as:
w

duu
dyτ ν
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= ⎜ ⎟
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We can now define a dimensionless velocity u+ and a distance normal to the wall y+ 

according to the key variables affecting the flow close to the wall flow behavior. 

Finally, the mean velocity expressed above is rewritten:  

This approximation can be applied with good accuracy as long as 8y+ < . 

We may add that in the viscous sublayer, molecular viscosity makes the flow behave 

close to laminar.  

2.2.4.2 Buffer region 

Prandtl showed that in this inner region known as the buffer region, viscosity and 
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friction velocity are still at the same scale than the turbulence. Indeed, the wall is still 

quite close and therefore the size of the turbulent eddies is limited. Consequently, a 

direct relation between the two dimensionless variables still exists. Just like 

previously for the viscous sublayer, a law could be determined experimentally, and 

appears to be a good fit to this delimited region:   

The exact values of the constants are still being debated and greatly depend on the 

Reynolds-number range. Within the buffer layer, the laminar and turbulent properties 

of the flow are both important.  

2.2.4.3 The outer layer 

The outer region of the boundary layer has an edge velocity equal to U the free-

stream velocity.  The outer layer is fully turbulent and the turbulent properties play 

the major role. An outer law for this region has also been developed and is given by 

this relation:  

Figure 2.19 represents the behavior of u+ as a function of y+, according to the three 

layers:  

 

Figure 2.19 : Decomposition of the boundary layer into three layers 
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We will be using the CFD program Fluent during our study. The software provides a 

wide range of modelling capabilities, and for these turbulence conditions, a choice 

has to be made on what is the best suited turbulence model but also the near wall 

approach to adopt.    

2.2.4.4 Near-wall modelling approach 

They are two approaches to solving the near wall problem. These are also illustrated 

on Figure 2.20.  

o Wall function approach, the flow is not solved but given by a function 

called wall function. 

o Enhanced wall treatment approach, the mesh is very fine and the flow 

solved everywhere.  

 

Figure 2.20 : a) Wall function approach b) Near-wall model approach 

Firstly, let us start by introducing the wall functions. In our simulation, we will be 

applying a certain turbulence model to capture the turbulent effects (separation 

bubble…). However, the region it is really valid for initially is far from the wall, 

known as ‘core flow’. In the “wall function” approach, the turbulent models are not 

modified for solving the region close to the wall since we do not resolve it. Instead, 

we use semi-empirical formulas called wall-functions for mean velocities and scalars 

whereas formulas are more appropriated for evaluating the turbulent quantities. The 

link between the near-wall-cell solution variables and the respective quantities at the 

wall are respected. In the software Fluent, two different wall functions exist.  

The standard wall function utilizes a linear law for the mean velocity close to the 

wall, which then becomes logarithmic further away. One of its major and most 
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restrictive assumptions is that it assumes local equilibrium by stating that the 

production of kinetic energy is equal to its dissipation rate. Therefore, this assumes 

that the wall conditions are directly dissipating the just produced turbulent energy. If 

we consider these assumptions, it seems like the standard wall functions are most 

adapted for cases where the viscosity-affected region does not need to be resolved or 

at least when we are not especially interested in that region. Furthermore, this 

method becomes less reliable as soon as the hypothesis become non valid of course. 

When strong pressure gradients occur which is our case, turbulence effects are 

present in the near-wall region. Consequently, we are in a non-equilibrium situation 

and we may conclude by saying that the standard wall functions are not suitable to 

our problem. 

The Non-equilibrium wall function is particularly recommended for complex flows, 

where important pressure gradients, rapid changes...etc, occur. Indeed, the log-law 

used to determine the mean velocity is sensitized to pressure gradient effects. A two 

layer base allows for computation of turbulent kinetic energy in wall adjacent cells, 

so that viscous and turbulent layers may be treated correctly. However, the modified 

wall functions only partly account for the effects of pressure. This technique 

becomes less reliable when severe pressure gradients that lead to separation occur. 

Indeed, in this situation we depart too much from the conditions.  

The second possible approach is to apply an enhanced wall treatment. The previous 

near-wall approaches have shown to be unrealistic for the Standard wall functions 

and unreliable in the case of modified wall functions. Although they are much more 

‘economic’ they are not adapted to our problem. Therefore, we must use the near-

wall modelling approach. In this case, there is no separation between regions since 

the turbulence model will be solving the flow all across the boundary layer until the 

surface. An enhanced wall treatment will be computationally more costly since it is 

accompanied by a considerable refinement of the mesh. The mesh needs to be much 

closer to the wall so that the modified turbulent model is implanted right into the 

viscous sub-layer of the boundary layer. These modifications have to be global so 

that they adjust automatically according to the distance from the wall. Indeed, this 

single model has to be valid everywhere, near the wall and in the core flow. We may 

conclude by saying that this approach provides us with the necessary precision and is 

the best-suited method for our problem. Thus, the transitional flow option will be 
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enabled. As a result, the wall shear stress is obtained from the laminar stress-strain 

relationship. The corresponding mesh guidelines for this option are to considerably 

refine the boundary layer mesh.  The first cell is required to be contained in the 

viscous sub-layer, that is: 1At the wall adjacent cell y+→ ≈  

However, a higher y+ is acceptable as long as it is well inside the viscous sub-layer: 

5y+ <  

2.2.4.5 Calculation of the first mesh height 

Now that the near-all approach has been chosen, we can follow the requirements in 

terms of mesh refinement and calculate the appropriate distance between the fat-plate 

surface and the first cell. At this point we need to consider the flow conditions that 

will be applied in this project. More precisely the Reynolds number is the parameter 

of interest. It is fixed to 60000 and is kept constant throughout the study. Let us start 

by giving the necessary parameter values and then derive the calculation procedure 

that provides us with the value of the first height. Th flow and geometric parameters 

are given by equation (2.32).   

Based on the Reynolds number definition and knowing the flat-plate length and the 

free-stream air conditions, we may deduce the free-stream velocity: 

The dimensionless wall distance and the distance to the nearest cell are related by the 

friction velocity and the local kinematic viscosity. In turn the friction velocity 

depends on the wall shear stress that can be calculated from the skin friction 

coefficient. All these relations are expressed as follows:   

5 3

1.225 / .
1.7894 10 /

Re 60000
0.117

kg m s
Free stream air conditions

kg m
Reynolds number
Chord length c m

ρ

μ −

=⎧
− ⎨

= ×⎩
− → =

→ =

 (2.32) 

ReRe , 7.491 /U c U U m s
c

ρ μ
μ ρ
∞

∞ ∞= ⇒ =  (2.33) 
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We undertake a coarse calculation in order to get an idea of the order of magnitude 

of the skin friction coefficient. From it we can deduce an estimated value for the wall 

shear stress. This simulation is run for a mean-angle of attach of 8 degrees as it will 

be the most common value throughout the study. The distribution of skin friction 

coefficient over the flat-plate surface is represented on Figure 2.21:  

 

Figure 2.21 : a) Skin friction over the flat-plate surface b) y+ values over the flat-
plate surface 

From the Cf values plotted above we observe that the maximum values around 0,12 

appear at the leading-edge, however the wall friction is  more than twice as small on 

the rest of the surface without ever exceeding 0,05. In order to limit the size of the 

mesh, we consider that y+ values around 5 are satisfactory. We proceed with the 

calculation for which we obtained the following values:  

We have rounded up the value of y to 10-4 and generated the mesh ‘flat_plate.gg’ 

based on this value. After setting-up the simulation parameters and running the case 
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for a sufficient number of iterations, the y+ values along the flat-plate surface were 

plotted on Figure 2.21 b). These appear to be satisfactory since the maximum value 

is about 6 at the leading-edge whereas [ ]0 ;4y+ ∈  along all the rest of the geometry. 

The effect of this first height will be investigated in the mesh sensitivity analysis as 

the value is divided by two and fixed to 0.05 mm for the finer mesh 

‘flat_plate_finer.gg’.       

2.3 Set-Up of the Computational Fluid Dynamic Simulation 

2.3.1 Implementation of the Boundary Conditions 

Any CFD problem is defined in terms of initial and boundary conditions. At the end 

of the grid generating procedure, the exterior surfaces were grouped according to the 

type of boundary conditions that would later be applied. Consequently, once the 

mesh exported to Fluent these need to be specified. On Figure 2.22, the various 

boundary conditions are represented.  

 

Figure 2.22 : a) Boundary conditions applied to the CFD domain b) No-slip wall BC 
at the flat-plate surface 

First of all the distribution of all flow variables needs to be specified at the inlet 

boundaries. These correspond to the surfaces at the entrance and around the model. 

They are represented in blue on Figure 2.22 a) and the boundary condition was 

defined as Velocity inlet. The velocity components in all three directions were to be 

assigned. The mean angle of attack between the flow and the flat-plate is assigned 

through this boundary condition. In conjunction with the inlet boundary condition, a 

pressure outlet boundary condition is prescribed to the surface at the exit of the 

domain shown in red. Indeed, the outlet is located far away from the geometrical 
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disturbances in order to reach a fully developed state where no changes occur in the 

flow. It is then possible to assign a constant pressure to the surface corresponding to 

the free-stream atmospheric pressure. A no-slip wall boundary condition is imposed 

on the surface of the flat-plate represented on Figure 2.22 b) and finally the mid-span 

section highlighted in yellow is defined as a symmetric plane.   

2.3.2 Implementation of the Flapping Motion 

The flapping motion is implemented in the CFD simulation by defining a user 

defined function (UDF). This feature of Fluent allows us to customize the software 

so that it fits to our particular problem. Many variables or Fluent models can be 

accessed through these functions. The UDF is to be programmed and is dynamically 

loaded to the solver. The source file is written in the C programming language using 

any text editor and is saved with a .c extension. The code is defined using DEFINE 

macros that are supplied by Fluent Inc. The first line of the code includes the udf.h 

file that allows Fluent macros or DEFINE macros to be included during the 

compilation of the source code. In our case the UDF is compiled (cannot be 

interpreted) and hooked to the Fluent solver. The process is composed of two 

separate steps. First of all, a shared object code library is built and then loaded to 

Fluent. Identically to the Fluent executable itself, the UDF is built with a script called 

Makefile that invokes the C compiler contained in the system such that the object 

code library is built. After being compiled, the UDF becomes selectable and the 

function name can be chosen.   

As we know, the pitching and plunging motions control the angle of attack and the 

vertical position of the wing respectively. We are able to impose these through a 

UDF thanks to the fact that the angular and vertical velocities of the domain can be 

modified. Let us include one of the UDF source codes as an example. We will first of 

all explain the commands that are used and then derive the calculations that led us to 

obtaining the values of this particular case. However, the procedure is to be repeated 

each time the motion is modified as the kinematic parameters are affected and the 

UDF is to be updated.  
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#include "udf.h"  
 
DEFINE_CG_MOTION(airfoil, dt, vel, omega, time, dtime) 
{ 
omega[2]=-4.801889198*cos(32.0125946*time); 
vel[1]=-1.872736787*cos(32.0125946*time+1.57079633); 
Message("time %f, omega %f, vel %f \n", time, omega[2], vel[1]); 
} 
 

We have used the DEFINE_CG_MOTION macro. It is used to control the behaviour 

of a dynamic mesh. It defines the function referred to as the centre of gravity motion 

and is activated in the Dynamic Zones panel. The motion of a particular dynamic 

zone is specified by providing Fluent with the linear and angular velocities at every 

time step. The node positions of the selected dynamic zone are updated based on 

these two velocities. In our case, we want the entire domain to perform the flapping 

motion; therefore the UDF is applied to all surfaces and boundaries of the CFD 

domain such that it behaves as a non-stationary rigid body. This method has the 

advantage of avoiding any mesh deformation which would deteriorate the quality of 

the grid. As we can see, the macro contains six arguments. The first one, airfoil, 

corresponds to the name of the UDF. It is then followed by dt which stores the 

dynamic mesh attributes. These first two attributes are passed by the solver to the 

UDF. Finally vel, omega, time and dtime refer to the linear and angular velocities, the 

current time and the time step respectively. The UDF on the other hand attributes the 

linear and angular velocity values as a function of the current time and returns their 

values to the solver.  

Let us now calculate the two velocities as a function of time. In this example, the 

relevant parameters are the following: 00.25 , 0.6 , 8k λ α= = = °  

We recall that for a Reynolds number of 60 000, a chord length of 0.117 m and the 

fluid taken as air, the free-stream velocity considered throughout the project is the 

following: 7.491 /U m s∞  

In addition, the non-dimensional plunge amplitude is held constant and is taken as: 

0.5h = . The corresponding dimensional pitching amplitude is therefore:  

1 1 1, 0.5 0.117 0.0585z hc z z m= = × ⇒ =  (2.36) 
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Consequently, while varying the amplitude ratio it is the pitching amplitude 1α  that 

will change. Finally, the phase angle between pitching and plunging is held constant 

such that: 90ϕ = ° , with pitch leading plunge.  

We have first of all determined the period and the angular frequency given by 

equation (2.37) following which the pitching amplitude was calculated in equation 

(2.38). We then deduced the corresponding pitch and plunge equations (2.39) and 

finally the equations for the linear and angular velocities (2.40).  

However, if these two parameters are defined in the UDF based on the above 

equations, the kinematics of the flat-plate does not match with the desired motion 

although the amplitudes are correct. After performing several trials, it was proved 

that small modifications had to be undertaken for the numerical motion to be 

identical to the exact one:  

Thus, these equations are written in this form in the UDF. The same procedure is 

repeated as soon as one of the relevant parameters is modified. 

2 2

5

1.225 0.117, 0.1962723
Re 0.25 60000 1.7894 10

2 2 0.25 7.490447152 , 32.01259465 /
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c
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2.3.3 Fluent parameters 

Up to this point, we have discussed in detail about the turbulence model and the 

wall-approach that have been selected. Now that the boundary conditions have been 

presented, we will now give all the other parameters that need to be chosen in order 

to complete the pre-processing of the simulation. The parameters or values that are 

not specified were not modified, thus the default settings of Fluent apply. Figure 2.23 

summarizes all the setting-up of the CFD simulation:  

 

Figure 2.23 : Fluent parameters 
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3. RESULTS OBTAINED FOR THE FLAT-PLATE MODEL 

3.1 Introduction to the Simulation Cases 

In this last chapter we will present the results that have been obtained. In the first 

section, the preparatory work that was necessary before collecting the data is 

presented. The first step was to check that the user-defined function was perfectly 

maching with the exact motion. Secondly, it was necessary to determine the 

appropriate time step in order to optimize the simulations times while making sure 

that the correct solution was attained. Finally, before exporting the flow field 

variables we must verify that the flow has reached a periodic behaviour. Thus this 

last study helped us to establish the number of periods after which periodicity was 

reached.  

After conducting these preliminary studies successfully we may consider the results 

as trustable. We will start by analysing the results for a given case such that the 

important features of the flow structures are highlighted. We will particularly 

concentrate on the formation of the leading-edge vortex and on the three-dimensional 

effects induced by the tip vortex. The last section will consist in several parameter 

studies. As discussed previously, the various flapping parameters will affect the flow 

patterns which in turn will influence the performance of the flapping flat-plate.  

Table 3.1: Simulation cases 

Simulations Aspect ratio - 
AR 

Mean flow 
angle - α0 (°) 

Amplitude 
ratio - λ 

Reduced 
frequency - k 

CASE A 2 8 0.6 0.25 
CASE B 1 8 0.6 0.25 
CASE C 2 4 0.6 0.25 
CASE D 2 8 0.4 0.25 
CASE E 2 8 0.75 0.25 
CASE F 2 8 0.6 0.15 
CASE G 2 8 0.6 0.35 
CASE H 2 8 0.6 0.5 

The aim is to observe these effects, essentially based on the aerodynamic 

coefficients, and relate these observations to the differences that can be seen in the 
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flow field. The parametric studies will consist in varying the aspect ratio of the flat-

plate, the mean flow angle, the amplitude ratio and finally the reduced frequency 

imposed to the flapping motion. We will sometimes need to refer to the various 

simulations in abbreviated notations instead of giving all the parameter values. 

Therefore, we have assigned to each simulation a case letter that is given by Table 

3.1 above. In each of the parametric study only one of the parameters varies while all 

the others remain constant. As we can see from the table above, case A will take part 

in every one of these studies since it is defined by the common parameters. It is this 

simulation that we will be taken as reference while investigating the flow structure in 

section 2. To conclude, let us recapitulate the simulations that compose each of the 

parametric studies:  

 

- Aspect ratio:   
2
1

case A AR
case B AR

→ =⎧
⎨ → =⎩

 

- Mean flow angle: 0

0

8
4

case A
case C

α
α

→ = °⎧
⎨ → = °⎩

   

- Amplitude ratio:  
0.6
0.4
0.75

case A
case D
case E

λ
λ
λ

→ =⎧
⎪ → =⎨
⎪ → =⎩

 

- Reduced frequency: 

0.25
0.15
0.35
0.5

case A k
case F k
case G k
case H k

→ =⎧
⎪ → =⎪
⎨ → =⎪
⎪ → =⎩

 

3.2 Preparatory Work 

3.2.1 Verification of the motion 

The first step is to verify that the combined pitch and plunge motions that we wish to 

reproduce are being exactly reproduced numerically. Therefore, the objective in this 

preliminary study is to check the motion imposed by the user-defined function. In 

this paragraph we will mention about the procedure allowing us to determine the 

position of the CFD domain in time. More specifically, we are interested in the angle 

of attack and the vertical position of the flat-plate. Indeed, these can then be 

compared to the exact values for the motion to be verified.   
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We are using the software Ensight for the post-processing of the results. Therefore, 

the case was run with Fluent for an entire period. The data was then exported to 

Ensight. Considering that we are interested in checking the positioning of the motion, 

the x and y coordinates were exported.  

Ensight presents a very useful tool that allows us to position cursors anywhere we 

want in the flow field. Therefore, we have placed two of them at the leading and 

trailing edges of the flat-plate in order to monitor its positioning.    

 Calculation of the angle of attack of the airfoil 

We have made use of simple trigonometric relations in order to obtain the model’s 

position. The necessary data was limited to the x and y coordinates of the leading and 

trailing edges. The evolution of these variables in time is recuperated thanks to the 

cursors we have created. We only have to specify the variables that we wish to 

observe at these fixed points and save these values. Figure 3.1 was obtained in the 

post-processing software Ensight after the creation of the cursors, to which the 

relevant distances were added.   

 

Figure 3.1 : Cursors positionned at LE and TE 

By making use of the above figure, we may deduce that:  

 Calculation of the vertical positioning of the airfoil:  

To accurately verify the vertical position of the airfoil at any time, the point at which 

the y-coordinate is considered must be carefully chosen. Due to the pitching 

movement, it is at the pitching axis that the verification process must take place. 

1tan LE TE

LE TE

Y Y
X X

α − ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (3.1)
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Indeed, it is the only point that is not affected by the changes in angle of attack 

caused by the pitching. However, we recall that the meshed and therefore resolved 

area is contained within the CFD domain’s outer boundaries and the model’s surface. 

Therefore, the pitching axis, located at 25% of the profile’s chord is not part of it, so 

it needs to be determined. Again it is straightforward to calculate it by applying 

trigonometric relations. The only required data is again the x and y coordinates at the 

LE and TE as well as the distance between the pitching axis and the LE. In this study 

it is fixed at 25 % of the chord and will remain unchanged throughout the project. 

The y coordinate at the pitching axis is equal to the following, for which the angle α 

is given by (3.1):  

 Comparison of the exact and numerical motions: 

Now that the necessary formulas have been established, the computational angle of 

attack and vertical position of the plate are to be compared to the exact incidence and 

y-coordinate given by the pitching and plunging equations expressed as:  

Finally we should mention that this checking procedure has been made automatic as 

much as possible. Indeed, in the incoming studies it will be necessary to verify that 

the motion under consideration is being accurately reproduced each time it is 

modified. Therefore, it is in our own interest to make this verification the easiest 

possible. Let us specify the modifications that still need to be made. First of all the 

appropriate motion parameters are to be entered in the excel sheet 

‘motion_check.xls’. We recall that the x and y coordinates are exported from Fluent 

to Ensight. The cursors are created in Ensight at the LE and TE and the data at these 

two points are saved on an output file from which the information is copied to the 

Excel sheet. The two comparative curves are then automatically updated.  

25% 0.25 sin LEy c yα= − ⋅ ⋅ +  (3.2) 

( ) ( )1: cosPlunging motion vertical position z t z tω⇒ = ⋅  (3.3) 

( ) ( )0 1: cosPitching motion angle of attack t tα α α ω ϕ⇒ = + ⋅ + (3.4) 
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3.2.2 Time step determination 

The aim is to determine the appropriate time step. We wish to reach a case where the 

calculation at every time step ends after only a few iterations (around 10) because the 

convergence criterion is satisfied, not because the maximum number of inner-

iterations has been reached. It is crucial for this requirement to be satisfied; otherwise 

the solution might not be correct and thus it cannot be considered as reliable. The 

convergence criterions are set to the following values:  

To determine the appropriate time step we have carried out several trials using 

different Δt values. These simulations were run without setting any convergence 

criterions in order to highlight the general trend taken by the residuals.   

All of the trials were done by running a journal file. In order to reach the periodic 

behaviour faster, the first time step was run for about 300 inner iterations such that 

the flow field could adjust itself to the initial and boundary conditions. Figure 3.2 a) 

below illustrates the behaviour of the residuals during this first iteration. We observe 

that 150 iterations is actually sufficient for this first phase as the residuals reach a 

steady value.   

 

Figure 3.2 : a) Residuals during the first iteration b) Behavior of the residuals for Δt 
= T/1000 

In the first try, the Δt value was taken equal to T/500. After more than one period, 

the continuity residuals finally became smaller than 10-3, but this value could only be 

3 5

5 5

5 5

10 10
10 10
10 10

continuity x velocity
k y velocity
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− −

− −

− −
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→ − →
→ − →

 (3.5)
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reached after more than 23 inner iterations. This trend was then confirmed 

throughout the next few periods. We deduced that this time step was too large and 

unsuitable for our calculations.  

The second try was undertaken for a time step twice as small and equal to T/1000. 

This time the residuals behaviour was much more satisfactory. Indeed, these satisfied 

all of the convergence criterions from the very first iteration, after less than 15 inner 

iterations. This continued to be the case throughout the entire calculation. The typical 

residual behaviour is plotted on Figure 3.2 b). As can be seen, the residuals are 

experiencing ups and downs, each of them corresponding to an iteration. As soon as 

all the convergence criterions are satisfied, the solver proceeds to the following one, 

and again these decrease very fast since the flow hardly changes between two 

iterations. Furthermore, the number of necessary inner iterations considerably 

reduces in time to sometimes reach less than 5 as illustrated below:  

  iter  continuity       x-velocity     y-velocity  z-velocity          k              omega             time/iter 
 
  4449  5.4982e-04     4.3665e-07     1.4999e-06  1.2179e-07        3.4648e-06     3.5764e-06      0:04:58   20 
  4450  4.1803e-03     2.0085e-06     2.8415e-06  1.5616e-06        1.9574e-03     2.0736e-03      0:05:19   19 
  4451  3.5783e-03     3.3032e-06     1.1188e-05  1.3269e-06        3.9867e-04     4.2025e-04      0:04:55   18 
  4452  1.1138e-03     1.4904e-06     5.1786e-06  7.3656e-07        8.1321e-05     8.5342e-05      0:04:29   17 
  4453  7.4133e-04     8.8180e-07     2.9024e-06  2.4376e-07        1.6672e-05     1.7406e-05      0:04:08   16 
! 4454  solution is converged 
  4454  5.8385e-04     5.1943e-07     1.6723e-06       1.2992e-07        3.4524e-06     3.5854e-06       0:03:47   15 

To complete this study we have compared the drag coefficients that were obtained 

throughout an entire period. Three different cases were run for which we had Δt 

equal to T/500, T/1000 and T/1500.  

Evolution of the drag coefficients CD for several time step values 
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Figure 3.3 : Effect of the time step on the time variation of CD - case A 
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We insured that the quantities evolved in a periodic manner before comparing them.  

On Figure 3.3 are represented the various results obtained. We observe that a slight 

difference appears between T/500 and T/1000, which indicates that the results are 

still slightly depending on the time step value. However, as it is further decreased 

this difference disappears and as we compare the curves for T/1000 and T/1500, 

these appear to be identical. We deduce that time step independence has been 

reached and therefore Δt equal to T/1000 is sufficiently small not to influence the 

results.  

We may conclude by saying that a time step corresponding to T/1000 appears to be 

perfectly adapted to our study. We are insured that the convergence criterions will be 

satisfied well before the maximum number of inner iterations fixed to 20 is reached. 

Moreover, only a few inner iterations are required which is essential to us since the 

running time needs to be optimized. Indeed, the calculations are three-dimensional 

and thus will require an important computational effort. In addition, we are dealing 

with a cyclic motion, for which periodicity of the flow must be reached before 

considering the solution throughout a whole period. Therefore, the time necessary for 

a single calculation to end is of major concern and this Δt value seems to be 

optimum. 

3.2.3 Periodicity of the results 

In this paragraph we will briefly discuss about the periodicity of the results. It is 

essential that before starting to export the relevant variables throughout an entire 

cycle, the flow is behaving periodically. To check this we may observe the evolution 

of the aerodynamic coefficients on Figure 3.4 for which we have compared the third 

and fourth period.  

 

Figure 3.4 : a) Periodicity of CL – case A b) Periodicity of CD – case A 
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We should however specify that these calculations have been run using first order 

upwind schemes whereas our future calculations will be second order. Nevertheless 

this study holds for both configurations. We observe that for both the lift and drag 

coefficients, the curves are identical. We may conclude by saying that considering 

the fourth period as reference seems to be sufficient since periodicity is attained 

already at the third period. We therefore insure that the results are no longer affected 

by time and are trustable in terms of periodicity of the flow field. This has been 

applied to all cases which one by one confirmed these observations.  

3.3 Mesh Effect Study 

At the end of the 1st section of chapter 2 we presented the characteristic parameters 

of the two meshes that had been generated, namely ‘flat_plate.gg’ and 

‘flat_plate_finer.gg’ which were created thanks to Gridgen. We refer to them as the 

coarse and the fine mesh respectively. The aim in this study is to investigate the 

effect that the mesh has on the results. Unfortunately it would be too time costly for 

us to conduct a full mesh study. Indeed, it would require at the minimum a third 

mesh and the aim would be to reach grid independency.  
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Figure 3.5 : Effect of the mesh on the lift and drag coefficients 

Here, the objective is limited to comparing the results provided by the two grids in 

terms of aerodynamic coefficients. We recall that the finer mesh is considerably 
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larger as it contains about 1 250 000 nodes against only 840 000 for the coarse mesh, 

therefore we will see if such an increase is worth it by judging of its effect. We have 

plotted the drag and lift coefficients on Figure 3.5 above. We observe that the 

differences between the drag coefficient curves are minor as they only slightly differ 

for a small portion of the period during the second quarter. As far as the lift 

coefficient curves are concerned, they do not present any noticeable difference. We 

deduce that increasing the number of nodes by about 50% is unnecessary as it hardly 

influences the results. We will therefore conserve the height of the first cell and the 

first spacing from the tip (spanwise direction) equal to those imposed to the coarse 

mesh. Indeed these were the only two parameters that were modified and divided by 

two from the coarse to the fine mesh.  To conclude on this point we may say that to 

obtain a noticeable difference related to the mesh density, a much larger grid would 

need to be used which cannot be considered as it would increase the computational 

effort beyond the one provided by our resources.   

However by further investigating the flow features obtained for the coarse mesh, a 

problem appeared at the tip. Indeed, due to the mesh generation technique that was 

employed and specifically step 2 which consisted in creating the tip of the flat-plate 

by revolution, it is impossible to insure a smooth transition from the flat part of the 

plate and its rounded edge. Indeed, by nature the equal mesh size between those two 

regions, imposed on the surface, cannot be conserved throughout the grid.  

 
Figure 3.6 : a) Vorticity contours at the tip of flat-plate with the coarse grid – case B  

b) Mesh at the tip of the flat-plate with the coarse grid – case B. 

The difference progressively increases in the radial direction as we get further from 

the tip. Very quickly important gaps appear in the tip vortex region, represented on 

Figure 3.6 b) which introduces important numerical errors. These are shown on 
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Figure 3.6 a) above. Although completely eliminating the problem is impossible, we 

have tried to limit its effect by increasing the number of iterations defining the 

extrusion by revolution that takes place during step 2 of the mesh generation 

procedure. From 16 points for the coarse mesh we increased the number up to 40. 

Considering that this mesh defect appears at the transition between the flat and round 

surfaces, the points were non-uniformly distributed and concentrated in those 

regions, as shown on Figure 3.7 b). Consequently, the numerical error spreading 

from the tip is considerably reduced, the improvement is visible on Figure 3.7 a) 

representing the vorticity magnitude contours. Although we will see later while 

presenting the results that this defect persists, especially as we progress downstream 

and the tip vortex increases in size, we decide to keep this grid as the final mesh. 

Compared to the coarse mesh its size has been greatly increased.  

 
Figure 3.7 : a) Vorticity contours at the tip of flat-plate with the final grid – case B b) 

Mesh at the tip of the flat-plate with the final grid – case B. 

Table 3.2: Modified mesh parameters characterizing the final grid 

  FINAL MESH 

step 2: REVOLUTION Type of distribution Non-uniform 

  N. of iterations 40 
step 3: 

TRANSLATION Type of distribution sub-connector 

  Sub-connector: Nº of points 25 (AR1) / 30 (AR2) 

  Sub-connector: starting interval Δs 0.20 mm 

NUMBER OF CELLS   1 136 742 (AR1) / 1 266 820 (AR2)  

NUMBER OF NODES    1 130 821 (AR1) / 1 259 662 (AR2) 
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The total number of nodes is now approximately 1 200 000. Further increasing the 

number of points at the tip would result in an excessive number of nodes, requiring a 

far too large computational effort. All the modifications that were implemented to 

obtain the final mesh are summarized in Table 3.2 above.  

3.4 Structure of the Flow 

3.4.1 Formation of the leading-edge vortex 

In this section we will present the results that have been obtained for the simulation 

case A that will be used as reference in all of the parametric studies. In 

correspondence to the experimental tests, the simulation parameters have been fixed 

to the following:  
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While post-processing the results, we have made available the necessary information 

allowing us to analyze the flow structure. The vorticity contours in both chordwise 

and spanwise directions have been obtained. In order to investigate the three-

dimensional effects the contours these were plotted in several planes that are 

represented on Figure 3.8 below.   

 

Figure 3.8 : a) xy planes in the chordwise direction x b) xz planes in the spanwise 
directions z 

These have been positioned spanwise at the root of the flat-plate, 50%, 75% of its 

span and at its tip. Chordwise, they were defined at 33% and 66% of its chord as well 

as at the trailing-edge. To capture the flow evolving in the wake we also have plans 

at 0.5, 1, 2, 3 and 4 chord lengths from the trailing-edge. We will start by analyzing 

the flow in the symmetric plane without considering the spanwise variations. The 

aim is to understand the characteristics of the flow under these conditions and 
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eventually highlight the formation of a leading-edge vortex. On Figure 3.9 the 

spanwise vorticity contours are given at four different times throughout the cycle, 

corresponding to t = 0, T/4, T/2 and 3T/4. We recall that the mean angle of attack 

between the incoming flow and flat-plate was assigned through the velocity inlet 

conditions; therefore it is not visible in any of these plots. Consequently at t = 0 for 

instance, the model appears to have no incidence whereas in reality there is 8 degrees 

incidence. We observe that the vorticity contours vary importantly as the rates of 

rotational spin around the z axis change according to the angle of attack and plunge 

position. 

 

Figure 3.9 : Spanwise vorticity contours in the symmetry plane - cased A a) t = 0 b) t 
= T/4 c) t = T/2 d) t = 3T/4 

No reversed Von Karman vortex street appears in the wake of the flat-plate however, 

which is most probably related to the coarse grid that is used which leads to the 

dissipation of these vortices. Although some flow rotation is present these cannot be 

distinguished.    

These contour plots can help us to understand the flow structure that develops 

throughout the cycle. Combined to the velocity vectors present in the symmetry 

plane and the pressure coefficients along the chord of the flat-plate, we will start by 

commenting on the formation of the leading-edge vortex. Let us first of all give the 

graphs that describe the flapping motion of the flat-plate.  
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Figure 3.10 : a) Kinematics of the flapping motion – case A b) Behavior of the CD 
and CL in time – case A 

On Figure 3.10 a) is plotted the incidence and plunge position of the model 

throughout the cycle. The verification of the motion applied numerically was carried 

out and appears to perfectly match the exact motion. On Figure 3.10 b) the periodic 

behavior of the lift and drag coefficients can be found.Their evolution across the 

period will be described in correspondence to the velocity vector flow fields and 

pressure distributions.  We remark however that the drag coefficient remains positive 

across the whole period indicating that thrust is never generated at any moment 

during the cycle. We may conclude that unfortunately these simulation parameters 

necessarily result in a drag-producing case.  

 

Figure 3.11 : Velocity vector flow fields fields – case A a) t = 0 b) t = T/4 c) t = T/2 
d) t = 3T/4 
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In addition, we observe that the lift force varies symmetrically around a certain value 

equal to the lift force generated at the mean flow angle α0. This is due to the up-and-

down symmetrical movement of the flat-plate.  The velocity vectors are represented 

on Figure 3.11 from a) to d). We observe that at t = T/4 which corresponds to the 

maximum angle of attack at the centre position, the flow is fully-attached and the lift 

is at its lowest value. It is from this point on that the leading-edge vortex starts 

forming, up to time T/2.  Let us refer to the pressure distributions, for which the 

pressure coefficient values, minus CP however, are plotted for both the upper and 

lower surfaces. The above and bottom curves correspond to the upper and lower 

surface distributions respectively. From Figure 3.14 we may relate the observations 

made based on the velocity vectors to the pressure distributions. Indeed, we see that 

after the sudden rise at the leading-edge corresponding to the highest velocities, the –

CP values directly decrease from the maximum value to the lowest one at the trailing-

edge. This region is known as the recovery region and indicates the extent of a 

possible separation region. At this time (t = T/4), since the pressure does not 

experience any flatter portion in the distribution, we conclude in confirmation to the 

velocity vectors, that no recirculation region exists.  

However, between the quarter and half period, the flow characteristics change 

considerably as a small separation bubble appears and is visible at time T/2, referred 

to as a leading-edge vortex. Figure 3.12 a) focuses on the leading edge at this time.  

 

Figure 3.12 : a) Velocity vectors at the LE (t = T/2) – case A b) Velocity vectors at 
the TE (t = 3T/4) – case A 

It is clearly seen that the flow separates from the very beginning of the LE but 

quickly reattaches around 1/6 of the chord length. Indeed, the adverse pressure 

gradient being modest allows the separated flow to reattach to the surface, thus 

forming a small and thin separation bubble. It is the turbulent shear stress that causes 

transport of momentum across the boundary layer, responsible for the closure of the 
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laminar separation bubble. This recirculation region is characterized by constant 

pressure values which impact the chordwise CP values along the surface. Indeed, the 

decrease in –CP values after the leading edge stagnation point is much smoother such 

that the lowest value is not reached before 0.5 chord lengths. The flat portion at the 

beginning indicates the LEV and as we can see it is not larger than 10 % of the chord 

length. It appears on Figure 3.10 b) that the motion of the flat-plate from the central 

and maximum angle to the upper and mean angle positions between times T/4 and 

T/2 is accompanied by a reduction in lift and increase in drag. The wing is in the 

upstroke part of the motion which induces a negative incidence with respect to the 

flow, and although the angle induced by the pitching is increasing, this movement 

leads to a loss in lift. As for the augmentation of drag it can be explained by the 

formation of the LEV.  

From time T/2, the size of the leading-edge vortex extends along the chord, as we 

observe on the velocity vectors at time 3T/4. At this point of the cycle the flat-plate is 

back to the central position and the angle of attack is at its lowest value. Between 

these two times it is obvious from the pressure distributions that the separation 

bubble is growing in size as the extent of the flatter portion of the distribution 

increases. This can be seen as we compare the curves that are plotted for the 

successive times T/2, 2T/3 and 3T/4 on Figure 3.14. On Figure 3.13 a) we may 

observe that the LEV has almost entirely covered the upper surface of the flat-plate 

as the flow reattaches slightly before the trailing-edge.  The progressive increase in 

size of the laminar separation bubble between times T/2 and 3T/4 appears to be very 

beneficial. Indeed, the lift increases as the drag decreases up to their highest and 

lowest values respectively while the LEV spreads downstream. Obviously, the 

contribution of an elevated pressure drag for a larger bubble is compensated by a 

reduced friction drag, due to the larger and stronger recirculation area. Between these 

two times the wing is in the downstroke part of the motion such that it acquires a 

certain incidence with respect to the flow in addition to the instantaneous pitching 

angle. As a result, the strength of the LEV increases with the maximum 

instantaneous angle of attack. The extension of the LEV is caused by this descending 

movement of the wing.  

At time 3T/4 we may consider that the LEV has reached the trailing-edge. This is 

shown on Figure 3.12 b), illustrating the velocity vectors at the TE, and indicating 
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that the recirculation region is limited to the very end of the flat-plate. However, after 

3T/4 the lift suddenly drops as the drag increases. This is related to the pitching up of 

the flat-plate from its lowest pitching angle. In this simulation it also corresponds to 

the sudden bursting of the separation bubble as the LEV extends beyond the trailing-

edge. Indeed, as the adverse pressure gradient increases we come to a point where 

the turbulent shear stress is not able to overcome these forces and reattachment of the 

boundary layer is no longer possible. From this point dynamic stall of the flat-plate is 

surpassed and leads to a sudden drop in lift and rise in drag. Between 3T/4 and the 

end of the cycle, these aerodynamic coefficients monotonically evolve since the flow 

on the upper surface remains fully-separated due to the increasing angle of attack 

caused by the augmentation of the pitching angle combined to the descending motion 

of the wing. As a result, the bubble further affects the surrounding flow that is more 

and more slowed down by the wing’s presence. This clearly appears as we compare 

the velocity vectors of Figure 3.13 b) down below taken at time 5T/6 with the 

previous flow field taken at time t = 0  shown on Figure 3.11 a).  

 

Figure 3.13 : a) Velocity vectors at the TE, t = 2T/3 3 – case A b) Velocity vectors at 
t = 5T/6 – case A 

This is confirmed by the pressure distributions of Figure 3.14. At time 5T/6, the 

bubble covers the whole plate as we know and the lowest value is not reached before 

the trailing-edge at the stagnation point. This is also the case at time T, however the – 

CP values are much lower and as these decrease in time until time T, so does the lift 

generated. In addition, this low-pressure region created by the large amount of 

vorticity leads to an increase the drag.    

As the cycle starts again, the size of the separation bubble decreases very fast until 

the flow is fully reattached at T/4. This progressive reattachment of the boundary 

layer from the leading-edge is made possible by the ascending motion of the wing as 

the next upstroke begins at time t = 0. This portion of the cycle is naturally 
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accompanied by an important reduction of the drag. We may conclude by saying that 

the formation of a leading-edge vortex has proved to be very advantageous since 

while it develops, the lift suddenly increases and the drag drops to reach its lowest 

value as the LEV covers more and more of the upper surface. Although no 

detachment of the LEV has been observed, the spreading of the LEV has proved to 

be very beneficial. This is accompanied by an increasing suction that results in a lift 

increase. However, once the LEV bursts and the flow becomes fully separated, the 

performance of the wing suddenly deteriorates.   

The flapping parameters imposed in this case have not allowed us to produce any 

thrust since even at the optimum point of the cycle, the drag remained positive. We 

will later perform several parameter studies in order to try and obtain a thrust 

producing case.   

Time variation of the chordwise pressure coefficient distribution 
(0% span)  [AR2_a08deg_k0.25_0.6ג]
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Figure 3.14 : Pressure distributions throughout the period (- CP values) 

3.4.2 Tip effects 

In this paragraph the three-dimensional effects will be investigated based on the 

same simulation case. The aim is to highlight the spanwise variations and eventually 
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relate them to the evolution of the tip vortices that develop. Let us first of present the 

contours of vorticity magnitude that were obtained in the different planes that were 

shown on Figure 3.8 b). These are given at four different times during the cycle: t = 

0, T/4, T/2 and 3T/4 in Appendix B. 

We recall that the formation of the wing tip vortex is directly related to the 

generation of lift. Indeed, as lift is produced the transverse pressure gradients impose 

an additional three-dimensional component of velocity in the region surrounding the 

tips. Consequently, a concentration of streamwise vorticity appears. We should note 

that referring to ‘streamwise’ vorticity indicates that the flow rotates around the x 

axis.  Its formation can be observed on the vorticity contours of Appendix B at all 

times during the cycle as the streamwise vorticity is one of the components of the 

vorticity vector that contributes to the total vorticity magnitude. In the plane located 

at a third of the chord length, it is just starting to appear. It is possible to distinguish 

the ‘streamwise’ vorticity induced by the tip vortices which rotates around the x axis, 

from the ‘spanwise’ vorticity related to the boundary layer separation which rotates 

around the z axis. This is done by plotting these components of vorticity separately. 

For instance, we have represented them on Figure 3.15 at times t = 0 and t = 3T/4 in 

the plane positioned at the trailing-edge.   

 

Figure 3.15 : Vorticity components in the TE plane a) spanwise vorticity at t = 0 b) 
streamwise vorticity at t = 0 c) spanwise vorticity at t = 3T/4 b) 
streamwise vorticity at t = 3T/4 
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Thanks to these pictures we can now discern the regions of spanwise vorticity from 

those dominated by streamwise vorticity. As expected, the rotation of the flow at the 

tip of the flat-plate occurs streamwise because of the strong presence of the tip vortex 

as shown on pictures b) and d). The boundary layer very close to the surface of the 

plate, at the trailing-edge, appears to be sucked in towards the tip by the vortex. A 

small and weaker region exists above the wing indicating the presence of three-

dimensional effects. The spanwise contours of pictures a) and c) are representative of 

the boundary layer separation that takes place in the streamwise direction since it 

results in a recirculation region. Now that we are able to distinguish between the two 

vorticity components, it will be easier to comment on the series of pictures of 

Appendix B, taken for the vorticity magnitude. Indeed, these are particularly useful 

since the size and effect of the tip vortex on the spanwise vorticity appears on the 

same image.   

As we have just observed on the streamwise contours of Figure 3.15, the vortex is 

initially fed by the wing boundary layer vorticity. By comparing the contours of 

vorticity magnitudes in the planes positioned at 33%, 66% of the chord and at the 

trailing edge, we observe that it grows in size as it progresses downstream. Indeed, 

the development of the tip vortex is due to the rolling-up of additional shear layer 

vorticity that causes the spiral to increase as it convects downstream. In the wake of 

the wing, we can see from the contours in the planes at 0.5, 1 and 2 chord lengths 

from the trailing-edge that as the vortex continues to grow the spirals smooth 

together under the action of turbulent and viscous diffusion. Eventually, the vortex is 

diffused and decays as time passes and the downstream distance lengthens. We have 

found that the vortex starts dissipating right after the rolling-up and merging of the 

layers is complete. The time and length during which the vortex is quasi steady and 

homogeneous is very limited. This may be related to the grid that was used to resolve 

the flow since we recall that to limit its size the meshes in the wake of the flat-plate 

had to rapidly increase in size. This resulted in a relatively coarse mesh in the 

downstream direction which is most probably accelerating the diffusion of the 

vortices. In our case, we observe that already at four chord lengths from the trailing-

edge the vortices have considerably weakened in concentration as the vorticity levels 

are much lower. We suppose that a few chord lengths later these will have totally 

dissipated and disappeared.  
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We may now make a few comments on the evolution of the tip vortex throughout the 

cycle. Obviously its size and circulation depend greatly on the motion of the flat-

plate at all times. It appears from the vorticity contours of Appendix B that the vortex 

is larger and more disorganized at t = 0 and 3T/4. Between these two times the flat-

plate is descending and pitching up. This agitated behavior is a result of the fully-

separated turbulent boundary layer present on the upper side of the wing during this 

portion of the motion related to the bursting of the LEV beyond the trailing-edge as 

discussed previously. We could observe on Figure 3.9 that the vortex trajectory in the 

chordwise direction experienced some spatial excursions caused by the flat-plate’s 

oscillations, although rather limited due to the low reduced frequency. As opposed to 

these movements in the transverse direction, we see from these contours that the 

spanwise location of the vortex centre remains almost stationary as it evolves 

downstream. Four planes have been positioned in the symmetry plane, at 50% and 

75% of the span and at the flat-plate’s tip.  

 

Figure 3.16 : Spanwise vorticity contours at t = 3T/4 – case A a) symmetry plane b) 
plane at 50% span c) plane at 75% span d) tip plane 

The aim is now to better understand the effect that the tip vortices have on the flow 

structure and on the aerodynamic performance of the wing. The spanwise vorticity 

contours are represented on Figure 3.16. The rotational movement is therefore related 

to the behavior of the flat-plate’s boundary layer. It appeared that for t = 0 and 3T/4 

at which the flow was shown to be fully-separated in the symmetry plane, it 
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progressively reattaches from the trailing-edge as we move towards the tip. The size 

of the LEV in being reduced and we see on picture d) that it has totally disappeared 

in the tip plane.  

As we observe the corresponding pressure distributions on Figure 3.17, the 

reattachments are clearly visible since the flatter portion of the curve shortens as the 

–CP values decrease to reach the trailing-edge value much sooner along the chord. At 

the ‘100% span’ plane at the tip the curve shift upwards as the –CP values 

considerably increase, indicating the presence of the tip vortex.  

From these observations, we deduce that the effect of the tip is to limit the strength 

and growth of the laminar separation bubble nearest it, as the tip vortex energizes the 

flow and reduces the size of the laminar separation bubble. 

Spanwise variation of the chordwise pressure coefficient distributions 
at t = 3T/4  [AR2_a08deg_k0.25_0.6ג]
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Figure 3.17 : Evolution of the pressure distributions spanwise at t = 3T/4 – case A 

These observations highlight the positive impact that the tip vortex may have on the 

flow. Indeed, in these first few observations related to the three-dimensional effects 

that develop, we have seen that the tip vortex helps to control the spreading of the 

LEV by limiting its extension to the downstream. Its effect increases progressively 

from the symmetry plane towards the tip, while the amount of separation reduced 
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with the growth rate of the LEV. This leads to a reduction of the pressure drag. 

However, we are not yet able to conclude on the overall contribution of the tip vortex 

as it also has negative aspects. Indeed, the induced drag will be considerably 

increased which might deteriorate the global aerodynamic performance of the wing 

by inducing energy losses. In addition, it might also impact on the lift distribution by 

causing sharp gradients towards the tips that cause the flow field to present 

significant hysteresis during a cycle of oscillation. By performing parametric studies, 

we will further investigate these three-dimensional effects and try to answer these 

questions.    

3.5 Parameter Study 

3.5.1 Effect of the aspect-ratio 

Considering that MAVs are to maneuver and move in unsteady environments 

combined to the requirements in terms of lift for the weight of the structure to be 

balanced, their aspect ratio (AR) are usually smaller than 2. The aim in this 

paragraph is to compare the results obtained for two different AR values of 1 and 2. 

The simulation parameters remain the same, only the AR is changed. These are fixed 

to the following values:  
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Let us first of all compare the behavior of the lift and drag coefficients throughout 

the cycle represented on Figure 3.18 below.  

 

Figure 3.18 : Evolution of the lift and drag coefficients according to the aspect ratio 
– case A & B a) CL Vs. time b) CD Vs. time. 
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On image a) it appears that the lift curve obtained for an AR of 1 shifts down with 

respect to the values obtained when the AR is equal to 2.  As for the drag produced 

plotted on image b) it is less throughout most of the cycle for a value of 1. To explain 

why the aerodynamic coefficients behave in such a way, let us first of all refer to the 

vorticity magnitude contours that highlight the effect of the tip vortex. These are 

represented in the plane positioned at the trailing-edge of the flat-plate for time t = 

3T/4. As we compare pictures a) and b) of Figure 3.19, we observe that the size and 

strength of the core of the tip vortex is not affected by the aspect ratio. However, its 

influence on the wing surface increases as the AR reduces. Indeed, the portion of the 

span under the direct influence of the vortex is larger and therefore the lift generated 

decreases. However a smaller AR appears to be advantageous in terms of drag. 

Indeed, the tip vortex as mentioned previously tends to reduce the growth of the 

LEV, thus delaying the bursting of the laminar separation bubble. Its effect on the 

chordwise flow field diminishes as we get further from the tip. Thus, as the span 

reduces its influence is stronger. This is confirmed by the spanwise vorticity contours 

represented on Figure 3.20 at the same time 3T/4 in the plane located at 50% of the 

span.  

 

Figure 3.19 : Vorticity contours in the TE plane at t = 3T/4 a) AR = 2 – case A b) 
AR = 1 – case B 

 

Figure 3.20 : Vorticity contours in the plane at 50% span at t = 3T/4 a) AR = 2 – 
case A b) AR = 1 – case B  

For an AR of 1 represented on Figure 3.20 b), we see that although the distance from 

the tip is less since the plane is positioned relative to the span of the wing, the LEV is 

smaller compared to Figure 3.20 a) where the AR equals 2. This continues to be the 
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case up to the symmetry plane as illustrated on the velocity vector fields of Figure 

3.21 at t = 3T/4.  

 

Figure 3.21 : Velocity vectors in symmetry plane at t = 3T/4 a) AR = 2 – case A b) 
AR = 1 – case B 

By comparing pictures a) and b), it clearly appears that the tip vortex affects the flow 

up to the symmetry plane. Indeed, in both cases the flow is separated over the entire 

flat-plate but the size of the separation region for an AR of 1 has been further 

reduced by the tip vortex. These observations were based on a single time during the 

cycle. To complete this study let us compare the chordwise pressure distributions 

between the two AR at several times throughout the cycle in order to generalize our 

previous comments. The –CP curves are represented on Figure 3.22 further below.  

 

Figure 3.22 : Effect of the AR on the pressure distributions in the symmetry plane a) 
AR = 2 – case A b) AR = 1 – case B     

These are confirmed since they hold whatever the moment in the cycle. Indeed, as 

we compare the curves at a given time, the AR of 1 will always present lower values 

and shorter laminar separation bubbles. This explains the behavior of the drag 

coefficient for which a lower AR reduces its fluctuation amplitudes. As a result, for 

an AR of 1, the CD values are generally lower throughout the majority of the period.  
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Now that the effect of the AR has been investigated we may present the thrust 

coefficients that were obtained for the two AR under consideration. Table 3.3 gives 

their values along with the power input coefficients.  

Table 3.3: Effect of the AR on the thrust and power input coefficients 

AR CT CP_IN 

1 -0,03983 0,038 

2 -0,04515 0,055 

As expected, the reduction in drag that has been observed for a smaller AR leads to 

an improvement in terms of thrust. Of course, we cannot really speak of thrust since 

its value is negative in correspondence to a drag-producing case. However, there is a 

slight improvement since it increases from approximately -0.045 to - 0.04 which 

corresponds to 11% reduction. We cannot speak of propulsive efficiency in any of 

cases A and B since they are both drag-producing cases. However we do notice that 

the power input coefficient representing the work necessary to impose the flapping 

motion is much higher since the aspect ratio doubles, with a 45% increase when AR 

goes from 1 to 2.    

We may conclude by saying that this study has proved that the tip effect is highly 

dependent on the wing aspect ratio. Under the present conditions, it appears to be 

more advantageous to have a lower aspect ratio due to the positive effect of the tip 

vortex on the flow-field. These results may question the negative effect of the tip 

vortices and their possible role on the force production capability.  However this 

cannot be generalized as we know that the tip vortex is often accompanied by 

important energy losses that can result in the deterioration of the efficiency of a 

flapping wing mechanism.   

3.5.2 Effect of the mean angle of attack 

In this study, the aim is to investigate the effect that the mean angle of attack has on 

the flow structure and the performance parameters. We will be comparing the 

reference simulation, case A, for which the mean incidence between the incoming 

flow and the flat-plate was fixed to 8 degrees, with a lower value of 4 degrees, 

implemented in case C. In correspondence to the future experimental studies, the 
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aspect ratio is fixed to 2 for all simulations, and the other parameters are kept 

constant:  
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On Figure 3.23 the aerodynamic coefficients are given. As we can see, reducing the 

mean flow angle from 8 to 4 degrees shifts the lift and drag curves downwards.  

 

Figure 3.23 : Evolution of the lift and drag coefficients according to the mean flow 
angle – case A & C a) CL Vs. time b) CD Vs. time.  

In order to understand why this loss in lift and reduction of the drag force occur, we 

first refer to the spanwise vorticity contours of Figure 3.24. We compare the two sets 

of images at t = 0 in the four different spanwise locations. Put side by side it is 

obvious that the simulation with 0α  equal to 4 degrees generates much less vorticity. 

We may deduce that the boundary layer is lightly to separate much less easily. This 

also appeared to be the case at times T/4, T/2 and 3T/4 although we have not 

included those results to the report and we deduce that this remains the case 

throughout the entire period. The same observations can be made as we compare on 

Figure 3.25 the contours of vorticity magnitude in the spanwise direction this time. 

On these, time t = 3T/4 is considered. The tip vortex at 4 degrees is smaller in size 

since less streamwise vorticity is present in the tip region.  

We recall that at this moment of the motion the flat-plate is descending and for 8 

degrees the LEV had reached the trailing-edge. This is not yet the case for 4 degrees 

since the size of the laminar separation bubble has been reduced as we will now 

illustrate. 
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We recall that the formation of the LEV starts at time T/4 when the wing is going up 

and begins pitching down. It is after it reaches its highest position at time T/2, as the 

downstroke part of the motion begins, that the LEV starts spreading downstream.  

 

Figure 3.24 : Vorticity contours in the chordwise direction at t = 0 a) Sym. plane, 8° 
- case A b) 50% span plane, 8° - case A c) 75% span plane, 8° - case A 
d) Tip plane, 8° - case A a) Sym. plane, 4° - case C b) 50% span plane, 
4° - case C c) 75% span plane, 4° - case C d) Tip plane, 4° - case C  

 

Figure 3.25 : Vorticity contours in the spanwise direction at t = 3T/4 a) 33% chord 
plane, 8° - case A b) TE plane, 8° - case A c) 1 chord after TE plane, 
8° - case A d) 33% chord plane, 4° - case C b) TE plane, 4° - case C c) 
1 chord after TE plane, 4° - case C 

On Figure 3.26 we have represented the velocity vector field at this moment, in the 

symmetry plane for both mean flow angles.  

 

Figure 3.26 : Velocity vectors at t = T/2 a) α0 = 4° - case C b) α0 = 8° - case A 
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By comparing the two pictures it is obvious that the LEV is considerably smaller for 

0α  equal to 4 degrees which confirms our previous remarks based on the streamwise 

vorticity levels. We may conclude that it is the reduction in size of the laminar 

separation bubble, which reduces the suction induced by the pressure difference 

between the upper and lower surfaces that leads to the lift loss observed. The drag 

curve shifts downwards since both the pressure drag, due to less boundary layer 

separation, and the induced drag, caused by smaller tip vortices, are reduced.      

Figure 3.27 representing the chordwise pressure distributions plotted at various times 

during the oscillation confirms that at any moment the separation distance from the 

leading-edge is reduced as 0α  decreases since the flatter portion of the curves is 

shorter as the – CP values for all of them starts decreasing sooner along the chord 

length.  

 

Figure 3.27 : Effect of the mean flow angle on the pressure distributions in the 
symmetry plane a) α0 = 4° - case C b) α0 = 8° - case A 

The effect of the mean flow angle on the performance parameters is finally 

inspected. The thrust and power input coefficients are given in Table 3.4. Due to the 

reduction in drag accompanied by the lower mean flow angle, the thrust coefficient is 

improved although its overall value remains negative and thus the simulation case C 

still results in a drag-producing system. The value goes from -0.045 to -0.01 for 8 

and 4 degrees respectively corresponding to a 78% drag reduction. Because of the 

mean angle reduction and the reduction of the lift available, the power input 

necessary to impose the motion increases by 20%.  
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Table 3.4: Effect of the mean flow angle on the thrust and power input coefficients 

α0 (degrees) CT CP_IN 

4 -0,010 0,044 

8 -0,045 0,055 

We may conclude by saying that a lower mean flow angle compared to 8 degrees has 

shown to be much more advantageous since the thrust coefficient is improved. This 

is related to the fact that an incidence of 8 degrees, especially for a flat-plate 

geometry that tends to easily separate, is certainly too high and results in an 

excessive amount of separation at various moments of the cycle. This is actually 

visible on Figure 3.23 since the difference in time between the two CL and the two 

CD curves does not evolve linearly. This proves that at 8 degrees the aerodynamic 

performance of the flat-plate has already started to deteriorate because of excessive 

viscous effects, as the LEV and induced separations become dominant. A value of 4 

degrees has shown to be more appropriate as it reduces the large separation that led 

to important drag. Although the drag curve has moved downwards and that for a 

short time towards the end of the spreading of the LEV downstream, negative values 

were obtained, this was not sufficient to yield into a thrust producing wing. Indeed, 

the creation of thrust instead of drag during the portion of the curve below zero was 

not long enough. In addition, further simulations are necessary to determine the 

optimum mean flow angle as it might be lower than 4 degrees. There is also a 

possibility that this value appears to be within 4 and 8 degrees since the excessive 

separation caused by the flat-plate geometry at 8 degrees might be eliminated before 

reaching 4 degrees such that the advantages of inducing incidence to the motion start 

emerging.   

3.5.3 Effect of the amplitude ratio 

The objective in this paragraph is to discuss about the influence that the amplitude 

ratio has on the results. We recall that this parameter measures the ratio between the 

pitch and plunge amplitudes. However, to make it non-dimensional it incorporates 

the reduced frequency and is defined as: ( )1 / 2khλ α= . In this study three different 

amplitude ratios will be compared for values equal to 0.4, 0.6 and 0.75 while all the 

other parameters are kept constant and correspond to the following:  
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Table 3.5: Pitch amplitudes related to each 
amplitude ratio 
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To modify the amplitude ratio we decide to only change one parameter while the 

others are fixed. Thus, the non-dimensional plunge amplitude h does not change and 

remains equal to 0.5 such that it is the pitching amplitude 1α  that is modified. The 

values are summarized in Table 3.5 above.  

The evolution of the lift and drag coefficients are shown on Figure 3.28. On one 

hand, the trend observed for the lift force is common to all ג values but as it increases 

the maximum amplitudes observed decrease which yields into generating less lift 

across the cycle. This is due to the increasing pitching amplitude that causes stronger 

flow separation, resulting in a diminished lift level. On the other hand, the trend 

observed for the drag coefficient is modified by the various values of ג. Between 0.4 

and 0.6 for instance, the drag is reduced in some portions of the oscillation while it 

increases in other parts. During the upstroke from time t = 0 to T/2, CD is much less 

whereas during the downstroke it is increased.  

 

Figure 3.28 : Evolution of the lift and drag coefficients according to the amplitude 
ratio – case D, E & A a) CL Vs. time b) CD Vs. time.  

As for the difference between 0.6 and 0.75 it is the opposite, drag is higher during the 

first half of the period and lower in the second. We will later consider the overall 

effect of the amplitude ratio on the thrust coefficient but let us first of all try and 

understand the drag behavior by comparing the results obtained.  

 
Amplitude 

ratio Pitch amplitude: α1 (º) 

Case D 0,4 5,7 

Case A 0,6 8,6 

Case E  0,75 10,7 
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During the first quarter of the cycle, the reattachment seams to occur much faster for 

lower values of λ, as the drop experienced by the drag force is considerably steeper. 

We recall that reattachment is made possible by the ascending motion of the wing 

that reduces the effect of the pitching up and allows the boundary layer to reattach. If 

in addition the pitching amplitude is reduced this has a very desirable effect on this 

phase of the oscillation as it facilitates reattachment since the pressure difference 

between upper and lower surfaces is less. Indeed, as we compare the pressure 

distributions on Figure 3.32 a), b) and c) at the intermediate time T/6, we observe 

that the pressure difference decreases with the amplitude ratio, thus generating less 

drag. As ג is increased from 0.6 to 0.75, the drag does not decrease monotonically but 

first rises and then drops down to a much higher value than for the other two cases at 

the same time T/4. We deduce that reattachment of the boundary layer is not as 

straightforward due to the higher pitching rate. Although the flat-plate is ascending, 

the rate at which it plunges needs to progressively increase to counter the faster 

rotational movement of the wing upwards. This is achieved at the middle of the first 

quarter cycle and initiates the reattachment accompanied by the reduction in drag.   

In order to investigate the effect of the amplitude ratio on the formation of the tip 

vortex, we have plotted the streamwise vorticity contours in the trailing-edge plane 

for all three cases. These are compared on Figure 3.29 at time t = 0.  

 

Figure 3.29 : Streamwise vorticity contours at t = 0 in the TE plane a) λ = 0.4 – case 
D b) λ = 0.6 – case A c) λ = 0.75 – case E.  

We observe that the strength and size of the vortex does not vary with λ and we 

conclude that the changes obtained between cases A, D and E are not related to the 

three-dimension effects.    

At the contrary, in the second quarter of the cycle, the reduction of the amplitude 

ratio has a negative effect. We recall that this phase corresponds to the formation of 

the LEV for which the drag increases at a much faster rate when ג equals 0.4 

compared to 0.6. The –CP values at the intermediate time T/3 indicate that the 
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development of the LEV is not as advanced for a value of 0.4. Indeed, the increase in 

amplitude ratio from 0.6 to 0.75 confirms this remark since we observe that at the 

same time the pressure differences are more important at 0.75 since they extend to a 

larger portion of the wing, characteristic of a larger separation. For this value, the 

drag coefficient actually continues to decrease directly after the reattachment phase 

and therefore drops instead of rising between times T/4 and T/2. The pitching down 

movement seems to be fast enough to counter the production of drag related to the 

formation of the LEV. The growth of the LEV is faster as observed on Figure 3.30 

that illustrates its size at time T/2 for all three amplitude ratio values. This is 

confirmed by the pressure distributions of Figure 3.32 taken at the same time since 

the flatter portion of the graphs enlarges as the reattachment takes place further down 

along the chord length.   

 

Figure 3.30 : Velocity vector flow fields in the LE region of the symmetry plane at t 
= T/2 a) λ = 0.4 – case D b) λ = 0.6 – case A c) λ = 0.75 – case E.  

Throughout the third quarter of the oscillation during which the drag reduces as the 

LEV extends, a higher amplitude ratio is very advantageous as the drop in drag gets 

steeper due to the faster pitching down of the flat-plate. In the final phase of the 

oscillation between times 3T/4 and T, the pitching up of the wing continues to 

increase the separation and leads to excessive amounts causing all three CD curves of 

Figure 3.28 b) to increase. The flow at time 3T/4 is fully separated in all cases as 

illustrated on Figure 3.31 where the velocity vector flow fields are plotted in the 

symmetry plane. These indicate, in agreement with the higher drag coefficients 

observed for decreasing ג values that separation gets more important.   

 

Figure 3.31 : Velocity vector flow fields in the symmetry plane at t = 3T/4 a) λ = 0.4 
– case D b) λ = 0.6 – case A c) λ = 0.75 – case E.  
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However, as the amplitude ratio decreases, the rate of drag increase is less for t 

within 3T/4 and T since the lower pitching amplitude results in less incidence and 

lower pitching rates at a given time. For instance, we observe that a value of ג equal 

to 0.4 allows the reattachment to start sooner since the drag begins to decrease 

towards the middle of this last time interval.    

 

 

Figure 3.32 : a) -CP values in sym. plane,  λ = 0.4 – case D b) -CP values in sym. 
plane,  λ = 0.6 – case A c) -CP values in sym. plane,  λ = 0.75 – case E 
d) Effect of the amplitude ratio on the thrust coefficient.     

The global effect of these drag fluctuations on the thrust coefficient is plotted on 

Figure 3.32 d) as a function of the amplitude ratio. In any case the simulations all 

result in a drag-producing system however under these conditions there appears to be 

an optimum value, allowing the drag to be minimized.  

Table 3.6: Effect of the amplitude ratio on the thrust and power input coefficients 

gama ג CT CP_IN 

0,40 -0,04701 0,069 

0,60 -0,04515 0,055 

0,75 -0,04933 0,045 
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Indeed, the best of the three values in terms of thrust appears to be 0.6 as shown in 

Table 3.6 above. To precisely determine an optimum value, further calculations are 

needed. In terms of power input necessary to support the motion, it logically reduces 

as the pitching amplitude increases. 

3.5.4 Effect of the reduced frequency 

The last parameter study that was performed focused on the effect that the reduced 

frequency has on the results. Four different values were compared corresponding to 

0.15, 0.25, 0.35 and 0.5, while all the other parameters were fixed to the following 

values:  
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We note that the pitching amplitude also had to be modified since it is the non-

dimensional ratio of the pitching and plunging amplitudes that we wish to maintain 

constant. We start by observing the effect that the parameter has on the lift and drag 

coefficients from Figure 3.33.   

 

Figure 3.33 : Evolution of the lift and drag coefficients according to the reduced 
frequency – case F, G, H & A a) CL Vs. time b) CD Vs. time.   

As we can see, the lift force generated increases with k all through the cycle due to 

the increased pitching amplitude, whereas the drag penalty considerably decreases. It 

is clearly much more advantageous to oscillate the wing at a faster frequency but let 

us now try and understand the reasons of this improvement in performance. On 

Figure 3.34 are represented the spanwise vorticity contours that were taken in the 

symmetry plane at time t = 0.  These indicated that the vortical wake is highly 

dependent on the reduced frequency. As discussed previously, the wake does not 
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exhibit any distinctive Von Karman street pattern however the vorticity pattern just 

downstream of the wing shoes that the vertical deflections increase with k as the 

wavelengths of the oscillations get smaller.    

 

Figure 3.34 : Vorticity contours in the symmetry plane at t = 0 a) k = 0.15 – case F 
b) k = 0.25 – case A c) k = 0.35 – case G d) k = 0.5 – case H   

We may conclude that the unsteadiness present in the flow is progressively 

increasing as k varies from 0.15 to 0.5.  

 

Figure 3.35 : Contours of vorticity magnitude in the TE plane at t = 0 a) k = 0.15 – 
case F b) k = 0.25 – case A c) k = 0.35 – case G d) k = 0.5 – case H. 

Let us now inspect the contours of vorticity magnitude in the spanwise direction in 

order to highlight the effect of the reduced frequency on the tip vortex. The pictures 

of Figure 3.35 are taken in the plane positioned at the trailing-edge of the flat-plate at 

time t = 0 for which the flow is fully-separated in the symmetry plane whatever the 

reduced frequency. Considering that the main contribution to the vorticity magnitude 

in the symmetry plane is the spanwise vorticity related to the boundary layer 

separation, these pictures suggest that the amount of separation at that time in the 
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symmetry plane increases with the reduced frequency which is confirmed by the 

velocity vector flow fields represented on Figure 3.36 down below. 

 

Figure 3.36 : Velocity vector flow fields in the symmetry plane at t = 0 a) k = 0.15 – 
case F b) k = 0.25 – case A c) k = 0.35 – case G d) k = 0.5 – case H.    

Indeed, the size of the separation bubble becomes larger and larger with the reduced 

frequency. This first observation explains why the level of drag at the very beginning 

of the cycle gets larger at higher frequencies. By comparing the levels of vorticity 

magnitude at the tips on Figure 3.35, we can see that they increase with k. This is 

made obvious on the following Figure 3.37, as the streamwise vorticity alone 

appears, thus highlighting the progressive increase in size of the vortex core. In terms 

of effect on the spanwise vorticity variation, it becomes larger and larger along with 

the vortex size. On Figure 3.35 d) we see that the variations in vorticity magnitude on 

the top surface of the flat-plate, mainly representing the spanwise vorticity 

component, occur much faster as k increases.   

 

Figure 3.37 : Streamwise vorticity in the TE plane at a = 0 a) k = 0.15 – case F b) k 
= 0.25 – case A c) k = 0.35 – case G d) k = 0.5 – case H.   
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Indeed, the portion of the wing under the effect of the tip vortex is enlarged, thus 

further reducing the fully separated flow region.  

To confirm these observations we compare on Figure 3.38 the levels of vorticity 

magnitude, at the same time t = 0 for k equal to 0.15 and 0.5 in three different planes, 

located in the symmetry plane and at 50% and 75% along the span. At these 

locations, since the vorticity is mainly rotating spanwise, these pictures are good 

indicators of the amount of boundary layer separation. As we just commented, the 

separation is larger in the symmetry plane for k = 0.5 however it appears 

considerably reduced in planes located at 50% and 75% of the span width. Already at 

50% the separation bubble is reattached which is not yet the case if k equals 0.15. At 

75% both are reattached but the LEV is much smaller for 0.5.    

 

Figure 3.38 : Contours of vorticity magnitude at t = 0 a) sym. plane, k = 0.15 – case 
F b) plane at 50% span, k = 0.15 – case F c) plane at 75% span, k = 
0.15 – case F d) sym. plane, k = 0.5 – case H e) plane at 50% span, k = 
0.5 – case H f) plane at 75% span – k = 0.5 – case H.    

Although the size of the separation region was shown to increase with k at time t = 0, 

this only holds for a small portion of the cycle around the very bottom plunge 

position. For all the rest of the period, the flow behaves in the opposite way. Indeed, 

at all times the flow presents less and less separation, due to the shortening of the 

wave length of the flapping motion combined to the enlargement of the tip vortex. 

On Figure 3.39, the velocity vector flow fields are represented in the symmetry 

plane.  
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Figure 3.39 : Velocity vector flow fields in the symmetry plane a) t = T/2, k = 0.15 – 
case F b) t = T/2, k = 0.25 – case A c) t = T/2, k = 0.35 – case G d) t = 
T/2, k = 0.5 – case H e) t = 3T/4, k = 0.15 – case F f) t = 3T/4, k = 0.25 
– case A g) t = 3T/4, k = 0.35 – case G h) t = 3T/4, k = 0.5 – case H 

 

On pictures a) to d), at t = T/2 which is characterized by the presence of the LEV that 

started forming around T/4, we observe that the size of the laminar separation bubble 

decreases dramatically from k equal to 0.15 to 0.5. The same remark can be made as 

we observe the pictures from e) to f) taken at time t = 3T/4. For k equal 0.15, the 

LEV has spread beyond the trailing-edge and the flow is fully separated whereas for 

0.25 it has just reached the end of the flat-plate. For higher values, the flow 
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reattaches before the end, as the spreading of the LEV has been controlled by the 

increasingly large tip vortex associated to a smaller wave length. The reduction of 

the separation area explains the lower drag levels observed for k equal 0.35, which 

are further reduced when k equals 0.5. 

All these observations can also be made based on the comparison of the pressure 

distributions throughout the cycle, plotted on Figure 3.40.  

 

Figure 3.40 : Pressure distributions in the symmetry plane a) k = 0.15 – case F b) k 
= 0.25 – case A c) k = 0.35 – case G d) k = 0.5 – case H.   

These also indicate that at all times, the extent of the separation region along the 

chord decreases as the reduced frequency gets higher.  We see this from the length of 

the flatter portion of the curve. The second remark we may formulate is that while 

the values decrease sooner along the chord, at the contrary the pressure differences 

between upper and lower surfaces get more and more important. This is a sign of the 

augmentation of the suction force that causes the progressive gain in lift as k 

increases. 
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Let us now investigate the effect of the drop in drag on the thrust coefficient values. 

These are summarized in Table 3.7 which also provides the power input coefficient 

and the propulsive efficiency when it can be defined.  

Table 3.7: Effect of the reduced frequency on the performance parameters 

 
 
 
 
 
 

The thrust was found to be negative even for k equal 0.35 since the overall drag value 

remained positive. We deduce that up to then all the configurations were drag-

producing. However, for a value of 0.5, integrating the drag force throughout the 

period finally provides a force in the direction of motion of the flat-plate, thus 

positive and equal to 0.024. Consequently, the system can be qualified as thrust-

producing. A value can now be attributed to the propulsive efficiency which up to 

then did not have any meaning for negative thrust. Of interest in this parameter, is the 

necessary power input that appears at the denominator. It increases as the work 

needed to sustain the flapping motion gets larger when k rises. This is partly 

responsible for the very low efficiency of 0.095 that was calculated.    
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Figure 3.41 : Effect of the reduced frequency on the thrust coefficient 

To conclude we may say that a minimum reduced frequency must be exceeded to 

produce thrust instead of drag. On Figure 3.41 is plotted the evolution of the thrust 

coefficient as a function of the reduced frequency.   

reduced frequency k CT CP_IN ŋ (efficiency) 
0,15 -0,062 0,018 x 
0,25 -0,045 0,055 x 
0,35 -0,022 0,115 x 
0,5 0,024 0,254 0,095 
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This last parametric study has proved to be very promising since the thrust increases 

approximately linearly with the reduced frequency. We may conclude that shortening 

the wave length of the flapping motion is very beneficial and should be further 

applied in order to obtain higher thrust values and more efficient systems.   

3.6 Conclusions 

Based on the series of results that were collected and the discussions which took 

place for each of the parametric studies, let us summarize the important points and 

conclude. It appears that the range of parameters that were used for this project did 

not lead to many thrust-producing configurations. The cases of drag-generating 

motion were characterized by a strong flow separation giving rise to generation of 

vortices at the leading-edge which then spread across the entire upper surface. 

Eventually, the bursting of the separation bubble led to a fully separated flow for part 

of the cycle. For a reduced frequency of 0.25, these adverse effects could be limited 

by imposing a smaller aspect ratio of 1 and a reduced mean flow angle of 4 degrees. 

In the first case, it is thanks to the enlargement of the tip vortex relative to the wing 

span, that the spreading of the LEV across the flat-plate could be further controlled 

and limited to a smaller portion of the plate. As for the second case, the adverse 

pressure gradients were weakened by reducing the mean incidence and thus slowing 

down the extension of the separation bubble downstream. The flat-plate geometry 

was proved to be very sensitive to the mean angle of attack of the flow. Due to the 

absence of bluntness, the flow is very lightly to separate at the leading-edge. 

However, we have shown that the growth and extent of the separation should be 

limited by controlling the parameter α0. It is critical that its value is contained in the 

linear portion of the lift and drag curves as a function of the incidence, without which 

the aerodynamic performance of the flapping wing deteriorates rapidly, as it was the 

case for a value of 8 degrees. In terms of amplitude ratio, comparing the results 

obtained for several values indicated the existence of an optimum. Finally by varying 

the reduced frequency, this last parametric study showed that the range of variation, 

where k was contained within the interval [0.15 - 0.5] and especially the reference 

value of 0.25 chosen for this numerical work, in correspondence to future 

experimental studies, were not high enough. Indeed, as it was increased to the upper 

limit 0.5, the performance attained by the flapping system was considerably 
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improved since a thrust-producing motion appeared. Reducing the period of the cycle 

resulted in limiting the flow separation which did not extend so much to the 

downstream. In addition, the spreading of the LEV was further reduced by the 

formation of a stronger tip vortex. Consequently, the boundary layer resists better to 

adverse pressure gradients which may allow higher mean flow angles in order to 

further support the motion by generating a larger average lift force. The behaviour of 

the thrust coefficient with the reduced frequency is very promising since the trend 

indicates an ever increasing thrust force as k gets higher. We should bear in mind of 

course that as a propulsive system, the conditions of high thrust should be combined 

to high efficiency. Unfortunately, the present simulations do not permit us to draw a 

behaviour for the propulsive efficiency since not enough data was collected for 

positive thrust values. However we may acknowledge the fact that it should at first 

increase up to an optimum, whose value depends on all flapping parameters, and then 

start to drop when much higher thrust values are reached. Considering all the 

observations and conclusions that could be drawn from the present results, we may 

conclude by saying that it is necessary to perform further calculations which would 

take place at higher reduced frequencies. In preparation to these additional runs, we 

may refer to a few references. In the work conducted by M. S. Triantafyllou et al. 

[48] at a Reynolds number of 3000, the development of a reversed von Karman street 

inducing positive thrust, was best achieved for a Strouhal number between 0.25 and 

0.35. The optimum propulsive efficiency was also contained within this Strouhal 

range. Our computations being based on the reduced frequency, an equivalent 

interval was calculated and corresponds to k within [0.8 – 1.1]. The thrust coefficient 

that was obtained is plotted as a function of St on Figure 3.42 a). It indicates that in 

their case, drag-producing motions were obtained for Strouhal numbers below 0.1 for 

which k equals 0.31. This transition point is close to ours and explains why our 

simulations mainly resulted in negative thrust values. The experimental study made 

by K. D. Jones [19] led to a wake classification based on observed vortex positions 

represented on Figure 3.42 b).  
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Figure 3.42 : a) Experimental data for the average thrust coefficient of an airfoil [48] 
b) Wake classification based on observed vortex positions [19] 

Type 1 and 3 indicate drag and thrust production respectively, whereas type 2 is the 

dividing line between the two, yielding into neither thrust nor drag. Type 4 shows 

cases for which both thrust and lift were produced.  This plot also incorporates the 

effect of the plunge amplitude h. For a value of 0.5 that was assigned in our 

calculations, k had to exceed 1 to produce thrust. However, in this study the reduced 

frequency is defined with a factor of 2 compared to our definition and therefore 

brought back to our scale of reference k had to exceed 0.5. This is very close to our 

result since at this value, we have obtained a very low thrust which has just started to 

become positive, indicating a near transition from drag to thrust production. 

Although these other studies were made at different Reynolds numbers and used 

different geometries, the predominance of the reduced frequency as a governing 

parameter allows us to consider them as reference. While extending this project, 

these results combined to other references will therefore guide us for choosing a 

more appropriate interval of variation for the reduced frequency.                   
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APPENDIX A 

 
 
 

Author Type of Study Airfoil Re k h kh Observations 

Garrick [15] Incompressible Potential 
flow  

Flat plate 
theory 

x x x x 4 :
4 :

Tif k C kh
if k additional dependence on k

α∗ >
∗ <

  

Tuncer and 
Platzer [20] 

Navier-Stokes NACA 
0012 

3 x 106 0.2 – 3 0.1 – 0.4 0.02 – 
1.2 

[ ]

[ ]

_ 0.72, 0.01 0.2; 0.4

33% & 40%
0.75; 0.2

P MAX Tmean

P Tmean

C k h

tandem C
for k h

η

η

∗ = = = =

∗ ⇒

= =

      

Jones et al. 
[21] 

2D incompressible 

unsteady panel method 

NACA  

0012 0015 
0009 0003 

x 0.01 - 10 0.1 – 0.4 

 

0.001 – 4 [ ]
[ ]

_

_

0.519, 2.13 4; 0.4

2.5, 0.293 4; 0.4
P MAX Tmean

Tmean MAX P

P Tmean

C k h

C k h

thickness negligible effect on and C

η

η

η

∗ = = = =

= = = =

∗ Δ ⇒
 

Windte et al. 
[23] 

RANS solver  

FLOWer-Code   

 

NACA 
4402 

6 000 0.1 – 1 x x 

Re 6000,
x

shed vortices phase shift with k
C always no thrust production

At pure plunge impossible

∗ ⇒
∗ + ⇒

= ↵
 

COMPUTATIONAL STUDIES OF PURE PLUNGING AIRFOIL 
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Tuncer et al. 
[25] 

2D compressible 

Navier-Stokes solver 

 

NACA 
0012 

 

106 

   
0.35 &

T

P Tmean

C with kh
kh to avoid dynamic stall that Cη

∗

∗ <
 

 
Lewin and 
Hariri [27] 

 
2D incompressible 

Navier-Stokes solver 

 
Elliptical 

airfoil 

 
500 

 
2 – 10 

 
x 

 
0.8 – 1.5 

[ ]

( )

_ 0.11 5.333 ; 1.2

, ~  
,

P MAX

P

P T

k kh

Aperiodic assymetric solutions with no effect on
LEV shed interactionsV with TEV and C

Dissipation of the LEV efficiency

η

η
η

∗ = = =

∗

∗ ⇒

∗ ⇒
 

Young and Lai 
[28] 

2D incompressible 

viscous NS solver 

 
NACA 
0012 

 
20 000 

   
0.6 

[ ]_ _ 0.28 32; 0.1875

Importance of k as a control parameter in addition to kh. 
T mean MAXC k h∗ = = =

∗
 

Ashraf et al. 
[30] 

2D compressible 
Navier-Stokes solver 

 
NACA 
0012 

 
20 000 

 
0.5 - 24 

 
0.0125 - 48 

 [_ 0.72, 0.01 , 0.175 2;

&
: &

P MAX Tmean

P Tmean

C fixed h k k

C depend on both k and kh independently
Optimized motion high k low h

η

η

∗ = = = =

∗
∗
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COMPUTATIONAL STUDIES OF THE NACA 0012 AIRFOIL IN COMBINED PITCHING AND PLUNGING MOTION 
 
 
 
 

Author Type of Study Pitching 
axis 

Re k h kh (St) 
0θ  φ  Observations 

 
Jones et al. [19] 

Panel method 1 4 c⋅  x 0.5 0.2 0.01 4°  [ ]0 ; 360° °
 

_

*
* 90 t MAX

Linear theory and Panel method in good agreement
Phase angle φ η= ° ⇒

 
 

Tuncer et al. 
[34] 

2D 
Compressible 
Navier-Stokes 

(M = 0.3) 

 
1 2 c⋅  

510  [ ]0.3 ;1
 

1  [ ]0.3 ;1  10°  [ ]30 ;150° °
 

_

_

_

* 90

* 1.3 0.15 30

* 0.86 0.15 90

t MAX

Tmean MAX

P MAX

Phase angle for any k

C for k at

for k at

φ η

ϕ

η ϕ

= ° ⇒

= = = °

= = = °

 

[ ]0.3 ;1
 

0.5 [ ]0.15 ; 0.5  20°  x 
_

_

* 0.70 2.0 120

* 0.72 1.0 90
Tmean MAX

P MAX

C for k at

for k at

ϕ

η ϕ

= = = °

= = = °
 

 
 

Isogai et al. [35] 

2D 
Compressible 
Navier-Stokes 

(M = 0.3)  

 
 

1 2 c⋅  

510  

[ ]0.3 ; 2
 

1 [ ]0.3 ; 2  10°  x 
_

_

* 1.0 0.3 60

* 0.8 0.3 90
Tmean MAX

P MAX

C for k at

for k at

ϕ

η ϕ

= = = °

= = = °
 

Young and Lai 
[28] 

Potential Flow 
Navier-Stokes  

 
1 3 c⋅  

 
40 000 

  
0.75 

 
[ ]0.01 ; 3.0  

 
15°  

 
90°  

[ ]* 0.1 ; 0.2tPeak in for Stη ∈  
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Guglielmini and 
Blondeaux [46] 

 
Numerical 

solution of the 
vorticity 
equation 

 
[ ]0.5 ;2c c−
 

 
1100 
3300 

  
[ ]0.4 ; 4.5

 

 
([ ]0.15 ; 0.6 ) 

 
[ ]10 ;40° °  

 

[ ] [ ]( )
_ max

_ max max

_ max

_ max

* 3

* 0.45 30 ; 40 0.3 ;0.4

* 80

* 1/ 3

P

P

P

P

for h

for and St

for

for pitching axis at c

η

η α

η ϕ

η

= ∈ ° ° ∈

= °

⋅

∼

 
Ramamurti and 
Sandberg [39] 

2D 
Incompressible  
Navier-Stokes 

1 4 c⋅   
1100 

3.77, 
5.65 

 
1 

 
3.77, 5.65 

 
15°  

 
[ ]30 ;140° °

 

_ max

_ max

* 0.3 90 5.65

* 2.42, 0.24 120 5.6
P

T P

for at k

C for at k

η ϕ

η ϕ

= = ° =

= = = ° =
 

 
Read et al.  [41] 

 
2D experiments 

 
1 3 c⋅  

 
40 000 

 
[ ]0.25;1.9

 

 
0.75 

0.094-0.69 
(0.06-0.44) 

 
[ ]10 ;40° °  

 
[ ]80 ;100° °

 

_ max _

_

* 0.715, 0.18 90 0.502

* 2.41, 0.43, 100 1.88

* . : 5.5

P T mean

T mean P

C for and kh

C for and kh

Side force coeff excellent manoeuvring capabilities

η ϕ

η ϕ

= = = ° =

= = = ° =

⇔
 

 
Tuncer and 
Kaya [42] 

Navier-Stokes + 
optimization 

algorithm 

  
410  

 
1 

    ( )
( )

( )

_ max _ max

_ _ max max

_ _ max _ max max

* 1: 0.675, 0.18 86.5 , 35.6 , 0.83

* 0: 1.45, 0.36 94.9 , 28.6 , 1.55

* 0.5: 1.08, 0.44 97.8 , 29.6 , 1.36

P T mean

T mean P

T mean P

C h

C h

C h

β η ϕ α

β η ϕ α

β η ϕ α

= = = = ° = ° =

= = = = ° = ° =

= = = = ° = ° =

 
Young and 

Lai [40] 
2D unsteady 

Navier-
Stokes 

1 3 c⋅  20000
-

 40000 

[ ]0 ; 2.15
 

0.25 – 
0.75 

[ ]0 ;1.61  [ ]15 ;55− ° °
 

[ ]75 ; 90° °  [ ]
( )

* , 0.1;0.4

* :

* :

P

P

P

Peak in dependent on many factors St

At low St Viscous drag LE separation

At high St LE separation

η

η

η

∈

+ ⇒

⇒
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APPENDIX B  
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STREAMWISE CONTOURS OF VORTICITY MAGNITUDE: TIP VORTEX
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