

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Mustafa UYSAL, B.Sc.

Department : Mechanical Engineering

Programme: System Dynamics and Control

FEBRUARY 2006

ADAPTIVE INVERSE CONTROL

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Mustafa UYSAL, B.Sc.

503031610

Date of submission : 19 December 2005

Date of defence examination: 2 February 2006

 Supervisor (Chairman): Prof. Dr. N. Aydın HIZAL

Members of the Examining Committee Prof.Dr. Ahmet Kuzucu

 Prof.Dr. Melih Geçkinli

FEBRUARY 2006

ADAPTIVE INVERSE CONTROL

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

UYARLAMALI TERS KONTROL

YÜKSEK LİSANS TEZİ

Mustafa UYSAL

503031610

ŞUBAT 2006

Tezin Enstitüye Verildiği Tarih : 19 Aralık 2005

Tezin Savunulduğu Tarih : 2 Şubat 2006

Tez Danışmanı : Prof.Dr. N. Aydın HIZAL

Diğer Jüri Üyeleri Prof.Dr. Ahmet KUZUCU

 Prof.Dr. Melih Geçkinli

 iii

FOREWORD

I would like to thank my supervisor Prof. Dr. Nafiz Aydın HIZAL for his guidance

during this thesis.

December, 2005 Mustafa UYSAL

 iv

TABLE OF CONTENTS

ABBREVIATIONS V

LIST OF TABLES VI

LIST OF FIGURES VII

LIST OF SYMBOLS IX

ÖZET X

SUMMARY XI

1. INTRODUCTION 1

2. ADAPTIVE FILTERS 3

2.1. Linear Combiner 4

2.2. Performance Surface 6

2.3. The Gradient and the Minimum MSE 7

2.4. The Method of Steepest Descent 8

2.5. The Least Mean Squares (LMS) Algorithm 9

3. ADAPTIVE MODELING 11

4. ADAPTIVE INVERSE MODELING 17

5. ADAPTIVE INVERSE CONTROL 25

6. PARAMETERS OF ADAPTIVE INVERSE CONTROL SYSTEMS 31

6.1. Effects of Convergence Factor on Modeling Processes 34

6.2. Effects of Weight Vector Length 37

6.3. Effects of Modeling Signal Characteristics 39

6.4. Using normalized LMS in Modeling Processes 41

7. ADAPTIVE INVERSE CONTROL APPLICATIONS 42

7.1. AIC of a Time-varying Plant 42

7.2. AIC of Unstable Ball on a Beam in Existence of Disturbances 49

8. CONCLUSION 54

REFERENCES 56

APPENDIX 57

CURRICULUM VITAE 67

 v

ABBREVIATIONS

AIC : Adaptive inverse control

FIR : Finite impulse response

IIR : Infinite impulse response

LMS : Least mean square

MSE : Mean square error

tr : Trace

 vi

LIST OF TABLES

 Page

Table 6. 1. Variation values for weights after convergence 34

 vii

LIST OF FIGURES

Page

Figure 2.1 : Basic representation of an adaptive filter 3

Figure 2.2 : Linear combiner ... 4

Figure 2.3 : Adaptive linear combiner .. 5

Figure 2.4 : Performance surface in existence of two weights........................ 7

Figure 3.1 : Basic structure of adaptive plant modeling 11

Figure 3.2 : Adaptive modeling of a noisy plant ... 12

Figure 3.3 : Dither scheme A .. 13

Figure 3.4 : Dither scheme C .. 14

Figure 3.5 : Direct modeling result ... 15

Figure 3.6 : Added disturbance is correlated with the modeling signal,

 converged model is biased ... 16

Figure 3.7 : Direct modeling errors ... 16

Figure 4.1 : Inverse modeling of a minimum-phase plant 17

Figure 4.2 : Forming a delayed plant inverse .. 18

Figure 4.3 : Obtaining model-reference plant inverse 19

Figure 4.4 : An incorrect method for inverse modeling of a plant with

 disturbance ... 20

Figure 4.5 : A proper method for online inverse modeling of a plant with

 disturbance ... 20

Figure 4.6 : An offline process for inverse modeling of a plant with

 disturbance ... 21

Figure 4.7 : Deconvolution of plant dynamics without reference model 23

 viii

Figure 4.8 : Deconvolution of plant dynamics with reference model 23

Figure 4.9 : Deconvolution of plant dynamics with delay plant inverse 24

Figure 5.1 : Basic idea of adaptive inverse control 25

Figure 5.2 : Appropriate AIC system that works with LMS at low

 disturbance levels ... 26

Figure 5.3 : An AIC system with offline inverse modeling for controlling

 plants with disturbance .. 26

Figure 5.4 : Adaptive inverse control with disturbance canceling block 28

Figure 5.5 : Implementation of figure 5.3 without reference model 29

Figure 5.6 : Implementation of figure 5.3 with reference model 29

Figure 5.7 : Implementation of figure 5.3 (first 10 samples are dithered) 30

Figure 6.1 : Impulse response of P (z) .. 32

Figure 6.2 : Impulse response of actual and modeled plants 33

Figure 6.3 : Squared error for direct and inverse modeling processes 33

Figure 6.4 : Effects of μ on weight noise .. 34

Figure 6.5 : Change of weights for μ=0.001 ... 35

Figure 6.6 : Change of weights for μ=0.005 ... 35

Figure 6.7 : Change of weights for μ=0.0005 ... 36

Figure 6.8 : Effects of μ on weights .. 36

Figure 6.9 : Selecting too many weights ... 38

Figure 6.10 : Selecting insufficient weights .. 38

Figure 6.11 : Selecting insufficient weights .. 39

Figure 6.12 : Modeling with μ=0.001 ... 40

Figure 6.13 : Modeling with μ=0.0005 ... 40

Figure 6.14 : Using Normalized LMS ... 41

Figure 6.15 : Using Conventional LMS .. 41

Figure 7.1 : MRAC output from ref [6] .. 43

 ix

Figure 7.2 : Step responses of time invariant and time varying cases........... 43

Figure 7.3 : Impulse responses of time invariant and time varying cases 44

Figure 7.4 : Control of time-invariant plant .. 45

Figure 7.5 : Overall control system error of time-invariant plant 46

Figure 7.6 : Control of time-varying plant, parameter a changes 30 to 33 ... 46

Figure 7.7 : Overall control system error of time-invariant plant 46

Figure 7.8 : Control system failure in case of fast changing dynamics......... 47

Figure 7.9 : Control of time-varying plant, a=5sin (2t) 48

Figure 7.10 : Tracking performance of time-varying plant, a=5sin (2t) 48

Figure 7.11 : Ball and beam system .. 49

Figure 7.12 : Controlling ball position, no disturbance added 51

Figure 7.13 : Step disturbance (without disturbance canceller block) 51

Figure 7.14 : Step disturbance (with disturbance canceller block) 52

Figure 7.15 : Ramp disturbance (with disturbance canceller block) 52

Figure 7.16 : Plant subjected to random disturbance 53

 ix

LIST OF SYMBOLS

dk : Desired response

E [] : Expected value

M(z) : Reference model transfer function

nk : Disturbance

P : Input vector cross-correlation matrix

P(z) : Plant transfer function

R : Input vector auto-correlation matrix

s : Laplace operator

Ts : Sampling time

uk : Plant input signal

Wk : Weight vector at k
th

 iteration

W
*
 : Optimum weight vector

Xk : input vector at k
th

 iteration

y : Filter output

z : Discrete time operator

z
-1

 : unit delay in discrete time

ξ : Mean square error

Δ : Gradient, inverse modeling delay

μ : Convergence factor

ε : Error

̂ : Gradient estimate

δk : Dither signal

ζ : A very small number to prevent division by zero

 x

η : Time constant

λ : Eigenvalue

 x

UYARLAMALI TERS KONTROL

ÖZET

Uyarlamalı ters kontrol sistemleri, kontrol edilecek sistem hakkında tam bilgi sahibi

olunmadığı ya da bu sistemin dinamiklerinin zamanla yavaşça değişim gösterdiği

durumlarda kullanılması gerekli olabilecek açık ve kapalı çevrimli olabilen kontrol

sistemleridir. Dinamikleri hakkında tam bilgiye sahip olunamayan sistemin kontrol

edilebilmesi, sistem tanımlanması yöntemine dayanır.

Uyarlamalı FIR filtreler kullanılarak bilinmeyen sistemin direk modeli ya da ters

modeli elde edilebilir. Genellikle bu sistemlerde hem direk model hem de ters model

kontrol çevrimi sırasında elde edilir. Elde edilen ters model, kontrol organı olarak

sisteme seri bağlanır ve böylelikle sistemin dinamiklerini iptal etmesi amaçlanır. Bu

şekilde komut girişi ile sistemin cevabı arasındaki transfer fonksiyonu 1’e eşit olur

ve sistem komut girişini izler. Birebir ters modelin oluştuğu durumlarda sistemin

cevabının çok ani olacağı göz önünde bulundurularak, referans model tersi

oluşturulması hedeflenir. Bu durumda kontrol organının transfer fonksiyonu sistemin

transfer fonksiyonunu yine iptal eder, fakat sistemin cevabı referans modelin cevabı

şeklinde olur. Bu şekilde istenen karakterde geçici rejim cevabı elde edilir.

Bu çalışmada öncelikle uyarlamalı ters kontrol sistemlerinin teorik esasları ele

alınmıştır. Daha sonra sistemin performansını etkileyen parametreler modelleme

süreçleri üzerinde incelenmiştir. Uyarlamalı ters kontrol sisteminin başarısı direk ve

ters modelleme süreçlerinin başarısı ile doğru orantılıdır. Modeller bilinmeyen

sisteme ne kadar yakınsarsa o derece hassas kontrol mümkün olacaktır.

Modelleme süreçleri üzerinde parametre seçimine karar verildikten sonra temel

uyarlamalı ters kontrol şeması esas alınarak, dinamikleri zamanla yavaşça değişen

kararlı bir sistem için kontrol sistemi benzetimi yapılmıştır. Benzetim uygulamaları

Matlab programında hazırlanmıştır. Son olarak, kararsız davranış gösteren top-kiriş

düzeneği üzerinde, uyarlamalı ters kontrol sisteminin, sisteme bozucu etkidiği

durumlardaki performansı incelenmiştir.

 xi

ADAPTIVE INVERSE CONTROL

SUMMARY

Control of the plants whose dynamics are not known or slowly time variable needs a

different approach than the conventional control methods. Controls of such plants are

available with adaptive inverse control systems, which can work either open-loop or

closed-loop. Controls of those plants are based on the system identification methods.

Direct or inverse models of the unknown plants are obtained by utilizing adaptive

FIR filters. Usually both direct and inverse models are obtained within the control

cycle. Inverse model of the unknown plant is used in the controller position to cancel

the plant dynamics. Thus the transfer function between the input and the output

signal is unity and the output follows the input signal just as is. If the controller is a

perfect inverse then the system will response suddenly. In such cases a model

reference inverse is obtained to smooth the transient response of the system. With

model reference inverse, the controller cancels the plant dynamics but the response is

the same as the reference model.

In this work theoretical background of adaptive inverse control is reviewed first.

Then the parameters that have an effect on the performance of the system are

investigated with adaptive modeling processes. Performance of the AIC systems is

directly proportional with the success of the modeling process. The more the models

are representing the unknown plant the efficient the AIC system is.

After examining the parameters, a control simulation based on the basic AIC scheme

is applied on a time-varying system. Simulation applications are implemented within

Matlab program. Finally, performance of the AIC system is examined on the

unstable ball-beam setup in existence of disturbances.

 1

1. INTRODUCTION

The principle concern of control theory is to keep the outputs of a dynamical system

within desired limits. There are many methodologies developed to control system

dynamics. Adaptive control is a branch of those methodologies with an adaptive

viewpoint. Unlike the conventional controllers adaptive controllers modify its

parameters in response to changes in the dynamics of the controlled system or the

disturbances affecting the system. Conventional controllers work well when the plant

dynamics are well known. A change in the dynamics of the system needs to readjust

the parameters of the conventional controller. Therefore if there is no accurate

information about the plant dynamics or those dynamics are slowly time-varying

then adaptive controllers are taken into account.

Most of the controllers are based on feedback mechanisms. Utilization of feedback is

different in adaptive inverse control concept. Feedback from the plant output is not

directly fed to the controller input. Nevertheless it is not an open-loop control

system. Controller is adapted with respect to the information from plant output and

command input. The loop is closed through the adaptive process.

Adaptive inverse controllers utilize adaptive signal processing methods to perform

adaptivity. Adaptive filters are used in a large number of applications such as

channel equalization, interference (noise) cancellation and echo cancellation in

digital communication systems. In adaptive inverse control they are used for

identification of the plants.

In this work, structures and implementation of adaptive inverse controllers are

reviewed and simulated with time-varying and disturbed plants. Matlab and its

component Simulink are used for computer simulations. This work has seven

chapters and two appendices. Next chapter is a review of adaptive filter theory.

Structure of adaptive filters and fundamentals of algorithms for filter update are

reviewed. Chapter 3 is about adaptive modeling. Usage of adaptive filters for

obtaining direct models is explained with different schemes and direct modeling

 2

examples are given. Chapter 4 shows the usage of adaptive filters for forming inverse

models. Obtaining the inverses of minimum-phase and nonminimum-phase plants

and reference model inverses are explained with examples. In chapter 5 direct and

inverse models are combined to form an adaptive inverse control system. Possible

schemes for dynamic control and disturbance canceling are explained. A basic AIC

system is simulated as an example. Parameters that have an effect on AIC system are

examined in chapter 6. Defining the filter length according to plant response and

sampling time, effects of convergence factor and modeling signal characteristics and

advantages of using normalized LMS are detailed in this chapter. Application of

adaptive inverse control on a time-varying system and a disturbed system is

explained on chapter 7. Simulink diagrams and Matlab program codes used in

simulations are provided within appendices.

 3

2. ADAPTIVE FILTERS

Adaptive inverse control is built upon the basics of adaptive filtering. This chapter

introduces the fundamental concepts for adaptive inverse control. Adaptive filters are

used in wide variety of signal processing and control applications for plant modeling and

inverse plant modeling. Figure 2.1 represents a basic adaptive filter.

At every step of the way, adaptive filtering is present. It is important to think of the

adaptive filter as a building block, having an input signal, having an output signal, and

having a special input signal called the “error” which is used in the learning process.

This building block can be combined with other building blocks to make adaptive

inverse control systems [1].

Error εk

Adaptive

Filter

∑

_

Input

xk

Output

yk

Desired

Input dk

+

Figure 2.1 Basic representation of an adaptive filter

There are two types of linear adaptive filters: finite impulse response (FIR), and infinite

impulse response (IIR). The impulse response of the FIR filter is non-zero for a finite

period of time. However an IIR filter respond with non-zero values for an infinite period

of time.

 4

It is well known that any stable linear system may be approximated by a “sufficiently

long” FIR filter. Therefore in this work we utilize FIR filters. All of the work presented

in following chapters apply equally well to IIR filters, but their use was avoided due to

the possibility of instability. FIR filters with finite weights are always stable. IIR filters

are not [2].

2.1 Linear Combiner

Linear combiner is the start point for adaptive filtering. Because of its nonrecursive

structure it is easy to understand and analyze.

The combiner is said to be linear because in the following analyzes, weights of the

combiner are assumed to be fixed and under these assumptions the output of the

combiner is linear combination of the input components.

w0

x0

w1

x1

wL

xL

∑

Output signal

y

In
p

u
t

v
ec

to
r

Weight vector

Figure 2.2 Linear Combiner

As depicted in figure 2.2, linear combiner comprises of an input signal vector, weights, a

summing unit and an output signal.

Input signal vector;

0 1[]T

k k k Lkx x xX L (2.1)

 5

Weight vector;

0 1[]T

k k k Lkw w wW L (2.2)

The elements of the input signal vector are weighted and summed to form an output

signal vector. For the present analysis the weights are assumed to be fixed. So it is

possible to write;

0

L

k lk lk

l

y w x

 (2.3)

T T

k k k k ky X W W X (2.4)

At this point desired response is added to the linear combiner in order to develop

adjustability. Weight adjustment is accomplished by comparing the output with the

desired response to obtain an error signal and then adjusting the weight vector to

minimize this signal.

T T

k k k k k k kd y d d W X X W (2.5)

The new form of the combiner is depicted in figure 2.3 with the desired response. From

now on, the combiner can be called adaptive linear combiner. The arrows on the weights

represent adjustability.

w0

x0

w1

x1

wL

xL

∑
y

In
p
u
t

v
ec

to
r

Weight vector

∑

Desired

response, dk

Error,

εk = dk - yk

+
_

Figure 2. 3 Adaptive linear combiner

 6

2.2 Performance Surface

The error signal was defined above. Now by squaring equation (2.5) the instantaneous

squared error is obtained.

2 2 2T T T

k k k k k kd d W X X W X W (2.6)

The expected value of 2

k is defined as the mean square error.

2 2MSE 2T T T

k k k k k kE E d E E d W X X W X W@ (2.7)

The input correlation matrix R is defined in equation (2.8);

1 1 1 2

2 1 2 2

k k k k

k k k k

nk nk

x x x x

E x x x x

x x

R

L

@ L

M M

 (2.8)

and the cross correlation vector P is defined in equation (2.9).

1

2

k k

k k

k nk

d x

d x
E

d x

P @
M

 (2.9)

By writing MSE in terms of R and P equation (2.10) is obtained.

2 2T T

kE d W RW P W (2.10)

It is clear to see from equation (2.10) that MSE performance function is a quadratic

function of the weights. It is a bowl-shaped surface in existence of two weights and this

is depicted in figure 2.4. The point at the bottom of the bowl is projected onto the weight

vector plane as *W . That is the optimal weight vector or, point of minimum mean square

error.

 7

Figure 2. 4 Performance surface in existence of two weights

2.3 The Gradient and the Minimum MSE

The gradient at any point of the performance function is obtained by differentiating the

MSE function in equation (2.10). Here stands for gradient.

2

1

2

2 2

k

k

n

E

w

E

w

P RW
W

@ M (2.11)

To find the optimal weight vector *
W , the gradient is set to zero.

0 2 2 *
RW P (2.12)

Assuming that R is nonsingular;

* -1
W R P (2.13)

 8

Equation (2.13) is called the Wiener solution or the Wiener weight vector. This is the

optimal solution for a FIR filter and usually this filter would be casual that do not have

output signal unless there is input signal. The minimum MSE is now obtained by

substituting *
W from equation (2.13) for W in equation (2.10).

2

min 2
T T

kE d
* * *

W RW P W (2.14)

2

min 2
T

T

kE d
-1 -1 -1

R P RR P P R P (2.15)

Simplification of equation (2.15) by matrix manipulations yields us to equation (2.16)

2

min

T

kE d
*

P W (2.16)

By substituting equations (2.13) and (2.16) into equations (2.10) we obtain;

* *

min () ()T W W R W W (2.17)

2.4 The Method of Steepest Descent

The method of steepest descent uses gradients of the performance function in seeking its

minimum. Each change in the weight vector is made proportional to the negative of the

gradient vector.

 1k k k W W (2.18)

In equation(2.18), k stands for the gradient at the k. iteration and is called the

convergence factor or step size. It is a scalar value and has crucial effects on the stability

and the speed of adaptation. For stability of the equation (2.18) it is necessary that

max

1
0

 (2.19)

max represents the largest eigenvalue of R.

 9

2.5 The Least Mean Squares (LMS) Algorithm

The LMS algorithm is an implementation of steepest descent method. Instead of using

the actual gradient, a simple estimate of the gradient is used. There is no squaring,

averaging or differentiation in the algorithm so it is relatively simple and efficient.

The actual gradient

2

kE
W

 (2.20)

is replaced by the estimate
2

1 1

2

ˆ 2 2

k k

k k k k

k k

n n

w w

w w

XM M (2.21)

By substituting the gradient estimate in equation(2.18) the equation for LMS algorithm

is obtained.

 1
ˆ

k k k W W (2.22)

1 2k k k k W W X (2.23)

In equation(2.19) the interval for was defined but here, a stronger condition for

convergence is needed.

Stability of the LMS algorithm is guaranteed if the convergence constant is selected

within the range (1/) 0tr R [3].

 10

Normalized LMS algorithm is a variant of the LMS algorithm with much faster

convergence in many cases. Convergence factor is normalized by the energy of the

input signal vector.

1 1

2
NLMS T

k k

X X

 (2.24)

In equation (2.24) is a very small number added for preventing division by zero if

T

k kX X is very small.

1k k k kT

W W X

X X
 (2.25)

This form of LMS algorithm is independent of signal scaling. As the input signal power

changes, the algorithm adjusts the convergence factor to maintain an appropriate value.

Thus the step size changes with time. As a result, the normalized algorithm converges

more quickly in many cases. For input signals that change slowly over time, the

normalized LMS can represent a more efficient LMS approach.

Using gradient estimate in the LMS algorithm causes noise in the weight vector. Thus

noisy adaptation leads to an MSE larger than the optimal value. Misadjustment is

defined to quantify the increase in the MSE.

min

average excess MSE
M

@ (2.26)

It is desirable to keep M as small as possible. A value of 10M percent means that

the adaptive system has an MSE only 10 percent greater than min . Years of experience

with adaptive filters convinces one that a 10 percent misadjustment is satisfactory for

many engineering designs. Operation with 10 percent misadjustment can generally be

achieved with an adaptive settling time equal to 10 times the memory time span of the

adaptive filter. Adapting faster will cause more misadjustment. Adapting slower will

result in less misadjustment [1].

 11

3. ADAPTIVE MODELING

Adaptive plant modeling, also named as adaptive system identification, is an integral

part of an adaptive control process. The basic structure of adaptive plant modeling is

illustrated in figure 3.1.

Plant

P(z)

∑

ŷk

Plant input

uk

Error εk

Plant output

yk

Desired

response

signal

+

_

Adaptive model

P̂(z)

uk

Figure 3. 1 Basic structure of adaptive plant modeling

In many cases, the plant to be controlled may be unknown and possibly time

variable. In order to apply adaptive modeling the plant must be stable. For present

purposes the plant is assumed to stable and linear-time invariant. Modeling process

works in discrete time, in figure 3.1 all systems and signals are considered to be

sampled. Both the plant and the adaptive filter receive the same input signal. The

output of the plant is the desired response for the adaptive filter. The discrete time

impulse response of the plant is formed thorough the filter by varying the weights of

the linear combiner.

After convergence the weights contain the identification information about the plant

dynamics in the form of an impulse response shape [3].

 12

In an adaptive modeling process, plant disturbance and plant output sensor noise can

be handled as an additive disturbance at the plant output. This situation is depicted in

figure 3.2. kn is the discrete-time additive noise and the overall plant output is kz .

Plant

P(z)

∑

ŷk

Plant input

uk

Error εk

∑
yk

Plant

disturbance

nk

+

+

Plant

output

zk

Desired

response

signal

+

_

Adaptive model

P̂(z)

uk

Figure 3. 2 Adaptive modeling of a noisy plant

Assuming the input signal excites all the plant modes, it is statistically stationary and

not correlated with the disturbance kn , the adaptive algorithm will develop a transfer

function equal to that of the plant. Although the desired response for the adaptive

process is the disturbed plant output kz , it will give the same Wiener solution as if it

was trained with ky .

Estimated adaptive models will be very close representations of the actual plants.

However there will be differences between the actual plant ()P z and the estimated

model ˆ()P z . These differences are called mismatch. There are three sources of

mismatch.

In practice the plant to be modeled will have an infinite impulse response (IIR).

Modeling the IIR plant with a FIR filter will result in mismatch. In order to

overcome this issue, delay line length must be long enough so that the model’s

impulse response duration can cover the most significant part (practical memory

time) of the impulse response of the system to be modeled. If the delay line length is

 13

selected so long, the unnecessary weights at the end will tend to become zero. Also

selecting a long line will increase misadjustment. The noise in the model weights

increase by the number of the weights. One can find the satisfactory values by trial

and error through the simulations.

To achieve a close match between the adaptive model and the unknown plant over a

specified range of frequencies, the plant input
ku needs to have spectral energy over

this range of frequencies. If the plant input has uniform spectral density over the

frequencies of interest, then error tolerance will be uniformly tightly held over this

frequency range. In many cases, however, the plant input ku fails to have adequate

spectral density at all frequencies where good fit is required. The result is mismatch,

development of a difference between P̂ and P [1].

A non-stationary input signal will result in same problem. Systems switching

between constant levels and holding the levels for a long time represents this kind of

situations.

Dither signals added to the plant inputs are used to circumvent these difficulties. In

figure 3.3, one of the dither scheme A is depicted.

Plant

P(z)

∑

ŷk

Plant input

uk

Error εk

∑
yk

Plant

disturbance

nk

+

+

Plant

output

zk

Desired

response

signal

+

_

Adaptive model

P̂(z)

uk

∑

u’k

Controller

output

Dither

δk

+

+

Figure 3. 3 Dither scheme A

 14

Dither scheme A is a straightforward way of plant modeling. The dither k is simply

added to the controller output to form the plant input. Hence a desired spectral

character for ku is obtained. This scheme works well if the controller output is a

stationary stochastic process. Dither scheme A comes with the drawback of having

an increased minimum mean square error.

For the cases of
ku being non-stationary, dither scheme C is depicted in figure 3.4

Plant

P(z)

∑

ŷk

Plant

input

uk

Error εk

∑
yk

Plant

disturbance

nk

+

+

Plant

output

zk

Desired

response

signal+

_

Adaptive model

P̂(z)

∑u’k

Controller

output

Dither

δk

+
+

∑

+
_Copy

P̂(z)

Figure 3. 4 Dither scheme C

This is a more complex layout, but it eliminates the drawbacks of scheme A. The

non-stationary controller output does not pass through adaptive filter; an exact digital

copy is used instead. Output of the exact digital copy is used for obtaining the

desired response for the actual adaptive filter.

Selecting white noise as the dither signal is adequate for modeling signal

characteristics; however the power level of this signal must be well optimized. Low

level dither power will slow down the adaptive process. High levels of power will

make the adaptation faster but it comes with increasing noise in the weights.

 15

As an example of direct modeling of the plant given in equation 3.1, step responses

of both actual and modeled plants are shown on figure 3.5

1

1
1 2

1 2
()

3
1

4

z
P z

z z

 (3.1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Time [Sec]

A
m

p
lit

u
d
e

Adaptive Modeling

Actual Plant

Modeled Plant

Figure 3. 5 Direct modeling result

Plant modeled with 50 weights, convergence factor is set to 0.1 and normalized LMS

algorithm is used. With these values direct model converged within 3000 iteration

values and a perfect fit is obtained.

To see the adaptive modeling performance under disturbance random noise is added

to the plant output. To make the modeling signal correlated with the noise, random

number generator seeds are set to a equal value. When the disturbance was correlated

with the modeling signal it caused bias in the direct model without noise in the

weights. The biased solution can be observed from figure 3.6. With the uncorrelated

disturbance adaptive model converged to the actual plant but the results are noisy.

Squared errors for both correlated and uncorrelated disturbances are plotted on figure

3.7.

 16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Time [Sec]

A
m

p
lit

u
d
e

Adaptive Modeling of a Noisy Plant

Actual Plant

Modeled Plant

Figure 3. 6 Added disturbance is correlated with the modeling signal, converged model is biased.

0 5000
0

150

300

S
q
u
a
re

d
 E

rr
o
r

Square Error of Modeling Processes

0 5000
0

150

300

Iterations

S
q
u
a
re

d
 E

rr
o
r

Square error for uncorrelated noise

Square error for correlated noise

Figure 3. 7 Direct modeling errors

 17

4. ADAPTIVE INVERSE MODELING

Plant inverses are used as controllers in adaptive inverse control. To obtain inverse

model in place of the direct model, the roles of the plant input and plant output are

interchanged on the adaptive modeler. The plant input is the desired response and the

plant output is the input to the adaptive inverse modeler.

Adaptive inverse modeling is only applicable for stable plants. If the plant to be

modeled is unstable, it must be stabilized with conventional feedback.

The plant generally has zeros and poles thus the inverse of it should have also. If the

plant has all of its zeros inside the unit circle in the z-plane, then it is called a

minimum-phase plant. If any of the zeros is outside the unit circle, then it is called a

nonminimum-phase plant. The inverse of a nonminimum-phase plant will have poles

outside the unit circle which makes it unstable.

Inverse plant modeling scheme for minimum-phase plants is depicted in figure 4.1.

The adaptive filter is connected cascade with the plant to be inverse modeled. As

assumed before that the plant ()P z is minimum-phase, it should have a perfect

inverse () 1/ ()C z P z . ()C z is both stable and casual.

Plant

P(z)

Plant Inverse

Ĉ(z)

∑

_

Modeling

signal

+

Plant

output

Figure 4. 1 Inverse modeling of a minimum-phase plant

 18

Adaptive algorithm would provide an inverse ˆ ()C z which closely approximates ()C z

when it has sufficient number of degrees of freedom.

The technique depicted in figure 4.1 will not work if the plant is nonminimum-phase

or it has transport delay. In such cases delaying the desired response through the

inverse modeling process will make the adaptive filter capable of forming a working

controller. Modeling scheme for delayed plant inverse is depicted in figure 4.2.

Error

Delay

z-Δ

Delayed

Plant inverse

ĈΔ(z)

Plant

P(z)

∑

_

Modeling

Signal

+

Figure 4. 2 Forming a delayed plant inverse

Here stands for the delay amount. Selecting larger values of would result in

more perfect inverses. But the delay in the overall control system would be greater if

the inverse filter were used as a controller.

For any minimum-phase plant, 0 would suffice, except when the plant has more

poles than zeros, then 1 would suffice. Because when the analog plant is

discretized, more poles than zeros causes the discrete impulse response to begin after

a delay of one sample period [1].

For FIR filters, increasing beyond the point of any reasonable need could cause the

impulse response to be pushed out of the time window.

 19

By replacing the delay block in figure 4.2 with a reference block, model-reference

inverses can be obtained. Such a scheme is depicted in figure 4.3.

Error

Reference model

M(z)

Model-reference

Plant inverse

ĈM(z)

Plant

P(z)

∑

_

Modeling

Signal

+

Figure 4. 3 Obtaining model-reference plant inverse

The goal of this process is to obtain a controller ˆ ()MC z that, when used to drive the

plant, would result in a control system whose overall transfer function would closely

match the transfer function ()M z of a given reference model.

Reference-models should reflect the dynamics that is desired at the controlled plant

output. By using reference-models, smooth transient responses could be achieved in

the cases of perfect inverses. Because perfect inverses, when used as controllers,

would result in sudden responses of the controlled system, which may be sometimes

unwanted.

In chapter three, it was mentioned that plant disturbance does not affect the Wiener

solution when the plant is directly modeled. But in the case of inverse modeling,

previously introduced modeling schemes will not work if plant disturbance exists.

Such a scheme is illustrated in figure 4.4 which prevents the formation of a proper

inverse. Proper methods for inverse modeling of a plant with disturbance are

depicted in figure 4.5 and 4.6, which illustrates online and offline processes

respectively

 20

Error

Reference model

M(z)

∑

Plant disturbance

nk

!Plant inverse!
Ĉ(z)

Plant

P(z)

∑

_

+

Modeling

Signal

Figure 4. 4 An incorrect method for inverse modeling of a plant with disturbance

Error

Reference model

M(z)

Model-reference

inverse

Ĉ(z)

∑

_

dk

+

Plant

P(z)

∑

ŷk

uk

Error εk

∑
yk

Plant

disturbance

nk

+

+

+

_

Adaptive model

P̂(z)

Figure 4. 5 A proper method for online inverse modeling of a plant with disturbance

 21

Plant

P(z)

∑

ŷk

Plant input

uk

Error εk

∑
yk

Plant

disturbance

nk

+

+ Desired

response

signal

+

_

Adaptive model

P̂(z)

uk

Error

Reference model

M(z)

ĈM(z)

∑

_

+

Offline inverse

modeling

Copy

P̂(z)

Modeling

Signal

Figure 4. 6 An offline process for inverse modeling of a plant with disturbance

In figure 4.5 direct model of the plant ()P z is used. Instead of finding a model-

reference inverse of ()P z , the model-reference is taken from ˆ()P z which has the

same dynamic response as ()P z but is free of disturbance. There are two adaptive

processes working in cascade. Second adaptive process for obtaining ˆ ()C z will

always be lagging behind the first one for obtaining ˆ()P z . This lag is prevented in

offline process depicted in figure 4.6. Direct model of the plant ˆ()P z is obtained first

and an exact digital copy of it is used in an offline process to obtain ˆ ()C z . This is

much faster than online process.

 22

The modeling signal has significant effect over the control system. Here ˆ ()C z is

restricted to be causal and FIR. Consequently there will not be enough weights and

degrees of freedom in ˆ ()C z to perfectly match ()C z . Under these conditions the

spectral shape of the modeling signal could have considerable influence on the

frequency response of ˆ ()C z . In general the frequency response curves of

()M z and ˆˆ() ()P z C z will be different.

Optimizing ˆ ()C z with a white modeling signal will cause transfer function

differences to be weighted equally at all frequencies causing the area of the

difference of the two frequency response curves to be minimized. Using a non-white

modeling signal causes frequency response differences to be weighted more heavily

at frequencies where the modeling signal has higher power density [1].

To test the schemes introduced in this chapter the systems given in equation 3.1 and

4.1 are used. System of P1 given in equation 3.1 is a stable but nonminumum-phase

plant. System of P2 given in equation 4.1 is a stable and minimum-phase plant.

1

2
1 2

1
1

2()
3

1
4

z

P z

z z

 (4.1)

Reference model given in equation 4.2 is used to test model reference inverses.

1

1 2

0.25
()

(1 0.5)

z
M z

z

 (4.2)

To see the success of inverse modeling process, the inverse model built with using

the weights in a digital filter form and a unit step input is applied to the convolution

of the inverse and the actual plant. In case of a perfect inverse the response would be

1 with no transient response. This indeed would be very difficult. In figure 4.7

deconvoluted plant’s response is plotted. It has oscillatory transient response and

steady state error. A reference model is added to the process and response of the

deconvoluted plant has been greatly enhanced. The result is plotted on figure 4.8.

 23

0 2 4 6 8 10 12
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01
Step Response

Time (sec)

A
m

p
lit

u
d
e

Figure 4. 7 Deconvolution of plant dynamics without reference model

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

p
lit

u
d
e

Figure 4. 8 Deconvolution of plant dynamics with reference model

 24

To obtain an inverse model of the nonminumum-phase plant P1, the desired response

is delayed 3 samples. Its Deconvolution of the plant is plotted on figure 4.9. The

delay can be easily seen from this response.

0 1 2 3 4 5 6 7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (sec)

A
m

p
lit

u
d
e

Figure 4. 9 Deconvolution of plant dynamics with delayed plant inverse.

 25

5. ADAPTIVE INVERSE CONTROL

Previous chapters introduced us the elementary parts of the adaptive inverse control.

These components take place in the system according to the desired specifications to

form up an adaptive inverse control system. The main objective is how to lineup

those elements to do a successful control task. The lineups of the blocks changes by

the plant characteristics, signals fed to the system and the desired output of the

overall control task.

The fundamental idea behind inverse control is to cancel the plant dynamics by using

the inverse of it as a controller. This is depicted in figure 5.1 basically.

Adaptive

algorithm

PlantController

∑

Plant

input

Error

Plant

output
∑

Plant

DisturbanceCommand

input

_

+

Figure 5. 1 Basic idea of adaptive inverse control

Figure 5.1 introduces the simplest form of inverse control which is applicable with

different adaptive algorithms such as differential steepest descent (DSD) and linear

random search (LRS), but LMS algorithm cannot be used to adapt the weights of the

controller of figure 5.1. LMS is preferred because it is much faster than the others.

LMS needs its input from the plant output and an error signal referred to plant input

to form a plant inverse. Figure 5.2 depicts the desired scheme for LMS to work. This

scheme utilizes LMS for developing an inverse controller but it will not function

when the plant disturbance has high level.

 26

Error

Reference model

M(z)

∑

Plant disturbance

nk

Ĉ(z)
Plant

P(z)

∑

_

+

Plant

Input Copy

Ĉ(z)

[Controller]

Figure 5. 2 Appropriate AIC system that works with LMS at low disturbance levels

Plant

P(z)

∑

ŷk

Error εk

∑
yk

Plant

disturbance

nk

+

+

+

_

Adaptive model

P̂(z)

uk

Error

Reference model

M(z)

ĈM(z)

∑

_

Modeling

Signal

+

Offline process

Copy

P̂(z)

Plant input

ik Copy

ĈM(z)
∑

Dither

δk

Controller

Figure 5. 3 An AIC system with offline inverse modeling for controlling plants with disturbance

 27

The system of figure 5.2 works well as long as there is no plant disturbance. If plant

disturbance is present, its effect is to bias the Wiener solution so that ˆ ()C z will no be

a proper controller. The disturbance that appears at the plant output adds a

component to the covariance of the input signal of the adaptive inverse model,

directly affecting the Wiener solution for ˆ ()C z [1].

To overcome such problems, the scheme of figure 5.3 can be utilized. The plant

model is formed and a digital copy of it is used to form the inverse model in an

offline process. This technique was previously introduced in chapter 4. The idea is

that ˆ()P z has the same dynamic response as ()P z but without disturbance. In direct

modeling process plant disturbance dos not affect the Wiener solution.

Schemes introduced above cannot provide precise control in existence of plant

disturbances. Their objective is to cancel the plant dynamics by obtaining a proper

inverse but does nothing about canceling the disturbance. Closed-loop adaptive

inverse controllers are used to cancel the disturbances. An adaptive inverse control

scheme with a disturbance canceling feedback is introduced in figure 5.4.

Direct model is generated in an online process. As this model will be free of

disturbances, output from a direct model copy is subtracted from the plant output to

obtain an estimate of the disturbance. An inverse model is obtained from the direct

model copy in an offline process. This inverse is used as the controller in feed

forward and as the disturbance canceller block in the feedback. Disturbance estimate

is passed through the disturbance canceling block and subtracted from the plant

input. Disturbance canceling block is not activated before direct model and inverse

model formed.

This scheme is utilized in chapter seven to investigate ball and beam experiment

under the effects of disturbances.

An AIC simulation for the system given in equation 4.1 is made using the scheme

which is depicted in figure 5.3. Plant given in equation 4.1 is used as reference

model. Command tracking with and without reference model is given in figures 5.5

and 5.6 respectively. System iterated 20000 steps with added dither signal. If dither

signal is omitted direct model never converges, thus the controller cannot function.

 28

Plant

P(z)

∑
Error εk

∑
yk

Dist.

+

+

_

Adaptive model

P̂(z)

uk

Error

Reference model

M(z)

ĈM(z)

∑

Modeling

Signal

Offline process

Copy

P̂(z)

input

ik

Copy

ĈM(z)
∑

Controller

Copy

P̂(z)

Copy

ĈM(z)

∑
_

Disturbance estimate

_

Figure 5. 4 Adaptive inverse control with disturbance canceling block

In another simulation only first 10 samples of the input signal are dithered. This

helped the system to form the direct model and so the controller is functioning. But

the result is not as good as dithered system. This can be seen on figure 5.7. In the

other simulations with dither signal, adding dither signal is stopped at last steps to

see command tracking performance clearly. For the simulations an alternative way to

excite all the system modes is to make the controller input signal in different

sections. Early sections of the signal would be rich in frequency content and the last

sections would be step or square input, thus system’s response can be clearly

examined.

 29

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

x 10
4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

A
m

p
lit

u
d
e

Command Tracking (no reference model)

Controller Input

Plant Output

Figure 5. 5 Implementation of figure 5.3 without reference model

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

x 10
4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

A
m

p
lit

u
d
e

Command Tracking (with reference model)

Controller Input

Plant Output

Figure 5. 6 Implementation of figure 5.3 with reference model

 30

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

x 10
4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

A
m

p
lit

u
d
e

Command Tracking (without dither)

Controller Input

Plant Output

Figure 5. 7 Implementation of figure 5.3 (Only first 10 samples are dithered)

 31

6. PARAMETERS OF ADAPTIVE INVERSE CONTROL SYSTEMS

Up to this chapter, usage of adaptive filters in direct modeling, inverse modeling and

inverse control were examined with simulations but the parameters affecting the

system are not taken into account. The parameters of adaptive filters and the signals

in these systems have important role in application as well as the system itself.

Playing around the parameters may greatly enhance the performance of the AIC

system. Throughout this chapter, the effects of convergence factor, number of the

filter weights and the modeling signal will be investigated using the conventional

LMS and normalized LMS algorithm. A comparison of conventional LMS and

normalized LMS algorithm is pointed out by this chapter

Effects of the parameters will be investigated over direct and inverse modeling

processes. Direct and inverse modeling processes always take place in AIC systems.

Examining the parameters such as the convergence factor, weight vector length or

modeling signal characteristics on modeling processes makes determination of these

parameters easier for the control system. An AIC system will not function properly

without a successful modeling. If the modeling process is successful with a set of

parameters than this parameters can be used in the AIC system. The better the model

is the efficient the AIC system is.

Parameters are examined on the system whose transfer function is given is equation

(4.1). It is given in digital filter form. It is a stable and minimum-phase plant and its

impulse response is plotted on figure 6.1.

Settling time of the system is approximately 3 seconds. For a sampling period of 0.1

seconds, setting the adaptive filter weights to 30 would suffice for accurate modeling

of the system

 32

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

Time [0.1 sec]

A
m

p
lit

u
d
e

Impulse Response

Figure 6. 1 Impulse response of P (z)

A good fit of the plant is plotted on figure 6.2. For this simulation convergence factor

was set to 0.001. Modeling signal was a band limited white noise with power of 0.1

and sampling period was 0.1. A definite effect of weight number selection can be

easily seen at first sight that the modeled systems response does not contain any

information after 3 seconds. The sampling period was chosen to be 0.1 seconds, so

with 30 weights, memory time of 3 seconds can be modeled.

Memory time SamplingPeriod Numberof Weightsx

With the same parameters used in direct modeling, an inverse modeling process has

been run. Although 10000 iterations is well enough for direct model to converge, it is

not adequate for inverse modeling process to form a good fit. This situation is

illustrated in figure 6.3 by plotting the squared error for both direct and inverse

modeling processes. With this set of parameters inverse modeling process needs to

be iterated more to form a better model. This shows that direct and inverse modeling

processes are two distinct processes and their implementation must be handled

separately.

 33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

1.5

Time [sec]

A
m

p
lit

u
d
e

Impulse Response of Actual and Modeled Plants

Modeled Plant

Actual Plant

Figure 6. 2 Impulse response of actual and modeled plants

.

0 200 400 600 800 1000
0

5

10

15

 Iterations [x10]

S
q
u
a
re

d
 E

rr
o
r

Direct Modeling

0 200 400 600 800 1000
0

5

10

15
Inverse Modeling

Figure 6. 3 Squared error for direct and inverse modeling processes

 34

6.1 Effects of Convergence Factor on Modeling Processes

To investigate the effects of convergence factor μ, all of the other conditions are

fixed and the simulations were run with changing values of μ. Observing the change

of weights during simulation is a good way for understanding the simulation

convergence time and the noise in the weights. In this study first, middle and the last

weights are observed to see the effects of μ on weights.

In figure 6.4 the change of weights is illustrated with the convergence factor being

0.001. A vertical line at 4000
th

 iteration is plotted on this figure. This is

approximately the time when weights converged to their final value.

Variations of the weights are calculated as a measure of noise. Variation value is

used to compare noise levels for different values of μ. Results for 0.005 and

0.0005 are plotted on figures 6.6 and 6.7 respectively. Variations for

0.005,0.001,0.0005 are listed in table 6.1. Figure 6.4 shows the increase in the

weight noise with increasing μ values

Table 6. 1 Variation values for weights after convergence

 Variations (as a measure of weight noise)

μ First weight Middle weight Last weight

0.005 0.00000452 0.00000325 0.00000329

0.001 0.00000371 0.00000141 0.00000148

0.0005 0.00000150 0.00000003 0.00000005

0.01 0.02 0.03 0.04 0.05
0

1

x 10
-4

W
e
ig

h
t

N
o
is

e

Weight Noise vs Convergence Factor

Figure 6. 4 Effects of μ on weight noise

 35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.5

0

0.5

1

1.5
Change of Weights

Iterations

W
e
ig

h
t

C
h
a
n
g
e

First Weight

Middle Weight

Last Weight

 = 0.001

Figure 6. 5 Change of weights for μ=0.001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.5

0

0.5

1

1.5
Change of Weights

Iterations

W
e
ig

h
t

C
h
a
n
g
e

First Weight

Middle Weight

Last Weight

 = 0.005

Figure 6. 6 Change of weights for μ=0.005

 36

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.5

0

0.5

1

1.5
Change of Weights

Iterations

W
e
ig

h
t

C
h
a
n
g
e

First Weight

Middle Weight

Last Weight

 = 0.0005

Figure 6. 7 Change of weights for μ=0.0005

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Iterations

C
h
a
n
g
e
 o

f
W

e
ig

h
ts

Effects of on Weights

 = 0.05

 = 0.04

 = 0.03

 = 0.02

 = 0.01

 = 0.005

 = 0.004

 = 0.003

 = 0.002

 = 0.001

 = 0.0005

 = 0.00005

 = 0.000005

Figure 6. 8 Effects of μ on weights

 37

Finally, to see the effects clearer, direct modeling process was run with 13 different

values of μ from 0.5 to 0.000005. Convergence of the first weight in the system is

plotted on figure 6.8 for these values of μ. Values bigger that 0.05 makes the process

unstable, weights never converge and values smaller than 0.0005 causes the process

to converge very slowly, it needs many more iterations to gets its final value.

As a result of these plots, it is obvious that larger values of μ causes the process

converge faster but result in noisy weights, smaller values of μ yields a slower

process but more steady weights.

6.2 Effects of Weight Vector Length on Modeling Processes

Obtaining a meaningful plant model with adaptive modeling will be impossible

unless the FIR filter can cover the most important part of the systems impulse

response. This can be achieved if the product of wn Ts is bigger than system’s

settling time, where wn is weight number and Ts is the sampling time of the system.

For a fixed value of sampling period, selecting too many weights causes the last

weights to become zero. This situation approves the sufficiency of the weights. For a

fixed value of μ choosing a very long weight vector prevents convergence.

Convergence factor needs to be decreased in this case. Plant given in equation (4.1)

is directly modeled with 60 weights and results are plotted on figure 6.9. Impulse

response of the modeled system is a perfect fit of the actual system. As seen on the

graphs last 20 weights tends to zero, at the end of the simulation. So it can be said

that last 20 weights of the filter is unnecessary for this plant. Omitting unnecessary

enables working with larger μ values. For 50 weights μ = 0.001 would suffice but

250 weights requires μ = 0.0005.

Same system modeled with 15 weights and the results are depicted in figure 6.10 and

6.11. Modeled plant does not fit the actual plant and weights are very noisy. This is

an expected result because with the sampling period of 0.1 seconds, only 1.5 seconds

of the plant’s response can be handled with 15 weights.

 38

Figure 6. 9 Selecting too many weights

0 2000 4000 6000 8000 10000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Change of Weights

Iterations

W
e
ig

h
t

C
h
a
n
g
e

First Weight

Middle Weight
Last Weight

Figure 6. 10 Selecting insufficient weights

 39

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

Time [0.1sec]

A
m

p
lit

u
d
e

Impulse Response

Modeled Plant

Actual Plant

Figure 6. 11 Selecting insufficient weights

6.3 Effects of Modeling Signal Characteristics

Statistical properties of the modeling signal have significant role over the success of

the modeling process. Two main criteria are the frequency content and the power of

the modeling signal.

Simulations had been run with modeling signals which were poor in frequency

content and the results were disastrous. Signals that contain frequencies around and

less than the bandwidth of the plant are never enough for a modeling process. To

ensure adequacy of frequency content of the signal it must be much greater than the

fastest dynamics of the system. In literature it is advised to be 30 times greater than

the bandwidth of the plant. This is approved with various simulations that it is quite

enough.

Throughout the simulations it was seen that the LMS algorithm is highly sensitive to

the power of the input signal. For the system given in equation 4.2 LMS with

μ=0.001 is stable unless the power of the input signal is below 39. After this value

 40

LMS goes unstable and never converges. Figure 6.12 shows two step responses of

models, one modeled with a signal of power 38 and the other 39. Although a signal

of power 38 can model accurately signal of power 39 can not. This situation can be

alleviated with decreasing the value of convergence factor. Step response of model

generated with same signals but with smaller μ are plotted on figure 6.13

Figure 6. 12 Modeling with μ=0.001

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Time

A
m

p
lit

u
d
e

Step Response

P(i)=38

P(i)=39

Figure 6. 13 Modeling with μ=0.0005

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Time

A
m

p
lit

u
d
e

Step Response

P(i)=38

P(i)=39

 41

As a result it can be said that power of the input signal have a great effect on

selecting the convergence factor and thus on the speed of the adaptation. As the

power of input signal increased the convergence factor should be decreased to avoid

instability of the LMS algorithm. According to the results obtained in section 6.1 this

causes slow adaptation.

6.4 Using Normalized LMS in Modeling Processes

In section 6.3 it is shown that convergence factor needs to be scaled by the power of

the input signal. This may be a problem if there is no prior knowledge about the input

signal power.

Using normalized LMS omits such problems. As the convergence factor is scaled by

the input signal power during the process, any change in the power will not cause the

LMS to be instable.

Comparison results of these two algorithms are given in figures 6.13 and 6.14.

Although conventional LMS is not working with μ=0.001 after passing the power 38,

normalized LMS works very well even at power 50 and with much greater μ. It is

also seen that normalized LMS converges faster as a result of greater μ values.

50 100 150 200 250 300
0

200

400

600

Iterations

S
q
u
a
re

d
 E

rr
o
r

Normalized LMS

Power = 50

 = 0.8

0 1000 2000 3000 4000 5000
0

100

200

300

400

500
Conventional LMS

Iterations

S
q
u
a
re

d
 E

rr
o
r

Power = 50

 = 0.8

Figure 6. 14 Using Normalized LMS Figure 6. 15 Using Conventional LMS

 42

7. ADAPTIVE INVERSE CONTROL APPLICATIONS

Control of time-varying plants and plants with disturbances are two favorite

application areas of adaptive inverse control. In the first section of this chapter

performance of AIC system is examined on a plant with time-invariant and time-

varying cases. In the second section ball-beam experiment is examined with various

disturbance effects.

7.1 AIC of Time-varying Plants

One of the most charming application areas of adaptive control is time varying

systems. In this section both time-invariant and time-varying cases of the system

given in equation 7.1 is examined with adaptive inverse control scheme given in

figure 5.2.

2

() 2 229

() (1) (229)

p

p

y s

u s s s as

 (7.1)

Here 30a for time-invariant case and 30 5sin(2)a t for time-varying case. It

reflects the change of the damping ratio. The output of this plant was required to

follow the output of the reference model in equation 7.2 [6].

() 1

()
(1)

3

m

m

y s

su s

 (7.2)

A controller for this system was designed with MRAC method. Figure 7.1 shows

plant and reference model outputs from the previous work [6].

Step and impulse responses of both time-invariant and time-varying cases of the

plant are plotted on figure 7.2 and 7.3. System is stable and settling time is

approximately 5 seconds.

 43

0 5 10 15 20 25 30 35 40
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time [sec]

A
m

p
lit

u
d
e

Reference Model and Plant output

y
p

y
m

Figure 7. 1 MRAC output from ref [6]

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Time [sec]

A
m

p
lit

u
d
e

Step Responses

a = 30

a = 30 + 5sin(2t)

Figure 7. 2 Step responses of time invariant and time varying cases

 44

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Impulse Responses

Time [sec]

A
m

p
lit

u
d
e

a = 30

a = 30 + 5sin(2t)

Figure 7. 3 Impulse responses of time invariant and time varying cases

Sampling time of the overall process is set to 0.1 seconds. For handling the memory

time of the system FIR filter length is set to 50.

The selected parameters are checked with modeling simulations first. And it is seen

that adding a unit delay to the desired response greatly enhances the inverse

modeling process.

If the analog to digital transformation is done within the loop it causes the simulation

to run very slow. To make the simulation of time-varying case faster, the system

given in s-domain is converted to z-domain by bilinear transformation method.

The method is also called the Tustin transformation, or trapezoid approximation. The

transformation equation is:

2 1

1

z
s

T z

 (7.3)

The bilinear method is the most commonly used method for convert controllers into

the discrete time domain [8]. In equation 7.3 T is the sampling time which is taken

0.1 seconds in this transformation. By substituting equation 7.3 in equation 7.1 and

doing algebraic simplifications, the discrete form of time-varying plant is obtained.

Equation 7.4 shows the discrete form the time-varying plant. Coefficients of the filter

 45

are normalized by the value of denominator’s first coefficient within the program,

this is necessary to avoid overflow error in Matlab.

3 2

3 2

() 458 1374 1374 458

() (420 13209) (380 19133) (19707 420) (380 11951)

p

p

y z z z z

u z a z a z a z a

 (7.4)

Weight adjustment of the controller is done with normalized LMS and μ is set to 0.1.

A total iteration step is 10000 for all simulations. Within these conditions very good

control over the system is achieved. System’s response to a square-wave input has

shown no overshoot and entered the tolerance band within 3 seconds and did not

exceed it anymore. Steady state error of the system is also zero. Figure 7.4 shows the

response of the time-invariant plant to square wave input.

9000 9200 9400 9600 9800 10000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

A
m

p
lit

u
d
e

Response to square-wave input

Plant output
Controller input

Figure 7. 4 Control of time-invariant plant

Control system error of time-invariant plant is plotted in figure 7.5. It shows peaks

when the signal state chances. Zero steady state error can be seen here.

Parameter a in the system 7.4 is subjected to a linear change from 30 to 33 during the

simulation. Systems response to square-wave input is shown on figure 7.6. There are

overshoots in the response and the settling time is increased. System is still under

control and the steady state error is zero. Increased control system error can be seen

in figure 7.7.

 46

9000 9200 9400 9600 9800 10000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Iterations

A
m

p
lit

u
d
e

Control System Error

Figure 7. 5 Overall control system error of time-invariant plant

9000 9200 9400 9600 9800 10000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

A
m

p
lit

u
d
e

Response to square-wave input

Plant output
Controller input

Figure 7. 6 Control of time-varying plant, parameter a changes 30 to 33

9000 9200 9400 9600 9800 10000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Iterations

A
m

p
lit

u
d
e

Control system error

Figure 7. 7 Overall control system error of time-invariant plant

 47

Increasing the changing range causes the AIC system to fail. When parameter a is

subjected to change from 30 to 34 during the simulation, performance of the AIC

system greatly decreased. Figure 7.8 shows how the system fails to control the plant.

9000 9200 9400 9600 9800 10000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

A
m

p
lit

u
d
e

Response to square-wave

Plant output
Controller input

Figure 7. 8 Control system failure in case of fast changing dynamics

Control system’s response to step input is plotted on figure 7.9. Here the plant is

subjected to sinusoidal changes with frequency of 5 rad/s. The response is oscillatory

and these oscillations never die out with parameter configurations. Lowering the

frequency increases the control performance.

Simulations with different time-varying modes of the plant have shown that

oscillatory changing plant dynamics can be controlled within a frequency range that

the AIC system may adapt itself. Increase in the amplitude and the frequency of the

oscillations increases the control system error. Amplitudes of change in the

parameter a is same in both simulations which resulted figure 7.9 and 7.10. But with

the lower frequency simulation, amplitude of the error decreased. This shows the

relation between frequency and control performance.

Simulations have shown that AIC system is capable of controlling slowly changing

plants. If the change is fast then AIC fails to control the plant.

 48

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Iterations

A
m

p
lit

u
d
e

Control of time-varying plant

Plant output

Controller input

Error

Figure 7. 9 Control of time-varying plant, f = 5 rad / s

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Iterations

A
m

p
lit

u
d
e

Control of time-varying plant

Plant output

Controller input

Error

Figure 7. 10 Tracking performance of time-varying plant, f = 2 rad / s

 49

7.2 AIC of Unstable Ball on a Beam in Existence of Disturbances

In this section ball and beam experiment
1
 is examined in existence of disturbances.

Illustration of the experiment system is depicted on figure 7.11. A ball is placed on a

beam with 1 degree of freedom; it can roll along the length of the beam. The angle of

the beam α is controlled with the rotation of the servo gear which is connected to the

beam with a lever arm. Any change in the angle α causes the ball to roll along the

beam. Position r is the controlled variable in this system. Disturbance canceling

capabilities of adaptive inverse controller is tested with different disturbance types

such as step, ramp and random.

α θ

 L

 r

d

Figure 7. 11 Ball and beam system

Transfer function from the gear angle θ to the ball position r is given in equation 7.5.

Constants and variables for this system are given as:

-2

2

M, mass of the ball = 0.11 kg

R, radius of the ball = 0.015 m

d, lever arm offset = 0.03 m

g, gravitational acceleration = 9.8 ms

L, length of the beam = 1.0 m

J, ball's moment of inertia = 9.99e-6 kgm

r, ball position coordinate

, beam angle coordinate

, servo gear angle

1
 All of the information about the ball and beam experiment is taken from the website:

http://www.engin.umich.edu/group/ctm/examples/ball/ball.html

 50

2

2

() 1

()

R s mgd

Js s
L m

R

 (7.5)

By substituting the given numerical values in equation 7.5, equation 7.6 is obtained.

2

() 0.21

()

R s

s s

 (7.6)

System of 7.6 has two poles at the origin which makes it unstable. In order to apply

adaptive inverse control it must be stabilized first. System is stabilized with a PD

controller whose proportional gain is 20 and derivative gain is 10. The stabilized

system’s transfer function is given in equation 7.7.

2

2.1 4.2

2.1 4.2

s

s s

 (7.7)

Settling time of the stabilized plant is approximately 4 seconds. Therefore with

sampling time of 0.1 seconds, setting the weight vector length to 50 will be enough

to cover the memory time of the plant. Normalized LMS algorithm is used for weight

update, thus system converged within 3000 iterations. Total iteration number is

selected 10000 for all simulations. Convergence factors are set to 0.01 during the

first half of the simulations and then decreased to 0.001 to get smoother responses. A

second order reference model with a settling time less than 3 seconds is used to

smooth the transient response of the AIC system.

Simulation program for this application is based on the disturbance canceling scheme

which is given in figure 5.4.

Control of the ball position is plotted on figure 7.12. There is no disturbance yet. AIC

system is working very well; control error is approximately 2%.

At the 7500
th

 iteration system is disturbed with a 0.2 m step input. When the

disturbance canceller block is turned off the system has lost its stability against the

disturbance. Figure 7.13 shows the system’s performance when the disturbance

canceller is off. The effect of disturbance canceller block is seen on figure 7.14.

System is subjected to a continuous ramp disturbance starting from 7500
th

 iteration.

Figure 7.15 depicts systems response against the disturbance. Performance is slightly

decreased compared to the step disturbance.

 51

6000 6500 7000 7500 8000 8500 9000 9500 10000

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Response Of AIC System

Iterations

B
a
ll

p
o
s
it
io

n
 [

m
]

Desired ball position

Actual ball position

Control error

Figure 7. 12 Controlling ball position, no disturbance added

6000 6500 7000 7500 8000 8500 9000 9500 10000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Control of ball position

Iterations

B
a
ll

p
o
s
it
io

n
 [

m
]

Desired ball position

Actual ball position

Control error

Figure 7. 13 Step disturbance (without disturbance canceller block turned on)

 52

6000 6500 7000 7500 8000 8500 9000 9500 10000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Control of ball position

Iterations

B
a
ll

p
o
s
it
io

n
 [

m
]

Desired ball position

Actual ball position

Control error

Figure 7. 14 Step disturbance (with disturbance canceller block turned on)

6000 6500 7000 7500 8000 8500 9000 9500 10000

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Control of ball position

Iterations

B
a
ll

p
o
s
it
io

n
 [

m
]

Desired ball position

Actual ball position

Control error

Disturbance

Figure 7. 15 Ramp disturbance (with disturbance canceller block turned on)

 53

When random disturbance is added to the system, performance of the AIC decreases

but dynamic control is still available. In figure 7.16 shows the system’s performance

against random disturbances. The disturbed output of the system is directly

proportional with amplitude and the frequency of the noise added as disturbance.

6000 6500 7000 7500 8000 8500 9000 9500 10000

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Control of ball position

Iterations

B
a
ll

p
o
s
it
io

n
 [

m
]

Desired ball position

Actual ball position

Control error

Disturbance

Figure 7. 16 Plant subjected to random disturbance

As seen from these results AIC system is capable of dynamic control even with

disturbed plants. In the case of a system which is unknown or slowly time-varying,

using an adaptive inverse controller will be acceptable even in existence of

disturbances. The simulations made here are within limited iteration numbers.

Increasing the iteration number will make more correct direct and inverse models

thus the performance of the AIC system will increase over time.

It is always possible to get a better performance from the AIC system with changing

its parameters. A more precise capturing of inputs and outputs is possible with

decreasing the sampling time of the system. This will cause to work with much larger

weight vector length and smaller convergence factors which will slow down the

convergence time. Faster sampling rates also adds extra calculation load to the

simulation hardware.

 54

8. CONCLUSION

In this study adaptive inverse control concept is examined and applied on sample

systems. Theoretical backgrounds are reviewed in first 5 chapters and most of the

schemes are tested with simulations. Before applying adaptive filters on control

schemes parameters of the adaptive filters are investigated in chapter 6. Criteria

obtained for choosing system parameters are used to setup the AIC systems.

Performance of the AIC system on time-varying plants and disturbed plants are

investigated on chapter 7.

Parameter selection for AIC systems is the one of the most significant part of setting

up the system. Wrong parameters make a perfect control scheme useless. There are

two considerations for choosing the FIR filter length; settling time of the plant and

the sampling rate of the overall control system. Product of filter length and sampling

time must involve the systems settling time. This provides the FIR filter to behave

more likely as the system. If the filter length is selected too long, time constant of the

adaptive system total system error increases.

Convergence factor μ controls the stability and speed of the adaptation. As μ

increases system converges faster but result in noisy output. Decreasing μ makes

output smoother but system converges slowly. Converge factor is highly sensitive to

the power of the input signal. Even a unit increment of input signal power may cause

the system to lose its stability. As the power of the input signal increases it is needed

to use smaller μ values. Using normalized LMS remedies this problem. In this

algorithm μ is scaled by the power of the input signal. Another advantage of

normalized LMS is faster convergence of the models. Compared to the conventional

LMS it is 2 or 3 times faster.

As the adaptive algorithm uses the plant’s output to adapt filter coefficients, all of the

plant information must be acquired by exciting all the modes of the plant. This is

possible with signals which are rich in frequency. When the signals of poor

frequency content are used as modeling signals, the filter fails to converge to the

 55

optimum solution. If the input signals are stationary in practice, then adding dither

signals to the actual input helps to excite the system. Frequency content about 10

times of the bandwidth of the plant is sufficient in most cases.

Simulations have shown that small variations of the plant dynamics can be handled

by AIC system. If the rate of change is high then AIC system fails to follow the

command input. Within the limited range of changes AIC system is successful like

the case that system is time invariant.

Adaptive inverse control scheme with disturbance canceling feedback shows good

performance on canceling step and ramp type disturbances. Random disturbances can

not be eliminated totally but dynamic control is still available with oscillations which

reflect the structure of the noise.

 56

REFERENCES

[1] Widrow, B. and Walach, E., 1997. Adaptive Inverse Control, Prentice Hall, Inc.

New Jersey.

[2] Plett, G. L., 1998. Adaptive Inverse Control of Plants with Disturbance, PhD

Thesis, Stanford, California.

[3] Hızal, N. A., 1999. Improved Adaptive Model Control, ARI, 51, 181-190.

[4] Haykin, S., 1996. Adaptive Filter Theory, Prentice Hall, Inc. New Jersey.

[5] Stearns, S. D. and David, R. A., 1996. Signal Processing Algorithms in Matlab.

Prentice Hall, New Jersey.

[6] Kaufman, H., Barkana, I. and Sobel, K., 1998. Direct Adaptive Control

Algorithms Theory and Applications, Springer-Verlag, Inc. New York.

[7] Widrow, B., 1971. Adaptive Model Control Applied to Real Time Blood-Pressure

Regulation, J. of Pattern Recognition and Machine Learning, Plenum Pres,.310-

324

[8] Adam, T., Dadvandipour, S. and Futas, J., 2003. Influence of Discretization

Method on the Digital Control System Performance, Acta Montanistica Slovaca, 8,

197-200

[9] Farhang-Boroujeny, B., 1998. Adaptive Filters Theory and Applications, John

Wiley & Sons, Ltd. Chichester.

[10] Lyons, R. G., 2001. Understanding Digital Signal Processing, Prentice Hall, Inc.

New Jersey.

[11] Glentis, G. O., Berberidis, K. and Theodoridis, S., 1999. Efficient Least

Squares Algorithms for FIR Transversal Filtering, IEEE Signal Processing

Magazine, 16, 13-41.

 57

APPENDIX – A

A.1 Simulink Diagram for Adaptive Direct Modeling

A.2 Simulink Diagram for Adaptive Inverse Modeling

 58

A.3 Simulink Diagram for Adaptive Inverse Control Based on Figure 5.3

 59

APPENDIX – B

B.1 Matlab Program for Adaptive Direct Modeling

clc;clear;

%Plant definition in digital filter form

Ts = .1; %Sampling time

%z=tf('z',Ts);

%Pz = (1 - 2 * z^-1)/(1 - z^-1 + .75 * z^-2);

%clear z; %Delete unnecessary variables from memory

numdf = [1 .5]; % digital filter constants in ascending

dendf = [1 -1 .75]; % powers of z^-1

Pz=filt(numdf,dendf,Ts);

N = 2000; %number of iterations

wn_dm = 50; %direct model weight number

mu = 0.1; % convergence factor

inp_dm = zeros(1,wn_dm); %Initialize direct model input

out_dm = zeros(1,N); %Initialize direct model output

w_dm = zeros(1,wn_dm); %Initialize weights

sigma = 0; % Very small number for preventing

 % division by zero in normalized LMS

nLMS = 1; % Switch for normalized LMS

I = 0.5 * filtrand(N,.1,100); % modeling signal

disp 'Simulating Plant...';

[out_p t] = lsim(Pz,I); % Plant simulation

disp 'Adaptation Started...';

for k=1:N

 inp_dm = [I(k) inp_dm(1:wn_dm-1)]; %Direct model input

 out_dm(k) = inp_dm * w_dm'; %Direct model output

 e_dm(k) = out_p(k) - out_dm(k); %Error

 if nLMS == 1

 %Using Normalized LMS

 w_dm = w_dm + ((inp_dm / (sigma + (inp_dm * inp_dm'))) * ...

 mu * e_dm(k)); %Weight update

 elseif nLMS == 0

 w_dm = w_dm + 2 * mu * inp_dm * e_dm(k); %Weight update

 end

end

disp 'Adaptation Finished'

Pdm = filt(w_dm,[1],Ts); %Rebuild direct model in digital filter form

SE = e_dm.^2; %Square error

MSE = (abs(e_dm) / length(e_dm)).^2;%Mean square error

step(Pz,Pdm);

 60

B.2 Matlab Program for Adaptive Inverse Modeling

clc;clear;

%Plant definition in digital filter form

Ts = .1; %Sampling time

%z=tf('z',Ts);

%Pz = (1 - 2 * z^-1)/(1 - z^-1 + .75 * z^-2);

%clear z; %Delete unnecessary variables from memory

numdf = [1 .5]; %digital filter constants

dendf = [1 -1 .75];%in ascending powers of z^-1

Pz=filt(numdf,dendf,Ts);

N = 50000; %number of iterations

wn_inv = 25; %inverse model weight number

mu = 0.001; % convergence factor

inp_inv = zeros(1,wn_inv); %Initialize inverse model input

out_inv = zeros(1,N); %Initialize inverse model output

w_inv = zeros(1,wn_inv); %Initialize weights

I = 0.5 * filtrand(N,.1,100); % modeling signal

[out_p t] = lsim(Pz,I); % Plant simulation

disp 'Adaptation Started...';

for k=1:N

 inp_inv = [out_p(k) inp_inv(1:wn_inv-1)]; %Inverse model input

 out_inv(k) = inp_inv * w_inv'; %Inverse model output

 e_inv(k) = I(k) - out_inv(k); %Error

 w_inv = w_inv + 2 * mu * inp_inv * e_inv(k); %Weight update

end

clc;disp 'Adaptation Finished'

Pinv = filt(w_inv,[1],Ts); %Build inverse model tf

step(Pinv*Pz);%Check whether deconvoluting successfully

B.3 Matlab Program for Adaptive Inverse Control of Time-varying Plant

%%Adaptive inverse control of a time-varying plant

%Based on Figure 5.2

clc;clear;

tv = 1; % 0:time invariant, 1:time varying(linear), 2:sinusoidal

c_inp = 1;%Command input 0:step, 1:square-wave ,2;sinus wave

nLMS = 1; %Normalized LMS Switch [1:On 0:Off]

if nLMS == 1;sigma = 1e-6;end%very small number, prevents division by zero

N = 10000;%number of iterations

wn_inv = 50; %inverse model weight number

mu_inv = .1; % inverse model convergence factor

Ts = 0.1;

t = 0:Ts:((N-1)*Ts); %time vector

delay = 1;

switch c_inp %Generate controller input

 case 0 %step

 I1 = 0.1 * filtrand(7500,.1,50);

 I2 = 0.5 * filtrand(2500,.1,.5,[100 500 2]);

 I = [I1 I2];

 61

 case 1 %square-wave

 I = 0.5 * filtrand(N,.1,50,[N/2 0 0]);

 [u tu] = gensig('square',500,N-1,1);

 I = I + 0.5 * u';

 case 2 %sinus-wave

 I = 0.5 * filtrand(N,.1,50,[N/2 0 0]);

 [u tu] = gensig('sin',500,N-1,1);

 I = I + 0.5 * u';

end

%Plant

switch tv

 case 0 %time-invariant

 a = 30;

 case 1

 a = 30 + t * 0.003;%time-varying(linearly)

 case 2

 a = 30 + .5 * sin(2 * t);%time-varying(sinusoidal)

 otherwise

 disp('Error')

end

numd =[458 1374 1374 458] / 25809;

dend = [420*30+13209 -380*30-19133 19707-420*30 380*30-11951] / 25809;

order_p_1 = length(dend);

order_p = order_p_1 - 1;

sim_p = zeros(1,order_p_1);%Initialize plant simulation vector

out_p = zeros(1,N); %initialize plant output

%Reference Model

numr = 1; denr = [1/3 1];

[numdr dendr] = c2dm(numr,denr,Ts,'tustin');

order_r_1 = length(dendr);

order_r = order_r_1 - 1;

sim_r = zeros(1,order_r_1);%Initialize reference model simulation vector

out_r = zeros(1,N); %initialize reference model output

sim_r2 = zeros(1,order_r_1);

out_r2 = zeros(1,N);

%---

inp_inv = zeros(1,wn_inv); %Initialize Inverse Model Input

out_inv = zeros(1,N); %Initialize Inverse Model Output

w_inv = 0.1 * ones(1,wn_inv); %Weight vector

%---

inp_c = 0.1 * ones(1,wn_inv); %initialize controler input

%h = waitbar(0,'Please wait...');

for k = 1:N

 %waitbar(k/N)

 if tv == 1 | tv == 2%vary plant

 dend = [420*a(k)+13209 -380*a(k)-19133 19707-420*a(k) ...

 380*a(k)-11951] / 25809;

 end

 62

 %Controler

 inp_c = [I(k) inp_c(1:wn_inv - 1)];

 out_c = inp_c * w_inv';

 %Plant

 inp_p(k) = out_c;

 sim_p(1) = inp_p(k) - dend(2:order_p_1) * sim_p(2:order_p_1)';

 out_p(k) = sim_p * numd';

 sim_p = [0 sim_p(1:order_p)];

 %Reference Model (to form ref. model inverse)

 inp_r(k) = out_c; %same input with plant

 sim_r(1) = inp_r(k) - dendr(2:order_r_1) * sim_r(2:order_r_1)';

 out_r(k) = sim_r * numdr';

 sim_r = [0 sim_r(1:order_r)];

 %Reference Model (to examine model following performance)

 inp_r2(k) = I(k); %same input with controller

 sim_r2(1) = inp_r2(k) - dendr(2:order_r_1) * sim_r2(2:order_r_1)';

 out_r2(k) = sim_r2 * numdr';

 sim_r2 = [0 sim_r2(1:order_r)];

 %Inverse Model

 inp_inv = [out_p(k) inp_inv(1:wn_inv - 1)];

 out_inv(k) = inp_inv * w_inv';

 %Inverse Model Weight Update

 if k > delay

 e_inv(k) = out_r(k - delay) - out_inv(k); %error

 if nLMS == 1

 w_inv = w_inv + ((inp_inv / (sigma + (inp_inv * ...

 inp_inv'))) * mu_inv * e_inv(k)); %nLMS

 elseif nLMS == 0

 w_inv = w_inv + 2 * mu_inv * inp_inv * e_inv(k); %LMS

 end

 end

end

SEi = e_inv.^2; %Squared error

%close(h);

clear order_p order_p_1 order_r order_r_1 out_c numr num denr den ...

 tv wn_inv sim_r sim_p nLMS mu_inv h dend numd dendr numdr k ...

 delay sigma

disp('finished')

e_overall = (out_r2 - out_p);

plot([9000:10000],out_p(9000:10000),[9000:10000],I(9000:10000));

%axis([500 N*Ts -1 1]);grid

%hold on;plot([1 N*Ts],[0.98 0.98],'r');plot([1 N*Ts],[1.02 1.02],'r')

figure;plot([9000:10000],e_overall(9000:10000))

 63

B.4 Matlab Program for Adaptive Inverse Control of Plants with Disturbances

%%AIC with disturbance canceling

%Based on figure 5.4

clc;clear;

dist_type = 2; %0:no dist., 1:step, 2:random, 3:ramp

start_dc = 4000;%iteration to start disturbance canceling

add_dist = 4100;%iteration to add disturbance

%Adjustable Parameters

N = 10000;%iteration number

wn_dm = 50;%direct model weight number

wn_inv = 50;%inverse model weight number

mu_dm = 0.01;%direct model convergence factor

mu_inv = 0.01;%inverse model convergence factor

delay = 0;%inverse modeling delay

%SIGNALS

I = 0.5 * filtrand(N,.1,5,[4000 0 1]);%excitation signal

[u t] = gensig('square',2000,N-1,1);%command input

I = I + 0.5 * u';

I_off = 0.5 * filtrand(N,.1,50);%offline process modeling signal

noise = filtrand(N,.1,.2);%random noise

%PLANT --ball and beam experiment

Ts = 0.1;%sampling time

num=[2.1 4.2];

den=[1 2.1 4.2];

[numd dend]=c2dm(num,den,Ts,'tustin');

order_p = length(dend) - 1;

%REF. MODEL (settling time < 3 s, no overshoot)

num_r=[0 0 4];

den_r=[1 4 4];

[numd_r dend_r]=c2dm(num_r,den_r,Ts,'tustin');

order_r = length(dend_r) - 1;

%initialize variables

out_p = zeros(1,N);%disturbed plant output

sim_p = zeros(1,N);%plant simulation output

out_dm = zeros(1,N);%direct model output

out_dmc_off = zeros(1,N);%direct model copy output(offline process)

out_dmc_on = zeros(1,N);%direct model copy output(online process)

out_inv = zeros(1,N);%inverse model output

out_c = zeros(1,N);%controller output

out_dc = 0;%disturbance canceller output

out_r = zeros(1,N);%reference model output

inp_dm = zeros(1,wn_dm+1);%direct model input

inp_dmc_off = zeros(1,wn_dm+1);%direct model copy input(offline)

inp_dmc_on = zeros(1,wn_dm+1);%direct model copy input(offline)

inp_inv = zeros(1,wn_inv+1);%inverse model input

inp_c = zeros(1,wn_inv+1);%controller input

inp_dc = zeros(1,wn_inv+1);%disturbance canceller input

sim_p_dummy = zeros(1,order_p+1);%plant simulation dummy variable

sim_r_dummy = zeros(1,order_r+1);%ref. model simulation dummy variable

 64

w_dm = (dimpulse(numd,dend,wn_dm+1))';%direct model weights

w_inv = .03 * ones(1,wn_inv+1);%inverse model weights

dist = zeros(1,N);%disturbance

dly = zeros(1,delay+1);%inverse modeling delay vector

sigma = 1e-6;%very small number, prevents division by zero

%START ITERATION

disp('Please wait...')

for k=1:N

 if k >= 5000

 mu_dm = 0.001;

 mu_inv = 0.001;

 end

 %CONTROLLER

 inp_c=[I(k) inp_c(1:wn_inv)];

 out_c(k)=inp_c*w_inv';

 %PLANT

 inp_p(k)=out_c(k)-out_dc;

 sim_p_dummy(1)=inp_p(k)-dend(2:order_p+1)*sim_p_dummy(2:order_p+1)';

 sim_p(k)=sim_p_dummy*numd';

 sim_p_dummy=[0 sim_p_dummy(1:order_p)];

 %Add Disturbance

 if k >= add_dist

 if dist_type == 0%no dist.

 dist(k) = 0;

 elseif dist_type == 1%step

 dist(k) = 0.2;

 elseif dist_type == 2

 dist(k) = noise(k);%random

 elseif dist_type == 3

 dist(k) = (t(k) * 0.001)-(add_dist*0.001);%ramp

 end

 end

 out_p(k) = sim_p(k) + dist(k); %disturbed plant output

 %DIRECT MODEL

 inp_dm_1=out_c(k);

 inp_dm=[inp_dm_1 inp_dm(1:wn_dm)];

 out_dm(k)=inp_dm*w_dm';

 e_dm(k)=out_p(k)-out_dm(k);

 w_dm=w_dm+((inp_dm/(sigma + (inp_dm*inp_dm'))) * mu_dm * ...

 e_dm(k)); %nLMS

 %DIRECT MODEL COPY

 inp_dmc_on_1=out_c(k)-out_dc;

 inp_dmc_on=[inp_dmc_on_1 inp_dmc_on(1:wn_dm)];

 out_dmc_on(k)=inp_dmc_on*w_dm';

 %DIST CAN.

 if k>=start_dc

 inp_dc_1=out_p(k)-out_dmc_on(k);

 inp_dc=[inp_dc_1 inp_dc(1:wn_inv)];

 out_dc=inp_dc*w_inv';

 end

 65

 %%OFFLINE PROCESS

 %DIRECT MODEL

 inp_dmc_off_1=I_off(k);

 inp_dmc_off=[inp_dmc_off_1 inp_dmc_off(1:wn_dm)];

 out_dmc_off(k)=inp_dmc_off*w_dm';

 %REF. MODEL

 inp_r(k)=I_off(k);

 sim_r_dummy(1)=inp_r(k)-dend_r(2:order_r+1)*sim_r_dummy(2:order_r+1)';

 out_r(k)=sim_r_dummy*numd_r';

 sim_r_dummy=[0 sim_r_dummy(1:order_r)];

 %Inverse modeling DELAY

 dly(1) = out_r(k); %set current as 1st delay vector element

 out_r_delayed(k) = dly(delay + 1);%get previous for current iteration

 dly = [0 dly(1:delay)];%shift delay vector

 %INVERSE MODEL

 inp_inv = [out_dmc_off(k) inp_inv(1:wn_inv)];

 out_inv(k) = inp_inv * w_inv';

 e_inv(k) = out_r_delayed(k) - out_inv(k);

 w_inv=w_inv+((inp_inv/(sigma + (inp_inv*inp_inv'))) * mu_inv * ...

 e_inv(k)); %nLMS

 error(k) = I(k) - out_p(k);

end

%END ITERATION

clear delay den den_r dend dend_r dist_type dly inp_c inp_dc inp_dc_1 ...

 inp_dm inp_dm_1 inp_dmc_off inp_dmc_off_1 inp_dmc_on ...

 inp_dmc_on_1 inp_inv inp_p inp_r k mu_dm mu_inv nLMS num ...

 num_r numd numd_r order_p order_r out_c out_dc out_dm ...

 out_dmc_off out_dmc_on out_inv out_r sigma out_r_delayed ...

 sim_p_dummy sim_r_dummy wn_dm wn_inv start_dc w_dm w_inv

disp('Simulation Finished')

figure;

plot(1:N,I(1:N),1:N,out_p(1:N),1:N,-error(1:N));axis([6000 10000 -.6 .6]);

title('Control of ball position');

legend('Desired ball position','Actual ball position','Control error')

xlabel('Iterations');ylabel('Ball position [m]');

grid on;

B.5 Matlab Code of Filtrand Sub-program

function y=filtrand(m,Ts,Wn,st)

% y=filtrand(m,Ts,Wn,st)

% Filtered random signal.

% "randn" is passed through lpfilt with

% natural (corner) frequency Wn.

% The length of the row vector y is specified as m.

% If st is used as a nonzero value, a step function is placed

% at the end, the total length still being m:

% st=[length of zeros, length of ones, step size]

% Step size is optional (Default: 1).

% st can be a scalar, in which case st is taken as [st st 1].

 66

% If st is a four vector, the first element specifies multiple

% steps with period given by it. E.g.: [1000 50 50 1] places

% steps at 1000 before, at 2000 before etc. from the end, in

% addition to the one at the end. For equal intervals and also

% to start away from a step, make m a multiple of st(1) of the

% four-vector st.

% To increase the frequency content, increase Wn with

% a fixed Ts. "randn" can have frequencies upto the

% Nyquist frequency pi/Ts, so, beyond Wn = about 2*pi/Ts,

% randn remains practically unfiltered. It is the product

% Wn*Ts that determines the apparent roughness or smoothness:

% Wn*Ts = 2*pi*(Ts/Tn) = pi*(wn/w_nyquist).

% See lpfilt.

% N.A.Hızal.

stpr=0;

if nargin==4

 if length(st)==1

 st=[st st 1];

 elseif length(st)==2

 st=[st 1];

 elseif length(st)==4

 stpr=st(1); st(1)=[];

 end

 yst=[zeros(1,st(1)) st(3)*ones(1,st(2))];

else

 st=[0 0]; yst=[];

end

x=randn(1,m-st(1)-st(2));

y=lpfilt(x,Ts,Wn);

y=[y yst];

if stpr

 k=1;

 l=m-st(1)-st(2);

 while 1

 if l-k*stpr<0 break, end

 y(l-k*stpr+1:l-k*stpr+st(1))=zeros(1,st(1));

 y(l-k*stpr+st(1)+1:l-k*stpr+st(1)+st(2))=st(3)*ones(1,st(2));

 k=k+1;

 end

end

B.6 Matlab Code of Lpfilt Sub-program

function y=lpfilt(u,Ts,Wn)

% Low-pass filter for input vector u

% Second order filter (zeta = .7071 and user-defined Wn)

% N.A.Hizal.

zeta=.7071;numa=1;dena=[1/Wn/Wn 2*zeta/Wn 1];

[num den]=c2dm(numa,dena,Ts,'tustin');

y=filter(num,den,u);

 67

CURRICULUM VITAE

Mustafa UYSAL was born in Kdz. Ereğli in 1981. He graduated from Kdz. Ereğli

Anatolian High School in 1999 and took Bachelor’s degree from Kocaeli University

in Mechanical Engineering. He has been graduate student in İstanbul Technical

University since 2003.

