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WIND ENERGY TECHNOLOGIES: PRELIMINARY DESIGN CODE 
DEVELOPMENT 

SUMMARY 

A preliminary design code is developed for the wind energy conversion systems. 
This code is built in MATLAB language with graphical user interface (GUI) 
involving optimization and analysis processes. Current design and analysis codes are 
summarized and a specific preliminary design and optimization program ‘WIND’ is 
built. Program achieves site specific design with actual observed wind data and 
optimization involving; wind resource analysis, preliminary design of horizontal axis 
wind turbine (HAWT), aerodynamics design and analysis, wind energy calculations 
and economic analysis. For the wind resource analysis Weibull approach is used. In 
the aerodynamics section blade element momentum theory is used. In the weight and 
cost analysis, blade weight is calculated with Sunderland weight and cost model. The 
other components are calculated with statistical and experimental relations. Energy 
calculations are done with Weibull approach. In the economic analysis present worth 
approach is used. For the optimization algorithm response surface method (RSM) is 
used. In the program objective function is consisting of variables cost of energy 
(COE), pay back period, Wind Turbine (WT) sales price and Annual Energy 
Production. User defined wind data, generator rated power and other design 
parameters; site information, design options, aerodynamic, economic, power curve 
and optimization sections generates necessary inputs. As a result WT rotor radius and 
hub height is optimized. Results will be a guide for feasibility of wind energy 
projects. 
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RÜZGÂR ENERJİSİ TEKNOLOJİLERİ: ÖN TASARIM KODU 
GELİŞTİRMESİ 

ÖZET 

Bu çalışmada rüzgâr enerjisi çevrimi sistemlerinin ön tasarımı için bir kod 
geliştirilmiştir. MATLAB dili ile bu kod yazılmış, görsel kullanıcı arayüz kullanan 
eniyileme ve çözümlemelerden oluşan bir program oluşturulmuştur. Mevcut tasarım 
ve çözümleme programları özetlenmiş ve özgün bir ön tasarım ve eniyileme 
programı ‘WIND’ geliştirilmiştir. Program seçilen yöreye uygun tasarımı ve 
eniyilemeyi; yöreden alınan gerçek rüzgâr verileri kullanılarak rüzgâr kaynağı 
çözümlemesi, yatay eksenli rüzgâr türbini (YERT) kavramsal tasarımı ile ağırlık ve 
maliyet çözümlemeleri, aerodinamik tasarım ve çözümleme, rüzgâr enerji 
hesaplamaları ile ekonomik çözümlemeler gerçekleştirmektedir. Rüzgâr Kaynağı 
çözümlemesi bölümünde Weibull yaklaşımı, aerodinamik bölümünde pala elemanı 
momentum kuramı kullanılmıştır. Ağırlık ve maliyet kestirimleri bölümünde 
Sunderland ağırlık ve maliyet modeli ile pala ağırlığı hesaplanmakta diğer bileşen 
ağırlıkları da istatistiksel ve deneysel bağıntılar yardımıyla hesaplanmaktadır. Enerji 
hesaplamaları için Weibull yaklaşımı kullanılmıştır. Ekonomik çözümlemelerde 
şimdiki değer maliyet yaklaşımı kullanılmıştır. Eniyileme algoritması için RSM 
(Response Surface Method) yöntemi seçilmiştir. Programda eniyileme amaç 
fonksiyonunda birim enerji üretim maliyetleri, geri dönüşüm zamanı, rüzgâr türbini 
satış fiyatı ve yıllık enerji üretimi gibi değişkenler kullanılmıştır. Kullanıcının 
belirlediği rüzgâr verisi, üreteç anma rüzgâr gücü ve diğer tasarım değişkenleri; yöre 
bilgisi, tasarım seçenekleri, aerodinamik, ekonomi, güç eğrisi ve eniyileme gibi 
bölümlerde girdiler atanarak, rüzgâr türbini rotor yarıçapı ve rüzgâr türbini göbek 
yüksekliği değişkenleri eniyilenmiştir. Sonuçlar rüzgâr enerjisi projelerinin 
uygulanabilirliği açısından bir rehber teşkil etmektedir. 
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1 INTRODUCTION 

Wind resource is unstable as its nature and its theoretical potential is limited by many 

circumstances. Wind energy conversion depends on the factors that are explained 

below; 

• Technical: WT design, component design, current previous works, situation 

of the electrical grid, hybrid systems, availability of the wind turbines, etc.  

• Geographic and meteorological: topography, terrain, vegetation, atmospheric 

boundary layer, the wind regime characteristic, etc. 

• Economics; laws, politics, permissions, certification and standards, 

manufacturing, logistics, machine costs, processes, benefits, payback time, 

etc. 

• Social: aesthetics, public acceptance, ecology, land use, etc. 

1.1 History of Modern Multi MegaWatt Sized Wind Turbine Design 

First electricity generator wind turbine was built by Charles F. Brush, in 1888. In 

1930s modern Danish type wind turbines are developed from the pioneers [1]. After 

1970s the wind turbine technology followed rapid growth and still continues its 

growth trend with a rate of 20-40% [2]. Historical growth of turbine sized via power 

ratings are shown in Figure 1.1.  

In recent years, many wind turbine manufacturers progressed their technologies with 

minimizing COE [cost/kWh] and the wind turbine specific costs [cost/kW] reached 

level of 1000$/kW [5]. 

1 
 

 



 
Figure 1.1: Growth of Wind Turbine Technology [3] 

 
Figure 1.2: Growth of Offshore Turbine technology [4] 

1.2 Wind Energy State-Of-The-Art Design Codes and Softwares 

Wind energy and its conversion is a multidisciplinary research field. There are many 

codes developed for wind energy systems in different disciplines in order to 

minimize overall costs.   

Current classification for design tools used by many manufacturers and research 

institutes are; 

• meteorological wind climate (wind potential, wind farming, micrositing) 

• state-of-the-art wind turbine design codes  
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Recommended by McGowan et al. [6], the design tools can be divided into these 

categories; 

• Modeling machine (WT), component & system design 

• Data collection and analysis 

• Operation and control 

Molenaar explains and compares many state-of-the-art wind turbine design codes 

with his own study, DAWIDUM wind turbine design code [1]. Overview of the 

design codes are shown in Table 1.1.  

Wind Resource analysis programs are summarized in Table 1.2. 

Table 1.1: State-of-the-art Wind Turbine Design Codes [1] 
Name Description Developer; Company / University / Institude

Adams/WT Automatic Dynamic Analysis of Mechanical 
Systems - Wind Turbine

Mechanical Dynamics, Inc. (MDI) / National 
Renewable Energy Laboratory (NREL)

BLADED Performance and Loading Calculations 
accepted GL Certification Program Garrad Hassan & Partners Ltd

DUWECS Delft University Wind Energy Converter 
Simulation Program

Institute for Wind Energy / Delft University of 
Technology

FAST Fatigue, Aerodynamics, Structures and 
Turbulence

Oregon State University / Wind Technology 
Branch of NREL

FLEX5 Dynamic Simulation of Wind Turbines Technical University of Denmark
FLEXLAST Flexible Load Analyzing Simulation Tool Stork Product Engineering

FOCUS Fatigue Optimization Code Using 
Simulations

Stork Product Engineering / Institute for Energy / 
Delft University of Technology

GAROS General Analysis of Rotating Structures Energiesysteme GmbH

GAST General Aerodynamic and Structural 
Prediction  Tool for Wind Turbines Technical University of Athens

HAWC Horizontal Axis Wind Turbine Code Wind Energy Department of RISO National 
Laboratory

PHATAS-IV Program for Horizontal Axis Wind Turbine 
Analysis and Simulation Dutch Energy Research Foundation (ECN)

TWISTER Analyzer FKA

VIDYN Simulation Program for Static and Dynamic 
Analysis of HAWT Teknikgruppen AB

YawDyn Yaw Dynamics Computer Program University of Utah / NREL  

Table 1.2: Wind Resource Design, Analysis and Modeling Programs 
Name Description Company / Institude Web Page

GH 
WindFarmer Wind Farm Design Software Garrad Hassan & 

Partners Ltd
http://www.garradhassan.c

om/

meteodyn CFD tool for the wind assessment, 
Structure Dynamics ASCOMP GmbH http://www.meteodyn.com/

WAsP Wind Atlas Analysis and Application 
Program

RISO National 
Laboratory http://www.wasp.dk/

WindFarm
WindFarm  Wind Energy Software for 

Designing and Optimising Wind 
Farms

ReSoft Ltd http://www.resoft.co.uk/

WindPRO Design and Planning of Wind Farm 
Projects

EMD International 
A/S http://www.emd.dk/

Windsim Simulator for Optimizing the Energy 
Production of WT using CFD WindSim AS http://www.windsim.com/  
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1.3 Motivation 

Current codes or softwares are used and certified by the main Germanische Lloyd 

(GL) of the Regulation for the Certification of Wind Energy Conversion Systems and 

by International Electrotechnical Commission (IEC) standards [5]. 

Although there are standards used for the whole system design, there is still need of 

specific codes or softwares to develop specific analysis and design studies. 

Wind turbines and wind farms are designed for the chosen specific site. In special 

cases, the current standards and current machines are not sufficient to maintain a low 

cost of electricity production. There are examples of unsuccessful projects because of 

insufficient feasibility studies.  

For a selected site, collection of data is very important for the whole system to 

achieve a good energy output. According to the data analysis there has to be 

preliminary design of the wind farm and if needed, there has to be done machine 

design for the specific sites. Optimization techniques such as genetic algorithms and 

response surface method can also be included for the optimum results. Consequently, 

the wind energy conversion will be more efficient having low costs. 

1.4 Objective and Scope of the Study 

Objective of this study is to build a preliminary design code for the optimum WTs 

and their projects. The code consists of optimization of design parameters with user 

defined constraints. Analyses and calculations take place within the current code. 

In the current study a MATLAB code is developed with GUI. User defines the 

program configuration selection and design options as inputs for the calculations. 

Code is build for optimization algorithm RSM involving wind resource analysis 

using observed wind data, HAWT aerodynamic analysis, preliminary design of 

HAWT, cost and weight analysis, energy calculations and economic analysis. 
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2 WIND ENERGY CONVERSION 

2.1 Wind Resource Characteristics 

It is important that to determine the wind characteristics of wind resource in site 

where the wind energy system will be adapted. In order to achieve a feasible project, 

many observations, analyses and calculations must be done. These works will show 

the designers, manufacturers and operators that wind energy generation of the system 

will be different than its expected theoretical potential. 

For the wind resource analysis the wind characteristics of the site must be 

determined. The wind regime of a site is originated from the Sun that produces the 

global winds, local winds and Earth’s Coriolis force effect. The wind characteristics 

of a site are affected by the atmospheric boundary layer properties [5]; 

• Lapse rate (temperature, density, pressure variations with height ) 

• Turbulence 

• Vertical wind shear (variation of wind speed with elevation) 

• Wind speed variation with height for steady winds 

o Logarithmic profile (log law) 

o Power law profile 

• Effect of terrain  

• Surface roughness 

o Flat terrain 

o Non-flat terrain or complex terrain 

Since the wind has unstable (stochastic) in nature, the variations in time, location and 

directions effect the wind characteristics. Long term (ten years or annual) winds and 

short term winds (turbulence effects, gusts) are the important effects in design 

procedure. 

In order to predict wind regime, wind data analysis of the selected site must be done. 

Some methods for predicting wind regime are; 
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• Best way for wind data analysis is direct use of data averaged over a short 

time interval 

• Method of bins 

• Power distribution curves 

• Statistical analysis using summary measures 

o Rayleigh distribution 

o Weibull distribution 

2.2 HAWT Aerodynamic Design 

Aerodynamic studies have initiated with the Rankine-Froude actuator-disk model. 

This model is extended by Glauert as Blade Element Momentum Theory (BEMT) 

which is still used and developed by the modern wind turbine rotor aerodynamic 

design codes. This theory has become a very powerful way for the aerodynamic 

design of the wind turbine rotors. This model agrees with the experimental 

measurements and the actual wind turbine performance data.  

2.2.1 Power in the Wind 
Theoretically power from the wind is extracted from the air passing through the rotor 

for HAWT. Power is proportional to the cube of wind speed, density of the air and 

rotor swept area: 

31
2

P Aρ∼ V  (2.1)

Rankine-Froude actuator disk model defines a very important design parameter 

defined as power coefficient. This is a dimensionless parameter that determines 

whole wind turbine performance: 

3 2

2 2available available
p

P PC
AV R Vρ ρπ

= = 3  (2.2)

Its theoretical maximum is defined as the Lanchester-Betz limit, commonly called as 

Betz Limit and its value is: 

,max
16 0.59
27pC = ≅  (2.3)
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Another important design parameter is tip speed ratio defined as the ratio between 

the rotor tip tangential velocity and the free stream velocity. It is formulated as: 

tipV R
V V

λ Ω
= =  (2.4)

2.2.2 BEMT Theory 
In BEMT theory the momentum theory and the blade element theories are combined 

as an extension of Rankine-Froude disk theory.  

For more precise results BEMT model is developed with the (semi) empirical 

relations. As told by Molenaar most common corrections applied to the BEMT are 

[1]: 

• Tip Effects (Prandtl Tip Loss Correction) 

• Root effects (Prandtl Hub Loss Correction) 

• Turbulent Wake State (Glauert) 

• Dynamic Inflow 

• Dynamic Stall 

• 3-D corrections 

Airfoil characteristics have to be determined for the calculations. In airfoil selection 

Reynolds number is an important factor that influencing the aerodynamic properties 

of the airfoils. Reynolds number of air passing over an airfoil having chord length ‘c’ 

is defined as:  

air rel

air

V cRe ρ
µ

=  (2.5)

Vrel is the relative velocity on the blades. For a chosen blade geometry (chord 

distribution along the blade), using the correct airfoils at calculated Reynolds 

numbers is very important in order to predict airfoil behavior successfully.  

The polar information of the airfoils has to be put in the algorithms in order to have 

better results for prediction of the blade’s performance. Since there is a lack of airfoil 

information, e.g. for high angle of attack values, the drag and the lift information 

have not been known, specific methods such as extrapolating with using the 

 7



experimental airfoil data has been developed. Common aerodynamics codes use 

these methods.  

AeroDyn program uses S809 airfoil at a Reynolds number of 750 million. In the 

range of angle of attack from -20° to 40° the lift and drag data of this airfoil is 

generated from wind tunnel test results and the remaining values up to angle attack 

values of  are calculated with FoilCheck program developed by National 

Renewable Energy Laboratory (NREL). The sample data is shown in figures.  

180°±

 
Figure 2.1: Drag and Lift coefficient via angle of attack of s809 airfoil [7] 

2.3 Preliminary Design of Horizontal Axis Wind Turbines 

Wind turbine and its system design is a multidisciplinary iteration process. In recent 

studies there are many methodologies are developed for the WT and wind farm 

design. Some of the studies are detailed in the next sections and adapted to the study.  

By Diveux et al. [8], an optimization using genetic algorithms is done for the HAWT 

system design. Constraints and parameters are determined according to the 

geographic, wind turbine configuration and other design options specified by wind 

turbine technology.  The objective function of that study is minimization of cost of 

kWh. Cost and weight models are calculated in different modules for different 

components of the WT and the different parts of the overall system.  

According to McGowan [6] the modeling codes are divided into two parts; turbine 

system design and machine design. Inputs for the turbine system design part are 

geographic, meteorological, siting and economic information. They are built in one 

body resulting as the wind farm layout, energy capture calculations and economics 

design. In turbine system part the long term wind data is used for predicting behavior 

and benefits of the system during its lifetime. Inputs for the machine design part 
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wind parameters and also other design options determined in the system design 

section are used for calculations. In the code, aerodynamic design, component design 

and overall turbine (machine) design are carried out. Short term wind data is used for 

predicting the fatigue life of the machine in the machines life analysis. 

Addition to these studies, detailed by Harrison et al. [9] the Sunderland cost model of 

wind turbines focuses on the methodology that calculates the machine component 

weights and costs. According to the selected design drives (loading conditions such 

as nominal conditions, extreme conditions) and coefficients by calculations done 

with statistical methods regressed from actual machine data weights of the 

components. General formulation for calculations is showed below equation: 

(design drivers)(factors)component matching serviceW C C= × (2.6)

Table 2.1: Weight and Cost Breakdown [10] 

 

Component costs are derived from the weight breakdown of components. 

Methodology is simple, for each component the specific costs (cost per unit weight) 

are given by Harrison et al. [9]. For chosen materials defined in design options the 

component costs can be easily calculated. Finally the cost of the wind turbine itself is 
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determined from these components. Typical wind turbine cost breakdown is shown 

in table 2.1. 

2.4 Wind Energy Calculations and Economics 

2.4.1 Performance of the WT Systems 

Important performance criterion for the wind energy conversion system is energy 

output calculations. Energy production of a wind turbine is predicted by monitoring 

its energy output over long time periods. At the design stage of wind energy system, 

for energy calculations conventional approaches are followed such as Weibull or 

Rayleigh. The methodology is explained in many studies. WERA (Wind Energy 

Resource Analysis) program uses the similar methodology used by the literature that 

is explained by Mathew [11]. In the calculations prediction of a power curve has an 

important direct effect on the performance. 

For energy production there is an important performance factor is introduced. 

Capacity factor is defined as the ratio of the actual energy production to energy 

produced if the machine would have operated at its rated power in a lifetime period. 

The wind energy projects are evaluated for their capacity factors. The formulation is 

shown by Equation (2.12). 

F
rated

Energy Generated by the WTC
TP

=  (2.7)

The typical values for the CF are changing between 0.25 and 0.40 [6]. Below 0.25 the 

system is said to be unfeasible. Values higher that 0.40 represents efficient system. In 

the formula ET is the total energy generated by the wind turbine. T is period of time 

that is determined by the designer. Generally time period is chosen as annual and it is 

in hours in a year.  

If there is not enough information about the site and the project the rough capacity 

factor is introduced [11]. If the representative power curve is not known the rough 

capacity factor is calculated as rough capacity factor: 

at average wind speed
F

rated

P
RC

P
=  (2.8)
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2.4.2 System Economics 
The overall system costs involve many concepts. The future of a wind energy project 

is highly dependent to the costs of many issues. In general WT system economics 

involves the calculation of the COE.  

As detailed by Mathew [11] WT system costs involves manufacture costs of the 

machine (turbine itself), other investment costs and operation and maintenance costs. 

For determining the project costs fixed and variable costs are introduced. 

Fixed costs are consisting of Initial investment costs including the turbine machine 

costs. The initial investment components and their percentages are shown in figure 

2.1. 

 
Figure 2.1: Fixed Costs Percentages [11] 

Variable costs involve operation and maintenance costs of the system. They 

contribute to the 1.5-2 % of the overall system cost [11].  

2.4.3 Present Worth Approach 

In the present worth approach the annual costs are recalculated over wind energy 

project’s lifetime. The formulation for present value approach is below; 

1
1 1

1

n

n n

( i )PV( AP ) AP
i( i )−

⎡ ⎤+ −
= ⎢ ⎥+⎣ ⎦

 (2.9)

In the formulation AP is the annual payment, n is the lifetime and I is the real rate of 

interest. Real rate of interest (discount) is represented in terms of nominal interest 

rate (i) and inflation (r): 
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1 1
1

iI
r

+
= −

+
 (2.10)

Also in terms of nominal interest rate (i), escalation (e), apparent escalation (ea) and 

inflation (r) shown below: 

1 1
1 a

iI
e
+

= −
+

 (2.11)

1 1ae ( e )( r )= + + −1 (2.12)

General present value approach becomes: 

1
1 1

1

n

n n

( I )PV( AP ) AP
I( I )−

⎡ ⎤+ −
= ⎢ ⎥+⎣ ⎦

 (2.13)
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3 METHODOLOGY 

Program WIND is a preliminary design program that involves analyses and 

optimization methods in order to guide designers to build an efficient and optimum 

wind energy conversion system. WIND’s main advantage apart from different design 

codes is to achieve site specific WT design while predicting the wind project 

performance and costs. 

Program enables user to do configuration selection and conceptual design. 

Additionally, user can evaluate observed wind data that the program uses as an input 

for the wind data analysis.  

 
Figure 3.1: Flow Chart of WIND 

In the GUI pages, user determines the inputs by selecting, entering values and 

selecting wind data text files. Program determines an initial design point and builds 

constraints for the chosen design variables.  

In the optimization process, program runs the needed modules in order to generate 

design of experiments. Program uses RSM algorithm for finding optimum points for 
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the objective function. For selected Design of Experiments (DOE), program runs the 

modules respectively, wind data analysis, aerodynamic analysis and design, weight 

and cost analyses and finally economics and energy analyses. It generates response 

surface and checks the surface is valid for the design variables. Objective function is 

consisting of different multidisciplinary elements. Their priority selection option 

gives user to select which component is more important for program to optimize.  

3.1 Initial Design and Configuration Selection 

Current study focuses on the conventional three bladed HAWT design. Rotor axis 

orientation of the wind turbine is selected as horizontal-axis. Compared to the 

vertical-axis wind turbines, horizontal-axis wind turbines are more efficient and they 

have low costs [5]. The comparison of power coefficients via tip speed ratios of 

different WT types are shown in below figure. 

 
Figure 3.2: Comparison of Power Coefficients for Different Designs [6] 

In the Figure 3.2 it is obvious that 3-bladed “Danish” type wind turbines have greater 

power coefficients. 3-bladed wind turbines have simple hub designs compared to the 

one or two-bladed wind turbines. Generally the blades are connected to the hub 

rigidly [9]. More number of blades are more efficient in theory, however when the 

system economy is considered, 3-bladed type design is the optimal selection.  

Rotor positions relative to the wind are shown in Figure 3.3. In the current study, the 

position of the rotor will be upwind type. The advantage of this positioning is 

avoiding the tower wake effects. 
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Figure 3.3: Upwind and Downwind Configurations [5] 

The control of the power can be classified in three groups; pitch, stall and yaw 

control. The control mechanisms can be both active and passive. In the program user 

can select control mechanism as either pitch or stall.  

Quality of power output is very important for the electricity generation of the wind 

turbine generators. The rotational speed type determines the performance of the 

output of WT. Currents wind turbines can have constant, variable or dual constant 

speed configurations. In the program constant speed configuration is selected for 

simplification in power curve calculation.  

Generator and drive type selection is done according to the NREL studies 

summarized in [12]. The configurations are: 

• Three-stage planetary/helical drive with high-speed generator 

• Single-stage drive with medium-speed, permanent-magnet (PM) generator  

• Multi-path drive with multiple PM generators 

• Direct drive 

Power losses (efficiency) due to power electronics and mechanical transmission are 

included in the program with a default value of 0.90. 

For the tower the topology is selected as tubular type. This is a conventional design 

consisting of conical modules that are easy to construct. According to the natural 

frequency, this type tower is in the stiff tower class.  

Material for WT blades, generally composites are used. Program has the options of 

different composite materials listed below: 

• Glass-polyester 

• Glass-epoxy 
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• Carbon-epoxy 

• Wood-epoxy 

In the program aerodynamic analysis uses only one airfoil configuration for the 

present. Current environmental information such as air density, viscosity and 

atmospheric boundary layer power law exponent are selected with default values 

defined in IEC standards.   

In the economic analysis updated present rate of interest values are evaluated. 

Additionally parameters such as turbine lifetime are selected according to the IEC 

standards.  

3.2 Wind Resource Analysis 

3.2.1 Weibull Approach Wind Speed Distribution 

In the current study the Weibull distribution approach is used for the energy 

calculations. Many wind resource analysis computer code use statistical methods. In 

conventional wind turbine and system design, Weibull Distribution method is widely 

used. Weibull method is accepted and defined by IEC Standards and by many 

certificate programs. Weibull wind distribution is a mathematical model for 

determining the wind characteristics. Typical Weibull Distribution is shown in 

Figure 3.4: 

 
Figure 3.4: Typical Weibull Distribution [13] 

The probability density function is used to characterize the wind speed variations; 
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1
( / )( )

k
k

V ck Vf V e
c c

−
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.1)

According to this function, mean velocities expressed as; 

0

( )mV V f V d
∞

= ∫ V  (3.2)

Equivalently: 

11mV c
k

⎛ ⎞= Γ +⎜ ⎟
⎝ ⎠

 (3.3)

Γ is the gamma function given as; 

1

0

x nn e x d
∞

− −Γ = ∫ x  (3.4)

Here described as k (shape factor, m/s) and c (scale factor) are the Weibull 

parameters. Once the parameters and the mean velocities are known it is easy to 

calculate site’s energy density and energy output.  

For a given site wind velocities are extrapolated from the observed height to the 

designed wind turbine’s hub height power law will be used. 

 hub hub

reference reference

V z
V z

α
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.5)

After applying power law, the wind velocities distributions are used for calculation 

of Weibull parameters and Weibull average speed. The parameters are calculated by 

the maximum likelihood method told by Mathew [11].  

Shape factor is found by the iterative formula numerically, with the following 

formula: 
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1 1

1

ln( ) ln( )
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k
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n
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i

i
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k

nV

−

= =

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑
 (3.6)

When the shape factor is known, ‘c’ scale factor is calculated by the formula shown: 

1/

1

1
kn

k
i

i
c V

n =

⎡
= ⎢⎣ ⎦

∑ ⎤
⎥ [m/s] (3.7)

In the program wind data is read from a text file and algorithm shown below is 

applied for analysis: 

• Read wind speeds 

• Extrapolate wind speeds to hub height values using power law 

• Guess initial value for shape factor, kinitial=1.0 

• Iteration for optimum shape factor 

• Calculate scale factor 

• Calculate Weibull mean wind speed 

3.3 Aerodynamics 

3.4 BEMT Theory 

In the current study the BEMT theory is used for rotor performance calculations. In 

BEMT theory these conventional assumptions are made: 

• Wake rotation effect included. 

• Drag effect included 

• Tip Effects (Prandtl Tip Loss Correction) included 

• Root effects (Prandtl Hub Loss Correction) included 

• Turbulent Wake State (Glauert) included 

BEMT theory determines the equivalent forces (lift and drag) over the blade sections. 

Each blade sections have the airfoil geometry, and all aerodynamic calculations take 

place in these radial stations. In this theory there are two design parameters 

introduced as axial induction factor (a) and tangential induction factor (a'). These 
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induction factors can be defined with velocities in a stream tube of a WT shown in 

figure 3.5. Induced velocities can be represented as: 

( )1wind velocity at the rotor disc upstream wind velocityV V= × a− (3.8)

( )1 2downstream wind velocity upstream wind velocityV V= × a−  (3.9)

2
a ω′ =

Ω
 (3.10)

Where ω is the induced tangential angular speed of the flow and Ω is the angular 

speed of the rotor. 

 
Figure 3.5: Stream tube of a WT [14] 

Calculation of these parameters iteratively gives the optimum blade performance. As 

a result rotor performance outputs such as power, thrust, torque, blade loadings and 

optimum blade geometry can be calculated. In the figures 3.6 and 3.7 blade element 

geometry and blade loadings are shown in two orientations; downwind and upwind. 

In the figure 3.8 one section of the blade is shown. It is obvious that the sum of the 

angle of attack and blade local twist angle is equal to the relative angle “φ ”. 

φ α θ= +  (3.11)
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Figure 3.6: BEMT Theory; Blade Loadings Blade Sections, Downwind [15] 

 
Figure 3.7: BEMT Theory; Blade Loadings Blade Sections, Upwind [14] 
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Figure 3.8: BEMT Theory; Blade Section [1] 

From the geometry we get relative angle as: 

( )
( )

1
arctan

1
wind

tip

V a
V a

φ
−

=
′+

 (3.12)

Where the tip speed is:  

tipV R= Ω  (3.13)

The speeds can be written in terms of local tip speed ratio as: 

1 1tan
1 'r

a
a

φ
λ

−⎛ ⎞= ⎜ ⎟+⎝ ⎠
 (3.14)

Where radial (local) tip speed ratio: 

r
r
R

λ λ=  (3.15)

Lift and drag forces on an airfoil is defined as: 
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21
2 rel lLift L V cCρ= =  (3.16)

21
2 rel dDrag D V cCρ= =  (3.17)

Where relative wind speed is calculated as: 

( )22 2 2
rel wind tip windV V V V R= + = + Ω  (3.18)

The tangential and the normal forces on the blade can be shown as: 

NF L cos D sinφ φ= +  (3.19)

TF L sin D cosφ φ= −  (3.20)

For each blade element, the force and torque can be represented as: 

N NdF BF dr=  (3.21)

TdQ rBF dr=  (3.22)

From the momentum theory, for the force and torque calculation the two formulas 

are derived. Here “F” is the tip loss factor that will be detailed later in the next 

section. 

4 1ndF F a( a ) rdrρ π= −  (3.23)

34 1 winddQ Fa ( a ) V r drρ π′= − Ω  (3.24)

For simplification the parameter, local solidity is introduced as: 

2r
Bc

r
σ

π
=  (3.25)

And the dimensionless force elements find: 

cos sinn l dC C Cφ φ= +  (3.26)
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sin cost l dC C Cφ φ= −  (3.27)

The two equation pairs; torque and force for each blade element are made equal in 

order to calculate axial induction factor (a) and tangential induction factor (a'). 

2
1

4 sin1
r n

a
F

C
φ

σ

=
+

 
(3.28)

1
4 sin cos

r t

a F
C
φ φ

σ

′ =  
(3.29)

When the axial induction factor becomes high (higher that 0.4), the momentum is no 

longer applicable. At that moment turbine operates in a state that called “turbulent 

wake state”. Calculation of axial induction is done by Glauert’s empirical relation. 

Axial induction is related with the thrust coefficient [5]. 

If 0 96 or equivalently 0 4  then;TC . a . ,> >  

( )( )1 0.143 0.0203 0.6427* 0.889 Ta C
F

= + − − (3.30)

Where: 

( ) ( )2 21T r l dC a C cos C sin / sinσ φ φ= − + φ  (3.31)

3.4.1 Hub and Blade Tip Loss Effects 

Prandtl has developed a method to predict losses at tip of blades because of vortices 

at the tip. The method is simple and can be applied to the momentum theory easily.  

Prandtl tip loss factor is defined as: 

2 arccos tipf
tipF e

π
−=  (3.32)

Where: 
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2 sintip
B R rf

R φ
−

=  (3.33)

Near to the hub similar loss factor is introduced as: 

2 arccos hubf
hubF e

π
−=  (3.34)

Where: 

2 sin
hub

hub
hub

r rBf
r φ
−

=  (3.35)

In the formula hub radius is selected as 0.20hubr R=  which has a very low effect on 

the performance of the blade.   

Effective total loss factor is calculated by multiplying these two factors. 

hub tipF F F=  (3.36)

The loss factor is applied and showed in the previous blade element equations. 

3.4.2 Blade Geometry 
For the calculations rotor blade geometry has to be determined by the designer. 

Optimum blade geometry is defined with the chord and twist distributions. For the 

calculations these assumptions are made: 

- Drag effect is neglected 0
- Tip losses are neglected 1 0
- Induced velocity is at its optimum value 1 3

dC
F .

a /

=
=

=
 

Optimal chord distribution: 

8 (1 cos )

DesignL

rc
BC

π φ−
=  (3.37)

Optimal twist distribution: 

Designθ φ α= −  (3.38)
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3.4.3 Airfoil Selection 
In the current study for the blade sections SG6040 airfoil at Reynolds Number of 500 

000 is used. SG series are especially design for low-speed wind turbines by Selig 

[16]. Their Lift-to-Drag ratios are very applicable for efficient WT rotors. From the 

airfoil polar tables Cl (α ) and Cd (α ) relations are derived as in 3rd order 

polynomials. In blade geometry calculations design lift coefficient and design angle 

of attack is designated from the best Lift-to-drag ratio value at the polar tables. These 

values can be edited by the user in the interface of the program inputs [16]. 

3.4.4 Tip Speed Ratio 

For calculations program determines optimum tip speed ratio with the empirical 

relation shown below [17]: 

2

2

2/3

16 0.57
127 8 /1.32 220

PC
L D

B
B

λ λ
λ λ

λ

= −
⎛ ⎞−⎛ ⎞ ++ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠+

(3.39)

In the current study this relation is plotted as: 

 
Figure 3.9: Cp – Tip Speed Ratio Relation 

3.4.5 Calculation of Induction Factors 

a and a' are can be calculated with the algorithm iteratively. The steps are: 

• Determine design tip speed ratio from the CP-λ relation; 

• Determine the optimum blade geometry; 
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• Initial guesses for a and a' (a=0.0 and a'=0.0); 

• Calculate φ  angle; 

• Calculate loss factors; 

• Calculate angle of attack for known blade geometry (θ : twist distribution) for 

the best (Lift-to-Drag) L/D ratio of the airfoil characteristics; 

• Calculate the Cl and Cd by using the Cl(α ) and Cd(α ) relations for the 

selected airfoil properties for calculated Reynolds number; 

• Check for turbulent wake state; 

• Finalize iteration with the optimum, new values of a and a' 

The performance of the rotor can be calculated from the equation below [5]: 

( )( )
0

2
2

8 sin cos sin sin cos 1 cotd
P r r

l

CC F
C

λ

λ
r rdφ φ λ φ φ λ φ φ λ λ

λ
⎡ ⎤⎛ ⎞

= − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫  (3.40)

Numerically this integral can be calculated with new values of a and a'. 

( )( )2 2

1

8 sin cos sin sin cos 1 cot
N

d
P r r

l

CC F
N C rφ φ λ φ φ λ φ φ λ

λ
⎡ ⎤⎛ ⎞

= − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑  (3.41)

3.5 Weight and Cost Analysis 

In the current study weight analysis is done with according to the wind resource 

analysis, aerodynamic design and initial sizing of the parameters. In the weight 

analysis calculation of the weight breakdown of the components is done with the 

Sunderland weight and cost model and up-to-date statistical formulas that are derived 

by NREL. 

3.5.1 Blade Weight Calculation 
Blade weight calculations are done with the guidance of Sunderland weight and cost 

model. For the calculations design options and the design derives must be 

determined.  

Rated power of a WT is calculated by the conventional formula shown below: 
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3 21P
2R air RV R CPρ π η=  (3.42)

Fundamental operating parameters for the rotor have to be determined for the weight 

of the blade. Here design wind speed is introduced: 

d velocity meaV k V= n  (3.43)

Here kspeed is selected as k=1.16 for stall controlled WTs and k=1.30 for pitch 

controlled WTs. Harrison et. al [9] states that selection of this constant is highly 

related with the WT’s noise restrictions. These values of these constants causes rotor 

tip speeds be in the acceptable ranges (between 60-86 m/s) for the WT noise levels. 

Rotor angular speed is found as in r/min: 

60
2

d
Rotor

VRPM
R
λ

π
=  (3.44)

Rated torque of the wind turbine is calculated as follows: 

3
31

2
R

R air P
tip

VQ C
V

ρ π= R  (3.45)

Extreme thrust on the parked rotor blades is calculated as: 

( )2 21 0.85
2ex air ex DT V C Rρ σπ=  (3.46)

Extreme wind speeds is selected according to the IEC standards class II wind speed. 

Its value is: 

42.5 m/sexV =  (3.47)

Blade weight is divided into three components since its structural design. 

• Blade Spar 

• Airfoil cladding (blade airfoil surface) 

• Blade root flange 

Weight of the blade spar is: 
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2 2 310.085 SP
BS CL RC air d

SP

tW F F V
t

ρρ λ
σ
⎡ ⎤+⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

BR  (3.48)

Where “t” is the blade root thickness: [18] 

0.08
40
Rt =  (3.49)

CLF  is the cyclic load factor and selected as: 

Table 3.1: Cyclic Load Factor 

Hub Type Blade frequency type FCL
Rigid Rigid 1.0 
Teeter Rigid 0.85 
Rigid Flexible 0.70 
Teeter Flexible 0.60 

RCF  is the rotor control factor and selected as: 

Table 3.2: Rotor Control Factor 

Control Type Rotor Speed FRC
Full-span variable pitch Fixed 1.0 
Stall Fixed 0.85 

Material properties that can be used for the blades are: 

Table 3.3: Material Properties 

Material Admissible Strength 
σadm [Mpa] 

Density 
ρm [kg/m3] 

Steel 110 7800 
Glass-polyester 45 1800 
Glass-epoxy 56 2000 
Carbon-epoxy 200 1500 
Wood-epoxy 12 550 

 

Weight of the blade airfoil is: 

[ ] 230 1BA AW F t Rσπ= +  (3.50)

AF  is airfoil weight factor and selected as: 
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Table 3.4: Airfoil Weight Factor 

Airfoil Material FA
Glass reinforced polyester 1.0 
Glass reinforced epoxy 0.6 

Weight of the blade root flange is: 

0.72.1 m
BF RF ex

m

W F T Dρ
σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B  (3.51)

RFF  is the root flange factor and selected as: 

Table 3.5: Root Flange Factor 

Root flange factor FRF
Full-span pitch control (conventional) 1.0 
Fixed hub, rigid blades, stall control 0.14 

Total weight of the blades is calculated as: 

[ ]Blades BS BA BFW B W W W= + +  (3.52)

The other component weights are calculated according to the blade weight and other 

design parameters. The models used in the calculations are done by Fingersh et al for 

NREL Wind Partnerships for Advanced Component Technology (WindPACT) and 

Low Wind Speed Technology (LWST) projects [12]. 

3.5.2 Component Weights 
Rotor hub: 

0.954 / 5680.3Hub BladesW W B= +  (3.53)

Pitch mechanisms and bearings: 

0.1295 491.31PitchBearings BladesW W= +  (3.54)

1.328 555Pitch PitchBearingsW W= +  (3.55)

Nosecone (spinner): 

Nosecone 18.5 520.5W D= −  (3.56)
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Total rotor weight: 

Rotor Blades Hub Nosecone PitchBearings PitchW W W W W W= + + + + (3.57)

Low-speed shaft: 

2.8880.0142ShaftW D=  (3.58)

Main bearings: 

2.58 0.033 0.0092
600MainBearings

DW D⎡ ⎤= −⎢ ⎥⎣ ⎦
 (3.59)

Gearbox: 

Three-Stage Planetary/Helical: 

0.75970.94Gear RW Q=  

Single-Stage Drive with Medium-Speed Generator: 

0.77488.29Gear RW Q=  

Multi-Path Drive with Multiple Generators: 

0.774139.69Gear RW Q=  

Direct Drive: 

           0.0GearW =  

(3.60)

Generator: 

Three-Stage with High-Speed Generator 

0.7596.47Generator RW P=  

Single-Stage Drive with Medium-Speed, PM Generator  

0.922310.51Generator RW P=  

Multi-Path Drive with PM Generators 

(3.61)
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0.92235.34Generator RW P=  

Direct Drive 

219.33Generator RW P=  

Mainframe (nacelle bedplate): 

Three-Stage with High-Speed Generator 

1 9532 233 .
MainframeW .= D  

Single-Stage Drive with Medium-Speed, PM Generator  

1 9531 295 .
MainframeW . D=  

Multi-Path Drive with PM Generators 

1.9531.721MainframeW D=  

Direct Drive 

1 9531 228 .
MainframeW . D=  

(3.62)

Platform and Railings: 

0 125PlatformRailing MainframeW . W=  (3.63)

Nacelle cover (nacelle cladding): 

1.1537 384.97NacelCover RW P= +  (3.64)

Hydraulic and cooling systems: 

0.08HydraulicCooling RW P=  (3.65)

Yaw system: 

( )3.3141.6 0.0009YawW R=  (3.66)

Mechanical brake, high speed coupling and associated components: 
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0.19894 0.01141Brake RW P= −  (3.67)

Total towerhead weight: 

Towerhead Rotor Shaft Gear Generator MainBearings

Mainframe NacelCover Hydraulic PlatformRailing Yaw

W =W +W +W +W +W

             +W +W +W +W +W
(3.68)

Tower: 

20 3973tower hubW . R Hπ=  (3.69)

3.5.3 Cost Breakdown 

Costs of the components are derived from the component weights. Specific costs; 

unit cost (US$) per kilograms are used which are given by [10]. Generally costs are 

calculated by the formula: 

Component cost ComponentCost K W=  (3.70)

Additionally, cost of the generator is calculated by the formula with unit cost (US$) 

per kilowatts relation: 

Generator cost RCost K P=  (3.71)

Specific costs are summarized in the table: 

Table 3.6: Specific Component Costs 
Component Description Specific Cost (Kcost )
Blades 12.0     $US/kg
Hub, machined 2.0       $US/kg
Pitch Mechanism 12.0     $US/kg
Nosecone 5.0       $US/kg
Rotor Shaft 3.5       $US/kg
Gearbox 8.0       $US/kg
Main Bearings 5.0       $US/kg
Mainframe 4.0       $US/kg
Nacelle Cover 5.0       $US/kg
Hydraulics 5.0       $US/kg
Platform & Railing 5.0       $US/kg
Yaw System 8.0       $US/kg
Tower 1.5       $US/kg
Generator Three-Stage, High-Speed 65.0     $US/kW

Single-Stage Drive, Medium-Speed PM 54.73   $US/kW
Multi-Path Drive, PM 48.03   $US/kW
Direct Drive 219.33 $US/kW  
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Cost of the control system (direct cost assumption) [12] 

ControlSystemC 35000 $=  (3.72)

Addition to the component costs the balance of station costs has to be determined in 

order to calculate the total cost which is also equal to the capital investment of a WT 

[12]. 

Foundation and support structure: 

( )0 40372303 24
.

Foundation hubC . H Rπ=  (3.73)

Transportation: 

Transportation Transportation RC K= P

.

P

.

D

P

 (3.74)

Where K is the transportation cost factor: 

21 581 5 0 0375 54 7Transportation R RK . E P . P= − − +  (3.75)

Roads and civil work: 

RoadsCivilWork RoadsCivilWork RC K=  (3.76)

Where K is the cost factor: 

22 17 6 0 0145 69 54RoadsCivilWork R RK . E P . P= − − + (3.77)

Assembly and installation: 

( )1 17361 965 .
AssemblyInstallation hubC . H=  (3.78)

Electrical interface and connections:  

ElectricalSystem ElectricalSystem RatedC K=  (3.79)

Where K is the cost factor: 
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23 49 6 0 0221 109 7ElectricalSystem R RK . E P . P= − − + .

P

 (3.80)

Engineering, permits: 

EngineeringPermits EngineeringPermits RatedC K=  (3.81)

Where K is the: 

9 94 4 20 31EngineeringPermits RK . E P .= − +  (3.81)

Finally total cost can be found as initial investment:  

I Components Transportation RoadsCivilWork

AssemblyInstallation ElectricalSystem EngineeringPermits

C C C C

        +C +C +C

= + +
(3.82)

3.6 Wind Energy Calculations and Economics 

3.6.1 Energy Calculations 
Weibull approach is used for energy calculations. Energy generated by the turbine, 

the power curve of the designed WT has to be calculated. Generally for energy 

calculations of a system, a candidate wind turbine is selected for the site and power 

curves are maintained from the manufacturer. In specific sites, the current 

commercial wind turbines may not be suitable for the site. According to [11] for 

selected design wind speeds and other design options the power curve can be plotted 

and can be used for further calculations.  

In the figure 3.10 typical power curve for a pitch controlled 1 MW wind turbine is 

shown. Formulation of the power curve is; 

2n
cut in

curve R n n
R cut in

V VP P
V V

−

−

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (3.83)

The formulation is valid for region one. Between rated wind speed and cut out wind 

speed, power output is constant at rated power. This is valid for only fixed speed 

WTs. The power exponential of the design speeds, ‘n’ value is specified by the 

designer of the machine. The design speeds (rated, cut-in, cut-out) are again 

calculated by the design of the machine.  
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Figure 3.10: Power Curve representation [11] 

Power curve identifies the power production of the machine. In operation wind 

turbine generates the energy resulting its power curve.  

Total energy generated by the wind turbine with Weibull approach is given by: 

cut out

cut in

V

T curve
V

E T P f (V )dV
−

−

= ∫  (3.84)

Where: 

T availability time period (hours)=availability 8760 hours(for annual)= × ×  (3.85)

Total energy can be divided into two for each region.  

T IR RE E E= + O  (3.86)

Between cut-in and rated wind speeds: 

R

cut in

V

IR curve
V

E T P f (V )dV
−

= ∫  (3.87)

Between rated and cut-out speeds: 
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cut out

R

V

RO R
V

E TP f (V )d
−

= ∫ V  (3.88)

For simplification the design speeds and Weibull parameters are rearranged,  

k
cut in

I
VX

c
−⎡ ⎤= ⎢ ⎥⎣ ⎦

,
k

R
R

VX
c

⎡ ⎤= ⎢ ⎥⎣ ⎦
,

k
cut out

O
VX

c
−⎡ ⎤= ⎢ ⎥⎣ ⎦

 (3.89)

Simply energy formulas have become: 

( ) ( )
R

I R

I

X nn
X Xn / k X R cut inR

IR n n
R cut in X R cut in

P TVP TcE X e dX e
V V V V

− −− −

− −

e⎡ ⎤= − −⎣ ⎦− −∫ (3.90)

( )OR XX
RO RE P T e e−−= −  (3.91)

Capacity factor can be calculated when the WT’s energy is known.  

T
F

R

EC
TP

=  (3.92)

3.6.2 Economics 
For wind energy projects costs can be divided into two parts, fixed costs and variable 

costs. Fixed costs are consisting of initial investment costs that are detailed as 

component and supplementary costs in the cost analysis section. Initial investment 

also represents the wind turbine sales price. Variable costs are consisting of operation 

and maintenance costs that come with the wind energy generation for a wind energy 

project. Operation and maintenance costs can be calculated as percentage of the 

initial investment [11]: 

OM IC m= C

M

 (3.93)

Where1.5  2.0m< <

Total cost of operation of a project can be defined as:  

A I OC C C= +  (3.94)
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Cost of operation with present value (net present value of all costs): 

1
1 11

1

n

A n I n

( I )NPV( C ) C m
I( I )−

⎡ ⎤⎡ ⎤− −
= +⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦

 (3.95)

Yearly cost of operation with present value approach: 

1A n
A

NPV( C )NPV( C )
n

−=  (3.96)

Annual energy production is given as: 

8760T RAEP E ( when T=8760 ) P C= = F  (3.97)

When the cost of operation and the annual energy production is known, cost of wind 

energy can be calculated. Cost of wind generated electricity or cost of energy will 

show the how efficient is the overall project. It is calculated by [11]: 

1 11
8760 1

n
A A I

n
T R F

C NPV( C ) C ( I )COE m
E AEP n P C I( I )

1⎡ ⎤⎡ ⎤+ −
= = = +⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦

(3.98)

Wind energy projects are evaluated by their benefits according to their electricity 

generation tariffs. The accumulated value of all benefits over the lifespan of the 

project is given by: 

AB AEP ElectricityPrice= ×  (3.99)

Net present value of all benefits: 

1
1

1

n

A n A n

( I ) INPV( B ) B
I( I )−

⎡ ⎤+
= ⎢ ⎥+⎣ ⎦

 (3.100)

An important economic criterion for the investors is the repayment period, also 

called the pay back period. It can be found by equating BA to CA [11]. 

1 1A n ANPV( B ) NPV( C )− −n=  (3.101)

Pay back period: 
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1

1

I

A I
PayBack

ICln
B mC

n
ln( I )

⎡ ⎤
−⎢ ⎥−⎣ ⎦= −

+
 

(3.102)

3.7 Optimization 

In the current study Response Surface Methodology (RSM) is used for the 

optimization processes. It is widely used in multidisciplinary aerospace design and 

optimization applications. 

RSM uses statistical and mathematical techniques for the optimizing processes and it 

involves regression surface fitting for approximate responses in order to optimize 

objectives with the chosen design of experiments [19]. RSM defines objective 

functions and constraints simple functions [20]. Typically RSM develops polynomial 

approximation models by fitting sample data using least squares regression technique 

[21]. Response surface methodology is intimately connected to regression analysis 

[22]. 

Responses are used as a performance measure or quality characteristic for the 

optimizing processes. The input variables are called independent variables. For the 

approximating model response y and the independent (natural) variables 1 2, ..., kξ ξ ξ  

are used. In general form empirical response is [19]: 

( )1 2, ..., ky f ξ ξ ξ= + ε  (3.103)

Here k is the number of variables and ε is the model (random) error. For the RSM 

true response can written in terms of coded variables 1 2, ..., kx x x  which are 

dimensionless, zero mean, and have the same standard deviation [22]. In terms of 

coded variables response model becomes: 

( )1 2, ..., ky f x x x ε= +  (3.104)

For the f function RSM develops suitable approximations by using polynomials. In 

many cases first order or second order models are used. The first order form is [22]: 

0 1 1 ... k ky x xβ β β= + + +  (3.105)
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The second order form is: 

12
0 1

1 1 1

k k k
k

j j jj j ij ji
j j j

y x xβ β β β−

=
= = =

= + + +∑ ∑ ∑ ∑ x

2x x

 (3.106)

In case of two variables the response surface is expressed as follows where : 2k =

2 2
0 1 1 2 2 3 1 4 2 5 1y x x x xβ β β β β β= + + + + +  (3.107)

An example of a response surface in case of two variables is shown below where 

objective function named as state variable: 

 
Figure 3.11: Response Surface with two variables [23] 

The linear regression model of this response is represented as: 

0 1 1 2 2 3 3 4 4 5y x x x x x5β β β β β β= + + + + +  (3.108)

Equivalently in matrix form: 

Y XB E= +  (3.109)
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 (3.110)

In equation 3.110, n is the number of design points. 

The polynomial coefficients are calculated as: 
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( ) 1T TB X X X Y
−

=  (3.111)

The second order model is used in this study, so the polynomial coefficients are 

estimated easily using least squares method. In the estimation of the parameters β  

with least squares method, inspection of the model adequacy is important. Here 
2R (coefficient of multiple determination) is introduced [19]: 

( )
( )

2 1
1

1
E

yy

SS / n k
R

S / n
− −

= −
−

 (3.112)

Where (error or residual sum squares) is: ESS

T T T
ESS Y Y B X Y= −  (3.113)

And  (total sum squares) is yyS

1

n
iT i

yy

y
S Y Y

n
== − ∑  (3.114)

Generally 2R is in the range of 20 R 1≤ ≤ , and values near to the upper limit shows 

that the surface is adequate. If the response is not adequate the number of variables 

and design points can be increased in order to get better results [24]. 

3.7.1 Design of Experiments 
In RSM selection of design points are important for searching optimum responses. 

There are different types of design of experiments (DOE) matrices introduced in 

literature [25].  

• Full Factorial Designs (FFDs), (3k) 

• Central Composite Designs (CCDs) 

• Box Behnken Designs (BBDs) 

• Expected integrated mean squared error optimal (EIMSE-optimal) designs 

In the current study 3  design method is used. According to this method for two 

variables nine design points are represented with DOE as: 

k
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1 1
1 0
1 1

0 1
0 0
0 1
1 1
1 0
1 1

DOE

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− +
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥

+⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
+⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (3.115)

Here ‘0’ represents the midpoint value of the initial guesses for the design variables 

and ‘+1’ and ‘-1’ show the x x± ∆   maximum and minimum limits for the design 

variables. 

3.7.2 Objective Function and Constraints Formulation 
In the current study two variables are optimized; rotor radius and hub height of the 

WT. Initial calculation for the rotor radius is done by the statistical relation given 

below: 

1
2 01491

2 0 2857
.

R
initial

PR
.

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.116)

Initial guess for the hub height is defined as: 

2hub,initial initialH R=  (3.117)

 
Figure 3.12: Rated Power vs. Rotor Diameter Variation [26] 

Constraints for design variables are estimated as: 
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hub,min hub hub,maxH H H≤ ≤  (3.118)

min maxR R R≤ ≤  (3.119)

Where: 

1 5hub,min initialH . R=  (3.120)

3 5hub,max initialH . R=  (3.121)

0 5min initialR . R=  (3.122)

15 0max hub,minR H .= −  (3.123)

Objective function of the optimization algorithm is defined as: 

I PayBack T

PayBack T ,refI
objective COE C n E

ref I ,ref PayBack ,ref T

n ECCOEF k k k k
COE C n E

= + + + (3.124)

Here COE, CI, nPayBack are minimized and ET is maximized. Each component is made 

non-dimensioned due to the initial design point and multiplied with the priority 

constants. The priority constants (k) enable the user to determine which parameter is 

more important for the optimization process. The response surface is approximated 

and minimized for these components in the whole process. When the minimum 

design point is found the program does the needed calculations for the wind energy 

conversion system. 
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4 PROGRAM WIND & GUI  

Program is built in MATLAB language consisting of GUI and source codes at the 

background. Source codes are consisting of MATLAB’s own file types (.m, .mat, 

.fig). User defines inputs and configuration selection in six different pages. In these 

pages default values are selected written in the GUI strings. By the time inputs are 

defined, user can click the run button and program initiates the optimization process. 

In the results section needed results are showed with the graphs. Additional outputs 

can be viewed with in a .mat file where the whole variables and parameters are 

saved. 

 
Figure 4.1: General Layout of the program 

In the site information tab the default values are seen in the figure 4.2. The default 

values for the inputs for air density, viscosity and power law exponent are selected 

according to the IEC standards. The height of the observed wind is determined by the 
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user due to the wind data recorded. The form needs wind data file from the user. The 

wind data is a text file and its format seen in the figure 4.2. 

 

 

Figure 4.2: Site Information Tab 

In the design options tab, configuration selection is done as a part of conceptual 

design. User defines a rated power value according to the project needs. It is shown 

in figure 4.3. 
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Figure 4.3: Design Options Tab 

In the aerodynamics tab, as detailed in the previous sections program uses only one 

airfoil SG60 for the present. Current calculated values are used in the inputs, shown 

in figure 4.4.  

 
Figure 4.4: Aerodynamics Tab 
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Figure 4.5: Power Curve Information Tab 

In the power curve tab shown in figure 4.5 users can define cut-in and cut-out speeds 

for preliminary design. Here power curve exponential is introduced with a default 

value of 3.   

 
Figure 4.6: Economics Tab 

Economics tab shows the present economic information which is defined according 

to the present economic values at where the project will be achieved.  
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Figure 4.7: Optimization Tab 

In the optimization tab user can select the optimization priority of the variables. The 

priorities are in the form of percentages with total value of 100 %. 

In the results section overall results can be viewed with detailed optimization, 

aerodynamics and power curve sections.  

 
Figure 4.8: Program Results 
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5 RESULTS AND DISCUSSION 

In the present study the design program is built in order meet designer’s 

specifications under defined constraints.  

5.1 Application of the Program 

An application of the program is done with a chosen baseline model with user 

defined input values. Design starts with the generator selection. The rated power of 

the wind turbine must be determined for further calculations. The rated power is 

1500 kW for the current study. This rating contributes to the technology of late 

1990s. According to this rated power value a baseline turbine is selected. Baseline 

for the design will be NREL WindPACT Program’s wind turbine having the same 

rated power [27]. 

Table 5.1: GUI Inputs 
Design options

Rated Power 1500 [kWatt]
Number of Baldes 3

Generator and Transmission Efficiency 0.90
Power Control Pitch Control

Hub and Blade Type Rigid Hub & Rigid Blade
Generator and Drive Type Three-stage drive with medium-speed PM generator

Blade Spar Material Carbon-Epoxy
Blade Airfoil Material Glass Reinforced Epoxy

Blade Flange Material Glass Reinforced Epoxy
Site Information

Air Density 1.225 [kg/m^3]
Air Viscosity 1.79e-05 [Pa*s]

Power Law Exponent 0.20
Height of the Observed Wind 30 [meters]

Aerodynamics
Airfoil Selection SG 6040

Design Lift Coefficient 1.134
Design Angle of Attack 7.12 [degrees]

Max L/D 86
Airfoil Thickness 0.20

Drag Coefficient for Parked Rotor 2.0
Power curve

Cut-in Speed 3 [m/s]
Cut-out Speed 25 [m/s]

Power curve exponential 3
Economics

Interest Rate 0.17
Inflation Rate 0.09

Escelation 0.02
Wind Turbine Economic Lifetime 20 [years]

Electricity Sales Price 0.045 [Dollars/(kW*h)]
Period of Time 8760 [hours]

Optimization
Priority of COE 0.30

Priority of Cost of Wind Turbine 0.20
Priority of Pay Back Time 0.25

Proirity of AEP 0.25  
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In the table current input values used in the application are shown, these values are 

also default GUI inputs. 

In optimization process the initial values are calculated according to the rated power 

value. Initial rotor radius and hub height is shown below: 

35 1initialR .  m=  (5.1)

70 2hub,initialH .=  m  (5.2)

Program generates constraints for the design variables. Possible ranges are shown 

below: 

52 65 122 85hub.  m H .  m≤ ≤  (5.3)

17 55 37 65.  m R .  m≤ ≤  (5.4)

Optimization process searches for optimum design point and generates response 

surface. Response surface is shown below figure 5.1: 

 
Figure 5.1: Response Surface 
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Optimum values for the design variables are: 

30 48optimumR .  m= ,     104 91hub,optimumH .  m=  (5.5)

Response surface model is checked for adequacy and the factor R2 is found: 

2 0 988R .=  (5.6)

The R2 value shows that the response surface is adequate for optimization. 

Results for minimum objective function are shown in table below: 

Table 5.2: Results of Objective Function 
Initial Capital Cost 1,078,100 $
COE 0.017 $ / kW h
Pay Back Period 5.62 years
AEP 5564 MW h  

Overall Results of optimization process is shown below table: 

Table 5.3: Overall Results 
Rated Power 1500 kW
Rotor Radius 30.48 m
Hub Height 104.91 m
Design Power Coefficient 0.43
Design Tip Speed Ratio 7
Rotor RPM 26.07 RPM
Rated Speed 12.60 m/s
Specific Towerhead Mass 20.06 kg/m^2
Rated Power per Rotor Swept Area 513.75 Watt/m^2

Weibull Shape Factor 1.828
Weibull Scale Factor, c 10.29 m/s
Weibull Average Speed 8.975 m/s

Capacity Factor 0.42
Rough Capacity Factor 0.37

Real Rate of Interest 0.052
Present Value of All Costs 1,371,900 $
Yearly Cost of Operation 68,594 $ / year

Initial Capital Cost 1,078,100 $
COE 0.017 $ / kWh
Pay Back Period 5.62 years
AEP 5564 MWh  

In the application one year of hourly averaged wind data is used for calculations. The 

wind data is observed at 30 meters and the data is consisting of 8760 raw wind speed 
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data. Program reads the data, extrapolates data to the hub height and evaluates 

Weibull calculations for the Weibull mean speed determination. Weibull calculations 

are also checked with the WAsP (the Wind Atlas Analysis and Application Program) 

and results agree with the current study results. 

In the aerodynamic analysis optimum blade geometry is calculated. Chord and twist 

distributions with radial stations can be seen in following figures: 

 
Figure 5.2: Optimal Twist Distribution 

 
Figure 5.3: Optimal Chord Distribution 

Blade element theory is applied from the station at %20 of the radius to the station at 

%96 of the radius. 
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For energy calculations following power curve is plotted: 

 
Figure 5.4: Power Curve Plot 

The cost and weight breakdown is: 

Table 5.4: Cost and Weight Breakdown 
Components Weights [kg] Costs [$]
Blades 14971.00 178500
Hub 10441.00 20821
Pitch System 6212.30 45187
Nosecone (spinner) 607.46 3022

Rotor 32232.00 247530
Low-speed Shaft 2031.10 7054
Main Bearings 416.57 2063
Gearbox 8334.20 90859
Generator 5498.10 82095
Mainframe 6842.80 15791
Platform and Railings 855.35 2467
Nacelle Cover 2115.50 10578
Hyraulic and Cooling System 120.00 600
Yaw System 119.30 945
Brake System 298.40 1492

Towerhead 58565.00 461480
Tower 120280.00 179850

Total 178840.00 1170889  

Additional costs including supplementary costs are shown in table: 
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Table 5.5: Additional Costs 
Additional Costs [$]
Control System 35000
Foundation / Support Structure 49659
Transportation 51034
Roads, Civil Work 79009
Assembly and Installation 57514
Electrical Interface / Connections 126600
Engineering, Permits 32701  

5.2 Conclusion 

The whole study gives sufficient information, how the WT machine will be designed 

and what will be the systems benefits through its lifetime. Consequently, the current 

study gives reasonable results. Improvements can be done in the future studies.  

• Program can be improved with other disciplines modules. These modules 

may involve aeroelastic, structural, fatigue, dynamics, control and electrical 

designs. 

• Wind resource analysis program can be improved by using different 

approaches such as Rayleigh distribution approach. 

• The current aerodynamic module can be improved with additional models. 

Dynamic inflow, dynamic Stall, 3-D corrections, yaw misalignment, unsteady 

aerodynamics could be main future study areas. An airfoil database can be 

developed for comparing their performance with each other. Additionally 

new airfoils can be designed for specific projects. The current analysis 

module can be compared with the others methodologies, such as vortex 

theory and Computational Fluid Dynamics (CFD) codes. 

• Component designs can be improved with detailed design for accurate 

calculations. Statistical data of current commercial wind turbines can be 

researched more extensively. Especially tower designs can be improved with 

detailed design using vibration analysis. 

• Offshore wind turbine designs can be added.  

• For the system design and overall economic aspects of the project, better 

comparison can be done with accomplished wind energy projects.  

• In the optimization process the design variables and constraints may be 

modified for better results. 
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