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ÖZET 

Kontrol Teorisinin amacı dinamik sistemin en doğru ve sağlam olarak istenilen 

şekilde davranmasını sağlamaktır.  Bu amaç, sistemin kararlı hale getirilmesi, 

kontrolü ve sistemdeki gürültünün yok edilmesi olarak üç ana gruba ayrılabilir.  

Konvansiyonel kontrol sistemleri, lineer olmayan veya sistemin dinamiklerinin 

zamanla değiştiği durumlarda yetersiz kalmaktadırlar.  

Uyarlamalı ters kontrol metodolojisi bu tip sistemlerin kontrolünde kullanılabilir.  Bu 

çalışmada lineer ve lineer olmayan sistemler kontrol edilmeye çalışılmıştır. Yapay 

Sinir Ağları ve Uyarlamalı FIR filtreler,  Gradient-Descent tabanlı algoritmalarla 

eğitilmiş, sistemin modeli, kontrolörü ve gürültü yok edici olarak kullanılmıştır.       

Algoritma sistemin modelinin çıkarılmasına, kontrolörünün ve gürültü yok edicinin 

elde edilmesinde ayrı izin vermektedir. Kullanıcının belirleği sınırlı kontrol de 

sağlanabilir.  

Bu tezde iki sistem araştırılmıştır, birinci sistemde amaç tankın içindeki sıvının 

sıcaklığının kontrol edilmesidir. Tanka giren su miktarı ile çıkan su miktarı birbirine 

eşittir. Giren sıvının sıcaklığı bir vana ile sıcak ve soğuk kaynaklardan gelen sıvının 

karıştırılması ile elde edilir. Sistemimiz linear, minimum fazda ve durağandır. Buda 

tersinin oluşturulmasını sağlar. Birinci sistemdeki amaç, gürültü etkisi ve 

kullanıcının belirlediği kısıtlamalar altında sistemin kontrolünü sağlamaktır.   

İkinci sistem lineer değildir.  Kontrol sisteminin tanımı: Gemi pilotları geminin kafa 

açısını istedikleri yönde tutmak isterler.  Sert dönüşlerde, zamanla değişen bir 

referans yönü oluşur, bu referansın izlenmesi istenir. Sistemdeki gürültü dalgaların 

dümene etkisi olarak alınmıştır.  

Bu sistemdeki kısıtlamalar, sistemin dinamiğinin içindedir. İkinci sistemdeki amaç, 

gürültü etkisi ve sistemin iç kısıtlamaları altında sistemin kontrolünü sağlamaktır.   
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ABSTRACT 

The aim of control theory is; to force the dynamical system to behave in user 

specified manner as accurately, and as robust as possible. The aims may be separated 

into three parts; stabilizing the plant, controlling the plant and disturbance cancelling. 

Conventional control systems are not adequate in such as non linear or time varying 

dynamic in controlled system.   

Adaptive inverse control is a methodology, which achieves to control these kinds of 

systems. In this work both linear and nonlinear plants are tried to be controlled. 

Neural networks and FIR filters, which are trained by gradient-descent based 

algorithms, are used for modelling, controlling and disturbance cancelling.  

The algorithm allows separate implementation of the adaptive controller, plant model 

and disturbance canceller. General user specified constraints on the control effort 

may be satisfied.  

In this thesis , two plants are investigated, in first  plant the goal is to control the 

temperature of a tank of liquid. The flow-rate of water into the tank is constant and 

equal to the flow rate of water out of the tank. The temperature of the incoming 

liquid is controlled by a mixing valve that adjusts the relative amounts of hot and 

cold supplies of the water. The plant is linear , quasistatically stationary and in 

minimum phase. A perfect stable and causal delayed inverse may be constructed. 

The aim in first plant is to control the plant under the effect of disturbances and user 

specified constraints.  

The second example is selected as non linear. The control problem is; autopilots for 

ships are often designed to keep the ship’s heading angle in a desired direction. There 

are some applications, such as course changing and turning, however, where it is 

desirable to be able to track a time-varying reference direction. The disturbances 

experienced in the dynamics of the ship are caused almost exclusively by the action 

of sea waves acting on the rudder angle. The constraints are inside the dynamics of 
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the plant. The aim in second plant is to control the plant under the effect of 

disturbances and constraints. 
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1 INTRODUCTION 

 

The aim of control theory is to force the dynamical system to (the “plant”) behave in 
a user specified manner as accurately and robust as possible. There are many kinds of 
plants dynamics and several control strategies are introduced according to be either 
linear or nonlinear. Linear dynamical systems obey the superposition principle and 
nonlinear do not [19].  

As one researcher states: “From a mathematical point of view, even the control of 
known nonlinear dynamical systems is a formidable problem. This becomes 
substantially more complex when the representation of the system is not completely 
known [22].” 

In this work adaptive controller which has adjustable parameters are used, for 
controlling the nonlinear and linear plants. In thesis, control problem is investigated 
under adaptive inverse control.  
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2 ADAPTIVE INVERSE CONTROL  

The basic idea of adaptive inverse control is illustrated in Figure 2.1. This diagram 

can be thought of as a filter which has adjustable parameters, an input and an output, 

and an extra input called error, which is used to adjust the parameters of the 

controller.   

 

Figure 2.1:   Basic Concept of Adaptive Inverse Control 

Minimization of the mean square error is the main objective of the adaptation 

algorithm. The error is the difference between the plant output and the command 

input. If the error approaches to zero, the transfer function of the controller becomes 

the inverse of the plant. Combined transfer function of the plant and the controller 

becomes unity, so the plant output will track command input.  

In above system, the controller is assumed to be convergent, linear and 

quasistatically stationary, the plant is linear, that it varies slowly so that it is 

quasistatically stationary.  

Basic concept of adaptive inverse control is discussed above, can be developed 

according to complex cases. In some cases a smoothed or delayed version of 

command input model is generally designated as a reference model. This is why the 

system illustrated Figure 2.2 is called Model Reference Adaptive Inverse System.   
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Figure 2.2:   Model Reference Adaptive Inverse Control 

In this system the combined transfer function of the plant and the controller is closely 

approximate of the transfer function of the reference model.  

Plant noise and disturbance present a problem for adaptive inverse control approach. 

Lack of feedback from plant output permits internal plant noise and disturbance to 

exist unchecked at the plant output. Various signal processing methods for noise 

cancelling have been developed and with some modification they have been applied 

to the cancellation of plant noise and disturbance. [2].  

 

Figure 2.3 :   Noise and Disturbance Cancelling 
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In the Figure 2.3 the plant and plant model has same transfer function, the plant 

disturbance and sensor noise is filtered via inverse plant model. The filtered signals 

are subtracted from command input, in order to cancel noise and disturbance at the 

plant output.  

The general view is discussed in this chapter. In next chapters, these concepts will be 

developed.  
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3  LINEAR ADAPTIVE FILTERS 

The development of adaptive inverse control is based on adaptive inverse filtering. 
They are used for modelling the plant, controlling the plant and cancelling plant 
disturbance. This chapter introduces the idea of adaptive linear filtering and 
performance criteria of minimizing mean square error. 

 

Figure 3.1 :   Symbolic Representation of Basic Adaptive Filter 

 It is important to think of the adaptive filter as a building block, having an input 
signal, having an output signal, and having a special input signal called the “error” 
which is used in the learning process. This building block can be combined with 
other building blocks to make adaptive inverse control systems. [45] 

Linear adaptive filters may be divided into two groups: finite impulse response (FIR) 
and infinite impulse response (IIR). When an FIR filter is excited by an impulse, the 
response of the filter in non-zero for a finite period of time, on the other hand, the 
response of the IIR filter is non-zero for an infinite period of time. Adaptive IIR filter 
is showned in Figure 3.2 

Adaptive FIR filter is showned in Figure 3.2. This filter would be used for direct and 
inverse modelling, which is comprises a tapped delay line, variable weights, a 
summation block to add weighted signals, and an adaptation process. The inputs of 
adaptive filter are digitized input and outputs of unknown systems. The weights of 

Σ

Output  

Desired Output  

+ 

- 

 

Adaptive Filter 
Input  
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the filter automatically adjusted by adaptation algorithm, which minimizes mean 
square error, in order to give optimal impulse response.. 

 

Figure 3.2 :   IIR Adaptive Filter 

Any stable linear system may be approximated by a “sufficiently long” FIR filter. 
Hence in this thesis this type of filter is concentrated, also FIR filters are stable with 
finite weights, IIR filters may not.  

 

 

Figure 3.3:   Modelling an unknown system by a discrete adaptive filter 

3.1 Adapting Linear Filters  

Linear adaptive filters are adapted as ; at each time instant, a desired response signal 
dk is applied to the filter. The true output yk, is compared to this desired response, and 
the error is computed as   kkk yd −=∈ . After that weight are adapted according to 

minimization of the cost function Jk,  

∑
=

∈=
k

j
kkJ

0

2
           (3.1) 
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The cost function Jk, is computed for k time steps, weights are adapted in the 
direction of the negative gradient of the cost function.   

kW JWW ∇−= µ:            (3.2) 

In Equation 3.2, W stands for weight vector, the scalar parameter µ  is called the 

convergence factor (learning rate) that controls stability and the rate of adaptation. It 
is necessary to select convergence factor as below for stability.  

max

1
λ

>µ >0                   (3.3) 

Where maxλ is the eigenvalue of R (please refer Appendix A for R) 

A mathematical tool called ordered partial derivatives kx∂∂+ (.) ,are used for 

calculating the gradients. Ordered partial derivatives are useful for easily finding 
derivatives of complex dynamical systems. 

Ordinary partial derivative of (.) with respect to xk refers the direct causal impact of 
xk on (.), while the ordered derivative refers to the total causal impact, including 
direct and indirect effects [42]. The derivatives of equations which are evaluated in a 
specific time order may be calculated by the ordered partial derivative easily. 

Suppose, for example, there is a function as 

),,........,,( 1 Wxxxfy nkkkk −−=            (3.4) 

The main advantage of the ordered derivative is that; complex dynamical systems 

may be differentiated using a simple chain rule expansion. 

W
x

x
y

W
y

W
y jk

n

j jk

kkk

∂

∂

∂
∂

+
∂
∂

=
∂
∂ −

+

= −

+

∑
0

           (3.5) 

The forward equation for the filter is 

kk WXy =            (3.6) 
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where W is the weight matrix of the filter and Xk is a composite vector comprising all 
of the delayed inputs 

[ ]TT
Nfk

T
k

T
kk xxxX −−= ,....., 1            (3.7) 

The weight vector is  

[ ]Nf
T wwwW ,....., 10=            (3.8) 

The gradient of the cost function can be computed with respect to the weights as 

follows 

∑
=

+
+

∂

∂
=

∂
∂ k

j

jk

W

e

W
J

0
           (3.9) 

Which is equal to 

W
y

e
W
J k

k

j

T
j

k

∂
∂

−=
∂
∂ +

=

+

∑
0

2          (3.10) 

where 

W
x

x
y

W
y

W
y jk

Nf

j jk

kkk

∂

∂

∂
∂

+
∂
∂

=
∂
∂ −

+

= −

+

∑
0

         (3.11) 

         { }T
k

T
k

T
k

T
k

T
k XXXXXdiag ....,,,=          (3.12) 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
k

T
k

T
k

X

X
X

00

00
00

         (3.13) 

Summation term disappeared in Equation 3.11 since xj is not a function of W 

{ }∑
=

+

−=
∂
∂ k

j

TTTT
j

k XjXjXjdiage
W
J

0
,.....,,2          (3.14) 

The system run for k time steps WJ k ∂∂+  is computed, and the weighs are updated 

using Equation 3.2. However if the learning rate is small, adaptation may be done at 
each time step as Equation 3.15. 

{ }T
k

T
k

T
kkkk XXXdiagWW ,...,,21 µε+=+          (3.15) 

Which is equal to and easy to use 

T
kkkk XWW µε21 +=+          (3.16) 

3.2 Optimal Solution for Linear Adaptive Filters 

In linear systems, MSE performance function is quadratic function of the weights. It 
is bowl shaped surface and adaptive process continuously adjusts weights in order to 
find bottom of the bowl.  There is one and only one minimum (optimal) solution 
when the cost function used is MSE, and that gradient descent methods will converge 
to the solution. 

The solution is mathematically tractable if certain statistical information about the 
input and desired response is available. This solution is known as the Wiener 
solution. 
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If the cross correlation function between the input xk and the desired response dk, is 
nxd )(φ  and the input autocorrelation function is nxx )(φ , then the unconstrained 

solution, )()( zW opt  is 

[ ][ ] 1)( )()()( −−ΦΦ= zzzW xxxd
opt          (3.17) 

where )(zxdΦ and )(zxxΦ are the z-transform of nxd )(φ and nxx )(φ , respectively. 
Note that this solution allows for the filter )()( zW opt  to be non-causal. The Shannon-

Bode solution for the optimal causal filters is 

[ ] 1 1( ) ( ) ( ) ( ) ( )opt
causal xd xx xxW z z z z

− −− +

+

⎡ ⎤⎡ ⎤ ⎡ ⎤= Φ Φ Φ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
         (3.18) 

where, )()()( zzz xxxxxx
−+ ΦΦ=Φ and )(zxx

+Φ has all the poles and zeros of 
)(zxxΦ which are inside the unit circle in the z-plane. Furthermore, the [.]+ operator 

means, “take the time series generated by the inverse-z-transform of the operand, 
retain only the causal section (set the non-causal entries to zero), and take the z-
transform of the result”. Mathematical analysis of a system constrained to be causal 
is not simple, but in certain specific cases, useful results may be obtained.[35] 

For modelling and controlling of the linear systems, linear adaptive filters are used, 
hence the linear adaptive filters and their properties are discussed in this chapter, in 
next chapter, nonlinear adaptive filters will be discussed.  For more information of 
linear filters please refer, Appendix A. 
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4  NON- LINEAR ADAPTIVE FILTERS 

Non linear adaptive filers are used to for controlling and plant modelling of non 
linear plants. For inverse control, the command input is applied to a non linear 
controller, whose adjustable parameters are adapted, so that when the output of the 
controller drives the plant input, the plant output becomes a best squares match to the 
reference model’s output. The resulting controller would be a good inverse only for 
the particular input command signal not in general. If the characteristics of the 
command input signal were to change, it would be necessary for the controller to 
adapt rapidly and keep up with the changes.  As long as this is feasible, non linear 
inverse control will work. [1]  

 

Figure 4.1 :   Modelling an Unknown System with Neural Network 

Figure 4.1 illustrates the structure of the nonlinear adaptive filters. Input signal is 
tabbed, possibly the output signal is tapped; the output the filter is nonlinear function 
of both delayed inputs and outputs.  The nonlinear function may be implemented in 
any way, in this work neural networks are used.   

A neural network is an interconnected set of very simple processing elements called 
neurons. Each neuron computes an internal sum which is equal to a constant plus the 
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weighted sum of its inputs. [31] The output of the non linear function is called 
activation function. It is chosen tangent sigmoid in this work.  

#

1

tansig .
inputs

i
i

neronoutput constant w input
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑          (4.1) 

 

Figure 4.2 :   Neuron 

The neural networks may be connected randomly, but it is better to arrange them in 

order. Layers are groups of identical neurons where each neuron has identical inputs, 

these inputs are the outputs of the previous layer.   The final layer of the network is 

called output layer. The other layers are called hidden layers. The layered network 

has feedforward structure (non-recurrent) which computes a static nonlinear 

function.  Dynamics are introduced via tabbed delay at the input to the network.  

In non linear filter following notation is used: N(a,b):α,β… which means: “The filter 

input is composed of a tapped delay line with ‘a’ delayed copies of the exogenous 

input vector xk , and ‘b’ delayed copies of the output vector  . Furthermore, there are 

‘α’ neurons in the neural network’s first layer of neurons, ‘β’ neurons in the second 

layer, and so on.” For instance, the filter in Figure 4.1 would be represented as 

N(2,2):3:3:1 
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4.1  Adapting Nonlinear Filters  

Gradient Descent algorithms may be used to adapt the weights of adaptive nonlinear 

filter with feedforward and externally recurrent network. Due to the differences in 

details, two networks are discussed separately.  

4.1.1 Adapting a Feedforward Neural Network  

A feedforward neural network may be adapted using backpropagation algorithm, 

discovered independently by several researchers [41, 29] and popularized by 

Rumelhard, Hinton and Williams. [35] In this method weights are updated 

recursively, based on the error at the output.  The figure is shown  below. 

 

Figure 4.3 : Feedforward Neural Network 

Output of network is function of inputs and weight vector 

),,........,,( 1 Wxxxfy nkkkk −−=             (4.2) 

Feedforward 

Neural Network 

 

xk 

xk-1 

yk-1 

 

ky
∧
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The error is the difference between the actual and the desired output. Sum of square 

of the error, which is called as “cost function” is minimized by adapting the weight 

vector.   It is done by adapting the weighs in the direction of negative gradient of the 

cost function.    

The minimization process is; any arbitrary weight, )(
:
ı

jiw -the one which connects 

neuron i in the layer l-1 with neuron j in layer l -in network, is selected.  The 

derivative of the error squared with respect to that weight is computed. After 

calculating the derivatives, weights will be updated. Proceeding the chain rule   

)(
:

)(

)(

2

)(
:

2

ı
ji

ı
j

ı
j

ı
ji w

s

sw ∂

∂

∂

∂
=

∂

∂ ++ εε
           (4.3) 

  )1()( −= ı
i

ı
j aδ  

where 

)(

2
)(

ı
j

ı
j s∂

∂
=
∆ ε

δ            (4.4) 

The values of )1( −ı
ia  are known from the forward pass network.  Then )(ı

jδ  should be 

calculated. 

The output layer of the network has no activation function then )()( L
i

L
ii say == , 

and i
L

i εδ 2)( −= . In the hidden layers, no specific error signal exists. The chain rule 

expansion is used for determining an equivalent sensitivity of the output.  
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2
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∂
=
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      ∑ ++=
j

ı
ji

ı
j

ı
i wsf )1(

:
)1()(' )( δ      l=1:L-1 

 

Thus )(ı
jδ  is calculated by propagating values of )1( +ı

jδ    backwards through the 

network. To sum up, there are two operations in backpropagation forward phase and 
reverse phase. In forward phase, the input is propagated to the output to compute yk. 
In the reverse phase, the error is applied at the output, changed into )(L

iδ  form and 
)(L

iδ is propagated backward through the network. The weights are updated using 
)(l

iδ  and )(l
ia  as; 

)1()()(
:

−−=∆ l
j

l
j

l
ji aw µδ          (4.6) 

Calculating Jacobians of Neural Networks:  

It is necessary to calculate the Jacobian of the function implemented by a neural 
network. The neural network is the function of inputs and weights y=f(X,W),  the two 
Jacobians may be calculated as ,  

W
y

∂
∂  and 

X
y

∂
∂    

The difference between derivation for backpropagation algorithm is the definition of 
iδ  which is defined as 

)(
)(

ı
i

Tı
i s

yv
∂
∂

=
∆

δ          (4.7) 

where v is the error vector.  

Backpropagation algorithm is used to propagate the redefined δs backward through 

the network. If δs are propagated to the inputs, and define  

)0(
)0(

i

T
i s

yv
∂
∂

=
∆

δ           (4.8) 
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and 

[ ]
X
y

v kT
Nx ∂

∂
=)0()0(

1 ,...,δδ            (4.9)

  

Since  

)1(
)(

:

)(
−=

∂

∂ ı
iı

ji

ı
j a

w

s
,                (4.10) 

[ ]
W
y

va kTı
i

l
j ∂

∂
=− ,...,....., )1()(δ          (4.11) 

Where the terms in T
kv y W∂ ∂ are ordered according to the same implementation-

dependent ordering of [ ])(
:
ı

jiwW =  

This ability of the backpropagation algorithm is called the “dual-subroutine” 

introduced by Werbos. Dual subroutine is the recursive calculation of the Jacobians 

with the network. 

4.1.2 Adapting an Externally-Recurrent Neural Network 

Up to now computation the Jacobians of network and adapting feedforward network 
are discussed.  These algorithms are extended to externally recurrent neural 
networks. This was firs done by Williams and Zipser and called “real time recurrent 
learning” (RTRL). Similar presentation is showned as below. 

),,........,,,........,,( 11 Wyyxxxfy mkknkkkk −−−−=            (4.12) 

The figure of the externally Recurrent Neural Network is shown in below.  
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Figure 4.4: Externally Recurrent  Neural Network 

For calculating sum of squared error;  
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The first term Wyk ∂∂  in Equation 4.14, is a Jacobian, and it has direct effect of a 

chance in weights on yk and which is calculated by dual subroutine of the 
backpropagation algorithm. The second term is zero because xk is not a function of 

W, so Wxk ∂∂+  is zero. The last term may split up two parts. ikk yy −∂∂ is a 
component of matrix Xyk ∂∂ , because the delayed versions of yk  are part of the 

network’s input vector X.  The dual subroutine algorithm is used to compute this first 

Externally 
Recurrent  
Neural Network 

 

xk 

xk-1 

yk-1 

 

ky
∧

 

Delay 
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part. The second part is Wy ik ∂∂ −
+  is the previously calculated values of Wyk ∂∂+ . 

When the system is “turned on” Wyk ∂∂+  are set to zero for I=0, -1, -2,,, and the 

rest of the terms are calculated recursively from that point on.  

The dual-subroutine calculates the Jacobians in a way that the weight update is done 
with simple matrix multiplication, Lets, 
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The weight update is calculated as 

T

kwkx
kT

k ydyd
W
y

W ⎟⎟
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⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +
∂
∂

=∆ )()(2µε            (4.17) 

4.2 Optimal Solution for Non Linear Adaptive Filters 

In principle, a neural network can emulate a very general nonlinear function. It has 
been shown that any “smooth” static nonlinear function may be approximated by a 
two-layer neural network with a “sufficient” number of neurons in its hidden layer 
[21]. Furthermore, a NARX filter can compute any dynamical finite-state-machine 
(It can emulate any computer with finite memory) [36]. 

In practice, a neural network rarely achieves its full potential. In solution space, 
gradient descent algorithms converges a local minimum, not a global minimum, but a 
neural network will get quite close to this bound.  
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The theorem below shows the optimal solution, suppose that input vector of adaptive 
filter is Xk and the output is yk, and the desired response is dk, then the optimal filter 
shows the function 

 [ ]kxk Xdy Ε=             (4.19) 

It is proved as; suppose that yk is the claimed optimal estimate, and  
∧

ky  is another 

estimate,  
∧

ky  must yield an MSE no smaller than does yk 
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Recall that [ ]kxk Xdy Ε=  and hence 

( )[ ] 0=−Ε kkk Xyd            (4.23) 

Since 
∧

− kk yy  is deterministic function of Xk 
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By iterated the expectation 
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which shows  
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5 SYSTEM IDENTIFICATION 

Systems generally work insufficiently, in order to take better performance; the 
engineers often aim to control the systems. If there is a need of better control, the 
model of the system should be known. In simple systems, it is reliable to build 
mathematical model from physics, but in most cases, it is difficult because the 
system involves complex equations or it is totally unknown, so the states of the 
system cannot be determined.  

For these cases, the model of the system cannot be found by using physical laws. 
Then, a new method that should be introduced. The procedure to get the 
mathematical model of the system by using input and output data is called “system 
identification”.  

5.1  Identification of Linear Systems 

If a black box model is trying to be identified, the structure of the model may be 
chosen to be either: a state-space implementation of adjusted by subspace 
methods[40]; an auto-regressive ARMA IIR filter adjusted by recursive least-squares 
methods [24]; or an FIR model adjusted by an algorithm such as LMS [44]  

They have different advantages. The state-space methods are numerically very 
robust. The ARMA model has many fewer parameters than FIR, and hence may 
learn more quickly. The FIR model is very simple and unbiased by zero-mean 
disturbances if they are uncorrelated with the system input. Adaptive FIR models are 
used to identify linear system in this thesis.  

Black-box adaptive system identification is performed as shown in Figure 5.1. The 
plant is excited with the signal uk, and the disturbed output yk is measured. The plant 

model P
∧

 is also excited with uk , and its output 
∧

ky  is computed. The modelling 

error, which is the difference between the model output and the measured plant 
output, is used by the adaptation algorithm, to update the weight values of adaptive 
filter.  
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Figure 5.1 :  Adaptive System Identification 

The desired response of the filter is yk , the input of the filter is uk, the output of the 

filter is
∧

ky  The input of the filter and the desired response are used to compute 

Wiener solution for the optimal  plant  model. 

[ ]nkknuy yu +−Ε=)(φ              (5.1) 

[ ])( nknknkk wupu +++ +∗Ε=              (5.2) 

[ ] [ ]nkknknkk wuupu +++ Ε∗Ε= )(              (5.3) 

nuunnuy p )(*)( φφ =              (5.4) 

where pk is the impulse response of the plant. If the disturbance is zero-mean and 
uncorrelated with the plant input, then  

nuunnuy p )(*)( φφ =             (5.5) 
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)()(
)(

zPzP
opt

=
∧

              (5.8) 

Which means adaptive model converges the plant. 

5.2 Identification of Nonlinear Systems 

Modelling of nonlinear systems, are more complicated than modelling of linear 
systems. In this work NARX model is used for modelling, since sufficient ordered 
NARX is a universal appoximater of any universal dynamic system.  

The delayed outputs of are the inputs of the model in NARX as a feedback. When 
training an adaptive plant model two kinds of connections may be applied, parallel 
connection and series-parallel connection. It is depend on the connection of the 
feedback. If the feedback is connected model output, it is called parallel connection 
or the feedback may be connected plant output which is a series connection showned 
in Figure 5.2. 

 

Figure 5.2 :  Parallel and Series-Parallel Connection Identification 

In parallel connection identification networks are trained either real-time-recurrent-
learning (RTRL) or backpropagation-through-time (BPTT). Parallel connection for 
system identification is simple, but is biased by disturbance. The series-parallel 
connection for system identification is more complex to train, but is unbiased by 
disturbance. In this work, nonlinear system identification is done with both 
configuration.  
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5.3 Simulation Examples 

This part introduces the plants used throughout this thesis as examples of their 
respective control categories, also modelling of the plants are showned. Both linear 
and nonlinear systems are examined. The examples were chosen because they are 
typical of actual control problems, but simple enough to be thoroughly understood. 
In the following pages, the dynamics of each plant are outlined, reference signals that 
the plant’s outputs are required to track are specified, and the characteristics of 
expected disturbances are presented. 

5.3.1 Linear Plant 

The dynamics of linear continuous-time systems may be expressed mathematically in 
a number of ways. One of these is by linear constant coefficient differential 
equations. In this work, the both examples are defined by differential equations. 

Continuous-time plants are discreatized by realizing that the plant input is held 
constant for T seconds (where T is the sampling period), and the plant output is 
sampled every T seconds. The transfer function of the plant in the z-transform 
domain may then be readily calculated from the transfer function in the (Laplace) s-
plane. Notationally, we say 

1 ( )( ) (1 ) H sH z z
s

− ⎧ ⎫= − ⎨ ⎬
⎩ ⎭

Z                          (5.9) 

where the operator Z {.} means “take the inverse Laplace transform of (.),  sample 
the resulting time sequence at 1/T samples per second, and return the z-transform of 
the sampled sequence.” The resulting transfer function H(z), along with its region of 
convergence in the z-plane, uniquely defines a linear time invariant discrete-time 
system. Important properties of the system may be quickly deduced from H(z). [31]   

The roots of its denominator polynomial are called poles, and the roots of its 
numerator polynomial are called zeros if H(z) is in rational polynomial form. If all of 
the poles are within the unit circle in the z-plane, the system is stable and causal. If 
any pole is outside the unit circle, the system is either unstable or non-causal. If all of 
the zeros are inside the unit circle, the system is called minimum phase, that a stable, 
causal inverse of the system exists. This makes controlling the system relatively 
easy. If any zero is outside the unit circle, the system is called non-minimum phase, 
and a stable, causal inverse does not exist. However, a delayed, causal, approximate 
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inverse does exist, and works very well for controlling such systems. In this thesis 
only minimum phase plant is introduced for linear example. 

The linear example was selected from reference [31]. The goal is to control the 
temperature of a tank of liquid. The flow-rate of water into the tank is constant and 
equal to the flow rate of water out of the tank. The temperature of the incoming 
liquid is controlled by a mixing valve that adjusts the relative amounts of hot and 
cold supplies of the water (see Figure. 5.3). A length of pipe, assumed to have 
negligible heat loss, separates the mixing valve from the tank. This distance causes a 
time delay between the application of a change in the mixing valve and the discharge 
of the flow with the changed temperature into the tank. If our goal were to design an 
analog controller for this plant, this time delay significantly complicates the task. No 
exact analysis techniques are available to handle pure delays, so approximations, 
such as the Pade Approximation should be used to design the controller.  

It is assumed that the mixing in the tank is instantaneous, and that negligible heat is 
lost in the pipe connecting the valve to the tank, the differential equation governing 
the tank temperature is 

( ) ( ) ( )t t v d
m mT t T t T t
M M

τ
• •

•

+ = −                        (5.10) 

 

 

Figure 5.3 :  Tank Temperature Control 

where 

vT = temperature of water immediately after the control valve and directly        

controllable by the valve, 

tT  =tank temperature,  
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     m
•

= mass flow rate, ( )in outm m
• •

=  

M =water mass contained in the tank, 

dτ = delay time of water between valve and tank. 

When transformed, let a m M
•

= , the transfer function from vT  to tT  becomes 

( )
( / ) 1

d seH s
s a

τ−

=
+

                          (5.11) 

The equivalent z-transform of the discretized plant may be computed as  

1 ( )( ) (1 ) H sH z z
s

− ⎧ ⎫= − ⎨ ⎬
⎩ ⎭

Z                                 (5.12) 

The delay time is approximated by using Pade approximation, as d T Tτ θ ψ= −  
0 1ψ≤ < .  
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                       (5.13) 

The location of the zeros of H(z),  may be considered, θ zeros located at infinity; 
alternately, θ poles at the origin. These zeros (or poles) correspond to the built-in 
time delay of the system. Because of them, a non-delayed inverse cannot be 
constructed. However, a perfect stable and causal inverse with delay of at least θ time 
steps may be realizable. 

The remaining (finite) zero of H(z) will be either inside or outside the unit circle, 
depending on the value of dτ . If the zero is inside the unit circle, the system is 

minimum phase. A perfect stable and causal delayed inverse may be constructed. If 
the zero is outside the unit circle, the system is non-minimum phase.  

m = 2 kg/s; 

M = 10 kg; 

T = 1 s; 
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θ =2 time steps 

The value ψ for was chosen to be 0.55 so finite zero is inside unit circle. With all the 
variables substituted, the transfer functions become: 

3 2

0.7402( ) 0.1042
0.8187

zH z
z z

+
=

−
                        (5.14) 

The transfer function is realized through the following difference equation 

1 2 30.8187 0.1042 0.0771k k k ky y u u− − −= + +                       (5.15) 

The bode diagram, pole-zero map and impulse response of the transfer function are 
presented in Figure 5.4, Figure 5.5 and Figure 5.6 respectively. 
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Figure 5.4 :  Bode Diagram of Linear Plant 

Range of Operation: The reference signal of the plant will be required to track 
when performing simulations. When constraints on the control effort are considered, 
they will be as follows: The control effort is allowed to be in the range -0ºC to 0.1ºC.  
Physically, this means that the hot reservoir is a 0.1 ºC hot liquid source, and that the 
cold reservoir is a 0ºC cold liquid source. These constraints will be taken into 
account in control phase.   



 28

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

 

Figure 5.5 :  Pole Zero Map of Linear Plant 
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Figure 5.6 :  Impulse Response of Linear Plant 

First of all the aim is to identify the plant, as accurate as possible, it is known that, 
the input signal should include plants cut of frequency, which is 0.02Hz. A sine wave 
may be adequate to achieve this, since sine wave is applied to all filters and neural 
networks. 

 

Figure 5.7: 20 Tab FIR Filter 
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Figure 5.8: Linear Plant Identification with FIR Filter, µ=0.1 

 

First example 20 tab FIR filter shown in Figure 5.7 with µ=0.1, is used with 60 time 
steps, the simulation results of error and identification are showned on Figure 5.8.   

 

The learning rate is changed to µ=0.01, all the other remain unchanged in second 
simulation,  is showned  on Figure 5.9, as seen the leaning rate has direct effect on 
learning,  the smaller values of µ causes slower adaptation. In third simulation, the 
value of is changed to µ=0.8, which causes unstability, is showned on Figure 5.10. 
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Figure 5.9:  Linear Plant Identification with FIR Filter, µ=0.01 
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Figure 5.10 :  Linear Plant Identification with FIR Filter, µ=0.8 

 

After the investigation the plant identification via FIR filter, the plant identification is 
also done using neural networks. In first example the identification of plant is done 
by feedforward neural network, NN(20,1), 5,1,   (xk, xk-1,.., xk-19,yk-1) , shown in Figure 
5.11 µ is selected µ=0.1, and in order to use a nonlinear activation function, a linear 
activation function y=x is used.  The training and validation results are showned in 
Figure 5.12. As same learning rate is used, neural network has slower adaptation.  

 

Figure 5.11 : Feedforward Neural Network 
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Figure 5.12 :  Linear Plant Identification with Feedforward NN,  with µ=0.1 
linear activation function and 200 time steps 

 

A second neural network identification is done using µ=0.01 all other is unchanged, 
NN (20,1),5,1 (xk, xk-1,.., xk-19,yk-1) is showed in Figure 5.13 and Figure 5.14 shows 
training and validation results. As showned on figure there is not a good result is 
achieved for 200 time steps if the time step is increased better results will be 
achieved.  

 

Figure 5.13 :  Feedforward Neural Network 
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Figure 5.14 :  Linear Plant Identification with Feedforward NN, with µ=0.01 
Using Linear Activation Function for 200 Time Steps 

 

Third neural network identification is examined by changing the activation function 
to a nonlinear function tangent sigmoid. The configuration is showed in Figure 5.15. 
Learning rate is selected as µ=0.1, the results are showned in Figure 5.16. If the 
results are compared with first neural network example, it may be seen that an error 
which is caused by nonlinearity in activation function can not be eliminated for 200 
time steps.   

 

 

Figure 5.15:  Feedforward Neural Network 
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Figure 5.16:  Linear Plant Identification with Feedforward NN, with µ=0.1 
Using Nonlinear Activation Function for 200 time steps 

In this part externally-recurrent neural network with one output from itself, 
NN(20,1),5,1 is used for identification of linear plant which is showed in Figure 5.17.  
First example is done using with µ=0.1, and linear activation function y=x, is used.  
Training and validation results are showned in Figure 5.18.  Better results are 
obtained by externally-recurrent neural network, compared to feedforward neural 
network. 

 

Figure 5.17:  Externally Recurrent Neural Network 
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Figure 5.18 :  Linear Plant Identification with Externally-Recurrent NN with 
Using Linear Activation Function for 200 Time Steps 

Second example is done by using learning rate µ=0.1, and nonlinear activation 
function tangent sigmoid.  Training and validation results are showned in Figure 
5.19.   There is no such a big difference using linear or non linear activation function 
in externally recurrent neural network, compared to feedforward neural network (See 
Figure 5.12). The best result is obtained with FIR filter with learning rate µ=0.1, than 
externally recurrent neural network with linear activation function and  with learning 
rate µ=0.1, and the worse result is obtained with FIR Filter with learning rate µ=0.8,   
As shown in figures learning rate has direct effect on adaptation, if it is chosen  small 
a slow adaptation is obtained, if it is chosen big, unstability may obtained. A linear 
system may be identified with neural networks. Better results are obtained with linear 
activation function, also nonlinear activation functions may be used for 
identification, although they cause slower learning.  
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Figure 5.19 :  Linear Plant Identification with Externally-Recurrent NN with 
µ=0.1 Using Nonlinear Activation Function for 200 Time Steps  
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Disturbances: There are several possible sources of disturbance for this particular 
plant. There could be heat loss in the pipe between the valve and the tank,  loss in the 
tank itself, non instantaneous mixing in the tank, or poorly regulated hot and cold 
reservoirs. It is quite reasonable to assume that the pipes and tank are very well 
insulated, and so heat loss is not considered to be significant. In this section, 
disturbance is set to zero. For other sections it is assumed that the hot source is 
poorly regulated. It heats up and cools down in a periodic fashion. Let  

Th=0.1+0.005sin(2лt/60+φ)                         (5.16) 

where φ  is random variable, uniformly distributed between [−л; л], and independent 
of uk . 

( ) 0.005sin((2 / 60) ))dist k tπ ϕ= +                         (5.17) 

5.3.2 Nonlinear Plant 

Unlike linear systems, nonlinear systems do not satisfy the superposition principle. 
Therefore, they cannot be described in terms of impulse responses or transfer 
functions. They may be described in the time domain. Continuous time systems may 
be described by systems of nonlinear differential equations, and discrete time 
systems may be described with sets of nonlinear difference equations. [31] 

It is not always possible to analytically discreatize a set of nonlinear differential 
equations. In many cases it is necessary to discreatize the plant by simulating 
(numerically integrating) the differential equations over the sampling period. At 
times, dozens of integration steps need to be taken to advance the system from its 
current state to its state after a sampling period. Some work has already been done in 
the area of nonlinear adaptive inverse control [2, 4]. 

This work focused on nonlinear a SISO plant and successful feedforward control was 
achieved. It is considered difficult nonlinear control problems with greater practical 
motivation. Much more insight may be gathered from studying them since we 
already have an expectation of what their limits of performance might be. The 
dynamics are computed by simulating the continuous-time differential equations 
since they cannot be analytically discretized. 

The control problem is; autopilots for ships are often designed to keep the ship’s 
heading angle in a desired direction (see Figure 5.20). There are some applications, 
such as course changing and turning, however, where it is desirable to be able to 
track a time-varying reference direction. This scenario was selected as an example of 
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a very nonlinear control problem. The primary reference is [39] but [30] and [31] 
was also consulted for additional insight into the meanings of some of the parameters 
involved. 

The model of a ship may be expressed as 

( ) rkd kψ ψ δ
•• •

+ =                                    (5.18) 

Where ( )tψ is the heading angle of the ship, rδ    is the rudder and ( )d ψ
•

  is a 

damping term of the form 

3 2

3 2 1 0( )d d d d dψ ψ ψ ψ
• • • •

= + + +                         (5.19) 

Because of the symmetry, most ships have the property that  2 0 0d d= =   

 

Figure 5.20 :  Illustration of Heading Angle 

There is a nonlinear dynamical relationship between its heading and rudder angle, 
also a dynamical relationship with rudder angle with respect to the (steering) wheel 
position.  The rudder angle δr does not follow the wheel angle δw exactly. The rudder 
is rate-limited to 6º per second until | δw -δr |≤3º then the rudder operates in the linear 
range of its characteristic. One other restriction is that the rudder angle may not 
exceed 35º in either direction. The ship dynamics may be represented as shown in 
Figure 5.21   
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Figure 5.21 :  Block Diagram of Ship Yaw Dynamics from Wheel Angle δw to 
the Heading  Angle ψ 

To summarize, the system dynamics are controlled by the coupled pair of differential 

equations 

( ) [ ( ) ( ) ( ( ))]rt k t disturbance t d tψ δ ψ
•• •

= + −                        (5.20) 

( )35 ( ) ( )
35( ) 6 [ ]

3

w
r

r

tsat t
t sat

δ δ
δ
• −

=                         (5.21) 

1,   1
( ) ,    1 1

1,     otherwise

x
sat x x x

− < − < −⎧
⎪= − ≤ <⎨
⎪
⎩

                         (5.22) 

Constants are added to convert from degrees to radians and to allow the use of the 
normalized saturation function sat(x).  All parameters were taken from references 
[39, 31]. 

k = 0:0107, d1 = 9:42; d3 = 2:24; 

So it corresponds to the dynamics of a Royal Navy warship traveling at sixteen 
knots.  

Stabilizing the Dynamics:  

The dynamics of the ship are unstable. This may easily be seen by applying a step 
function to the control input. The plant output for step inputs ranging in magnitude of 
180 is shown in Figure 5.22(a). A bounded input does not produce a bounded output, 
and hence the dynamics are unstable. A very simple feedback circuit may stabilize 
the dynamics. The stabilized ship block diagram is shown in Figure 5.23. The step 
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response of the stabilized dynamics is shown in Figure 5.22(b). Now, bounded inputs 
produce bounded outputs. In fact, the feedback loop makes a pretty good control 
system all by itself. The nonlinear controller will enhance the dynamic response 
where it can (when the rudder rate and angle limits are not saturated). 
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Figure 5.22 :  Step Response of Ship Yaw Dynamics with Stabilized and Non-
Stabilized Plant  

 

Figure 5.23:  Stabilized Plant 

Range of Operation: Since the nonlinear controller can not improve performance 
when the rudder dynamics are in their saturation region, only relatively small 
perturbations around a fixed heading need to be considered. A default “steady” 
heading of 0º was used, with perturbations limited to ±30º around that heading. More 
specifically, the reference command to be tracked was a first-order Markov process, 
generated by filtering i.i.d. uniform random numbers with maximum magnitude 0.05 
using a one-pole filter with the pole at z = 0.99. 

Disturbances: The disturbances experienced in the dynamics of the ship are caused 
almost exclusively by the action of sea waves acting on the rudder angle, and by 
wind acting on the superstructure. Here, we consider only the effects of waves, as is 
done in reference [39, 31]. The power spectral density of wave height as a function 
of wave frequency is 
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Figure 5.24 :  Disturbance Signal 
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4 5
19.5

( ) exp[ ]
(2 ) 2

g gS f
f U f

α β
π π

⎧ ⎫
= − ⎨ ⎬

⎩ ⎭
                       (5.23) 

where 

f =wave frequency (Hz) 

α =Phillips constant ( 38.1 10x − ) 

β =dimensionless constant (0.74) 

19.5U =wind velocity 19.5m above sea level (knots) 

g =acceleration due to gravity 

The nominal wind velocity U19.5 was taken to be 20 knots.  

In order to generate wave disturbances, i.i.d. uniformly distributed random numbers 
with maximum magnitude 1 are passed through a filter having the same power 
spectral density S(f) Using the random uniform input and this filter, a sample wave 
time series is plotted in Figure 5.24 

 In linear plant, the effect of learning rate and activation function are discussed, this 
part  is focused on the number of delayed inputs, and also a comparison between 
feedforward and externally-recurrent neural network. In all examples learning rate is 
set to µ=0.1 and tangent sigmoid is used as activation function. 

In first example a feedforward neural network N(4,0),20:1 (xk, xk-1,.., xk-3,)  is used to 
identify the system. It takes only the input signal, result is showned in Figure 5.25. 
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The network is not capable of identifying the plant. The number of inputs are 
increased in second example that a feedforward neural network N(6,1),20:1(xk, xk-1,.., xk-

5,yk-1)   is used for identification. This network is capable to identify the model of the 
system. Results are showned in Figure 5.26.  The third example is a comparison 
between feedforward and externally-recurrent neural network that externally 
recurrent neural network, with one delayed output signal from itself, N(6,1),20:1 is 
used for identification the plant. Result is showned in Figure 5.27.  As shown in 
figures, both methods are capable to identify this system if sufficient number of 
delayed inputs are given to the system.  

Up to now identification of both linear and nonlinear plants are investigated. In next 
chapters, these plants are tried to be controlled with FIR filters and neural networks, 
than the disturbance is tried to be cancelled.   
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Figure 5.25 : Training and Validation Results of Plant Modelling with 
Feedforward Neural Network 
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Figure 5.26 :  Training and Validation Results of Plant Modelling with 
Feedforward Neural Network with more inputs. 
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Figure 5.27 Training Results and Validation Results of  Plant Modelling with 
Externally Recurrent  Neural Network 
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6 ADAPTIVE FEEDFORWARD CONTROL 

6.1  Introduction 

Three filters the plant model P, the controller C, and the disturbance canceller X, 
need to be adapt to perform adaptive inverse control on Figure 6.1. How to adapt P to 
make a plant model has already been addressed.  This chapter presents an algorithm 
which may be used to train C to perform constrained model-reference based control 
of a linear or nonlinear plant.  

 

Figure 6.1 :  Adaptive Inverse Control 

This chapter is organized into two parts. The first part develops an algorithm to train 
a controller to perform constrained control, and discusses an efficient 
implementation. The second part presents results from simulations for the plants. 

Optimal controller is a controller which minimizes the mean-squared system error. 
Due to constraints on its architecture, controller may not achieve this level of 
performance. For example, the controller is restricted to be a linear system, or to be 
causal, so it may be said the “optimal controller” as being the one which minimizes 
the mean-squared system error while satisfying the architecture constraints. Note 
that; the optimal solution for a linear system is the Wiener solution is known from 
Chapter 3  
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6.2 Constrained Controller via BPTM Algorithm 

This part presents an algorithm, which trains a controller to perform constrained 
model-reference based control of a linear or nonlinear plant. A key hurdle which 
must be overcome by the algorithm is to find a mechanism for converting the system 
error to an adaptation signal used to adjust C. We need some functional block which 
uses the system error and some form of plant state information to compute the 
controller error. This block is denoted as “?” in Figure 6.2 

 

Figure 6.2 :  Adaptive Inverse Control 

This functional block must describe an algorithm which also satisfies the following 
design criteria: 

• The algorithm must work with linear and nonlinear plants. 

• The algorithm must not be biased by disturbances. 

• The algorithm must work for autoregressive implementations of P
∧

 and C. 

• The algorithm must minimize a cost function of the system error and the 
control effort. 

 

Figure 6.3 shows the general framework to be used. Rather than manipulating the 
block diagram to generate an indirect error signal with which to adapt C, the system 
error signal is used directly. It is back-propagated through the plant model, and  used 
to adapt the controller. For this reason, the algorithm is named “Backpropagation 
Through (Plant) Model” (BPTM).[31] 
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Figure 6.3 : Structure Diagram Illustrating BPTM Method 

The aim is to train the controller C, to minimize the squared system error over a 
certain trajectory and to simultaneously minimize some function of the control effort. 
The system is run for K time steps. At the end of the K time steps, the following sum 
is computed 

( ){ }∑
=

−−+=
K

j
rjjj

Tsys
jk

Tsys
jkK uuuhQeeJ

0
1

)()( ,,,                       (6.1) 

The function h(.) which can be differentiable, defines the cost function associated 
directly with the control signal uk , and is used to penalize excessive control effort, 
slew rate and so forth. The system error is the signal ( )sys

k k ke d y= −  , and the 

symmetric matrix Q is a weighting matrix which assigns different performance 
objectives to each plant output. To minimize the system error over a trajectory of 
length K and simultaneously minimize a function of the control effort, we must 
minimize the function Jk 

In this approach the weighs of controller is not adapted in real time. Time is divided 
into epochs of K time samples in length, and adaptation of the controller weights is 
performed at the end of each epoch. In this work, a real-time approach was preferred. 
Therefore, the same trick is employed as used in [46, 31]. The cost matrix JK is 
stochastically approximated at each time step as 

( ){ }rjjj

Tsys
jk

Tsys
jkK uuuhQeeJ −−+= ,,, 1

)()(                       (6.2) 

The gradients of the approximate cost function Jk are not the same as the gradients 
found for the true cost function JK . Therefore, adaptation is a “noisy” process. In 



 45

practice, however, it works well. Continuing, if we let g(.) be the function 
implemented by the controller C, and f(.) be the function implemented by the plant 

model P
∧

, we can state without loss of generality 

),,,,,,,( 121 Wrrruuugu qkkkmkkkk −−−−−=                                (6.3) 

1 2 1( , , , , , , )k k k k n k k k py f y u u u u u− − − − −=                                (6.4) 

where W are the adjustable parameters (weights) of the controller. As is typical for 
LMS and backpropagation-like learning methods, the controller weights are updated 
in the direction of the negative gradient of the cost functional 

k
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where  µ  is the adaptive learning rate. The adaptation algorithm is derived as 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∆ ∑

=

−
+

−

−
+ r

j

jk

T

jk

rkkkT
k

T
k

W
u

u
uuh

W
yQeW

0

,),,(2
µ

                             (6.6) 

Using Equation 6.3 and 6.4 and the chain rule for ordered derivatives, two further 
substitutions may be made at this time 
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Dimension of each term in Eqs. (6.6), (6.7), and (6.8) are (if the plant has Ni inputs 
and No outputs, and the controller has NW weights) 
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Also  

[ ] [ ] [ ] [ ] [ ]1 1 1 1o o W
k k kN N N Ni No No

Q W u e y
× × × × ×

 

6.2.1  Linear FIR Plant Model, Linear FIR Controller 

General update rules are obtained up to now. These rules are specialized for linear 
plants at this section. Any stable linear plant and linear controller may be 
approximated with arbitrary precision by FIR filters. In this section the plant model 
and the controller are assumed to be FIR.  The input to the controller filter is a 
tapped-delay-line of q+1 vectors, each of length No.  This composite vector, at time 
k, to be 

 

[ ]TT
qk

T
k

T
kk rrrR −−

∆

= ,....., 1              (6.9) 

It was noted that the plant has Ni inputs. Therefore, the controller will have Ni 
different linear filters operating on Rk to produce the control signal uk. Let TW1  be the 
first such filter, 2

TW be the second, and so on. 

These filters may organized into a matrix CW  such that 

[ ]TNiC WWWW ,.....21=             (6.10) 

Then, 

kCk RWu =             (6.11) 

However, for adapting all the weight values of the controller it is useful to define the 
column vector of weights to be 

[ ]TT
Ni

TT WWWW ,....., 21=             (6.12) 
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It should be noted that CW  is a matrix while W is a vector; both W and CW  contains 

identical information. One is rearrangement of the other. We wish to adapt the values 

in W to optimize Jk. 

The input vector of the plant and plant model is; 

[ ]TT
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T
k

T
kk uuuU −−

∆

= ,....., 1             (6.13) 

The plant model output can be computed as, 

k
p

k UWy ∧=             (6.14) 

In order to compute Equation (6.6), three quantities ( ) k jh u −∂ ⋅ ∂ , ku W+∂ ∂ , 

ky W+∂ ∂ ,should be calculated 

The ( ) k jh u −∂ ⋅ ∂  can be calculated by a used-specified function h(.) as below 
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The second term ku W+∂ ∂  is calculated as below since the controller is assumed to 

be FIR 
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            (6.16) 

 

From the definition of uk   in Equation (6.3) ku W∂ ∂ is computed as 
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The last term ky W+∂ ∂ , as expanded in Equation (6.8) may be simplified as  
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In this summation there are two terms, the first term k k jy u −∂ ∂  is equal to the
p

W∧  

associated with the input k ju −∂ , the second term  k ju W+
−∂ ∂  is calculated for this 

time step and previous p time steps. If two of them are put it together, 
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So Equation (6.18) computed as,  
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If all of them are put it together Equation( 6.6)  can be specialized for linear plants as  
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6.2.2 Nonlinear NARX Plant Model, Nonlinear NARX Controller 

The dynamical behaviour of most nonlinear systems may not be approximated by a 
nonlinear transversal model very well. Whereas for the linear plant we had some 
freedom to choose the structure of the plant model, here we need to restrict ourselves 
to a single paradigm. The BPTM algorithm, for a linear plant, was able to compute 
the impulse response of the plant model, regardless of the structure of the model, and 
use that to update the controller.  

It is assumed that NARX neural network filters are used for both the plant model and 
the controller. Such filters are capable of controlling any (controllable) nonlinear 
system with acceptable accuracy. It is desired to compute the weight-update ∆Wk of 
Equation. (6.6). Linear deviation of the terms are differ in nonlinear case, the terms, 
Equations (6.7) and (6.8), are repeated here for convenience 
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The terms which are needed to be computed each iteration are 
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The first term, ku W∂ ∂  has the direct effect of the controller weights on the 

controller output, the other terms have effect of the inputs of the controller and plant 

model. All terms are Jacobian matrices and are very simple to calculate for any 

neural network, using the backpropagation algorithm. 
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The term of ku W+∂ ∂  Equation (6.7) is computed by determining the values of 

ku W∂ ∂  and k k ju u −∂ ∂ . These are found by back-propagating unit vectors iv e
∧

=  

through the controller neural network by using Equations. (4.9) and (4.11). 

 To compute the term ky W+∂ ∂  of Equation (6.8), it is needed  to know k k jy u −∂ ∂  

and k k jy y −∂ ∂ , which are found by back-propagating unit vectors iv e
∧

=  through the 

plant-model neural network and using Equation (4.9). A practical implementation is 

realized to compact the notation into a collection of matrices as before. The 

definitions of dUk and dHk remain unchanged from Equations. (6.19), and (6.15). 

Furthermore, it is defined 
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6.3 Simulation Examples 

We have seen some analytic results pertaining to constrained control, and an 
algorithm for adapting a controller to perform constrained control. This final section 
presents a number of simulation examples to demonstrate the algorithm just 
developed. 
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6.3.1 Linear Plant 

The first example is for the minimum-phase tank of Section.5.3.1. Equation (5.15) is 
the difference equation specifying the dynamics of the plant. For all simulations, the 
input source is as Equation (6.25) which has frequency 0.02 Hz.  

20.05 0.12sin( )
5k

ku π
= +               (6.25) 

When constraints on the control effort were considered, the control signal uk was 
restricted to be between 0ºC and 0.1ºC. The controller was a four-tap FIR filter. It 
appears to be a hard limit on the control signal. The actual equation governing the 
penalty function is 

2

2

0.1( ) ,     if  < 0;
0.01

0.1( ) ( ) ,    if  > 0.1;
0.01
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             (6.26) 

Simulations were performed to determine the controller with and without constraints 
on the control effort, also plant identification is performed during simulations.  
Figure 6.4 and Figure 6.5 show the tracking performance of the unconstrained and 
constrained controllers for identical input signals for last 100 time steps. The red line 
shows the discrete-time output of the plant, governing the plant output. The black 
line shows the FIR(20,0) filter output and the green line shows the desired response 
of the plant output. System Error and Model Error for both algorithms, are also 
plotted with dark blue and light blue lines respectively in whole simulation time in 
Figure 6.6 and 6.7 for the 200 time steps 
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Figure 6.4 : Constrained Control Effort 



 52

 

Figure 6.5 : Unconstrained Control Effort 
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Figure 6.6 : Modelling and System Error Values of Constrained Control 
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Figure 6.7 : Modelling and System Error Values of Uncon strained Control 
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6.3.2 Nonlinear Plant 

The goal was to control the heading angle of a large ocean going ship (Section. 

3.3.1), with constraints on the maximum rudder angle and the rate-of-change of the 

rudder angle. In this example constraints were built into the dynamics of the ship, 

and thus no external penalty function was used to adapt the controller to perform 

constrained control. This method worked very well, and guaranteed that the 

constraints would be met, regardless of the control input signal.  

It is not recommended for linear plants because it implicitly causes the plant 

dynamics to become nonlinear, and thus a linear plant model is no longer feasible 

and a linear controller will no longer work well. [31] 
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Figure 6.8 Constrained Control of Plant with FF NN 

The ship was commanded to track a first-order Markov process which generated the 

desired heading angle. The Markov process had a pole at z= 0.99 and was fed by 

i.i.d. uniform random numbers with maximum magnitude 1. A feedforward 

N(6,1):20:1 ,   (xk, xk-1,.., xk-19,yk-1)  controller was trained to control the ship. The red 

line is the desired heading angle, and the blue line is the actual heading angle as a 

function of time. This plant is nonminimum-phase. The meaning of “nonminimum-

phase” in the context of nonlinear control is that a stable, causal inverse does not 

exist. We must use a delay in the reference model in order to provide good control. 
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Figure 6.9 Constrained Control of Plant with FF NN 

As showned a feedforward controller is trained and a good performance is achieved 

with this controller.  The disturbance effect is not taken into account in this example. 

The effect of disturbance defined in Section 5.3.2 is added to the system, and the 

controller is tried to be control the system.  As shown in Figure 6.9 controller is not 

efficiently capable of controlling the plant.  The disturbance effect is increased, in 

third example, the maximum magnitude of the uniform numbers are changed to 6.  

As shown in Figure 6.10, the neural network is not capable to control the plant. The 

disturbance should be cancelled, which will describe in Chapter 7.    

0 500 1000 1500 2000 2500
-15

-10

-5

0

5

10

15
Training Results of Plant Control Under Disturbance with FF. NN N(6,1):20,1

O
ut

pu
ts

time steps

Plant Response
Desired

 

Figure 6.10: Constrained Control of Plant under Disturbance Effect 

6.3.3 Summary 

This chapter has two divisions. The first derives an algorithm to perform constrained 

control in the adaptive inverse control paradigm; and the second demonstrates this 
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algorithm with examples. It was shown analytically, and verified with simulations, 

that precision of control comes at the cost of high control effort. If very precise 

control is desired, the actuator signals are very large. Problems with large control 

effort include (1) The actuator may not be able to respond to the control command 

due to its physical design, thus causing degradation in the control which is not 

accounted for in the design; and (2) The actuator or the system being controlled may 

be damaged by excessive control effort. Since this is a significant problem, a method 

is devised to perform adaptive inverse control with constraints on the control effort. 

The controller is adapted such that the mean-squared system error is minimized 

under the constraint. Simulations have shown that this works very well. 

If the plant is nonminimum-phase, its inverse does not exist. However, if a delay in 
the control action is acceptable, then a “delayed inverse” does exist, and very precise 
control can be performed. Choosing the correct delay is a significant design issue. 
The overall conclusion is that very good feedforward control may be achieved, when 
there is no disturbance, if a disturbance effect is added to the system. The constrained 
control may not capable to control the system, so a disturbance canceller should be 
introduced to achieve a good performance.  
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7 DISTURBANCE CANCELLING 

7.1 Introduction 

A disturbance-free dynamical system may be controlled with a feedforward adaptive 
controller. The plant output tracks the desired output as closely as possible in a 
mean-squared-error sense. It remains to determine what can be done to mitigate plant 
disturbance should it be present.  

Analysis is done on an alternate technique, which is optimal for linear systems, but 
slightly sub-optimal for nonlinear systems. Method for adapting the disturbance 
canceller is introduced, and simulations are presented. 

7.1.1 Structure of the Disturbance Canceller 

This section of analysis concerns itself with the mathematical function that the 
disturbance cancelling circuit must compute. A little careful thought in this direction 
leads to a great deal of insight, and some surprising conclusions are reached. First, 
we must consider some issues of timing which arise since we are performing 
discrete-time control. Then investigate the function of the disturbance canceller. 

Issues of Timing 

A discrete-time digital controller is implemented for the type of adaptive inverse 
control examined in this thesis. Due to the discrete-time nature of the control scheme, 
a subtle issue arises which is not present in continuous-time control systems. 
Consider the timing diagram in Figure. 7.1 

Suppose sampling rate of the system is equal to 1/T samples per second, then the 
discrete-time/continuous-time correspondence is: t=kT seconds, where t is the 
physical time in seconds and k is the discrete-time index. The kth command to the 
plant uk takes place at t=kT, and the kth plant output yk is sampled in the 
neighbourhood of t=kT seconds. More precisely, supposing that the plant might not 
be strictly proper, yk must be measured at time ( )t kT += seconds. [31] 
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Figure 7.1 :  Input Output Timing of a Discrete-Time Control System 

The command input to the plant uk takes finite time to compute, so rk must be 
supplied at ( )t kT −=  seconds to be able to compute the disturbance-cancelling signal  

uk in time. We must also be able to compute
~

ku  slightly before time t=kT. This brings 

us to the important point:  To cancel disturbance, there must have an estimate of wk 

A useful way of looking the overall system is drawn in Figure 7.2. Using operator 
notation, we restate that the control goal is for X to produce an output so 

that ( )k ky M r
→

= . We can express yk as 

( )1ˆ( ) ( , )k k k k ky w P C r X w u−= + +             (7.1) 

The dashed line in the Figure 7.2 shows that X takes the optional signal uk. This 
signal is used when controlling nonlinear plants as it allows the disturbance canceller 
some knowledge of the plant state. 

 

Figure 7.2 :  A Useful way of Looking at Feedforward System Dynamics 
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Next ( )k ky M r
→

= is substituted and the desired response of X is rearranged and solved 

as 

( )( ) 1
1ˆ ˆ( , ) ( ) ( )opt

k k kX w u P M r w C r−
− = − −  

          ( )1 ˆ( )k k kP P u w u−= − −  

The controller has adapted until ( ) ( )k kP u M r
→ →

= . The function of X is a deterministic 

combination of known (by adaptation) elements P and 1P− , but also of the unknown 
signal kw  . Because of the inherent delay in discrete-time systems, we only know 

1kw −  at any time, so kw  must be estimated from previous samples of 1kw − , 2kw − ,.. 

Assuming that the adaptive plant model is perfect and that the controller has been 
adapted to convergence, the internal structure of X is then shown in Figure 7.3. The 

kw  signal is computed by estimating its value from previous samples of kw
∧

 . These 

are combined and passed through the plant inverse to compute the desired signal 
~

ku  

 

Figure 7.3 :  Internal Structure of X 

The disturbance canceller contains two parts. The first part is an estimator part which 
depends on the dynamics of the disturbance source. The second part is the canceller 
part which depends on the dynamics of the plant. The diagram simplifies for a linear 
plant since some of the circuitry cancels. Figure 7.4 shows the structure of X for a 
linear plant.  

One very important point to notice is that the disturbance canceller still depends on 
both the disturbance dynamics and the plant dynamics. If the process generating the 
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disturbance is not generated by filtering white noise using a linear filter, then the 
estimator required will in general be a nonlinear function. 

 

 

Figure 7.4 :  Internal Structure of X if the Plant is Linear 

7.2 Synthesis of the Disturbance Canceller via the BPTM Algorithm 

How a disturbance cancelling filter can be inserted into the control-system design 
was discussed in first part. This, the second part of our discussion on disturbance 
cancelling, describes a method to adapt the disturbance cancelling filter.  

7.2.1 Training X In-Place 

The method works on the following basis. As the system error is composed of three 
parts: 

• The first part of the system error is dependent on the input command vector 

kr
→

 in C. This part of the system error is reduced by adapting C. 

• The second part of the system error is dependent on the estimated disturbance 

vector kw
∧

 in X. This part of the system error is reduced by adapting X. 

• The third part is the minimum-mean-squared-error. This part of the system 
error is independent of both the input command vector in C and the estimate 
disturbance vector in X. It is either irreducible (if the system dynamics 
prohibit improvement), or may be reduced by making the tapped delay lines 
at the input to X or C larger. In any case, adaptation of the weights in X or C 
will not reduce the minimum-mean-squared-error.  
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• The fourth possible part of the system error is the part which is dependent on 
both the input command vector and the disturbance vector. However, by 
assumption, kr and kw are independent, so this part of the system error is zero.  

The system error is reduced by using the BPTM algorithm adapting C, as discussed 
in Chapter 5; hence the component of the system error dependent on the input kr  is 

reduced. Since the disturbance and minimum-mean-squared-error are independent 
of kr  , their presence will not bias the solution of C. The controller will learn to 

control the feedforward dynamics of the system, but not to cancel disturbance. 

If BPTM algorithm is used and system error backpropagated through the plant 
model, it is used to adapt X as well, the disturbance canceller would learn to reduce 
the component of the system error dependent on the estimated disturbance signal. 
The component of the system error due to unconverged C and minimum-mean-
squared-error will not bias the disturbance canceller. This method is illustrated in 
Figure 7.5 where a complete integrated nonlinear control system is drawn. The plant 
model is adapted directly, as before. The controller is adapted by backpropagating 
the system error through the plant model and using the BPTM algorithm of Chapter 
6. 

The disturbance canceller is adapted by backpropagating the system error through the 
copy of the plant model and using the BPTM algorithm as well. The BPTM 
algorithm serves two functions: it is able to adapt both C and X. Using BPTM to 
adapt X works well for either linear or nonlinear systems.  

7.3 Simulation Examples 

Some analytical results were discussed, related to disturbance cancelling. It is time to 
present some simulation results for the plants of Chapter 5 in order to verify the 
analytical results of this chapter and to demonstrate the viability of the disturbance 
cancelling method. 

7.3.1 Linear Plant 

The first example is the minimum-phase tank of Section 5.3.1. We have already seen 
(cf. Chapter 6) simulation results showing that this plant may be very effectively 
controlled in a feedforward sense using either a linear FIR or nonlinear NARX filter 
as a controller. 
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Figure 7.5 :  Disturbace Cancelling via X-In Place 

Controllers were adapted to perform either unconstrained control, or control where 
the control effort was limited to be between 0ºC and 0.1ºC. We now look at the 
problem of disturbance cancelling. The disturbance experienced by this plant was 
specified to be fluctuation in the temperature of the hot source that the disturbance is 
statistically dependent on the control signal. However, it can be shown that the 
disturbance is not correlated with uk, and so the plant model will adapt to an unbiased 
solution, despite the disturbance. 
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Figure 7.6 Disturbance Graph of Linear Plant 
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Another interesting feature of this disturbance is that it is a nonlinear random 
process. That is, the least mean-squared-error predictor of the current disturbance 
value given all previous disturbance values is a nonlinear function. We will find that 
the disturbance cancelling filter X, which gives good performance is therefore a 
nonlinear NARX filter. 

Simulation was performed to adapt disturbance cancelling filter X . There were no 
constraints on the control effort. In the plots the system was run for 2500 seconds 
with the disturbance canceller turned off. Then, the disturbance canceller was turned 
on and the system was allowed to run for an additional 2500 seconds. The 
disturbance cancelling filter X was adapted to convergence for first 2500 seconds 
during simulation was performed. 

The disturbance cancelling filter X was a sixty-tap FIR filter whose input was the 

estimate of the disturbance 1kw
∧

−  . It adapts to the solution shown in Figure 7.6. The 

solution comprises a three-step-ahead estimator (due to the inherent two-step delay in 
the plant, and the one-step delay in the disturbance measurement process) convolved 
with a delayed plant inverse.  

7.3.2 Nonlinear Plant 

Simulations were also performed to demonstrate disturbance cancelling for the 
nonlinear plant of Section 5.3.2. The reader may recall that the nonlinear plant was 
selected to be a large ocean-going ship for which we would like to control the 
heading angle. The plant was initially unstable, and was stabilized using feedback. 
Simple unity feedback was used to stabilize the ship. This feedback has two effects. 
Most importantly, it stabilizes the system dynamics. Secondly, however, it also 
performs some disturbance rejection. The feedback works in such a way that the 
input command is modified to cancel any error in the output, and this error can 
include disturbance. Therefore, we find that the results for disturbance cancelling for 
the nonlinear plants are not as spectacular as the results for the linear plants. The 
reason for this is; the system error with disturbance and without disturbance are not 
very different. The disturbance canceller, NN(60, 1),60,1, ,   (xk, xk-1,.., xk-59,yk-1) improves 
upon the system error with disturbance, but the difference is so small that the 
disturbance canceller may be considered unnecessary for these plants. The graph of 
disturbance is showned on Figure 7.9. The system was run for 2500 seconds with the 
disturbance canceller turned off. Then, the disturbance canceller was turned on and 
the system was allowed to run for an additional 2500 seconds. The disturbance 
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cancelling filter X was adapted to convergence for first 2500 seconds during 
simulation was performed. 
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Figure 7-9: The Graph of Disturbance  

7.3.3 Summary 

This chapter discusses disturbance cancelling for linear and nonlinear, plants. It is 
organized into two main divisions. The first division presents method to adapt a 
disturbance canceller; and the third division presents results to verify the analysis and 
the disturbance cancelling algorithm. 

The method works for linear and nonlinear plants, and uses the BPTM algorithm 
developed in Chapter 4 to adapt the disturbance canceller weights. The second 
division of the chapter presented simulations to verify the analytical results and the 
disturbance cancelling algorithms. Simulations were performed to test disturbance 
cancelling for all of the plants introduced in Chapter 5, with the conclusion that 
better performance was always obtained using the disturbance canceller. The overall 
conclusion is that extremely good disturbance cancelling may be achieved. 
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8 SUMMARY 

The problem of controlling a plant may be separated into three separate tasks: 
stabilization of the plant dynamics; control of plant dynamics; and control of plant 
disturbance. Conventional control techniques treat all three problems simultaneously. 
Compromises are necessary to achieve good solutions. 

Adaptive inverse control is a method to achieve two tasks separately. First, the plant 
is stabilized, using conventional methods, secondly, the plant is controlled using a 
feedforward controller; thirdly, a disturbance canceller is used to reject plant 
disturbances. Adaptive filters are used as controller and disturbance canceller.  

8.1 Constrained Adaptive Feedforward Control 

It is assumed that the plant is stable. If it is not stable, it must first be stabilized using 
conventional feedback. Adaptive inverse control is used to control the stabilized 
plant. 

Next task is to make an adaptive plant model. This process was briefly outlined in 
Chapter 5. It is assumed that the adaptive plant modelling task continues while the 
plant is operating, so that any time-variations in the plant dynamics are learned, and 
so that the controller learns to control the plant as it varies. Thirdly, it is needed to 
train a feedforward controller for the plant. This task is well understood for SISO 
linear plants [45] and has been studied for nonlinear plants [2]. In this thesis, the aim 
is to satisfy constraints on the control effort. Precision of control comes at the cost of 
high control effort. If very precise control is desired, the actuator signals are very 
important. Problems with control effort include (1) The actuator do not respond to 
the control command due to its physical design and (2) The actuator or the system 
being controlled is damaged by excessive control effort. Since this is a significant 
problem, a method is devised to perform adaptive inverse control with constraints on 
the control effort. 

A gradient-descent based algorithm was used to update the weights of the controller. 
The algorithm allows separate implementation of the adaptive controller and plant 
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model; only local information is needed for the weight update. Very general user-
specified constraints on the control effort may be satisfied. Simulation results show 
that very good performance may be achieved. 

If the plant is nonminimum-phase, its inverse does not exist however  a “delayed 
inverse” does exist.. 

8.2 Disturbance Cancelling 

The plant output will track the desired output if there is no disturbance. If there is 
disturbance, then the plant output will track a signal which is equal to the desired 
output plus the disturbance. For this reason, a disturbance rejection method is 
required. 

Instead of closing the loop directly, an adaptive filter is trained to perform 
disturbance cancelling. This method does not bias the plant model if the plant is 
linear, but does bias the model somewhat if the plant is nonlinear.  

The function performed by this disturbance-cancelling filter has two parts. The first 
part estimates the current disturbance value given past disturbances; the second 
computes a signal to cancel the disturbance.  

The algorithm developed to adapt a feedforward controller also used to adapt the 
disturbance canceller. This is a great boon to the system designer—only one 
algorithm needs to be coded! Simulation results show that disturbance cancelling 
works very well for linear, and good for nonlinear, plants.  
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APPENDIX A 

Performance Surface 

Linear Combiner is a part of adaptive filter which is illustrated in Figure,   is the start 
point of adaptive filtering.    

 

 Figure:  Adaptive linear combiner 

Linear combiner comprises of an input signal vector, weights a summer to add the 
weighted signals.  

The inputs signal.  
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[ ]nl
T wwwwW ,.....,...., 21=    

The weights assumed to be fixed then the kth output signal vector 
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The error between the desired response dk and kth output signal yk at kth sampling time 
is 
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The square of error is 
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The mean square error between the desired response  
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The cross correlation matrix P is defined as; 
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The input correlation matrix R is defined as; 

[ ] R
xx

xx
xxxx

EXXE

nknk

kk

kkkk
T
kk

∆

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= 12

2111

            

By writing MSE in terms of P and R  
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[ ] RWWWPdE TT
k +−= 22ξ        

It can be easily seen that that MSE performance function is quadratic function of the 
weights. It is bowl shaped surface and adaptive process continuously adjusts weights 
in order to find bottom of the bowl. 

The optimal weight vector which minimizes MSE is accomplished by steepest 
descent algorithm.   

The Gradient and Minimum MSE 

Gradients of performance surface may be obtained by differentiating the MSE 
function in Equation  2.9 with respect to the weight vector, which is used Steepest 
Descent Algorithm.   
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Gradient is set to zero in order to find optimal weight vector W* 

PRW 1* −=    

In Equation it is assumed that R is positive definite and R-1 exists. This solution is 
called Wiener solution and the minimum MSE for finite impulse response can be 
obtained by substituting W*  
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By simplification 
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Hence we obtain ; 

)()( **
min WWRWW T −−+= ξξ    

The Method of Steepest Descent  

The method of steepest descent uses negative gradient while updating the weigth 
vector.  

)(1 kkk WW −∇+=+ µ   

k∇  stands fort he gradient at kth iteration, the scalar parameter µ  is called the 

convergence factor that controls stability and the rate of adaptation. It is necessary to 
select convergence factor as below for stability.  

max

1
λ

>µ >0             

Where maxλ is the eigenvalue of R 

The Least Mean Squares (LMS) Algorithm  

The Least Mean Squres Algorithm is an implementation of Steepent Descent 
Algorithm, where estimation of gradient is used instead of the actual gradient.  

The actual gradient 
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The estimation of gradient 
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APPENDIX B 

Linear Plant Identification with FIR Filter 

%This function is for Linar Plnat Identification with FIR filter 

clc 

clear 

Ts=1; 

H2 = tf(1,[5 1],'inputdelay',1.45) 

Hd = c2d(H2,1,'zoh') 

n=200; 

wn_dm=10; 

mu=0.1; 

inp_dm=zeros(1,wn_dm); 

out_dm=zeros(1,n); 

w_dm=zeros(1,wn_dm); 

sigma=1e-6; 

nLMS=0; 

for k=1:1:n 

    I(k)=sin(2*pi*k/5); 

end 

[out_p t]=lsim(Hd,I); 

for k=1:n 

    inp_dm=[I(k) inp_dm(1:wn_dm-1)]; 

    out_dm(k)=inp_dm*w_dm'; 

    e_dm(k)=out_p(k)-out_dm(k); 



 77

    if k<100 & k>=170 

        mu=0.1; 

    end 

    if k>170 

        mu=0.1; 

    end 

    if nLMS==1 

        w_dm=w_dm+((inp_dm/(sigma +(inp_dm*inp_dm')))*mu*e_dm(k)); 

    elseif nLMS==0 

        w_dm=w_dm+2*mu*inp_dm*e_dm(k); 

    end 

end 

Pdm=filt(w_dm,[1],Ts); 

SE=e_dm.^2; 

MSE=(abs(e_dm)/length(e_dm)).^2; 

%step(Hd,Pdm) 

[out_m t]=lsim(Pdm,I); 

figure 

plot(out_p(1:n), 'r') 

hold on 

plot(out_m(1:n), 'b') 

plot(e_dm(1:n), 'k') 

title('Linear Plant Identification') 

ylabel('function') 

xlabel('time') 

h = legend('Plant Output', 'Filter Output' ,'Error',3); 

last_error=e_dm(200) 
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Linear Plant Identification With Feedforward Neural Network 

% this function is the main funtion of training Feedforward %Neural Network 

clear 

clc 

  

global M    % train iteration number 

global M1   % grafic first model value 

global M2   % grafic limit model value 

global N    % test iteration number 

global N1   % grafic first plant value 

global N2   % grafic limit plant value 

  

M=200; 

M1=1; 

M2=M; 

N=200; 

N1=1; 

N2=N; 

  

[P T]=Do_LinearPlanttrain_Data; 

[Wij_0 Wjk_0]=LinearPlantweigthleri_Initialize; 

[Wij Wjk A]=LinearPlanttrain_Process(Wij_0, Wjk_0, P, T); 

[PV TV]=Do_LinearPlanttest_Data; 

LinearPlanttest_Process(Wij, Wjk, PV, TV); 

 

%this function is for preparing the train data 

function [P T]=Do_LinearPlanttrain_Data; 
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global M 

  

y(1)=0; 

y(2)=0; 

y(3)=0; 

u(2)=0; 

u(1)=0; 

  

for k=4:M+6 

    u(k)=sin(2*pi*k/5); 

    y(k)=LinearPlant(y(k-1), u(k-2),  u(k-3)); 

end 

yp_minus_one =y(6:M+5); 

up_minus_two =u(5:M+4); 

up_minus_three   =u(4:M+3); 

yp           =y(7:M+6); 

 P           =[yp_minus_one;  up_minus_two; up_minus_three]; 

T           =yp; 

 

%This function initializes Neural Networks Weigths 

function [Wij Wjk ]=LinearPlantweigthleri_Initialize; 

  

Wij=rand(3,2); 

Wjk=rand(2,1); 

%This funtion Trains Feedforward Neural Network 

function [Wij  Wmn A44]=LinearPlanttrain_Process(Wij,  Wmn, P, T) 

global M 
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global M1 

global M2 

mu=0.01; 

%mu=0.1; 

  

for k=1:M 

    S1=Wij'*P(:,k); 

    %A1=tansig(S1); 

    S4=Wmn'*A1; 

    A4=purelin(S4); 

    A44(k)=A4; 

    E(k)=T(k)-A4; 

  

    %update weigths 

    E4=2*E(k); 

    dWmn=mu*A1*E(k)'; 

    Wmn=Wmn+dWmn; 

  

    %update weigths 

    E1=dpurelin(S1,A1).*(Wmn*E4); 

    %E1=dtansig(S1,A1).*(Wmn*E4); 

    dWij=mu*(P(:,k)*E1'); 

  

    Wij=Wij+dWij; 

    W11(k)=Wij(1,1); 

    Error(k)=(E(k))^2; 

end 
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LinearPlant_Process_Graphics(T, A44, E, P(1,:),'r', 'k', M1, M2, 'Train Results', 
'Plant Output', 'Neural Network Output', 'Error', 'Plant Input') 

 

%this function is for preparing the Test datas 

function [PV TV]=Do_LinearPlanttest_Data; 

global N 

ytt(1)=0; 

ytt(2)=0; 

ytt(3)=0; 

utt(2)=0; 

utt(1)=0; 

  

for k=4:N+6 

    utt(k)=sin(2*pi*k/5); 

    ytt(k)=LinearPlant(ytt(k-1), utt(k-2),  utt(k-3)); 

end 

  

yt_minus_one =ytt(6:N+5); 

ut_minus_two =utt(5:N+4); 

ut_minus_three  =utt(4:N+3); 

yt          =ytt(7:N+6); 

PV           =[yt_minus_one;  ut_minus_two; ut_minus_three]; 

TV           =yt; 

 

% for testing procedure I use the following codes 

function LinearPlanttest_Process(Wij, Wmn, PV, TV) 

global N 

global N1 
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global N2 

  

for k=1:N 

  

    S1t=Wij'*PV(:,k); 

    A1t=purelin(S1t); 

    %A1t=tansig(S1t); 

    S4t=Wmn'*A1t; 

    A4t=purelin(S4t); 

    A3333(k)=A4t; 

    et(k)=TV(k)-A4t; 

    Error(k)=(TV(k)-A4t)^2; 

end 

LinearPlant_Process_Graphics(TV, A3333, et, PV(1,:),'r', 'k', N1, 
N2,'Test(Validation) Results', 'Plant Output', 'Neural Network Output', 'Error', 'Plant 
Input') 

% to produce actual plant output I use the following codes 

function y=LinearPlant( y_1,u_2, u_3); 

        y=(0.818*y_1)+(0.1042*u_2)+(0.0771*u_3); 

end 

 

% to produce graphs I use the following codes 

function LinearPlant_Process_Graphics(T, A,ErrorMSE, u, Tcolor, Acolor, P1, P2, 
titleG, POut, NNout,Error, Input) 

figure 

plot (T(P1:P2), Tcolor)); 

hold on 

plot (A(P1:P2), Acolor) 

plot(ErrorMSE(P1:P2)) 



 83

plot(u(P1:P2), 'g') 

title(titleG) 

ylabel('outputs') 

xlabel('time steps') 

h = legend(POut, NNout ,Error,Input, 4); 

Linear Plant Identification With Externally Recurrent Neural Network 

% The only difference between Externally Recurrent network anf feedforward neural 

Network is updating the weigthis  here is the code 

 

function [Wij  Wmn A44]=LinearPlanttrain_Process(Wij,  Wmn, P, T) 

global M 

global M1 

global M2 

  

mu=0.01; 

%mu=0.1; 

dyk_dyk1(1)=0; 

dWmn=[0;0]; 

dWij=[0 0;0 0;0 0]; 

  

for k=2:M 

    S1=Wij'*P(:,k); 

    A1=tansig(S1); 

    S4=Wmn'*A1; 

    A4=purelin(S4); 

    A44(k)=A4; 

    E(k)=T(k)-A4; 
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    %Calculating Jacobians 

    Ek(k)=E(k); 

    Ej=dtansig(S1,A1).*Wmn*E(k); 

    Ei=Wij*Ej; 

    dyk_dyk1(k)=Ei(1); 

    %Jacobian  W 

    dWmn=2*mu*E(k).*(A1+dyk_dyk1(k)*dWmn); 

    Wmn=Wmn+dWmn; 

    dWij=2*mu*E(k).*(P(:,k)*(Ej/E(k))'+dyk_dyk1(k)*dWij) 

    Wij=Wij+dWij; 

    Error(k)=(E(k))^2; 

  

end 

LinearPlant_Process_Graphics(T, A44, E, P(1,:),'r', 'k', M1, M2, 'Train Results', 
'Plant Output', 'Neural Network Output', 'Error', 'Plant Input') 

 

Nonlinear Plant Identification 

 

Figure : Simulink Diagram of Nonlinear Plant Identification 
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Figure : Simulink Diagrams Subsystem  Plant  in Nonlinear Plant Identification  

 

 

 

Figure : Simulink Diagrams  Plant Subsystem1 in Plant  in Nonlinear Plant 
Identification  

 

 

Figure : Simulink Diagrams  Plant Subsystem2 in Plant  in Nonlinear Plant 
Identification 

%This Function is implements the Rudder Angle Limiter for Nonlinear Ship 

function sat_Q=sat1(d_Q); 

if (d_Q/35)<-1 

    sat_Q=-1; 

end 

if (d_Q/35)>=-1 & (d_Q/35)<=1 
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    sat_Q=d_Q; 

end 

if (d_Q/35)>1 

    sat_Q=1; 

end 

 

%This Function is implements the Rudder Rate Limiter for Nonlinear Ship 

  

function sat_Q_d=sat2(d_Q_dd); 

if (d_Q_dd/3)<-1 

    sat_Q_d=-1*2; 

end 

if (d_Q_dd/3)>=-1 & (d_Q_dd/3)<=1 

    sat_Q_d=d_Q_dd; 

end 

if (d_Q_dd/3)>1 

    sat_Q_d=1*2; 

end 

 %This Function is for identification of  Nonlinear Ship 

function [A4]=NlPlant_Ide(u, y,); 

global k 

global t 

global u_ 

global y_ 

global Wij 

global Wmn 

global A44 
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t=int64(k*5); 

  

if t<3 

    u_(1,:)=0; 

    y_(1,:)=0; 

    u_(2,:)=0; 

    y_(2,:)=0; 

    Error=ones(1,127); 

   A44=0; 

    Wij=rand(5,2); 

    Wmn=rand(2,1); 

end 

if t>=3 

    u_(1,:)=0; 

    y_(1,:)=0; 

    u_(2,:)=0; 

    y_(2,:)=0; 

    u_(t,:)=u; 

    y_(t,:)=y; 

  

    P=[ y_(t-2,:) ;y_(t-1,:); u_(t,:); u_(t-1,:) ;u_(t-2,:)]; 

    mu=0.01; 

    S1=Wij'*P; 

    A1=tansig(S1); 

  

    S4=Wmn'*A1; 

    A4=purelin(S4); 
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    A44(t)=A4; 

    E=y_(t,:)-A4; 

  

    %update weigths 

    E4=2*E; 

    dWmn=mu*A1*E'; 

    Wmn=Wmn+dWmn; 

  

  

    %update weigths 

    E1=dtansig(S1,A1).*(Wmn*E4); 

    dWij=mu*(P*E1'); 

  

    Wij=Wij+dWij; 

    W11(t)=Wij(1,1); 

    Error(t)=(E)^2; 

  

end 

k=k+0.2; 

plot(Error) 

hold on 

end 

Linear Plant Control with Contrained control FIR Filter 

%this code is used for uncontrained control of linear Plant 

  

clear 
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clc 

n=3000; 

n1=n-100; 

Wc1=rand(1,3); 

Wc2=rand(1,3); 

Wc3=rand(1,3); 

Wc4=rand(1,3); 

Wc=[Wc1; Wc2; Wc3; Wc4 ]; 

Wp(6,:)=rand(1,4); 

  

mu_p=0.5; 

mu_c=20; 

yp(4)=0; yp(5)=0; 

yp(3)=0;  

yp(2)=0;  

yp(1)=0;  

r(1)=0.05+(0.12*sin(2*pi*1/5)); 

r(2)=0.05+(0.12*sin(2*pi*2/5)); 

r(3)=0.05+(0.12*sin(2*pi*3/5)); 

r(4)=0.05+(0.12*sin(2*pi*4/5)); 

r(5)=0.05+(0.12*sin(2*pi*5/5)); 

yk(3)=0; yk(4)=0; yk(5)=0;  

yk(2)=0;  

yk(1)=0; 

for k=6:n+5 

    if k>1000 

        mu_p=0.1; 



 90

        mu_c=10; 

    end 

    r(k)=0.05+(0.12*sin(2*pi*k/5)); 

    

    R1k(:,:)=[r(k) r(k-1) r(k-2) r(k-3)]; 

    R2k(:,:)=[r(k-1) r(k-2) r(k-3) r(k-4)]; 

    R3k(:,:)=[r(k-2) r(k-3) r(k-4) r(k-5)]; 

     

    R1(:,:)=[r(k)   r(k-1) r(k-2)]; 

    R2(:,:)=[r(k-1) r(k-2) r(k-3)]; 

    R3(:,:)=[r(k-2) r(k-3) r(k-4)]; 

    R4(:,:)=[r(k-3) r(k-4) r(k-5)]; 

    

    Rk=[R1; R2; R3; R4]'; 

    Uk=Wc*Rk; 

    U=Uk(4,1:4); 

    yk(k)=U*Wp(k,:)'; 

    yp(k)=0.818*yp(k-1)+0.1042*U(3)+0.0771*U(4); 

    d(k)= r(k-3); 

    e(k)=yp(k)-yk(k); 

    e1(k)=d(k)-yk(k); 

    dWp=(2*mu_p*e(k)*U); 

    Wp(k+1,:)= Wp(k,:)+dWp; 

    dWc1= 2*mu_c*e1(k)*(Wp(k,:).*R1k); 

    dWc2= 2*mu_c*e1(k)*(Wp(k-1,:).*R2k); 

    dWc3= 2*mu_c*e1(k)*(Wp(k-2,:).*R3k); 

    dWc=[dWc1;dWc2;dWc3 ]'; 
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    Wc=Wc+dWc; 

      

end 

figure 

plot(yp(n1:n), 'r') 

hold on 

plot(yk(n1:n),'k') 

plot(e1(n1:n),'b') 

plot(e(n1:n),'c') 

plot(d(n1:n),'g') 

title('Linear Plant Control with Identification') 

ylabel('function') 

xlabel('time') 

legend('Plant Output', 'Plant Model Output' ,'System Error','Modelling Error 
','Desired Output',5); 

Linear Plant Control with Contrained control FIR Filter 

%this code is used for contrained control of linear Plant 

clear 

clc 

n=1000; 

n1=n-100; 

Wc1=rand(1,3); 

Wc2=rand(1,3); 

Wc3=rand(1,3); 

Wc4=rand(1,3); 

Wc=[Wc1; Wc2; Wc3; Wc4 ]; 

Wp(6,:)=rand(1,4); 



 92

mu_p=0.05; 

mu_c=20; 

yp(4)=0; yp(5)=0; 

yp(3)=0; 

yp(2)=0; 

yp(1)=0; 

  

r(1)=0.05+(0.12*sin(2*pi*1/5)); 

r(2)=0.05+(0.12*sin(2*pi*2/5)); 

r(3)=0.05+(0.12*sin(2*pi*3/5)); 

r(4)=0.05+(0.12*sin(2*pi*4/5)); 

r(5)=0.05+(0.12*sin(2*pi*5/5)); 

yk(4)=0; yk(5)=0; 

yk(3)=0; 

yk(2)=0; 

for k=6:n+5 

    if k>1000 

        mu_p=0.1; 

        mu_c=0.3; 

    end 

    if k>3000 

        mu_p=0.0001; 

        mu_c=0.3; 

    end 

    r(k)=0.05+(0.12*sin(2*pi*k/5)); 

    if r(k)<0 

        hrk(k)=((r(k)-0.1))^2; 
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    elseif r(k)>0.1 

        hrk(k)=((r(k)+0.1))^2; 

  

    elseif r(k)<0.1&r(k)>0 

        hrk(k)=0; 

    end 

  

    R1k(:,:)=[r(k) r(k-1) r(k-2) r(k-3)]; 

    R2k(:,:)=[r(k-1) r(k-2) r(k-3) r(k-4)]; 

    R3k(:,:)=[r(k-2) r(k-3) r(k-4) r(k-5)]; 

  

    R1(:,:)=[r(k)   r(k-1) r(k-2)]; 

    R2(:,:)=[r(k-1) r(k-2) r(k-3)]; 

    R3(:,:)=[r(k-2) r(k-3) r(k-4)]; 

    R4(:,:)=[r(k-3) r(k-4) r(k-5)]; 

  

    Rk=[R1; R2; R3; R4]'; 

    Uk=Wc*Rk; 

    U=Uk(4,1:4); 

    yk(k)=U*Wp(k,:)'; 

    yp(k)=0.818*yp(k-1)+0.1042*U(3)+0.0771*U(4); 

    d(k)= r(k-3); 

    e(k)=yp(k)-yk(k); 

    e1(k)=d(k)-yk(k); 
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    dWp=2*mu_p*e(k)*U; 

    Wp(k+1,:)= Wp(k,:)+dWp; 

  

    if U(1)<0 

        dHk1=2*(((U(1)-0.1)/0.01)); 

    end 

    if U(1)>0.1 

        dHk1=2*((U(1)+0.1)/0.01); 

    end 

    if U(1)<0.1& U(1)>0 

        dHk1=0; 

    end 

  

    if U(2)<0 

        dHk2=2*(((U(2)-0.1)/0.01)); 

    end 

    if U(2)>0.1 

        dHk2=2*((U(2)+0.1)/0.01); 

    end 

    if U(2)<0.1& U(2)>0 

        dHk2=0; 

    end 

  

  

    if U(3)<0 

        dHk3=2*(((U(3)-0.1)/0.01)); 

    end 
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    if U(3)>0.1 

        dHk3=2*((U(3)+0.1)/0.01); 

    end 

    if U(3)<0.1& U(3)>0 

        dHk3=0; 

    end 

  

    if U(4)<0 

        dHk4=2*(((U(4)-0.1)/0.01)); 

    end 

    if U(4)>0.1 

        dHk4=2*((U(4)+0.1)/0.01); 

    end 

    if U(4)<=0.1& U(4)>=0 

        dHk4=0; 

    end 

  

  

    dHk=[dHk1 dHk2 dHk3 dHk4]; 

    dUk1=R1k; 

    dUk2=R2k; 

    dUk3=R3k; 

    a1= mu_c*2*e1(k)*Wp(k,:).*R1k; 

    a2= mu_c*2*e1(k)*Wp(k-1,:).*R2k; 

    a3= mu_c*2*e1(k)*Wp(k-2,:).*R3k; 

    a=[a1; a2; a3]; 

    b1=dHk.*dUk1; 
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    b2=dHk.*dUk2; 

    b3=dHk.*dUk3; 

    b=[b1/100; b2/100; b3/100]; 

    dWc=(a-b)'; 

    Wc=Wc+dWc; 

end 

figure 

plot(yp(n1:n), 'r') 

hold on 

plot(yk(n1:n),'k') 

plot(e1(n1:n),'b') 

plot(e(n1:n),'c') 

plot(d(n1:n),'g') 

title('Linear Plant Constrained Control with Identification') 

ylabel('function') 

xlabel('time') 

legend('Plant Output', 'Plant Model Output' ,'System Error','Modelling Error 
','Desired Output',5); 

Nonlinear Plant Control 

 

Figure : Simulink Diagram of Nonlinear Plant Control 
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%This Function Produces plant input signal  

function [u]=controller(u_1, r); 

global k 

global t 

global u_ 

global Wc_ij 

global Wc_jk 

global Ac_1 

global Sc_1 

global A44 

global Rc 

t=int32(k*5); 

  

if t<4 

    u_(1,:)=0; 

    u_(2,:)=0; 

    u_(3,:)=0; 

    r_(1,:)=r; 

    r_(2,:)=r; 

    r_(3,:)=r; 

    Wc_ij=rand(6,2); 

    Wc_jk =rand(2,1); 

    Sc_1=[0; 0]; 

    Ac_1=[0; 0]; 

    Wc=vertcat(Wc_ij,Wc_jk');     

    Rc=[0; 0; 0; 0; 0; 0]; 
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    u=0; 

end 

  

if t>=4 

    u_(1,:)=0;    u_(2,:)=0;    u_(3,:)=0; 

    r_(1,:)=r;    r_(2,:)=r;    r_(3,:)=r;    r_(t,:)=r; 

    Rc=[ r_(t,:); r_(t-1,:); r_(t-2,:); r_(t-3,:); u_(t-1,:) ;u_(t-2,:)]; 

    Sc_1=(Wc_ij')*(Rc); 

    Ac_1=tansig(Sc_1); 

    Sc_2=Wc_jk'*Ac_1; 

    Ac_2=purelin(Sc_2); 

    u=Ac_2;    

end 

 

%This Function Updates Controller weigths 

function [Wc]=update_C_W(yk); 

global Wc_ij 

global Wc_jk 

global Ac_1 

global Sc_1 

global Rc 

global k 

global t 

t=int16(k*5); 

if t>=4 

  

    mu=0.0002; 



 99

    Q=1; 

    dk =Rc(1); 

    %Back Propagation 

    Ec=dk-yk; 

    dWc_jk=zeros(2,1); 

    dWc_ij=zeros(6,2); 

  

    %update weigths 

    Ec_1=2*Ec*Q; 

    dWc_jk=mu*Ac_1*Ec_1'; 

    Wc_jk=Wc_jk+dWc_jk; 

  

    %update weigths 

    Ec_2=dtansig(Sc_1,Ac_1).*(Wc_jk*Ec_1); 

    dWc_ij=mu*(Rc*Ec_2'); 

    Wc_ij=Wc_ij+dWc_ij; 

end 

Linear plant disturbance cancelling 

Figure : Simulink Diagram of Nonlinear Plant Control 
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Figure : Simulink Diagram of Linear Plant Disturbance Cancelling 

 

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem 
Disturbance Canceller 

 

  



 101

 

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem 
Pcopy 

 

 

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem 
Modeller 

 

Nonlinear Plant Disturbance Cancelling  



 102

 

Figure : Simulink Diagram of Nonlinear Plant Disturbance Cancelling 

 

Figure : Simulink Diagram of Nonlinear Plant Disturbance Cancelling of subsystem 
Controller 

 

 

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem 
Disturbance Canceller 

 

%This function creates the input values of Copy plant Model 

function [PP]=P_al(u, y); 

global k 

global t 

global uu_ 
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global yy_ 

global Wij 

global Wmn 

global A44 

  

if t<3 

    uu_(1,:)=0; 

    yy_(1,:)=0; 

    uu_(2,:)=0; 

    yy_(2,:)=0; 

       PP=[0; 0; 0; 0]; 

end 

if t>=3 

    uu_(1,:)=0; 

    yy_(1,:)=0; 

    uu_(2,:)=0; 

    yy_(2,:)=0; 

    uu_(t,:)=u; 

    yy_(t,:)=y; 

  

    PP=[ yy_(t-1,:); uu_(t,:); uu_(t-1,:) ;uu_(t-2,:)]; 

end 

end 

 

 

%This function is the disturbance canceller, that its output is the 

%estimate of the disturbance 

function [uu]=y_al(y, y1, u); 
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global k 

global t 

global dd 

global uuuu 

global Wx_ij 

global Wx_mn 

global Ax44 

t=int32(k*5); 

  

if t<3 

    u_(1,:)=0; 

    uuuu(1,:)=0; 

    u_(2,:)=0; 

    uuuu(2,:)=0; 

    Errorx=1; 

    E=1; 

    Ax44=0; 

    Ax4=0; 

    Wx_ij=rand(4,2); 

    Wx_mn=rand(2,1); 

    Px=[0; 0; 0; 0]; 

    dd(t,:)=y-y1; 

  

end 

if t>=3 

    u_(1,:)=0; 

    uuuu(1,:)=0; 
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    u_(2,:)=0; 

    uuuu(2,:)=0; 

    u_(t,:)=u; 

    uuuu(t,:)=y; 

    dd(t,:)=y-y1; 

    Px=[ dd(t-1,:); u_(t,:); u_(t-1,:) ;u_(t-2,:)]; 

    mu_x=0.001; 

    Sx1=Wx_ij'*Px; 

    Ax1=tansig(Sx1); 

  

    Sx4=Wx_mn'*Ax1; 

    Ax4=purelin(Sx4); 

    Ax44(t)=Ax4; 

    Ex=dd(t,:)-Ax4; 

    %update weigths 

    Ex4=2*Ex; 

    dWx_mn=mu_x*Ax1*Ex'; 

    Wx_mn=Wx_mn+dWx_mn; 

    %update weigths 

    Ex1=dtansig(Sx1,Ax1).*(Wx_mn*Ex4); 

    dWx_ij=mu_x*(Px*Ex1'); 

    Wx_ij=Wx_ij+dWx_ij; 

    Error_x(t)=(Ex)^2; 

  

end 

uu=Ax4; 

end 
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