
 İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 

 

 

 

 

 

 

 

LARGE DEFORMATION OBJECT MODELING  
USING FINITE ELEMENT METHOD AND PROPER  

ORTHOGONAL DECOMPOSITION FOR HAPTIC ROBOTS 

 

 

 

 

 

M.Sc. Thesis  by 

Yaşar PAÇA, B.Sc. 

 

 

 

 

 
Department : Mechanical Engineering 

Programme: System Dynamics and Control 
 

 

 

 

JUNE 2008 

 

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62736723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

 

 

 

 

 

 

LARGE DEFORMATION OBJECT MODELING  
USING FINITE ELEMENT METHOD AND PROPER 

 ORTHOGONAL DECOMPOSITION FOR HAPTIC ROBOTS 

 
 

 

 

 

M.Sc. Thesis  by 
Yaşar PAÇA, B.Sc. 

(503051615) 

 

 

 

 

Date of submission : 5 May 2008 

Date of defence examination: 9 June 2008 

 

 

 

 

 

Supervisor (Chairman):
Co-Supervisor:

Prof. Dr. Ata MUĞAN 
Assoc. Prof. Dr.  Serhat YEŞİLYURT 

Members of the Examining Committee Assist.Prof. Dr. Z. Yağız BAYRAKTAROĞLU 

Prof. Dr. Metin GÖKAŞAN 

 

 

 JUNE 2008 

 



 
İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

HİSSEDİCİ ROBOTLAR İÇİN  SONLU ELEMANLAR VE UYGUN 
ORTOGONAL AYRIŞTIRMA METOTLARINI KULLANARAK 

YÜKSEK DEFORMASYONA SAHİP OBJE MODELLEME 

 

YÜKSEK LİSANS TEZİ 
Müh. Yaşar PAÇA 

(503051615) 

Tezin Enstitüye Verildiği Tarih :  5 Mayıs 2008 
Tezin Savunulduğu Tarih :  9 Haziran 2008 

Tez Danışmanı : 
  Eş Danışmanı : 

Prof. Dr. Ata MUĞAN 
Doç. Dr. Serhat YEŞİLYURT  

Diğer Jüri Üyeleri Yrd. Doç. Dr. Z. Yağız BAYRAKTAROĞLU 

 Prof. Dr. Metin GÖKAŞAN 

  

  

HAZİRAN 2008 
 

 



ACKNOWLEDGEMENTS 

I would like to express my thanks to my supervisor Prof. Dr. Ata Mugan for let me to 
study such an interdisciplinary subject that enhanced my vision. I would also like to 
thank Prof. Dr. Tuncer Toprak for providing the equipments that are used in this 
thesis work. 

This thesis would not have been possible without the support of Research Assistants 
Cengiz BAYKASOĞLU, Can YABANSU, İsmail Hakkı ŞAHİN, Veli NAKŞİLER 
and Salih ÖZKESER Special thanks to my friend Eray AKYOL. They have always 
encouraged and supported this thesis work. 

I would also like to thank Prof. Dr. Emin Faruk Keçeci from Izmir Institute of 
Technology who supplied important discussions and advices without considering the 
distance. 

Also, special thanks to Dr. Erdal Bulgan who is always believed in me. If it would be 
possible, imitating his devotion to research and kindness were the best pieces of my 
personality. 

Finally, for giving infinite support and patience, I would like to thank my family. 

 

June, 2008                    Yaşar Paça 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



TABLE of CONTENTS 

 
ABBREVIATIONS ıv 
LIST of TABLES v 
LIST of FIGURES vı 
LIST of SYMBOLS vıı 
ÖZET vııı 
SUMMARY ıx 

1. INTRODUCTION 1 
1.1. General Concepts and Literature Review 1  
1.2. Scope of Study  2 

2. HAPTIC SYSTEMS 4 
2.1. Haptic Interfaces 4 
2.2. Haptic Rendering 8 

2.2.1. Collision Detection 9 
2.2.2. Modeling in Haptic Environments 15 

  2.2.2.1. Geometry Based Modeling 16 
  2.2.2.2. Physics Based Modeling 16 

3. LARGE DEFORMATION BEAM PROBLEM 20 
3.1. General Definitions 20 
3.2. Finite Element Formulation 24 
3.3. Proper Orthogonal Decomposition using Singular Value Decomposition  31 
3.4. Comparison of FEM and POD 36 

4. INTEGRATION OF BEAM MODEL TO A HAPTIC SYSTEM    41 
4.1. Visualization of the Model 42 
4.2. Integration Algorithms 43 

5. CONCLUSIONS 45 

REFERENCES  46 

CURRICILUM VITAE 49 
  
 

 iii



ABBREVIATIONS 

BV : Bounding Volume 
BVH : Bounding Volume Hierarchy 
AABB : Axis Aligned Bounding Box 
OBB : Oriented Bounding Box 
K-DOP : K discrete Oriented Polytope 
SVD : Singular Value Decomposition 
KLD : Karhunen - Loève Decomposition 
PCA : Principle Component Analysis 
POD : Proper Orthogonal Decomposition 
FEM : Finite Element Method 
API : Application Programming Interface 
HDAPI : Haptic Device API 
HLAPI : Haptic Library API 
OPENGL : Open Graphics Library  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv



LIST OF TABLES 

Table 2.1 
Table 3.1 
Table 3.2 
 
 
 

Specifications of Phantom Premium 1.5 High Force 6DOF....... 
Midpoint Deflection.................................................................... 
Comparison Between FEM and POD......................................... 
 

9
29
37

Page No 

 
 
 
 
 
 

 v



LIST OF FIGURES 
Page No 

Figure 2.1 
Figure 2.2 
Figure 2.3 
Figure 2.4 
Figure 2.5 
Figure 2.6 
Figure 2.7 
Figure 2.8 
Figure 2.9 
Figure 2.10
 
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 3.1 
Figure 3.2 
Figure 3.3 
Figure 3.4 
Figure 3.5 
Figure 3.6 
Figure 3.7 
Figure 3.8 
 
Figure 3.9 
 
Figure 3.10
Figure 3.11
Figure 4.1 
Figure 4.2 
Figure 4.3 
Figure 4.4 
Figure 4.5 
Figure 4.6 

:
:
:
:
:
:
:
:
:
:
 
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
 
:
 
:
:
:
:
:
:
:
: 

Computer Mouse Interactions............................................ 
Haptic Interface Interactions.............................................. 
Haptic Hand....................................................................... 
Wearable Haptic Device.................................................... 
Haptic Master..................................................................... 
Pantograph Type Haptic Interface, McGill University...... 
Phantom Desktop Omni Device......................................... 
Haptic Rendering in General.............................................. 
Types of 3D Representations............................................. 
Closed Form Equations Used For Collision 
Predetermination................................................................ 
Axis Aligned Bounding Box.............................................. 
Sphere Bounding Volume.................................................. 
Oriented Bounding Box..................................................... 
K-DOP............................................................................... 
Typical Division of Event Scene....................................... 
Bounding Volume Hierarchy Sample................................ 
Rigid Object In Contact..................................................... 
Deformable Object Before And After Deformation.......... 
Control Points Of Cubic Curve.......................................... 
Spring-Damper Model....................................................... 
Finite Element Model......................................................... 
Euler-Bernoulli and Shear Deformable Beam Theories.... 
Nodal Displacements......................................................... 
Nodal Forces...................................................................... 
Derivation of Interpolation Functions................................ 
Hinged-Hinged Beam........................................................ 
Nodal Beam Deflections For Load Cases q....................... 
Coefficients of Each Load Case......................................... 
Computational Time Requirement Of Stand Alone FEM 
Based Model...................................................................... 
Computational Time Requirement Of FEM Used As 
Preprocessor....................................................................... 
Computational Time Requirement Of POD....................... 
Time Requirement Of POD With Variable Simulations... 
Complexity Comparison Of HLAPI And HDAPI............. 
Visualization of Model....................................................... 
Various States of the Deformed Model.............................. 
General Procedure Of Integration Diagram....................... 
Modified Procedure of Integration Diagram...................... 
Phantom Premium Desktop Device................................... 

  4 
  5 
  5 
  6 
  7 
  7 
  8 
  9 
11 
 

11 
12 
13 
13 
14 
14 
14 
15 
15 
16 
17 
19 
21 
23 
23 
25 
29 
30 
36 
 

38 
 

38 
39 
40 
42 
43 
44 
44 
45 
45 

 vi



LIST OF SYMBOLS 

KC : Critical Stiffness 
gim : Force Exerted On Mass  by the Spring Between Masses and  i i m
ui : Displacements Along Axes.  
εij : Strain Tensor 
δW : Virtual Work 
σij : Stress Tensor 
Qie : Nodal Forces 
δ∆i

e
 : Virtual Displacements 

Nxx : Axial Force per Unit Length 
Mxx : Moment per Unit Length 
Axxe : Extensional Stiffness 
Bxxe : Extensional Bending Stiffness 
Dxxe : Bending Stiffness  
Ψij : Lagrange Interpolation Functions 
Φj : Hermite Cubic Interpolation Functions  
Ni : Interpolation Functions in General 
Kijmn : Elements of Stiffness Matrix   
Fi : Elements of Force Matrix   
R : Residual Matrix 
Tij : Elements of Tangent Stiffness Matrix 
φ : Orthonormal Basis Vectors 
ci : Coefficients of Basis Vectors 
U(mxm) : Left Singular Matrix 
V(nxn) : Right Singular Matrix 
S(mxn) : Singular Value Matrix 
σi : Singular Values 
 
 
 

 vii



HİSSEDİCİ ROBOTLAR İÇİN SONLU ELEMANLAR VE UYGUN 
ORTOGONAL AYRIŞTIRMA METOTLARINI KULLANARAK YÜKSEK 
DEFORMASYONA SAHİP OBJE MODELLEME 

ÖZET 

Hissedici uygulamalar mühendislik alanında gün geçtikçe hızla artan bir ilgiye 

sahiptir. Temel olarak bu sistemlerin amacı kullanıcı ve sanal ortam arasında uygun 

özelliklere sahip mekanik cihazlar kullanarak kuvvet etkileşimleri kurmaktır. Bu 

sistemler cerrahi benzetimlerde, fiziksel rehabilitasyon uygulamalarında, bilgisayar 

destekli tasarımda (CAD), insan hareket analizinde, montaj benzetimlerinde, yaygın 

olarak kullanılmaktadır. Bütün bu uygulamalardaki temel problem bu sistemlerin 

yüksek hesaplama hızı ihtiyaçlarıdır. Kullanıcı ve sanal ortam arasında sürekli bir 

etkileşim oluşturmak için bu kuvvetler yaklaşık olarak 1000 Hz oranında 

güncellenmelidirler. Bu yüksek oran, fizik temmeli olmayan ya da doğrusal 

problemlerde ulaşılabilir durumdadır. Ancak fizik temmeli ve doğrusal olmayan 

benzetimlerde bu oranı karşılayabilmek amacıyla ilave modelleme metotları 

kullanılmaktadır. Gerçekçi ancak gerçek zaman performansı yüksek modeller elde 

etmek amacıyla model mertebesi düşürme tekniklerine sık sık başvurulur. 

Bu çalışmada, hissedici arabirimler ve hesaplama metotları incelenmiştir. Bu amaçla 

yüksek deformasyon özelliğine sahip doğrusal olmayan bir kiriş modeli sonlu 

elemanlar metodu kullanılarak elde edilmiştir ve bu elde edilen model  PHANTOM® 

Premium 6 DOF hissedici arabirimi ile etkileşime geçirilmiştir. Etkileşimi elde 

etmek amacıyla, kiriş modeli OpenGL kullanılarak görselleştirilmiştir ve cihaza 

OpenHaptics kütüphanesinin HDAPI fonksiyonları kullanılarak hükmedilmiştir. 

Düşük mertebeli model elde etmek amacıyla, elde edilen sonlu elemanlar modeline, 

uygun ortogonal ayrıştırma metodu uygulanmıştır. Her iki modelin gerçek zaman 

performanslari incelenerek kıyaslama yapılmıştır. 
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LARGE DEFORMATION OBJECT MODELING USING FINITE ELEMENT 
METHOD AND PROPER ORTHOGONAL DECOMPOSITION 
FOR HAPTIC ROBOTS 

SUMMARY 

Haptic applications have an increasing interest in engineering field. It is basically the 

process of interfacing the user with the virtual world via force interactions that are 

created by a proper mechanical device. The haptic systems have wide application 

areas such as surgical simulations, physical rehabilitation, computer-aided design, 

human motion analysis, assembly simulation. In all of the applications, the common 

problem is the high computational demand of the haptic systems. The interaction 

forces between the user and the virtual world should be updated 1000 Hz rate in 

order to obtain a continuous feeling of touch. This force rate is admissible for non-

physics based applications or linear problems, further approaches are needed for 

physics based and nonlinear problems. To obtain realistic models, model reduction 

methods are used to obtain approximate low order but computationally efficient 

models.  

In this study, haptic systems are introduced with investigating haptic interfaces and 

haptic rendering. In additionally, a large deformation beam problem is formulated 

and solved using Finite Element Method. Then Proper Orthogonal Decomposition 

method is applied to the obtained discrete beam model and low order model is 

obtained. Both of the developed models are integrated with PHANTOM® Premium 

6 DOF haptic device and their real time computational performance is discussed. In 

order to integrate the both models OpenGL is used as a visualization library and 

OpenHaptics with HDAPI is used to command the haptic robot. 

 

 

 

 



1. INTRODUCTION 

The term Haptic comes from the Greek word “haptesthai” meaning to touch. It is a 

general term that is used to refer things related to sense of touch. The science of 

haptic is investigated by different disciplines such as neurology, psychology and 

engineering. In the field of engineering, the concept is called as computer haptics and 

generally it is the process of adding touch interactions between virtual world and the 

user via force feedback. In haptic systems, the user is able to feel and manipulate the 

virtual object by a mechanical force reflecting device.  Haptic applications have 

increasing usage areas. They are used as a computer aided design tool and in 

simulation assembly control applications. One of the most important usage areas for 

haptic systems is surgery simulation. Tissue cutting or knitting can be modeled for 

the training purposes. In addition, improving sensory-motor skills of a person for the 

rehabilitation purpose is another important usage area for the haptic systems. In 

addition to the implementations in engineering field, sculptures use these systems to 

form complex curves and surfaces that make them possible to finalize their art. 

1.1 General Concept and Literature Review 

The origins of the haptic systems are teleoperated robots that are also known as 

telerobotics. In these systems, two robots are controlled from a specific distance. 

These robots are called as the master and the slave. The movement of the master 

robot is somehow transmitted to the slave robot to accomplish a specific task. Early 

systems have mechanical ties between the master and slave robots. The idea of 

substituting the slave robot with a virtually modeled system has started the progress 

in haptic systems [1].  The first application that contains force interactions between 

the user and virtual model can be seen in the work of Minsky [2]. Textural properties 

of the virtual model are investigated by using a planar haptic device. In later works, 

degrees of freedom (DOF) of the haptic systems are increased. 3 DOF systems are 

designed by Ziles, Sallisbury and Massie[3,4]. Then, the research on haptic is 

focused on 6 DOF systems [5]. 
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Haptic systems can be grouped according to the type of the virtually modeled object. 

In some applications, the interaction between the user and virtual object does not 

produce any deformations. These types of virtual models are called as rigid body 

models [6, 7]. Rigid body simulations are important for the virtual environments in 

which collision event exists. In some applications, deformations and related reaction 

forces are critically important. In surgery simulation applications, trainee interacts 

with the model and the response is reflected to the user [8]. In cutting or knitting of 

the tissues, observed deformations add physical realism to the virtual environment 

[9]. The performance of the overall haptic system is greatly dependent on the 

complexity of the virtually modeled object and its response. The balance between the 

accuracy demand and the computational efficiency must be established to obtain 

smooth interactions. According to research studies, interaction forces between the 

user and virtual world should be updated at the rate of 1000 Hz in order to obtain a 

continuous feeling of touch [10]. This force rate is admissible for non-physics based 

applications or linear problems, further approaches are needed for physics based and 

nonlinear problems [11,12]. The common approach is to approximate high order 

model with a low order model that resembles the high order model but in a more 

computationally efficient way. In some applications, the response of the system is 

obtained and these solutions are processed to obtain dominant behaviors of the 

system [13].  

1.2 Scope of Study 

In this work, a low order model is investigated for a large deformation beam problem 

using Proper Orthogonal Decomposition (POD) method. In Chapter 2, haptic 

systems and their components are investigated. The concepts of haptic interfaces and 

haptic rendering explained. Types of the haptic interfaces and their properties are 

briefly introduced. Then, commonly used collision detection algorithms are defined. 

Bounding Volume Hierarchy method is further explained. The part of the haptic 

rendering algorithm that adds physical reality to the virtual world is the modeling 

section. The created models may be dependent on geometrical facts or physical 

relations which are briefly explained and compared with each other. Physically based 

models are discussed in further details. Finite Element Method based models and 

particle based models are also examined.  
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The governing equations of 2D nonlinear beam are obtained and solved using finite 

element method in Chapter 3. Reduced order model of the beam is also obtained 

using POD and compared with the finite element model. 

In Chapter 4, High and low order beam models are integrated with the Phantom 

Premium 1.5 High Force 6DOF haptic device and real time simulation algorithms are 

developed. Integration producers and tools are introduced. Conclusion of the study is 

discussed in Chapter 5. 
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2. HAPTIC SYSTEMS 

2.1 Haptic Interfaces 

Haptic interfaces are mechanical devices that enable touch interactions between the 

user and virtual models. These devices generate mechanical effects that resembles 

human kinesthetic and touch which gives a feeling that the user acts as in real 

environment. Haptic interfaces accomplish this task by changing its mechanical 

properties under computer control. Computer mouse can be seen as the simplest 

human-computer interaction device. The computer mouse catches 2D planar motion 

of the user and sends it to the computer to enable interaction of the user with the 

software. As depicted in the Figure 2.1, there is no sensory feedback between the 

mouse and user. This type of interface can be named as passive interface.  

 

Figure 2.1: Computer Mouse Interactions 

However, haptic interfaces change their mechanical properties under computer 

control to give touch feedback to the user. In general, haptic interfaces catch 3D 

movements of the user and send it to the computer for physical calculations. Based 

on these calculations, the mechanical properties of the device are changed to give the 

touch feeling to the user. The interaction can be shown in Figure 2.2. In animations 

or movies, human eye cannot detect the delay time between frames. The visual 

perception system is not fast enough to detect the time interval between two 

subsequent frames and the user perceives the animations continuously. Similar to 

visual systems, in order to give a continuous feeling of touch to the user, forces 

should be updated and transmitted in at a rate of 1000 Hz [10]. This fact shows that 
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capability of touch sense is more precise. The designed mechanical interface should 

not impede this sensitivity. 

 

Figure 2.2: Haptic Interface Interactions 

Haptic interfaces can be classified differently. A classification can be made 

according to the grounding locations of the interfaces [10]. Body based interfaces are 

worn by the user. Exoskeletons and haptic gloves are typical examples of this type of 

interfaces. Force feedback gloves are used to stimulate single point contact 

interactions. These types of devices are not capable of producing weight and inertial 

effects. Burdea [14] developed a pneumatically driven haptic hand shown in     

Figure 2.3.  

 

Figure 2.3: Haptic Hand 

In applications where higher degrees of freedom are needed to obtain a more realistic 

touch interaction, exoskeleton type haptic interfaces are widely used. These devices 

provide higher degrees of freedom and larger workspaces. Because of the fact that 

the user wears these devices, they give a better interaction feeling with the virtual 

environment.  Especially exoskeletons are used to enhance the physical capabilities 

of the user. Weight lifting capacity, pace speed or jumping limits of the user can be 

increased by using these devices. In addition, these devices are used for rehabilitation 
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and motion analysis of human joints [15]. A typical example of a haptic exoskeleton 

is developed by Yang and Yeo [16] and given in Figure 2.4.  

 

 
Figure 2.4: Wearable Haptic Device 

Although they have large workspace volumes, they have lower applicable force and 

torque values compared with desktop devices. 

In most of the applications, haptic interface is grounded on a fixed place. These 

devices are similar to robot manipulators and called as desktop type haptic interface. 

The workspace of these devices is relatively small compared with wearable haptic 

devices. Due to the fact that they have a fixed ground, the magnitudes of limits on 

force and torque values are greater than the wearable haptic interfaces.   

An attempt to compare these devices is unavailable since their properties depend on 

the application areas and designed interfaces have different design goals. The 

research of Hayward and Oliver [17] is an attempt to determine the common 

expected properties and performance measures of these devices. In general, the 

expected properties of a haptic interface can be listed as, 

- Low back-drive inertia and minimum friction during movement 

- Constraints of the device should not impede the movement of the user within the 

workspace. The user should make his movements as free as possible. 

- Symmetrical physical properties such as inertia, friction, stiffness, resonance 

frequency are needed to supply a stable movement. 

- Appropriate range and resolution of position sensing and force reflection 

- Ergonomics is needed for a user friendly interface. Uncomfortable interfaces can 

reduce performance of the device and user. 
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- Appropriate degrees of freedom are needed depending on the application. 

- Bidirectionality must be supplied between the user and interface 

- Proper structural response.  

In Figure 2.5, the HapticMaster of FCS Control Systems is given. It is a commercial 

device with remarkable maximum exertable force and torque values. 

 

Figure 2.5: Haptic Master 

In Figure 2.6, the desktop device designed in McGill University Haptics Laboratory 

is depicted. The striking feature of the device is its high resolution. It can measure 

displacements up to 10 µm.  

 

Figure 2.6: Pantograph Type Haptic Interface, McGill University 

Haptic interfaces can also be categorized according to the force producing methods. 

Passive interfaces have controllable breaks. The energy of the device is dissipated by 

using these breaks. Active interfaces exchange mechanical energy between the user 

and device by using a feedback function. The actuators of the device behave like a 

force or position source. Two distinct feedback control methods exist for the active 

devices. These feedback methods ensure that the calculated force is correctly 
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transmitted to the user. In impedance controlled haptic devices, positions are 

measured and force is transferred. The most common example of impedance 

controlled device is the Phantom Haptic Device of Sensable Technologies. Phantom 

Omni Desktop device is shown in Figure 2.7, 

 

Figure 2.7: Phantom Desktop Omni  Device 

Admittance controlled haptic devices measure the applied force and send the position 

information. The actuators on the device behave like a position source. They are 

especially used in applications where high force and large workspace are needed. 

The HapticMaster of FCS Control Systems is an example of such a device. In this 

thesis, Phantom Premium 1.5, 6 DOF High Force haptic interface is used. The 

specifications of the device are given in Table 2.1. 

2.2 Haptic Rendering 

The term haptic rendering is used to refer touch interactions between human and 

virtual environment via a haptic interface. Haptic rendering gives the user a chance 

of feeling, touching and manipulating the virtual object by using a haptic interface. 

As stated before, haptics is a multidisciplinary area including psychology, 

neuroscience and engineering. In engineering field, haptics is called as “computer 

haptics” to make the distinction from the other disciplines. The terms computer 

haptics is closely related to computer graphics. In general, computer graphics deal 

with the generating only visual objects. However, the computer haptics does not only 

deal with the visual object alone, it is also interested in the physics of the virtual 

object being modeled. Haptic rendering algorithm is responsible for calculating the 

interaction forces and the response of the model like deformations. Haptic rendering 

is mainly composed of 3 important subdivisions as shown in the Figure 2.8. 
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Table 2.1: Specifications of Phantom Premium 1.5, 6 DOF, High Force 

Translational(mm) 381W x 267H x 191D Workspace 
Rotational(degrees) 
(Yaw/Pitch/Roll) 297/260/335 

Translational(mm) 0.007 Nominal Position Resolution 
Rotational(degrees) 
(Yaw/Pitch/Roll) 

0.0023/0.0023/0.008 

Backdrive Friction 0.2 N 
Translational(N) 37.5 Max. exertable force and torque 

with nominal position Rotational(mNm) 
(Yaw/Pitch/Roll) 

(515/515/170) 

Translational(N) 6.2 Con. exertable force and torque 
with nominal position Rotational(mNm) 

(Yaw/Pitch/Roll) 
(27/27/7) 

Stiffness 3.5 N mm-1 

Inertia (at tip) <210 g 
Force Feedback x, y, z, Tx, Ty, Tz 
Position Sensing x, y, z, roll, pitch, yaw 
 

 

Figure 2.8: Haptic Rendering in General 

In the following sections, each component of haptic rendering concept is explained. 

All the three algorithms run depending on each other. The interrelations of these 

algorithms will be explained in the following sections. 

2.2.1 Collision Detection 

Collision detection algorithms are responsible for controlling whether or not the 

virtual objects share the same location at any time of simulation. 

.  
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The haptic interfaces are represented by a virtual object called avatar in virtual 

environment. This can be thought as the cursor of a computer mouse. Movements of 

the user are transformed to the screen coordinates that enable the user to interact with 

computer programs. In haptic applications, movements are not restricted to 2D planer 

transformations. 3D transformations of the interface are traced by the movements of 

the avatar on the virtual world namely on screen. The avatar in virtual environment 

may be a single point or it may have some complex geometry such as representation 

of surgery tools. The algorithm used to detect the collision event depends on the 

application. Single point collision detection algorithms are usually used for 

stimulating tool tip interactions. Multi point contact algorithms have wider usage 

areas. They are used for multi-body object interactions such as surgery tool 

implementations [8,9]. 

According to requirements of the applications, appropriate collision detection 

algorithm must be selected. In some cases, the detection of the collision is simply 

adequate without any additional information. In such cases Boolean type collision 

detection algorithms would be appropriate. However, in applications where realistic 

response effects are needed, only the information of collision event is not adequate. 

Additional information such as penetration distance, contact points, contact normal, 

contact area are needed to produce more realistic responses. This type of algorithms 

is referred as “enumerative collision detection algorithms” [18].  Collision detection 

algorithms can be classified depending on the geometrical primitives that are used to 

build models in virtual environment [19] and typical primitives are given in Figure 

2.9.  

In this thesis, polygonal models are used and non-polygonal models are not 

considered. Detailed description of non-polygonal models can be found in [19]. 

Polygonal models are most widely used objects in 3D computational geometry. If the 

polygons are not geometrically connected, they are called as “polygon soups”. In the 

case that polygons define a closed surface, it is called as “proper solid”. The inner 

and outer regions of these solids are well defined which is a desired property in 

collision detection algorithms.  
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Figure 2.9: Types of 3D Representations. 

In some applications, the equations of motions of the objects are readily available in 

a closed form of functions. In this case, the collision detection event can be 

predetermined by solving the closed form equations simultaneously as in Figure 

2.10.  

 

Figure 2.10: Closed-Form Equations Used For Collision Predetermination 

The functions describing the motion are not present as in most applications but in 

need of only the instantaneous locations of the objects in virtual scene between time 

steps of the simulation procedure. In these applications, instead of determining the 

track of objects to catch the collision effect, the minimum distances between objects 

are investigated. If the minimum distance is below a given threshold value, the 

collision event is determined. The important point with these algorithms is the time 

steps used in the simulations. If the time step is too small, the overall performance of 

the operation greatly reduces. In the case of fast moving objects and large time steps 

in the simulation, collision event can be missed between two subsequent steps. The 

appropriate balance between the performance and simulation time must be 

established. 
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In many applications, the object primitives such as edges, vertices or faces are used 

for detection and query purposes. In some applications, a primitive called “ray” is 

used [20]. The defining function of the ray can be represented as the following 

formulation [21]. Intersection of the ray with an object is searched in the scene.  

[ ]+∞∞−⊂+= ,)( tdtmtr   (2.1) 

m  : Origin of the ray 

t  : Time parameter 

d  : Unit vector along ray. 

Collision detection algorithms are widely used and have been studied for various 

purposes. They are used in simulated based design, tolerance verification, 

engineering analysis, video games and animation and motion planning. In some of 

these applications, the virtual geometries under consideration are quite complex. In 

particular, when the real-time performance is inevitable for the application, this 

complexity becomes a burden. To increase real-time performance of the algorithms, 

complex objects and scenes are subdivided into smaller but more definable 

geometries with primitive shapes. To this end, Bounding Volume Hierarchy (BVH) 

methods are a frequently used method in collision detection and proximity queries. 

Bounding Volumes (BV) is used to represent geometric primitives. Complex 

geometries are approximated by simpler geometries. These algorithms are based on 

the idea of divide and conquer principle. Typical examples of bounding volumes are 

axis aligned bounding boxes (AABB), spheres, oriented bounding boxes (OBB) and 

k-discrete oriented boxes (k-DOP). AABB are one of the simplest bounding 

geometry as shown in Figure 2.11. Although the bounding volume is quite simple, 

empty space not covered by the inner geometry should be considered.  

 

Figure 2.11: Axis Aligned Bounding Box 
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A similar case exists for sphere bounding box but in a more efficient way. In case 

that virtual models are bounded by spheres, the collision detection and proximity 

queries can be measured just comparing radii of BV’s. Spheres are rotationally 

invariant. The location of center point and radius are the parameters used to define 

the BV. It provides fast computations. 

 

Figure 2.12: Sphere Bounding Volume 

Other important and widely used BV is OBB. The object is enclosed by an oriented 

parallel-piped. The parameters of the box are the orthogonal axes, center positions 

and extensions on each axis. This algorithm is generally slower than AABB’s but 

provides tighter fit. Figure 2.13 shows a typical OBB. 

 

Figure 2.13:  Oriented Bounding Box 

In some applications, k-edged polygons are used to approximate geometry under 

consideration [22]. The principle is similar to the AABB’s but this time more axes 

are used. The locations of the fixed axes are used as parameters of the box. A typical 

k-DOP BV is depicted in Figure 2.14. 

In addition to geometrical approximation of the computational domain, a hierarchical 

structure is constructed. On top of the structure, broader BV is used meaning it 

encloses more than one primitive. The collision detection algorithm is firstly applied 

to the top most structure. If the collision event is detected in the BV’s, then sub BV’s 

are searched for more information like collision point or penetration amount [23]. A 

typical hierarchy and BV are depicted in the Figures 2.15 and 2.16.  
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Figure 2.14: K-DOP 

 

Figure 2.15: Typical Division of Event Scene 

 

Figure 2.16: Bounding Volume Hierarchy Sample. 

The collision detection algorithm used in haptics detects any contact between avatar 

and the objects virtually modeled and measure the depth of penetration. In the case of 

rigid object models, the algorithm detects the penetration amount since no 

deformations occur. Only the new position of the avatar is updated to the outer 

surface of the virtual model to provide the effect of rigidity. 

In the case of deformable virtual object, the position of the avatar after the 

penetration is not updated. The penetration depth is sent to the force response 

algorithm to calculate the reaction force and corresponding deformation values. In 

general, the avatar is assumed as rigid and interacting objects are deformable.  
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Figure 2.17: Rigid Object in Contact 

However, in applications where long and flexible tool interactions are desired for 

simulation, the avatar is also modeled as deformable. The complexity of the problem 

increases dramatically in this case. In this thesis, avatar is modeled as rigid to reduce 

the complexity. 

 

 

Figure 2.18: Deformable Object Before and After Contact. 

2.2.2 Modeling in Haptic Environments 

Modeling section of haptic systems is also called as Force Response Algorithms 

(FRA). It is the computationally most expensive part of the haptic rendering 

paradigm depending on modeling method chosen. Force response algorithms 

determine the reaction forces resulting from the interaction between the virtually 

modeled objects and the representation of the haptic interface called avatar. These 

algorithms can be seen as the part that adds physical reality to the virtual world. 

Frictional and gravitational effects, elastic or visco-elastic mechanical properties can 

be added to the environment to obtain more realistic models. The input to the FRA 

algorithms comes directly from collision detection algorithms. When a collision 

event is detected, collision queries such as penetration amount, collision point, and 
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contact normal are measured and transmitted to the FRA algorithms to obtain 

corresponding responses such as deformations and reaction forces.  In FRA 

algorithms, 2 methods are used for deformable object modeling as follows.  

2.2.2.1 Geometry Based Modeling 

Geometry based models are computationally inexpensive applications. Real-time 

performance of these algorithms is high but they are not appropriate to obtain 

physically realistic simulations. Two main approaches exist. The first, in vertex 

based models; the vertices of the objects are moved to obtain a deformed model. 

Reaction forces are generally calculated by using simple Hook’s law. Response of 

the objects are not based on continuum mechanics principles, they are just for visual 

purposes. The second, in spline based models; multiple control points are attained to 

surfaces and curves of the virtually modeled object as shown in Figure 2.19. Instead 

of transforming the vertices directly, the control points are manipulated to show 

deformation effects [24]. Spline based models provide smoother deformations 

visually.  

 

Figure 2.19: Control Points of Cubic Curve 

Although the increasing number of control points allows proper shape control, the 

deformations do not rely on mechanics rules. In cases where visual representations 

are the primary target, these methods can be used efficiently.  

2.2.2.2 Physics Based Modeling 

In many applications, visual performance is not adequate and desirable. Physical 

principles and mechanical laws are needed to be embedded into simulation for 

realism. In order to obtain simulations with reality in an appropriate way, physics 
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based modeling techniques are used. Two distinct physics based modeling techniques 

exist namely Particle Based Modeling and Finite Element Method Based Modeling. 

The main elements of the particle based modeling are the spring, damper and point 

masses. The modeling object is discretized using these concentrated mass particles.  

These point masses are connected to each other by spring-damper networks that 

complete the model as shown in Figure 2.20. The solution is obtained for each 

particle meaning that they have its own velocity and acceleration vectors. The main 

advantage of the spring-damper based modeling is the ease of implementation. They 

are both used in static and dynamics simulations efficiently. Although it provides 

efficient real-time performance, the deformation accuracy greatly depends on the 

topology of the spring-damper network. The nodes in the system are connected by 

several other members. Optimum positioning of the elements and appropriate 

number of spring and damper elements must be used to obtain realistic models. 

Inappropriate number of elements or non-optimal topology may lead the system to be 

over-constrained or under-constrained. 

 

Figure 2.20: Spring – Damper Model 

Deformations calculated by particle-based modeling have limited reliability because 

these networks are not based on continuum mechanics principles. In small 

deformation case, spring-damper model behaves like linear elastic continuum 

models. However in the case of large deformations, the accuracy of the spring-

damper system decreases. Determining the correct stiffness and damping values for 

the each node is another important issue. These values are determined by 

experimental tests and given material behaviors. In addition, care should be taken in 

dynamical simulations. For a given time step tΔ , number nodes n  and 

mass nmtotal /=μ , there is a critical stiffness  value above which the system 

becomes unstable and divergent. The relationship is given in Equation 2.2. This 

)( cK
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equation shows that time step should be decreased to increase the stiffness value. 

This relation limits the dynamic behavior of the models.  

2222 )()( tn
m

t
K total

c Δ
≈

Δ
=

ππ
μ  (2.2) 

In a dynamic system, the equation of a single particle can be formulated as,  

i
m

imiiii fgxcxm ++−= ∑
•••

 (2.3) 

im represents the mass of the i th mass,  is its position vector, is the related 

damping coefficient, is the force exerted on the i ’th mass by the spring between 

the th and th masses and is the sum of external forces on the i th mass. 

Equations obtained for each mass is assembled into global equation system as given 

in Equation 2.4. 
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 (2.4) 

The solution of Equation 2.4 can be obtained by solving following two equations. 

vx

fKxCvMv

=

+−−=
•

−
•

)(1

 (2.5) 

The complexity of the spring-damper network and number of elements greatly affect 

the sizes of these matrices. In spring-damper based models, structures of the matrices 

are sparse and processing them is rather simple [24]. This simplicity is the primary 

reason for widely usage of type of models such as facial tissue modeling [25], 

animation [26] etc. 

Finite Element Methods (FEM) are greatly used in engineering systems. The objects 

to be modeled are divided into finite number of elements (mesh) as seen on Figure 

2.21. 

Each element is formulated based on continuum mechanics principles. The 

formulated elements are assembled to obtain global set of equations. Boundary 

conditions, forces are then applied to the assembled system, and corresponding 
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deformations and reaction forces are calculated by solving the obtained set of 

equations. 

 

Figure 2.21: Finite Element Model 

FEM are both applicable to surface based objects or volumetric models. They are 

suitable for realistic simulations because the elements are formulated according to 

the underlying physics. In addition, FEM based models have no restriction between 

stiffness values and time steps. The problem with the finite element method is the 

high expense in computational tasks [27]. The solution of the assembled system is 

obtained by matrix inversion procedures that greatly reduce the performance [28]. In 

addition, as the number of elements increased, the computational demand of the 

model also increases that makes the solution even more problematic. Also meshing 

the geometry reduces the performance as well. Especially in deformable modeling or 

in applications where topology changes occur, re-meshing is inevitable. Solving the 

equation sets and re-meshing the geometry in the same application greatly decreases 

the real-time performance. In order to overcome the performance drawbacks coming 

from the solution side, explicit methods and some decomposition methods are used 

especially in nonlinear models. 

In this thesis, large deformation beam problem is formulated and discretized using 

finite element methods [29]. Developed models are integrated with Phantom 

Premium High Force 6 DOF Haptic Arm and proper orthogonal decomposition is 

used to obtain low order models.  
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3. LARGE DEFORMATION BEAM PROBLEM 

Realistic modeling of objects is one of the primary goals of the researchers in the 

field of haptics. Due to computational burdens of haptic systems, most of the works 

in this field deals with linear elastic models. Misra’s work [30] shows that without 

implementation of a nonlinear model, the user will receive noticeably different haptic 

feedback during interaction. In the following sections, large deformation beam model 

is formulated using the derivations of Reddy [29]. 

3.1 General Definitions 

Euler-Bernoulli beam theory is used to formulate nonlinear beam problem. In this 

theory, plane sections perpendicular to the axis of the beam before deformation 

remains plane, rigid and perpendicular to the deformed axis of the beam. Transverse 

shear strains and the effect of Poisson effect is neglected in this theory. The 

difference between shear deformable beam theory and Euler-Bernoulli beam theory 

is depicted in Figure 3.1. 

In order to obtain nonlinear beam formulation, appropriate displacement field that 

represents the problem should be chosen as in Equation 3.1. 
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zxuu ==−=  (3.1) 

where , and represent the displacements along 1u 2u 3u x , andy z axis, respectively. 

and  respectively represent axial and transverse displacements of a point on the 

neutral axis of the beam. By using Green strain tensor, nonlinear strain-displacement 

relation can be obtained as, 
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Figure 3.1: Euler-Bernoulli and Shear Deformable Beam Theories 

Governing equations of the beam problem can be obtained by using principles of 

virtual displacements. According to the principle, the body is in equilibrium if the 

total virtual work done by the internal and external forces through their respective 

displacements are zero. The principle can be formulated as follows. 

0=−≡ e
E

e
I WWW δδδ  (3.3) 

e
IWδ represents strain energy caused by actual stress ijσ along the direction of virtual 

strain ijε . is the work done by the external loads. They can be expressed by 

using Equation 3.4 and 3.5. 
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where represents the volume of an element,  is the distributed load per unit 

length,  is the distributed axial load per unit length,  are the nodal forces,  

are the virtual displacements. Nodal displacements and forces in Equations (3.4) and 

(3.5) can be expressed by using following relations. 
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xxN and represent the axial force per unit length and moment per unit length, 

respectively. They are formulated defined as, 
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Volume integral in Equation 3.4 can be transformed into line integral by using the 

following relation 
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Equation (3.4) can be rewritten by using the related strain relations and the property 

in Equation (3.9), and then one can obtain:  
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If the virtual terms, 0uδ and 0wδ , are collected and their coefficients are set to zero, 

one can obtain the following two equations 
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The nodal displacements and forces are depicted in the following figures 

 

Figure 3.2: Nodal Displacements 

 

Figure 3.3: Nodal Forces 

The main of purpose of the derivation is to express Equation (3.11) in terms of nodal 

displacements. and force and moment terms should be written in terms of 

nodal displacements. Constitutive relation establishes the related relation. If linear 

elastic material behaviour is assumed, Hook’s law can be used 
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By substituting Equation (3.12) and related strain relations into Equations (3.8), one 
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In above relations, ,  and  represent extensional, extensional bending and 

bending stiffnesses of the beam element, respectively. If the modeled beam is 

assumed to be made of an isotropic material and the

e
xxA e

xxB e
xxD

x -axis is taken along the 

centroidal axis of the beam, 
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where superscript e represents the element. By using Equations (3.13) and (3.14), 

Equation (3.11) can be expressed in terms of nodal displacements completely.  
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3.2 Finite Element Formulation 

In order to obtain finite element formulation of the beam model, axial and transverse 

displacements, and , are approximated by using interpolation functions. 0u 0w
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where jψ are the linear Lagrange interpolation functions and jφ ’s are the Hermite 

cubic interpolation functions. Axial displacements are approximated using Lagrange 

interpolation functions and transverse displacements and rotations are approximated 

using Hermite cubic interpolation functions.  

 

Figure 3.4: Derivation of interpolation functions 

Lagrange interpolation functions are calculated using a linear polynomial given by 

xaaxu 10)( +=  (3.18) 

If the linear polynomial is evaluated at the nodal coordinates, then 
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Solving the equations simultaneously for the coefficients  and , one gets 0a 1a
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The solution in terms of nodal values can be expressed as, 
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Collecting the terms with respect to nodal values, one can obtain, 
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The same procedure can be applied to obtain Hermite cubic interpolation functions. 

The starting polynomial and its derivative is formulated as, 
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If these equations are evaluated at the nodal coordinates as in the previous case,  
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In matrix form, the equations can be expressed as, 
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If the equation is solved for matrix a and put into Equation (3.24), one can obtain the 

Hermite interpolation functions as, 
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If we substitute interpolated values of  and  with calculated interpolation 

functions into Equation 3.16, one can obtain the following set of equations. 
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where, 
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If the equations are written in matrix form, one can obtain the element formulation 

as, 
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In order to obtain the solution vector iΔ of the nonlinear equation, Newton-Raphson 

iterative method is used. In this method, the nonlinear sets of equations are linearized 

around a previously known solution. The residual of the sets of equation can be 

expressed as, 

( ) [ ] ( )[ ] [ ]( )( )iiKFR ΔΔ−−=Δ  (3.34) 

Equation 3.34 is expanded around a known solution into Taylor’s series and one can 

obtain, 
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If the terms having the order higher than one are omitted, the sets of equations can be 

solved by using following relation, 
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In the Equation 3.36, the term T is called as tangent stiffness matrix and calculated 

as, 
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Components of the tangent stiffness matrix can be calculated as, 
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As an application, a full beam model hinged at both ends is used as shown in the 

Figure 3.5. Since the model is symmetric, only the half of the model is used for the 

computational efficiency. The response of the midpoint of the full beam model is 

shown in the Table 3.1 for various load cases. 

 

Figure 3.5: Hinged-Hinged Beam 

The length of the modeled beam is taken as 2.54 meters in, the cross-sectional area is 

(25.4x25.4 mm2), and elasticity module is taken as 206 GPA. The model consists of 

4 elements. The vertical displacements of the each node are shown in the Figure 3.6. 

In this model various forces are applied to the beam model and the resulting 

displacements are calculated. However, in haptic applications, the forces applied to 

the virtual models are unknown. The only information is the displacements resulting 

from collision detection phenomena. 

Table 3.1: Mid-Point Deflection 
Applied 

Load(N/mm) 
Tip Deflection 

(mm) 
0.2 -15.1081 
0.7 -52.8783 
1.2 -90.6486 
1.7 -128.4188 
2.2 -166.1891 
2.7 -203.9593 
3.2 -241.7296 
3.7 -279.4998 
4.2 -317.2701 
4.7 -355.0403 
10 -755.4 
15 -1133.1 
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Figure 3.6: Nodal Beam Deflections for Load Cases q 

The model is modified as to take the nodal displacement information as input and to 

calculate the resulting reaction force. Recall that the system is formulated as, 
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Let’s assume that the displacement boundary condition is applied to the mth degree of 

freedom. The equation above can be rearranged such that the column and the row of 

the related degree of freedom are extracted from the global set of equations. The 

reduced system of equations can be represented as, 
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The extracted degrees of freedom and its reaction force can be expressed as, 

nnnmmmmmm kkkkf Δ++Δ++Δ+Δ= LL2211  (3.42) 

The nodal displacements are obtained by solving Equation 3.41 and the reaction 

force is calculated by substituting the obtained displacements into Equation 3.42. 

3.3 Proper Orthogonal Decomposition using Singular Value Decomposition 

Proper Orthogonal Decomposition method is used to obtain low dimensional models 

of the original systems. The application of POD in engineering field can be seen in 

various areas including turbulent flow modeling, image processing [31], structural 

vibrations [32], chaotic dynamical systems, identification of nonlinear systems [33], 

structural dynamics and micro electro-mechanical systems (MEMS) [34]. In POD, 

the high dimensional system under consideration is approximated by using a set of 

orthonormal basis vectors that are obtained by processing the subspace created from 

the response of the system. These responses are either obtained from the results of 

experiments or numerical simulations. In order to obtain the orthonormal basis 

vectors, Karhunen-Loève Decomposition (KLD), Principle Component Analysis 

(PCA) and Singular Value Decomposition (SVD) methods are used. Although the 

three different methods approach the problem in different perspectives, they result in 

the same set of orthogonal base vector. The equivalence of these methods is given in 

[35].  KLD and PCA methods are based on statistical principles. In the following 

section of this thesis, POD in the sense of SVD is used. 

Assume that is a random vector in the subspace ofmRx∈ mR . The main objective of 

the POD is to represent x with minimum number of parameters using a few of the 

ordered orthonormal basis vectors iφ  and related coefficients  ic
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To represent the random vector x , assume that only  number of base vectors are 

used and can be approximated by using the following relation. 
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The main aim of the POD is to find the basis vectors that satisfy the following 

extreme value problem given by 
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Singular value decomposition can be seen as an extension to the eigenvalue 

decomposition with an exception of that SVD is also applicable to non-square 

matrices. Assume X  is a real matrix. Then,)(mxn X  can be factored as, 
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T
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The columns of the matrix are called as left singular vectors and the columns 

of are called as right singular vectors of the matrix

)( mxmU

T
nxnV )( X . is an matrix 

with non-diagonal entries are zero and called as singular values of 

S )( nxm

TX . Diagonal 

entries of the matrix are placed in decreasing order. S
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sss pp
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The matrix X can be expressed as a linear combination of the columns of the right 

and left singular vectors. Although SVD is a linear procedure, it is widely used in 

nonlinear system investigations. 

T
pppp

TT VcolsUcolVcolsUcolVcolsUcolX )()()()()()( 22221111 +++= L  (3.49)  

To determine the left and right singular vectors and singular values of TX , following 

straight forward procedure is implemented. Semi definite matrix is 

created. Then, the eigenvalues of the are calculated and arranged in decreasing 

order such that, 

mxmRTXX ∈

TXX

0111 ====≥≥≥ + mrr λλλλλ LL  (3.50) 

The singular values are calculated as follows and placed in the diagonal entries of the 

matrix , S

),,2,1( miii L== λσ  (3.51) 

The columns of left singular vector U are formed by the solution of the following 

eigenvalue problem 
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The right singular vector V  is also calculated by a similar process. This time, the 

columns of the right singular vectors are formed by the solution of the related 

eigenvalue problem 

),,,( 21 n

iii
T

vvvV
vvXX
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= λ
 (3.53) 

After calculating the right and left singular vectors, V and respectively, and 

Singular Value Matrix , any non-square matrix can be represented by the general 

SVD formulation given in Equation (3.47). Assume that in order to obtain 

approximate low order model of the system (

U

S

mR ), first l  basis vectors obtained from 

the SVD operation are used  
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If the error function is formulated as, 
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In order to minimize the error function, the extreme value given in Equation 3.46 

must be investigated. Lagrange multipliers method is used to solve the problem with 

given constraints.  Lagrangian function of Equation 3.55 can be written as, 
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The solution of the extreme value problem is searched for orthonormal vectors. The 

Lagrangian function is differentiated with respect to iφ ’s 
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In matrix form, 
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If the derivative of the Lagrangian function is equated to zero, one can obtain 

)1()1()1( −−− Φ=Φ mmm
T KXX  (3.59) 

If the Equation 3.59 is pre-multiplied by , then we get T
m )1( −Φ

)1()1()1( −−− ΦΦ= m
TT

mm XXK  (3.60) 
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By the definition of , it is a semi-definite matrix. Then, there exists an 

orthogonal matrix 

)1( −mK

P  that forms a diagonal matrix Λ such that, 
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 By post multiplying the Equation 3.59 by P , we obtain 
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The form obtained in the equation above shows that contains the 

eigenvectors of the system related to the elements

Pm )1( −Φ

iλ ’s of Λ that are the eigenvalues 

of TXX .  is called  right singular vectors. Pm )1( −Φ

Theorem:  Let )(nxmRA∈ and be an orthogonal matrix, then the Frobenius 

norm

)(mxmRQ∈

F
⋅  can be expressed as 

FF
AQA =  (3.63) 

The error function can be written by the help of the theorem and the definition of 

Frobenius norm as follows 
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Note that, to obtain the minimum error, diagonal elements of Λ  can only be the last 

singular values of matrix the)( lm − TX . The optimality is obtained when the right 

singular vectors are used as the orthogonal basis vectors and the error is the 

summation of the last singular values of)( lm − TX . That is, 
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The POD method by using SVD is obtained when the right singular vectors are used 

as orthogonal base vectors such that 
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In the case of nonlinear beam model, the columns  of system response 

matrix

ix

X are the displacements of the each node obtained by numerical simulations. 

For predetermined load scenarios, the corresponding coefficients ’s are calculated 

for the each load case and stored, namely 
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Figure 3.7: Coefficients of Each Load Cases 

When a load is applied which is different from the pre-determined load cases, 

corresponding coefficients must be calculated. In order to obtain the current 

coefficient, Lagrange interpolation functions are used such that, 
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3.4 Comparison of FEM and POD 

In the following table, the comparison between the results of the finite element 

model and those of POD model is presented. The displacement boundary conditions 

are applied to the tip node of the beam model. The load cases are applied to a 4 

element beam model. 

The finite element model and POD model are solved for the following displacements  

)(5,3.0,2.0,1.0 mml L=  (3.68) 
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Table 3.2: Comparison between FEM and POD 
Trials 0.5 0.8 -4 3.75(Interpolation) 8(Extrapolation) 

Method FEM POD FEM POD FEM POD FEM POD FEM POD 
DOF 1 0 -0.1524 0 -0.2667 0 -1.4859 0 -1.3906 0 -1.4435 
DOF 2 0 0 0 0 0 0 0 0 0 0 
DOF 3 0.0006 0.0006 0.0009 0.0009 0.0047 0.0047 0.0044 0.0044 0.0094 0 
DOF 4 0 -0.1429 0 -0.2500 0 -1.3930 0 -1.3037 0 -1.3533 
DOF 5 -0.1836 -0.1836 -0.2938 -0.2938 -1.4688 -1.4688 -1.3770 -1.3770 -2.9375 -0.0254 
DOF 6 0.0006 0.0006 0.0009 0.0009 0.0044 0.0044 0.0042 0.0042 0.0089 0.0001 
DOF 7 0 -0.1143 0 -0.2000 0 -1.1144 0 -1.0430 0 -1.0827 
DOF 8 -0.3438 -0.3438 -0.5500 -0.5500 -2.7500 -2.7500 -2.5781 -2.5781 -5.5000 -0.0475 
DOF 9 0.0004 0.0004 0.0007 0.0007 0.0035 0.0035 0.0033 0.0033 0.0071 0.0001 
DOF 10 0 -0.0667 0 -0.1167 0 -0.6501 0 -0.6084 0 -0.6315 
DOF 11 -0.4570 -0.4570 -0.7313 -0.7313 -3.6563 -3.6562 -3.4277 -3.4277 -7.3125 -0.0632 
DOF 12 0.0003 0.0003 0.0004 0.0004 0.0021 0.0021 0.0019 0.0019 0.0041 0 
DOF 13 0 0 0 0 0 0 0 0 0 0 
DOF 14 -0.5 -0.5 -0.8000 -0.8000 -4.0000 -4.0000 -3.7500 -3.7500 -8.0000 -0.0691 
DOF 15 0 0 0 0 0 0 0 0 0 0 

 

When the transverse displacements are investigated, it can be seen that the POD 

model behaves exactly similar to the FEM model in the transverse direction. This 

fact can be seen as another advantage of the POD method. The specific dominant 

characteristics of the system can be extracted on purpose. The size of the high order 

model can be further decreased by eliminating the undesired degrees of freedom. 

Investigation of the table reveals that if the instantaneous applied displacement is in 

the interval of the load cases, POD matches FEM model. If the applied displacement 

is outside of the load cases defined in Equation 3.68, coefficients of the orthogonal 

base vectors are calculated using extrapolation. In that case, POD model fails to 

approximate FEM based model.  

The computational time that is needed to complete a full simulation is investigated 

for both POD and FEM based models. The tip node deflection is taken as constant, 

the length of the beam is taken as 2.54 m with 25.4x25.4 mm2 cross-sectional area 

and modulus of elasticity is taken as 206 GPa.  The effect of increasing the number 

of elements in both POD and FEM based models are depicted in Figure 3.8, 3.9 and 

3.10. 
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Figure 3.8: Computational Time Requirement of Stand Alone FEM Based Model 

 

Figure 3.9: Computational Time Requirement of FEM Used As Preprocessor 
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Figure 3.10: Computational Time Requirement of POD. 

In numerical simulations of the reduced model, finite element model is used as a 

preprocessing stage and completed before the haptic simulation is started. Resulting 

forces and deformations are calculated using obtained coefficients and vectors. 

Computational time needed to calculate the response of the model is greatly reduced 

with this method. Investigations of the Figures 3.8, 3.9 and 3.10 revealed that the 

increase in the number of elements does not affect the computational demand of the 

POD based model. Preprocessing stage of the POD based model takes all the critical 

computational afford which does not affect the haptic simulation procedure. The fact 

that directly affects the computational afford needed for POD based model is the 

number of numerical simulations that are used for calculation of orthogonal base 

vectors and related coefficients. The computational behavior of POD based model is 

given in Figure 3.11. 

All numerical simulations are completed on a desktop computer with Intel based 

CPU at 2 GHz and 2 GB of RAM on MATLAB environment. 
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Figure 3.11: Time Requirement of POD with Variable Number Simulations 
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4. INTEGRATION OF BEAM MODEL TO A HAPTIC SYSTEM 

In this chapter, developed models are integrated with Phantom Premium 1.5 High 

Force 6DOF haptic device. Device properties and integration algorithms are 

explained in detail. In a broad point of view, two distinct parts exist in integration 

procedure. The first part includes the mathematical modeling of beam and 

commanding the haptic interface. The second part is the visualization of both the 

model and haptic interface. The first part is programmed using OpenHaptics, Matlab 

and C++. OpenHaptics toolkit is a C++ library that is used to command the haptic 

interface. This library is composed of two application interface libraries (API), 

Haptic Device API (HDAPI) and Haptic Library API (HLAPI). The differences 

between these two APIs are the complexity and the granted level of access to the 

hardware of the haptic interface. HDAPI provides lower level of access than HLAPI. 

It enables the user to render forces directly, access to the encoders in bitwise manner. 

HLAPI provides high level access to the haptic interface. This API is built on top of 

HDAPI with an aim of hiding some complexity of low level programming. The users 

of HLAPI do not have to concern force calculation procedures or appropriate data 

structure creation and manipulations. Built-in functions of HLAPI deal with all the 

low level programming issues and the user is supposed to call these functions at right 

time in their algorithm. HLAPI also contains single point collision detection 

algorithm. This API is also easily implemented to existing graphics applications that 

is built using OPENGL. In some applications, HLAPI does not offer desired 

flexibility. In these cases, HDAPI should be used with high effort on programming 

issues. In this thesis, since a specific force response algorithm is developed, low level 

access to haptic interface is needed. HDAPI library is used for integration of the 

developed model with the specified haptic interface. The difference between two 

libraries is depicted in Figure 4.1. 
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Figure 4.1: Complexity Comparison of HLAPI and HDAPI 

4.1 Visualization of the Beam Model 

Visualization of the beam model is programmed by OpenGL API that is based on 

C++. It is a cross-platform API used for generating 2D and 3D computer graphics. 

The basic operation of the algorithm is to accept geometrical primitives such as 

points, vertices, lines and transform them into pixels. In general, user creates virtual 
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objects and environments by describing specific properties such as light, perspective, 

color, dimensions and textures etc. In this thesis work, OpenGL is used to visualize 

both the modeled beam and haptic interface representation called avatar. In Figure 

4.2 the modeled 2D environment and undeformed objects are depicted. The avatar is 

represented by a circular shape. 

 

Figure 4.2: Visualization of Model 

The results of the interactions between the avatar and beam model are depicted in the 

Figure 4.3. The calculated deformations are used to update the visual model. 

4.2 Integration Algorithms 

Large Deflection finite element model of nonlinear beam problem is implemented 

using diagram given in Figure 4.4. The movement of the user is measured by haptic 

interface and resulting positions and orientations are transferred to collision detection 

algorithm. If the collision event is detected, penetration amount is measured and sent 

to force response algorithms. Resulting deformations and reaction forces are 

calculated and sent to visual model and control algorithms respectively. Visual 

model is updated to give the effect of deformations on the model. The control 

algorithms embedded in HDAPI toolkit generate the resulting force and torque 

values on the tip of the haptic interface. 
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Figure 4.3: Various States of the Deformed Model 

 

Figure 4.4: General Procedure of Interaction Diagram 
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The POD model is implemented in a similar structure. To this end, finite element 

algorithm is not used in real-time scheme. It is used as a pre-processing stage for the 

POD model. Force response algorithm has become calculation of related coefficients 

of orthonormal vectors as explained in Equation (3.67) and (3.68). Modified diagram 

is shown in Figure 4.4. The implementations of both models are programmed in 

object oriented fashion. The distinct parts of the general program are grouped into 

specific functions that ensure modularity of the software.  

The integration procedures are implemented using Phantom Premium 1.5 High Force 

6 DOF device shown in Figure 4.6 

 

Figure 4.5: Modified Procedure of Interaction Diagram 

 
Figure 4.6: Phantom Premium Desktop Device 
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5. CONCLUSION 

In this study, haptic interfaces and haptic rendering concepts are introduced. The sub 

algorithms that compose the entire system are investigated. 

In haptic applications, the most important problem that specifies the properties of the 

system modeled is the computational efficiency. High update rate demands of the 

haptic simulations limit the precision of virtually modeled objects. In case of non-

physically based or linear models, the computational demands of the application are 

affordable. However, in order to obtain realistic haptic simulations, nonlinear models 

are needed with the drawback of additional burden on real time performance. As an 

application, nonlinear beam formulation is obtained and solved using finite element 

method and integrated successfully with the Phantom Premium 1.5 High Force 

6DOF haptic device. Using Proper Orthogonal Decomposition method, high order 

beam model is approximated by a low order model. Investigations of the results have 

showed that POD method is successfully implemented and lower order 

approximation of the model is obtained. Lower order model has improved real-time 

performance of the overall system as expected. In addition, undesired degrees of 

freedoms of the model can be eliminated to further reduce the models that are 

intended to be used in haptic systems. The results of the numerical simulations have 

showed that POD fails to approximate FEM model when extrapolation is needed for 

the calculation of coefficients of orthonormal vectors. Extrapolation should not be 

allowed in POD based models. Since the haptic robot that is used to test models has 

force limitations due to the mechanics of the robot arm, the load case interval can be 

chosen appropriately that covers the safe working range of the robot. 
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