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UYARLAMALI TERS KONTROL 

ÖZET 

Uyarlamalı ters kontrol sistemleri, kontrol edilecek sistem hakkında tam bilgi sahibi 

olunmadığı ya da bu sistemin dinamiklerinin zamanla yavaşça değişim gösterdiği 

durumlarda kullanılması gerekli olabilecek açık ve kapalı çevrimli olabilen kontrol 

sistemleridir. Dinamikleri hakkında tam bilgiye sahip olunamayan sistemin kontrol 

edilebilmesi, sistem tanımlanması yöntemine dayanır. 

Uyarlamalı FIR filtreler kullanılarak bilinmeyen sistemin direk modeli ya da ters 

modeli elde edilebilir. Genellikle bu sistemlerde hem direk model hem de ters model 

kontrol çevrimi sırasında elde edilir. Elde edilen ters model, kontrol organı olarak 

sisteme seri bağlanır ve böylelikle sistemin dinamiklerini iptal etmesi amaçlanır. Bu 

şekilde komut girişi ile sistemin cevabı arasındaki transfer fonksiyonu 1’e eşit olur 

ve sistem komut girişini izler. Birebir ters modelin oluştuğu durumlarda sistemin 

cevabının çok ani olacağı göz önünde bulundurularak, referans model tersi 

oluşturulması hedeflenir. Bu durumda kontrol organının transfer fonksiyonu sistemin 

transfer fonksiyonunu yine iptal eder, fakat sistemin cevabı referans modelin cevabı 

şeklinde olur. Bu şekilde istenen karakterde geçici rejim cevabı elde edilir. 

Bu çalışmada öncelikle uyarlamalı ters kontrol sistemlerinin teorik esasları ele 

alınmıştır. Daha sonra sistemin performansını etkileyen parametreler modelleme 

süreçleri üzerinde incelenmiştir. Uyarlamalı ters kontrol sisteminin başarısı direk ve 

ters modelleme süreçlerinin başarısı ile doğru orantılıdır. Modeller bilinmeyen 

sisteme ne kadar yakınsarsa o derece hassas kontrol mümkün olacaktır. 

Modelleme süreçleri üzerinde parametre seçimine karar verildikten sonra temel 

uyarlamalı ters kontrol şeması esas alınarak, dinamikleri zamanla yavaşça değişen 

kararlı bir sistem için kontrol sistemi benzetimi yapılmıştır. Benzetim uygulamaları 

Matlab programında hazırlanmıştır. Son olarak, kararsız davranış gösteren top-kiriş 

düzeneği üzerinde, uyarlamalı ters kontrol sisteminin, sisteme bozucu etkidiği 

durumlardaki performansı incelenmiştir. 
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ADAPTIVE INVERSE CONTROL 

SUMMARY 

Control of the plants whose dynamics are not known or slowly time variable needs a 

different approach than the conventional control methods. Controls of such plants are 

available with adaptive inverse control systems, which can work either open-loop or 

closed-loop. Controls of those plants are based on the system identification methods. 

Direct or inverse models of the unknown plants are obtained by utilizing adaptive 

FIR filters. Usually both direct and inverse models are obtained within the control 

cycle. Inverse model of the unknown plant is used in the controller position to cancel 

the plant dynamics. Thus the transfer function between the input and the output 

signal is unity and the output follows the input signal just as is. If the controller is a 

perfect inverse then the system will response suddenly. In such cases a model 

reference inverse is obtained to smooth the transient response of the system. With 

model reference inverse, the controller cancels the plant dynamics but the response is 

the same as the reference model. 

In this work theoretical background of adaptive inverse control is reviewed first. 

Then the parameters that have an effect on the performance of the system are 

investigated with adaptive modeling processes. Performance of the AIC systems is 

directly proportional with the success of the modeling process. The more the models 

are representing the unknown plant the efficient the AIC system is. 

After examining the parameters, a control simulation based on the basic AIC scheme 

is applied on a time-varying system. Simulation applications are implemented within 

Matlab program. Finally, performance of the AIC system is examined on the 

unstable ball-beam setup in existence of disturbances. 
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1. INTRODUCTION 

The principle concern of control theory is to keep the outputs of a dynamical system 

within desired limits. There are many methodologies developed to control system 

dynamics. Adaptive control is a branch of those methodologies with an adaptive 

viewpoint. Unlike the conventional controllers adaptive controllers modify its 

parameters in response to changes in the dynamics of the controlled system or the 

disturbances affecting the system. Conventional controllers work well when the plant 

dynamics are well known. A change in the dynamics of the system needs to readjust 

the parameters of the conventional controller. Therefore if there is no accurate 

information about the plant dynamics or those dynamics are slowly time-varying 

then adaptive controllers are taken into account. 

Most of the controllers are based on feedback mechanisms. Utilization of feedback is 

different in adaptive inverse control concept. Feedback from the plant output is not 

directly fed to the controller input. Nevertheless it is not an open-loop control 

system. Controller is adapted with respect to the information from plant output and 

command input. The loop is closed through the adaptive process. 

Adaptive inverse controllers utilize adaptive signal processing methods to perform 

adaptivity. Adaptive filters are used in a large number of applications such as 

channel equalization, interference (noise) cancellation and echo cancellation in 

digital communication systems. In adaptive inverse control they are used for 

identification of the plants. 

In this work, structures and implementation of adaptive inverse controllers are 

reviewed and simulated with time-varying and disturbed plants. Matlab and its 

component Simulink are used for computer simulations. This work has seven 

chapters and two appendices. Next chapter is a review of adaptive filter theory. 

Structure of adaptive filters and fundamentals of algorithms for filter update are 

reviewed. Chapter 3 is about adaptive modeling. Usage of adaptive filters for 

obtaining direct models is explained with different schemes and direct modeling 
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examples are given. Chapter 4 shows the usage of adaptive filters for forming inverse 

models. Obtaining the inverses of minimum-phase and nonminimum-phase plants 

and reference model inverses are explained with examples. In chapter 5 direct and 

inverse models are combined to form an adaptive inverse control system. Possible 

schemes for dynamic control and disturbance canceling are explained. A basic AIC 

system is simulated as an example. Parameters that have an effect on AIC system are 

examined in chapter 6. Defining the filter length according to plant response and 

sampling time, effects of convergence factor and modeling signal characteristics and 

advantages of using normalized LMS are detailed in this chapter. Application of 

adaptive inverse control on a time-varying system and a disturbed system is 

explained on chapter 7. Simulink diagrams and Matlab program codes used in 

simulations are provided within appendices. 
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2. ADAPTIVE FILTERS 

Adaptive inverse control is built upon the basics of adaptive filtering. This chapter 

introduces the fundamental concepts for adaptive inverse control. Adaptive filters are 

used in wide variety of signal processing and control applications for plant modeling and 

inverse plant modeling. Figure 2.1 represents a basic adaptive filter. 

At every step of the way, adaptive filtering is present. It is important to think of the 

adaptive filter as a building block, having an input signal, having an output signal, and 

having a special input signal called the “error” which is used in the learning process. 

This building block can be combined with other building blocks to make adaptive 

inverse control systems [1]. 

Error εk

Adaptive

Filter

∑

_

Input

xk

Output 

yk

Desired 

Input dk

+

 

Figure 2.1 Basic representation of an adaptive filter 

There are two types of linear adaptive filters: finite impulse response (FIR), and infinite 

impulse response (IIR). The impulse response of the FIR filter is non-zero for a finite 

period of time. However an IIR filter respond with non-zero values for an infinite period 

of time. 
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It is well known that any stable linear system may be approximated by a “sufficiently 

long” FIR filter. Therefore in this work we utilize FIR filters. All of the work presented 

in following chapters apply equally well to IIR filters, but their use was avoided due to 

the possibility of instability. FIR filters with finite weights are always stable. IIR filters 

are not [2]. 

2.1 Linear Combiner 

Linear combiner is the start point for adaptive filtering. Because of its nonrecursive 

structure it is easy to understand and analyze. 

The combiner is said to be linear because in the following analyzes, weights of the 

combiner are assumed to be fixed and under these assumptions the output of the 

combiner is linear combination of the input components. 

w0

x0

w1

x1

wL

xL

∑

Output signal    

y

In
p

u
t 

v
ec

to
r

Weight vector

 

Figure 2.2 Linear Combiner 

As depicted in figure 2.2, linear combiner comprises of an input signal vector, weights, a 

summing unit and an output signal.  

Input signal vector; 

0 1[ ]T

k k k Lkx x xX L       (2.1) 
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Weight vector; 

0 1[ ]T

k k k Lkw w wW L   (2.2) 

The elements of the input signal vector are weighted and summed to form an output 

signal vector. For the present analysis the weights are assumed to be fixed. So it is 

possible to write; 

0

L

k lk lk

l

y w x


   (2.3) 

T T

k k k k ky  X W W X   (2.4) 

At this point desired response is added to the linear combiner in order to develop 

adjustability. Weight adjustment is accomplished by comparing the output with the 

desired response to obtain an error signal and then adjusting the weight vector to 

minimize this signal. 

T T

k k k k k k kd y d d      W X X W   (2.5) 

The new form of the combiner is depicted in figure 2.3 with the desired response. From 

now on, the combiner can be called adaptive linear combiner. The arrows on the weights 

represent adjustability. 

w0

x0

w1

x1

wL

xL

∑
y

In
p
u
t 

v
ec

to
r

Weight vector

∑

Desired 

response,   dk   

Error,

εk = dk - yk

+
_

 

Figure 2. 3 Adaptive linear combiner 
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2.2 Performance Surface 

The error signal was defined above. Now by squaring equation (2.5) the instantaneous 

squared error is obtained. 

2 2 2T T T

k k k k k kd d   W X X W X W   (2.6) 

The expected value of 2

k  is defined as the mean square error. 

2 2MSE 2T T T

k k k k k kE E d E E d                  W X X W X W@  (2.7) 

The input correlation matrix R is defined in equation (2.8); 

1 1 1 2

2 1 2 2

k k k k

k k k k

nk nk

x x x x

E x x x x

x x

 
 
 
  

R

L

@ L

M M

  (2.8) 

and the cross correlation vector P is defined in equation (2.9). 

1

2

k k

k k

k nk

d x

d x
E

d x

 
 
 
 
 
 

P @
M

  (2.9) 

By writing MSE in terms of R and P equation (2.10) is obtained. 

2 2T T

kE d      W RW P W   (2.10) 

It is clear to see from equation (2.10) that MSE performance function is a quadratic 

function of the weights. It is a bowl-shaped surface in existence of two weights and this 

is depicted in figure 2.4. The point at the bottom of the bowl is projected onto the weight 

vector plane as *W . That is the optimal weight vector or, point of minimum mean square 

error. 
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Figure 2. 4 Performance surface in existence of two weights 

2.3 The Gradient and the Minimum MSE 

The gradient at any point of the performance function is obtained by differentiating the 

MSE function in equation (2.10). Here   stands for gradient. 

2

1

2

2 2

k

k

n

E

w

E

w







     
 

  
     

  
   

  

P RW
W

@ M   (2.11) 

To find the optimal weight vector *
W , the gradient is set to zero. 

0 2 2   *
RW P   (2.12) 

Assuming that R is nonsingular; 

* -1
W R P   (2.13) 
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Equation (2.13) is called the Wiener solution or the Wiener weight vector. This is the 

optimal solution for a FIR filter and usually this filter would be casual that do not have 

output signal unless there is input signal. The minimum MSE is now obtained by 

substituting *
W  from equation (2.13) for W in equation (2.10). 

2

min 2
T T

kE d     
* * *

W RW P W   (2.14) 

2

min 2
T

T

kE d         
-1 -1 -1

R P RR P P R P   (2.15) 

Simplification of equation (2.15) by matrix manipulations yields us to equation (2.16) 

2

min

T

kE d    
*

P W   (2.16) 

By substituting equations (2.13) and (2.16) into equations (2.10) we obtain; 

* *

min ( ) ( )T    W W R W W   (2.17) 

2.4 The Method of Steepest Descent 

The method of steepest descent uses gradients of the performance function in seeking its 

minimum. Each change in the weight vector is made proportional to the negative of the 

gradient vector. 

 1k k k   W W   (2.18) 

In equation(2.18), k  stands for the gradient at the k. iteration and   is called the 

convergence factor or step size. It is a scalar value and has crucial effects on the stability 

and the speed of adaptation. For stability of the equation (2.18) it is necessary that 

max

1
0


    (2.19) 

max  represents the largest eigenvalue of R. 
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2.5 The Least Mean Squares (LMS) Algorithm 

The LMS algorithm is an implementation of steepest descent method. Instead of using 

the actual gradient, a simple estimate of the gradient is used. There is no squaring, 

averaging or differentiation in the algorithm so it is relatively simple and efficient. 

The actual gradient 

2

kE     
W

  (2.20) 

is replaced by the estimate  
2

1 1

2

ˆ 2 2

k k

k k k k

k k

n n

w w

w w

 

 

 

    
   
    

   
       

   
 

   
       

XM M   (2.21) 

By substituting the gradient estimate in equation(2.18) the equation for LMS algorithm 

is obtained. 

 1
ˆ

k k k   W W   (2.22) 

1 2k k k k  W W X   (2.23) 

In equation(2.19) the interval for   was defined but here, a stronger condition for 

convergence is needed. 

Stability of the LMS algorithm is guaranteed if the convergence constant   is selected 

within the range (1/ ) 0tr  R  [3].  
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Normalized LMS algorithm is a variant of the LMS algorithm with much faster 

convergence in many cases. Convergence factor   is normalized by the energy of the 

input signal vector. 

1 1

2
NLMS T

k k

 



X X

  (2.24) 

In equation (2.24)   is a very small number added for preventing division by zero if 

T

k kX X  is very small. 

1k k k kT





  


W W X

X X
  (2.25) 

This form of LMS algorithm is independent of signal scaling. As the input signal power 

changes, the algorithm adjusts the convergence factor to maintain an appropriate value. 

Thus the step size changes with time. As a result, the normalized algorithm converges 

more quickly in many cases. For input signals that change slowly over time, the 

normalized LMS can represent a more efficient LMS approach. 

Using gradient estimate in the LMS algorithm causes noise in the weight vector. Thus 

noisy adaptation leads to an MSE larger than the optimal value. Misadjustment is 

defined to quantify the increase in the MSE. 

min

average excess MSE
M


@    (2.26) 

It is desirable to keep M  as small as possible. A value of 10M   percent means that 

the adaptive system has an MSE only 10 percent greater than min . Years of experience 

with adaptive filters convinces one that a 10 percent misadjustment is satisfactory for 

many engineering designs. Operation with 10 percent misadjustment can generally be 

achieved with an adaptive settling time equal to 10 times the memory time span of the 

adaptive filter. Adapting faster will cause more misadjustment. Adapting slower will 

result in less misadjustment [1]. 
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3. ADAPTIVE MODELING 

Adaptive plant modeling, also named as adaptive system identification, is an integral 

part of an adaptive control process. The basic structure of adaptive plant modeling is 

illustrated in figure 3.1.  

Plant

P(z)

∑

ŷk

Plant input

uk

Error  εk

Plant output

yk

Desired 

response 

signal

+

_

Adaptive model

P̂(z)

uk

 

Figure 3. 1 Basic structure of adaptive plant modeling 

In many cases, the plant to be controlled may be unknown and possibly time 

variable. In order to apply adaptive modeling the plant must be stable. For present 

purposes the plant is assumed to stable and linear-time invariant. Modeling process 

works in discrete time, in figure 3.1 all systems and signals are considered to be 

sampled. Both the plant and the adaptive filter receive the same input signal. The 

output of the plant is the desired response for the adaptive filter. The discrete time 

impulse response of the plant is formed thorough the filter by varying the weights of 

the linear combiner. 

After convergence the weights contain the identification information about the plant 

dynamics in the form of an impulse response shape [3]. 
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In an adaptive modeling process, plant disturbance and plant output sensor noise can 

be handled as an additive disturbance at the plant output. This situation is depicted in 

figure 3.2. kn  is the discrete-time additive noise and the overall plant output is kz . 

Plant

P(z)

∑

ŷk

Plant input

uk

Error  εk

∑
yk

Plant 

disturbance

nk

+

+

Plant 

output

zk

Desired 

response 

signal

+

_

Adaptive model

P̂(z)

uk

 

Figure 3. 2 Adaptive modeling of a noisy plant 

Assuming the input signal excites all the plant modes, it is statistically stationary and 

not correlated with the disturbance kn , the adaptive algorithm will develop a transfer 

function equal to that of the plant. Although the desired response for the adaptive 

process is the disturbed plant output kz , it will give the same Wiener solution as if it 

was trained with ky . 

Estimated adaptive models will be very close representations of the actual plants. 

However there will be differences between the actual plant ( )P z  and the estimated 

model ˆ( )P z . These differences are called mismatch. There are three sources of 

mismatch. 

In practice the plant to be modeled will have an infinite impulse response (IIR). 

Modeling the IIR plant with a FIR filter will result in mismatch. In order to 

overcome this issue, delay line length must be long enough so that the model’s 

impulse response duration can cover the most significant part (practical memory 

time) of the impulse response of the system to be modeled. If the delay line length is 
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selected so long, the unnecessary weights at the end will tend to become zero. Also 

selecting a long line will increase misadjustment. The noise in the model weights 

increase by the number of the weights. One can find the satisfactory values by trial 

and error through the simulations. 

To achieve a close match between the adaptive model and the unknown plant over a 

specified range of frequencies, the plant input
ku  needs to have spectral energy over 

this range of frequencies. If the plant input has uniform spectral density over the 

frequencies of interest, then error tolerance will be uniformly tightly held over this 

frequency range. In many cases, however, the plant input ku  fails to have adequate 

spectral density at all frequencies where good fit is required. The result is mismatch, 

development of a difference between P̂  and P  [1]. 

A non-stationary input signal will result in same problem. Systems switching 

between constant levels and holding the levels for a long time represents this kind of 

situations. 

Dither signals added to the plant inputs are used to circumvent these difficulties. In 

figure 3.3, one of the dither scheme A is depicted. 
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Figure 3. 3 Dither scheme A 
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Dither scheme A is a straightforward way of plant modeling. The dither k  is simply 

added to the controller output to form the plant input. Hence a desired spectral 

character for ku  is obtained. This scheme works well if the controller output is a 

stationary stochastic process. Dither scheme A comes with the drawback of having 

an increased minimum mean square error. 

For the cases of 
ku  being non-stationary, dither scheme C is depicted in figure 3.4 
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Figure 3. 4 Dither scheme C 

This is a more complex layout, but it eliminates the drawbacks of scheme A. The 

non-stationary controller output does not pass through adaptive filter; an exact digital 

copy is used instead. Output of the exact digital copy is used for obtaining the 

desired response for the actual adaptive filter. 

Selecting white noise as the dither signal is adequate for modeling signal 

characteristics; however the power level of this signal must be well optimized. Low 

level dither power will slow down the adaptive process. High levels of power will 

make the adaptation faster but it comes with increasing noise in the weights. 
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As an example of direct modeling of the plant given in equation 3.1, step responses 

of both actual and modeled plants are shown on figure 3.5 
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Figure 3. 5 Direct modeling result 

Plant modeled with 50 weights, convergence factor is set to 0.1 and normalized LMS 

algorithm is used. With these values direct model converged within 3000 iteration 

values and a perfect fit is obtained. 

To see the adaptive modeling performance under disturbance random noise is added 

to the plant output. To make the modeling signal correlated with the noise, random 

number generator seeds are set to a equal value. When the disturbance was correlated 

with the modeling signal it caused bias in the direct model without noise in the 

weights. The biased solution can be observed from figure 3.6. With the uncorrelated 

disturbance adaptive model converged to the actual plant but the results are noisy. 

Squared errors for both correlated and uncorrelated disturbances are plotted on figure 

3.7. 
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Figure 3. 6 Added disturbance is correlated with the modeling signal, converged model is biased. 
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Figure 3. 7 Direct modeling errors 
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4. ADAPTIVE INVERSE MODELING 

Plant inverses are used as controllers in adaptive inverse control. To obtain inverse 

model in place of the direct model, the roles of the plant input and plant output are 

interchanged on the adaptive modeler. The plant input is the desired response and the 

plant output is the input to the adaptive inverse modeler. 

Adaptive inverse modeling is only applicable for stable plants. If the plant to be 

modeled is unstable, it must be stabilized with conventional feedback. 

The plant generally has zeros and poles thus the inverse of it should have also. If the 

plant has all of its zeros inside the unit circle in the z-plane, then it is called a 

minimum-phase plant. If any of the zeros is outside the unit circle, then it is called a 

nonminimum-phase plant. The inverse of a nonminimum-phase plant will have poles 

outside the unit circle which makes it unstable. 

Inverse plant modeling scheme for minimum-phase plants is depicted in figure 4.1. 

The adaptive filter is connected cascade with the plant to be inverse modeled. As 

assumed before that the plant ( )P z  is minimum-phase, it should have a perfect 

inverse ( ) 1/ ( )C z P z . ( )C z  is both stable and casual. 
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Figure 4. 1 Inverse modeling of a minimum-phase plant 
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Adaptive algorithm would provide an inverse ˆ ( )C z  which closely approximates ( )C z  

when it has sufficient number of degrees of freedom. 

The technique depicted in figure 4.1 will not work if the plant is nonminimum-phase 

or it has transport delay. In such cases delaying the desired response through the 

inverse modeling process will make the adaptive filter capable of forming a working 

controller. Modeling scheme for delayed plant inverse is depicted in figure 4.2. 
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Figure 4. 2 Forming a delayed plant inverse 

Here  stands for the delay amount. Selecting larger values of  would result in 

more perfect inverses. But the delay in the overall control system would be greater if 

the inverse filter were used as a controller. 

For any minimum-phase plant, 0   would suffice, except when the plant has more 

poles than zeros, then 1   would suffice. Because when the analog plant is 

discretized, more poles than zeros causes the discrete impulse response to begin after 

a delay of one sample period [1]. 

For FIR filters, increasing  beyond the point of any reasonable need could cause the 

impulse response to be pushed out of the time window. 
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By replacing the delay block in figure 4.2 with a reference block, model-reference 

inverses can be obtained. Such a scheme is depicted in figure 4.3.  
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Figure 4. 3 Obtaining model-reference plant inverse 

The goal of this process is to obtain a controller ˆ ( )MC z  that, when used to drive the 

plant, would result in a control system whose overall transfer function would closely 

match the transfer function ( )M z  of a given reference model. 

Reference-models should reflect the dynamics that is desired at the controlled plant 

output. By using reference-models, smooth transient responses could be achieved in 

the cases of perfect inverses. Because perfect inverses, when used as controllers, 

would result in sudden responses of the controlled system, which may be sometimes 

unwanted. 

In chapter three, it was mentioned that plant disturbance does not affect the Wiener 

solution when the plant is directly modeled. But in the case of inverse modeling, 

previously introduced modeling schemes will not work if plant disturbance exists. 

Such a scheme is illustrated in figure 4.4 which prevents the formation of a proper 

inverse. Proper methods for inverse modeling of a plant with disturbance are 

depicted in figure 4.5 and 4.6, which illustrates online and offline processes 

respectively 
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Figure 4. 4 An incorrect method for inverse modeling of a plant with disturbance 
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Figure 4. 5 A proper method for online inverse modeling of a plant with disturbance 
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Figure 4. 6  An offline process for inverse modeling of a plant with disturbance 

In figure 4.5 direct model of the plant ( )P z  is used. Instead of finding a model-

reference inverse of ( )P z , the model-reference is taken from ˆ( )P z which has the 

same dynamic response as ( )P z but is free of disturbance. There are two adaptive 

processes working in cascade. Second adaptive process for obtaining ˆ ( )C z  will 

always be lagging behind the first one for obtaining ˆ( )P z . This lag is prevented in 

offline process depicted in figure 4.6. Direct model of the plant ˆ( )P z  is obtained first 

and an exact digital copy of it is used in an offline process to obtain ˆ ( )C z . This is 

much faster than online process. 
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The modeling signal has significant effect over the control system. Here ˆ ( )C z is 

restricted to be causal and FIR. Consequently there will not be enough weights and 

degrees of freedom in ˆ ( )C z  to perfectly match ( )C z . Under these conditions the 

spectral shape of the modeling signal could have considerable influence on the 

frequency response of ˆ ( )C z . In general the frequency response curves of 

( )M z and ˆˆ( ) ( )P z C z will be different. 

Optimizing ˆ ( )C z  with a white modeling signal will cause transfer function 

differences to be weighted equally at all frequencies causing the area of the 

difference of the two frequency response curves to be minimized. Using a non-white 

modeling signal causes frequency response differences to be weighted more heavily 

at frequencies where the modeling signal has higher power density [1]. 

To test the schemes introduced in this chapter the systems given in equation 3.1 and 

4.1 are used. System of P1 given in equation 3.1 is a stable but nonminumum-phase 

plant. System of P2 given in equation 4.1 is a stable and minimum-phase plant. 
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  (4.1) 

Reference model given in equation 4.2 is used to test model reference inverses. 

1
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(1 0.5 )

z
M z

z







  (4.2) 

To see the success of inverse modeling process, the inverse model built with using 

the weights in a digital filter form and a unit step input is applied to the convolution 

of the inverse and the actual plant. In case of a perfect inverse the response would be 

1 with no transient response. This indeed would be very difficult. In figure 4.7 

deconvoluted plant’s response is plotted. It has oscillatory transient response and 

steady state error. A reference model is added to the process and response of the 

deconvoluted plant has been greatly enhanced. The result is plotted on figure 4.8. 
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Figure 4. 7 Deconvolution of plant dynamics without reference model 
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Figure 4. 8 Deconvolution of plant dynamics with reference model 
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To obtain an inverse model of the nonminumum-phase plant P1, the desired response 

is delayed 3 samples. Its Deconvolution of the plant is plotted on figure 4.9. The 

delay can be easily seen from this response. 
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Figure 4. 9 Deconvolution of plant dynamics with delayed plant inverse. 
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5. ADAPTIVE INVERSE CONTROL 

Previous chapters introduced us the elementary parts of the adaptive inverse control. 

These components take place in the system according to the desired specifications to 

form up an adaptive inverse control system. The main objective is how to lineup 

those elements to do a successful control task. The lineups of the blocks changes by 

the plant characteristics, signals fed to the system and the desired output of the 

overall control task. 

The fundamental idea behind inverse control is to cancel the plant dynamics by using 

the inverse of it as a controller. This is depicted in figure 5.1 basically. 
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Figure 5. 1 Basic idea of adaptive inverse control 

 

Figure 5.1 introduces the simplest form of inverse control which is applicable with 

different adaptive algorithms such as differential steepest descent (DSD) and linear 

random search (LRS), but LMS algorithm cannot be used to adapt the weights of the 

controller of figure 5.1. LMS is preferred because it is much faster than the others. 

LMS needs its input from the plant output and an error signal referred to plant input 

to form a plant inverse. Figure 5.2 depicts the desired scheme for LMS to work. This 

scheme utilizes LMS for developing an inverse controller but it will not function 

when the plant disturbance has high level. 
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Figure 5. 2 Appropriate AIC system that works with LMS at low disturbance levels 
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Figure 5. 3 An AIC system with offline inverse modeling for controlling plants with disturbance 
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The system of figure 5.2 works well as long as there is no plant disturbance. If plant 

disturbance is present, its effect is to bias the Wiener solution so that ˆ ( )C z  will no be 

a proper controller. The disturbance that appears at the plant output adds a 

component to the covariance of the input signal of the adaptive inverse model, 

directly affecting the Wiener solution for ˆ ( )C z  [1]. 

To overcome such problems, the scheme of figure 5.3 can be utilized. The plant 

model is formed and a digital copy of it is used to form the inverse model in an 

offline process. This technique was previously introduced in chapter 4. The idea is 

that ˆ( )P z  has the same dynamic response as ( )P z  but without disturbance. In direct 

modeling process plant disturbance dos not affect the Wiener solution. 

Schemes introduced above cannot provide precise control in existence of plant 

disturbances. Their objective is to cancel the plant dynamics by obtaining a proper 

inverse but does nothing about canceling the disturbance. Closed-loop adaptive 

inverse controllers are used to cancel the disturbances. An adaptive inverse control 

scheme with a disturbance canceling feedback is introduced in figure 5.4. 

Direct model is generated in an online process. As this model will be free of 

disturbances, output from a direct model copy is subtracted from the plant output to 

obtain an estimate of the disturbance. An inverse model is obtained from the direct 

model copy in an offline process. This inverse is used as the controller in feed 

forward and as the disturbance canceller block in the feedback. Disturbance estimate 

is passed through the disturbance canceling block and subtracted from the plant 

input. Disturbance canceling block is not activated before direct model and inverse 

model formed. 

This scheme is utilized in chapter seven to investigate ball and beam experiment 

under the effects of disturbances. 

An AIC simulation for the system given in equation 4.1 is made using the scheme 

which is depicted in figure 5.3. Plant given in equation 4.1 is used as reference 

model. Command tracking with and without reference model is given in figures 5.5 

and 5.6 respectively. System iterated 20000 steps with added dither signal. If dither 

signal is omitted direct model never converges, thus the controller cannot function.  
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Figure 5. 4 Adaptive inverse control with disturbance canceling block 

 

In another simulation only first 10 samples of the input signal are dithered. This 

helped the system to form the direct model and so the controller is functioning. But 

the result is not as good as dithered system. This can be seen on figure 5.7. In the 

other simulations with dither signal, adding dither signal is stopped at last steps to 

see command tracking performance clearly. For the simulations an alternative way to 

excite all the system modes is to make the controller input signal in different 

sections. Early sections of the signal would be rich in frequency content and the last 

sections would be step or square input, thus system’s response can be clearly 

examined. 
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Figure 5. 5 Implementation of figure 5.3 without reference model 
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Figure 5. 6 Implementation of figure 5.3 with reference model 
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Figure 5. 7 Implementation of figure 5.3 (Only first 10 samples are dithered) 
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6. PARAMETERS OF ADAPTIVE INVERSE CONTROL SYSTEMS 

Up to this chapter, usage of adaptive filters in direct modeling, inverse modeling and 

inverse control were examined with simulations but the parameters affecting the 

system are not taken into account. The parameters of adaptive filters and the signals 

in these systems have important role in application as well as the system itself. 

Playing around the parameters may greatly enhance the performance of the AIC 

system. Throughout this chapter, the effects of convergence factor, number of the 

filter weights and the modeling signal will be investigated using the conventional 

LMS and normalized LMS algorithm. A comparison of conventional LMS and 

normalized LMS algorithm is pointed out by this chapter 

Effects of the parameters will be investigated over direct and inverse modeling 

processes. Direct and inverse modeling processes always take place in AIC systems. 

Examining the parameters such as the convergence factor, weight vector length or 

modeling signal characteristics on modeling processes makes determination of these 

parameters easier for the control system. An AIC system will not function properly 

without a successful modeling. If the modeling process is successful with a set of 

parameters than this parameters can be used in the AIC system. The better the model 

is the efficient the AIC system is. 

Parameters are examined on the system whose transfer function is given is equation 

(4.1). It is given in digital filter form. It is a stable and minimum-phase plant and its 

impulse response is plotted on figure 6.1.  

Settling time of the system is approximately 3 seconds. For a sampling period of 0.1 

seconds, setting the adaptive filter weights to 30 would suffice for accurate modeling 

of the system 
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Figure 6. 1 Impulse response of P (z) 

A good fit of the plant is plotted on figure 6.2. For this simulation convergence factor 

was set to 0.001. Modeling signal was a band limited white noise with power of 0.1 

and sampling period was 0.1. A definite effect of weight number selection can be 

easily seen at first sight that the modeled systems response does not contain any 

information after 3 seconds. The sampling period was chosen to be 0.1 seconds, so 

with 30 weights, memory time of 3 seconds can be modeled. 

Memory time SamplingPeriod Numberof Weightsx  

With the same parameters used in direct modeling, an inverse modeling process has 

been run. Although 10000 iterations is well enough for direct model to converge, it is 

not adequate for inverse modeling process to form a good fit. This situation is 

illustrated in figure 6.3 by plotting the squared error for both direct and inverse 

modeling processes. With this set of parameters inverse modeling process needs to 

be iterated more to form a better model. This shows that direct and inverse modeling 

processes are two distinct processes and their implementation must be handled 

separately. 
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Figure 6. 2 Impulse response of actual and modeled plants 
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Figure 6. 3 Squared error for direct and inverse modeling processes 
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6.1 Effects of Convergence Factor on Modeling Processes 

To investigate the effects of convergence factor μ, all of the other conditions are 

fixed and the simulations were run with changing values of μ. Observing the change 

of weights during simulation is a good way for understanding the simulation 

convergence time and the noise in the weights. In this study first, middle and the last 

weights are observed to see the effects of μ on weights. 

In figure 6.4 the change of weights is illustrated with the convergence factor being 

0.001. A vertical line at 4000
th

 iteration is plotted on this figure. This is 

approximately the time when weights converged to their final value. 

Variations of the weights are calculated as a measure of noise. Variation value is 

used to compare noise levels for different values of μ. Results for 0.005   and 

0.0005   are plotted on figures 6.6 and 6.7 respectively. Variations for  

0.005,0.001,0.0005   are listed in table 6.1. Figure 6.4 shows the increase in the 

weight noise with increasing μ values 

Table 6. 1 Variation values for weights after convergence 

  Variations (as a measure of weight noise) 

μ First weight Middle weight Last weight 

0.005 0.00000452 0.00000325 0.00000329 

0.001 0.00000371 0.00000141 0.00000148 

0.0005 0.00000150 0.00000003 0.00000005 
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Figure 6. 4 Effects of μ on weight noise 
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Figure 6. 5 Change of weights for μ=0.001 
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Figure 6. 6 Change of weights for μ=0.005 
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Figure 6. 7 Change of weights for μ=0.0005 
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Figure 6. 8 Effects of μ on weights 
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Finally, to see the effects clearer, direct modeling process was run with 13 different 

values of μ from 0.5 to 0.000005. Convergence of the first weight in the system is 

plotted on figure 6.8 for these values of μ. Values bigger that 0.05 makes the process 

unstable, weights never converge and values smaller than 0.0005 causes the process 

to converge very slowly, it needs many more iterations to gets its final value. 

As a result of these plots, it is obvious that larger values of μ causes the process 

converge faster but result in noisy weights, smaller values of μ yields a slower 

process but more steady weights. 

6.2 Effects of Weight Vector Length on Modeling Processes 

Obtaining a meaningful plant model with adaptive modeling will be impossible 

unless the FIR filter can cover the most important part of the systems impulse 

response. This can be achieved if the product of wn Ts is bigger than system’s 

settling time, where wn  is weight number and Ts  is the sampling time of the system. 

For a fixed value of sampling period, selecting too many weights causes the last 

weights to become zero. This situation approves the sufficiency of the weights. For a 

fixed value of μ choosing a very long weight vector prevents convergence. 

Convergence factor needs to be decreased in this case. Plant given in equation (4.1) 

is directly modeled with 60 weights and results are plotted on figure 6.9. Impulse 

response of the modeled system is a perfect fit of the actual system. As seen on the 

graphs last 20 weights tends to zero, at the end of the simulation. So it can be said 

that last 20 weights of the filter is unnecessary for this plant. Omitting unnecessary 

enables working with larger μ values. For 50 weights μ = 0.001 would suffice but 

250 weights requires μ = 0.0005. 

Same system modeled with 15 weights and the results are depicted in figure 6.10 and 

6.11. Modeled plant does not fit the actual plant and weights are very noisy. This is 

an expected result because with the sampling period of 0.1 seconds, only 1.5 seconds 

of the plant’s response can be handled with 15 weights. 
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Figure 6. 9 Selecting too many weights 
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Figure 6. 10 Selecting insufficient weights 
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Figure 6. 11 Selecting insufficient weights 

6.3 Effects of Modeling Signal Characteristics 

Statistical properties of the modeling signal have significant role over the success of 

the modeling process. Two main criteria are the frequency content and the power of 

the modeling signal. 

Simulations had been run with modeling signals which were poor in frequency 

content and the results were disastrous. Signals that contain frequencies around and 

less than the bandwidth of the plant are never enough for a modeling process. To 

ensure adequacy of frequency content of the signal it must be much greater than the 

fastest dynamics of the system. In literature it is advised to be 30 times greater than 

the bandwidth of the plant. This is approved with various simulations that it is quite 

enough. 

Throughout the simulations it was seen that the LMS algorithm is highly sensitive to 

the power of the input signal. For the system given in equation 4.2 LMS with 

μ=0.001 is stable unless the power of the input signal is below 39. After this value 
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LMS goes unstable and never converges. Figure 6.12 shows two step responses of 

models, one modeled with a signal of power 38 and the other 39. Although a signal 

of power 38 can model accurately signal of power 39 can not. This situation can be 

alleviated with decreasing the value of convergence factor. Step response of model 

generated with same signals but with smaller μ are plotted on figure 6.13 

 

Figure 6. 12 Modeling with μ=0.001 
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Figure 6. 13 Modeling with μ=0.0005 
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As a result it can be said that power of the input signal have a great effect on 

selecting the convergence factor and thus on the speed of the adaptation. As the 

power of input signal increased the convergence factor should be decreased to avoid 

instability of the LMS algorithm. According to the results obtained in section 6.1 this 

causes slow adaptation. 

6.4 Using Normalized LMS in Modeling Processes 

In section 6.3 it is shown that convergence factor needs to be scaled by the power of 

the input signal. This may be a problem if there is no prior knowledge about the input 

signal power. 

Using normalized LMS omits such problems. As the convergence factor is scaled by 

the input signal power during the process, any change in the power will not cause the 

LMS to be instable. 

Comparison results of these two algorithms are given in figures 6.13 and 6.14. 

Although conventional LMS is not working with μ=0.001 after passing the power 38, 

normalized LMS works very well even at power 50 and with much greater μ. It is 

also seen that normalized LMS converges faster as a result of greater μ values. 
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Figure 6. 14 Using Normalized LMS                Figure 6. 15 Using Conventional LMS 
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7. ADAPTIVE INVERSE CONTROL APPLICATIONS 

Control of time-varying plants and plants with disturbances are two favorite 

application areas of adaptive inverse control. In the first section of this chapter 

performance of AIC system is examined on a plant with time-invariant and time-

varying cases. In the second section ball-beam experiment is examined with various 

disturbance effects. 

7.1 AIC of Time-varying Plants 

One of the most charming application areas of adaptive control is time varying 

systems. In this section both time-invariant and time-varying cases of the system 

given in equation 7.1 is examined with adaptive inverse control scheme given in 

figure 5.2.  

2

( ) 2 229

( ) ( 1) ( 229)

p

p

y s

u s s s as


  
  (7.1) 

Here 30a   for time-invariant case and 30 5sin(2 )a t   for time-varying case. It 

reflects the change of the damping ratio. The output of this plant was required to 

follow the output of the reference model in equation 7.2 [6]. 
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m

m

y s
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  (7.2) 

A controller for this system was designed with MRAC method. Figure 7.1 shows 

plant and reference model outputs from the previous work [6]. 

Step and impulse responses of both time-invariant and time-varying cases of the 

plant are plotted on figure 7.2 and 7.3. System is stable and settling time is 

approximately 5 seconds. 
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Figure 7. 1 MRAC output from ref [6] 
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Figure 7. 2 Step responses of time invariant and time varying cases 
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Figure 7. 3 Impulse responses of time invariant and time varying cases 

Sampling time of the overall process is set to 0.1 seconds. For handling the memory 

time of the system FIR filter length is set to 50. 

The selected parameters are checked with modeling simulations first. And it is seen 

that adding a unit delay to the desired response greatly enhances the inverse 

modeling process. 

If the analog to digital transformation is done within the loop it causes the simulation 

to run very slow. To make the simulation of time-varying case faster, the system 

given in s-domain is converted to z-domain by bilinear transformation method. 

The method is also called the Tustin transformation, or trapezoid approximation. The 

transformation equation is: 

2 1

1

z
s

T z

 
  

 
  (7.3) 

The bilinear method is the most commonly used method for convert controllers into 

the discrete time domain [8]. In equation 7.3 T is the sampling time which is taken 

0.1 seconds in this transformation. By substituting equation 7.3 in equation 7.1 and 

doing algebraic simplifications, the discrete form of time-varying plant is obtained. 

Equation 7.4 shows the discrete form the time-varying plant. Coefficients of the filter 
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are normalized by the value of denominator’s first coefficient within the program, 

this is necessary to avoid overflow error in Matlab. 

3 2

3 2

( ) 458 1374 1374 458

( ) (420 13209) (380 19133) (19707 420 ) (380 11951)

p

p

y z z z z

u z a z a z a z a

  


      
 (7.4) 

Weight adjustment of the controller is done with normalized LMS and μ is set to 0.1. 

A total iteration step is 10000 for all simulations. Within these conditions very good 

control over the system is achieved. System’s response to a square-wave input has 

shown no overshoot and entered the tolerance band within 3 seconds and did not 

exceed it anymore. Steady state error of the system is also zero. Figure 7.4 shows the 

response of the time-invariant plant to square wave input. 

9000 9200 9400 9600 9800 10000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

A
m

p
lit

u
d
e

Response to square-wave input

Plant output
Controller input

 

Figure 7. 4  Control of time-invariant plant 

Control system error of time-invariant plant is plotted in figure 7.5. It shows peaks 

when the signal state chances. Zero steady state error can be seen here. 

Parameter a in the system 7.4 is subjected to a linear change from 30 to 33 during the 

simulation. Systems response to square-wave input is shown on figure 7.6. There are 

overshoots in the response and the settling time is increased. System is still under 

control and the steady state error is zero. Increased control system error can be seen 

in figure 7.7. 
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Figure 7. 5 Overall control system error of time-invariant plant 
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Figure 7. 6 Control of time-varying plant, parameter a changes 30 to 33 
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Figure 7. 7 Overall control system error of time-invariant plant 
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Increasing the changing range causes the AIC system to fail. When parameter a is 

subjected to change from 30 to 34 during the simulation, performance of the AIC 

system greatly decreased. Figure 7.8 shows how the system fails to control the plant. 
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Figure 7. 8 Control system failure in case of fast changing dynamics 

Control system’s response to step input is plotted on figure 7.9. Here the plant is 

subjected to sinusoidal changes with frequency of 5 rad/s. The response is oscillatory 

and these oscillations never die out with parameter configurations. Lowering the 

frequency increases the control performance. 

Simulations with different time-varying modes of the plant have shown that 

oscillatory changing plant dynamics can be controlled within a frequency range that 

the AIC system may adapt itself. Increase in the amplitude and the frequency of the 

oscillations increases the control system error. Amplitudes of change in the 

parameter a is same in both simulations which resulted figure 7.9 and 7.10. But with 

the lower frequency simulation, amplitude of the error decreased. This shows the 

relation between frequency and control performance. 

Simulations have shown that AIC system is capable of controlling slowly changing 

plants. If the change is fast then AIC fails to control the plant. 
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Figure 7. 9 Control of time-varying plant, f = 5 rad / s 

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Iterations

A
m

p
lit

u
d
e

Control of time-varying plant

Plant output

Controller input

Error

 
Figure 7. 10 Tracking performance of time-varying plant, f = 2 rad / s 
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7.2 AIC of Unstable Ball on a Beam in Existence of Disturbances 

In this section ball and beam experiment
1
 is examined in existence of disturbances. 

Illustration of the experiment system is depicted on figure 7.11. A ball is placed on a 

beam with 1 degree of freedom; it can roll along the length of the beam. The angle of 

the beam α is controlled with the rotation of the servo gear which is connected to the 

beam with a lever arm. Any change in the angle α causes the ball to roll along the 

beam. Position r is the controlled variable in this system. Disturbance canceling 

capabilities of adaptive inverse controller is tested with different disturbance types 

such as step, ramp and random.  

α θ

 L 

 r  

d

 

Figure 7. 11 Ball and beam system 

Transfer function from the gear angle θ to the ball position r is given in equation 7.5. 

Constants and variables for this system are given as: 

-2

2

M, mass of the ball = 0.11 kg

R, radius of the ball = 0.015 m

d, lever arm offset = 0.03 m

g, gravitational acceleration = 9.8 ms

L, length of the beam = 1.0 m

J, ball's moment of inertia = 9.99e-6 kgm

r, ball position coordinate

, beam angle coordinate

, servo gear angle





 

                                                 
1
 All of the information about the ball and beam experiment is taken from the website: 

http://www.engin.umich.edu/group/ctm/examples/ball/ball.html 
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By substituting the given numerical values in equation 7.5, equation 7.6 is obtained. 
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System of 7.6 has two poles at the origin which makes it unstable. In order to apply 

adaptive inverse control it must be stabilized first. System is stabilized with a PD 

controller whose proportional gain is 20 and derivative gain is 10. The stabilized 

system’s transfer function is given in equation 7.7. 
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  (7.7) 

Settling time of the stabilized plant is approximately 4 seconds. Therefore with 

sampling time of 0.1 seconds, setting the weight vector length to 50 will be enough 

to cover the memory time of the plant. Normalized LMS algorithm is used for weight 

update, thus system converged within 3000 iterations. Total iteration number is 

selected 10000 for all simulations. Convergence factors are set to 0.01 during the 

first half of the simulations and then decreased to 0.001 to get smoother responses. A 

second order reference model with a settling time less than 3 seconds is used to 

smooth the transient response of the AIC system. 

Simulation program for this application is based on the disturbance canceling scheme 

which is given in figure 5.4. 

Control of the ball position is plotted on figure 7.12. There is no disturbance yet. AIC 

system is working very well; control error is approximately 2%. 

At the 7500
th

 iteration system is disturbed with a 0.2 m step input. When the 

disturbance canceller block is turned off the system has lost its stability against the 

disturbance. Figure 7.13 shows the system’s performance when the disturbance 

canceller is off. The effect of disturbance canceller block is seen on figure 7.14. 

System is subjected to a continuous ramp disturbance starting from 7500
th

 iteration. 

Figure 7.15 depicts systems response against the disturbance. Performance is slightly 

decreased compared to the step disturbance. 
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Figure 7. 12 Controlling ball position, no disturbance added 
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Figure 7. 13 Step disturbance (without disturbance canceller block turned on) 
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Figure 7. 14 Step disturbance (with disturbance canceller block turned on) 
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Figure 7. 15 Ramp disturbance (with disturbance canceller block turned on) 
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When random disturbance is added to the system, performance of the AIC decreases 

but dynamic control is still available. In figure 7.16 shows the system’s performance 

against random disturbances. The disturbed output of the system is directly 

proportional with amplitude and the frequency of the noise added as disturbance. 
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Figure 7. 16 Plant subjected to random disturbance 

As seen from these results AIC system is capable of dynamic control even with 

disturbed plants. In the case of a system which is unknown or slowly time-varying, 

using an adaptive inverse controller will be acceptable even in existence of 

disturbances. The simulations made here are within limited iteration numbers. 

Increasing the iteration number will make more correct direct and inverse models 

thus the performance of the AIC system will increase over time. 

It is always possible to get a better performance from the AIC system with changing 

its parameters. A more precise capturing of inputs and outputs is possible with 

decreasing the sampling time of the system. This will cause to work with much larger 

weight vector length and smaller convergence factors which will slow down the 

convergence time. Faster sampling rates also adds extra calculation load to the 

simulation hardware.  
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8. CONCLUSION 

In this study adaptive inverse control concept is examined and applied on sample 

systems. Theoretical backgrounds are reviewed in first 5 chapters and most of the 

schemes are tested with simulations. Before applying adaptive filters on control 

schemes parameters of the adaptive filters are investigated in chapter 6. Criteria 

obtained for choosing system parameters are used to setup the AIC systems. 

Performance of the AIC system on time-varying plants and disturbed plants are 

investigated on chapter 7. 

Parameter selection for AIC systems is the one of the most significant part of setting 

up the system. Wrong parameters make a perfect control scheme useless. There are 

two considerations for choosing the FIR filter length; settling time of the plant and 

the sampling rate of the overall control system. Product of filter length and sampling 

time must involve the systems settling time. This provides the FIR filter to behave 

more likely as the system. If the filter length is selected too long, time constant of the 

adaptive system total system error increases. 

Convergence factor μ controls the stability and speed of the adaptation. As μ 

increases system converges faster but result in noisy output. Decreasing μ makes 

output smoother but system converges slowly. Converge factor is highly sensitive to 

the power of the input signal. Even a unit increment of input signal power may cause 

the system to lose its stability. As the power of the input signal increases it is needed 

to use smaller μ values. Using normalized LMS remedies this problem. In this 

algorithm μ is scaled by the power of the input signal. Another advantage of 

normalized LMS is faster convergence of the models. Compared to the conventional 

LMS it is 2 or 3 times faster. 

As the adaptive algorithm uses the plant’s output to adapt filter coefficients, all of the 

plant information must be acquired by exciting all the modes of the plant. This is 

possible with signals which are rich in frequency. When the signals of poor 

frequency content are used as modeling signals, the filter fails to converge to the 
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optimum solution. If the input signals are stationary in practice, then adding dither 

signals to the actual input helps to excite the system. Frequency content about 10 

times of the bandwidth of the plant is sufficient in most cases. 

Simulations have shown that small variations of the plant dynamics can be handled 

by AIC system. If the rate of change is high then AIC system fails to follow the 

command input. Within the limited range of changes AIC system is successful like 

the case that system is time invariant. 

Adaptive inverse control scheme with disturbance canceling feedback shows good 

performance on canceling step and ramp type disturbances. Random disturbances can 

not be eliminated totally but dynamic control is still available with oscillations which 

reflect the structure of the noise. 
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APPENDIX – A 

A.1 Simulink Diagram for Adaptive Direct Modeling 

 

A.2 Simulink Diagram for Adaptive Inverse Modeling 
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A.3 Simulink Diagram for Adaptive Inverse Control Based on Figure 5.3 
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APPENDIX – B 

B.1 Matlab Program for Adaptive Direct Modeling 

clc;clear; 

%Plant definition in digital filter form 

Ts = .1; %Sampling time 

%z=tf('z',Ts); 

%Pz = (1 - 2 * z^-1)/(1 - z^-1 + .75 * z^-2); 

%clear z; %Delete unnecessary variables from memory 

numdf = [1 .5]; %     digital filter constants in ascending  

dendf = [1 -1 .75]; % powers of z^-1 

Pz=filt(numdf,dendf,Ts); 

N = 2000; %number of iterations 

wn_dm = 50; %direct model weight number 

mu = 0.1; % convergence factor 

inp_dm = zeros(1,wn_dm); %Initialize direct model input 

out_dm = zeros(1,N); %Initialize direct model output 

w_dm = zeros(1,wn_dm); %Initialize weights 

sigma = 0; % Very small number for preventing 

           % division by zero in normalized LMS 

nLMS = 1; % Switch for normalized LMS 

I = 0.5 * filtrand(N,.1,100); % modeling signal 

disp 'Simulating Plant...'; 

[out_p t] = lsim(Pz,I); % Plant simulation 

disp 'Adaptation Started...'; 

for k=1:N 

    inp_dm = [I(k) inp_dm(1:wn_dm-1)]; %Direct model input 

    out_dm(k) = inp_dm * w_dm'; %Direct model output 

    e_dm(k) = out_p(k) - out_dm(k); %Error 

    if nLMS == 1 

        %Using Normalized LMS 

        w_dm = w_dm + ((inp_dm / (sigma + (inp_dm * inp_dm'))) * ... 

            mu * e_dm(k)); %Weight update 

    elseif nLMS == 0 

        w_dm = w_dm + 2 * mu * inp_dm * e_dm(k); %Weight update 

    end 

end 

disp 'Adaptation Finished' 

Pdm = filt(w_dm,[1],Ts); %Rebuild direct model in digital filter form 

SE = e_dm.^2; %Square error 

MSE = (abs(e_dm) / length(e_dm)).^2;%Mean square error 

step(Pz,Pdm); 
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B.2 Matlab Program for Adaptive Inverse Modeling 

clc;clear; 

%Plant definition in digital filter form 

Ts = .1; %Sampling time 

%z=tf('z',Ts); 

%Pz = (1 - 2 * z^-1)/(1 - z^-1 + .75 * z^-2); 

%clear z; %Delete unnecessary variables from memory 

numdf = [1 .5]; %digital filter constants  

dendf = [1 -1 .75];%in ascending powers of z^-1 

Pz=filt(numdf,dendf,Ts); 

N = 50000; %number of iterations 

wn_inv = 25; %inverse model weight number 

mu = 0.001; % convergence factor 

inp_inv = zeros(1,wn_inv); %Initialize inverse model input 

out_inv = zeros(1,N); %Initialize inverse model output 

w_inv = zeros(1,wn_inv); %Initialize weights 

I = 0.5 * filtrand(N,.1,100); % modeling signal 

[out_p t] = lsim(Pz,I); % Plant simulation 

disp 'Adaptation Started...'; 

for k=1:N 

    inp_inv = [out_p(k) inp_inv(1:wn_inv-1)]; %Inverse model input 

    out_inv(k) = inp_inv * w_inv'; %Inverse model output 

    e_inv(k) = I(k) - out_inv(k); %Error 

    w_inv = w_inv + 2 * mu * inp_inv * e_inv(k); %Weight update 

end 

clc;disp 'Adaptation Finished' 

Pinv = filt(w_inv,[1],Ts); %Build inverse model tf 

step(Pinv*Pz);%Check whether deconvoluting successfully 

 

B.3 Matlab Program for Adaptive Inverse Control of Time-varying Plant 

 

%%Adaptive inverse control of a time-varying plant 

%Based on Figure 5.2 

clc;clear; 

tv = 1; % 0:time invariant, 1:time varying(linear), 2:sinusoidal 

c_inp = 1;%Command input 0:step, 1:square-wave ,2;sinus wave 

nLMS = 1; %Normalized LMS Switch [1:On 0:Off] 

if nLMS == 1;sigma = 1e-6;end%very small number, prevents division by zero 

N = 10000;%number of iterations 

wn_inv = 50; %inverse model weight number 

mu_inv = .1; % inverse model convergence factor 

Ts = 0.1; 

t = 0:Ts:((N-1)*Ts); %time vector 

delay = 1; 

switch c_inp %Generate controller input 

    case 0 %step 

        I1 = 0.1 * filtrand(7500,.1,50); 

        I2 = 0.5 * filtrand(2500,.1,.5,[100 500 2]); 

        I = [I1 I2]; 
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    case 1 %square-wave 

        I = 0.5 * filtrand(N,.1,50,[N/2 0 0]); 

        [u tu] = gensig('square',500,N-1,1); 

        I = I + 0.5 * u'; 

    case 2 %sinus-wave 

        I = 0.5 * filtrand(N,.1,50,[N/2 0 0]);  

        [u tu] = gensig('sin',500,N-1,1); 

        I = I + 0.5 * u'; 

end 

%Plant 

switch tv 

    case 0 %time-invariant 

        a = 30; 

    case 1 

        a = 30 + t * 0.003;%time-varying(linearly) 

    case 2 

        a = 30 + .5 * sin(2 * t);%time-varying(sinusoidal) 

    otherwise 

        disp('Error') 

end 

numd =[458 1374 1374 458] / 25809; 

dend = [420*30+13209 -380*30-19133 19707-420*30 380*30-11951] / 25809; 

order_p_1 = length(dend); 

order_p = order_p_1 - 1; 

sim_p = zeros(1,order_p_1);%Initialize plant simulation vector 

out_p = zeros(1,N); %initialize plant output 

 

%Reference Model 

numr = 1; denr = [1/3 1]; 

[numdr dendr] = c2dm(numr,denr,Ts,'tustin'); 

order_r_1 = length(dendr); 

order_r = order_r_1 - 1; 

sim_r = zeros(1,order_r_1);%Initialize reference model simulation vector 

out_r = zeros(1,N); %initialize reference model output 

sim_r2 = zeros(1,order_r_1); 

out_r2 = zeros(1,N);  

 

%--- 

inp_inv = zeros(1,wn_inv); %Initialize Inverse Model Input 

out_inv = zeros(1,N); %Initialize Inverse Model Output 

w_inv = 0.1 * ones(1,wn_inv); %Weight vector 

%--- 

inp_c = 0.1 * ones(1,wn_inv); %initialize controler input 

%h = waitbar(0,'Please wait...'); 

for k = 1:N 

    %waitbar(k/N) 

    if tv == 1 | tv == 2%vary plant 

        dend = [420*a(k)+13209 -380*a(k)-19133 19707-420*a(k) ... 

            380*a(k)-11951] / 25809; 

    end 
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    %Controler 

    inp_c = [I(k) inp_c(1:wn_inv - 1)]; 

    out_c = inp_c * w_inv'; 

    %Plant 

    inp_p(k) = out_c; 

    sim_p(1) = inp_p(k) - dend(2:order_p_1) * sim_p(2:order_p_1)'; 

    out_p(k) = sim_p * numd'; 

    sim_p = [0 sim_p(1:order_p)]; 

    %Reference Model (to form ref. model inverse) 

    inp_r(k) = out_c; %same input with plant 

    sim_r(1) = inp_r(k) - dendr(2:order_r_1) * sim_r(2:order_r_1)'; 

    out_r(k) = sim_r * numdr'; 

    sim_r = [0 sim_r(1:order_r)]; 

    %Reference Model (to examine model following performance) 

    inp_r2(k) = I(k); %same input with controller 

    sim_r2(1) = inp_r2(k) - dendr(2:order_r_1) * sim_r2(2:order_r_1)'; 

    out_r2(k) = sim_r2 * numdr'; 

    sim_r2 = [0 sim_r2(1:order_r)]; 

     

    %Inverse Model 

    inp_inv = [out_p(k) inp_inv(1:wn_inv - 1)]; 

    out_inv(k) = inp_inv * w_inv'; 

    %Inverse Model Weight Update 

    if k > delay 

        e_inv(k) = out_r(k - delay) - out_inv(k); %error 

        if nLMS == 1 

            w_inv = w_inv + ((inp_inv / (sigma + (inp_inv * ... 

                inp_inv'))) * mu_inv * e_inv(k)); %nLMS 

        elseif nLMS == 0 

            w_inv = w_inv + 2 * mu_inv * inp_inv * e_inv(k); %LMS 

        end 

    end 

end 

SEi = e_inv.^2; %Squared error 

%close(h); 

clear order_p order_p_1 order_r order_r_1 out_c numr num denr den ... 

    tv wn_inv sim_r sim_p nLMS mu_inv h dend numd dendr numdr k ... 

    delay sigma 

disp('finished') 

e_overall = (out_r2 - out_p); 

plot([9000:10000],out_p(9000:10000),[9000:10000],I(9000:10000)); 

%axis([500 N*Ts -1 1]);grid 

%hold on;plot([1 N*Ts],[0.98 0.98],'r');plot([1 N*Ts],[1.02 1.02],'r') 

figure;plot([9000:10000],e_overall(9000:10000)) 
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B.4 Matlab Program for Adaptive Inverse Control of Plants with Disturbances 

 

%%AIC with disturbance canceling 

%Based on figure 5.4 

clc;clear; 

dist_type = 2; %0:no dist., 1:step, 2:random, 3:ramp 

start_dc = 4000;%iteration to start disturbance canceling 

add_dist = 4100;%iteration to add disturbance 

%Adjustable Parameters 

N = 10000;%iteration number 

wn_dm = 50;%direct model weight number 

wn_inv = 50;%inverse model weight number 

mu_dm = 0.01;%direct model convergence factor 

mu_inv = 0.01;%inverse model convergence factor 

delay = 0;%inverse modeling delay 

%SIGNALS 

I = 0.5 * filtrand(N,.1,5,[4000 0 1]);%excitation signal 

[u t] = gensig('square',2000,N-1,1);%command input 

I = I + 0.5 * u'; 

I_off = 0.5 * filtrand(N,.1,50);%offline process modeling signal 

noise = filtrand(N,.1,.2);%random noise 

%PLANT --ball and beam experiment 

Ts = 0.1;%sampling time 

num=[2.1 4.2]; 

den=[1 2.1 4.2]; 

[numd dend]=c2dm(num,den,Ts,'tustin'); 

order_p = length(dend) - 1; 

%REF. MODEL (settling time < 3 s, no overshoot) 

num_r=[0 0 4]; 

den_r=[1 4 4]; 

[numd_r dend_r]=c2dm(num_r,den_r,Ts,'tustin'); 

order_r = length(dend_r) - 1; 

%initialize variables 

out_p = zeros(1,N);%disturbed plant output 

sim_p = zeros(1,N);%plant simulation output 

out_dm = zeros(1,N);%direct model output 

out_dmc_off = zeros(1,N);%direct model copy output(offline process) 

out_dmc_on = zeros(1,N);%direct model copy output(online process) 

out_inv = zeros(1,N);%inverse model output 

out_c = zeros(1,N);%controller output 

out_dc = 0;%disturbance canceller output 

out_r = zeros(1,N);%reference model output 

inp_dm = zeros(1,wn_dm+1);%direct model input 

inp_dmc_off = zeros(1,wn_dm+1);%direct model copy input(offline) 

inp_dmc_on = zeros(1,wn_dm+1);%direct model copy input(offline) 

inp_inv = zeros(1,wn_inv+1);%inverse model input 

inp_c = zeros(1,wn_inv+1);%controller input 

inp_dc = zeros(1,wn_inv+1);%disturbance canceller input 

sim_p_dummy = zeros(1,order_p+1);%plant simulation dummy variable 

sim_r_dummy = zeros(1,order_r+1);%ref. model simulation dummy variable 
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w_dm = (dimpulse(numd,dend,wn_dm+1))';%direct model weights 

w_inv = .03 * ones(1,wn_inv+1);%inverse model weights 

dist = zeros(1,N);%disturbance 

dly = zeros(1,delay+1);%inverse modeling delay vector 

sigma = 1e-6;%very small number, prevents division by zero 

%START ITERATION 

disp('Please wait...') 

for k=1:N 

    if k >= 5000 

        mu_dm = 0.001; 

        mu_inv = 0.001; 

    end 

    %CONTROLLER 

    inp_c=[I(k) inp_c(1:wn_inv)]; 

    out_c(k)=inp_c*w_inv'; 

    %PLANT 

    inp_p(k)=out_c(k)-out_dc; 

    sim_p_dummy(1)=inp_p(k)-dend(2:order_p+1)*sim_p_dummy(2:order_p+1)'; 

    sim_p(k)=sim_p_dummy*numd'; 

    sim_p_dummy=[0 sim_p_dummy(1:order_p)]; 

    %Add Disturbance 

    if k >= add_dist 

        if dist_type == 0%no dist. 

            dist(k) = 0; 

        elseif dist_type == 1%step 

            dist(k) = 0.2; 

        elseif dist_type == 2 

            dist(k) = noise(k);%random 

        elseif dist_type == 3 

            dist(k) = (t(k) * 0.001)-(add_dist*0.001);%ramp 

        end 

    end 

    out_p(k) = sim_p(k) + dist(k); %disturbed plant output 

    %DIRECT MODEL 

    inp_dm_1=out_c(k); 

    inp_dm=[inp_dm_1 inp_dm(1:wn_dm)]; 

    out_dm(k)=inp_dm*w_dm'; 

    e_dm(k)=out_p(k)-out_dm(k); 

    w_dm=w_dm+((inp_dm/(sigma + (inp_dm*inp_dm'))) * mu_dm * ... 

        e_dm(k)); %nLMS 

    %DIRECT MODEL COPY 

    inp_dmc_on_1=out_c(k)-out_dc; 

    inp_dmc_on=[inp_dmc_on_1 inp_dmc_on(1:wn_dm)]; 

    out_dmc_on(k)=inp_dmc_on*w_dm'; 

    %DIST CAN. 

    if k>=start_dc 

        inp_dc_1=out_p(k)-out_dmc_on(k); 

        inp_dc=[inp_dc_1 inp_dc(1:wn_inv)]; 

        out_dc=inp_dc*w_inv'; 

    end 
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    %%OFFLINE PROCESS 

    %DIRECT MODEL 

    inp_dmc_off_1=I_off(k); 

    inp_dmc_off=[inp_dmc_off_1 inp_dmc_off(1:wn_dm)]; 

    out_dmc_off(k)=inp_dmc_off*w_dm'; 

    %REF. MODEL 

    inp_r(k)=I_off(k); 

    sim_r_dummy(1)=inp_r(k)-dend_r(2:order_r+1)*sim_r_dummy(2:order_r+1)'; 

    out_r(k)=sim_r_dummy*numd_r'; 

    sim_r_dummy=[0 sim_r_dummy(1:order_r)]; 

    %Inverse modeling DELAY 

 dly(1) = out_r(k); %set current as 1st delay vector element 

 out_r_delayed(k) = dly(delay + 1);%get previous for current iteration 

 dly = [0 dly(1:delay)];%shift delay vector 

    %INVERSE MODEL 

    inp_inv = [out_dmc_off(k) inp_inv(1:wn_inv)]; 

    out_inv(k) = inp_inv * w_inv'; 

    e_inv(k) = out_r_delayed(k) - out_inv(k); 

    w_inv=w_inv+((inp_inv/(sigma + (inp_inv*inp_inv'))) * mu_inv * ... 

        e_inv(k)); %nLMS 

    error(k) = I(k) - out_p(k); 

end 

%END ITERATION 

clear delay den den_r dend dend_r dist_type dly inp_c inp_dc inp_dc_1 ... 

        inp_dm inp_dm_1 inp_dmc_off inp_dmc_off_1 inp_dmc_on ... 

        inp_dmc_on_1 inp_inv inp_p inp_r k mu_dm mu_inv nLMS num ... 

        num_r numd numd_r order_p order_r out_c out_dc out_dm ... 

        out_dmc_off out_dmc_on out_inv out_r sigma out_r_delayed ... 

        sim_p_dummy sim_r_dummy wn_dm wn_inv start_dc w_dm w_inv 

disp('Simulation Finished') 

figure; 

plot(1:N,I(1:N),1:N,out_p(1:N),1:N,-error(1:N));axis([6000 10000 -.6 .6]); 

title('Control of ball position'); 

legend('Desired ball position','Actual ball position','Control error') 

xlabel('Iterations');ylabel('Ball position [m]'); 

grid on; 

 

B.5 Matlab Code of Filtrand Sub-program 

 

function y=filtrand(m,Ts,Wn,st) 

% y=filtrand(m,Ts,Wn,st) 

% Filtered random signal. 

% "randn" is passed through lpfilt with 

%   natural (corner) frequency Wn. 

% The length of the row vector y is specified as m. 

% If st is used as a nonzero value, a step function is placed 

%   at the end, the total length still being m: 

%   st=[length of zeros, length of ones, step size] 

%   Step size is optional (Default: 1). 

%   st can be a scalar, in which case st is taken as [st st 1]. 
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%   If st is a four vector, the first element specifies multiple 

%   steps with period given by it. E.g.: [1000 50 50 1] places 

%   steps at 1000 before, at 2000 before etc. from the end, in 

%   addition to the one at the end. For equal intervals and also 

%   to start away from a step, make m a multiple of st(1) of the 

%   four-vector st. 

% To increase the frequency content, increase Wn with 

%   a fixed Ts. "randn" can have frequencies upto the 

%   Nyquist frequency  pi/Ts, so, beyond Wn = about 2*pi/Ts, 

%   randn remains practically unfiltered. It is the product 

%   Wn*Ts that determines the apparent roughness or smoothness: 

%   Wn*Ts = 2*pi*(Ts/Tn) = pi*(wn/w_nyquist). 

%   See lpfilt. 

% N.A.Hızal. 

stpr=0; 

if nargin==4 

  if length(st)==1 

     st=[st st 1]; 

  elseif length(st)==2 

     st=[st 1]; 

  elseif length(st)==4 

     stpr=st(1); st(1)=[]; 

  end 

  yst=[zeros(1,st(1)) st(3)*ones(1,st(2))]; 

else 

  st=[0 0]; yst=[]; 

end 

x=randn(1,m-st(1)-st(2)); 

y=lpfilt(x,Ts,Wn); 

y=[y yst]; 

if stpr 

 k=1; 

 l=m-st(1)-st(2); 

 while 1 

   if l-k*stpr<0  break, end 

   y(l-k*stpr+1:l-k*stpr+st(1))=zeros(1,st(1)); 

   y(l-k*stpr+st(1)+1:l-k*stpr+st(1)+st(2))=st(3)*ones(1,st(2)); 

   k=k+1; 

 end 

end 

 

B.6 Matlab Code of Lpfilt Sub-program 

 

function y=lpfilt(u,Ts,Wn) 

% Low-pass filter for input vector u 

% Second order filter (zeta = .7071 and user-defined Wn) 

% N.A.Hizal. 

zeta=.7071;numa=1;dena=[1/Wn/Wn 2*zeta/Wn 1]; 

[num den]=c2dm(numa,dena,Ts,'tustin'); 

y=filter(num,den,u); 
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