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DEVELOPMENT OF NOVEL BURN PRESSURE GARMENTS USING 
VARIOUS ANTIMICROBIAL TECHNOLOGIES TO IMPROVE THE 

REHABILITATION PERFORMANCES 
 

SUMMARY 

In burn treatments, microorganisms on pressure garments during pressure therapy 
can prevent rehabilitation by causing functional, hygienic and aesthetic difficulties. 
As bacteria are the most trouble-causing organisms, they can threaten patients 
causing infection during the long period of use of these garments. In this study, novel 
burn pressure garments having durable antimicrobial property were developed using 
various antimicrobial agent procedures on highly elastic Nylon 6.6/ Spandex fabrics 
in powernet, flat warp and weft knitted structures. Six different antimicrobial agent 
procedures were used following Quat-Silane, Triclosan, polyhexamethylene 
biguanide (PHMB) and three different silver-based antimicrobial chemical agents. 
Untreated, treated and a duplicate treated set of samples washed for 5, 10 and 50 
cycles were tested to determine the antimicrobial activity. Three different types of 
pressure garments were designed including the area from ankle to knee before and 
after treatments using a mannequin. Commercial wireless pressure sensors were used 
to control the pressures of burn pressure garments at an acceptable medical range 
before and after antimicrobial treatments. XPS, SEM and FTIR analysis were 
conducted to examine the achievement of the treatments using antimicrobial 
chemical agents on fabric samples. Physical properties were tested in terms of air 
permeability, stiffness (CD, MD), bursting strength, drapeability, time dependent 
fabric growth and porosity in order to evaluate the wear performances of burn 
pressure garments before and after antimicrobial treatments. Thermophysiological 
properties were tested in terms of thermal resistance (Rct) and isolation properties 
(clo unit) in order to evaluate the comfort performances of burn pressure garments 
before and after antimicrobial treatments. The results for bacterial reductions for 
each antimicrobial agent procedure were satisfying for fabric samples. A small 
significant decrease in antimicrobial activity was observed even after 50 launderings. 
A small significant decrease was observed for air permeability, bursting strength and 
drapeability while a small significant increase was observed for stiffness (CD, MD), 
thermal resistance (Rct), isolation properties (clo unit) and fabric growth. Porosity 
values were found not any different for control and treated samples. These results 
show that after antimicrobial treatments, the fabric samples can provide comfort by 
providing microclimate and preventing excess sweating of patients. This will help to 
provide a hygienic environment during wound healing stage by eliminating allergic 
reactions which will help to prevent the risk of infection. will prevent odor, decrease 
infection and support reducing of scarring by increasing the rehabilitation rates. 
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İYİLEŞTİRME PERFORMANSLARININ GELİŞTİRİLMESİ İÇİN ÇEŞİTLİ 
ANTİMİKROBİYEL TEKNOLOJİLER KULLANILARAK YANIK 

YARALANMALARINDA KULLANILAN YENİ BASINÇLI GİYSİLERİN 
GELİŞTİRİLMESİ 

 

ÖZET 

 
Yanık tedavilerinde, bası tedavisi süresince basınçlı giysiler üzerindeki 
mikroorganizmalar, fonksiyonel, hijyenik ve estetik zorluklara neden olarak 
rehabilitasyonu önleyebilir. Bakteriler en çok rahatsız edici organizmalardan biri 
olduğundan, bu giysilerin uzun bir süre kullanımları süresince enfeksiyona neden 
olarak hastaların yaşamını tehdit edebilir. Bu çalışmada, powernet, düz çözgülü örme 
ve atkılı örme yapılarda yüksek elastanlı Nylon 6.6/Spandex kumaşlara çeşitli tipte 
antimikrobiyel kimyasal yöntemler kullanılarak kalıcı antimikrobiyel özelliğe sahip 
yanık yaralanmalarında kullanılan yeni basınçlı giysiler geliştirilmiştir. Quat-Silane, 
Triclosan, PHMB (polyhexamethylenebiguanide) ve üç farklı tipte gümüş bazlı 
antimikrobiyel kimyasal materyal olmak üzere altı farklı antimikrobiyel kimyasal 
yöntem kullanılmıştır. Antimikrobiyel işlem görmemiş, işlem görmüş ve işlem 
gördükten sonra 5,10 ve 50 yıkamaya tabi tutulmuş numuneler antimikrobiyel 
aktiviteyi belirlemek için test edilmiştir. Antimikrobiyel işlemlerden önce ve sonra 
olmak üzere prototif manken kullanılarak ayak bileğinden dize kadar olan bacak 
bölgesi olmak üzere üç farklı tipte basınçlı giysi dizaynı gerçekleştirilmiştir. Yanık 
yaralanmalarında kullanılan basınçlı giysilerin uyguladığı basınçları istenilen 
medikal aralıkta kontrol edebilmek için, antimikrobiyel işlemlerden önce ve sonra 
ticari kablosuz basınç sensörleri kullanılmıştır. Kumaş numuneleri üzerinde 
antimikrobiyel kimyasalların kullanıldığı bitim işlemlerinin başarısını incelemek için 
XPS, SEM ve FTIR analizleri gerçekleştirilmiştir. Antimikrobiyel işlemlerden önce 
ve sonra yanık yaralanmalarında kullanılan basınçlı giysilerin giyim performanslarını 
değerlendirebilmek için fiziksel özellikler hava geçirgenliği, rijitlik (CD,MD), 
patlama mukavemeti, dökümlülük, zamana bağlı kumaş genişlemesi ve gözeneklilik 
değerleri açısından test edilmiştir. Antikrobiyel işlemlerden önce ve sonra yanık 
yaralanmalarında kullanılan basınçlı giysilerin komfor performanslarını 
değerlendirebilmek için termofizyolojik özellikler termal direnç (Rct) ve izolasyon 
özellikleri (clo unit) açısından test edilmiştir. 
 
Sonuçlar göstermiştir ki, bu giysilerin ana fonksiyonu olan basınçlarını kontrol 
ederek çeşitli antimikrobiyel kimyasal prosedür ile memnun edici kalıcı 
antmikrobiyel aktivite elde edilmiştir. Hava geçirgenliği, patlama mukavemeti ve 
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dökümlülük değerlerinde çok az bir düşüş gözlemlenirken, rijitlik (CD,MD), termal 
direnç (Rct) ve izolasyon (clo unit) değerlerinde çok az bir artış gözlemlenmiştir. Bu 
sonuçlar göstermektedir ki bu yeni yanık yaralanmalarında kullanılan basınçlı 
giysiler kokuyu önleyecek, enfeksiyonu azaltacak ve rehabilitasyon hızını arttırarak 
skar doku oluşumunun azaltılmasına destek sağlayacaktır. 
  
Çalışmanın ana amacının farkında olarak çeşitli antimikrobiyel mekanizmalarının 
yanık yaralanmalarının rehabilitasyonunda kullanılan üç farklı tipte kumaş yapısının 
basınç davranışlarına ve kimyasal, fiziksel ve mekanik ve komfor özelliklerini ne 
şekilde etkilediğini anlamak ve araştırmak da çalışmanın diğer amaçları arasında yer 
almaktadır. Böylece, beş ana amaç belirlenmiş ve şu şekilde tanımlanmıştır.  
 
Bunlardan birisi, altı farklı antimikrobiyel işlemin çeşitli tipte nylon6.6/spandex 
kumaşların kimyasal özelliklerine etkisini incelemek ve araştırmaktır. Bunun için 
çeşitli tipte tekstil yapılarındaki lifler üzerindeki değişiklikleri incelemek ve 
araştırmak için tarama elektron mikroskobu (SEM) kullanılarak yüzey morfolojisi 
çalışılmıştır. Fourier transform kızılötesi spektroskopisi (FTIR) kullanılarak liflerin 
kimyasal yapısındaki değişiklikler incelenmiştir. Çeşitli tipte gümüş antimikrobiyel 
kimyasal maddenin kullanıldığı antimikrobiyel işlemlerin yüzey kimyası, X-ışını 
fotoelektron spektroskopisi (XPS) kullanılarak çalışılmıştır.  
 
Bu amaçlardan bir diğeri, altı farklı antimikrobiyel işlemin çeşitli tipte 
nylon6.6/spandex kumaşların antimikrobiyel aktivite dayanımları üzerine etkisini 
incelemektir. Bunun için altı farklı antimikrobiyel işlemin antimikrobiyel aktivite 
üzerindeki rölatif dayanımlarını değerlendirebilmek için devirli yıkama testlerinin 
etkisi çalışılmıştır. Altı farklı antimikrobiyel işlem görmüş üç farklı kumaş tipi ve 
işlem görmemiş üç farklı kumaş tipi üzerindeki antimikrobiyel aktivite dayanımları 
birbirleriyle karşılaştırılmıştır.  
 
Bu çalışmada belirlenen diğer bir amaç, üç farklı tipte nylon6.6/spandex kumaş ve 
altı farklı antimikrobiyel mekanizmanın kullanılarak antimikrobiyel özellik 
kazandırılmış yanık yaralanmalarında kullanılan basınçlı giysiler tasarlamak ve 
geliştirmektir. Bunun için portatif bir manken ve ticari kablosuz basınç sensörleri 
kullanılarak basınç performansları çalışılmıştır. Altı farklı antimikrobiyel işlemin üç 
farklı tipte nylon6.6/spandex elastomerik kumaşların basınç davranışları birbirleriyle 
karşılaştırılmış ve değerlendirilmiştir. Ayrıca, antimikrobiyel işlem görmüş ve 
görmemiş nylon6.6/spandex elastomerik kumaşların basınç davranışları birbirleriyle 
karşılaştırılmış, incelenmiş ve değerlendirilmiştir.  
 
Bunların yanında, altı farklı antimikrobiyel işlemin üç farklı tipte nylon6.6/spandex 
elastomerik kumaşın fiziksel ve mekanik özellikleri üzerindeki etkisi incelenmiştir. 
Farklı antimikrobiyel işlemler kullanılarak üç farklı nylon6.6/spandex elastomerik 
kumaşın fiziksel ve mekanik özellikleri birbirleriyle karşılaştırılmış ve 
değerlendirilmiştir. Altı farklı antimikrobiyel işlemin nylon6.6/spandex elastomerik 
kumaşlar üzerindeki komfor özellikleri de çalışılmıştır. Farklı antimikrobiyel 
işlemler kullanılarak üç tipte değişik nylon6.6/spandex elastomerik kumaşların 
komfor özellikleri birbirleriyle karşılaştırılmış ve komfor özellikleri üzerine etkisi 
değerlendirilmiştir.  
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Farklı antimikrobiyel mekanizmalar farklı alternatifler sunduğu için gümüş bazlı 
bileşenler, poliheksametilen biguanid (PHMB), quaternary amonyum bileşenleri 
(QAC’s) ve Triclosan gibi çeşitli tipte antimikrobiyel teknolojiler çalışılmış ve çeşitli 
antimikrobiyel özellikli kimyasal maddeler kullanılarak çeşitli tipte kumaşlar 
geliştirilmiştir. Gümüş antimikrobiyellerin yüzeyleri üzerinde birçok bağlanma alanı 
bulundurması, yanık yaralanmalarının iyileştirilmesini hızlandırmaktayken, 
quaternary amonyum bileşenleri tekstil yapılarına kovalent bağlarla bağlandığından 
antimikrobiyel dayanımı en iyi performansı göstermiştir. Triclosan küçük bir 
molekül olduğundan, dispers boya gibi davranabilmekte ve çektirme yöntemiyle de 
kumaşlara aplike edilebilmektedir. Kimyasal olarak da kararlı bir yapıda olduğundan 
vücuttan da kolaylıkla uzaklaştırılabilmektedir. Fakat Triclosan Amerika Birleşik 
Devletleri Sağlık Bakanlığı (FDA) ve Kanada Sağlık Yasası (Canada Health) 
tarafından belirlenen bazı alerjik reaksiyonlara neden olabileceği ve Hijyen 
Hipotezi’ne göre vücudun bağışıklık sistemi üzerine olumsuz etkileri olabileceğinin 
belirlenmesi üzerine takip altındadır. Trıclosan, çok düşük konsantrasyonlarda 
antimikrobiyel özellik göstermektedir. Poliheksametilen biguanid (PHMB), 
kumaşlara dayanıklı antimikrobiyel özellik kazandırabilmesinin yanında kumaş 
sararmalarının da üstesinden gelecektir. Polimerde ortalama 16 biguanid birim içeren 
yüksek molekül ağırlığına sahip olduğundan tekstil yüzeylerine çok iyi 
bağlanabilmektedir.  
 
Bu araştırmada yürütülen çalışmada, kablosuz basınç sensörleri kullanılarak 
basınçların kontrol edildiği çeşitli teknolojiler kullanılarak dayanıklı antimikrobiyel 
özelliğe sahip yanık yaralanmalarında kullanılan basınçlı giysi kullanımına yönelik 
yeni elastomerik kumaşlar geliştirilmesine odaklanılmıştır. Yanık 
yaralanmalarınınyönetiminde kullanılan yüksek elastanlı kumaşaların antimikrobiyel 
maddelerle optimum çalışma şartları için ana hatlar belirlenmiştir. Bu çalışma, yanık 
yaralanmalarında kullanılan basınçlı giysilere yönelik kumaşların klinik olarak 
basınç fonksiyonu ve rehabilitasyon performansları üzerine etkilerini belirlemek için 
değişik konsantrasyonlarda değişik antimikrobiyel bitim işlemleri uygulamalarıyla 
devam etmektedir.  
 
Bu kumaşların rehabilitasyon hızına etkilerini incelemek için fare sırtı modeli 
kullanılarak hayvan deneylerinin de yürütülmesi istenmektedir. Bu aynı zamanda, 
yaşayan canlı mikroorganizmalar üzerinde alerjik reaksiyonların önlenmesi ile ilgili 
de bir fikir vereceği düşünülmektedir. 
 
 
 
 





 

1. INTRODUCTION 

Textile products particularly made from natural fibers have a serious problem of 

microorganism growth because of their surface area and ability to retain moisture. 

The use of antimicrobial agents for textiles has also become indispensible to avoid 

cross-infection by pathogenic microorganisms, to control the infestation by microbes, 

and arrest metabolism in microbes in order to reduce odor formation. Antimicrobial 

treated fabric protects garments from staining, discoloration, and quality 

deterioration [1-3].  

The increasing demand for comfortable, aesthetic, durable, functional, and safe 

textile products dictates the development of new and contemporary techniques of 

processing and designing textiles. Therefore, it is becoming important day by day to 

include the superior functionality in daily wear which is durable and demanding. As 

far as antimicrobial property is concerned, numerous antimicrobial agents are known 

and have already been tested in combination with many hydrocarbon and 

fluorochemical and sol-gel based finishes have also been investigated by researchers 

and proved to have variable success [4-8].  

The present study is based on improving the antimicrobial property of the burn 

pressure garments using various antimicrobial agents such as silver compounds, 

QAC-Silane, Triclosan and polyhexamethylene biguanide (PHMB) by mapping the 

rehabilitation technique of various types of burn pressure garments. 

1.1 Research Goal and Study Objectives 

The overall goal of this research is to develop novel elastomeric fabrics for burn 

pressure garments having durable antimicrobial property (up to 50 launderings) using 

various antimicrobial technologies.  
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Fundamental to the realization of this goal is the understanding of how various 

antimicrobial mechanisms affect the pressure behavior and the chemical, physical, 

mechanical and comfort properties of three different types of fabric structures. 

Therefore, five main objectives were identified and defined, as described below. 

Objective 1. To study the effect of six different antimicrobial treatments on 

chemical properties of nylon 6.6/spandex fibers in different textile structures 

– 1.1. To study the surface morphology by scanning electron 

microscopy (SEM) to determine and observe the changes on fibers of 

different textile structures. 

– 1.2. To study changes in chemical structure of the fibers using Fourier 

transform infrared spectroscopy (FTIR).  

– 1.3. To study surface chemistry by x-ray photoelectron spectroscopy 

(XPS) for antimicrobial treatments with different silver antimicrobial 

chemical agents. 

Objective 2. To study the effect of six different  types of antimicrobial agents on 

the durability of antimicrobial activity of different types of  nylon 6.6/spandex 

fabrics 

– 2.1. To study the effect of laundering cycles on antimicrobial activity 

to evaluate the relative durability of six different antimicrobial 

treatments.  

– 2.2. To compare the effect of six different antimicrobial treatments 

and laundering cycles on three different treated and untreated nylon 

6.6/spandex fabric structures. 

Objective 3. To design and develop three different types of nylon 6.6/spandex 

fabrics for use in burn pressure garments with antimicrobial properties using 

six different types of antimicrobial treatments for pressure performance testing 

using a mannequin and commercial wireless pressure sensors to evaluate the 

change in pressure 

– 3.1. To compare and evaluate the effect of six different types of 

antimicrobial treatment procedures on the pressure behavior of three 

different types of nylon 6.6/spandex elastomeric fabrics.  
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– 3.2. To study, compare and evaluate the pressure behavior of three 

types of treated and untreated nylon 6.6/spandex elastomeric fabrics.  

Objective 4. To study the effect of six different antimicrobial treatments on the 

physical and mechanical properties of three different types of nylon 6.6/spandex 

elastomeric fabrics  

– 4.1. To compare and evaluate changes in the physical and mechanical 

properties of three different nylon 6.6/spandex elastomeric fabrics 

following different antimicrobial treatments.  

Objective 5. To study the effect of six different antimicrobial treatments on the 

comfort properties of nylon 6.6/spandex elastomeric fabrics 

– 5.1. To compare and evaluate changes in the comfort properties of 

three different nylon 6.6/spandex elastomeric fabrics following 

different antimicrobial treatments.  
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2. REVIEW OF LITERATURE 

Pressure garments are mainly used for managing third-degree burns that not only 

affect the outer and inner layers of the skin but also deeper tissues [9]. Pressure 

garments are used for the rehabilitation of hypertrophic scars by applying counter 

pressure to the affected area. When burn skin heals it can grow in an irregular scaring 

manner. Pressure garments help the skin to heal by pressing the healing skin down so 

that it grows in a flat manner [10-12].  

The continuous wearing of pressure garments prevents the thickening, buckling, and 

nodular formations seen in hypertrophic scars. The external pressure applied by the 

garments decreases inflammatory response and the amount of blood in the scar, 

reducing itching and prevents collagen from synthesizing. In addition, pressure 

garments provide protection against injury. It should be noted that these garments 

must be worn for many weeks and months. It has been widely agreed that an ideal 

pressure garment should exert a pressure of 20mmHg on the underlying tissue, 

although the benchmark pressure has yet to be scientifically established [13-17]. The 

best approach can be an optimal medical range between (0mmHg – 50mmHg) 

according to the patients with lower to high lymphedema. Lower compression 

(4.82mmHg ± 2.99mmHg) are required for some patients with lower extremity 

lymphedema. Also low pressure levels are recommended for the garments used at the 

top of the body which range between (0mmHg – 20mmHg) due to being close to the 

heart. 

Pressure garments normally contain elastic yarns and a great deal of research and 

development work has been carried out worldwide to characterize and develop novel 

pressure garments [18-22].  

2.1 The Biological Inflammatory Response 

Our skin is the largest organ that we have and it plays a crucial role is sustaining an 

equilibrium between our body’s natural pressure, and the pressure that gravity puts 
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on our body.  The natural external pressure that our skin applies to our body is hard 

to determine, but certain studies have claimed that pressures ranging from 10 to 30 

mmHg maintained a constant blood flow within the forearm, leading us to believe 

that this is close to the natural pressure felt by skin to allow our blood pressure to 

remain normal. Trauma to the skin, such as burns, disrupts this normal pressure and 

can cause issues with the patient’s vascular system because the correct amount of 

blood is not being transported to the injured area. Compression therapy has been 

widely used as a means to support and maintain normal blood flow throughout the 

injured area. Compression therapy is used for treating second degree deep burns, 

third degree burns, and fourth degree burns  where the patient’s normal skin is 

compromised and grafting must occur. 

Second degree deep burns are characterized by complete destruction of the basal 

membrane, partial destruction of the dermis, and epidermal cell presence around hair 

follicles. Second degree deep burns show blistering however the underlying tissue 

does not blanche with pressure, and the wound usually heals within three to four 

weeks. If the burn does not heal naturally within that time, grafting is required.  

Third degree burns are characterized by complete destruction of the epidermis and 

dermis, with subcutaneous tissue mostly injured (Figure 2.1). These burns require 

grafting as they do not heal except for around the edges. Third degree burns are 

noticeable by brown, black, or white tissue that does not blister and has a loss of 

sensitivity due to nerve damage. The most severe burn type is fourth degree burns 

which affect the full skin underlying and tissues, including muscle, tendon, joint, and 

bone. These burns have a blackened appearance, and are dry and very painful. As 

with any injury that disrupts the skin, our body begins its natural defense and starts to 

repair the damaged tissue with “new” tissue, however this new tissue does not have 

the same physical and mechanical properties as the old tissue and in many cases 

grafting from another area of the patient’s body is the best option to reduce scarring. 

Burn injuries cause a specific type of scar to form called hypertrophic scars, which 

are raised above the normal tissue level and are stiffer than the original skin. 

Compression therapy is believed to reduce the amount of hypertrophic scarring in 

burn victims, although there is not much research that supports the claim that 

increased pressure will reduce the scarring. 
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 Figure 2.1: Damage of the inner, outer and deeper tissues by third-degree burn  
victims [18]. 

2.2 Wound Healing  

Particularly in burn victims, the wound healing processes may lead to a fibrotic 

hypertrophic scar, which is raised, red, inflexible and responsible for serious 

functional and cosmetic problems. These scars are formed due an abnormal healing 

process where an overflow of collagen and fibronectin is present at the burn site 

(Figure 2.2). In comparison to normal wound healing, burns cause an increase of 

fibronectin to increase the fibroblast density and in turn increase the amount of 

collagen proteins. As fibroblasts enter the burn site they are converted to 

myofibroblasts and then into collagen, which is the connective tissue most present in 

the body. The over abundance of connective tissue causes the newly formed skin to 

be tighter and leads to mechanical tension on the wound, presenting functional 

problems for patients especially in facial and limb areas. In order to help burn 

victims regain their mobility compression therapy began in clinics in the late 1960’s 

to try and reduce the thickness of the hypertrophic scarring and improve the scar’s 

pliability. Although many pressure garment products exist in today’s medical textile 

market, there are still problems that occur and a need for product improvement is 

present.  
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         Tissue Resistance           External Pressure 

 

Figure 2.2:  Burn scar management [23]. 

The care of burn patients has made steady progress. Until the first half of this 

century, even moderate burn injuries were usually fatal. The introduction of fluid 

resuscitation and the establishment of burn units have had a major impact on 

mortality [23-26].  

Burn patients have subsequently benefited from many developments, including the 

introduction of systemic and topical antimicrobial agents, progress in intensive care 

and nutritional support, changes in surgical philosophy, advances in wound care and 

methods of achieving skin cover, and the concentration of treatment of patients with 

serious burns in specialist care.  Alongside these improvements, the use of textiles in 

the patient’s journey from injury to recovery has been crucial [27-29].  

Obviously it is important to assess the depth and extent of the burn and commence 

fluid resuscitation, which involves catheterization, setting of intravenous fluids and 

possibly intubation for smoke inhalation [30-32]. Support surfaces, dressings, 

splinting, skin substitutes, pressure garments and silicone gels are needed to enable a 

burn patient to travel the road from injury to recovery [33-35]. Severe burns need to 

be treated on specialized beds. New matress coverings are water/moisture vapor 

permeable and have ability to transmit water vapor molecules through itself, while at 
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the same time remaining a complete barrier to liquids [36-38]. Hydrophilic materials 

have a good ability of absorption and transmit the moisture through the coating by a 

chemical mechanism [39-40]. Wound dressings are highly absorbent multilayered 

materials and protect the extensive burns efficiently [41-43]. Knitted bandages 

perform a number of functions including retention, support and cmpression and can 

give more support than traditional crepe woven bandages [44-47]. In extensive burns, 

there is a shortage of skin, and skin substitutes have to be considered in order to close 

the wound minimizing the risk of burn sepsis [48-49]. A permanent skin replacement 

is composed of a bilaminate membrane consisting of a bovine collagen based dermal 

analogue and a temporary epidermal substitute layer of silicone [50-52]. Split 

thickness skin grafts are used for the healing of large burns by accelarating the 

healing time of large areas of skin loss while protecting the underlying structures and 

reducing the risk of infection [53-54]. When the wound is almost healed and exudate 

levels are minimal, a semi-permeable polyurethane film is used which is 

impermeable to exudate and microorganisms and covered with a thin layer of 

adhesive [55-58]. 

2.3 Requirements for the Rehabilitation of Burn Scars with Burn Pressure 

Garments 

Pressure garments were developed at the Shriners Burns Institute, Galveston, Texas. 

They have four main functions which are restoration of function, relief of symptoms, 

prevention of scar recurrence and promotion of optima aesthetic appearance. 

Pressure results in the reduction of the cohesiveness of the intercollagen fibres, 

increased vesicular fibroblasts and decreased mast cells. Most useful when the scar is 

still immature, and is used on burns that, have not healed within 14 days or have 

been grafted, and should be applied as soon as the wound has healed or has been 

surgically closed [59-61].  

The materials used for the garments are either Lycra® or Elastane based. Lycra is a 

manmade premium stretch fabric which was invented and manufactured by Du Pont, 

it is a continuous filament elastic yarn, which can be combined with other yarns such 

as cotton or nylon.  Elastane (Spandex), is a manufactured fibre in which the fibre 

forming substance is a long chain synthetic polymer comprising of at least 85% of a 

segmented polyurethane. Initially patients may start with low pressured garments and 
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progress to high pressured garments as the graft becomes more stable. The 

manufacturers also use suede and leather to make garments more durable, and 

hydrophobic fabrics, which are elastic and have a wick-like action and which are 

softer and more comfortable to wear.  

Effective pressure is sometimes impossible to achieve in scars located in anatomical 

depressions, over flexures or during movement. Also patients may not tolerate 

pressure therapy. A useful adjunct is silicone gel, it can be used prophylactively or as 

a sole treatment or in conjunction with pressure therapy. The mechanism of action is 

not really understood, pressure, temperature and oxygen tension have all been 

investigated, but the most common theory is that softening and flattening of the scar 

occurs due to hydration of the scar. Silicon is the second abundant element in the 

earth’s crust, comprising about 20%. It is formed in sand, minerals, and rocks. 

Silicone is a manmade material; the raw materials include silicon, water and oil [68-

73]. Silicone gels are comfortable, durable, and easy to apply and remove, non-

antigenic and non-toxic. They are known for softening and reducing scars. They can 

be removed for bathing and can be washed in warm water and reapplied. Patients are 

advised to build up wear time until patients can tolerate 8 hours or more, and ensure 

good hygiene of the product.   Many gels now exist and can be used for different 

areas of the body, and are available on authorising (FP10) prescription which is the 

legal authority to supply the medication. Cica-care is a cured silicone gel laminated 

to an elastomeric silicone membrane. Mepiform is made of thin, pliable 

polyurethane, viscous, nonwoven backing covered with a soft silicone Safetac layer, 

and a polyolefin release film protects the Safetac layer. Silgel, is a high molecular 

weight silicone gel made of polysilaxone and Novagel, a product based on glycerin, 

can be used when silicone reactions occur. The gels are self-adhesive or can be held 

in place by bandages, tape, silicone adhesive or pressure garments [74-79]. 

2.4 Exerted Pressures for the Healing Process 

There are many important properties that pressure garments must possess, most of 

which are mechanical due to the fact that the device is external. The most vital aspect 

of the pressure garment is the tension (in Nm-1) because it directly influences the 

amount of pressure that is exerted onto the patient. The type of fiber used and the 

fabric construction method play a critical role in the amount of pressure that is 
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exerted as well as the fit of the garment. The garment must be made smaller than the 

body that it will be on to ensure pressure is exerted. The pressure garments are 

divided into two classes to identify compression strengths as “low” and “high” 

compression class according to hypertrophic scar characterization. The color and 

rigidity of the hypertrophic scars may vary among the patients. The required 

pressures show differences among race, ethnicity, skin color, age, scar thickness, 

location of injury and time of wound healing. Some patients may require garments of 

lower compression (0–15mmHg), some patients may require high pressure garments 

(24mmHg pressure or above). The pressure must be maintained for a minimum of 12 

months, during which time the garments should be worn 23 hours per day.  Although 

mechanism of action is not validated, over 24mmHg is a level that exceeds the 

inherent capillary pressure and therefore ensures occlusion. Tailor made pressure 

garments are used to apply pressure and must be changed regularly. They are 

available commercially from Kendall Camp, Gilbert & Mellish, Second Skin or 

Jobskin. 

The required pressures show a variety according to the skin, age, and scar thickness 

and rehabilitation responses of the patients. These kinds of stockings exert an 

external pressure on limbs, which lead to the reduction of the vein diameter and 

increased blood flow. The compression stockings should be able to preserve their 

compressive pressure even after being worn for an entire day and not lose their 

elastic stretch recovery. However, fabrics show viscoelastic properties and their 

recovery depends on the drawn ratio. So the exerted loads in the production process 

and during application of fabrics causes stretch and deformations in the fabric. At the 

beginning of drawing a fabric, the deformation is completely recoverable, but 

increasing the load on the fabric leads to movement of fibers in the yarn core, this 

causes time-dependent deformation. The time-dependent deformation is also 

recoverable, which recovers with time and depends on the initial load. The degree of 

deformation depends on the several factors such as chemical composition, 

construction, mass, and thickness of the fabric. Since in the production process and 

during application the lower loads are exerted, resulting deformations are not 

permanent. It means that the initial deformation of the fabric after loading consists of 

two elements, the recoverable deformation (elastic deformation ) and deformations 

which are recoverable in time (primary creep). Thus if a fabric is under tension over 
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a long period of time, some of the stresses in it will be relieved, with a consequent 

reduction in the skin-and-garment interfacial pressure. This is the fabric problem of 

having a viscoelastic response to an applied load and is very important, especially in 

medical pressure garments such as compression stockings. For clinical treatments, it 

is critical to maintain the pressure on the scar area, within a certain range according 

to instructions from doctors or therapists. The decline of pressure in the elastic 

fabrics affects the clinical efficiency of pressure garments. 

Another important consideration with pressure garments is the amount of time that 

they will adequately exert pressure onto the body. This varies depending on the 

material used and the care the garment receives; garments can last as short as 3 

weeks or as long as 3 months.  The ointments and lotions that are applied to the skin 

beneath the pressure garments also play a large role in determining how long they 

will retain their strength and elasticity; water based creams do not break the pressure 

garment down as fast. Additionally people with the following conditions must first 

consult a doctor before using the product: neuropathy, paralysis, diabetes with small 

vessel damage, and those who have arterial insufficiency.  

2.5 Comfort Requirements from Burn Pressure Garments  

Pressure garments should be worn 24 hours a day during rehabilitation stage in order 

to provide improvement on the burn scar tissues. So they must be comfortable to the 

patients by removing excess heat from the body and circulate air through the body. 

By providing needed comfort with enough moisture, the rehabilitaiton rates will be 

increased and the wounds will be prevented that are supposed to be caused by the 

wet environment for the burn scar areas. Thus leading an ideal rehabilitation stage 

for the patients and also the excess costs will be prevented.  

2.6 Antimicrobial Treatments of Textiles 

Antimicrobial textiles are classified as those textile and fibrous materials subjected to 

various finishing techniques to afford protection for both the user of textile materials 

(against bacteria, yeast, dermatophytic fungi and other related microorganisms for 

aesthetic, hygienic or medical purposes) [80] and the textile itself (biodeterioration 

caused by mould, mildew and rot producing fungi) without negatively affecting the 

other important characteristics of the textiles [81-86]. 
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With a view to develop antimicrobial textile materials, considerable research has 

been carried out by making use of organic and inorganic compounds, antibiotics, 

heterocyclics, quaternary ammonium compounds and so on [87,88]. Several studies 

have been carried out ranging from fundamental aspects to development of 

antimicrobial fabrics. Antibacterial polyester fabrics have been developed by 

imbuing antibacterial agents into the structure of fibers rather than depositing on 

their surface for longer durability and effect. It is stated that the efficacy of the 

finished fabric to arrest the growth of Staphylococcus aureus and Escherichia coli is 

about 5 times higher than the conventional materials. A synergistic system of 

formulation comprising of inorganic chemicals involving a metal salt of a 

monocarboxylic acid, a carbonic acid derivative, a chelating agent, a boron 

compound, a dimethylene siloxane derivative and an alkane polymer has been 

proved to serve as an effective antimicrobial agent in arresting the growth of several 

bacteria, fungi and mildew. Hospital trials showed a dramatic decrease in bacteria, 

fungi and mildew growth in treated fabrics. The treatment also prevents the 

deterioration of fabrics by microorganisms [89]. Chitosan treatment on cotton 

renders antimicrobial activity. Chitosan treated cotton fabric showed a high reduction 

rate in the number of colonies [90]. Fabrics made from viscose fibers containing 

polysilicic acid (Visil) and aluminum silicate (Visil AP) have been given urea 

peroxide treatment to make them antibacterial as well as deodorizing. Instead of 

treating the surface of the fabrics with polymer coating, antibacterial additives have 

been imbedded into the fabric’s polymer fibers for the production of antibacterial 

gowns [91-95]. 

The ideal biocidal textile materials for medical use should possess the following 

features: 

 Rapid inactivation of a broad spectrum of microorganisms [96-98] 

 Non-selective and non-immutable to pathogens 

 Non-toxic and environmentally friendly 

 Durable to repeated washes  

 Easy to recharge in laundering or disinfection processes [99-102] 

 



 14

In addition, the recharging agents should be non-toxic, available at home, and 

compatible with our laundering chemicals such as detergents or bleaching agents 

[103-105].  

2.6.1 Antimicrobial chemical agents 
The number of healthcare equipment manufacturers incorporating antimicrobial 

properties in their products has increased dramatically in recent years. Various types 

of antimicrobial chemical agents are used to impart antimicrobial properties to 

textiles. They have different properties and mechanisms [106-108].  

2.6.1.1 Triclosan 
Triclosan is an antibacterial and antifungal agent. It is a polychloro phenoxy phenol. 

It’s been used since 1972 and it is present in soaps (0.10-1.00%), deodorants, 

toothpastes, shaving creams, mouth washes, and cleaning supplies, and is infused in 

an increasing number of consumer products, such as kitchen utensils, toys, bedding, 

socks, and trash bags [109-110]. Triclosan has been shown to be effective in 

reducing and controlling bacterial contamination on the hands and on treated 

products. More recently, showering or bathing with 2% Triclosan has become a 

recommended regimen for the decolonization of patients whose skin is carrying 

methicillin-resistant Staphylococcus aureus.  

This organic compound is a white powdered solid with a slight aromatic/phenolic 

odor. It is a chlorinated aromatic compound that has functional groups representative 

of both ethers and phenols. Phenols often show antibacterial properties.  

Triclosan (2,4,4’-trichloro-2’-hydroxydiphenylether) is a broad-spectrum 

antimicrobial agent with a MIC of less than 10ppm against many common bacterial 

species (Figure 2.3). 
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Figure 2.3: Structure of Triclosan [113]. 

Triclosan antimicrobial mechanism 
At in-use concentrations, Triclosan acts as a biocide, with multiple cytoplasmic and 

membrane targets. At lower concentrations, however, Triclosan appears 

bacteriostatic and is seen to target bacteria mainly by inhibiting fatty acid synthesis 

(Figure 2.4). Triclosan binds to bacterial enoyl-acyl carrier protein reductase enzyme 

(ENR), which is encoded by the gene Fabl. This binding increases the enzyme’s 

affinity for nicotinamide adenine dinucleotide (NAD+) [111]. 

 

http://upload.wikimedia.org/wikipedia/commons/a/a4/Triclosan.svg
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Figure 2.4: Triclosan antimicrobial mechanism [113]. 

Being a relatively small molecule, Triclosan can also act like a disperse dye and can 

be used by exhaustion prior to dyeing, together with dyeing or after dyeing of 

polyester and nylon fibers at 5% owf. During the fabric use, the agent migrates to the 

surface of the treated textiles at a slow yet sustained rate to provide antimicrobial 

efficacy [112-115].  

2.6.1.2 Silver 
Technology now allows silver ions to be incorporated into a diverse range of 

materials including fabrics, plastics and paints. The range of silver-based 

antimicrobial products is extensive and set to expand. Demonstration of silver ion 

efficacy against medically important bacteria is important but well-recognized [116]. 

The widespread use of silver-treated products in the healthcare environment would 

be supported by data showing its effectiveness against bacteria in that environment 

because a case could be presented that significant reduction of contaminants in 
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patient-containing environments infers potential for reducing Healthcare Associated 

Infections (HCAIs) [117,118]. 

Silver is the oldest and most efficient of the antibiotics known; it’s also the safest. In 

the past 40 years, silver has been incorporated into, coated on a wide range of natural 

or synthetic materials for wound care and other medical devices. Silver-coated 

textiles have a special value in reducing risk of pathogenic infection such as 

Staphylococcus aureus in patients with atopic eczema [119-122].  

Silver ions antimicrobial mechanism 
The silver kills microbes by interacting with multiple binding sites on their surfaces 

(Figure 2.5). Silver is also proposed to act by binding to key functional groups of 

enzymes by causing the release of K+ ions from bacteria [123,124]. This is an 

important target site for silver ions to kill the bacteria. Silver ions also inhibit 

bacterial growth by inhibiting cell division and damaging the cells of bacteria 

[125,126]. 

 

 
Figure 2.5: Silver ions antimicrobial mechanism [126]. 

Numerous patent applications have been filed recently claiming new technology for 

“silvering” textile fibers with activity against antibacterial or antifungal infections 

[127]. In each case, the textile fibers serve as a vehicle for delivery of bioactive silver 

ion (with or without promotion by a direct electric current) to eliminate or otherwise 

protect against bacterial imbalances in the skin, microbial over growth accompanied 

by excessive odor or local discomfort [128-130]. 
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Techniques for silver coating or impregnation of textile fibers will achieve a 

sustained rate of silver ion release; the treatment will result in a homogeneous 

distribution of silver over the surface of the fiber or through the interstices of 

individual threads. The silver-fiber binding should be stable and provide long-

standing ionic release sufficient to withstand everyday wear-and tear, exposure to 

ultraviolet (UV) light and other environmental factors [131-134].  

2.6.1.3 Quaternary ammonium compounds (QAC) 
Quaternary ammonium cations, also known as quats, are positively charged 

polyatomic ions of the structure NR4+, R being an alkyl group or an aryl group 

(Figure 2.6) [135,136]. 

Quats have antimicrobial effect against; 

 
• Vegetative bacteria, 

• yeast, 

• molds,  

• algae,  

• viruses [137-141] 

 

Figure 2.6: Chemical Structure of QAC [142]. 
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QAC antimicrobial mechanism 
QACs have antimicrobial effect against a broad range of microorganisms including 

vegetative bacteria, yeast, molds, algae, and viruses. QACs can inhibit germination 

of bacterial spores and the growth of vegetative bacteria,yeast,molds,and algae [143-

145]. The growth inhibitory activity of QACs is higher for gram-positive bacteria 

and algae compared with gram-negative bacteria and molds. Quats are positively 

charged polyatomic ions of the structure. It disrupts the virus, bacteria etc, by use of 

chemicals [146-148].  

Silanes are extremely efficient bonding agents that can be coupled to other molecules 

and then used to permanently bond those molecules to a target surface (Figure 2.7) 

[149-152].  

 

 
Figure 2.7: Quat-Silanes working mechanism [152]. 

2.6.1.4 Polyhexamethylene biguanide (PHMB) 
Polyhexamethylene biguanide (PHMB) also known as polyhexanide and 

polyaminopropyl biguanide is a commonly used antiseptic (Figure 2.8) [153]. 

Polyhexamethylene biguanide is a potent biocide with broad spectral activity against 

both gram positive and negative bacteria, yet with low toxicity to higher organisms 

[154-157]. The minimal inhibitory concentrations range from 0.5 (e.g., against 

Staphylococcus aureus) to 10 ppm (e.g.,against Klebsiella pneumoniae). It has long 

been used as a disinfectant in the food industry, sanitization of swimming pools and 

more recently applied to cotton to produce antimicrobial textiles. Polyguanidine 

oligomers, particularly polyhexamethylene biguanide (PHMB) oligomer are used 

extensively and safely as disinfectants and biocides [158-162].  
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Figure 2.8: General formula of PHMB [161]. 

PHMB antimicrobial mechanism 
PHMB is a strong, fast acting and broad spectral biocide against bacteria. The 

antibacterial activity of PHMB is attributed to its interaction with cellar membrane 

components. It kills bacteria by puncturing their cell membranes, causing the 

contents to leak out (Figure 2.9). It does not have the same effect on human cells so it 

is safe to use in contact with skin. 

 

 
A bacterium before treatment with PHMB 

(Picture courtesy of Arch Biocides UK Ltd) 
 

 
A bacterium after treatment with PHMB 

(Picture courtesy of Arch Biocides UK Ltd) 

Figure 2.9: PHMB antimicrobial mechanism [164]. 
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PHMB has a higher activity against planktonic bacteria in studying biofilms. They 

are also the most effective agents against sessile bacteria found within biofilms. The 

effect of concentration of PHMB on planktonic versus sessile bacteria is due to either 

the mechanism of action or the number or disposition of cationic binding sites. Also 

PHMB promotes contraction and aided wound closure significantly [163-165].  

The mechanism of action of PHMB has been described in a number of articles. 

Maximal activity of the PHMB occurs at between pH 5-6 and that initially the 

biocide interacts with the surface of the bacteria and then is transferred to the 

cytoplasm and cytoplasmic membrane. The cationic PHMB has little effect on 

neutral phospholipids in the bacterial membrane. Its effect is mainly on the acidic 

negatively charged species where it induced aggregation leading to increased fluidity 

and permeability. This results in the release of lipopolysaccharides from the outer 

membrane, potassium ion efflux, and eventual organism death [166,167].  

Biguanide groups are the active part of the PHMB. Compared to other biguanides, 

the fact that biguanide groups are separated by a C6 aliphatic hydrocarbonated chain 

gives to PHMB a particularly high efficacy power on a wide range of 

microorganisms. 

A simple description of the mechanism of action of  PHMB against bacteria is as 

follows: 

1.PHMB is quickly attracted to the bacteria surface  

2.PHMB neutralizes the cell wall protection system (called « exclusion 

system»):  it combines with proteins in charge of this defense  

3. PHMB passes through the cell wall to join the cytoplasmic membrane  

4. PHMB enters in the 1st stage of its action against bacteria (bacteriostatic 

level: reversible): PHMB creates some spaces in the cytoplasmic membrane 

by association with proteins. This starts up the loss of little size compounds 

(potassium, calcium…): membrane is getting permeable 

5. PHMB enter in the 2nd stage of its action against bacteria (bactericidal 

level: not reversible): PHMB breaks up the cell cytoplasmic membrane. The 

cell looses its vital compounds  

6. The cell dies  
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2.6.2 Use of treatment techniques to impart antimicrobial properties 
There are a number of techiques for the applications of antimicrobial treatments to 

textiles. For example; coatings based on inorganic-organic hybrid polymers, derived 

by the sol-gel process have an immense potential for creative modifications of 

surface properties with an comparatively low technical effort and at moderate 

temperatures. The coatings often combine properties of organic polymers with those 

of ceramic materials. Therefore those hybrid polymers are of an enormous interest 

for textile coatings mainly for technical textiles. These basic materials offer the 

opportunity to produce very hard but flexible coatings, especially by filling or 

modifying the networks with nano-particles. Approaches to modify such coatings by 

various inorganic or organic substances achieve a huge number of additional 

functionalities, asked in textile industries. Coatings of a thickness of less then one 

micron can act as effective barriers against chemical attacks, super-repellent surfaces 

can be created, the wear-resistance of textile materials can be improved. Certain 

coatings protect sensitive polymers against decomposition due to ultraviolet radiation 

using nanoparticles as employed in sun creams. Ballistic body wear based on fabrics 

protect against guns but it does not properly protect against knives, thin coatings 

based on inorganic-organic hybrid polymer filled with alumina nanoparticles 

achieved good stab-resistance for such products. Further approaches deal e.g. with 

reversible photochromic coatings – coatings that change its colour if irradiated with 

sun light, magnetic hybrid polymers or medical systems based on porous sol-gel-

coatings with immobilized drugs that are released in contact with skin [168-172]. 

Increasing demands for functional and highly specialized textiles, e.g. technical 

textiles can be observed worldwide. Intense research presently aims at new methods 

for surface modification in order to establish improved or new properties. An 

innovative method for textile finishing is the modification of fibre material with a 

thin coating of organically modified ceramics or inorganic-organic hybrid polymers 

that combine the advantages of organic polymers and ceramics. 

In the sol-gel technique, organically modified ceramics, which are made by sol-gel-

processing, combine qualities of ceramics and synthetic polymers and have an 

immense potential for creative modifications of surface properties with a low 

technical effort at moderate temperatures. These materials are derived from silica-

alkoxides that are modified with one organic group. This group consists of e.g. a 
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hydrocarbon chain with functional epoxy-, metacrylic or thiol-groups. In the 

presence of certain amounts of water, under basic or acidic conditions these 

alkoxides undergo a hydrolysis reaction and partly condense to form sols. In a 

following curing step the condensation of the hydrolyzed silica-alkoxides can be 

completed by simultaneously cross-linking of the functional groups. Mixing with 

other metal alkoxides or dispersing nanosized metal-oxides can modify the sols. 

Therefore the resulting three-dimensional networks are built from organic and 

inorganic domains. The sols can be applied by common methods as e.g. dipping, 

spraying or knife coating and in contrast to ceramic processing the curing 

temperatures are very moderate. Depending on the organic modification the curing 

can be carried out with UV-radiation as well. A low temperature and cost-effective 

process for antimicrobial finishing of cotton textiles has been developed by sol-gel 

method. The antimicrobial treatment was performed by treating cotton textile with 

silica sols from water glass and then with silver nitrate solution. The antimicrobial 

activity was determined by using E. coli as a model for Gram-negative bacteria. The 

results showed that the treated textile has an excellent antimicrobial effect and 

laundering durability. SEM analysis showed coarse surface morphological change on 

the water glass treated cotton textile. The residual concentration of silver ion on 

fabrics was informed by ICP-MS. XPS results indicated that two different states of 

silver were present on the surface of the antimicrobial textile. Medical implants and 

indwelling medical devices can be painful and pose risk of infection or rejection. 

Antimicrobial coatings help alleviate the risk and potential costs of device 

replacement. Microbial growth in uncoated sample and sample coated with PVA as a 

carrier (14 days) can be seen in Figure 2.10 [173-178]. 

 

Figure 2.10: Microbial growth in uncoated sample and sample coated with PVA  
as a carrier (14 Days) [175]. 
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Advantages of Antimicrobial Coatings 

• Duration of release can be tailored from hours to several months. 

• Biocompatible according to coating properties. 

• Thin to thick coatings can be applied to textiles according to the medical 

device function. 

• Tolerates sterilization even GAMA. 

• Different properties can be added to textiles according to coating properties 

as analgesic, anti-inflammatory, anti-thrombotic and other suitable drugs can 

be used for medical applications. 

Another technique is plasma treatment to impart antimicrobial properties to textiles. 

As a dry and eco-friendly technology, plasma technique is offering an attractive 

alternative to add new functionalities such as water repellency, long-term 

hydrophilicity, mechanical, electrical and antibacterial properties as well as 

biocompatibility due to the nano-scaled modification on textiles and fibers. At the 

same time, the bulk properties as well as the touch of the textiles remain unaffected.  

Products made with the help of textiles and fibers become more and more 

sophisticated and “multifunctional”. Tailored surface modifications are required to 

meet customer needs and to assure a share in the market. However, conventional 

finishing techniques applied to textiles (dyeing, stain repellence, flame retardance, 

antibacterial treatments) generally use wet-chemical process steps and produce a lot 

of wastewater.  

Plasma, often referred to as the fourth state of matter, is an ionized gas consisting of 

highly energetic electrons and positive ions. Plasmas are generated by high electric 

fields and can interact with solids to provide unique surface properties. Plasma 

treatments have been used to induce both surface modifications and bulk property 

enhancements of textile materials, resulting in improvements to textile products 

ranging from conventional fabrics to advanced composites. These treatments have 

been shown to enhance dyeing rates of polymers, to improve colorfastness and wash 

resistance of fabrics, to increase adhesion of coatings, and to modify the wettability 

of fibers and fabrics. Research has shown that improvements in toughness, tenacity, 

and shrink resistance can be achieved by subjecting various thermoplastic fibers to a 

plasma atmosphere. Recently, plasma treatments have produced increased moisture 
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absorption in fibers, altered degradation rates of biomedical materials (such as 

sutures), and deposition of low friction coatings. 

Plasma treatment may be performed either at low pressures (vacuum) or at 

atmospheric pressures. Although vacuum plasma processes are well understood and 

are used extensively in the semiconductor industry, the fact that vacuum conditions 

are necessary makes low pressure plasma impractical to use in industries requiring 

high rates of throughput, e.g., the textile industry. Atmospheric plasma treatment, on 

the other hand, is well suited for continuous processing, but the technology is 

relatively new, and not completely understood. 

Plasma treatments are carried out in a plasma equipment where the samples are 

treated with antimicrobial, hydrophobic, or other surface treatments. Plasma 

treatment results in surface reactions, e.g. etching and deposition of the reaction 

products of the plasma. There are many interactions which take place during plasma 

processing between the reactive plasma and fabric surfaces. Bulk properties of 

plasma treated textile materials remains almost unaffected by low pressure plasma 

treatments. A laboratory plasma device is capable of exposing textile materials to 

atmospheric plasma conditions in a continuous process. Altough atmospheric plasma 

treatment has the capability to enhance or replace conventional wet finishing 

processes as well as produce novel fiber surfaces, the process and the obtained 

results from the process are still not maintained [179-182].  

The wet finishing treatment to increase antimicrobial and other effect of the fabric is 

carried out under the application of finishing agents like antimicrobial agents, by 

means of a well-known padding method. The wet finishing treatment can be seen in 

Figure 2.11. After a short immersion (2 min.) in a bath of finishing chemicals the 

fabric is then padded with 60 – 70% pick-up, afterwards is dried (100°C / 2 min.) and 

condensed (160°C / 2 min.) to attain the maximum effectiveness of the treatments.  
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Figure 2.11: Padding mangle [180]. 

Depending entirely on the specific chemicals applied wet finishing chemicals make 

the fabric hydrophobic leaving a thin polymer film on its surface. As finishing 

chemicals, acrylate based fluorocarbon and polymethyl hydrogen siloxane as well as 

a non-ionic detergent with different concentrations and many other chemicals are 

used according to the required property, like antimicrobial effect, hydrophobic, air 

permeable, etc.  

Immersion or soaking in a bath  is a simple and quick technology. Antimicrobial 

chemical agents can be applied to fabrics simply and quickly by immersion or 

soaking in a bath, by vaporization, or by adding to a wash after the rinse cycle. The 

colorfastness and feel of textiles are good.  

Exhaustion techniques are discontinuous processes with a long time for the reaction 

of the chemicals with textile materials. In an exhaustion principle, a certain amount 

of textile material is loaded into the machine and brought to the equilibrium with a 

solution containing the chemicals, such as dyes and textile auxiliaries over a period 

of minutes to hours. Exhaustion process involves the desorption and absorption of 

dyes and textile auxiliaries from dyebaths (or any liquors) due to the substantivity of 

the chemicals to the textile substrate. Textile wet finishing processes, especially 

exhaustion methods, have higher rates of energy consumption due to both higher 

fluid temperatures and volume [183, 184]. 
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3.  RESEARCH DESIGN AND METHODOLOGY 

3.1 Materials 

Three fabric structures were selected and used in this work. 

• 240,8 g/m2 70/30 Nylon 6.6/Spandex in powernet warp knitted structure,  

• 163,9 g/m2 70/30 Nylon 6.6/Spandex in flat warp knitted structure and  

• 275,6 g/m2 75/25 Nylon 6.6/Spandex in weft knitted structure fabrics were 

used.  

Grey elastane fabric in powernet warp knitted structure was supplied from BSN 

Medical Inc.(Jobst), flat warp knitted grey elastane fabric was supplied from 

Raineywear Essentials,Inc. and weft knitted grey elastane fabric was supplied from 

Medi Manufacturing Inc.  

Three fabrics were selected in this work to see the effect of different textile structures 

on: 

- the chemical properties 

- the antimicrobial activity 

- the behavior with different types of antimicrobial mechanisms 

- the physical, mechanical, and thermophysiological comfort properties 

- the pressure behavior  

The fabrics are in powernet warp knitting, locknit warp knitting and 1x1 rib weft 

knitting structures. Insertion warp knits include both tricot and raschel knits. Extra 

yarns may be inserted in the warp or the filling direction of warp knits. If they are 

inserted in the warp direction, they are called inlay yarns. A powernet fabric is a 

raschel knit with inlaid spandex yarns (Figure 3.1). The spandex provides additional 

stretch and comfort to the garments. 
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Figure 3.1: Powernet fabric structure. 

In warp knitting forms fabric by interlacing loops of yarn, but vertically down the 

length of the fabric in contrast to weft knitting. Each needle in the knitting width 

must be fed by at least one yarn and in line with the direction of fabric production. It 

is the fastest method of fabric production using mainly continuous filament yarns. 

Locknit is the most popular two-bar structure. The longer underlaps of the front 

guide bar plate on the technical back of the fabric and the lapping movements are 

shown in Figure 3.2 which  improves fabric extensibility, cover and handle, so that 

the structure is ideal for use as an apparel fabric. 

          
 

Figure 3.2: Locknit two-guide bar warp knit structure. 

Spandex yarns are inserted into the structure in machine direction laying in the wale 

line adding extra elasticity to these units. Super stretch knits stretch 100 percent or 

more in both directions (two-way stretch nylon/spandex).  
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Figure 3.3: 1 X 1 rib double-jersey fabric. 

The third selected fabric is a 1 X 1 rib double-jersey fabric as shown in Figure 3.3. 

The loops are formed across the width of the fabric in weft knittings giving a high 

stretch in widthwise. The width occupied by a 1 X 1 rib fabric is about half width of 

a plain fabric produced on the same number of needles, but it does have nearly twice 

as much as elasticity in the width. Lengthwise, the elasticity varies from moderate to 

high, depending upon the yarn used. Elastanes are always processed with one or 

more other fibers and never individually. Fabric specifications were listed in Table 

3.1. The fabric contains 25% or more Spandex. The thickness varies from 102 to 313 

g/m2 and the area density varies from 164 to 277 g/m2 0.5mm and the area density 

varies from 102 to 313g/m2. 

Table 3.1: Fabric specifications. 

Fabric Type Properties Value 

Powernet warp knitted 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

70/30 
0.50 
241 

Flat warp knitted 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

70/30 
0.57 
164 

Weft knitted 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

75/25 
0.62 
277 

 

Table 3.2 lists some commercial elastomeric fabrics for a comparison. It can be seen 

that the fabric contains 25% or more Spandex. The thickness is around 0.5mm and 

the area density varies from 102 to 313g/m2. The commercial fabric structures can be 
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in the texture of weft and warp knittings such as single-jersey, 1x1 Rib, Locknit,etc. 

They have many uses according to burn scar areas as head, neck, foot as shown in 

Table 3.3.  

Table 3.2: Some commercial elastomeric fabrics. 

Fabric Type Properties Value 

A 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

75/25 
0.48 
102 

B 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

72/28 
0.49 
206 

C 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

67/33 
0.53 
240 

D 
Nylon/Spandex 
Thickness (mm) 

Area density (g/m2) 

63/37 
0.61 
313 

                              

Table 3.3: Some application areas of commercial garments. 
 

Head 

 

Shoulder 

 

Head and Neck 

 

Foot 

 

 
Briefs, Suits and Vests 

 
 

Sleeved Body Brief 
 

Sleeveless Suit to 
Ankle Knee 

 

 
Sleeved Suit to 
Toe or Ankle 
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3.2 Antimicrobial Chemical Agents 

Silver nitrate was obtained from Dow Chemical, silver chloride and Triclosan were 

obtained from Ciba (Hunstman Int.), silver biocide embedded in titanium dioxide 

crystal was obtained from Ruco Bac, Quat-Silane was obtained from Aegis 

Microbeshield, and PHMB was obtained from Rudolf Venture.  

3.3 Auxiliary Chemicals 

As auxiliary chemicals, epoxy resin and polyurethane were used for preparing silver 

nitrate antimicrobial solutions, cross-linker and catalyst were used for preparing 

PHMB antimicrobial solutions and silane was used for preparing QAC antimicrobial 

solutions.  

3.4. Equipment 

3.4.1 Pretreatment 

3.4.1.1 Scouring 
Ahiba Nuance machine was used for scouring of the fabric samples before 

pretreatment (Figure 3.4). 

 

Figure 3.4: Ahiba Nuance machine used for scouring of the fabric samples. 

3.4.1.2 Rinsing 

Texcolour machine was used for rinsing the fabric samples before pretreatment 

(Figure 3.5). 
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Figure 3.5: Texcolour machine used for scouring of the fabric samples. 

3.4.2 Antimicrobial treatment  

3.4.2.1 Padding 
Mathis HVF padder was used for the treatments of fabric samples with antimicrobial 

chemical agents (Figure 3.6).  

 

Figure 3.6: Mathis HVF padder used for the antimicrobial treatments. 

3.4.2.2 Exhaustion 
Ahiba Nuance machines with 500ml and 1000ml beakers were used for the 

antimicrobial treatments of the fabric samples (Figure 3.7). 
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Figure 3.7: Ahiba Nuance machine used for antimicrobial treatment of the fabric   

samples. 

3.4.3  Drying 
Yamato convection oven was used for drying of the samples (Figure 3.8). 

 

Figure 3.8: Yamato convection oven used for the drying of the  fabric samples. 
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3.4.4 Curing 
Mathis LTF stenter was used for curing of the fabric samples (Figure 3.9).  

 

Figure 3.9: Mathis LTF stenter used for the curing of the samples. 

3.4.5 Laundering 
Atlas LaunderOmeter was used for laundering of the samples for wash durability. 

3.5 Testing 

3.5.1 Pressure measurements 
A static mannequin and pressure garments designed for leg (from knee to knee) for 

each type of fabric were used for pressure measurements before and after 

antimicrobial treatments.  Measurements were recorded using calibrated pressure 

sensors that were connected to a data acquisition and management software program 

by wireless transmitters [194-195]. Static mannequin and software program with 

wireless pressure sensors are shown in Figure 3.10 and Figure 3.11.  
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Figure 3.10: Static mannequin and pressure garments designed for leg (from ankle to 
knee). 

  

Figure 3.11: Wireless pressure sensors used for pressure measurements. 

3.5.2 Antimicrobial activity 

AATCC Test Method 100 - 2004 “Assessment of Antibacterial Finishes on Textiles” 

was followed to determine antimicrobial activity [185]. Assessment of antibacterial 

activity finishes on textile material is determined by the degree of antibacterial 

activity intended in the use of such materials. Staphylococcus aureus ATCC 6538 

(1.60 X10 5 CFU/ml) microorganism was used as a test inoculum. Untreated control 

samples, treated samples and treated after 5, 10 and 50 washed samples were tested. 

3.5.3 Wash durability 
AATCC Test Method 61(2A) – 2010 “Colorfastness to Laundering Accelarated” was 

followed to evaluate the washing durability of the treated fabrics. Fabric samples 

were subjected to 5,10 and 50 consecutive launderings. Atlas LaunderOmeter was 

used and washing temperature was adjusted to 49oC. 
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3.5.4 X-Ray photoelectron spectroscopy (XPS) analysis 
The silver composition of the treated samples was observed using X-Ray 

Photoelectron Spectroscopy (XPS) analysis. XPS is a surface chemical analysis 

technique that can be used to analyze the surface chemistry of a material in its "as 

received" state, or after some treatment. XPS spectra are obtained by irradiating a 

material with a beam of X-rays while simultaneously measuring the kinetic energy 

and number of electrons that escape from the top 1 to 10 nm of the material being 

analyzed. XPS requires ultra high vacuum (UHV) conditions. XPS analysis was 

performed on three different sample sets to see the silver composition in the fabric. 

Untreated control samples were used to make a comparison. 

3.5.5 Scanning electron microscope analysis (SEM) 
SEM analysis were performed on three different sample sets to see if the silver 

solution appeared on the fabric and fiber surfaces. Images were acquired from a 

JEOL JSM 5900-LV scanning electron microscope using an accelerating voltage of 

15 kV. Specimens were mounted on aluminum stubs using conductive carbon tape. 

They were then coated with gold/palladium using a HummerTM 6.2 Sputter Coating 

System (Anatech, CA, USA) to obtain a conductive coating about 100 Å thick. 

Untreated control samples were used to make a comparison.  

3.5.6 Fourier transform infrared spectroscopy (FTIR) 
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the treated samples with antimicrobial chemical agents during treatment, 

treated samples were scanned using a Nicolet Nexus 470 Spectrophotometer with 

AVATAR Omni Sampler for Attenuated Total Reflectance (ATR) mode. The 

specimen was mounted onto the surface of the Germanium (Ge) crystal in the ATR 

assembly. A total of 64 scans were aggregated between 1000 cm-1 and 4000 cm-1 

with each spectrum having a 4 cm-1 resolution. The aggregated scans showing the 

absorbance across the infrared spectrum was acquired using OMNIC™ software. 

Untreated control samples were also tested to make a comparison. 

3.5.7 Physical and mechanical properties 
The physical and mechanical properties were tested in terms of air permeability, 

stiffness (CD,MD), bursting strength, drapeability, time dependent fabric growth and 

porosity properties were tested in order to evaluate the wear performances of burn 
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pressure garments which are worn for up to two years. They should also protect their 

wear performances after antimicrobial treatments. So the tests were also conducted 

for the treated samples.  

Fraiser Air Permeability tester was used following ASTM D737 to test air 

permeability of the fabric samples [186]. Stiffness Cloth Tester, IDM Instrument was 

used to test stiffness of the fabric samples in CD and MD by following ASTM 

D5732 [187]. Ball Burst Scott Tester was used to test bursting strength following 

ASTM D3787 [188]. Cusick Drapemeter was used to test drapeability of the fabric 

samples by following BS 5058 [189]. ASTM D2594 Test Method was used to test 

the time dependent fabric growth of knitted fabrics [190]. 

3.5.8 Comfort properties 
The thermophysiological properties were tested by following ASTM F-1868 Test 

Method to evaluate the comfort performance of the burn garments which are worn 

for up to two years [191].  

Pressure garments should protect their thermophysiological comfort properties 

before and after antimicrobial treatments. For this, untreated and treated fabric 

samples were tested in terms of thermal resistance (Rct ) and isolation properties (clo 

unit).  

3.6 Experimental Methods 

3.6.1 Pretreatment of fabric samples  
The samples were conditioned for 24 hours at 20oC, 65% relative humidity in the 

physical testing lab. For scouring, 4000ml stock solution was prepared with 0.5g/l 

sequestening agent (Questial), 2g/l soda ash and 2g/l non-ionic detergent (Triton-X). 

The samples were washed at 80oC for 1h using Ahiba Nuance lab machine and 

rinsed at 38oC for 1,5h using Texcolor machine. The samples were dried at 50oC for 

30 min using Yamato mechanical convection oven DKN 810. For scouring the 

samples Dupont procedure for synthetic fabrics with lycra was followed (Figure 

3.12) [193]. 
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Figure 3.12: Scouring of fabric samples before treatment. 

3.6.2 Treatment of fabric samples with antimicrobial chemical agents 

3.6.2.1 Treatment of fabric samples with silver nitrate antimicrobial agents 
Pad-dry-cure method was used for to apply silver nitrate antimicrobial solution by 

using a laboratory type padding machine. The fabrics were squeezed to a wet pickup 

of 67 % for powernet warp knitted fabrics, 46,5 % for flat warp knitted fabrics and 

63% for weft knitted fabrics. The padding temperature was 20oC, the pressure was 1 

bar and the machine speed was 1,5 m/min. A laboratory dryer was used for the 

drying and curing at 70oC for 10 min. The  antimicrobial solutions were fixed at pH9 

levels. The samples were treated with 0.6% silver nitrate antimicrobial chemical 

agent. The detailed flow chart of antimicrobial treatment with silver nitrate is shown 

as in Figure 3.13.  
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Adding silver nitrate + epoxy resin + polyurethane + water 
 

 
 

   Continuous stirring for 20 min at magnetic mixer 
 

 
 
 

        Adding fabric 
 
 

 
        Padding (1 bar, 1m/min) 

 
 
 
 

        Drying (70oC, 10 min.) 
 
 
 

 
        Curing  (70oC, 10 min.) 

 

Figure 3.13: Flow chart of antimicrobial treatment with silver nitrate. 

3.6.2.2 Treatment of fabric samples with Quat-Silane antimicrobial agents 
Pad-dry-cure method was used to apply Quat-Silane antimicrobial by using a 

laboratory type padding machine. The fabrics were squeezed to a wet pickup of 80 % 

for powernet warp knitted fabrics, 46 % for flat warp knitted fabrics and 52 % for 

weft knitted fabrics. The padding temperature was 20oC, the pressure was 1 bar and 

the machine speed was 1,5 m/min. a laboratory dryer was used for drying and curing 

at 110 oC for 10 min. The samples were treated with 2% active Quat-Silane 

antimicrobial agent. The detailed flow chart of antimicrobial treatment with Quat-

Silane is shown as in Figure 3.14.  
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      Hydrolyzing  Quat-Silane to 2% active Quat-Silane for 24h at room temperature 
 
 

 
       Continuous stirring for 10 min at magnetic mixer 

 
 
 

          Adding fabric 
 
 

 
          Padding (1 bar, 1m/min) 

 
 
 

          Drying (110oC, 10 min) 
 

 
 
 

         Curing (110oC, 10 min) 
 

Figure 3.14: Flow chart of antimicrobial treatment with Quat-Silane. 

3.6.2.3 Treatment of fabric samples with silver biocide antimicrobial agents 
Pad-dry-cure method was used to apply silver biocide embedded in titanium dioxide 

crystal, with pH7, solution by using a laboratory type padding machine. The fabrics 

were squeezed to a wet pickup of 63 % for powernet warp knitted fabrics, 45 % for 

flat warp knitted fabrics and 62 % for weft knitted fabrics. The padding temperature 

was 20oC, the pressure was 1 bar and the machine speed was 1,5 m/min. A 

laboratory dryer was used for drying at 130oC for 1min and curing at 160oC for 1 

min. The samples were treated with 0.5% silver biocide embedded in titanium 

dioxide crystal agent. The detailed flow chart of antimicrobial treatment with silver 

biocide is shown as in Figure 3.15. 
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          Diluting silver biocide by cold water  

 
 

 
 

            Stirring silver biocide antimicrobial solution 
 

 
 

 
        Adding fabric  

 
 
 

          Padding (1 bar, 1m/min) 
 

 
 
 

       Drying ( 130oC, 1min) 
 
 
 

 
      Curing (160oC, 1min) 

 

Figure 3.15: Flow chart of antimicrobial treatment with silver biocide. 

3.6.2.4 Treatment of fabric samples with Triclosan antimicrobial agents 
Exhaustion method was used to apply Triclosan antimicrobial by using a laboratory 

type Ahiba Nuance machine. The fabrics were squeezed to a wet pickup of 68 % for 

powernet warp knitted fabrics, 47 % for flat warp knitted fabrics and 50 % for weft 

knitted fabrics. The exhaustion temperature was 100oC, the bath temperature was 

20oC, and 6 pH of the solution. The samples were treated for 30min. for 1h. A 

laboratory dryer was used for drying and curing at 100oC for 2 min. The samples 

were treated with 0.04% Triclosan antimicrobial agent. The detailed flow chart of 

antimicrobial treatment with Triclosan is shown as in Figure 3.16. 

 
 
 
 
 

    
 



 42

First 150ml water warmed to 25oC – 30oC 
 
 

 
 

With warm water Triclosan chemical agent was diluted and mixed 
 
 
 

       Adding the rest of the water and warming to 30oC 
 
 
 

     Stirring continuously for 10 min at magnetic mixer 
 
 
 

Controlling the temperature btw 25oC – 30oC, if low warming again and stirring 
 

 
 

          Adding fabric  
 
 
 

          Exhausting at 100oC for 1h 
 

 
 

          Drying (100oC, 2min) 
 
 
 
 

       Curing (100oC, 2min) 
 

Figure 3.16: Flow chart of antimicrobial treatment with Triclosan. 

3.6.2.5 Treatment of fabric samples with silver chloride antimicrobial agents 

Pad-dry-cure method was used to apply silver chloride antimicrobial by using a 

laboratory type padding machine, with temperature at 20oC and 5.5pH. The fabrics 

were squeezed to a wet pickup of 75 % for powernet warp knitted fabrics, 44 % for 

flat warp knitted fabrics and 58 % for weft knitted fabrics. The padding temperature 

was 20oC, the pressure was 1 bar and the machine speed was 1,5 m/min. A 

laboratory dryer was used for drying at 130oC for 1min and curing at 160oC for 1 

min. The samples were treated with 0.16% silver chloride antimicrobial agent. The 
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detailed flow chart of antimicrobial treatment with silver chloride is shown as in 

Figure 3.17. 

 

Adding silver chloride antimicrobial chemical agent + water 
 
 
 

(The solution must be at room temperature 
or warmer ) at least 5 min.of moderate agitation with a standard propeller mixer 

 
 

Heating silver chloride antimicrobial solution to 25oC – 30oC  
and then stir the product  

 
 
 

  Continue stirring until well dispersed for at least 5 min. using a moderate agitation 
with a standard propeller mixer 

 
 

After having added silver chloride antimicrobial solution to the finishing bath 
constant stirring with low agitation is required 

 
            

Bath temperature should be around 20oC 
 
 
 

        Adding fabric 
 
 

          Padding (Pressure 1 bar, Speed 1m/min) 
 
 
 

     Drying (130oC, 1min) 
 
 
 

     Curing (160oC, 1min) 
 

Figure 3.17: Flow chart of antimicrobial treatment with silver chloride. 
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3.6.2.6 Treatment of fabric samples with PHMB antimicrobial agents 
Pad-dry-cure method was used to apply PHMB antimicrobial by using a laboratory 

type padding machine, with temperature at 40oC and 6.5pH. The fabrics were 

squeezed to a wet pickup of 53 % for powernet warp knitted fabrics, 66 % for flat 

warp knitted fabrics and 84 % for weft knitted fabrics. The padding temperature was 

20oC, the pressure was 1 bar and the machine speed was 1,5 m/min. A laboratory 

dryer was used for drying at 100oC for 1min and curing at 150oC for 1.5 min. The 

samples were treated with 4% PHMB antimicrobial agent. The detailed flow chart of 

antimicrobial treatment with silver chloride is shown as in Figure 3.18. 

   Diluting PHMB antimicrobial chemical with cold water 
 
 

 
 Adding PHMB + cross-linker + catalyst + water 

 
 

 
            Warming the solution to 40oC 

 
 
 

          Continuous stirring for 10 min at magnetic mixer 
 
 
 

        Adding fabric 
 
 

 
        Padding (1 bar, 1m/min) 

 
 
 

 
         Drying (100oC, 1 min) 

 
 

 
 

         Curing (150oC, 1.5 min) 
 

Figure 3.18: Flow chart of antimicrobial treatment with PHMB. 
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3.6.3  Antimicrobial treatment procedure variables 

3.6.3.1  Antimicrobial solution pH  
The ability of nylon to absorb antimicrobial solution is governed by the pH of the 

antimicrobial solution. Aqueous solutions of silver must be adjusted to a pH between 

5 and 9. At this pH range strong binding occurs. Triclosan is adjusted to pH6 for 

strong binding to the nylon fibers. At pH5 the Quat-Silane aqueous solution is able to 

bind to the nylon fibers. 

If the solution is below pH5, the PHMB is unable to bind to the nylon fibres. Above 

pH6, strong binding occurs. Aqueous solutions of PHMB are adjusted to a pH of 

above 6 before use. Sodium hydroxide or sodium carbonate can be used to raise the 

pH. The antimicrobial solution pH for each antimicrobial chemical is given in Figure 

3.19. 

 

Figure 3.19: pH for each antimicrobial treatment procedure. 

3.6.3.2 Antimicrobial solution temperature (oC) 
The optimum condition for application of the dilute antimicrobial solutions is 

temperature of approximately 20oC for silver, Triclosan and quat-silane antimicrobial 

solutions and 40oC for PHMB antimicrobial solutions. Aqueous solutions of 

antimicrobial chemicals are stable at these temperatures. The antimicrobial solution 

temperatures are given in Figure 3.20. 
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Figure 3.20: Solution temperatures (oC) for each antimicrobial treatment procedure. 

3.6.3.3 Antimicrobial treatment temperature (oC) 
The Triclosan antimicrobial treatment is compatible with exhaustion method at 

100oC treatment temperature. Silver, quat–silane and PHMB solutions are 

compatible with padding method at 20oC. The treatment temperatures for each 

antimicrobial solutions with treatment procedures are given in Figure 3.21. 

 

 

Figure 3.21: Treatment temperatures (oC) for each antimicrobial treatment 
procedure. 
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3.6.3.4  Antimicrobial treatment drying temperature (oC) 
Appropriate drying temperatures for each antimicrobial treatment are used as in 

Figure 3.22. 100oC drying temperature is used for 2 min for Triclosan and 1 min for 

PHMB treatments, 130oC drying temperature is used for 1 min for silver chloride and 

silver biocide (silver embedded in titanium dioxide crystal), 110oC drying 

temperature is used for 10 min for quat-silane treatment and 70oC drying temperature 

is used for 10 min. for silver nitrate treatment. In this step, excess water is removed 

from the treated fabrics by considering the polymer chemical stability temperatures.  

 

Figure 3.22: Drying temperatures (oC) for each antimicrobial treatment procedure. 

3.6.3.5 Antimicrobial treatment curing temperature (oC) 
Curing temperatures for each antimicrobial treatment are applied as in Figure 3.23. 

The fabric samples treated with silver nitrate solution are cured at 70oC for 10 min, 

for fabric samples treated with quat-silane solution are cured at 110oC for 10 min, 

fabric samples treated with silver biocide (silver embedded in titanium dioxide 

crystal) are cured at 130oC for 1 min. 100oC curing temperature is used for 2 min for 

Triclosan antimicrobial treatments, 160oC curing temperature is used for 1 min for 

silver chloride antimicrobial treatments and 150oC curing temperature is used for 1.5 

min for PHMB antimicrobial treatments. The curing temperatures were varied 

according to application level of each antmicrobial chemical. This step is important 

for the homogenity bonding of the antimicrobial chemical in and on the surface of 

the fabric.  
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Figure 3.23: Curing temperatures (oC) for each antimicrobial treatment procedure. 

3.6.4 Pressure measurements 

3.6.4.1 Wireless software program 
For pressure measurements a Tekscan’s Wireless Elf System was used including a 

hub and a transmitter (Figure 3.24). This system is ideal to measure forces without 

disturbing the dynamics of the test.  

The Elf sensors use a resistive-based technology. The application of a force to the 

active sensing area of the sensor results in a change in the resistance of the sensing 

element in inverse proportion to the force applied. After a simple calibration is 

performed, this force can be displayed on the screen in the measurement units that is 

chosen, such as Pounds or Newton’s. 

                 

 

Figure 3.24: Component identification for the pressure measurements. 
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3.6.4.2 Conditioning sensors 
Exercising or conditioning a sensor before calibration and testing is essential in 

achieving accurate results. To condition a sensor, 110% of the test weight was placed 

on the sensor, and the sensor was allowed to stabilize, and then the weight was 

removed. This process was repeated four or five times. The interface between the 

sensor and the test subject material should be the same during conditioning as during 

calibration and actual testing. 

3.6.4.3 Sensors 
The FlexiForce sensor is an ultra-thin and flexible printed circuit. Sensors are 

available in three full-scale force ranges: Low (25 lbf ), Medium (150 lbf ), and High 

(1000 lbf ). The "active sensing area" is a 0.375” diameter circle at the end of the 

sensor. The sensors are constructed of two layers of substrate, such as a polyester 

film. On each layer, a conductive material (silver) is applied, followed by a layer of 

pressure-sensitive ink. Adhesive is then used to laminate the two layers of substrate 

together to form the sensor. The "active sensing area" is defined by the silver circle 

on top of the pressure sensitive ink. Silver extends from the sensing area to the 

connectors at the other end of the sensor, forming the conductive leads. FlexiForce 

B201 Sensors (one in each of the three offered force ranges: Low (0-25 lb); Medium 

(0-150 lb) and High (0-1000 lb) were used for this study (Figure 3.25). 

          

Figure 3.25: Wireless sensors for pressure measurements. 
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3.6.4.4 Calibration procedure 
At this stage, each sensor was loaded with a known force as shown in Figure 3.26. 

 

 

Figure 3.26: Loading force on the software program. 

Best fit linear calibration was selected from the menu as shown in Figure 3.27. The 

gram Force unit was selected from the drop-down box (grams, kilograms, Newtons, 

pounds). The Add Point was clicked for each loads. And the steps were repeated as 

many known loads (Figure 3.28).  

 

Figure 3.27: Adjusting best linear calibration. 
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Figure 3.28: Calibration procedure of the pressure sensors. 

3.6.4.5 The main window 
The main window was displayed on the computer screen just before taking the 

pressures as shown in Figure 3.29.  

 

 

Figure 3.29: The main window of the wireless software program. 

3.6.4.6 Taking pressures on pressure garments by wireless sensors 
The pressure garments were designed by using high stretch nylon/spandex fabrics in 

weft and warp knitted structures. The measurements were taken on each garment 

from calf and ankle before and after the treatment as shown in  Figures (3.30 - 3.31).            
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Figure 3.30:  Taking pressures from calf by wireless pressure sensors. 

   

Figure 3.31:  Taking pressures from ankle by wireless pressure sensors. 

3.6.5 Statistical Analysis 
The statistical analysis of the experimental data was performed using JMP version 

8.0.2 software package (SAS Institute, Inc., Cary, NC). The statistical analysis 

includes the analysis of variance (ANOVA). For the one-way and two-way ANOVA,  

p-values less than 0.05 were considered statistically significant. Some of the data are 

also presented as avarage ± standard deviation and some of the data are analyzed by 

regression analysis to calculate the coefficient of determination R2.  
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4. RESULTS AND DISCUSSION 

4.1 Pressure Measurements 

The pressure measurements were taken from calf and ankle before and after each 

treatment. Before the treatment, the pressures were taken between 5.0mmHg – 

5.7mmHg. This range is in the required medical range. Higher pressures were 

measured for ankle before and after treatment.  

The La Place equation was originally described in 1805 to define the relationship 

between the pressure of a closed elastic membrane and the tension within the 

membrane. La Place's law states that sub-bandage pressure (P) is directly 

proportional to bandage tension (T) and inversely proportional to the circumference 

(C) of the limb to which it is applied (Eq. 4.1) [196-198]. As the circumference of 

the limb increases, the pressure decreases (Figure 4.1)  

 

 
                                                                                                             

                                                                         (4.1) 
 
 

 
 

P is the interface pressure (in mmHg or hPa), T/W is the tension (N) by width unit, R 

is the radius of the leg (m), α is the proportionality coefficient. 
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Figure 4.1: Illustration of Laplace’s Law. 

Pressures were taken from calf and ankle after each antimicrobial agent procedure for 

all types of designed pressure garments. Final pressures exerted on the limb were 

calculated by taking the mean pressures of calf and ankle. 

4.1.1 Silver Nitrate antimicrobial agent 
After treating the samples with silver nitrate antimicrobial agent, the pressures were 

taken between 5.4mmHg – 6.7mmHg (Table 4.1).  

 Table 4.1: Mean scores of pressures (mmHg) for the treated samples with silver   
nitrate antimicrobial agent procedure. 

Pressures (mmHg) Name of 
Location Fabric 

Samples 
Before 

Treatment 
After 

Treatment 

Increase in 
Pressure 

% 
Powernet 5.2 5.8 11.5 
Flat Warp 
Knitted 5.4 6.3 16.6 Ankle 
Weft 
Knitted 5.8 6.7 15.5 

Powernet 4.8 5.4 12.5 
Flat Warp 
Knitted 5.0 5.6 12.0 Calf 
Weft 
Knitted 5.6 5.9 5.3 

 

Mean scores of final pressures showed a small significant increase for fabric samples 

after treated with silver nitrate antimicrobial chemical agents (Table 4.2). Weft 

knitted fabrics gave the highest pressure values before and after antimicrobial 
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treatment (Figure 4.2). This is attributed to more elastic structure of weft knitted 

fabrics than warp knitted fabrics which causes a small significant shrinkage during 

processes.  

Table 4.2: Mean scores of final pressures (mmHg) and the increase in final pressure 
for the  treated  samples with silver nitrate antimicrobial agent procedure. 

Final Pressures (mmHg) Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.6 12.0 
Flat Warp 
Knitted 5.2 5.9 13.5 

Weft Knitted 5.7 6.3 10.5 
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     Figure 4.2: Mean scores of final pressures (mmHg) for the treated samples with 

silver nitrate antimicrobial agent procedure (Error bars: ± standard 
deviation). 

4.1.2 Quat-Silane antimicrobial agent 
After treating the samples with Quat-Silane antimicrobial agent, the mean scores of 

pressures were taken between 5.0mmHg – 6.0mmHg (Table 4.3).  
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Table 4.3: Mean scores of pressures (mmHg) for the treated samples with  Quat-
Silane antimicrobial agent procedure. 

Pressures (mmHg) Name of 
Location Fabric 

Samples 
Before 

Treatment 
After 

Treatment 

Increase in 
Pressure 

% 
Powernet 5.2 5.4 3.8 
Flat Warp 
Knitted 5.4 5.7 5.6 Ankle 
Weft 
Knitted 5.8 6.0 3.4 

Powernet 4.8 5.0 4.2 
Flat Warp 
Knitted 5.0 5.2 4.0 Calf 
Weft 
Knitted 5.6 5.9 5.4 

 

Mean scores of final pressures showed a small siginificant increase for fabric 

samples after treated with quat-silane antimicrobial chemical agents (Table 4.4). 

Weft knitted fabrics gave the highest pressure values before and after antimicrobial 

treatment (Figure 4.3). This is attributed to more elastic structure of weft knitted 

fabrics than warp knitted fabrics which causes a small siginificant shrinkage during 

processes.  

Table 4.4: Mean scores of final pressures (mmHg) and the increase in final pressure 
for the treated samples with Quat Silane antimicrobial agent procedure. 

Final Pressures (mmHg) Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.2 4.0 
Flat Warp 
Knitted 5.2 5.5 5.8 

Weft Knitted 5.7 6.0 5.3 
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Figure 4.3:  Mean scores of final pressures (mmHg) for the treated samples with     

Quat-Silane antimicrobial agent procedure (Error bars: ± standard 
deviation). 

4.1.3 Silver Biocide antimicrobial agent  
After treating the samples with silver biocide antimicrobial agent, the mean scores of 

pressures were taken between 5.0mmHg – 6.1mmHg (Table 4.5).  

Table 4.5: Mean scores of pressures (mmHg) for the treated samples with silver 
embedded in titanium dioxide crystal antimicrobial agent procedure. 

Pressures (mmHg) Name of 
Location Fabric 

Samples 
Before 

Treatment 
After 

Treatment 

Increase in 
Pressure 

% 
Powernet 5.2 5.4 3.8 
Flat Warp 
Knitted 5.4 5.5 1.8 Ankle 
Weft 
Knitted 5.8 6.1 5.2 

Powernet 4.8 5.0 4.2 
Flat Warp 
Knitted 5.0 5.2 4.0 Calf 
Weft 
Knitted 5.6 5.8 3.6 
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Mean scores of final pressures showed a small siginificant increase for fabric 

samples after treated with silver titanium dioxide antimicrobial chemical agents 

(Table 4.6). Weft knitted fabrics gave the highest pressure values before and after 

antimicrobial treatment (Figure 4.4). This is attributed to more elastic structure of 

weft knitted fabrics than warp knitted fabrics which causes a small significant 

shrinkage during processes.  

Table 4.6: Mean scores of final pressures(mmHg) and the increase in final pressures 
for the treated samples with silver embedded in titanium dioxide crystal 
antimicrobial agent procedure. 

Final Pressures (mmHg) Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.2 4.0 
Flat Warp 
Knitted 5.2 5.4 3.8 

Weft Knitted 5.7 5.9 3.5 
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Figure 4.4:  Mean scores of final pressures (mmHg) for the treated samples with 

Silver Biocide antimicrobial agent procedure (Error bars: ± standard 
deviation). 
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4.1.4 Triclosan antimicrobial agent 
After treating the samples with Triclosan antimicrobial agent, the mean scores of 

pressures were taken between 5.4mmHg – 6.4mmHg (Table 4.7).  

Table 4.7: Mean scores for pressures (mmHg) for the treated samples with Triclosan 
antimicrobial agent procedure. 

Pressures (mmHg) Name of 
Location Fabric 

Samples 
Before 

Treatment 
After 

Treatment 

Increase in 
Pressure 

% 
Powernet 5.2 5.6 7.7 
Flat Warp 
Knitted 5.4 6.0 11.1 Ankle 
Weft 
Knitted 5.8 6.4 10.3 

Powernet 4.8 5.4 12.5 
Flat Warp 
Knitted 5.0 5.7 14.0 Calf 
Weft 
Knitted 5.6 6.2 10.7 

 

Mean scores of final pressures showed a small siginificant increase for fabric 

samples after treated with Triclosan antimicrobial chemical agents (Table 4.8). Weft 

knitted fabrics gave the highest pressure values before and after antimicrobial 

treatment (Figure 4.5). This is attributed to more elastic structure of weft knitted 

fabrics than warp knitted fabrics which causes a small significant shrinkage during 

processes.  

Table 4.8: Mean scores of final pressures (mmHg) and the increase in final pressures 
for the treated samples with Triclosan antimicrobial agent procedure. 

Final Pressures (mmHg) Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.5 10.0 
Flat Warp 
Knitted 5.2 5.9 13.5 

Weft Knitted 5.7 6.3 10.5 
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Figure 4.5:  Mean scores of final pressures (mmHg) for the treated samples with 

Triclosan antimicrobial agent procedure (Error bars: ± standard 
deviation). 

4.1.5. Silver Chloride antimicrobial agent 
After treating the samples with silver chloride antimicrobial agent, the mean scores 

of pressures were taken between 5.0mmHg – 6.0mmHg (Table 4.9).  

Table 4.9: Mean scores of pressures (mmHg) for the treated samples with silver 
chloride antimicrobial agent procedure. 

Pressures (mmHg) Name of 
Location Fabric 

Samples 
Before 

Treatment 
After 

Treatment 

Increase in 
Pressure 

% 
Powernet 5.2 5.4 3.8 
Flat Warp 
Knitted 5.4 5.5 1.8 Ankle 
Weft 
Knitted 5.8 6.0 3.4 

Powernet 4.8 5.0 4.2 
Flat Warp 
Knitted 5.0 5.1 2.0 Calf 
Weft 
Knitted 5.6 5.8 3.6 
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Final pressures showed a small significant increase for fabric samples after treated 

with silver chloride antimicrobial chemical agents (Table 4.10). Weft knitted fabrics 

gave the highest pressure values before and after antimicrobial treatments (Figure 

4.6). This is attributed to more elastic structure of weft knitted fabrics than warp 

knitted fabrics which causes a small significant shrinkage during processes.  

Table 4.10: Mean scores of final pressures (mmHg) and the increase in final 
pressures for the treated samples with silver chloride antimicrobial 
agent procedure. 

Final Pressures (mmHg) Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.2 4.0 
Flat Warp 
Knitted 5.2 5.3 2.0 

Weft Knitted 5.7 5.9 3.5 
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Figure 4.6:  Mean scores of final pressures (mmHg) for the treated samples with  

silver chloride antimicrobial agent procedure (Error bars: ± standard 
deviation). 

4.1.6 PHMB antimicrobial agent 
After treating the samples with PHMB antimicrobial agent, the mean scores of 

pressures were taken between 5.2mmHg – 6.1mmHg (Table 4.11).  
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Table 4.11: Mean scores of pressures (mmHg) for treated samples with PHMB 
antimicrobial agent procedure. 

Pressures (mmHg) Name of 
Location Fabric 

Samples 
Before 

Treatment 
After 

Treatment 

Increase in 
Pressure 

% 
Powernet 5.2 5.5 5.8 
Flat Warp 
Knitted 5.4 5.8 7.4 Ankle 
Weft 
Knitted 5.8 6.1 5.2 

Powernet 4.8 5.2 8.3 
Flat Warp 
Knitted 5.0 5.3 6.0 Calf 
Weft 
Knitted 5.6 6.0 7.1 

 

Mean scores of final pressures showed a small significant increase for fabric samples 

after treated with PHMB antimicrobial chemical agents (Table 4.12). Weft knitted 

fabrics gave the highest pressure values before and after antimicrobial treatment 

(Figure 4.7). This is attributed to more elastic structure of weft knitted fabrics than 

warp knitted fabrics which causes a small significant shrinkage during processes.  

Table 4.12: Mean scores of final pressures (mmHg) and the increase in final 
pressures for the treated samples with PHMB antimicrobial agent 
procedure. 

Final Pressures (mmHg) Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.4 8.0 
Flat Warp 
Knitted 5.2 5.6 7.7 

Weft Knitted 5.7 6.0 5.3 
 



 63

0

1

2

3

4

5

6

7
Pr

es
su

re
 (m

m
H

g)

Before Treatment
After Treatment

Powernet   Weft 
Knitted

Flat Warp   
Knitted

5
5.4 5.2

5.6

5.7

6

 
Figure 4.7:  Mean scores of final pressures (mmHg) for the treated samples with 

PHMB antimicrobial agent procedure (Error bars: ± standard 
deviation). 

A comparison of pressures (mmHg) and final pressures (mmHg) for each 

antimicrobial agent procedure are shown in Table 4.13 and Figure 4.8. Weft knitted 

fabrics gave higher pressures and powernet fabrics gave lower pressures after each 

antimicrobial procedure. This is attributed to more elastic structure of weft knitted 

fabrics than warp knitted fabrics which caused a small significant shrinkage during 

processing. Increase in pressure % is higher for fabrics treated with silver nitrate, 

Triclosan and PHMB. This is attributed to the auxiliary chemical used for each 

antimicrobial agent procedure. Use of epoxy resin and PU for silver nitrate agent 

procedure and cross-linker for PHMB agent procedure and using exhaustion 

treatment method for Triclosan antimicrobial agent procedure caused a little 

shrinkage resulting a little pressure increase in the fabric structures after 

antimicrobial treatments. Finally the pressures gathered are all in the expected 

medical range which show the success of the control of the antimicrobial agent 

procedures in terms of pressure measurements. 
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Table 4.13: A comparison of pressures (mmHg) from each treatment. 

 
 
 
 

Pressures (mmHg) Antimicrobial 
Agent 

Procedure 

Fabric 
Samples Before 

Treatment 
After 

Treatment 

Increase in 
Pressure % 

Powernet 5.0 5.6 12.0 
Flat Warp 
Knitted 5.2 5.9 13.5 Silver Nitrate 

Weft Knitted 5.7 6.3 10.5 
 

Powernet 5.0 5.2 4.0 
Flat Warp 
Knitted 5.2 5.5 5.8 Quat- Silane 

Weft Knitted 5.7 6.0 5.3 
 

Powernet 5.0 5.2 4.0 
Flat Warp 
Knitted 5.2 5.4 3.8 Silver Biocide 

Weft Knitted 5.7 5.9 3.5 
     

Powernet 5.0 5.5 10.0 
Flat Warp 
Knitted 5.2 5.9 13.5 Triclosan 

Weft Knitted 5.7 6.3 10.5 
 

Powernet 5.0 5.2 4.0 
Flat Warp 
Knitted 5.2 5.3 2.0 Silver 

Chloride 
Weft Knitted 5.7 5.9 3.5 

 
Powernet 5.0 5.4 8.0 
Flat Warp 
Knitted 5.2 5.6 7.7 PHMB 

Weft Knitted 5.7 6.0 5.3 
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   Figure 4.8: A comparison of final pressures (mmHg) for each antimicrobial agent  

procedure (Error bars: ± standard deviation). 

Mean scores for final pressures were found between 5.2mmHg-6.3mmHg which is in 

the acceptable optimal medical range (0-50mmHg).  

4.1.7 Effect of antimicrobial agents on final pressures 
It is important to note that statistical analysis demonstrated that these mean values 

were not significantly different. From the analysis of variance and estimation of 

parameters effect summarized in Table 4.14, it was found that each antimicrobial 

agent procedure has a statistically significant effect on the final pressures (p < 0.05).  

Table 4.14: One-way ANOVA and estimation of parameters from final pressures. 

Source of 
Variation SS df MS F P-value F-crit 

Between Groups 0.9 1 0.9 36 0.000323 5.317655 
Within Groups 0.2 8 0.025    

Total 1.1 9     
 

4.1.8 Correlation between the pressures for control and treated samples  
Final pressures were taken from control and treated samples. Regression analysis of 

the results showed that there was a correlation between control and treated samples 

with silver nitrate as the polynomial formula, y = 0.2777x3 + 2.9208x2+8.6386x,     

r2 = 0.9822 as shown in Figure 4.9. It is observable from the figure that pressures for 

control and treated samples were strongly correlated. Silver nitrate antimicrobial 

agent had a significant effect on final pressures.  
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Figure 4.9: Pressures for silver nitrate treated samples from control samples. 

Regression analysis of the results showed that there was a correlation between 

control and treated samples with quat-silane as the polynomial formula, y = 16.667x3 

-277.14x2 + 1536.8x - 2837, r2 = 0.9973 as shown in Figure 4.10. It is observable 

from the figure that pressures for control and treated samples were strongly 

correlated. Quat-silane antimicrobial agent had a significant effect on final pressures.  
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Figure 4.10: Pressures for quat-silane treated samples from control samples. 

Regression analysis of the results showed that there was a correlation between 

control and treated samples with silver biocide as the polynomial formula,                 

y = 5.9748x3 - 94.96x2 + 503.85x – 887.33, r2 = 0.9989 as shown in Figure 4.11. It is 

observable from the figure that pressures for control and treated samples were 

strongly correlated. Silver biocide antimicrobial agent had a significant effect on 

final pressures.  
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Figure 4.11: Pressures for silver biocide treated samples from control samples. 

Regression analysis of the results showed that there was a correlation between 

control and treated samples with Triclosan as the polynomial formula, y = 25x3 – 

411.07x2 + 2253.8x – 4115.3, r2 = 0.9995 as shown in Figure 4.12. It is observable 

from the figure that pressures for control and treated samples were strongly 

correlated. Triclosan antimicrobial agent had a significant effect on final pressures.  
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Figure 4.12: Pressures for Triclosan treated samples from control samples. 

Regression analysis of the results showed that there was a correlation between 

control and treated samples with Triclosan as the polynomial formula,                       

y = 12.579x3 – 197.36x2 + 1032.6x – 1796.4, r2 = 0.9862 as shown in Figure 4.13. It 

is observable from the figure that pressures for control and treated samples were 

strongly correlated. Silver chloride antimicrobial agent had a significant effect on 

final pressures.  
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Figure 4.13: Pressures for Silver chloride treated samples from control samples. 

Regression analysis of the results showed that there was a correlation between 

control and treated samples with PHMB as the polynomial formula, y = 16.667x3 – 

268.57x2 + 1443.4x – 2582.2, r2 = 0.9569 as shown in Figure 4.14. It is observable 

from the figure that pressures for control and treated samples were strongly 

correlated. PHMB antimicrobial agent had a significant effect on final pressures.  
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Figure 4.14: Pressures for PHMB treated samples from control samples. 

4.2 Antimicrobial Activity 

Untreated control samples, treated samples, also duplicate treated samples after 5, 10 

and 50 washes were tested to determine antimicrobial activity following AATCC 

Test Method 100-2004 “Assessment of Antibacterial Finishes on Textiles” using 
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Staphylococcus aureus microorganism. The variables were taken as shown in Eq. 

(4.2).   

       R = 100 (C-A) / C                                                                                      (4.2) 

       R =  % reduction  

       A = the number of bacteria recovered from the inoculated treated sample  

             C = the number of bacteria recovered from the inoculated untreated 

                    control sample 

4.2.1 Silver Nitrate antimicrobial agent 
The percent reduction of bacteria for fabric samples before, after treatment, plus the 

treated samples after 5,10 and 50 washes are shown in Tables (4.15 - 4.17). Fabric 

samples exhibited strong bactericidal activity after treatment. Excellent results were 

found for powernet fabric samples. The results can be evaluated as very good for flat 

warp and weft knitted fabric samples. Strong antibacterial activities remained the 

same for fabric samples even after 5 washes while a small significant decrease was 

observed after 10 and 50 washes. A comparison of antimicrobial activity for fabrics 

treated with silver nitrate antimicrobial agent procedure can be seen in Figure 4.15. 

 Table 4.15: Percentage reduction of bacteria (R) for untreated and treated powernet          
warp knitted fabric samples with silver nitrate antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Powernet 
warp 

knitted 
00.00 > 99.99 > 99.99 99.97 96.93 

 

Table 4.16: Percentage reduction of bacteria (R) for untreated and treated flat warp         
knitted fabric samples with silver nitrate antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Flat 
warp 

knitted 
00.00 99.98 99.98 99.93 96.80 
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Table 4.17: Percentage reduction of bacteria (R) for untreated and treated weft                
knitted fabric samples with silver nitrate antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Weft 
knitted 00.00 99.96 99.96 99.90 96.75 
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Figure 4.15: A comparison of antimicrobial activity for silver nitrate antimicrobial 
agent procedure in terms of fabric structure. 

4.2.2 Quat-Silane antimicrobial agent 
The percentage reduction of bacteria for treated samples with Quat-Silane 

antimicrobial agent are shown in Tables (4.18 - 4.20). Treated fabric samples showed 

a very good antimicrobial activity. The results were preserved also after 5 washes. A 

small significant decrease was observed for fabric samples after 10 and 50 washes 

and the antimicrobial activity was observed as very good for fabric samples after 10 

and 50 washes. A comparison of antimicrobial activity for fabrics treated with Quat-

Silane antimicrobial agent procedure can be seen in Figure 4.16. 

    Table 4.18: Percentage reduction of bacteria (R) for untreated and treated 
powernet warp knitted fabric samples with Quat-Silane 
antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Powernet 
warp 

knitted 
00.00 99.70 99.70 99.65 89.50 
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 Table 4.19: Percentage reduction of bacteria (R) for untreated and treated flat                  
warp knitted samples with Quat-Silane antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Flat warp 
knitted 00.00 99.68 99.68 98.62 89.30 

 

 Table 4.20: Percentage reduction of bacteria (R) for untreated and treated weft            
knitted samples with Quat-Silane antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Weft 
knitted 00.00 99.66 99.66 98.61 88.66 
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Figure 4.16: A comparison of antimicrobial activity for Quat-Silane antimicrobial 
agent  procedure in terms of fabric structure. 

4.2.3 Silver Biocide antimicrobial agent 
The percentage reduction of bacteria for treated samples with silver biocide 

antimicrobial agent are shown in Tables (4.21 - 4.23). All treated samples showed a 

very good antimicrobial activity. The antimicrobial activity remained constant after 5 

washes for fabric samples. Fabric samples showed a small significant decrease after 

10 and 50 washes. A comparison of antimicrobial activity for fabrics treated with 

silver biocide antimicrobial agent procedure can be seen in Figure 4.17. 
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Table 4.21: Percentage reduction of bacteria (R) for untreated and treated powernet  
warp knitted fabric samples with silver embedded in titanium dioxide 
crystal antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 

washes 
50 

washes 
Powernet 

warp 
knitted 

00.00 99.96 99.96 98.85 83.75 

 

Table 4.22: Percentage reduction of bacteria (R) for untreated and treated flat warp 
knitted fabric samples with silver embedded in titanium dioxide crystal 
antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 

washes 
50 

washes 
Flat 
warp 

knitted 
00.00 99.85 99.84 98.80 82.50 

 

Table 4.23: Percentage reduction of bacteria (R) for untreated and treated weft 
knitted fabric samples with silver embedded in titanium dioxide crystal 
antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 

washes 
50 

washes 
Weft 

knitted 00.00 99.78 99.77 97.99 80.00 
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Figure 4.17: A comparison of antimicrobial activity for silver embedded in titanium 
dioxide crystal antimicrobial agent procedure in terms of fabric 
structure. 
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4.2.4 Triclosan antimicrobial agent 
The percentage reduction of bacteria for treated samples with Triclosan 

antimicrobial agent are shown in Tables (4.24 - 4.26). Antimicrobial activity was 

very good for all fabric samples. The antimicrobial activity was preserved after 5 

washes for all fabric samples. The antimicrobial activity was observed as very good 

even after 10 washes and a small significant decrease was observed after 50 washes 

and the antimicrobial activity was evaluated as good for fabric samples. A 

comparison of antimicrobial activity for fabrics treated with Triclosan antimicrobial 

agent procedure can be seen in Figure 4.18. 

Table 4.24: Percentage reduction of bacteria (R) for untreated and treated powernet 
warp knitted fabric samples with Triclosan antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 

washes 
50 

washes 
Powernet 

warp 
knitted 

00.00 98.51 98.51 98.46 89.14 

Table 4.25: Percentage reduction of bacteria (R) for untreated and treated flat warp 
knitted fabric samples with Triclosan antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 

washes 
50 

washes 
Flat warp 

knitted 00.00 98.33 98.33 98.40 88.33 

 

Table 4.26: Percentage reduction of bacteria (R) for untreated and treated weft 
knitted fabric samples with Triclosan antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 

washes 
50 

washes 
Weft 

knitted 00.00 98.30 98.30 98.38 84.50 
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Figure 4.18: A comparison of antimicrobial activity for Triclosan antimicrobial 

agent procedure in terms of fabric structure. 

4.2.5 Silver Chloride antimicrobial agent 
The percentage reduction of bacteria for treated samples with silver chloride 

antimicrobial agent are shown in Tables (4.27 – 4.29). Excellent antimicrobial activity 

was observed for powernet fabric samples. Excellent antimicrobial activity for 

powernet fabric samples was preserved also after 5 washes. The antimicrobial activity 

was observed as very good for flat warp and weft knitted fabric samples. A small 

significant decrease was observed for fabric samples after 10 and 50 washes and the 

antimicrobial activity was evaluated as good for all fabric samples. A comparison of 

antimicrobial activity for fabrics treated with silver chloride antimicrobial agent 

procedure can be seen in Figure 4.19. 

Table 4.27: Percentage reduction of bacteria (R) for untreated and treated powernet 
warp knitted fabric samples with silver chloride antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Powernet 
warp 

knitted 
00.00 > 99.99 > 99.99 99.93 89.90 

 

Table 4.28: Percentage reduction of bacteria (R) for untreated and treated flat warp      
knitted fabric samples with silver chloride antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Flat warp 
knitted 00.00 99.90 99.90 98.84 89.78 
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Table 4.29: Percentage reduction of bacteria (R) for untreated and treated weft 
knitted fabric samples with silver chloride antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Weft 
knitted 00.00 99.88 99.88 98.82 88.74 
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Figure 4.19: A comparison of antimicrobial activity for silver chloride antimicrobial 

agent procedure in terms of fabric structure. 

4.2.6 PHMB antimicrobial agent 
The percentage reduction of bacteria for treated samples with PHMB antimicrobial 

agent are shown in Tables (4.30 – 4.32). PHMB treated samples showed excellent 

antimicrobial activity for all fabric samples. The antimicrobial activity for each fabric 

sample was preserved even after 5 washes. After 10 and 50 washes a very good 

antimicrobial activity was observed with a small significant decrease for fabric 

samples. A comparison of antimicrobial activity for fabrics treated with PHMB 

antimicrobial agent procedure can be seen in Figure 4.20. 

Table 4.30: Percentage reduction of bacteria (R) for untreated and treated powernet      
warp knitted fabric samples with PHMB antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes

Powernet 
warp 

knitted 
00.00 > 99.99 > 99.99 99.97 96.90 
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Table 4.31: Percentage reduction of bacteria (R) for untreated and treated flat warp 
knitted fabric samples with PHMB antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Flat warp 
knitted 00.00 > 99.99 > 99.99 99.95 96.85 

 

Table 4.32: Percentage reduction of bacteria (R) for untreated and treated weft 
knitted fabric samples with PHMB antimicrobial agent. 

Fabric 
samples Control Treated 5 washes 10 washes 50 washes 

Weft 
knitted 00.00 > 99.99 > 99.99 99.92 95.98 
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Figure 4.20: A comparison of antimicrobial activity for PHMB antimicrobial agent 

procedure in terms of fabric structure. 

4.2.6.1 Effect of wash cycles on antimicrobial activity 
ANOVA two-way with replication was used to see the effect of wash cycles on 

antimicrobial activity (Table 4.33). Using two-way analysis of variance, interaction 

was found as 0.0001. It was resulted that there is an interaction between the types of 

antimicrobial agents and wash cycles on antimicrobial activity (Interaction < 0.05).   
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Table 4.33: ANOVA and estimation of parameters from antimicrobial activity. 

ANOVA two-way with replication 
Source of 
Variance SS df MS F P-value F-crit 

Antimicrobial 
Activity 226.8333 5 45.3666 7.4236 7.1618 2.4771 
Wash Cycles 592.3333 2 296.1666 48.4636 6.1432 3.2594 
Interaction 319.6666 10 31.9666 5.2309 0.0001 2.1060 
Within 220 36 6.1111    
Total 1358.8333 53         

 

4.3 X-Ray Photoelectron Spectroscopy (XPS) Analysis 

Treated samples were analyzed using XPS analysis. Control samples were used for a 

comparison. Carbon (C), Nitrogen (N), Oxygen (O), Fluorine (F) were detected in 1s 

orbit, and Silicium (Si) was detected in 2p orbit for both untreated and treated 

samples. Silver was detected on the surface of the treated samples in 3d orbit. The 

result of the analysis including atomic concentration and binding energy (eV) were 

shown for each treated sample with silver compound in Tables (4.34 – 4.42). 

Table 4.34: Relative chemical composition and binding energy determined by XPS 
for powernet warp knitted fabric samples treated with silver nitrate 
antimicrobial chemical agent.  

Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 62.44

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.53

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 2.67 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.52 
Ag 3d - - - - 368.50 0.63 648.00 0.20 

   Pos: Binding energy in eV, FWHM: Full with half maximum (High Energy  
Resolution), Area: Area under the curve (cm2), At%: Atomic percent 
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Table 4.35: Relative chemical composition and binding energy determined by XPS 
for powernet warp knitted fabric samples treated with silver embedded 
in titanium dioxide crystal antimicrobial chemical agent. 

Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10 

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00 

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.20 

Table 4.36: Relative chemical composition and binding energy determined by XPS 
for powernet warp knitted fabric samples treated with silver chloride 
antimicrobial chemical agent. 

Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10 

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00 

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.20 

Table 4.37: Relative chemical composition and binding energy determined by XPS 
for flat warp knitted fabric samples treated with silver nitrate 
antimicrobial chemical agent.  

Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10 

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00 

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.18 
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Table 4.38: Relative chemical composition and binding energy determined by XPS 
for flat warp knitted fabric samples treated with silver embedded in 
titanium dioxide crystal antimicrobial chemical agent. 

Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.18 

 

Table 4.39: Relative chemical composition and binding energy determined by XPS 
for flat warp knitted fabric samples treated with silver chloride 
antimicrobial chemical agent. 

Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.18 
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Table 4.40: Relative chemical composition and binding energy determined by XPS 
for weft knitted fabric samples treated with silver nitrate antimicrobial 
chemical agent. 

   Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10 

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00 

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.16 

Table 4.41: Relative chemical composition and binding energy determined by XPS 
for weft knitted fabric samples treated with silver embedded in titanium 
dioxide crystal antimicrobial chemical agent. 

    Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10 

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00 

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.16 

Table 4.42: Relative chemical composition and binding energy determined by XPS 
for weft knitted fabric samples treated with silver chloride antimicrobial 
chemical agent. 

          Control Sample Treated Sample 

Name Pos. FWHM Area At% Pos. FWHM Area At% 

C 1s 285.00 2.34 9119.10 59.85 284.50 2.55 11702.90 63.10 

N 1s 400.00 2.18 960.70 3.56 399.50 2.15 886.30 23.00 

O 1s 532.50 2.62 10901.00 25.10 532.00 2.61 12571.10 3.00 

F 1s 690.50 2.19 1551.40 2.39 689.50 2.29 2905.50 3.64 
Si 2p 102.00 1.78 1199.5 9.10 101.50 2.24 1219.90 7.50 
Ag 3d - - - - 368.50 0.63 648.00 0.16 
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The percentage atomic concentrations of silver (Ag) were detected as 0.20% for 

powernet, 0.18% for flat warp knitted and 0.16% for weft knitted fabric samples for 

all antimicrobial treatments. This is a good result in terms of the attachment of silver 

antimicrobial chemical to the structure of nylon 6.6/spandex fabrics and shows that 

the amount of silver antimicrobial chemical is bonded successfully to the structure. 

4.4 Scanning Electron Microscopy (SEM) Analysis 

Scanning electron microscopy (SEM) analysis were performed on three different 

sample sets to see if the antimicrobial chemical solution appeared on the fabric and 

fiber surfaces.  

4.4.1 SEM analysis for untreated samples 
SEM images for the untreated samples were obtained to make a comparison Figures 

(4.21- 4.23).   

   
 

Figure 4.21: SEM Images for untreated powernet warp knitted fabric samples 
(Magnification  X1100).  
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 Figure 4.22: SEM images for untreated flat warp knitted fabric samples; 
(Magnification X1100).  

 
 

  
    

Figure 4.23: SEM images for untreated weft knitted fabric samples;    
(Magnification X1140). 
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4.4.2 SEM analysis for treated samples 
SEM images of the treated samples are shown in Figures (4.24 -  4.41). 

4.4.2.1 Silver Nitrate antimicrobial agent 
SEM analysis revealed that on the silver nitrate antimicrobial treated Nylon 6.6 / 

Spandex, the fibers showed more compact and more aligned appearance for all fabric 

samples when compared with that of the control. It appears from SEM images that 

the bonded chemical in the structure still exists after 5, 10 and 50 washes. The 

observation of the chemical itself on the surface of the fibers and in between the 

fibers by forming a triangle region, support the idea about the bonding of the 

antimicrobial chemical to the structure of the fabrics and the strength of the 

attachments even after 5, 10 and 50 washes after treatments. SEM photomicrographs 

for treated fabric samples with silver nitrate are presented in Figures (4.24 - 4.26). 

 

  
 

Figure 4.24: SEM images for treated powernet warp knitted samples with silver 
nitrate antimicrobial agent; (Magnification X1140). 
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Figure 4.25: SEM images for treated flat warp knitted samples with silver nitrate 
antimicrobial agent; (Magnification X1000). 

 

  
 

Figure 4.26: SEM images for treated weft knitted fabric samples with silver nitrate 
antimicrobial agent; (Magnification X1000). 
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4.4.2.2 Quat-Silane antimicrobial agent 
Antimicrobial solution appeared on the surface of the fabrics and in the fibers for all 

fabric samples treated with quat-silane antimicrobial chemical. SEM images for 

treated samples with quat-silane are shown in Figures (4.27 – 4.29). Fibers aligned 

and bright structure and the bonding of the fibers through the length of the fibers and 

the bonding from one point strongly confirm the antimicrobial treatments were 

successful for each fabric sample.  

 
 

Figure 4.27: SEM images for treated powernet warp knitted fabric samples with 
Quat Silane antimicrobial agent; (Magnification X1100). 
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Figure 4.28: SEM images for treated flat warp knitted fabric samples with Quat 

Silane antimicrobial agent; (Magnification X1100). 

 

  
         

Figure 4.29: SEM images for treated weft knitted fabric samples with Quat Silane 
antimicrobial agent; (Magnification X1100). 

4.4.2.3 Silver Biocide antimicrobial agent 
Antimicrobial solution can easily be seen on the surface of the fibers and also the 

fiber bonding and compact structure strongly confirm the treatment was successful 
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for all fabric samples treated with silver embedded in titanium dioxide crystal. SEM 

images of fabric samples are shown in Figures (4.30 – 4.32). 

     
 

Figure 4.30: SEM images for treated powernet warp knitted fabric samples with 
silver biocide antimicrobial agent; (Magnification X1100). 

 

     
 

Figure 4.31: SEM images for treated flat warp knitted fabric samples with silver 
biocide antimicrobial agent; (Magnification X1100). 
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Figure 4.32: SEM images for treated weft knitted fabric samples with silver biocide 
antimicrobial agent; (Magnification X1100). 

4.4.2.4  Triclosan antimicrobial agent 
SEM images of fabric samples treated with Triclosan antimicrobial chemical agent 

are shown in Figures (4.33 - 4.35).  

     
  

Figure 4.33: SEM images for treated powernet warp knitted fabric samples with 
Triclosan antimicrobial agent; (Magnification X1100). 
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Figure 4.34: SEM images for treated flat warp knitted fabric samples with Triclosan 
antimicrobial agent; (Magnification X1100). 

 

   
       

Figure 4.35: SEM images for treated weft knitted fabric samples with Triclosan 
antimicrobial agent; (Magnification X1100). 

The bonding of the fibers, compact structure and alignment of the fibers strongly 

confirm the antimicrobial treatment with Triclosan antimicrobial agents was 

achieved.  
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4.4.2.5  Silver Chloride antimicrobial agent 
The bonding of the fibers, the compact structure and alignment of the fibers strongly 

confirm the antimicrobial treatments with silver chloride were successful. SEM 

images of treated fabric samples with silver chloride are presented in Figures (4.36 – 

4.38). 

    
Figure 4.36: SEM images for treated powernet warp knitted fabric samples with 

silver chloride antimicrobial agent; (Magnification X1100). 

   
Figure 4.37: SEM images for treated flat warp knitted fabric samples with silver 

chloride antimicrobial agent; (Magnification X1100). 
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Figure 4.38: SEM images for treated weft knitted fabric samples with silver chloride 

antimicrobial agent; (Magnification X1100). 

4.4.2.6 PHMB antimicrobial agent 
The bonding of 4-8 fibers together and forming a compact and brighter structure after 

the treatments show that the antimicrobial treatments were successful. SEM images 

of treated fabric samples with PHMB antimicrobial solutions are shown in Figures  

(4.39 – 4.41). 

.   

Figure 4.39: SEM images for treated powernet fabric samples with  PHMB  
antimicrobial chemical agent; (Magnification X1100). 
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Figure 4.40: SEM images for treated flat warp knitted fabric samples with PHMB 
antimicrobial chemical agent; (Magnification X1100). 

 

        Figure 4.41: SEM images for treated weft knitted fabric samples with PHMB 
antimicrobial chemical agent; (Magnification X1100). 
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4.5 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 

4.5.1 Silver Nitrate antimicrobial agent 
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the silver nitrate treated samples during treatment, treated samples were 

scanned using a Nicolet Nexus 470 Spectrophotometer with AVATAR Omni 

Sampler for Attenuated Total Reflectance (ATR) mode. The aggregated scans 

showing the absorbance across the infrared spectrum was acquired using OMNIC™ 

software.  

Figure 4.42 shows FTIR spectra of untreated and treated fabric samples with silver 

nitrate. The presence of the band at 1387 cm-1 indicates the presence of silver nitrate 

[199].  

Spectral comparisons of (a) treated powernet warp knitted showed the absorption 

bands (1387 cm-1) in the spectrum, (b) untreated powernet warp control fabric 

showed no absorption bands at 1387cm-1, (c) treated flat warp knitted fabric showed 

the absorption bands (1387 cm-1) in the spectrum,  (d) untreated flat warp control 

fabric showed no absorption bands at (1387cm-1),  (e) treated weft knitted fabric 

showed the absorption bands (1387 cm-1 ) in the spectrum, (f) untreated weft control 

knitted fabric samples showed no absorption bands at (1387cm-1).  
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     Figure 4.42: FTIR spectra of the fabric samples after treatment with silver nitrate            

(a) treated powernet warp, (b) untreated powernet warp control, 
                          (c) treated flat warp, (d) untreated flat warp control, (e) treated weft,             

(f) untreated weft control knitted fabric samples. 

4.5.2 Quat - Silane antimicrobial agent 
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the quat-silane treated samples during treatment, treated samples were 

scanned using a Nicolet Nexus 470 Spectrophotometer with AVATAR Omni 

Sampler for Attenuated Total Reflectance (ATR) mode. The aggregated scans 

showing the absorbance across the infrared spectrum was acquired using OMNIC™ 

software.  

Figure 4.43 shows FTIR spectra of untreated and treated fabric samples with quat-

silane. Combination bands observed in the 2000–1500 cm-1 region in the IR spectrum 

of antimicrobial quat-silane agent indicate that the compound contains the C-NH3 

grouping [200]. Spectral comparisons of (a) treated powernet warp knitted showed 

the absorption band (1800 cm-1 ) in the spectrum, (b) untreated powernet warp 

control fabric showed no absorption bands between 2000cm-1 and  1500cm-1, (c) 

treated flat warp knitted fabric showed the absorption band (1780 cm-1 ) in the 

spectrum,  (d) untreated flat warp control fabric showed no absorption bands between 

2000cm-1 and 1500cm-1,  (e) treated weft knitted fabric showed the absorption band 
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(1790 cm-1 ) in the spectrum, (f) untreated weft control knitted fabric samples showed 

no absorption bands between 2000cm-1 and 1500cm-1.  

 
       Figure 4.43: FTIR spectra of the fabric samples after treatment with Quat-Silane  

(a) treated powernet warp, (b) untreated powernet warp control, 
                              (c) treated flat warp, (d) untreated flat warp control, (e) treated  

weft, (f) untreated weft control knitted fabric samples. 

4.5.3 Silver Biocide antimicrobial agent 
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the silver biocide treated samples during treatment, treated samples were 

scanned using a Nicolet Nexus 470 Spectrophotometer with AVATAR Omni 

Sampler for Attenuated Total Reflectance (ATR) mode. The aggregated scans 

showing the absorbance across the infrared spectrum was acquired using OMNIC™ 

software.  

Figure 4.44 shows FTIR spectra of untreated and treated fabric samples with silver 

biocide embedded in titanium dioxide crystal. The presence of the band 1200-1300 

cm-1 indicates the presence of silver chloride (AgCl) [201]. As the presence of band 

at 768 cm-1 indicates the presence of titanium dioxide (TiO2), silver was considered 

for the analysis [202]. Micro-structured TiO2 is the carrier of the active component.  
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Spectral comparisons of (a) treated powernet warp knitted showed the absorption 

bands (768 cm-1  and 1250 cm-1 ) in the spectrum, (b) untreated powernet warp 

control fabric showed no absorption bands between 1200cm-1 and  1300cm-1, (c) 

treated flat warp knitted fabric showed the absorption bands (768 cm-1  and 1240 cm-1 

) in the spectrum,  (d) untreated flat warp control fabric showed no absorption bands 

between 1200cm-1 and 1300cm-1,  (e) treated weft knitted fabric showed the 

absorption bands (768 cm-1  and 1250 cm-1 ) in the spectrum, (f) untreated weft 

control knitted fabric samples showed no absorption bands between 1200cm-1 and 

1300cm-1.  

 
     Figure 4.44: FTIR spectra of the fabric samples after treatment with silver 

biocide  embedded in titanium dioxide crystal 
                    (a) treated powernet warp, (b) untreated powernet warp control, 

                            (c) treated flat warp, (d) untreated flat warp control, (e) treated 
weft, (f) untreated weft control knitted fabric samples. 

4.5.4 Triclosan antimicrobial agent 
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the Triclosan treated samples during treatment, treated samples were 

scanned using a Nicolet Nexus 470 Spectrophotometer with AVATAR Omni 

Sampler for Attenuated Total Reflectance (ATR) mode. The aggregated scans 

showing the absorbance across the infrared spectrum was acquired using OMNIC™ 

software.  
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Figure 4.45 shows FTIR spectra of untreated and treated fabric samples with 

Triclosan. The spectrum search in the FTIR has confirmed that the sample shows the 

presence of the antimicrobial agent Triclosan, as indicated by the peak for 

antimicrobial Triclosan at wave number 1445 cm-1, where the reference peak C-O= 

at wave number 1475cm-1 [ 203].  

Spectral comparisons of (a) treated powernet warp knitted showed the absorption 

bands (1445 cm-1 and 1475 cm-1  ) in the spectrum, (b) untreated powernet warp 

control fabric showed no absorption bands at 1445cm-1 and  1475cm-1, (c) treated flat 

warp knitted fabric showed the absorption bands (1445 cm-1 and 1475 cm-1  ) in the 

spectrum,  (d) untreated flat warp control fabric showed no absorption bands at 

1445cm-1 and    1475cm-1,  (e) treated weft knitted fabric showed the absorption 

bands at 1445cm-1 and  1475cm-1 in the spectrum, (f) untreated weft control knitted 

fabric samples showed no absorption bands at 1445cm-1 and  1475cm-1 .  

 
      Figure 4.45: FTIR spectra of the fabric samples after treatment with Triclosan                 

(a) treated powernet warp, (b) untreated powernet warp control, 
                            (c) treated flat warp, (d) untreated flat warp control, (e) treated 

weft, (f)untreated weft control knitted fabric samples. 

4.5.5 Silver Chloride antimicrobial agent  
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the silver chloride treated samples during treatment, treated samples 
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were scanned using a Nicolet Nexus 470 Spectrophotometer with AVATAR Omni 

Sampler for Attenuated Total Reflectance (ATR) mode. The aggregated scans 

showing the absorbance across the infrared spectrum was acquired using OMNIC™ 

software. 

Figure 4.46 shows FTIR spectra of untreated and treated fabric samples with silver 

chloride. The presence of the band 1200-1300 cm-1 indicates the presence of silver 

chloride (AgCl) [201].  Spectral comparisons of (a) treated powernet warp knitted 

showed the absorption bands (1223 cm-1 ) in the spectrum, (b) untreated powernet 

warp control fabric showed no absorption bands between 1200cm-1 and  1300cm-1, 

(c) treated flat warp knitted fabric showed the absorption bands (1230 cm-1 ) in the 

spectrum,  (d) untreated flat warp control fabric showed no absorption bands between 

1200cm-1 and 1300cm-1,  (e) treated weft knitted fabric showed the absorption bands 

(1205 cm-1 ) in the spectrum, (f) untreated weft control knitted fabric samples showed 

no absorption bands between 1200cm-1 and 1300cm-1. The presence of the band 

between 1200 -1300 cm-1 indicates the presence of silver chloride (AgCl).  

 
   Figure 4.46: FTIR spectra of the fabric samples after treatment with silver chloride         

(a) treated powernet warp, (b) untreated powernet warp control, 
                    (c) treated flat warp, (d) untreated flat warp control, (e) treated weft,  

                        (f) untreated weft control knitted fabric samples. 
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4.5.6 PHMB antimicrobial agent 
In order to identify the infrared absorption spectrum and detect any changes in the 

structure of the PHMB treated samples during treatment, treated samples were 

scanned using a Nicolet Nexus 470 Spectrophotometer with AVATAR Omni 

Sampler for Attenuated Total Reflectance (ATR) mode. The aggregated scans 

showing the absorbance across the infrared spectrum was acquired using OMNIC™ 

software.  

Figure 4.47 shows FTIR spectra of untreated and treated fabric samples with PHMB. 

PHMB has a strong absorbance between 1200 and 1700 cm-1 [153]. Spectral 

comparisons of (a) treated powernet warp knitted showed the absorption bands (1250 

cm-1 and 1350 cm-1) in the spectrum, (b) untreated powernet warp control fabric 

showed no absorption bands between 1200cm-1 and 1700cm-1, (c) treated flat warp 

knitted fabric showed the absorption bands (1250 cm-1 and 1350 cm-1) in the 

spectrum,  (d) untreated flat warp control fabric showed no absorption bands between 

1200cm-1 and 1700cm-1,  (e) treated weft knitted fabric showed the absorption bands 

(1250 cm-1 and 1350 cm-1  ) in the spectrum, (f) untreated weft control knitted fabric 

samples showed no absorption bands between 1200cm-1 and 1700cm-1.  
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            Figure 4.47: FTIR spectra of the fabric samples after treatment with PHMB                    

(a) treated powernet warp, (b) untreated powernet warp control, 
                                  (c) treated flat warp, (d) untreated flat warp control, (e) treated 

weft, (f) untreated weft control knitted fabric samples. 

4.6 Physical and Mechanical Properties 

Physical and mechanical properties were tested in order to evaluate the fabric 

properties in terms of bursting strength, air permeability, stiffness and drapeability 

before and after antimicrobial treatments. 

4.6.1 Bursting strength 
Bursting strength was tested by following ASTM D3787 using Ball Bursting Scott 

Tester. The results are shown in Figures (4.48 – 4.50). A small significant decrease 

in bursting strength was observed after antimicrobial treatments. Lowest values were 

obtained for samples treated with PHMB. This is attributed to cross linker in the 

antimicrobial solution. It is thought to decrease the elasticity of the fabric resulting in 

a decrease to the bursting strength of the fabrics samples. 
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Figure 4.48: Bursting strength for untreated and treated powernet warp knitted fabric  
samples. 
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Figure 4.49: Bursting strength for untreated and treated flat warp knitted fabric  
samples. 
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Figure 4.50: Bursting strength for untreated and treated weft knitted fabric samples. 

4.6.1.1 Effect of type of antimicrobial agent on bursting strength 
ANOVA one-way was used to analyze the effect of type of antimicrobial agent on 

bursting strength. Using one way analysis of variance, p-value was found as 0.01. 

The result of the analysis was shown in Table 4.43. As p-value is smaller than 0.05, 

it can be estimated that types of antimicrobial agent had a significant effect on 

bursting strength.  

 Table 4.43: ANOVA and estimation of parameters from bursting strength. 

ANOVA one way 
Source of 
Variance SS df MS F P-value F crit 

Between 
Groups 80.0833 1 80.0833 8.1028 0.0173 4.9646 

Within Groups 98.8333 10 9.8833    

Total 178.9166 11     

4.6.2 Air permeability 
Air permeability was tested by following ASTM D737 by using Fraiser Air 

Permeability Tester.  

• For Powernet fabrics; 

– 2,75 inch test area (relaxed state)  

– Orifice Diameter = 16mm 
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• For Weft knitted fabrics; 

– 2,75 inch test area (relaxed state) 

– Orifice Diameter = 8mm 

• For Warp knitted fabrics; 

– 2,75inch test are (relaxed state) 

– Orifice Diameter = 6mm 

A small significant decrease in air permeability was observed after antimicrobial 

agent procedures. Powernet fabrics showed the highest air permeability before and 

after treatments while weft knitted fabrics showed the lowest air permeability. The 

results are presented in Figures (4.51-4.56).  
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Figure 4.51: Air permeability for untreated and treated samples with silver nitrate. 
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Figure 4.52: Air permeability for untreated and treated samples with quat-silane. 
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Figure 4.53: Air permeability for untreated and treated samples with silver biocide. 

Air Permeability

506

79
119

510

83
123

0

120

240

360

480

600

1 2 3

R
at

e 
of

 A
ir

 F
lo

w
 

(f
t3 /ft

2 /m
in

/p
re

ss
ur

e)
(R

ev
er

se
 o

f A
ir

 P
er

m
ea

bi
lit

y)

Untreated
Treated

Powernet Warp knitted Weft knitted

 

Figure 4.54: Air permeability for untreated and treated samples with Triclosan. 
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Figure 4.55: Air permeability for untreated and treated samples with silver chloride. 
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Figure 4.56: Air permeability for untreated and treated samples with PHMB. 

The amount of finish and coating applied on the fabric may have an effect upon air 

permeability by bringing a change in the length of airflow paths through a fabric. Air 

permeability are also related with thermal comfort of fabrics. When the results are 

compared with parachute nylon/spandex fabrics, the rate of air flow is between 

(200ft3/ft2/min/pressure). This shows us the fabrics have a good air permeability even 

after all antimicrobial treatments. Powernet fabric samples showed the highest air 

permeability before and after treatment among the other treatments. The powernet 

fabrics were found the least elastic fabrics by stretch tests when compared with flat 

warp and weft knitted structures (can be seen in section 4.6.5). The results can be 

attributed to that. Additionally, the tightness, thickness, porosity, construction, 

geometry of the fabric and the fabric cover factor (fabric surface structure/ total 

fabric surface) are important aspects of air permeability.  

4.6.2.1 Effect of type of antimicrobial agent on air permeability 
ANOVA one-way was used to analyze the effect of type of antimicrobial agent on air 

permeability. Using one way analysis of variance, p-value was found as 0.008. The 

result of the analysis was shown in Table 4.44. As p-value is smaller than 0.05, it can 

be estimated that types of antimicrobial agent had a significant effect on bursting 

strength.  
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Table 4.44: ANOVA and estimation of parameters from air permeability. 

ANOVA one way 
Source of 
Variance SS df MS F P-value F crit 

Between 
Groups 560.3333 1 560.3333 21.8595 0.0008 4.9646 

Within 
Groups 256.3333 10 25.63333    

Total 816.6666 11     

4.6.3 Stiffness 
Stiffness was tested in cross and machine direction by following ASTM D5732, 

method  using the Stiffness Cloth Tester, IDM Instrument. The results are presented 

in Figures (4.57- 4.62). The stiffness showed an increase for all fabric samples after 

antimicrobial treatments for all types of antimicrobial chemicals. The treated samples 

with PHMB showed the highest stiffness followed by silver nitrate treated samples. 

This is attributed to the cross-linker used for the antimicrobial solution as an 

auxiliary chemical. The high stiffness of the PHMB treated samples was easily 

observed also by hand. The samples treated with silver nitrate also gave higher 

stiffness values. This is attributed to polyurethane and epoxy resin auxiliary 

chemicals in the antimicrobial solutions. 
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Figure 4.57: Stiffness (CD) for untreated and treated samples for powernet warp 
knitted fabrics. 
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Figure 4.58: Stiffness (MD) for untreated and treated samples for powernet warp 
knitted fabrics. 
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  Figure 4.59: Stiffness (CD) for untreated and treated samples for flat warp knitted 
fabrics. 
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Figure 4.60: Stiffness (MD) for untreated and treated samples for flat warp knitted 
fabrics. 
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Figure 4.61: Stiffness (CD)for untreated and treated samples for weft knitted fabrics. 
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 Figure 4.62: Stiffness (MD) for untreated and treated samples for weft knitted  
fabrics. 

4.6.3.1 Effect of type of antimicrobial agent on stiffness 
ANOVA one-way was used to analyze the effect of type of antimicrobial agent on 

stiffness. Using one way analysis of variance, p-value was found as 0.0005. The 

result of the analysis was shown in Table 4.45. As p-value is smaller than 0.05, it can 

be estimated that types of antimicrobial agent had a significant effect on stiffness.  

Table 4.45: ANOVA and estimation of parameters from stiffness. 

ANOVA one way 
Source of 
Variance SS df MS F P-

value F crit 

Between 
Groups 425.0417 1 425.0417 16.4363 0.0005 4.3009 

Within 
Groups 568.9167 22 25.85985    

Total 993.9583 23     

4.6.4 Drapeability 
Drapeability was tested by following BS 5058 using Cusick Drapemeter. The results 

are presented in Figures (4.63-4.65). The drapeability was decreased for all fabric 

samples after treatment with all antimicrobial chemicals. This is attributed to the 

decrease in elasticity of the fabric samples after antimicrobial treatments. Powernet 

warp knitted fabrics showed the lowest drapeability and this is attributed to more 

open and least elastic structure of powernet warp knitted fabrics when compared with 

the other two fabrics (also can be seen in section 4.6.5). 
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Figure 4.63: Drapeability for untreated and treated powernet warp knitted fabrics. 
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Figure 4.64: Drapeability values for untreated and treated flat warp knitted fabrics. 

Weft knitted fabric samples showed the highest drapeability before and after 

treatment and this is due to weft knitted fabrics are more elastic than powernet warp 

knitted fabrics. Treated samples with PHMB showed the lowest drapeability and this 

is attributed to the antimicrobial treatment procedure to link the PHMB to 

Nylon/spandex fabrics by crosslinking which caused an increase in stiffness and a 

decrease in drapeability. Drapeability also can give an idea about comfortable 

wearing performance. It may not be evaluated or seen at the use, but about the fabric 

texture. 
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Figure 4.65: Drapeability values for untreated and treated weft knitted fabrics. 

4.6.4.1 Effect of type of antimicrobial agent on drapeability 
ANOVA one-way was used to analyze the effect of type of antimicrobial agent on 

drapeability. Using one way analysis of variance, p-value was found as 0.003. The 

result of the analysis was shown in Table 4.46. As p-value is smaller than 0.05, it can 

be estimated that types of antimicrobial agent had a significant effect on drapeability.  

Table 4.46: ANOVA and estimation of parameters from drapeability. 

ANOVA one way 
Source of 
Variance SS df MS F P-

value F crit 

Between 
Groups 456.3333 1 456.3333 14.5483 0.0034 4.9646 

Within 
Groups 313.6666 10 31.3666    

Total 770 11     

4.6.5 Time dependent fabric growth of knitted fabrics 
Method based on ASTM D2594 Test Method was followed to test the fabric growth 

of the fabrics. The test equipment was set up as shown in Figure 4.66. The bench 

marks were taken as 0.7cm for powernet warp knitted fabrics and 0.8cm for flat warp 

knitted fabrics in warp direction, and 0.9cm for weft knitted fabrics in weft direction. 

The fabrics were tested and the fabric growth behavior was observed during 12 

weeks. The results are presented in Figures (4.67 – 4.69). For four weeks all fabrics 

showed not any change in fabric growth. According to the records after four weeks, a 
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small significant change in fabric growth were observed and recorded and calculated 

using Eq. 4.3. 

 

Figure 4.66: Testing the time dependent fabric growth of knitted fabrics. 

 Fabric Growth 60s,  % = 100 X ( B – A ) / A                                                  (4.3) 

    A = Original distance btw. bench marks prior to tension force, mm (in.) 

B = Distance btw. bench marks, mm (in.) measured after release of the tension, 

force following 60s. recovery. 

Weights were attached to the bottom hanger of the hanger assembly, providing total  

tensions of 2,27kg to the specimen ± 1%.   

Apowernet = 0,70cm 

Bpowernet = 0,71cm  

Aflat warp = 0,80cm 

Bflat warp = 0,81cm  

Aweft knitted = 0,90cm 

Bweft knitted = 0,91cm 

For the fabric growth, the average of two specimens to the nearest 1%  was 

calculated as below: 

For powernet fabric: 1.43 % 

Flat warp knitted fabric: 1.25 % 

Weft knitted fabrics: 1.1% 
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        Figure 4.67: Fabric growth for powernet warp knitted fabrics. 
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       Figure 4.68: Fabric growth for flat warp knitted fabrics. 
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Figure 4.69: Fabric growth for weft knitted fabrics. 
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These results also can give an idea about the wearing performances of these 

garments. They are usually worn for up to two years until they lose the tension that 

they are required to give.  

Weft knitted fabrics were observed as more elastic than powernet and flat warp 

knitted fabrics. It is attributed to more elastic structure of weft knitted fabrics than 

warp knitted fabrics.  

4.6.6 Fabric structural properties and porosity 
Fabric structural properties and porosity properties were tested and calculated using 

Eq. 4.4. and the results are presented in Table 4.47. Pad-dry-cure and exhaustion 

control samples were identified without using any antimicrobial agent.  

ε = (1 – ρa /ρb)                                                                                        (4.4)                             

ε = Fabric porosity 

ρa = Fabric density (g/cm3) = [ (Fabric weight per unit area) / Fabric thickness ] 

ρb = Fiber density (g/cm3), for ρnylon 6.6 = 1.14 g/cm3 
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Table 4.47: Fabric structural properties and porosity. 

Samples Courses
per cm 

Wales 
per cm 

Weight
(g/m2) 

Fabric thickness 
(mm) 

Porosity,
% 

Powernet silver nitrate 14 16 246 0.60 0.64 

Flat warp silver nitrate 26 20 169 0.68 0.73 

Weft silver nitrate 20 22 282 0.83 0.70 

Powernet Quat-Silane 14 18 244 0.63 0.66 

Flat warp Quat-Silane 22 24 167 0.70 0.79 

Weft Quat-Silane 20 20 277 0.82 0.70 

Powernet PHMB 12 17 256 0.67 0.67 

Flat warp PHMB 25 21 180 0.73 0.79 

Weft PHMB 20 22 290 0.89 0.72 

Powernet Triclosan 13 17 255 0.65 0.65 

Flat warp Triclosan 24 20 177 0.70 0.78 

Weft Triclosan 20 14 287 0.85 0.71 

Powernet silver chloride 13 18 242 0.58 0.63 

Flat warp silver chloride 23 19 165 0.65 0.77 

Weft silver chloride 22 15 278 0.80 0.69 

Powernet silver biocide 13 17 245 0.58 0.63 

Flat warp silver biocide 27 20 167 0.67 0.78 

Weft silver biocide 19 24 280 0.68 0.64 

Powernet scoured/prewashed  
control 13 17 243 0.58 0.68 

Flat warp scoured/prewashed  
control 27 20 166 0.68 0.81 

Weft scoured/prewashed  control 18 26 279 0.70 0.69 

Powernet pad-dry-cure control 13 18 252 0.60 0.67 

Flat warp pad-dry-cure control 23 21 173 0.69 0.80 

Weft pad-dry-cure control 18 22 283 0.73 0.70 

Powernet exhaustion control 13 17 253 0.62 0.69 

Flat warp exhaustion control 24 20 175 0.69 0.80 

Weft exhaustion control 17 21 284 0.82 0.73 
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Fabric thickness values for treated samples are higher than those for untreated and 

washed ones due to a small significant increase in course and wales per cm and 

shrinkage upon washing. Fabric thickness values for weft knitted fabrics were found 

higher than warp knitted fabrics for both control and treated samples. This is 

attributed to higher bulkiness of weft knitted fabrics than warp knitted fabrics. Fabric 

thickness values for treated samples with PHMB antimicrobial agents are higher than 

those for treated with other ones due to crosslinking of PHMB to Nylon/spandex 

fabrics which caused a swelling of fibers during processing. Porosity values are 

higher for flat warp knitted fabrics than powernet warp knitted and weft knitted 

fabrics for control and treated samples due to high fabric density. Porosity values 

were found not any different for control and treated samples. This is attributed to 

high elastane percentage in fabric structures. The tightness of the fabric was observed 

as an important aspect of porosity.   

It’s found the antimicrobial chemistry altered the mechanical and physical properties 

of the treated samples and thermal conditions as temperature, duration of the 

application did not alter the the mechanical and physical properties of the treated 

samples. 

4.7 Comfort Properties 

The thermophysiological properties were tested in order  to evaluate the comfort 

performance of the burn garments which are worn for up to two years. Pressure 

garments should protect their thermophyiological comfort properties before and after 

antimicrobial treatments. For this, untreated and treated fabric samples were tested in 

terms of thermal resistance (Rct ) and isolation properties (clo unit). The results are 

presented in Tables (4.48 - 4.53). A small siginificant increase was observed in terms 

of thermal resistance (Rct) (Tog) and isolation (It) (clo) properties for fabrics samples 

after treated with different types of antimicrobials.  

Total Thermal Resistance (Rct), [(°ΔC)(m2)/W], the total resistance to dry heat 

transfer (insulation) for a fabric system including the surface air layer. 

Total Insulation Value (It), [clo], indicates the thermal resistance measured in units 

of clo which indicates the insulating ability of the test material. 
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Table 4.48: Sweating thermal hot plate results for untreated and treated with silver  
nitrate samples. 

Fabric 
Samples Untreated Treated 

 Rct It Rct It 
Powernet 
warp knitted 0.060 0.387 0.062 0.400 

Flat warp 
knitted 0.076 0.488 0.077 0.495 

Weft knitted 0.072 0.465 0.073 0.470 
 

Table 4.49: Sweating thermal hot plate results for untreated and treated with Quat-
Silane samples. 

Fabric 
Samples Untreated Treated 

 Rct It Rct It 
Powernet 
warp knitted 0.060 0.387 0.061 0.394 

Flat warp 
knitted 0.076 0.488 0.077 0.495 

Weft knitted 0.072 0.465 0.073 0.470 
 

Table 4.50: Sweating thermal hot plate results for untreated and treated with Silver 
Biocide samples. 

Fabric 
Samples Untreated Treated 

 Rct It Rct It 
Powernet 
warp knitted 0.060 0.387 0.061 0.394 

Flat warp 
knitted 0.076 0.488 0.077 0.495 

Weft knitted 0.072 0.465 0.073 0.470 
 

Table 4.51: Sweating thermal hot plate results for untreated and treated with 
Triclosan  samples. 

Fabric 
Samples Untreated Treated 

 Rct It Rct It 
Powernet 
warp knitted 0.060 0.387 0.061 0.394 

Flat warp 
knitted 0.076 0.488 0.077 0.495 

Weft knitted 0.072 0.465 0.073 0.470 
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Table 4.52: Sweating thermal hot plate results for untreated and treated with Silver 
Chloride samples. 

Fabric 
Samples Untreated Treated 

 Rct It Rct It 
Powernet 
warp knitted 0.060 0.387 0.061 0.394 

Flat warp 
knitted 0.076 0.488 0.077 0.495 

Weft knitted 0.072 0.465 0.073 0.470 
 

Table 4.53: Sweating thermal hot plate results for untreated and treated with PHMB  
samples. 

Fabric 
Samples Untreated Treated 

 Rct It Rct It 
Powernet 
warp knitted 0.060 0.387 0.062 0.400 

Flat warp 
knitted 0.076 0.488 0.077 0.495 

Weft knitted 0.072 0.465 0.073 0.470 
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Figure 4.70: A comparison of thermal resistance for treated and control samples.  

The results were compared with a standard sportwool of a famous football team to 

have an idea about the evaluation of the thermophysiological comfort properties of 

the fabric samples [9]. Thermal resistance values of the fabric samples varies from 

0.060 m2Ko/W to 0.077 m2Ko/W while the thermal resistance results for a 

comfortable sportwool is 0.088 m2Ko/W. And this comparison can be evaluated as 

the fabric samples are comfortable in terms of thermophysiological comfort 
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properties. A comparison of thermal resistance for treated and control samples is 

shown as in Figure 4.70. Fabric construction, thickness, tightness, and the cover 

factor of the structure are important factors on the thermophysiological comfort 

properties of fabrics.  

4.7.1  Correlation between the thermal resistance for control and treated  
samples  
Thermal resistance were measured from control and treated samples. Regression 

analysis of the results showed that there was a correlation between control and 

treated samples with as the lineer formula, y = 0.2148x – 0.0482, R2 = 0.9511 as 

shown in Figure 4.71. It is observable from the figure that thermal resistance for 

control and treated samples were strongly correlated. Antimicrobial treatment 

procedures had a significant effect on thermal resistance. 
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        Figure 4.71: Thermal resistance for treated samples from control samples. 
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5. CONCLUSIONS 

Medical textile sector focused on antimicrobial finishes developing quality on 

rehabilitation by increasing the effectiveness and functions. Burn pressure garment 

industry is one of the crucial markets since millions of burn accidents are being 

reported every year. The rehabilitation expenses for burn injuries are the highest 

when compared with other injuries [204]. The research is based on imparting durable 

antimicrobial characteristics to elastomeric fabrics for burn pressure garments to 

provide infection protection by improving the healing properties. Novel elastomeric 

fabrics for burn pressure garments were developed having durable antimicrobial 

property using various antimicrobial technologies.  

XPS, SEM and FTIR analysis were conducted to examine the achievement of the 

treatments by using antimicrobial chemical agents on pressure garment fabrics. SEM 

analysis was used to determine the various antimicrobial solutions appeared on the 

fabric and fiber surfaces for all antimicrobial treated samples. FTIR analysis was 

used to identify the infrared absorption spectrum and detect any changes in the 

structure for all antimicrobial treated samples. XPS analysis was used to observe the 

silver efficacy of the treated samples by silver antimicrobial chemical agents. 

Antimicrobial test results following AATCC 100 Test Method [185] showed 99% 

reduction of bacteria for powernet warp knitted fabrics treated with silver nitrate, 

silver chloride and PHMB antimicrobial agent procedures. For flat warp knitted and 

weft knitted fabrics treated with PHMB antimicrobial agent procedure also 99% 

reduction of bacteria was found. The percentage reduction of bacteria for fabric 

samples was found between (98.30% - 99.98%) for each antimicrobial agent 

procedure. Launderings applied to see the effectiveness of these antimicrobial agents 

in long term effectiveness. The antimicrobial activity remained the same after 5 

launderings for fabric samples treated with six different antimicrobial treatments. A 

small significant decrease in antimicrobial activity was observed even after 50 

launderings. 50 launderings equal to 1 year use for home use and 2 months for 
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hospital use due to laundering conditions in hospitals are more aggresive. The results 

for bacterial reductions for each antimicrobial agent procedure were satisfying for 

fabric samples. These treatments also yield good results to prevent odor, decrease 

infection by preventing and/or blocking microbial growth according to the 

antimicrobial mechanism and support reducing of scarring by providing a hygienic 

environment around the scar. Antimicrobial finish inhibits odor-causing 

microorganisms from colonizing and growing in the textile and thus prevents 

microorganisms from degrading the product. These are also good results to decrease 

costs by providing an appropriate level of rehabilitation. 

Commercial wireless pressure sensors were used to control the pressures of burn 

pressure garments at an acceptable optimal medical range (0-15mmHg)  before and 

after each antimicrobial treatment. Wireless pressure sensors were used for the first 

time in this study while imparting an antimicrobial activity to burn pressure 

garments. Treatments were conducted under controlled pressures before and after 

each antimicrobial agent procedure. Pressure measurements were taken from calf and 

ankle after each antimicrobial agent procedure for each pressure garment. The 

pressures for the ankle by confirming the Laplace equation gave the highest 

pressures before and after each antimicrobial treatment. Higher pressures were found 

after six antimicrobial treatments for three different fabrics. Weft knitted garments 

gave the highest pressures (5.7mmHg-6.3mmHg) before and after each antimicrobial 

agent procedure while the lowest pressures (5.0mmHg- 5.6mmHg) were observed for 

powernet warp knitted garments. It’s found that the elasticity showed a small 

significant decrease and it has attributed due to a small significant shrinkage during 

processes. The pressures were measured between (5.0mmHg-6.3mmHg) which is in 

the acceptable optimal medical range that reduces the degree of hypertrophy, 

encourages the formation of normal pliable skin tissue and reduces the extent of 

scarring. A random pressure (at low-pressure class) value was picked for this work. 

They are usually custom-made garments and the pressures are usually determined by 

using lower or higher sizes of garments which vary for each patient and the 

rehabilitation procedure. 

Physical and mechanical properties were also tested in terms of air permeability, 

bursting strength, stiffness and drapeability. The air permeability, the bursting 

strength and the drapeability showed a small significant decrease after antimicrobial 
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agent procedures while the stiffness showed a small significant increase for fabric 

samples. This is attributed to a small significant decrease in elasticity after processes. 

Lowest bursting strength and drapeability values and highest stiffness values were 

found for fabric samples treated with PHMB antimicrobial agents. This is attributed 

to bonding of antimicrobial chemical to the fibers by cross links which decreased the 

elasticity of the fabric samples by limiting the movement of fibers. Powernet fabric 

samples showed the highest air permeability before and after each antimicrobial 

treatment. This is attributed to more open structure of powernet fabrics. Highest air 

permeability were observed for weft knitted fabrics which is attributed to tighter 

structure of weft knitted fabrics when compared with warp knitted fabrics. Time 

dependent fabric growth of knitted fabrics was observed during 12 weeks. A small 

significant change in fabric growth were observed after four weeks. Weft knitted 

fabrics were found as more elastic  than warp knitted fabrics. These results also can 

give an idea about the wearing performances of these garments. Usually pressure 

garments start to lose their elasticity minimum in 3 weeks and maximum in 3 months 

depending on the conditions. Fabric thickness values for treated samples with PHMB 

antimicrobial agents are higher than those for treated with other ones due to 

crosslinking of PHMB to Nylon/spandex fabrics which caused a swelling of fibers 

during processing. Porosity values are higher for flat warp knitted fabrics than 

powernet warp knitted and weft knitted fabrics for control and treated samples due to 

high fabric density. Porosity values were found not any different for control and 

treated samples. This is attributed to high elastane percentage in fabric structures. 

The tightness of the fabric was observed as an important aspect of porosity.   

Also comfort properties were researched in terms of thermal resistance (Rct) and 

isolation properties (It) in order to evaluate the comfort performances of fabric 

samples before and after antimicrobial treatments which are worn for up to two 

years. The thermophysiological test results showed that all treated samples with all 

antimicrobial agent procedures provide thermophysiological comfort. All test 

materials showed a small significant increase after each antimicrobial agent 

procedure. The powernet fabrics showed the lowest thermal resistance (0.394-0.400) 

while the flat warp knitted fabrics showed the highest thermal resistance (0.495). 

These results show that after antimicrobial treatments, the fabric samples can provide 

comfort by providing microclimate and preventing excess sweating of patients. This 
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will help to provide a hygienic environment during wound healing stage by 

eliminating allergic reactions which will help to prevent the risk of infection.  

Since they offer different alternatives by having different antimicrobial mechanisms, 

various types of antimicrobial technologies were studied including silver compunds, 

polyhexamethylene biguanide (PHMB), quaternary ammonium compounds (QAC’s) 

and Triclosan and various types of fabrics were developed using various types of 

antimicrobial agent procedures. Silver antimicrobials with many binding sites on 

their surfaces accelerate wound healing, while quaternary ammonium compounds are 

the most durable due to covalent bonding with textiles. Triclosan being a relatively 

small molecule, can also act like a disperse dye and can be used by exhaustion and 

are chemically stable, so that they’re eliminated from the body slowly. But Triclosan 

safety is under review by the Food and Drug Administration (FDA) and Health 

Canada. It’s found out that Triclosan is causing some allergic reactions and 

damaging immune system according to Hygiene Hypothesis. At lower 

concentrations, Triclosan appears bacteriostatic. PHMB overcomes fabric yellowing 

and can achieve a strong binding to the textile surface because of having a high 

molecular weight containing an average of 16 biguanide units in the polymer which 

provides more cationic sites per molecule.  
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6. RECOMMENDATIONS FOR FUTURE WORKS 

The works that have been conducted in this research were focused on the 

development of novel elastomeric fabrics for burn pressure garments having durable 

antimicrobial activity using various technologies by controlling the pressures using 

wireless pressure sensors.  

We outlined the optimum working conditions with antimicrobial agents for highly 

elastane fabrics that are used for the management of burn scars. It was difficult to 

study with hydrophobic highly elastane nylon fabrics to impart the functional finish 

because of low absorbency (%). First we made some trials using home washing for 

pretreatment, but the pick up that we observed was too low. So for pretreatment we 

validate a method to cope with the problem and applied Dupont procedure at which 

we got good results for increasing the pick up of the antimicrobial chemical agents. 

At this procedure, each sample was washed separately in different beakers using 

Ahiba Nuance machine. Then the samples were rinsed for 10 cycles in order to apply 

a pure rinsing before antimicrobial treatment procedures. Also before finishing, we 

made some trials on pick up using wetting agent in order to increase the pick up of 

the antimicrobial solution. It was not that different, so in order not to increase the 

variables in the study, we didn’t use it. Another issue is, the stiffness showed a small 

significant increase after processing. For the first step, I didn’t want to use more 

variables. I want to make some trials to eliminate this problem by using softeners.  

This work is continuing with the application of different concentrations of different 

antimicrobial finishes to burn pressure fabrics with a view of to determining their 

effectiveness on compression function clinical and rehabilitation performance. 

Animal tests can also be conducted to see the rehabilitation rates of these fabrics 

using a rat or mouse dorsal model. It can also give an idea about the elimination of 

allergic reactions on living organisms.  
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