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IMPROVING AIRCRAFT ENGINE MAINTENANCE EFFECTIVENESS 
AND RELIABILITY USING INTELLIGENT BASED HEALTH MONITORING  

SUMMARY 

Engine Health monitoring (EHM) has been a very popular subject to increase aircraft 
availability with minimum maintenance cost. The study is aimed at providing a 
method to monitor the aircraft engine health during the flight with the aim of 
providing an opportunity for early fault detection to improve airline maintenance 
effectiveness and reliability. Since the impending engine failures may cause to 
change the engine parameters such as Fuel Flow (FF), Exhaust Gas Temperature 
(EGT), engine fan speed (N1), engine compressor speed (N2), etc., engine 
deteriorations or faults may be identified before they occur by monitoring them. So 
as to monitor engine health in flight, the automation of current work for EHM which 
is done manually by airlines is developed by using fuzzy logic (FL) and neural 
network (NN) models. FL is selected to develop an Automated EHM system 
(AEHMS), since it is very useful method for automation health monitoring. The 
fuzzy rule inference system for different engine faults is based on the expert 
knowledge and real life data in Turkish Airlines fleet. The complete loop of EHM is 
automatically performed by visual basic programs and Fuzzy Logic Toolbox in 
MATLAB. Finally, the method is utilized to run for monitoring the engines in 
Turkish Airlines fleet. This study has shown that AEHMS can be used by airlines or 
engine manufacturers efficiently to simplify the EHM system and minimize the 
drawbacks of it, such as extra labor hour, human error and requirement for 
engineering expertise. This method may also be applicable other than aircraft engines 
such as auxiliary power unit, structures. Since every engine type has different 
characters, it is required to revise the fuzzy rules for the concerning engine types. 
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AKILLI DURUM ĐZLEME STRATEJĐLERĐNĐ KULLANARAK UÇAK 
MOTOR BAKIM ETKĐNLĐĞĐ VE GÜVENĐLĐRLĐĞĐNĐN 
ĐYĐLEŞTĐRĐRLMESĐ 

ÖZET 

Minimum bakım maliyeti ile uçakların kullanılabilirliğini artırmak için, Motor 
durumunu izleme (MDĐ) çok rağbet görür hale gelmiştir. Bu çalışma, uçak bakım 
etkinliği ve güvenilirliğini artırmak için, arızaların olmadan önce saptanmasına 
imkan sağlayacak, uçuş sırasında MDĐ için bir metod geliştirmeyi amaçlamaktadır. 
Yaklaşan motor arızaları, yakıt akışı (FF), egzoz gaz sıcaklığı (EGT), motor fan devri 
(N1), motor kompressör devri (N2) vs. parametrelerinin değişmesine sebep 
olduğundan, motor kötüleşmeleri veya bozulmaları, bunların izlenmesi ile tespit 
edilebilir. Bu çalışmada, motor durumunu uçuşta izlemek için, bulanık mantık ve 
sinir ağları kullanılarak, hava yolları tarafından yapılan mevcut manüel MDĐ’nin 
otomasyonu geliştirilmiştir. Daha sonra, MDĐ otomasyonu için, çok kullanışlı bir 
metod olan bulanık mantık seçilmiştir. Farklı motor arızaları için, Türk Hava 
Yolları’ndaki gerçek veriler ve uzman bilgilerine dayanarak bulanık mantık kural 
tabanı oluşturulmuştur. MDĐ’nin tüm çevrimi MATLAB’teki bulanık mantık modülü 
ve Visual Basic’te yazılan bir program kullanılarak otomatikleştirilmiştir. Sonuçta, 
bu metod Türk Hava Yollarındaki motorların izlenmesi için çalıştırılmıştır. Sonuçlar, 
bu metodun, MDĐ’nin kolaylaştırılması ve ekstra adam-saat, insan hatası ve 
mühendislik uzmanlığı gerekliliği gibi dezavantajları minimuma indirmek için, hava 
yolları tarafından kullanılabileceği göstermiştir. Bu metot, uçak motorları dışında, 
uçaklardaki yardımcı güç üniteleri, yapısal elemanlar vb. komponetlere 
uygulanabilir. Her motor tipi farklı karakterlere sahip olabileceği için, farklı motor 
tiplerinde bu metot kullanırken kural tabanının revize edilmesi gerekir.     
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1.  INTRODUCTION 

1.1 The Purpose of the Thesis  

As the worldwide commercial airline operation has been becoming more and more 

competitive environment while profit margins are dropping, airlines try to find ways 

to reduce maintenance costs and aircraft downtime. Since the most of the operational 

cost items such as fuel, crew, handling etc. are not easy to change, maintenance 

expenditure is the primary candidate for cost cutting and potential savings. 

Maintenance costs can range from 10 to 20 percent of total airplane related operating 

costs. More than 40 billion dollars are spent to aircraft maintenance, repair and 

overhaul (MRO) yearly. Compared to the scheduled maintenance, unscheduled 

maintenance effect is very high in terms of maintenance cost and operational 

disruption such as flight delays, cancellations, in flight shutdowns etc. Recent studies 

show that the cost of unscheduled maintenance for large commercial jet aircraft is in 

the range of one million pounds per aircraft per year (Dunn, 1997). Since many of 

the large airlines have maintenance budgets in excess of $1 billion, the savings can 

be substantial.  

Aircraft maintenance downtimes and man-hour/material expenditure associated 

maintenance activities are two main factors affecting aircraft performance. Average 

downtime for aircraft maintenance is about 25 days per year. The downtime causes 

very significant cost to the aircraft operators because fixed expenses are spent 

whether the aircraft flies or not. The lost due to maintaining an aircraft, the size of 

Boeing 737NG, instead of operating it, is approximately $50,000 per day.  

Airlines want to increase aircraft availability and reliability to minimize the 

operational interruptions and the customer satisfaction with an effective 

maintenance. The effective maintenance would be performed just before the failure 

is impending. But, in practice, this can only be done if there is any possibility to 

detect the component deterioration before its failure. So, airlines try to find out 

methods to move from reactive maintenance to predictive maintenance.  
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Airline maintenance industry is moving towards new concepts to monitor aircraft 

health during flight to prevent delays, cancellations, in-flight shutdowns and similar 

interruptions before they occur and reduce the no fault found (NFF) situations due to 

inaccurate troubleshooting activities. NFF rate in aviation is about 20 to 50 % and it 

increases the burden on the supply and maintenance system in terms of increased 

spares, inventories and manpower. Average yearly cost due to NFF per an aircraft is 

about 100.000 dollars. 

Conventionally, aircraft maintenance is developed using Maintenance Steering 

Group, MSG-3 (Maintenance Steering Group) logic which was developed by ATA 

(Air Transport Association). Since the maintenance concept is based on statistical 

reliability data, it is assumed that some failures may not be evitable between the 

checks. And, most of the maintenance tasks may not be effective because they do not 

help detecting any failures or deterioration due to their ineffectiveness during the 

scheduled maintenance.  

Reliability of any system or component is calculated using historical data such as 

time to failure, time to unscheduled removals or time to survival. Statistics based 

reliability analysis can help us to predict that we’re going to have so many removals 

or failures during a specified period, but it cannot predict a failure or deterioration 

and tell you when or to what components will fail. The traditional reliability tells us 

you at what time and which failure is probably to happen based on the current 

aircraft utilization.  

Airlines try to improve the maintenance program effectiveness to deliver safe and 

reliable flight to customers economically by replacing reactive maintenance with 

proactive or condition based maintenance (CBM). The main concern of airlines and 

manufacturers is to provide appropriate health monitoring strategies for predictive, 

condition-based and cost effective maintenance program to reduce direct 

maintenance cost (DMC) and increase aircraft availability as shown in Figure 1.1.  

 

Figure 1.1 : The HM effect on A/C performance 
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Since the engine is one of the most critical parts of an aircraft in terms of safety and 

maintenance cost, engine health monitoring (EHM) is vital for airlines to manage and 

forecast engine maintenance without interrupting scheduled flights and grounding for 

unscheduled maintenance due to in flight shutdowns, aborted takeoffs, unscheduled 

engine removals, delays and cancellations. Engine maintenance cost is between 35-

55 % of total aircraft maintenance cost (Aviation Industry Group, 2005). EHM is one 

of the most effective methods to maximize engine on-wing time and reduce engine 

unscheduled maintenance cost.  

In addition to providing a significant amount of cost savings expected from 

maintenance actions taken from early diagnosis of faults prior to in-flight shutdowns 

(IFSDs), unscheduled engine removal delays, cancellations and similar interruptions, 

EHM may help to convert some preventive tasks from unscheduled to scheduled 

maintenance by using performance data to establish precursors to failure. 

Because safety and economic impact are very important for airline’s success, health 

monitoring strategies are very effective and efficient method to cope with these 

impacts. The use of health monitoring not only increases aircraft maintenance 

effectiveness but also decreases the required expert for evaluation of the flight data 

continuously. Engine health management strategies such as trending, failure 

identification, forecasting and life prediction for operation and maintenance planning 

help increase the efficient operation of engines and reduce the maintenance cost.  

The main purpose of this thesis is to apply intelligent based health monitoring 

strategies to aircraft engine using real flight data with the aim of improving airline 

maintenance effectiveness and reliability. So as to monitor engine health in flight, the 

automation of current work for EHM done manually by airlines is developed by 

using fuzzy logic and neural network models. Then, the method will be explained by 

applying to an aircraft engine in THY fleet by using in-service real time data. At the 

end of the study, the improvement of aircraft reliability and maintenance 

effectiveness using health monitoring strategies is discussed.  

Automation of the HM not only produces more accurate results than manual 

evaluation and enables airlines to keep the precious expertise available to many users 

especially for the availability for less skilled staff and newcomer. The automatic 

EHM system basically collects data, processes it and sends feedback if there is any 

alert.  
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1.2 Literature Review 

In this section, we provide a brief review of existing models and studies in engine 

health monitoring and alternative methods to overcome the shortcomings in 

measuring reliability traditional way for proactive maintenance. 

EHM system is as old as the jet engine itself (Volponi et al., 2005). From the start of 

using jet engines there was a need for engine health monitoring. From its beginnings 

as simple monitoring practices performed by a line mechanic, there have been many 

improvements.  

Engine monitoring systems (EMS) have become increasingly standard in the last two 

decades, in parallel with the advances in aircraft engines and computer technology. 

The first Aircraft Gas Turbine Engine Monitoring System guide was published by 

the SAE (Warwick, 1981). It provided guidelines to airlines and engine 

manufacturers in their design and implementation of EMS.  

In the eighties, many innovative programs were implemented by Engine Trending 

and Diagnostics working group from the main the United States Air force (USAF) 

engine depots. The USAF has invested in the concept of engine health monitoring 

with current system such as Comprehensive Engine Maintenance System (CEMS) 

and research and development programs in the early 1990s to investigate additional 

health and performance technologies. There is a need to develop these capabilities 

further and combine data from an array of sensors to enable engine health 

management using more advanced diagnostic and prognostic techniques.  

Various health management functions must be efficiently integrated and timely 

updated with new information. Since 1985, the U. S. Air Force has been using a 

computer program to facilitate engine health management. This program, the 

Comprehensive Engine Trending and Diagnostic System’ (CETADS), incorporates 

WindowsTM-based software to help the Air Force perform data trending and 

diagnostic functions for its engine fleets. In mid 1990’s, the Air Force recognized the 

need for simpler and clearer directions to maintenance actions on the flight line; 

consequently, a plug-in module called the Intelligent Trending and Diagnostic 

System (ITADS) was developed for CETADS. ITADS incorporates an expert system 

shell to provide “immediate” go/no-go decision to the crew chief as if the depot 

engineer were there to evaluate the engine performance; however, ITADS does not 
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have the capability to make longer-range failure forecast and maintenance planning 

(Hall, 2001).  

Space shuttles and helicopters had more advanced engine monitoring capabilities 

than commercial aircraft. One of the most active areas of research in engine 

condition monitoring is in the development of Health Usage and Monitoring Systems 

(HUMS) for helicopters (Cronkhite, 1998). Although the cost of implementing 

HUMS was still high, the benefits had been steadily increasing.   

Jaw (2005) states that the field of EHM is advancing rapidly. The author believes the 

best way to develop this process is to hold an industry-wide forum on EHM. This 

forum will consist of two parts: 1) a workshop to gather industry experts and EHM 

researchers to define a “theme” problem to be solved, and 2) a conference to present 

the results of different approaches or techniques after the theme problem has been 

distributed.   

One of the features of a gas turbine engine is that once its performance parameters 

are accurately established, they vary only slightly over time from their initial values. 

In fact, the gas turbine engine is expected to operate for extended periods of time 

with a high degree of mechanical reliability (Mullen and Richter, 1993). 

A review of engine monitoring systems for commercial aviation was conducted and 

reported by Tumer and Bajwa in 1999. They reported that engine performance 

monitoring had proven effective in providing early warning and impending failures; 

however, high number of false alarms had created reluctance among commercial 

users to rely on the results. Tumer and Bajwa identified two practical problems 

facing EHM: 1) too many false alarms, 2) insufficient sampling and data storage. On-

going research areas in the field of EHM were: 1) anomaly detection, 2) replacing 

standard threshold method with feature extraction, 3) automated fault diagnosis, 4) 

combination of theory, knowledge, and test information to develop more reliable 

fault libraries, 5) combination of rule based (e.g., expert system) diagnosis with 

Artificial Neural Network (ANN or NN) or Fuzzy Logic (FL), 6) knowledge 

discovery.   

The major requirements of EHM are also defined by Tsalavoutas et al. (2000). These 

are; 1) automated monitoring, analysis, and decision support; 2) accurate results with 

high confidence; 3) robust capabilities against noise and faulty information; 4) wide 
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coverage of fault conditions; 5) predictive capabilities; 6) using existing, or as few as 

possible, sensing instruments; 7) flexible, modular, and open architecture; and 8) 

user friendliness.   

Certain kinds of engine failures will result in specific changes in the parameters 

being monitored. Many airline and manufacturing companies work together to 

implement engine monitoring and diagnosis systems to monitor and diagnose a 

minimum set of parameters. The European Union has initiated several new projects 

such as BRITE, OBIDICOTE, TATEM, VIVACE and AEROTEST to improve 

health statistics and to develop health monitoring. A European Union (EU) part-

funded Framework-6 Integrated Project named as TATEM "Technologies and 

Techniques for nEw Maintenance concepts" aimed at showing how monitoring 

techniques and technologies can enable an integrated Health Management approach 

to significantly improve the aircraft operability and reduce maintenance related costs 

by 20 % in the 5 -10 year period and 50 % in the 10 - 15 year period. The project was 

launched in March 2004 and is planned to run for 4 years with an overall budget of 

around €40 M. The project comprises some 58 partners from across Europe, Israel 

and Australia (TATEM, 2007).  

Recently, instead of selling engines to customers there is a fundamental shift to 

adoption of power-by-the-hour contracts. Some airlines make fixed regular payments 

based on the hours flown and the engine manufacturer retains responsibility for 

maintaining the engine. To support this new approach improvements in in-flight 

monitoring of engines are being introduced with the collection of much more 

detailed data on the operation of the engine. The difficulty for the future will be to 

provide the infrastructure to manage the large amounts of data, analyze it to identify 

faults that have occurred but more importantly to identify potential faults that require 

maintenance to prevent failures and aircraft downtime. It is this second feature of 

predictive maintenance that provides huge potential pay backs in terms of future 

systems giving much greater aircraft availability. The underlying research challenges 

for the future are thus real time intelligent feature extraction, intelligent data mining 

and decision support techniques (Ong et al., 2005). So, automation of EHM is 

important not only for airlines and MROs but also for manufacturers to manage huge 

amount of data.  
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By examining the different trend shifts across multiple engine parameters, one may 

identify the major signatures of a particular known engine problem for failure root 

cause diagnosis. Without effective automatic diagnostic tools, most engine 

monitoring and diagnostic procedures rely on human operators to review 

performance trends and make diagnostic decisions. In contrast, a robust, automatic, 

and accurate engine diagnostic process can essentially replace the labor-intensive 

manual approach to improve efficiency and reduce inconsistency due to differences 

in human interpretation of noisy data. However, previous investigations have shown 

that it is extremely difficult to develop such an effective engine diagnostic tool (Krok 

et al., 2002).  

The current practice for commercial aircraft requires the continuous on-board 

monitoring performance parameters and transmission to the ground only when 

exceedance is observed. One problem with data collected for commercial aircraft is 

the low sampling rate due to high cost of data transmission to the ground personnel 

for future analysis (Tumer et al., 1999). 

We drew a conclusion from above studies, many researchers have emphasized that 

current health monitoring systems need more improvement in terms of automation 

and more accurate predictions. From the previous studies, we have seen that health 

monitoring system is in need of improvement using real flight data. 

Engine health monitoring provides for the isolation, estimation, and tracking of 

engine module performance deterioration. As a three decade old practice, it has been 

the subject as optimal estimation, fuzzy logic, Neural Network, Bayesian Belief 

Networks and Kalman Filters (Volponi et al, 2004). 

Li (2002) presented a qualitative assessment of the computation speed and the model 

complexity of various algorithms as shown in Table 1.1.  

Table 1.1: Performance assessment of various algorithms (Li, 2002) 
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As seen from the table above, fuzzy logic (FL) is one of the best methods for the 

highest speed-complexity propery.  The flexibility of fuzzy logic systems in dealing 

with uncertainties has played an important role in their wide usage for engineering 

applications. The basis of the fuzzy logic system is the rules and these must be 

carefully defined. Fuzzy logic enables us to model our qualitative knowledge about 

the problem to be solved. Fuzzy logic is very effective and practical to automate the 

process of health monitoring.  

In recent years, a few contributions to EHM using Fuzzy Logic were done. Ganguli 

et al. (2002-2003) had made significant improvement for the use of fuzzy logic 

systems for EHM. Gayme et al. (2003) developed a fuzzy logic system for HP Spool 

deterioration. Results show that the fuzzy logic system has a success rate of almost 

100 % in isolating the faulty engine (Ganguli, 2003). Overall, we have seen that, 

using Fuzzy logic in EHM is a very helpful tool for airline maintenance, but there is 

still lack of improvements for engine fault module separation and automation for 

airline EHM system. In addition to the authors, Byington (2004) used the fuzzy logic 

prediction for aircraft actuator components’ health.  

In addition to the FL model, artificial neural network which is also very effective 

method for the problems when the model itself is either too poor or too complex is 

used in the study to show how it is implemented for EHM problems. And then, the 

results are discussed. In literature, there have been some NN applications to engine 

health monitoring. For example, Ogaji et al. (2005) applied ANN for gas-turbine 

diagnostics. For the study, a simulation program called Turbomatch was used to 

generate the required data for application. And, the NN study does not include the 

data for aircraft conditions such as altitude, velocity, outside temperature and so on. 

The data in their study are different than those we use in the study. Another study 

related to gas turbine engine condition monitoring using neural network methods was 

done by Patel et al. (1996). The authors use fuel flow and core speed for constructing 

the monitoring system. They did not use exhaust gas temperature even it is very 

important for engine performance evaluation. Amongst the NN applications to the 

health monitoring, one of the most comprehensive developments was done by 

Volponi et al. (2004). They used aircraft data including engine performance data in 

their application. But, the data pairs and methodology are also different than our 

study. Gorinevsky and his friends applied NN to aircraft auxiliary power unit which 
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is small gas turbine engine that provides electrical power and compressed air to 

aircraft.      

Since many existing health monitoring systems are not focused on automating 

prediction of future machine conditions, we aim at developing intelligent based 

health monitoring system using both models Fuzzy Logic and Neural network to 

automate the whole loop of the health monitoring process done by manually in 

airlines.   

1.3 Problem Statement 

Engine performance is deteriorated by many effects such as wear, aging, erosion, 

foreign object damage etc. when an aircraft travels from one point to another over 

time. Deterioration of an engine generally results in changes in engine measurements 

such as fuel flow, low pressure speed, high pressure speed and engine gas 

temperature. By monitoring these changes over time, engine faults may be forecasted 

and prevented before they occur.   

Population based reliability predictions such as Weibull analysis can not accurately 

predict when each serial numbered part will fail. Experience has shown that failures 

are dependent on the status of the component. Putting a few additional data 

representing the status of the component such as vibration, pressure, temperature etc. 

including failure data into the model for failure forecasting provide much greater 

accuracy.  

Another problem in population based reliability predication, all parts having same 

part number have same mean time between failures (MTBF). Population distribution 

can contribute to accurate failure forecasting but is not a complete solution in itself. 

Weibull method is affected by five factors. a) uncertainty in the failure datum, b) 

uncertainty in the failure mode, c) uncertainty in the date of manufacture, d) the lack 

of knowledge of the actual operating time, and e) the lack of knowledge of the stress 

levels applied to the item (Fitzgibbon et al., 2002). 

All products and systems degrade their performance with age and other 

environmental conditions. As degraded performance trends occur over time, there is 

an increased probability of predicting the failures.  In order to track the performance 

accurately, it is imperative to collect all data such as time to failure, environmental 



 
10 

conditions when the failure occurred and measurements at serail number level as 

shown in Figure 1.2.  

 

Figure 1.2 : Data collection and analysis 

Data analysis for event data only is well known as “reliability analysis”, which fits 

the event data to a time between events probability distribution and uses the fitted 

distribution for further analysis. In condition-based maintenance, however, additional 

information - condition monitoring data, is available. It is beneficial to analyze event 

data and condition monitoring data together.  

By analysing previous performance data, possible failures can be predicted. 

Predictive Maintenance (PdM) systems should be able to predict the failure of an 

aircraft part before it happens, and will be tied to a specific part on a specific tail 

number. Health monitoring systems provide certain diagnostic and predictive 

information. The ultimate goal and final step of a health monitoring program is 

maintenance decision making.  

Health monitoring program is to monitor a component health, with the aim of 

providing an opportunity for early fault detection as shown Figure 1.3. The need for 

component health monitoring is to decide the maintenance actions just before the 

faults and failures before they occur. HM allows the component to be operated 

without corrective maintenance until the next planned maintenance opportunity. 
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Figure 1.3 : Component health monitoring (Brotherton and Jahnas, 2000) 

The problem in the study is to find out aircraft engine condition if it is suitable for 

the next flights or not. Sufficient and efficient decision support will result in 

maintenance personnel’s taking the “right” maintenance actions given the current 

known information.  Early detection of anomalies and their characterization are 

essential for health management, which includes prognosis of impending failures in 

critical components and mitigation of their detrimental effects on the engine 

operation. Identification of the current state of the engine health is very important for 

maintenance engineers because necessary repairs must be carried out before the 

engine becomes permanently non-operatable (Tolani et al., 2005). 

Ineffective maintenance can be expensive in terms of down time and cost with “no 

fault found (NFF)” situations contributing significantly to maintenance costs. To 

cope with these challenges, a new method based on maintenance free operating 

period (MFOP) and health monitoring strategies are used in this study. The MFOP 

provides the airline operator with flexibility in where and when it carries out its 

preventive and corrective maintenance to an extent. This reduces some of the 

uncertainty present in maintenance planning (Haiqiao et al., 2004). The other method 

to reduce maintenance cost is to use aircraft condition monitoring. An airline can 

evaluate the data obtained from Digital Flight Data Recorder (DFDR) of its own 

aircraft for flight performance, aircraft reliability and maintenance program 

improvement (Demirci ve Aykan, 2005). The data available on board the aircraft are 

collected by the Flight Data Recorders. Aircraft systems are currently being designed 

to output information that is suitable for preventive maintenance programs. 
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In recent years, there have been many improvements in health monitoring strategies. 

Currently, Turkish Airlines perform engine condition monitoring using engine 

parameters data taken from aircraft weekly. These engine parameters are entered 

engine condition monitoring programs and reports are produced in order them to be 

evaluated by powerplant engineers. However, the required expert is not always 

available. The manual method needs extra man-hour and expert’s participation too. 

In this study, we are aiming at developing a method for automation for fault 

detection and health monitoring. The method will be applied to an engine type in 

THY fleet. The advantages and accuracy of these methods are discussed. At the end 

of the study, it will be discussed that how the implementation of the methods in an 

airline maintenance program to improve aircraft engine maintenance and reliability.   

In order to develop real time health monitoring, automation of the health monitoring 

is required. For the automated engine health monitoring system (AEHMS), neural 

network (NN) and fuzzy logic have been used. Then, fuzzy logic is selected for the 

automation algorithm because of the advantageous compared other methods. Neural 

networks have also been applied in the study to compare the results. In the study, 

some rules and outputs are added for other faults and changed the ranges of some 

parameters using Turkish Airlines engineering expertise, real data and reference 

manuals in addition to previous studies. Using some programs written in Visual 

Basic getting data from System of the Analysis of Gas Turbine Engines (SAGE) 

automatically to the database and they are evaluated by fuzzy logic system. The 

complete loop of EHM is automatically performed by the programs and Fuzzy Logic 

Toolbox in MATLAB. Since fuzzy logic provides very good model for uncertainties 

to analysis the changes engine parameter shifts, we also wanted to use it in our 

model. So, all expertise required for engine performance monitoring is automated by 

using fuzzy logic. In this study, an engine health monitoring using fuzzy logic and 

MATLAB program is developed to facilitate manual engine diagnostic and 

prognostic capability.  

EHM analysis determines if the change in engine parameters will cause any 

deterioration in engines during the operation by analyzing the aircraft engine data 

which are send to the maintenance center automatically via ACARS (Aircraft 

Communications Addressing and Reporting System) as shown in Figure 1.4.  
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Figure 1.4 : Engine health monitoring  

ACARS, which provides flight communication of health status/events from air to 

ground,gives an opportunity to the airlines to use real time aircraft health monitoring 

as shown in Figure 1.5. 

 

Figure 1.5 : Real time aircraft health monitoring 
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2.  BACKGROUND  

2.1 Engine Overview 

The engine provides thrust to the aircraft and air to airframe systems. The main 

components of the engine are Fan and booster (Low Pressure Compressor, LPC), 

High Pressure Compressor (HPC), High Pressure Turbine (HPT), Low Pressure 

Turbine (LPT), Combustor and Accessory Gear Box (AGB). These sections are 

shown in Figure 2.1. 

 

Figure 2.1 : Main engine components (GE SAGE, 1999) 

The fan and booster rotor and the LPT rotor are on the same low pressure shaft (N1) 

that operates at lower speed, and the HPC rotor and HPT rotor are on the same high 

pressure shaft (N2) that operates at high speed as shown in Figure 2.2. The low 

pressure system is composed (from front to rear) by a single stage fan connected to a 

two-stage compressor, also known as super-charger, and both mounted on a fan 

shaft. The system is driven by a two-stage turbine which transmits the mechanical 

energy required to move the system by means of a turbine rotor assembly shaft. 

Since the fan requires a lower speed, a single stage gear arrangement connects the 

fan shaft and the turbine rotor shaft to reduce the revolutions of the latter. 
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Figure 2.2 : High and low pressure shaft connections  

The high pressure system of the engine is a more complex mechanical system; it is 

formed by a combination of an axial and a centrifugal compressor. The two 

compressors are mounted on a single shaft connected to a two-stage turbine. This 

high pressure shaft encircles the low pressure turbine rotor shaft in a co-annular 

fashion. An accessory gearbox is located at the front of the compressor and provides 

with the rotational energy for all engine driven devices (Marcos et al., 2004).    

Air entering the core engine is drawn up by the compressor fan. The fan increases the 

speed of the air. A splitter fairing divides the air into primary and secondary sections. 

The HPC increases the pressure of the air from the LPC and sends it to the 

combustion chamber. The HPC also supplies bleed air to the aircraft pneumatic 

system and engine air system. The combustor mixes air from the compressors and 

fuel from the fuel nozzles. The mixture of air and fuel burns in the combustor 

chamber to make hot gases. The hot gases go to the HPT. The HPT uses this energy 

to turn the HPC rotor and the accessory gearbox. The LPT uses this mechanical 

energy to turn the fan and the booster rotor. The AGB holds and operates the airplane 

accessories and the engine accessories. The N2 shaft turns the AGB. The EGT 

indication system monitors the exhaust gas temperature. After the high and low 

pressure turbine, the gases rapidly expand and are being forced out of the rear of the 

engine to produce the thrust required for the aircraft. 

Typical engine component faults or deterioration are as follows (Weizhong et al., 

2004):  

•  Fan – Fan blade damage, typically occurring due to bird strikes or other Foreign 

Object Damage (FOD) during takeoff. 

•  High Pressure Turbine (HPT) – Typically a partial loss of one or more blades, 

most commonly during high power conditions. 
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•  Low Pressure Turbine (LPT) – Typically a partial loss of one or more blades, 

most commonly during high power conditions. LPT blade faults are less 

frequent than HPT blade faults. 

•  Variable Bleed Valve (VBV) – VBV doors not closing according to FADEC 

issued command, or one or more doors get stuck in a particular position. VBVs 

are intended to prevent low-pressure compressor stalls.  

The possible GE CFM 56-7 engine fault categories identified by GE survey are: 

• Bird strikes and foreign object damage to fan blades 

• Variable bleed valve leakage 

• High pressure compressor damage 

• High pressure turbine damage 

• High pressure turbine clearance control valve fault 

• Low pressure turbine damage 

• Low pressure turbine clearance control valve fault 

• Transit bleed valve fault 

• CDP bleed valve leakage 

Aircraft engines constitute a complex system, requiring adequate monitoring to 

ensure flight safety and timely maintenance. Cockpit displays indicate engine 

performance through vital information such as rotational speeds, engine pressure 

ratios, exhaust gas temperatures, etc. Oil supply to critical parts, such as bearings, is 

vital for safe operation. For monitoring fuel and oil status, indicators for quantity, 

pressure, and temperature are used. In addition to these crucial parameters, vibration 

is constantly monitored during engine operation to detect possible unbalance from 

failure of rotating parts, or loss of a blade. Any of these parameters can serve as an 

early indicator to prevent costly component damage and/or catastrophic failure, and 

thus help reduce the number of incidents and the cost of maintaining aircraft engines 

(Treager, 1996) 
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2.2 An Overview of Engine Health Monitoring 

Engine Condition Monitoring programs (ECM) programs were originally developed 

by Pratt and Whitney. Engine Condition Monitoring is an important aspect of safe 

engine operation and effective engine operation. An effective monitoring assists to 

managing and forecasting engine maintenance. Engine condition monitoring can be 

used as a tool to track and restore engine performance, improve problem diagnosis, 

suggest solutions, promote better aircraft operation, minimize in-flight failures, and 

reduce costs of engine maintenance. The aims of the ECM are to assess the engine 

performance and health, to provide a "quick look" engine/instrumentation fault 

detection, to prevent unexpected engine problem such as in flight shut down and 

aborted take-offs to reduce unscheduled maintenance to monitor guarantees and to 

reduce the overhaul costs. 

Health management is a modern phase of condition monitoring. Health Monitoring is 

the process of updating the actual status of aircraft components in terms of existing 

or potential faults/deterioration over flight hours/cycles or days using real operational 

data for the aim of maintenance decision making. Moreover, health monitoring 

techniques have the potential for increasing the reliability of the preventive 

maintenance program in such a way as to provide maintenance credits by offsetting 

the requirement for potentially less reliable manual techniques. To determine 

maintenance requirements effectively, the identification of failures and the prediction 

of failure progressions are essential; hence the Prognostics and Health Management 

(PHM) philosophy has also been emphasized recently in the aerospace industry. The 

main functions of health management are: 

• Data Validation and trending, 

• Failure alert, detection, isolation, 

• Failure prediction, forecast, 

• Part/component life estimation, 

• Maintenance operation planning  

Power plant is the most critical and expensive component on aircraft that effects the 

airworthiness and safety. The aim of the power plant reliability is to keep engines on 

wing longer as much as possible and reduce overhaul costs. In order to maintain this 

reliability level, engine performance is monitored continuously when cruising in air. 

On the other hand, from 1 January 2005 civil aviation authorities have mandated 
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flight data analysis in airlines. It has been resulted in development of several 

softwares such as Aircraft Ground Systems (AGS) of SAGEM, COMPASS, SAGE, 

Ground Engine Monitoring (GEM) and ADEPT.  

Measurement of deltas (∆’s) is deviations in engine gas path measurements from a 

"good" baseline engine and are a key health signal used for gas turbine performance 

diagnostics. The main measurements used in EHM are exhaust gas temperature, low 

rotor speed, high rotor speed and fuel flow, which are called cockpit measurements 

and are typically found on most commercial jet engines.  

2.3 Performance Parameters for EHM Systems 

The aircraft engine is such a closed-loop system that any impending engine failures 

may cause to change the engine performance parameters shown in Figure 2.3.   

 

Figure 2.3 : Main engine performance parameters (Schmidt, 2005) 

 

The primary engine performance parameters to monitor engine performance 

deterioration are Fuel Flow (FF), Exhaust Gas Temperature (EGT), engine fan speed 

(N1), engine core speed (N2). Engine health monitoring involves the monitoring of 

the engine performance parameters which reflect the change of engine health.  

Monitoring of an aircraft engine condition is very similar to human body condition 

monitoring. The similarities are shown in Figure 2.4. When we go to a doctor, first of 

all he or she checks our body temperature, blood pressure and pulse. Based on the 

measurement results and interview with us, he or she can decide whether more test or 

corrective action is required. 
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Figure 2.4 :  The similarity between an engine and human body check 

Similar to human body, in an aircraft engine has N2 in place of pulse, FF in place of 

blood pressure and EGT in place of body temperature. EGT is an excellent indicator 

of engine health just as blood pressure is a common indicator for health of human 

heart. Troubleshooting check is replaced with the interview in a patient check.  

EGT is a measure of temperature of the gas leaving the aft of the engine. Since the 

EGT sensor locations vary according to engine model, EGT values should not be 

compared between engine models. High EGT can be an indication of degraded 

engine performance. Excessive EGT is a key indicator of engine stall which may 

result in engine in-flight shut down.  

As an engine deteriorates, more fuel is consumed for the required engine thrust. In 

parallel to fuel consumption rise, temperature increases, so EGT rises. N2 speed will 

increase or decrease depending on the location and component which is responsible 

for the loss of efficiency. N1, engine fan speed or low speed indicator, is a reliable 

indicator that does not change much with engine deterioration. So, N1 is not used as 

a performance measurement in the study. Unexpected high N1 may indicate a fuel 

control malfunction. 

In addition to the primary parameters, there are secondary parameters to monitor 

engine such as Mach number, altitude, pressures in different engine sections, fan and 

core vibration, outside air temperature, oil temperature and pressure. EGT, FF, N1 

and N2 are engine cycle related parameters. Oil pressure and temperature are engine 

system related parameters.  

Engine vibrations may be caused by engine unbalance, any foreign object damage 

(FOD) such as bird strike, compressor blade loss, icing conditions (ice may build up 

on the fan spinner and blades). Vibration is one of the most important parameter in 



 
21 

the secondary parameters. A rapid increase of the vibration level indicates possible 

engine deterioration. Vibration itself does not lead to IFSD.  

Besides the EGT itself, EGT margin change is used to monitor engine condition. 

EGT margin, the absolute performance of engine in term of temperature, is the 

number of degrees between the current operating conditions and the temperature 

redline the safety limit on temperature of engine operation. EGT margin is calculated 

as below, 

EGT Margin=Red Line (Maximum Limit) EGT-Current EGT                          (2.1) 

EGT margin is a measure of how much an engine has deteriorated. When an engine 

is brand new it has a high EGT margin. Over time the engine deteriorates. What ends 

up happening is the compressor gets dirty and runs less efficiently, meaning the 

turbine driving the compressor must work harder, which causes the temperature that 

the engine burns at to be higher, causing EGT margin to decrease. A way to recover 

some EGT margin is to wash the compressor out at regular intervals. Another thing 

that happens is that the clearances between the tips of the turbine blades and the and 

the shroud surrounding them increases. The increased gaps reduces the efficiency of 

the turbine, causing the engine to burn at a higher temperature to get the same 

amount of thrust. Basically, when the consistently runs at the red line EGT, EGT 

margin is zero. When the engine exceeds red line EGT, the engine must be removed 

and overhauled to replace deteriorated parts (Url-1). An example of EGT margin 

increase after the engine overhaul is shown in Figure 2.5. These data belong to an 

engine operated in THY fleet.  

 

Figure 2.5 : An example of engine overhaul effect on EGT margin 
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Each engine deterioration type can occur in combination with varying values of 

engine parameters. For example, as the compressor efficiency deteriorates, the 

engine will require an increase in fuel flow in order to maintain the commanded N2 

(thrust lever angle). This increase in fuel flow will, in turn, drive N1 faster and cause 

EGT to be higher than EGT with normal fuel flow. As the engine deteriorates, FF 

increases to diminish this deterioration. In the result of FF increase, EGT increases.  

2.4 Benefits of an EHM System 

Effective health monitoring system helps airlines to be able to forecast the failure of 

an aircraft part before it occurs so that maintenance can be arranged to a suitable time 

for airline operation without interrupting scheduled flights and grounding for 

unscheduled maintenance. Health monitoring system is very important for airlines to 

reduce maintenance costs and to improve safety. Component failures may be defined 

in terms of a certain level of degradation and the reliability of that particular 

component is estimated based on its degradation measures (Demirci and Aykan, 

2005). Effective health monitoring helps prevent catastrophic engine failures and 

power losses, thereby reducing risks to safety-of-flight and reducing the number of 

aircraft flight mishaps. It reduces the number of scheduled and unscheduled engine 

removals by employing on-condition maintenance to eliminate individually 

scheduling maintenance actions (such as compressor cleaning) and because of early 

detection, facilitating more on wing maintenance. It reduces the amount of base and 

depot level repair by minimizing the amount of field maintenance required due to 

early detection of malfunctions (Mullen and Richter, 1993).  

Components that are detected to be close failure by the system can be removed and 

replaced before they completely fail and cause damage to other components and 

interrupt operation. Health monitoring system makes maintenance much easer for 

airlines to reduce the amount of maintenance downtime that the aircraft spends in 

hangar. By monitoring aircraft systems or components, some of the preventive 

maintenance actions are altered to predictive maintenance. Recently, not only is 

health monitoring used for engines but also other systems such as structures, landing 

gears, avionics, APU (Auxiliary Power Unit) etc. in modern aircraft. In future, 

aircraft would be almost all monitored vehicle in parallel to competition and new 

developments.  
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Trend changes in engine parameters are precations for engine reliability decrease 

which may cause in-flight shutdowns, unplanned engine removals, rejected take-offs, 

cancellations, air turn backs/diversions or delays.  The application of EHM strategies 

is very effective way; 

• to improve flight safety by early detection of engine malfunctions, 

• to reduce costly component damages which cause unscheduled engine removals 

and maintenance, 

• to predict future faults or failures and maintenance requirements, 

• to reduce turnaround time by providing maintenance personnel with information 

on fault reducing time for manual fault isolation, 

• to reduce ground and flight interruptions and IFSDs,  

• to increase engine on-wing time by minimizing scheduled and unscheduled engine 

removals, 

• to reduce need for spares, 

• to reduce NFF rate, 

• to define the work packages based on actual condition instead of the average 

condition, 

• to increase dispatch reliability and availability. 

In summary, EHM systems improve airworthiness, improve reliability and reduce 

aircraft cost of ownership by detecting and diagnosing potential and actual failures, 

monitoring usage, automating test procedures and providing advance warning of 

potential equipment failures and collecting valuable data for scheduled maintenance. 

2.5 Commercial Airplane Maintenance 

Aircraft maintenance implies actions that restore an item to a serviceable condition 

and consists of servicing, repair, modification, overhaul, inspection and 

determination of condition. Aircraft maintenance is an essential part of the 

airworthiness. Airworthiness is “fit to fly”, as the explanation in Oxford English 

dictionary. 

Preventive maintenance (PM) is all actions performed at defined intervals to retain 

an item in a serviceable condition by systematic inspection, detection, replacement of 

wear out items, adjustment, calibration, cleaning etc. (UK Civil Aviation Authority, 
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1992).  Since this type of maintenance is carried out in specified period of times, PM 

is also known scheduled maintenance.  PM advocates maintenance predetermined 

time frames to prevent breakdowns and sustain the reliability of the system. 

However, this often results in wastage of resources because of unnecessary 

maintenance. The other drawback of a PM approach is that it cannot be avoided 

random catastrophic failures.  

Maintenance can be categorized as preventive, predictive and corrective maintenance 

as shown in Figure 2.6.  

 

Figure 2.6 : Maintenance classification 

The bathtub curve shown in Figure 2.7 is used to be the corner stone of reliability. 

Bathtub curve has tree regions.  

 

Figure 2.7 : The effect of PM on the Bathtub Curve (Kececioglu, 1991) 
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First region is infant region which starts from higher failure rate then decreases. The 

second region is called useful life in which failures are random and failures occur in 

the region randomly. There is no aging effect in the region. The last region in which 

failure rate increases is wear-out region. It may be seen from the bathtub curve that 

preventive maintenance is effective only for wear-out region of the failure rate 

pattern which is called reliability bathtub curve.   

In 1970s, United Airlines developed a new perspective on age reliability patterns as 

shown in Figure 2.8.  

 

Figure 2.8 : Bathtub curves for a specific aircraft (United Airlines) 

There are 6 failure patterns defined by UA. A represents the failure types which have 

constant failure rate until wear-out region. B, a typical bathtub curve, shows the 

failure types which have three regions of the bathtub curve. C shows the failure types 

which have gradually increasing failure probability, but with no identifiable wear-out 

region. D shows the failure types which have low failure probability in early ages 

followed by a quick increase to a constant level. E represents the constant probability 

of failure at all ages. F shows the failure types which have infant mortality followed 

by decreasing to constant level. Studies conducted by the United Airlines (UA) have 

shown that only 11 % of aircraft equipment failures are time/age related as shown in 

Figure 2.8 reliability bathtub curves. These results were very surprise to almost 

everyone, because they were very different than expected.      
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The second type of maintenance is Predictive Maintenance (PdM) or Condition 

based maintenance (CBM) which is introduced to ensure the right work at the right 

time by identifying trends that lead to failures. It is a method used to reduce the 

uncertainty in maintenance activities and it is carried out according to the need 

indicated by the equipment condition. Essentially CBM involves prediction of an 

incipient failure by utilizing the current condition of the equipment. It requires 

monitoring, diagnosis (prediction of remaining life) of the equipment (Kothamasu, 

2004). The ultimate goal and final step of a CBM program is maintenance decision 

making. 

The last type of maintenance is Corrective maintenance (CM) which is all actions 

performed as a result of failure to restore an item to a satisfactory condition by 

providing correction of a known or suspect malfunction and/or defect (UK Civil 

Aviation Authority, 1992).  Since this type of maintenance is carried out in case of 

failure, CM is also known unscheduled maintenance.   

The main goal of maintenance is to provide a fully serviceable aircraft when is 

required by an airline at minimum cost. The operation and maintenance of 

commercial aircraft are under control of the laws and regulations of international 

association and nation.  

Every commercial airline is required to maintain its aircraft to assure safe operation. 

The operation and maintenance of commercial aircraft are under control of the laws 

and regulations of international association and nation. Aviation Regulations require 

that, no person may operate an aircraft unless mandatory replacement times, 

inspection intervals and related procedures set forth in the inspection program has 

been complied with. All aircraft must follow a maintenance program approved by a 

regulatory authority such as FAA (Federal Aviation Administration, USA), CAA 

(Civil Aviation Authority, UK) or Turkish CAA for Turkey. Each airline should 

develop its own maintenance program based on manufacturer’s recommendations 

and by considering its experience and operational conditions. For the same aircraft 

type, one airline’s maintenance program may differ than that of other airlines even 

they are operated under similar operating conditions.  

There have been many radical changes in the world of preventive maintenance 

operations over recent years. For example, first generation preventive maintenance 

was “fix it when it has broken”. Second generation maintenance introduced 
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scheduled overhauls, systems for planning and controlling work. Third generation 

maintenance brought about condition monitoring (CM), design for reliability and 

maintainability, hazard/risk assessments. The fourth generation maintenance builds 

on the previous three generations are distinguished in terms of explicit consideration 

of risk dealing with design and preventive maintenance and use of information 

technology to detect, predict and diagnose plant and equipment failures.  

When the first jet aircraft was introduced into commercial aviation, a periodic 

overhaul concept was utilized. However, the majority of operators today take 

advantage of on condition maintenance concept that performs maintenance action 

when necessary by closely monitoring individual engine conditions as to any 

malfunction or abnormality. For this purpose, various engine condition monitoring 

techniques have been developed to accurately monitor engine conditions. 

Airlines do not want to apply over maintenance or under maintenance. To achieve 

maximum equipment reliability and availability, right maintenance should be 

performed in the right time. Application of a maintenance program cannot provide a 

reliability level greater than that inherent to the design but increase cost as shown in 

Figure 2.9.   

 

Figure 2.9 : Over maintenance effect 

Inappropriate or inadequate maintenance can, however, degrade reliability. If a 

reliability program provides proper analysis and recommends appropriate corrective 

action, the quantity and frequency of maintenance will be indicated for each system, 

component and structure. In order to increase the inherent reliability level, product 

improvement is required. 

The objectives of an effective maintenance program are: 

·  To maintain the function in terms of the required safety, 

·  To maintain the inherent safety and reliability levels, 

·  To optimize the availability, 
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·  To obtain the information necessary for design improvement of those items, 

·  To accomplish these goals at a minimum total life cycle cost (LCC), including 

maintenance costs and costs of residual failures, 

·  Monitoring the condition of specific safety, critical or costly components is very an 

important action in a dynamic program 

Historically, aircraft engines have been maintained to a maximum overhaul time with 

Periodic Engine (PE) inspection intervals established for base level inspection and 

maintenance. The PE base level maintenance work package focused predominantly 

on the deterioration of combustors and turbine rotors. These PE's also included 

inspection of engine fan and compressor rotors for Foreign Object Damage (FOD), 

blade tip erosion, and stator vane erosion. These inspections were scheduled 

maintenance events often coinciding with airframe inspections. The emphasis was 

placed on performing preventative maintenance before failures from operational 

exposure could occur (Mullen and Richter 1993).   

2.6 Measuring Aircraft Reliability and Availability 

Reliability is the performance over time. Aircraft reliability is defined as the ability 

of aircraft to be operated in specified standard at certain time. Reliability is built into 

the design of the airplane systems and components. It is also influenced by the 

environment and type of operations. Reliability would deteriorate because of wear 

and tear caused by operation and environment as shown in Figure 2.10. Therefore, 

some sort of preventive maintenance should be performed to restore this 

deterioration in reliability. 

 

Figure 2.10 : Reliability variation versus time 

Airlines use dispatch reliability and operational reliability parameters to measure 

aircraft performance in terms of reliability. Figure 2.11 shows the relationship among 

interruptions and aircraft reliability. 
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Figure 2.11 : The relationships among interruptions and aircraft reliability 

Dispatch Reliability is the probability of departing without incurring any ground 

interruptions. Ground interruptions are delays when a malfunction causes the 

departure to be delayed more than a specified time (usually 15 minutes), 

cancellations, ground turn backs, aborted take-offs and aircraft substitutions due to 

technical reasons.  

Operational reliability or sometimes called scheduled reliability is the probability of 

starting and completing a scheduled revenue flight without any ground and air 

interruption. Air turn backs and diversions are air interruptions.  

Another important parameter for airline performance is aircraft availability. 

Availability is the fraction of time a piece of equipment is expected to be available 

for operation. One of the main objectives of an airline is to have an airplane ready 

and fit to fly when needed.   This fitness-for-flight is called availability. It is also 

called uptime.  However, the availability of an airplane depends on how often 

failures occur (Reliability), and how long it takes to fix it (Maintainability).  

Reliability and maintainability are functions of availability.  The relationship among 

availability and related parameters is seen in Figure 2.12. 
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Figure 2.12 : The relationship among availability and related parameters  

Availability A is calculated as below; 

100*
Downtime+Uptime

Uptime
=A   (2.2) 
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where, Nf : Number of failures, MTTF: Mean Time To Failure, MTTR: Mean Time 

To Repair and  MTBF: Mean Time Between Failures 

MTBF is a reliability function and MTTR is a maintainability function.    

Since A (Availability of a serviceable airplane) is the primary objective of any 

airline, the airlines should be interested in improving both the reliability and 

maintainability of the airplane, in the design stage and through the life of the 

airplane. For the airline to influence the reliability and maintainability of the airplane 

at the design stage, should compile and include in their airplane specifications file, a 

set of design targets. These targets should be submitted to the manufacturer for 

consideration and agreement to include in the design of the airplane. 

Aircraft downtime for maintenance is very important for airlines. Less downtime 

means that there is more time for aircraft in services, and then there is more revenue 

in turn. Aircraft ground time has been dramatically reduced through optimization 

maintenance program, combining with airline experience. 

Monitoring and analysis under service conditions will highlight those airplane 

systems, components and power plants which are unreliable and cause technical and 

cost problems.  The airline must be in a position to quantify the extent of the problem 
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and the urgency with which it needs to be eliminated. Also the airline should provide 

in-service data to the manufacturer so that improvement on the reliability of in-

service and new airplanes can be made. 

2.7 Reliability Centred Maintenance 

The commercial airlines ware the first to develop a structured decision logic process 

for the development initial scheduled “applicable and effective” maintenance/ 

inspection task/intervals to maintain commercial aircraft 

Reliability Centered Maintenance (RCM) was initially developed for the commercial 

aviation industry in the late 1960s, ultimately resulting in the publication of the 

document, MSG-3, upon which the modern usage of RCM is based. A Maintenance 

Steering Group, MSG-3 (Maintenance Steering Group) based maintenance schedule 

can help an air carrier enhance its operational safety net and provide a positive 

contribution to the air carrier’s fiscal bottom line (Nakata, 2005). Development of the 

RCM is shown in Figure 2.13. 

 

Figure 2.13 : Development of reliability centered maintenance 

Maintenance is a complex process and starts with the identification of maintenance 

tasks. Identifying work for preventive maintenance is a difficult task because of 

uncertainties involved. RCM is based on the failure history and systematic reliability 

analysis approach.  

RCM is now a proven and accepted methodology used in wide range of industries. 

The methodology described in this standard is based largely on the tried and tested 

procedures in MSG-3, but is equally applicable to a variety of equipment other than 

aircraft. RCM is a method for establishing a preventive maintenance program which 

will efficiently and effectively allow the achievement of the required safety and 

availability levels of equipment and structures, which is intended to result in 
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improved overall safety, availability and economy of operation. RCM provides the 

use of a decision logic tree shown in Figure 2.14 to identify applicable and effective 

preventive maintenance requirements. 

 

Figure 2.14 : Reliability centered maintenance (RCM) logic tree 

Note that the Reliability Centered Maintenance process as depicted in Figure 2.14 

has only four possible outcomes: 

• Perform Condition-Based actions   

• Perform Interval (Time- or Cycle-) Based actions  

• Determine that redesign will solve the problem and accept the failure risk, or 

determine that no maintenance action will reduce the probability of failure install 

redundancy.  

• Perform no action and choose to repair following failure (Run-to-Failure). 
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2.8 The Role of Reliability Analysis on Airline Economics and Safety 

Each airline operator who has a reliability program approved by his regulatory 

authority probably used Advisory Circular (AC) 120-17A "Maintenance Control by 

Reliability Methods", last revised on March 27, 1978.  

Generally, most reliability concepts today rely on historical data. Cost control must 

begin with the initial aircraft design so the measurements of failures. Third and 

fourth generation aircraft provide consideration of "how can they find a way to use 

this technology on my use with technologies which allow us to anticipate problems 

and take aircraft?" is no longer valid. Rather, the consideration should be reliability 

programs currently in use by most airline operators do not provide an adequate focus 

on operational economics, nor on passenger comfort items. 

The purpose of a reliability program is to ensure that the aircraft maintenance 

program tasks are effective and their periodicity is adequate. It therefore follows that 

the actions resulting from the reliability program may be not only to escalate or 

delete maintenance task, but also to de-escalate or add maintenance tasks, as 

necessary. 

Currently, Airline Maintenance Engineering operations have departments to monitor 

“Reliability” trends. For example, if component removals, pilot reports (PIREPS), 

maintenance reports (MAREPS), operational interruptions (delays, cancellations, 

diversions, in-flight turn-backs, return to ramp etc.) for a certain ATA Chapter start 

to trend upward, flags are raised to attract attention to the causes. This is a classic 

statistical monitoring system. ATA Chapters are defined by Air Transport 

Association (ATA) to define aircraft systems, engines and structures breakdown. 

Reliability Performance Monitoring is based on Reliability parameters trend follow-

up with comparison to ALERT levels. The purpose of such a system is to allow the 

monitoring of Aircraft operation, to identify bad performance and to take appropriate 

measures in order to recover acceptable performance. Alert levels (AL) are defined 

by statistical laws as below, 

σkxAL ±=   (2.4) 

where,  

x = monthly rate  
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x = average monthly rate for the last n months 

σ  is the standard deviation which is calculated as below, 

( )
n

xx∑ −
=

2

σ  (2.5) 

n is the number of months taken into account. Generally it is used as 12 for the 

normal 12-month history. 

The probability to have an alert depends on k. k is usually set at 2. But for systems 

with highly dispersed failure rate, k may be increased from 2 to 3 in order to reduce 

the number of spurious alerts. 

The most important airline reliability performance parameters are; 

• Pilot report (PIREPS) rate (per 1000 Flight hours or 100 Flights) 

• Cabin report (CREPS) rate (per 1000 Flight hours or 100 Flights) 

• Maintenance report (MAREPS) rate (per 1000 Flight hours) 

• In-Flight Turn Backs and Diversions rate (per 100 Flights) 

• Component performance; MTBF, NFF 

• Technical Incident Rate per 1000 FH or 100 Flights  

• APU, Engine Unscheduled Removal rate (per 1000 Flight Hours) 

• Engine Shop Visit Rate  

• In-Flight Shut Down Rate (per 1000 Flights) 

• A/C substitution, cancellation, ground turn back, aborted take-off/ landing rates 

for technical reasons 

The event rates are computed by 100 Revenue Take-offs (flights) or 1000 flight 

hours depending of event types which are cycle or hour based by ATA chapters.  

100*
period reportinggiven  a during  Cycles Offs-Take Total

 period reprotinggiven  a during PIREPS ofNumber 
RateEvent =  (2.6) 

or 

1000*
period reportinggiven  a during  HoursFlight  Total

 period reprotinggiven  a during events ofNumber 
RateEvent =  (2.7) 

The alerted system or components are investigated to find root causes and corrective 

actions for technical problems. If the systems or components reliability remains at 
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predetermined acceptable levels, no special maintenance or engineering action is 

required.  

Reliability programs can predict that during a given period it is going to have so 

many failures, but it cannot tell you when, or to what components it will happen. In 

fact, in the next 10 years or so it is predicted that artificial intelligence will be 

implemented in this field. Such systems would not only be able to predict a failure, 

but based on the current aircraft utilization and flight schedules, will tell you at what 

time and airport the failure is likely to occur (Resto, 2005). 

Practical reliability analysis on aerospace systems seems to have started in the 

military systems back on WW II.  The decade of the 70’s was probably the first 

moment in which the reliability analysis was considered an end on itself as well as a 

tool to help in other areas of civil aircraft design. The maintenance problem was also 

handled in quantitative form until reliability techniques allowed quantification. Two 

major concerns for designers of commercial airplanes are safety of the passengers 

and crew and operational cost of the aircraft.  

The main reason to perform a reliability analysis in commercial aircraft is economic. 

The reliability analysis main objective is to predict an optimal point of requirements 

by requiring an ascertain level of reliability on each of the aircraft components. 

Aircraft do become uneconomical, but never unsafe. This is a golden rule, set up 

from beginning commercial aviation. It means that, as time goes by, it may 

unfashionable or uneconomic to operate a certain type of aircraft but it is as safe as to 

fly them later as it was the first day. The principle has been spreading slowly to other 

industries like car manufacturing, but only aviation industry has shown a definite 

commitment in his sense and from the beginning of commercial aviation aircraft 

have been sold together with set of instructions, the maintenance manual and the 

assurance that following those instructions the aircraft will remain all its predicted 

life as airworthy as it was on the day of delivery from the factory. Nowadays, the 

results of reliability analysis allow manufacturers to build up maintenance plans that 

are not very much changed by service record of aircraft. 
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2.9 Existing Airline Maintenance Program Development 

The maintenance concept for an aircraft is initially established by the aircraft 

manufacture. However, the operational use of the aircraft and its demonstrated 

reliability will ultimately determine the most effective maintenance concept for the 

aircraft. Since both the operational usage and the reliability of an aircraft can change 

over its life cycle, the maintenance concept may also change. 

Airlines develop their initial maintenance program by using Maintenance Program 

Document (MPD) issued by manufacturers such as Boeing, Airbus using MSG-3 

methodology. The initial scheduled maintenance program has been specified in 

Maintenance Review Board (MRB) Reports. This program is initial program and is 

not a must. After collecting in-service data related to this type of aircraft, airlines 

may change maintenance program adding, deleting some tasks or changing intervals. 

In service data are delays, cancellations, in flight turn back, diversion, pilot reports, 

maintenance reports, shop findings etc. These data are evaluated to rationalize and 

change maintenance program. Some airlines apply the MPD as is, since they can not 

manage to use their data to change the maintenance program. So, they waste a lot of 

money. However, some airlines change their maintenance program using reliability 

analysis and condition monitoring in order to reduce unnecessary maintenance and 

increase aircraft availability. Some important items such as AD (Airworthiness 

Directives) directed by civil aviation authorities or manufacturers can not be changed 

in this way. They may be changed only by using alternate means of compliance for 

the requirements of these items. But, these tasks and man powers are very limited 

compared to others. So, if airlines use their data efficiently, they can optimize their 

maintenance program without endangering safety.  By improving effectiveness of 

airline maintenance program, unnecessary overhauls and routine tasks that provide 

little benefits are eliminated and aircraft availability is increased.   

Aircraft maintenance schedule is greatly influenced by the number of spare aircraft 

availability, commercial requirements, and mix fleet of aircraft model, large disparity 

of age of aircraft and shortage of maintenance hangar space in a particular time 

period. New aircraft type introduction to commercial operation impacts a great deal 

on manpower deployment for maintenance and training simultaneously. 

The primary purpose of a Maintenance Review Board (MRB) report is to assist the 

regulatory authorities to determine the initial scheduled maintenance requirements 
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for new or derivative types of transport category aircraft. The MRB report is used as 

the basis from which an operator develops its own continuous airworthiness 

maintenance program. 

Any change to the maintenance program, established as a function of the MRB 

report, requires an analysis phase and an appropriate sampling of aircraft reliability 

data. The resulting information serves as the justification for any modifications to the 

approved maintenance program. It provides a framework for analysis and 

documentation of maintenance tasks and check results necessary to optimize your 

maintenance program. 

2.10 The Shortcomings of MSG-3 Analysis 

MSG-3 (Maintenance Steering Group-3) logic has been successfully used by military 

and commercial aviation for over four decades to develop preventive maintenance 

programs for new aircraft fleets. The maintenance task intervals are established 

initially by the working groups and steering committee personnel using good 

judgment and operating experience. Since the maintenance program may include 

ineffective maintenance items for a specific airline working and environmental 

conditions, every airline operator should have a system to analyze the effectiveness 

of the maintenance program to periodically validate individual tasks in program are 

effective and their intervals are adequate  based on operator reliability data. 

One shortcoming of MSG-3 logic is that it does not make provision for the use of 

health monitoring techniques as on condition preventive maintenance tasks.  A 

second shortcoming of MSG-3 logic is in its treatment of risk assessment. Although 

applicability and effectiveness criteria are risk based, risk is not directly taken into 

consideration at the front end of the logic. It is required that the logic be applied to 

all failure modes with a potentially significant safety, operational or economic 

consequence regardless of the likelihood of failure. The bottom line is that for a 

selected task to be considered to be effective it must reduce the risk of failure to 

assure safe flight, but what if the risk of failure is already at an acceptable level - 

should the item really be considered to be an MSI (Maintenance Significant Item) in 

the first place? The difficulty often is that this information is unavailable, especially 

at the outset of an item's life, and MSG-3 decision logic defaults on the side of 

caution. However, as service experience is accumulated, achieved reliability can be 
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measured and directly taken into consideration in determining whether an item 

should be classified as an MSI. The problem with cost effectiveness criteria given in 

MSG-3 logic is that it is presented as being deterministic. For a task to be cost-

effective, the cost of the task must be less than the cost of the functional failure(s) 

prevented. The presumption is often that failure modes of importance have the 

potential to cause secondary damage or even loss of the aircraft. Following such 

logic, it is unlikely that the cost of the task would ever be less than the cost of the 

failure prevented. 



 
39 

3.  MODELING THE ENGINE HEALTH MONITORING PROBLEM  

The generalized form of the state equation that describes a system performance is  

[ ]ttutxfty ),(),()( =           (3.1) 

where u, x and y stand for the operational condition of the system input variable, 

state and output variable respectively, and t is the time.  The same symbols u and y 

are used for a variable that is either a scalar or a vector. The state, input, and output 

variables are illustrated in the basic block diagram in Figure 3.1. In this diagram, x(t) 

denotes the state of the system. 

 

Figure 3.1: Basic block diagram 

Equation (3.1) is the nonlinear form of output equations of the system. The equation 

is linearized as below, 

 
)()()()()( tutBtxtAty +=          (3.2) 

 

where, )(tA and )(tB are the state distribution and input distribution matrices for the 

linear state equation, respectively. In the general form, system parameters are 

functions of time. When the parameters are assumed to be constant in time, the 

model simplifies to linear, time variant model as, 

)()()( tButAxty +=                       (3.3) 

The Equation (3.3) represent the system model in a continuous time.  

)(ty  can be classified into normal or faulty operational conditions. 

The development of condition monitoring systems also depends on the nature of the 

data available from the system. In practice, two types of data can be available: 
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Case I: The data contains observations from normal operating conditions and known 

faulty conditions. 

Case II: The data contains observations from normal operating conditions only. 

For systems such as gas turbine engine, fault data are extremely difficult and 

expensive to obtain. As a result, condition monitoring systems need to be constructed 

using only the normal operational data.  

The goal of diagnostic is detect the one or more variables that have exceeded the 

alarm threshold, γ  as below,   

γ>)(ty                                                                                                                    (3.4) 

Similarly, the goal of the prognostics is to predict the useful life of the system. This 

can be represented as below, 

ε>+ )( dty            (3.5) 

where, ε  is the acceptable performance limit for useful life, and d is the time-to-

failure or remaining useful life of the system.  

In the study, FL and NN are used for modeling EHM problems. Fuzzy logic makes 

enables to model the complex problems that are difficult to be solved by 

mathematical equations. Since engine health monitoring includes uncertainties, the 

solution of the problem is complex. Fuzzy logic is very effective and practical 

method to automate the process of health monitoring. So, we decided to use the 

model of for our evaluation of EHM system in the study. In addition to FL, ANN is 

used to show how it is implemented for EHM problems. Then, results will be 

discussed. 

3.1 Neural Network Approach for EHM Analysis  

3.1.1 An overview of artificial neural network  

An artificial neural network (ANN) is a system based on the operation of biological 

neural networks, in other words, is a simulation of biological neural system. 

McCulloch and Pitts (1943) introduced the first mathematical model of single 

neuron, widely applied in coming after studies.   
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The basic model of the neuron is developed by inspiring the functionality of a 

biological neuron as shown in Figure 3.2. Sounds, images and actions are converted 

to signals by neurons and sent to our brains in order us to sense them. The signals are 

generated in soma and then transmitted to other neurons through an extension on the 

axons. The dendrites are in charge of receiving the incoming signals generated by 

other neurons. And, the axons transmit the information to other neurons.  

 

Figure 3.2: A ANN model inspired from biological neuron (Nelson, 2004)  

Figure 3.3 shows a simplified model of an artificial neuron, which may be used to 

simulate the particular characteristics in a real biological neuron.  

 

Figure 3.3: A simplified model of an artificial neuron 
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A basic ANN model consists of a set of inputs, such as I1, I2 and I3 vector which 

represents the synapse in biological neuron. Each input is multiplied with weights w1, 

w2 and w3 equals to the strength of synapse link in biological neuron. The node 

functions as body cell that will sum all weighted inputs in algebra will produce one 

unit of Qj. The vector can be illustrated in mathematical model as below: 

∑
=

=
n

i

ii wIQj
1

 (3.6) 

The strength of ANN depends on directly on the weight numbers increase when 

nodes increase. Bias is also used to represent the external parameter of the neuron. It 

can be modelled by adding an extra input as below, 

i

n

i

ii bwIQj +=∑
=1

 (3.7) 

The neural network has three main layers which are input, hidden and output. Input 

layer (dendrites) receive data to the network, hidden layer (neuron cell body) process 

the data and send them to output layer (axon) in the system.  

Similar to human brains which learn from experience, ANN models, sometimes 

called machine-learning algorithms are developed by using inputs and outputs to 

learn the solution of the problem. The first step in NN is to prepare the data sets as 

inputs and outputs sets related the problem. Then, the sets are separated into two 

groups. One group is used to train the NN system, and the second group is used to 

check if the validity of the NN model. If the model is validated, then the model can 

be used to find the outputs from the inputs for the problem. Since the training data 

belong to a system or component which works in normal conditions, the actual 

outputs and the outputs calculated by the NN are expected to be nearly same. If they 

are separated from each other enough, this means that the system or component does 

not work normally, which may have a failure. That is the main idea behind the NN in 

use of health monitoring problems. 

The basic steps for developing a NN model are; 1) Data collection, 2) Training and 

testing data separation, 3) NN structure, 4) Parameters and weights, 5) Data 

transformation required by the ANN, 6) Training, 7) Testing and 8) Implementation 



 
43 

There are three basic models for a NN structure, which are feed forward network, 

feed backward network and lateral network. Feed forward network is defined by the 

neurons providing the output to the next neuron layer only if feed backward network 

enables the neurons to provide the output to the next or previous neuron. Lateral 

network is a network when the output becomes the lateral input neuron. The network 

structure can be classified into single layer, bilayer and multilayer. Back prorogation 

has been successfully applied to a wide range of complex science and engineering 

problems.  

The advantages and disadvantages of implementation of a neural network may be 

described below (Tumer and Bajwa, 1999). 

Advantages:  

• A neural network can perform tasks that a linear program can not.  

• When an element of the neural network fails, it can continue without any 

problem by their parallel nature.  

• A neural network learns and does not need to be adjusted for parameters.  

 
Disadvantages:  

• The neural network needs training to operate.  

• The architecture of a neural network is different from the architecture of 

microprocessors therefore needs to be emulated.  

• Requires high processing time for large neural networks.  

3.1.2 Application of ANN to EHM analysis  

In the study, the necessary data for NN modeling is obtained from an engine operated 

in Boeing 737-800 aircraft in Turkish Airlines fleet. Traditional engine performance 

monitoring is performed according to sudden increase in EGT, N2 or fuel flow 

deviation from baseline values. The baseline values are supplied by the engine 

manufacturers, which have been calibrated to with various fleet-engine 

configurations in the preflight testing process. The deviation between snapshots and 

baseline values demonstrates a trend curve that characterizes the engine health under 

the cruising condition. Thus the ECM system is able to trace the trend curves of FF, 

EGT and N2 to monitor the engine condition, in which a watch-list program has been 
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developed to calculate the correlation coefficients 2 of 20 consecutive data from the 

sequential flights in order to detect the engine faults. If any diagnosed shows an 

evidence of malfunctioning, the engine will be taken off the plane for maintenance. 

The steps for the NN architecture related to the study are given below.  

a. Collecting data 

In-flight parameters are referred to as engine health readings taken at the data points 

under the cruising condition in which the mach, altitude, and outside air temperature 

are held steady long enough to take a snapshot of fight data. The snapshot is 

automatically taken by an aircraft communications addressing and reporting system 

(ACARS) installed onboard if ACARS is available. The other methods used to 

receive engine snapshot parameters are log pages which are entered manually and 

PCMCIA cards and diskettes loaded DFDR data automatically in specified intervals 

from aircraft etc. The baseline values are supplied by the engine manufacturers, 

which have been calibrated to with various fleet-engine configurations in the 

preflight testing process. The deviation between snapshots and baseline values 

demonstrates a trend curve that characterizes the engine health under the cruising 

condition. Thus the ECM system is able to trace the trend curves of FF, EGT and N2 

to monitor the engine condition, in which a watch-list program has been developed to 

calculate the correlation coefficients 2 of 20 consecutive data from the sequential 

flights in order to detect the engine faults. If diagnosed to be malfunctioning, the 

engines will be taken off the plane for maintenance.  

b. Choosing the input and output data for engine health conditions 

The input and output data for the engine performance model used for the diagnostics 

of the engine are given in Figure 3.4. In the study, the proposed NN structure has 15 

inputs covering aircraft condition parameters which are weight, altitude, average 

throttle lever angle, computer air speed, delta oil pressure, throttle lever angle 

divergence, Mach number, oil pressure, oil temperature, front and rear phase angles, 

static air temperature, throttle lever angle, total air temperature (TAT) and variable 

stator vane position. And, there are three outputs as engine performance parameters 

∆N2, ∆EGT and ∆FF.   
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Figure 3.4: Engine inputs and outputs 

Figure 3.4 illustrates a performance model used for the diagnostics of en engine. The 

model can be represented as   

)(ˆ VFy =                                                                (3.8)                                   

Where, V is the vector for input data and ŷ  is the vector for the performance 

predictions. For Figure 3.4 model, these vectors have the form, 
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The predication residuals relate to the engine performance are calculated as below,  

nnn yyr ˆ−=                                                        (3.9) 

To detect the engine faults and make the necessary maintenance actions, the residuals 

are trended. 

290 groups of data taken from flight data are used to make the ANN model. In order 

to train and test the NN model, the data are separated into two groups equally. In 

order to see the difference between the NN output and actual output data during 

malfunctioning, in addition to the data taken from the group for testing, additional 

data belonging to the abnormal condition are used. 
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c. Using the switch data via function “prestd” 
 

These data taken from flight are normalized for NN process. Normalization is a 

process of scaling the data to improve the accuracy of the numeric computations. 

This approach gains us to easily capture abnormal or faulty data. 

[pn_i,mean_i,std_i,tn_o,mean_o,std_o] = prestd(input',output') (3.10) 

d. Producing ANN structure  

For NN modeling, Matlab program is used. The formula for NN model is given by,  

net = newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}   (3.11) 

Where, 

P: R x Q1 matrix of Q1 sample R-element input vectors 

T: SN x Q2 matrix of Q2 sample SN-element target vectors 

Si: Size of ith layer, for N-1 layers, default  

TFi: Transfer function of ith layer 

BTF: Backpropagation network training function  

BLF: Backpropagation weight/bias learning function  

IPF: Row cell array of input processing functions 

OPF: Row cell array of output processing functions 

DDF: Data divison function  

The performance of the NN model is measured with the error which is the difference 

between output of NN and actual output. The error results for different methods with 

different number of layers for the data concerning the study are given in Table 3.1.  

The aim of ANN structure is to able to approximate an output based on a set of 

received data. So, it is necessary to evaluate how well the test target and actual 

output are fit. As shown from Table 3.1, the best performance result is obtained with 

Levemberg-Marquardt Method with Single layer whose size is 120. So, the NN 

architecture is chosen for the problem. Levenberg-Marquardt is the fastest method 

for training medium sized (up-to several hundred weights) feed-forward neural 

network (Rajpal et al., 2005) for training method the Levenberg-Marquardt back 

propagation algorithm (LMBA) is used to maintain second-order training speed 
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without having to compute the Hessian matrix, which includes the second derivatives 

of the network output errors (e) per network weights and biases (NW).  

Table 3.1: The NN performance test for different methods 

Method Error (%) 

Basic Gradient Descent back propagation Method With Two layers 

newff(PR,[49,55,3],{'tansig','tansig','purelin'},'traingd') 

 

0,28 

Basic Gradient Descent back propagation Method with Single Layer 

newff(PR,[30,3],{'tansig','purelin'},'traingdx') 

 

0,11 

Levemberg-Marquardt Method with Single Layer 

newff(PR,[17,3],{'logsig','purelin'},'trainlm') 

 

0,016 

Levemberg-Marquardt Method with Single Layer 

newff(PR,[120,3],{'tansig','purelin'},'trainlm') 

 

2 E-4 

Levemberg-Marquardt Method with Two Layers 

newff(PR,[30,10,3],{'tansig','tansig','purelin'},'trainlm') 

 

0,008 

 

In this study, the proposed NN structure has 15 inputs covering flight parameters 

such as altitude, Mach number, total air temperature, weight and three outputs as 

engine parameters ∆N2, ∆EGT and ∆FF. How the ∆’s are calculated is explained in 

Chapter 3.2.3. 

e. Setting the threshold and the power of the input and the hidden layers, to set the 

training parameter  

net.trainParam.epochs=25;                                                                       

net.trainParam.goal = 1e-4;  

f. Testing the NN System  

The training result of the NN architecture is shown in Figure 3.5. From the figure we 

can see that the NN design has a high accurate rate since the error is acceptably 

small. Error represents the difference between network output and actual or 

simulated value, i.e. desired value. 
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Figure 3.5: The performance of the NN design 

f. Results  

As explained above, N2, EGT and FF are the most important engine parameters for 

engine health monitoring analyses. Therefore, these parameters are selected for 

illustration. In the Figures 3-6 thru 3-8, actual outputs and the outputs of trained NN 

model are shown. NN outputs and actual outputs are normally expected to be very 

close to each other for normal operating condition. 

    

 

Figure 3.6: EGT history during cruise 
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Figure 3.7: N2 history during cruise 

 

 

Figure 3.8: FF history during cruise 

As shown from the figures, until the data point 297 NN outputs and actual outputs 

are nearly same. After the point, these two outputs start to separate from each other. 

Since the data points after 297 are known to belong to the abnormal condition, the 

separation is an expected condition.  

This training allows normal and fault conditions to be recognized. After neural 

networks have been modeled, the real-time on-wing analysis can be performed with 
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the great deal of processing power. In order to make use of this model, every type of 

engine fault data is required. If NN is used to detect the types of faults, for every type 

of faults has to be trained with fault-free data. In practice, it is not so easy to get 

enough faulty data for every kind of faults from an airline, since abnormal conditions 

are rarely encountered. But, engine manufacturers such as GE and Pratt&Withney 

may make use of this model since they get faulty data from different airlines.  

In summary, EHM modelling with NN make enable us to see that actual outputs and 

NN outputs would have gone far from each other, if any fault had occurred. But, this 

method is not practical for detecting the type of faults, which just gives us if there is 

any abnormal condition. In order to detect faults, fuzzy logic approach is used in the 

following section. 

3.2 Fuzzy Logic Based EHM Analysis 

In our study, we prefer to use fuzzy logic to model EHM since it shortens the time of 

for engineering development and it enables engineers to configure the systems 

quickly without extensive experimentation and make use of information from experts 

who have been performing the task manually. Fuzzy logic works better than many 

expensive and complex systems. 

Fuzzy systems are universal function approximations in a manner similar to neural 

networks. However, fuzzy systems have the added advantage that they are expressed 

in linguistic terms that are easy to understand. Fuzzy systems also address the issue 

of uncertainty using a built in fuzzifier whereas a neural network learns the noise 

characteristics of the data through training. Ganguli has shown that fuzzy systems 

provide very accurate fault isolation results for gas turbine diagnostics (Ganguli et 

al., 2004). Fuzzy logic is a powerful tool for modelling complex numerical analysis 

and knowlegde base systems. The previous studies proposed to use fuzzy logic 

system for fault diagnosis system. In the present study, a fuzzy-logic inference 

system is used to automatically monitor  engine health condition and give alerts for 

the impending failures or faults interpretted by the power plant engineers manually.   

3.2.1 Fuzzy logic overview 

The concept of a fuzzy set first arose in the study of problems related to pattern 

classification (Belman et al., 1966). Fuzzy logic was first subjected to technical 
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scrutiny in 1965, when Dr. Lotfi Zadeh (1965) published his seminal work “Fuzzy 

Sets”. Since then, the subject has been the focus of many different research 

investigations and many successful products have been produced by using fuzzy 

logic. Zadeh (1973) defined the principle of incompatibility “As the complexity of a 

system increases, our ability to make precise and yet significant statements about its 

behavior diminishes until a threshold is reached beyond which precision and 

significance (or relevance) become almost mutually exclusive characteristics”.  The 

higher complexity, the more need to Fuzzy logic to model the system as shown in 

Figure 3.9. It is quoted from Dr. Zadeh that “The closer one looks at a real world 

problem, the fuzzier becomes its solution” (Zadeh, 1966).  

 

Figure 3.9: Different mathematical models based on complexity 

Fuzzy logic seems to be most successful in two kinds of situations: (i) very complex 

models where understanding is strictly limited (ii) processes where human reasoning, 

human perception or human decision making is inextricably involved (Ross, 1998).  

The main contribution of fuzzy logic is a methodology for computing with words. 

Dr. Zadeh stated that fuzzy logic= computing with words. No other methodology 

serves this purpose. This is a necessity when the available information is too 

imprecise to justify the use of numbers and when there is a tolerance for imprecision 

which can be exploited to achieve tractability, robustness, low solution cost and 

better rapport with reality (Zadeh, 1966). 

Multiple membership functions can he employed for each parameter, representing 

varying degrees of severity or degradation. A parameter can also simultaneously he 

assigned to more than one of these membership functions. Rather than a parameter 

being recognized as “high” or “low”, the parameter may share partial membership in 
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both the “high” and “low” membership classes. This ability to represent transition 

and partial truth is what makes fuzzy logic such a powerful classification system. 

Additionally, fuzzy logic does not demand excessive computational resources. The 

fuzzy logic classifiers performed exceptionally in the hydraulic pump application, 

therefore demonstrating fuzzy logic’s potential for use in other onboard or at-wing 

applications. Figure 3.10 illustrates the basic process flow of fuzzy logic 

classification.  

 

Figure 3.10: Fundamental fuzzy classification process 

As seen in the figure, vital diagnostic information is extracted from a fuzzy classifier 

once all of the inputs have been analyzed. This routine uses a predetermined set of 

rules tailored for each application using the knowledge of the system and engineering 

judgment, in order to identify a particular linguistic output (Byington, 2004).  

A Fuzzy logic system consists of a multidimensional input space mapped to a single 

dimensional output space using four basic steps which are fuzzification, inference, 

composition, and defuzzification. These steps are explained below:    

Fuzzification of the inputs: 

Fuzzification is the process of making a crisp quantity fuzzy. In characterizing the 

fuzziness in a fuzzy set, membership functions are used. The membership function, 

)(xAµ is the degree of membership of element x in fuzzy set A.  
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[ ]1,0)( ∈xAµ                                            (3.12) 

The shapes and boundaries of the membership functions are defined based on the 

experience, knowledge, statistical inference methods using real data. The most 

commonly used shapes for membership functions are triangular, trapezoidal, and 

Gaussian. Some examples of membership functions are shown in Figure 3.11.  

 

Figure 3.11: Examples of membership functions 

Application of the rules (rule inference): 

Basically, there are four methods approaches to the developing fuzzy rules (Chow 

and Tomsovic, 2000): (1) extract from expert experience and control engineering 

knowledge, (2) observe the behavior of human operators, (3) use a fuzzy model of a 

process and (4) learn relationships through experience or simulation with a learning 

process. 

The principle of the rule inference in fuzzy logic is based on using fuzzy IF-THEN 

rules as below,   

IF (effect), THEN (cause)                                     (3.13)   

The rules in fuzzy system are usually of a form similar to the following: 

IF (x is medium) AND (y is large) THEN (z is small)                          (3.14) 

where x and y are input variables (names for know data values), z is an output 

variable (a name for a data value to be computed), medium is a membership function 

(fuzzy subset) defined on x, large is a membership function defined on y, and small is 

a membership function defined on z. 

Composition process: 

All of the fuzzy memberships assigned to each output variable are combined together 

to form a single fuzzy membership for each output variable. For composition, MAX 

or SUM method are used. In MAX composition, the combined output fuzzy subset is 

constructed by taking the point wise maximum over all of the fuzzy subsets assigned 
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to variable by the inference rule (fuzzy logic OR). In SUM composition, the    

combined output fuzzy subset is constructed by taking the point wise sum over all of 

the fuzzy subsets assigned to the output variable by the inference rule. 

Defuzzification of the result to an output: 

Defuzzification is the inverse process of fuzzification. The fuzzy information of the 

rules is converted into crisp sets using defuzzification. Many defuzzification 

algorithms are available in the literature. Centroid and maxima methods are the most 

common defuzzification methods. There are different maxima methods for different 

resolution strategies e.g., first of maxima (FOM), mean of maxima (MOM), last of 

maxima (LOM) and center of maxima (COM).  

3.2.2 Automated EHM system (AEHMS) using fuzzy logic  

The essential first step in the engine health monitoring is collecting engine data and 

storing the useful information into ECM (Engine Condition Monitoring) programs. 

Figure 3.12 shows how ECM data is collected.  

 

Figure 3.12: Collection of ECM data 

EHM systems are known as ECM too. ECM is useful only if the input is accurate. 

ECM data include EGT (Exhaust Gas Temperature) Outside Air Temperature 

(OAT), Fan Speed, fuel flow (FF), Core speed (N2), Fan vibration, Core vibration, 

oil pressure, oil temperature. Furthermore, ECM data can include Mach number, oil 

analysis data, temperature, pressure, moisture, humidity and any other physical 

observations that relate to the condition of operating engine in its environment. 

These parameters may be used for short term engine deterioration. For long term 

analysis, engine and component maintenance data such as engine cycles since 
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installation, time since last overhaul, time since last maintenance etc. also should be 

included to the ECM data.  

The ECM program was originally developed by Pratt and Whitney to compare each 

aircraft’s engine condition to baseline values for the flight parameters of fuel flow 

(FF), exhaust gas temperature (EGT), low-pressure rotor speed (N1), high-pressure 

rotor speed (N2), engine pressure ratio, airborne vibrations, oil pressure, and 

temperature, etc. These in-flight parameters are referred to as engine health readings 

taken at the data points under the cruising condition wherein the Mach, altitude, and 

outside air temperature are held steady long enough to take a snapshot of flight data. 

The snapshot is automatically taken by an aircraft communications addressing and 

reporting system (ACARS) installed onboard. The baseline values are supplied by 

the engine manufacturers, which have been calibrated to fit various fleet-engine 

configurations in the preflight testing process. The deviation between snapshots and 

baseline values demonstrates a trend curve that characterizes the engine health under 

the cruising condition. Thus the ECM system is able to trace the trend curves of FF, 

EGT and N2 to monitor the engine condition, in which a watch-list program has been 

developed to calculate the correlation coefficients of 20 consecutive data from the 

sequential flights in order to detect the engine faults. If detected any fault impending, 

the engines will be removed from the aircraft for maintenance.  

Airlines perform ECM analysis using tools such as SAGE by GE for the CFM56 and 

GE engines, COMPASS by Rolls-Royce and IAE engines produced by the engine 

manufacturers for engine condition monitoring. Traditional Engine Health 

Monitoring includes these steps: First step of engine health monitoring is to get data 

from aircraft. Engine performance data are received via ACARS (Aircraft 

Communication Addressing and Reporting System), logbooks manually entered 

engine performance parameters by pilots or PCMCIA cards or FDR (Flight Data 

Recorder). Flight data should be input (within 48 hours of collection), processed by 

the ECM program and then reviewed as soon as possible. Data that is kept for days 

before being input is useful mainly for post failure analysis. Second, the data is 

entered into the ECM software programs such as SAGE, COMPASS and processed 

by using any of these programs. Then, the engine performance reports are prepared 

for cruise and take-off manually on paper format. Lastly, the power plant engineers 

analyze the reports to decide if the engine has fault or deterioration. Every ECM 



 
56 

analyst and airline must have a system that requires that the flight input and the 

reports are reviewed in a timely manner. In traditional method, the ECM reports 

require to be examined periodically. However, examining and interpreting these 

reports requires years of engineering experience and extra labor hours, especially for 

big aircraft fleets, to monitor and analysis visually all Engine Condition Monitoring 

(ECM) reports produced by tools provided by manufacturers to discover impending 

failures. The manual system is largely based on a single expert with a good intuitive 

understanding of engine performance system by looking at the overall trends of the 

data (Gayme et al., 2003). Also, experts may not be able to recognize all faults 

among large number of variables. Some potential faults may happen too quickly for 

experts to detect them and react before they cause catastrophic failures. Since the 

health concept is a fuzzy concept, fuzzy logic provides good model health 

evaluation. Traditionally, airlines use manual method to evaluate the parameter 

change for ECM. In our study, fuzzy logic approach is proposed to replace the 

manual evaluation using Fuzzy Logic as shown in Figure 3.13.  

 

Figure 3.13: The use of fuzzy logic in EHM system 

A typical engine trend report is shown in Figure 3.14. In this report; 1 indicates that 

EGT increases, and 2 indicates that fuel flow (FF) increase and 3 indicates that N2 

rate decreases in a small shift.   
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Figure 3.14: A Typical engine trend report (GE, ECM Manual)    

In engine health monitoring analysis, it is better look for a change in the parameters’ 

level rather than the value of the levels themselves (Schmidt, 2005). All engines’ 

parameters are tracked at different level as below. 

• Different build-up tolerances on each engine 

• Different time/cycles on each engine and/or module 

• Older engines should normal run hotter and use slightly more fuel 

• Engine/aircraft baselines are not perfect. Baselines have bias in them which make 

all the new engines start cooler (or hotter) than zero. 

Based upon report analysis, the most probable cause(s) of the shift(s) can be found: 

• A single parameter moving alone usually shows an indication system error (EGT 

thermocouple, N2 transmitter or similar problem)  

• Engine/aircraft baselines are not perfect. Baselines have bias in them which make 

all the new engines start cooler (or hotter) than zero. 
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• Two parameters shifting at the same time shows that the problem could be related 

to the engine or to the indication systems. 

� In this case, peripheral information is very important to determine the probable 

cause 

� If the EGT and fuel flow were shifting, for an engine related problem, they 

should move in the same direction with an approximate 10° to 1 % ratio.  

• Three parameters at the same time are usually caused by engine related problem. 

• Four parameters shifting at the same time could show an engine problem, but first 

verify that is not an ERP or TAT problem. 

� ERP and TAT problems cause all four major parameters to shift in the same 

direction 

� A missed engine change causes all four major parameter to move.  

In addition to trend report, graphical plots are used too as shown in Figure 3.15. In 

this figure, engine parameters start shifting after the vertical line. 

. 

Figure 3.15: A typical engine graphical trends (Schmidt, 2005) 

In order to decide what deterioration occurs, finger print charts are used. Parameter 

changes can be quantified and compared to the appropriate finger print charts.Finger 

print charts, engine specific, are used to isolate the likely causes of the shifting 

parameters. An example of finger print chart is given in Figure 3.16.  
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Figure 3.16: An example of finger print chart (GE, ECM Manual)    

Most of the time, aircraft performance deterioration is a result of deteriorated 

engines. Comparing average engine performance versus its aircraft’s overall 

performance visually can help to isolate aircraft that may have performance 

problems.   

 

Figure 3.17: Automated EHM system logic chart 
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The proposed approach in the study, AEHMS shown in Figure 3.17, is based on the 

automation of the EHM putting the engineering expertise and manufacturer 

information into the rules in a fuzzy logic system using real flight data of Boeing 

737-800 engines, CFM56-7B in Turkish Airlines fleet. The system works 

automatically whenever new data are available in the database. The database is 

updated using ECM program data, SAGE.  In the study, it was preferred to use 

SAGE data instead of using the other data such as FDR outputs because it covers the 

baseline values required for the engine trend analysis.   

The automation of the diagnosis step using the exceedance and trend data relies on 

building trend and baseline signature databases through engine manufacturer’s data 

and through field experience (SAE AIR 1900, 1988). Years of accumulation of 

knowledge are typically necessary to establish all the necessary rules for engine 

diagnostics. Even when a good knowledge basis is established, new engines still 

need to be tested based on these rules, as variations between engines can cause 

different fault signatures (Tumer and Bajwa, 1999a).   

AEHMS consists of three parts. First part is database system. For every engine, there 

is one excel file which has a table format shown in Table 3.2. 

Table 3.2: AEHMS database format 

 

In excel files; there is one row for every flight. The rows are updated automatically 

getting data from SAGE program via a program written in Visual Basic. Excel sheets 

are enough for database since there are 65536 rows in one sheet. Using excel has a 

lot of advantages for data analysis, which is not required to develop programs such as 

making graph, using statistical analysis etc. The second part of AEHMS is to get the 

data from excel as fuzzy inputs to the Fuzzy Logic Toolbox in MATLAB. Then, the 

calculated fuzzy outputs in fuzzy inference system are transferred to the related excel 

files for the corresponding flight. The data flows to the system over time and each 

data is analyzed individually. Fault check column is used for alert notifications. In 

case of any deterioration or fault, the program gives an alert to the related person(s) 

by including the probable faults for further analysis and corrective actions. The 

probable reasons for the fault or deterioration are defined by the magnitude of the 
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fuzzy outputs. The complete cycle is run for new flights using an automation 

program periodically. As new data comes to the system, it is evaluated AEHMS. If it 

defines that this data belongs an unhealthy engine, it is flagged as “anomaly” healthy 

and then the system gives alert for the engine.   

Engine Health Monitoring is based on the comparison of engine performance 

characteristics which are engine core speed (N2), exhaust gas temperature (EGT), 

fuel flow (FF) and their baselines which are supplied by the engine manufacturer for 

each aircraft/engine combination as shown Figure 3.18. The comparison in the 

traditional EHM is performed by the engineers manually. The aim of the study is 

automate the all steps in the traditional EHM method using fuzzy logic and some 

additional programs written in Visual Basic. Automated systems to perform aircraft 

diagnostics and prognostics are of current interest. Development of those systems 

requires large amount of data (collection, monitoring, and manipulation) to capture 

and characterize fault events. Continuous data collection is also required to capture 

relatively rare, potentially catastrophic events (Grabill et al., 2001). 

 

Figure 3.18: Engine health monitoring analysis (GE, ECM Manual)    

Engine data are typically collected once or twice per flight and transferred to a 

ground monitoring system.  In the study, the snapshot data collected from engines 

during the cruise entered into SAGE program are used. Since the observed values are 

recorded in different altitudes and environmental conditions, the data are corrected to 

the sea level or to a fixed altitude for the same atmosphere condition using 

temperature and pressure differences. In EHM analysis, these values are put in time 

series such as cycles, flight hours. Engine baseline values are defined base on engine 

pressure ratio (EPR) as shown Figure 3.19. 



 
62 

 

Figure 3.19: Calculating parameter deltas (P&W) 

EPR is defined to be the total pressure ratio across the engine as below.  

)(*)(*)(*)( nozzlePRTurbinePRburnerPRCompressorPREPR =             (3.15) 

where, PR stands for pressure ratio.                      

EPR is as an indication of fan operating point and compares this to a baseline 

correlation to assess variations in operating EPR relative to a nominal fan operating 

line. Engine pressure ratio is a measure of thrust provided engine. 

Delta (∆) parameters ∆EGT, ∆FF, ∆N2 are calculated by subtracting corrected 

observed values from baseline values, delta values are obtained as below. 

line ValueValue-BaseCorrected (value) =∆                            (3.16) 

The Delta measurements used are deviations in EGT, N2 and FF from a base line 

‘good engine’. For ideal engine conditions, ∆ values should be zero. The value 

increases or decreases depending on the engine system fault or deterioration. EHM is 

performed by monitoring the ∆s (∆EGT, ∆WF and ∆N2) trend changes together to 

detect and isolate any fault.  

In order to eliminate data noises in trends, smoothing is used. Different kinds of 

methods are available for smoothing data. Exponential smoothing is able to react fast 

on trend shifting and it is not affected by any any sudden disturbance. And, it is  used 

by the engine manufacturers for smoothing. So, in the study, exponential smoothing 

is used for smoothing. Exponential smoothing is calculated as below, 

)( 11 −− −+= iiii SrSS α   (3.17) 

where, 
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Si, smoothed value of a parameter for record i 

ri, riraw value of a parameter for record i 

α, exponential smoothing constant. 

This smoothing algorithm is called exponential smoothing because the effect of past 

data on the smoothed value decreases exponentially over time. The exponential 

constant, α, determines the degree of smoothing to be used for that parameter. The 

closer the smoothing constant is to 1 (more sensitive to short term behavior), the 

lower the level of smoothing (α close to 1 if rapid change).  Likewise, a constant 

close to 0 results in a high level of smoothing (less sensitive to short term behavior). 

Short term smoothed values allow for easier detection of sudden shifts in the 

parameter trends. Short term smoothing constants are typical range from 0,1 to 0,3.  

So, α is selected as 0,3 in the study. An example of the smoothing concerning EGT 

parameter over cycles is given in Figure 3.20. As seen from this figure, exponential 

smoothing eliminates the data noises well. 

 

Figure 3.20: An example of exponential smoothing 

It is better to use an exponentially smoothed average, where information is given 

importance that declines exponentially 

To monitor engine parameter trend shifting, it is necessary to look at the Delta of 

Delta (values) change. This change is obtained by subtracting the moving average of 

the smoothed Delta Values over last 200 consecutive flights from the smoothed Delta 

Values for the last flight as below,  

[ ] ))(()()( 200FLii
ValuesMAValueValue ∆′−∆′=∆′∆                     (3.18) 

where, 

i: flight number 
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iValue)(∆′ is the smoothed value of iValue)(∆  

MA: Moving Average  

L200F is last 200 flights 

200-flight moving average is selected in order to eliminate data noisiness for 

obtaining an average value of Delta and get better results for calculating Delta of 

Delta (values) change. As sources for faulty values, cruise trends from GE, fault 

fingerprints from Ganguli (2003) and engineering expertise are used. Since the 

experience has shown that EHM needs vary from engine-to-engine, fuzzy rules are 

built for CFM56-7B engine type used in Boeing 737-800 which is the biggest fleet of 

Turkish Airlines. 

The fault fingerprints can be separated into 5 main categories as shown in Table 3.3 

based on the GE ECM Manual.  

Table 3.3: Main combinations of fault categories given By GE 

Fault Category [ ])(EGT∆′∆  [ ])(FF∆′∆  [ ])2(N∆′∆  
VBV system up up up 

HPT, HPC up up down 

HPC up up up 

VSV Closed unchanged unchanged up 

VSV Open unchanged unchanged down 

Dirty Fan down down down 

Fault Category Examples used by Gangul are given in Table 3.4. Ganguli (2002 and 

2003) used ∆(values) for fuzzy application. It may be assumed that these are 

∆(∆(values)) because the trend monitoring is based on analyzing of the trend shifts 

on ∆(values).  So, it is necessary to look at the change of ∆(values) over time.  

Table 3.4: Fault category examples given by Ganguli (2003) 

Fault Category 
Example 

[ ])(EGT∆′∆  
[˚C] 

[ ])(FF∆′∆  
[%] 

[ ])1(N∆′∆  
[%] 

[ ])2(N∆′∆  

[%] 
Dirty Fan -7,72 -1,4 -1,35 -0,59 

HPC 9,09 1,32 0,28 0,57 

HPT 13,6 1,6 0,1 -0,11 

LPC 21,77 2,58 0,15 -1,13 

LPT 2,38 -1,92 -1,96 1,27 

In comparision with the fault categories between Table 4.4 and Table 4.5, some 

differences are appeared. First, Ganguli uses N1 in addition to the other three 
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parameters even though it does not change at all in reality as given in Table 4.5. So, 

N1 is not used in the study as a condition monitoring parameter. Secondly, there are 

differences the directions of the changes related to the faults.  

For example, fault fingerprints of ∆EGT, ∆FF, and ∆N2 for HPC fault, given by GE, 

are up, up and down or up respectively. But, Ganguli uses up, up, up for the same 

fault only. When an engine loses its efficiency, the fuel control system will add 

additional fuel to provide a high compressor speed required to produce the required 

thrust. This results in an increase in EGT and Fuel Flow. Depending on the location 

and component responsible for the loss of efficiency the high compressor or N2 

speed will act differently as explained below. 

Air leakage or compressor inefficiency will cause to lose air before the combustion 

section. Then, the high compressor speed will increase to supply the necessary air to 

get the required power. This results in an increase of EGT, Fuel Flow and N2 (up, 

up, up).  

On the other hand, high turbine inefficiency is normally resulted from an increase in 

turbine blade tip radial clearance, which causes the N2 to decrease. Again the fuel 

control system adds more fuel to supply the high compressor speed to produce the 

required thrust. This causes EGT and FF to increase with a corresponding decrease in 

N2 speed (up, up, down).  

As seen from above explanations, for HPC fault there are two types of fingerprints, 

one of which is not available in Ganglia’s study. Fault category examples used in the 

study are shown in Table 3.5. 

Table 3.5: Fault category examples used in AEHMS 

Fault Category 
Example 

[ ])(EGT∆′∆  
[˚C] 

[ ])(FF∆′∆  
[%] 

[ ])2(N∆′∆  
[%] 

Dirty Fan -13 -2 -0,9 

Fan efficiency 6 1,3 0,7 

HPC 6 0,6 -0,8 

HPT 8 0,8 -1 

LPC 4 0,4 0,1 

LPT 8 1,7 0,8 

EGT_Connector +/-20 0 0 

VSV open 2 º 0 0 1 
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These examples are derived from Turkish Airlines fleet experience and GE data. If 

compared those values with the ones given by Ganguli and Verma (2004, 2005), it is 

noticed that they are not in the same direction except for dirty fan and HPT faults. 

For every input membership functions, big ranges are used in studies mentioned 

above. This fact makes it very difficult to build a fuzzy system for a realistic engine 

health monitoring. Because the development of a fuzzy system is based on these 

values, every engine type may need its own fuzzy system configuration. Maybe, 

these differences are sourced by different engine brands. But, the engine name was 

not given by the researchers. The boundaries of the membership functions are 

decided by using real data and different fault fingerprints given by GE (GE, ECM 

User Manual). 

The main problem in fuzzy logic algorithms is in the selection of the number and 

geometry of the fuzzy sets. Most of the time, a trial and error process is used to 

design fuzzy system. Ganguli et al. (2004) made a study to find optimum number of 

a fuzzy set. 7 membership functions for one parameter are selected based on the 

study. The names of the functions are Negative Big (NB), Negative Medium (NM), 

Negative Small (NS), Zero (Z), Positive Small (PS), Positive Medium (PM), Positive 

Big (PB). For the input variable N2, we decided to use additional 2 membership 

functions as Negative Zero (NZ) and Positive Zero (PZ) in order to provide a 

possibility to separate very small positive and negative values. The shape of the 

membership functions are suitably selected as much as better to give desired results. 

Taking all into consideration, [ ])(FF∆′∆ , [ ])(EGT∆′∆  and [ ])2(N∆′∆  membership 

functions are defined as shown in Figures 3.21 thru 3-23.  

 

Figure 3.21: Membership functions for [ ])(FF∆′∆  



 
67 

 

Figure 3.22: Membership functions for [ ])(EGT∆′∆  

 

Figure 3.23: Membership function for [ ])2(N∆′∆  

In the Fuzzy Logic System, there are mainly three inputs, EGT, N2, FF. 29 rules are 

used in the fuzzy logic system are shown in Table 3.6. The rules are read in the 

following way:  

IF [ ])(EGT∆′∆ = PS and [ ])2(N∆′∆ = PB and [ ])(FF∆′∆  = PS  Then, FAN 
efficiency decrease is high.  

Table 3.6: Rules used in fuzzy logic system 

No [ )(EGT∆′∆

 [˚C] 
[ ])2(N∆′∆

 [%] 
[ ])(FF∆′∆

 [%] Fault 

1. PS PS PB FAN efficiency decrease is high. 

2. NB NM NM FAN blades are dirty. 

3. PM PZ PS LPC efficiency decrease is high. 

4. PS NS PM HPC efficiency decrease is high. 

5. PS PS PM HPC efficiency decrease is high. 

6. PB NB PB HPT efficiency decrease is high. 

7. PM PM PB LPT efficiency decrease is high. 

8. PS PM NB LPT efficiency decrease is high. 
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Table 3.6: Rules used in fuzzy logic system (Continued) 

9. NM PZ NM LPT efficiency decrease is high. 

10. PS PM PS VSV is closed 2º 

11. Z NM Z VSV is opened 2º 

12. PM PZ PM VSV is opened 10º 

13. PB PM NB TAT gage is faulty 

14. PB NS PB FOD event is probable. 

15. NB NB NB N1 indicator accuracy is faulty. 

16. PB Z Z EGT connector is faulty. 

17. Z Z PB Fuel indicator accuracy is faulty. 

18. PM PS PB Air leakage through fuel nozzle 
seals is probable. 

19. PB PS PB VBV system is faulty. 

20. PB PS PB High pressure valve (HPV) control 
is faulty. 

21. PM PZ PM Bleed flow control valve is faulty. 

22. PB PZ PB Pack valve is faulty. 

23. PM PS PM VSV lever arm is faulty. 

24. PS NM PS Main engine control (MEC) change 
is probable. 

25. Z NM PS CIT sensor problem is faulty. 

26. PM NZ PS Liberation of LPT blades is 
probable. 

27. NM PM NM P17 ECU change is probable. 

28. PB PB PB VBV gear motor mechanism seized 
is probable. 

29. NB Z Z EGT connector is faulty. 

To monitor the vibration changes, the below rules are added. 

• If fan vibration is high then fan vibration is faulty. 

• If core vibration is high then core vibration is faulty. 

The rules for a fuzzy system are based on the expert knowledge and fault examples 

given by GE. How the rules are defined is explained with the following examples. 

Rule 2: 

The rule no. 2 is related to the dirty FAN blades. Because of the dirt on the blades, 

the efficiency of the air flow through the HP part of the turbine decreases. The 

system reacts on this situation by decreasing the fuel flow to keep the air flow to fuel 

flow ratio in proper range. This leads to decrease in (EGT) and decrease in core 
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speed (N2). So, all three parameters should be down for the dirty fan problem. As 

shown from Figure 3.16, when fan is dirty, the parameters [ ])(EGT∆′∆ ≈ -13, 

[ ])2(N∆′∆ ≈ -0,9 and [ ])(FF∆′∆ ≈ -2. So, the rule related to dirty fan is as below.   

IF [ ])(EGT∆′∆ = NB and [ ])2(N∆′∆ = NM and [ ])(FF∆′∆  = NM, Then, Fan blades 

are dirty. 

Rule 6: 

The rule no. 6 is related to the HPT efficiency. The changes of the parameters for the 

HPT deterioration are shown in Figure 3.24. In this report, first column shows the 

dates of the flights. The other columns are engine performance parameters and 

change of ∆ (EGT, FF, and N2) values. In titles, deltas are not used, but they are ∆ 

really. As seen from this trend report, HPT deterioration caused ∆(EGT) to increase 

from about 30 to 60, N2 to decrease form 0,5 % to -1 % and ∆(fuel flow) to increase 

from 3 % to 6 %. Parameter changes corresponding to the HPT efficiency decrease 

[ ])(EGT∆′∆ ≈ 30, [ ])2(N∆′∆ ≈ -1,5 and [ ])(FF∆′∆ ≈ 3. Hence, the fuzzy rule related 

to HPT deterioration is defined as below, 

 IF [ ])(EGT∆′∆ = PB and [ ])2(N∆′∆ = NB and [ ])(FF∆′∆  = PB, Then, HPT 

efficiency decrease is high. 

 

Figure 3.24: HPT deterioration (GE, ECM Manual) 

In this report, first column shows the dates of the flights. The other columns are 

engine performance parameters and change of ∆ (EGT, FF, and N2) values. In titles, 
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deltas are not used, but they are ∆ really. As seen from this trend report, HPT 

deterioration caused ∆(EGT) to increase from about 10 to 40, ∆(fuel flow) to 

increase from 0% to 1% and N2 to decrease %0 to -1%. The fuzzy rule related to 

HPT deterioration is below, 

If [ ])(EGT∆′∆  is PB (Positive Big) and [ ])2(N∆′∆ is NM (Negative Small) and 

[ ])(FF∆′∆ is PM (Positive Medium), Then HPT efficiency decrease is high.  

Rule 14: 

The rule no. 14 is related to the TAT (Total Air Temperature) gage fault. The 

changes of the parameters for the TAT gage failure are shown in Figure 3.25. As 

shown from this figure, [ ])(EGT∆′∆  and [ ])2(N∆′∆  go up and [ ])(FF∆′∆  goes down 

when TAT gage is faulty.  Parameter changes corresponding to the TAT gage fault 

[ ])(EGT∆′∆ ≈ 20, [ ])2(N∆′∆ ≈ 1,5 and [ ])(FF∆′∆ ≈ -4. So, the rule related to TAT 

gage fault is as below.   

IF [ ])(EGT∆′∆ = PB and [ ])2(N∆′∆ = PM and [ ])(FF∆′∆  = NB, THEN, TAT gage 

is faulty.  

 

Figure 3.25: TAT gage failure (GE, ECM Manual) 

Similar to the above examples, the other rules in Table 4.7 are defined.  

For defuzzificiation, SOM (Smallest of maximum) is used since it provides us more 

meaningful result than others for this problem.  
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After defuzzification, AEHMS gives an output value for every fault or deterioration 

on a time series as shown in Fig 3.26. Output values are between 0 (faulty) and 1 (not 

faulty). The automation system gives alert for different conditions. The Sudden Alert 

notices when the fuzzy output is 1 time over 0,6. The Sudden Alert is used for short-

term but big trend shifts. The second alert works for long-term trend shifting, 

because it only reacts for a Fuzzy output which is bigger then 0,3 for four times in 

consecutive flights. Thanks to AEHMS, power plant engineers do not need to 

observe all engine performance data on a daily basis. The engineers should 

investigate the engine performance just in case that any alert is produced by AEHMS 

using  other information such as time since last maintenance or overhaul, borescope 

inspection results and the other engine trends on the same aircraft, etc. As an 

example of fuzzy output change, HPT deterioration based on the performance values 

in Figure 3.24 is shown in Figure 3.26. 

 
Figure 3.26: Fuzzy output change based on the Figure 3.24  

3.2.3 Case studies 

i. The first example is related to an engine which had an in flight shut down (IFSD). 

The trend changes of the engine performance parameters are shown in Figure 3.27. 

The event occurred in the last cycle shown in the chart. The aim in this study is to see 

how the AEHMS reacts before this happens.  
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Figure 3.27: Trend changes of the engine performance parameters 

As seen from the chart, there as a big increase in EGT, fuel flow and N2 before this 

event. AEHMS starts to give alerts for the impending event 15 days ago as shown in 

Figure 3.28. The proposed system gives the alerts by describing the probable 

problem in LPC or LPT in the first periods of alerts. But, the closer to the event, the 

more LPC becomes a matter of primary importance. 

 

Figure 3.28: Fuzzy output change for the engine 
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The engine was put in maintenance, but the main reason of the event has not been 

found yet. So, we can not say the cause is exactly correct.  

We can not say that the exact reason of the engine deterioration is LPC, but at least 

we can say that the system warns the engine has problem very earlier than the event. 

Maybe it would be prevented if the warning system occurred.     

ii. The second application is about engine failure which caused delay due to vibration 

problem.  Normally, vibration values are seen from cockpit by the pilots. But, they 

can not know how the vibration trend changes over time. Whenever, vibration values 

goes over unsafe levels of vibration, pilots call mechanics to eliminate this problem. 

And, it causes aircraft delays or cancellations.  

It can be seen from Figure 3.29 that the vibration started to increase very earlier than 

this flight interruption. Due to the vibration increase, the fuel flow has also increased. 

This event is also warned by the AEHMS in the same way of the previous example. 

So, the delay is seen as a preventable event. 

 

 

Figure 3.29: Engine fan vibration change 

iii. The case study is related an engine deterioration shown the parameter change in 

Figure 3.30.  

The AEHMS starts giving alerts for LPC deterioration as shown in Table 3.7. And, 

fuzzy output change for the LPC deterioration is shown in Figure 3.31.  
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Figure 3.30: Engine parameter change for case study iii 

Table 3.7: Fuzzy Output Alerts for the Engine LPC Deterioration 
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Figure 3.31: Fuzzy output change for LPC deterioration 

It can be seen from the Figure 3.31, the engine maintenance can be planned for 

maintenance effectively by using the alerts without occurring an unscheduled event 

such as delay, cancellation or any other operational interruption. 

iv. The case study is related an engine deterioration shown the parameter change in 

Figure 3.32.  

 

Figure 3.32: Engine parameter change for case study iv 
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As seen from Figure 3.32, the engine parameter started to change after the date of 21 

July 2007. Based on the parameter change the AEHMS gives alerts to give an 

indication for an impending engine failure as shown in Figure 3.33. 

 

Figure 3.33: Fuzzy output change for case study iv 

The AEHMS gives an opportunity to make a decision for the engine by indicating 

LPC failure related the engine coming soon.  

v. The case study is related an engine deterioration shown the parameter change in 

Figure 3.34 

 

Figure 3.34: Fuzzy output change for case study v 
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As seen from Figure 3.34, the engine parameter started to change after the date of 23 

July 2007. Based on the parameter change the AEHMS gives alerts to give an 

indication for an impending engine failure as shown in Figure 3.35. 

 

Figure 3.35: AEHMS alerts for case study v 

The AEHMS gives an opportunity to make a decision for the engine by indicating 

failure related liberation of LPT blades. After the failure, the engine was removed for 

overhaul. The outputs of the fuzzy logic went to zero after the overhauled engine was 

reinstalled to aircraft and operated. It is important to remind that after the overhauled 

engine is used for operation, the engine parameters change and follow different range 

of values for normal operating condition. New trend analysis is performed based on 

the change. 

For the same engine fault, NN analysis is done in Chapter 3.1.2. NN outputs and 

actual outputs have been separated from each other since the deterioration started. 

From these results, we can say that FL and NN results are parallel to each other and 

they both can be used to give an indication for impending faults. As seen from the 

Figure 3.36, after the same point, NN and FL systems start to give an indication 

about an impending engine failure. Even though, FL gives the alert including the 

information which component would probably failed, NN does not give which 

system or component is probably failed. In order to do this, all faults must be trained 

by using related faulty data. In neural network modeling, data are sorted into two 

groups as normal engine data and abnormal data. Acquiring the type of data is the 

greatest challenge in NN. As said earlier, in real life for an airline operation it is not 

so easy to find enough faulty data to train NN system. Getting similar results from 

both NN and FL models empowers the validity of the model.  
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Figure 3.36: The comparision of NN and FL results for case study v 

vi. Long term engine deterioration analysis: 

As an example for the long term analysis, ∆(EGT) change is investigated for a long 

period such as 6 months as shown Figure 3.37. ∆(EGT) increases slowly since the 

engine degrades naturally over time. Engine deterioration results in engine 

performance parameter changes over time. For this engine, ∆(EGT) increases 0,012 

ºC for every cycle. Based on this trend, it can be calculated when the ∆(EGT) reaches 

to some point. By using long term trend of the health parameters, future engine 

maintenance may be planned and unscheduled engine are decreased. ∆ shift trends 

for the gradual deterioration are smaller than those of single fault events. 
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Figure 3.37: Long term EGT deterioration 

vii. Engine overhaul effect on EGT Margin and engine performance parameters: 

Figure 3.38 shows an engine overhaul effect on EGT Margin and engine 

performance. 

 

Figure 3.38: Engine overhaul effect on engine performance 

One of the most effective ways to increase EGT margin is to overhaul engine. As 

seen from the Figure 3.38, EGT margin, about 5-10 °C, is very limited before engine 
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overhaul. So, it was decided to remove the engine and send the overhaul shop. After 

the engine was overhauled, it was installed to an aircraft. If compared data before 

and after overhaul, EGT Margin increased from 5 °C to 73 °C and ∆(EGT) and 

∆(FF) decreased and recovered.  

As another example, the movement over the limit is illustrated in Figure 3.39 for 

EGT margin.  

 

Figure 3.39: Engine steady  state performance deterioration  

The engine is required the maintenance to recover the engine performance since EGT 

margin riches to zero. Based on the EGT margin trend change over time, it is 

possible to forecast the time to zero EGT margin for engine maintenance.  

3.2.4 Test of the validity of the AEHMS Model 

In order to validate the model fitness to the EHM problem, 6 months flight data for 

82 engines have been used.  In this term, the program gave alerts 135 times. Based 

on the manual analysis and  engine failure results, two of them are not valid. Two 

false alerts in 135 alerts are very little compared to the total detections. According to 

these results, the percentage errors are calcelated by using Equation ( 3.19) 

135

100133135100
%

−
=

−
=

actual

actualpredicted

F

FF
Error  =1.48 % (3.19) 

Where, Fpredicted is the number of impending failures detected by the AEHMS and 

Factual is the number of detected failures by manual analysis. As can be seen, the 

average percentage error is 1.48 %. The result showed that the use of fuzzy logic 

system for engine health monitoring automation can be used satisfactorily.   
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3.2.5 The main advantageus of the model  

In traditional EHM system, a power plant engineer should observe the engine 

performance data on a daily basis to detect the engine faults during operation. The 

routine working condition may cause the engineers to make error. This study has 

shown that AEHMS can be used by airlines or engine manufacturers efficiently. A 

further advantage of this approach is to allow the consolidation of rule knowledge by 

updating based on the developments and future failure types which would occur in 

different combination of the engine performance parameter trend shifts causing 

failures which program can not find.  

Previous studies have shown that the automation of the EHM needs improvement. 

The model provides important advantegous about the automation of complete loop of 

the EHM system from data collection to maintenance decision. This model is based 

on the realistic data. The model has 29 rules to tack the different engine component 

failures. The model gives an opportunity to use it during the flights as real time.    

The advantage of this new system is not only to save time but also to keep the expert 

knowledge in the company. It also prevents human errors during the evaluation of 

the reports. Additionally, it provides an opportunity the airline companies not to keep 

their engineers to check the ECM reports for longer period of holidays. You don’t 

need years of engineering experience to monitor and analyze all engine performance 

reports continuously. The other advantage of the new EHM is to save paper for not 

producing lots of paper reports for analysis.  

3.2.6 Fuzzy logic based calculation of HP Turbine efficiency  

In the previous section, it is shown how engine component failures or faults are 

forecasted by using fuzzy locic. Now, fuzzy logic approach is applied to calculate the 

main engine components’ reliabililty using engine parameters. This approach was 

used first by Gayme et al (2003). In conventional methods, reliability of any system 

or component is calculated using historical data such as time to failure, time to 

unscheduled removals or time to survival. 

The fuzzy logic method for calculating reliability of a component is based on the  

rules how the parameter change affect the reliability. In order to write the correct 

rules, basic expert knowledge is required how the parameter change effect the 

component reliability. As a case study, the fuzzy logic based reliability analysis is 
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applied to High Pressure Turbine (HPT). The fuzzy inference system in Matlab is 

produced as shown in Figure 3.40. 

 

Figure 3.40: Fuzzy inference system for HPT efficiency 

As seen from the above figure, Mamdani's fuzzy inference method is used for the 

rules. Mamdani-type inference the most commonly seen fuzzy methodology. 

Another method, Sugeno-type systems can be used to model any inference system in 

which the output membership functions are either linear or constant. For 

defuzzfication centroid method is used since it seems the most meaningful for the 

analysis. 

Input and output membership functions of the fuzzy system of HPT efficiency is 

given in Figures 3.41 thru 44 based on our experience and a study done by Gayme et 

al. (2003) from Honeywell Engines company. They developed some rules related to 

HPT efficiency. The aim here is to apply the method and see the results using real 

engine data. 
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Figure 3.41: ∆EGT membership functions for HPT efficiency 

 

 
 

Figure 3.42: ∆N2 membership functions for HPT efficiency 

 

Figure 3.43: ∆FF membership functions for HPT efficiency 
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Figure 3.44: HPT efficiency output membership functions 

 

The parameter change effect on the HPT efficiency can be seen from the surface 

graphs in Figure 3.45.   

 

Figure 3.45: Parameter change effect on HPT efficiency  

6 rules are defined as shown in Table 3.8 by using weighting factor for every rule. 

The magnitude of the factor depens on the relation of the normal operating engine.  
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Table 3.8: Rules used in fuzzy system for HPT efficiency 

 

As an example of fuzzy output, for the selected ∆(EGT), ∆(N2) and ∆(FF), HPT  

efficiency is derived as 0,715 as shown Table 3.9. 

Table 3.9: An example of fuzzy output for HPT efficiency 

 

The results for a particular engine in Turkish Airlines fleet is applied. The sample 

data related to this engine is given in Table 3.10.   

Table 3.10: The sample data for the engine parameters 
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The decrease of the HPT efficiency over cycles is verified as shown in Figure 3.46. 

 

Figure 3.46: Fuzzy logic based on HPT efficiency change over cycles 

In Figure 3.46, the more fuzzy system output decrease, the more HPT efficiency  

decrease. So, by using the figure, HP turbine can be removed for maintenance 

without leading a failure. The maintenance effect on increasing the HPT efficiency is 

shown in Figure 3.47. 

 

Figure 3.47: HPT efficiency improvement after maintenance 

As seen from the above figures, fuzzy logic is a powerful tool to model the efficiency 

change over time for a specific component. This model gives us more advantage to 

decide a maintenance action compared to the statistical based analysis.

HPT efficiency 

HPT Efficiency improvement 
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4.  THE IMPROVEMENT IN RELIABILITY AND MAINTENANCE 

EFFECTIVENESS  

4.1 Improvement in Reliability   

The engine reliability is calculated in different ways such as in flight shut down 

IFSD rate, unscheduled engine removals etc. Since IFSD events occur very rarely, 

engine reliability improvement is shown by using unscheduled engine removals due 

to engine failures. The data related B737NG engine unscheduled removals is given in 

Table 4.1 for an airline fleet. Time to unscheduled engine removals is measured by 

flight hour (FH). 

Table 4.1: Engine unscheduled removals due to failures 

Engine 
No 

Time to Unscheduled 
Engine Removal (FH) 

X001 23043 

X002 3273 

X003 19457 

X004 21637 

X005 26393 

X006 24370 

X007 24339 

X008 27936 

X009 3314 

X010 23043 

X011 26378 

X012 30363 
 

And, the engine data related to impending engine failures detected by health 

monitoring given in Table 4.2. 
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Table 4.2: HM detections of impending engine failures 

Engine 
No 

Time to Detection of 
Impending Engine Failures 

by HM (FH) 

Y001 28515 

Y002 29070 

Y003 11443 

Y004 27228 

Y005 27237 

Y006 25824 

Y007 24622 

Y008 27038 

Y009 24140 

Y010 30223 

Y011 30869 

Y012 27557 

Y013 14735 

Y014 31613 

Y015 22108 
 

The type of engine data with health monitoring is right censored as shown in Figure 

4.1 since some of the engines keep on working without any unscheduled removal. 

Right censored data is called suspended (S) data too. 

 

Figure 4.1: The timeline data related engine with HM 
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Kaplan-Meier formula is used to calculate the cumulative failure probability for right 

censored data, F(ti) as below, 

∏
≤ +

+

+

+
=

tt

)F(t

ij

i ,71j-N

0,7j-N

0,4N

0,7N
-1  (4.1) 

where, N and j show number of total items and failure no respectively. Since, the 

sum of reliability, R(t) and unreliability F(t), can be calculated from Equation (3.6) 

as below; 

β

η 







−=

t
ExptF 1)(

 (4.2) 

This equation can be written as below, 

[ ]{ } ηββ LntLntFLnLn −=−− )()(1  (4.3) 

Equation (4.3) is a Y=aX+b type linear equation. Where, 

[ ]{ })(1 tFLnLnY −−= , )(tLna β= , ηβLnb =  

β and η are calculated using reliability data. Reliasoft software is used to calculate 

the reliability values. By using Weibull distribution, Reliability versus time and 

probability density function changes with and without health monitoring can be 

drawn as seen in Figures 4.2 and 4.3.  

 

Figure 4.2: Engine reliability vs time using Weibull distribution 
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Figure 4.3: Probability density function using Weibull distribution 

Even though, the data are not fitted to the Weibull distribution very well, it is 

possible to compare from these figures to see the improvement in the reliability. As 

seen from reliability versus time and failure probability density function graphs, the 

engine reliability with HM is better than engine reliability without HM.  

In order to fit better distribution to the reliability data, Reliasoft distribution wizard 

can be used as seen from Figure 4.4. 

 

Figure 4.4: Selection of the best distribution for the reliability data 
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The program gives the rankings for 11 distributions to fit curve to the data. The result 

showed that the best distribution for the engine reliability with HM is Gumbel 

distribution. And similarly, G-Gamma distribution is selected for engine reliability 

data without HM. The Figures 4.5 and 4.6 shows the both reliability vs. time changes 

using Weibull and G-Gamma.  

 

Figure 4.5: Reliability modelling with Weibull distribution 

 

Figure 4.6: Reliability modelling with G-Gamma disribution 
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As shown above figures, it is clearly undrestood that the selection of the distribution 

for the reliability data is very important. Based on the new selection of the 

distributions, the reliability versus time and pdf graphs are given in Figures 4.7 and 

4.8.  

 

Figure 4.7: The engine reliability improvement using HM (G-Gamma) 

 

Figure 4.8: PDF change due to reliability improvement (G-Gamma) 
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The engine MTBUR (mean time between unscheduled removals) improvement due 

to HM is seen in the Figure 4.9. 

 

Figure 4.9: The engine MTBUR improvement using HM 

Based on the above data, the probability that engine with health monitoring last 

longer with probability of 67 % than engines without health monitoring as seen in 

Figure 4.10.   

 

Figure 4.10: The comparision of engine reliability with and without HM 

4.2 Improvement in Maintenance Effectiveness  

According to Joint Aviation Authority (JAA) rules, an operator should have a system 

to analyze the effectiveness of the maintenance program, with regard to spares, 

established defects, malfunctions and damage, and to amend the maintenance 

program (this amendment will involve the approval of the Authority unless the 
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operator has been approved to amend the maintenance program without direct 

involvement of the Authority).   

Maintenance effectiveness is measured in different ways. Reliability program is an 

appropriate tool to measure the airline maintenance effectiveness. 

In an airline reliability program, there are different reliability metrics to measure 

maintenance effectiveness such as pilot report rate, maintenance report rate, 

operational interruptions rate, component unscheduled removal rate and non-routine 

maintenance rate sourced by routine maintenance. If maintenance effectiveness 

increases, at least one of them will decrease.  The rates are calculated by using 

numbers. Instead of using numbers, it is possible to use the cost of the maintenance 

due to pilot reports, maintenance reports etc. So, maintenance effectiveness may also 

be measured by using by total maintenance cost of unscheduled and scheduled 

maintenance per flight hour.   

Maintenance effectiveness is improved by eliminating unnecessary maintenance 

work and by implementing an optimum interval-based or condition-based 

maintenance.  

The comparison of with and without health monitoring effect is seen in Figure 4.11 

schematically.   

 

Figure 4.11: The comparision with/without HM schematically 

In preventive maintenance policy, some failures are detected in the scheduled 

maintenance and the others occur between the preventive maintenance actions as 

unscheduled. Compared to scheduled maintenance cost, unscheduled maintenance 

cost is very high. Studies show that preventive maintenance costs are around 30-70 

% less than costs incurred from an unscheduled maintenance.   
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The objective of the aircraft maintenance function is to provide safe aircraft at 

minimum cost. The cost element is made up of many components which include the 

cost of spares held, cost of materials used, manpower costs, cost of infrastructure 

(hangers etc), and the cost of having aircraft unavailable for operation.  

The interval between tests or maintenance can be optimized with respect to the 

maintenance costs as shown in Figure 4.12.  If the interval between tests is too short, 

the number of failures on start-up and failures during testing will increase, the 

probability of the system being under repair will thus also increase.  If it is too long, 

the probability of the system being in failed state because of a failure in non-

operation will increase.  

 

Figure 4.12: Optimum preventive maintenance interval 

A challenge for industry is to enhance the efficiency and effectiveness of its 

maintenance function by eliminating unnecessary maintenance work and by 

implementing an optimum mix of reactive, interval-based, condition-based and 

design-out maintenance tasks while focusing at all times on the overall aim of 

achieving maximum asset capability.  

The objective of statistical based preventive maintenance is to minimize the total 

operational cost including corrective and preventive maintenance cost for a specified 

time.  So, the total cost CT, 

C n C n CT f f p p= +  (4.4) 

where, 
n f : the expected number of failures during t.  

np : the expected number of replacements or maintenance of unfailed parts during t.  

C f : cost of each corrective replacement or maintenance, action.  
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Cp: cost of each preventive replacement or maintenance, action.  

The total number of replacements or maintenance, nT ; 

n n nT f p= +  (4.5) 

Correspondingly, total replacement rate λT , is therefore given by 

λ λ λT f p= +   (4.6) 

And we know that λT MTBR= 1  and ∫=
T

dttRMTBR
0

)( . Where, MTBR stands for 

Mean Time between repalcements or maintenance. Using this equations into the 

above equation, we can obtain 

λ λ λT f p T
R t dt

= + =

∫
1

0
( )

  (4.7) 

F T R T( ) ( )+ = 1  (4.8) 

Then, 
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F T

R t dt

R T

R t dt

= + = +

∫ ∫
( )

( )

( )

( )
0 0

 (4.9) 

Hence, 
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and, 

λp T

R T

R t dt

=

∫
( )

( )
0

  (4.11) 

So, for a specified time, t, n nf p and  values are as follow. 

[ ]
n t

R T t

R t dt
f f T

= =
−

∫
λ

1

0

( )

( )
 (4.12) 

and, 

n t
R T t

R t dt
p p T

= =

∫
λ

( )

( )
0

  (4.13) 

Substituting Equations (4.12) and (4.13) into Equation (4.5), we can obtain for the 

total operation cost, CT, 

[ ]
pTfTT C

dttR

tTR
C

dttR

TRt
C

∫∫
+

−
=

00
)(

)(

)(

)(1
  (4.14) 
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The replacement or maintenance interval T that will be minimize the cost can be 

derived as fallow. 

d

dT
C T( ) = 0  (4.15) 

Hence, 

( ) ( )λ( ) ( ) ( )T C C R t dt R T C C Cf p

T

f p f− + − − =∫
0

0  (4.16) 

where, λ( )
( )

( )
T

R T

dR T

dT
= −

1
 

If we rewrite Equation (4.13), we can obtain 

( )R T T C C R t dt
C

C C
f p

T p

f p

( ) ( ) ( )+ − − =
−

∫λ 1
0

  (4.17) 

Let’s suppose that our data corresponds to Weibull distribution, then Equation (4.17) 

turns out as follow. 

β

η 



−

=
t

etR )(   (4.18) 

β

ηη

β
λ 








−=

t
t)(  (4.19) 

where for increasing failure rates β>1.    
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0

1

1
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ηη
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In all cases, η<<>> TCC pf   and  . 

For x<0, e x
x xx = − + + +1
2 3

2 3

! !
... (4.21) 

Using Equation (4.21) for the first two terms, we can rewrite (4.20) as below, 

f

p

C

CT
T

TT
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+









+
−








++








−

+−
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1

1
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11 βγη

ηβηη

β

η
  (4.22) 

where, 

...1)( +







−=

β

η

T
TR  (4.23) 

From Equation (4.22), minimum cost preventive maintenance period, ( )T CT min , 
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( )
β

β
η

1

1

1*
min













−
≈=

f

p

T
C

C
TCT  (4.24) 

Using Equation (4.24) into the Equation (4.14), total operational cost can be derived. 

The total equation cost equation is not so easy to be solved using symbols. So, it is 

better to show the total cost of maintenance as a function of the Cp, Cf and reliability 

characterisitics values, β and η.  

As an example, β=4,57 and η=2530 flight hour and Cp=$50000, Cf=$200.000 

(Weibull disributed). The minimum cost prevetive maintenance period is 1580 flight 

hour. The minimum total cost per unit time can be calculated from Equation (4.14).  

[ ]
000,200*

)(

)1580(
000.50*

)(

)1580(1
)(

1580

0

1580

0

)1580(min

∫∫
+

−
== =

dttR

R

dttR

R
CC

TTT
 (4.25) 

[ ]
000,200*

1548

2616,0
000.50*

1548

2016,01
+

−
=  

Hence, 

min)(
T

C =51,83 $/FH (Flight Hour)  (4.26) 

In predicitive maintenance policy based on health monitoring strategy, if it is 

assumed that all failures are predicted, then all failures are recovered by using 

preventive maintenance. We can say corrective maintenance actions are transfered to 

preventive maintenance thanks to health monitoring. Since all failures are eliminated 

in preventive maintenance, we can rewrite Equation (4.11) by replacing Cf with Cp as 

below, 

t

dttR

C
C

T

p

HMT

∫
=

0
)(

)(  (4.27) 

where, 
HMT

C )(  refers total maintenance cost with health monitoring.  

Let’s check  
THMT

CC ≤)( . We can rewrite above equation by using Equations (4.11) 

and (4.21) as below,   
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If we proof that the above aquation is valid, then we can say that total maintenance 

cost with health monitoring is less than total maintenance cost with preventive 

maintenance. This equation is resulted as below, 

pf CC ≥  (4.29) 

So, TT CC
HM

≤ , Total maintenance cost with health monitoring is less than total 

maintenance cost with preventive maintenance.  

The total cost per unit time with health monitoring can be calculated from Equation 

(4.22) as below, 

30,32
1548

000,50

)(
)(

0

===

∫
T

p

HMT

dttR

C
C $/FH  (4.30) 

The maintenance saving due to health monitoring is calculated using the results in 

Equations (4.22) and (4.26) as below,  

Maintenance saving=51.83-32.30=19,53 $/FH 

Now, let’s see the engine maintenance saving thanks to health monitoring given in 

Table 5.2. Unless the HM is used, the data would be corresponded failure data 

instead of suspension. So, the reliability versus time graph under this assumption is 

given in Figure 4.13.  

 

Figure 4.13: Reliability vs time related failures due to without using HM  
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In traditional maintenance philosophy, some failures are corrected in unscheduled 

maintenance and the others are prevented or corrected in scheduled maintenance. 

Basically, it is tried to apply the preventive maintenance application in optimum 

frequencies. To find optimum preventive time, we need corrective and preventive 

maintenance costs for an engine maintenance required removal. An unscheduled 

engine maintenance cost depends on the severity of the event. For example, en 

engine in flight shut down cost is generally more than $500,000. An average engine 

maintenance cost due to an unscheduled event may be assumed as $1000.000. 

Engine scheduled maintenance is around $250.000. Based on the cost values and 

reliability parameters β=4,4364 and η=27875 as shown in Figure 4.14, the total 

maintenance cost per flight hour according to preventive maintenance interval is 

given in Figure 4.14. As seen from the figure, optimum preventive maintenance 

interval ( ) =minT
CT 16.600 FH and minimum preventive maintenance cost per flight 

hour can be found min)(
T

C = $19,72. 

 

Figure 4.14: Optimum preventive maintenance interval 

The total cost per unit time with health monitoring can be calculated from Equation 

(4.22) as below, 
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60,15
16302

000,250

)(
)(

0

===

∫
T

p

HMT

dttR

C
C $/FH                (4.31) 

  

The total cost per unit time with health monitoring can be calculated from Equation 

(4.22) as below, 

Maintenance saving=19,72-15,60=4,12 $/FH 

For an airline with 100 aircraft which have 4000 FH yearly utilization, yearly cost 

saving will be 4,12*100*4000*2 (2 engines per a/c)=3.296.000 $. From above 

results, it is clearly defined that health monitoring improves the maintenance 

effectiveness. 



 
102 

 



 
103 

5.  CONCLUSIONS AND REMARKS  

• This study has shown that Automated Engine Health Monitoring System 

(AEHMS) developed by using fuzzy logic improves aircraft engine 

maintenance effectiveness and reliability. 

• The results of the case studies show that it is possible to obtain reliable 

prediction for engine faults in 22 components except for limitation to separate 

very similar failure patterns for different components. In such cases, the 

system gives alerts for all. Then, the user can decide actual faulty components 

after troubleshooting.  

• The comparison of the results with the exampes detected by manual engine 

condition monitoring was in a good agreement. In some cases, the model 

gives earlier alerts than manual monitoring.  

• AEHMS provides an opportunity the airline companies not to keep their 

engineers to check the ECM reports for longer period of holidays. You don’t 

need years of engineering experience to monitor and analyze all engine 

performance reports continuously. It also prevents human errors during the 

evaluation of the reports.  

• This method gives an opportunity to the airlines to use real time aircraft 

health monitoring using ACARS (Aircraft communication & reporting 

system) which provides flight communication of health status/events from air 

to ground.  

• FL and NN results are parallel to each other and they both can be used to give 

an indication for impending faults. However, NN does not give which system 

or component is probably failed. In order to do this, all faults must be trained 

by using related faulty data. In real life for an airline operation it is not so 

easy to find enough faulty data to train NN system. 

• Since every engine type has different characters, it is required to revise the 

fuzzy rules for the concerning engine types (No one size EHM doesn’t fit all 

situations).   

• This approach is to allow the consolidation of rule knowledge by updating 

based on the developments and future failure types which would occur in 
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different combination of the engine performance parameter trend shifts 

causing failures which program can not find.  

• This method may also be applicable other than aircraft engines such as 

auxiliary power unit, structures etc.  
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APPENDIX A : Matlab Program for AEHMS 

%this M.file is for calculating the fuzzy system results for all 

%B738 Engines at ones, 

***All engine numbers are entered in Parenthesis below, 
 

Engine=['engine1.xls';'engine2.xls';'engine3.xls'; …'engineN.xls'];                           

 

%here you have to add all engines that you want to be monitored 
%cd('D:\EHM\EHMB738'); 
 

cd('C:\Documents and Settings\guvenilirlik\Desktop\EHM\EHMB738'); 
 

%changes the workdirectory to desired path 

                        
[m,n] = size(Engine); 

  
for i=1:m;                                                         
%for every plane there is one time through the for-cycle   
Engine(i,:) 
%if you improve our fuzzysystems and you want all rows for every 

engine to be calculated you should write a=210; %a=210; 
    a=xlsread(Engine(i,:),'ECM','GO3');                          
    b=xlsread(Engine(i,:),'ECM','GO2');                          
%reads out the parameter a and b from the desired plane to decide 

how many %rows have to be calculated, b stands for counted rows with 

%flightdata, a stands for counted rows with FuzzySystemResults   
    if b>a                                                             
%saves time if there are no new rows to be calculated          
%first fuzzy system !!!faults!!! 
        s=sprintf('DH%d:DN%d',a,b);                                        
        data=xlsread(Engine(i,:),'ECM',sprintf(s)); 
%gets the new dates out of Excel   
%fismat = readfis('D:\EHM\programs\B738\EHM_B738.fis'); 
        fismat = readfis('C:\Documents and 

Settings\guvenilirlik\Desktop\EHM\programs\B738\EHM_B738.fis'); 

         
%get the desired fuzzyszstem and calls it fismat 
        matlab_out = evalfis(data, fismat);                               
%calculate the output of the fuzzysystem fismat and calls it 

%matlab_out 

  
        t=sprintf('DR%d',a);                                              
%decides in which row of the excelsheet the data 'matlab_out' has to 

%be put 
        SUCCESS = xlswrite(Engine(i,:),matlab_out,'ECM',sprintf(t));      
%writes the data matlab_out in the Exelfile, %sheetname ENG1 at row 

and coloum from sprintf 

  
        clear matlab_out; 
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