

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

CONSTRAINED ADAPTIVE INVERSE CONTROL
WITH DISTURBANCES

M.Sc. Thesis by

Deniz ER, B.Sc.

Department : Mechanical Engineering

Programme: System Dynamics and Control

Supervisor : Prof. Dr. N. Aydın Hızal

JUNE 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62736715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Deniz ER, B.Sc.

503041602

Date of submission : 7 May 2007

Date of defence examination: 4 June 2007

Supervisor (Chairman): Prof. Dr. N. Aydın Hızal

Members of the Examining Committee: Prof.Dr. Serhat ŞEKER

Assoc. Prof. Dr. Şeniz Ertuğrul

JUNE 2007

CONSTRAINED ADAPTIVE INVERSE CONTROL
WITH DISTURBANCES

 ii

Anabilim Dalı: Makina Mühendisliği

Programı: Sistem Dinamiği ve Kontrol

GÜRÜLTLÜ ALTINDA SINIRLI UYARLAMALI
TERS KONTROL

Yüksek Lisans Tezi

Deniz ER,
503041602

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Tez Danışmanı: Prof. Dr. N. Aydın HIZAL

HAZİRAN 2007

 iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Prof. Dr. N. Aydın Hızal. He has
provided technical support and encouragement. I also would like to express my
gratitude Assoc. Prof. Şeniz Ertuğrul, who introduces me with Neural Networks. I
also would like to express gratitude the bosses of my company SONAR AR-GE, Mr.
Z. Ali Eser, Mr. Serhat Saka, Mr. Taşkın Baylan, and my colleague Mr. Emrah
Eryılmaz. I would also express my indebts my parents, that they always encourage
me, during my life. My engineering began at Yeditepe University. The friends I
knew from Yeditepe Alper Tozan and Eren Emir, thank you for your supports.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. III

TABLE OF CONTENTS...IV

ABBREVIATION .. VII

LIST OF FIGURES ..VIII

LIST OF SYMBOLS .. X

ÖZET..XIII

ABSTRACT...XIV

1 INTRODUCTION.. 1

2 ADAPTIVE INVERSE CONTROL... 2

3 LINEAR ADAPTIVE FILTERS .. 5

3.1 Adapting Linear Filters ... 6

3.2 Optimal Solution for Linear Adaptive Filters ... 9

4 NON- LINEAR ADAPTIVE FILTERS... 11

4.1 Adapting Nonlinear Filters ... 13
4.1.1 Adapting a Feedforward Neural Network.. 13
4.1.2 Adapting an Externally-Recurrent Neural Network 16

4.2 Optimal Solution for Non Linear Adaptive Filters................................... 18

5 SYSTEM IDENTIFICATION .. 21

 v

5.1 Identification of Linear Systems... 21

5.2 Identification of Nonlinear Systems ... 23

5.3 Simulation Examples ... 24
5.3.1 Linear Plant .. 24
5.3.2 Nonlinear Plant... 35

6 ADAPTIVE FEEDFORWARD CONTROL... 42

6.1 Introduction.. 42

6.2 Constrained Controller via BPTM Algorithm .. 43
6.2.1 Linear FIR Plant Model, Linear FIR Controller .. 46
6.2.2 Nonlinear NARX Plant Model, Nonlinear NARX Controller 49

6.3 Simulation Examples ... 50
6.3.1 Linear Plant .. 51
6.3.2 Nonlinear Plant... 53
6.3.3 Summary .. 54

7 DISTURBANCE CANCELLING .. 56

7.1 Introduction.. 56
7.1.1 Structure of the Disturbance Canceller .. 56

7.2 Synthesis of the Disturbance Canceller via the BPTM Algorithm.......... 59
7.2.1 Training X In-Place.. 59

7.3 Simulation Examples ... 60
7.3.1 Linear Plant .. 60
7.3.2 Nonlinear Plant... 62
7.3.3 Summary .. 63

8 SUMMARY .. 64

8.1 Constrained Adaptive Feedforward Control... 64

8.2 Disturbance Cancelling.. 65

BIBLIOGRAPHY .. 66

 vi

APPENDIX A ... 71

Performance Surface ... 71

The Gradient and Minimum MSE ... 73

The Method of Steepest Descent ... 74

The Least Mean Squares (LMS) Algorithm .. 74

APPENDIX B ... 76

CURRICULUM VITAE.. 106

 vii

ABBREVIATION

 ARMA :AutoRegressive Moving Average.

FIR : Finite impulse response.

i.i.d. : Independent and identically distributed (random variables).

IIR : Infinite impulse response.

MSE : Mean Squared Error.

NARX : Nonlinear AutoRegressive filter with eXogeneous input.

Backprop :Adapts feedforward neural networks (also known as

“Backpropagation”).

BPTT : BackPropagation Through Time: Adapts recurrent neural networks.

BPTM : BackPropagation Through (Plant) Model:

LMS : Least Mean Square: Adapts FIR linear filters.

RTRL : Real Time Recurrent Learning: Adapts recurrent neural networks in

real time.

 viii

LIST OF FIGURES

Figure 2.1: Basic Concept of Adaptive Inverse Control...2
Figure 2.2: Model Reference Adaptive Inverse Control...3
Figure 2.3 : Noise and Disturbance Cancelling ...3
Figure 3.1 : Symbolic Representation of Basic Adaptive Filter................................5
Figure 3.2 : IIR Adaptive Filter...6
Figure 3.3: Modelling an unknown system by a discrete adaptive filter6
Figure 4.1 : Modelling an Unknown System with Neural Network.........................11
Figure 4.2 : Neuron ...12
Figure 4.3 : Feedforward Neural Network ...13
Figure 4.4: Externally Recurrent Neural Network ...17
Figure 5.1 : Adaptive System Identification ..22
Figure 5.2 : Parallel and Series-Parallel Connection Identification.........................23
Figure 5.3 : Tank Temperature Control ..25
Figure 5.4 : Bode Diagram of Linear Plant ...27
Figure 5.5 : Pole Zero Map of Linear Plant...28
Figure 5.6 : Impulse Response of Linear Plant...28
Figure 5.7: 20 Tab FIR Filter ...28
Figure 5.8: Linear Plant Identification with FIR Filter, µ=0.1....................................29
Figure 5.9: Linear Plant Identification with FIR Filter, µ=0.01.................................29
Figure 5.10 : Linear Plant Identification with FIR Filter, µ=0.8................................30
Figure 5.11 : Feedforward Neural Network ...30
Figure 5.12 : Linear Plant Identification with Feedforward NN, with µ=0.1 linear

activation function and 200 time steps ...31
Figure 5.13 : Feedforward Neural Network...31
Figure 5.14 : Linear Plant Identification with Feedforward NN, with µ=0.01 Using

Linear Activation Function for 200 Time Steps...32
Figure 5.15: Feedforward Neural Network ...32
Figure 5.16: Linear Plant Identification with Feedforward NN, with µ=0.1 Using

Nonlinear Activation Function for 200 time steps33

 ix

Figure 5.17: Externally Recurrent Neural Network ...33
Figure 5.18 : Linear Plant Identification with Externally-Recurrent NN with Using

Linear Activation Function for 200 Time Steps...34
Figure 5.19 : Linear Plant Identification with Externally-Recurrent NN with µ=0.1

Using Nonlinear Activation Function for 200 Time Steps34
Figure 5.20 : Illustration of Heading Angle ..36
Figure 5.21 : Block Diagram of Ship Yaw Dynamics from Wheel Angle δw to the

Heading Angle ψ ...37
Figure 5.22 : Step Response of Ship Yaw Dynamics with Stabilized and Non-

Stabilized Plant...38
Figure 5.23: Stabilized Plant ..38
Figure 5.24 : Disturbance Signal ..39
Figure 5.25 : Training and Validation Results of Plant Modelling with Feedforward

Neural Network...40
Figure 5.26 : Training and Validation Results of Plant Modelling with Feedforward

Neural Network with more inputs..40
Figure 5.27 Training Results and Validation Results of Plant Modelling with

Externally Recurrent Neural Network ..41
Figure 6.1 : Adaptive Inverse Control ...42
Figure 6.2 : Adaptive Inverse Control ...43
Figure 6.3 : Structure Diagram Illustrating BPTM Method.......................................44
Figure 6.4 : Constrained Control Effort..51
Figure 6.5 : Unconstrained Control Effort ..52
Figure 6.6 : Modelling and System Error Values of Constrained Control52
Figure 6.7 : Modelling and System Error Values of Unconstrained Control52
Figure 6.8 Constrained Control of Plant with FF NN ...53
Figure 6.9 Constrained Control of Plant with FF NN ...54
Figure 6.10: Constrained Control of Plant under Disturbance Effect.......................54
Figure 7.1 : Input Output Timing of a Discrete-Time Control System.....................57
Figure 7.2 : A Useful way of Looking at Feedforward System Dynamics...............57
Figure 7.3 : Internal Structure of X ...58
Figure 7.4 : Internal Structure of X if the Plant is Linear...59
Figure 7.5 : Disturbace Cancelling via X-In Place ..61
Figure 7.6 Disturbance Graph of Linear Plant ...61

 x

LIST OF SYMBOLS

C : The adaptive controller.

CCOPY : A filter whose weights are a digital copy of those in the adaptive
controller C.

E : An adaptive estimator used to predict future disturbance values.

ECOPY : A filter whose weights are a digital copy of those in the adaptive
estimator E.

F : A filter used to predict the current sensor noise given the past values
of estimated disturbance.

M : The reference model.

P : The plant.

P : The adaptive plant model.

COPYP : A filter whose weights are a digital copy adaptive plant model
P weights

X : The adaptive disturbance canceller.

kc : Impulse response of linear controller.

kd : Desired response for system output.

kd : The infinite vector containing kd , 1kd − . . .

kd : Desired response for sensor output.

(mod)
ke : Plant modelling error

()sys
ke : System error.

()sys
ke : Measured system error.

kε : Modified system error.

 xi

kP : Impulse response of linear plant model.

kr : Reference input.

kr : The infinite vector containing kr , 1kr − . . .

ku : Controller output.

ku : The Infinite vector containing ku , 1ku − . . .

ku : Disturbance canceller output.

ku : The infinite vector containing ku , 1ku − . . .

kw : Disturbance at plant output.

kw : The infinite vector containing kw , 1kw − . . .

kw : Estimate of disturbance at plant output.

kw : The infinite vector containing kw , 1kw − . . .

kx : Impulse response of linear disturbance canceller.

ky : Plant output (including disturbance).

ky : The infinite vector containing ky , 1ky − . . .

ky : Plant model output.

[].Ε : Returns the expected value of (.) .

 : Takes the inverse z-transform of (.) , sets the non-causal part to
zero, and returns the z-transform of the remaining causal part.

(). ()z+

 : The minimum-phase part of the spectral factorization of (). ()z ,

such that () () (). () . () . ()z z z+ −=

.

[]. +

 xii

(). ()z−

 : The non-minimum-phase part of the spectral factorization

of, such that () () (). () . () . ()z z z+ −=

{}.Ζ : Returns the z-transform. When (.) is a Laplace transform, this
operator takes the inverse Laplace transform of its operand, samples
the result, and returns the z-transform of the sampled signal.

/A B∂ ∂ : Returns the ordinary partial derivative of A with respect to B .

/A B+∂ ∂ : Returns the ordered partial derivative of A with respect to B . The
ordered derivative is equal to the total derivative for ordered systems.
An ordered system is a mathematical system of equations which is
evaluated in a specific sequence.

(a,0):bFIR : An FIR filter with a tapped delays on each input, and b outputs.

(a,b):cIIR : An IIR filter with a tapped delays on each exogeneous input, b
tapped delays on each feedback input, and c outputs.

(a,b):c:d...Ν : A neural-network based NARX filter with one stream of exogeneous
input. There are a tapped delays on each input, b tapped delays on
each output; c neurons in the first layer, d neurons in the second layer,
and so forth.

1 2([a ,a],b):c:d...Ν : A neural-network based NARX filter with two streams of
exogeneous input. There are a1 tapped delays on each input from the
first stream, a2 tapped delays on each input from the second stream, b
tapped delays on each output; c neurons in the first layer, d neurons in
the second layer, and so forth.

(). ()z

 xiii

ÖZET

Kontrol Teorisinin amacı dinamik sistemin en doğru ve sağlam olarak istenilen

şekilde davranmasını sağlamaktır. Bu amaç, sistemin kararlı hale getirilmesi,

kontrolü ve sistemdeki gürültünün yok edilmesi olarak üç ana gruba ayrılabilir.

Konvansiyonel kontrol sistemleri, lineer olmayan veya sistemin dinamiklerinin

zamanla değiştiği durumlarda yetersiz kalmaktadırlar.

Uyarlamalı ters kontrol metodolojisi bu tip sistemlerin kontrolünde kullanılabilir. Bu

çalışmada lineer ve lineer olmayan sistemler kontrol edilmeye çalışılmıştır. Yapay

Sinir Ağları ve Uyarlamalı FIR filtreler, Gradient-Descent tabanlı algoritmalarla

eğitilmiş, sistemin modeli, kontrolörü ve gürültü yok edici olarak kullanılmıştır.

Algoritma sistemin modelinin çıkarılmasına, kontrolörünün ve gürültü yok edicinin

elde edilmesinde ayrı izin vermektedir. Kullanıcının belirleği sınırlı kontrol de

sağlanabilir.

Bu tezde iki sistem araştırılmıştır, birinci sistemde amaç tankın içindeki sıvının

sıcaklığının kontrol edilmesidir. Tanka giren su miktarı ile çıkan su miktarı birbirine

eşittir. Giren sıvının sıcaklığı bir vana ile sıcak ve soğuk kaynaklardan gelen sıvının

karıştırılması ile elde edilir. Sistemimiz linear, minimum fazda ve durağandır. Buda

tersinin oluşturulmasını sağlar. Birinci sistemdeki amaç, gürültü etkisi ve

kullanıcının belirlediği kısıtlamalar altında sistemin kontrolünü sağlamaktır.

İkinci sistem lineer değildir. Kontrol sisteminin tanımı: Gemi pilotları geminin kafa

açısını istedikleri yönde tutmak isterler. Sert dönüşlerde, zamanla değişen bir

referans yönü oluşur, bu referansın izlenmesi istenir. Sistemdeki gürültü dalgaların

dümene etkisi olarak alınmıştır.

Bu sistemdeki kısıtlamalar, sistemin dinamiğinin içindedir. İkinci sistemdeki amaç,

gürültü etkisi ve sistemin iç kısıtlamaları altında sistemin kontrolünü sağlamaktır.

 xiv

ABSTRACT

The aim of control theory is; to force the dynamical system to behave in user

specified manner as accurately, and as robust as possible. The aims may be separated

into three parts; stabilizing the plant, controlling the plant and disturbance cancelling.

Conventional control systems are not adequate in such as non linear or time varying

dynamic in controlled system.

Adaptive inverse control is a methodology, which achieves to control these kinds of

systems. In this work both linear and nonlinear plants are tried to be controlled.

Neural networks and FIR filters, which are trained by gradient-descent based

algorithms, are used for modelling, controlling and disturbance cancelling.

The algorithm allows separate implementation of the adaptive controller, plant model

and disturbance canceller. General user specified constraints on the control effort

may be satisfied.

In this thesis , two plants are investigated, in first plant the goal is to control the

temperature of a tank of liquid. The flow-rate of water into the tank is constant and

equal to the flow rate of water out of the tank. The temperature of the incoming

liquid is controlled by a mixing valve that adjusts the relative amounts of hot and

cold supplies of the water. The plant is linear , quasistatically stationary and in

minimum phase. A perfect stable and causal delayed inverse may be constructed.

The aim in first plant is to control the plant under the effect of disturbances and user

specified constraints.

The second example is selected as non linear. The control problem is; autopilots for

ships are often designed to keep the ship’s heading angle in a desired direction. There

are some applications, such as course changing and turning, however, where it is

desirable to be able to track a time-varying reference direction. The disturbances

experienced in the dynamics of the ship are caused almost exclusively by the action

of sea waves acting on the rudder angle. The constraints are inside the dynamics of

 xv

the plant. The aim in second plant is to control the plant under the effect of

disturbances and constraints.

 1

1 INTRODUCTION

The aim of control theory is to force the dynamical system to (the “plant”) behave in
a user specified manner as accurately and robust as possible. There are many kinds of
plants dynamics and several control strategies are introduced according to be either
linear or nonlinear. Linear dynamical systems obey the superposition principle and
nonlinear do not [19].

As one researcher states: “From a mathematical point of view, even the control of
known nonlinear dynamical systems is a formidable problem. This becomes
substantially more complex when the representation of the system is not completely
known [22].”

In this work adaptive controller which has adjustable parameters are used, for
controlling the nonlinear and linear plants. In thesis, control problem is investigated
under adaptive inverse control.

 2

2 ADAPTIVE INVERSE CONTROL

The basic idea of adaptive inverse control is illustrated in Figure 2.1. This diagram

can be thought of as a filter which has adjustable parameters, an input and an output,

and an extra input called error, which is used to adjust the parameters of the

controller.

Figure 2.1: Basic Concept of Adaptive Inverse Control

Minimization of the mean square error is the main objective of the adaptation

algorithm. The error is the difference between the plant output and the command

input. If the error approaches to zero, the transfer function of the controller becomes

the inverse of the plant. Combined transfer function of the plant and the controller

becomes unity, so the plant output will track command input.

In above system, the controller is assumed to be convergent, linear and

quasistatically stationary, the plant is linear, that it varies slowly so that it is

quasistatically stationary.

Basic concept of adaptive inverse control is discussed above, can be developed

according to complex cases. In some cases a smoothed or delayed version of

command input model is generally designated as a reference model. This is why the

system illustrated Figure 2.2 is called Model Reference Adaptive Inverse System.

 3

Figure 2.2: Model Reference Adaptive Inverse Control

In this system the combined transfer function of the plant and the controller is closely

approximate of the transfer function of the reference model.

Plant noise and disturbance present a problem for adaptive inverse control approach.

Lack of feedback from plant output permits internal plant noise and disturbance to

exist unchecked at the plant output. Various signal processing methods for noise

cancelling have been developed and with some modification they have been applied

to the cancellation of plant noise and disturbance. [2].

Figure 2.3 : Noise and Disturbance Cancelling

 4

In the Figure 2.3 the plant and plant model has same transfer function, the plant

disturbance and sensor noise is filtered via inverse plant model. The filtered signals

are subtracted from command input, in order to cancel noise and disturbance at the

plant output.

The general view is discussed in this chapter. In next chapters, these concepts will be

developed.

 5

3 LINEAR ADAPTIVE FILTERS

The development of adaptive inverse control is based on adaptive inverse filtering.
They are used for modelling the plant, controlling the plant and cancelling plant
disturbance. This chapter introduces the idea of adaptive linear filtering and
performance criteria of minimizing mean square error.

Figure 3.1 : Symbolic Representation of Basic Adaptive Filter

 It is important to think of the adaptive filter as a building block, having an input
signal, having an output signal, and having a special input signal called the “error”
which is used in the learning process. This building block can be combined with
other building blocks to make adaptive inverse control systems. [45]

Linear adaptive filters may be divided into two groups: finite impulse response (FIR)
and infinite impulse response (IIR). When an FIR filter is excited by an impulse, the
response of the filter in non-zero for a finite period of time, on the other hand, the
response of the IIR filter is non-zero for an infinite period of time. Adaptive IIR filter
is showned in Figure 3.2

Adaptive FIR filter is showned in Figure 3.2. This filter would be used for direct and
inverse modelling, which is comprises a tapped delay line, variable weights, a
summation block to add weighted signals, and an adaptation process. The inputs of
adaptive filter are digitized input and outputs of unknown systems. The weights of

Σ

Output

Desired Output

+

-

Adaptive Filter
Input

 6

the filter automatically adjusted by adaptation algorithm, which minimizes mean
square error, in order to give optimal impulse response..

Figure 3.2 : IIR Adaptive Filter

Any stable linear system may be approximated by a “sufficiently long” FIR filter.
Hence in this thesis this type of filter is concentrated, also FIR filters are stable with
finite weights, IIR filters may not.

Figure 3.3: Modelling an unknown system by a discrete adaptive filter

3.1 Adapting Linear Filters

Linear adaptive filters are adapted as ; at each time instant, a desired response signal
dk is applied to the filter. The true output yk, is compared to this desired response, and
the error is computed as kkk yd −=∈ . After that weight are adapted according to

minimization of the cost function Jk,

∑
=

∈=
k

j
kkJ

0

2
 (3.1)

 7

The cost function Jk, is computed for k time steps, weights are adapted in the
direction of the negative gradient of the cost function.

kW JWW ∇−= µ: (3.2)

In Equation 3.2, W stands for weight vector, the scalar parameter µ is called the

convergence factor (learning rate) that controls stability and the rate of adaptation. It
is necessary to select convergence factor as below for stability.

max

1
λ

>µ >0 (3.3)

Where maxλ is the eigenvalue of R (please refer Appendix A for R)

A mathematical tool called ordered partial derivatives kx∂∂+ (.) ,are used for

calculating the gradients. Ordered partial derivatives are useful for easily finding
derivatives of complex dynamical systems.

Ordinary partial derivative of (.) with respect to xk refers the direct causal impact of
xk on (.), while the ordered derivative refers to the total causal impact, including
direct and indirect effects [42]. The derivatives of equations which are evaluated in a
specific time order may be calculated by the ordered partial derivative easily.

Suppose, for example, there is a function as

),,........,,(1 Wxxxfy nkkkk −−= (3.4)

The main advantage of the ordered derivative is that; complex dynamical systems

may be differentiated using a simple chain rule expansion.

W
x

x
y

W
y

W
y jk

n

j jk

kkk

∂

∂

∂
∂

+
∂
∂

=
∂
∂ −

+

= −

+

∑
0

 (3.5)

The forward equation for the filter is

kk WXy = (3.6)

 8

where W is the weight matrix of the filter and Xk is a composite vector comprising all
of the delayed inputs

[]TT
Nfk

T
k

T
kk xxxX −−= ,....., 1 (3.7)

The weight vector is

[]Nf
T wwwW ,....., 10= (3.8)

The gradient of the cost function can be computed with respect to the weights as

follows

∑
=

+
+

∂

∂
=

∂
∂ k

j

jk

W

e

W
J

0
 (3.9)

Which is equal to

W
y

e
W
J k

k

j

T
j

k

∂
∂

−=
∂
∂ +

=

+

∑
0

2 (3.10)

where

W
x

x
y

W
y

W
y jk

Nf

j jk

kkk

∂

∂

∂
∂

+
∂
∂

=
∂
∂ −

+

= −

+

∑
0

 (3.11)

 { }T
k

T
k

T
k

T
k

T
k XXXXXdiag,,,= (3.12)

 9

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
k

T
k

T
k

X

X
X

00

00
00

 (3.13)

Summation term disappeared in Equation 3.11 since xj is not a function of W

{ }∑
=

+

−=
∂
∂ k

j

TTTT
j

k XjXjXjdiage
W
J

0
,.....,,2 (3.14)

The system run for k time steps WJ k ∂∂+ is computed, and the weighs are updated

using Equation 3.2. However if the learning rate is small, adaptation may be done at
each time step as Equation 3.15.

{ }T
k

T
k

T
kkkk XXXdiagWW ,...,,21 µε+=+ (3.15)

Which is equal to and easy to use

T
kkkk XWW µε21 +=+ (3.16)

3.2 Optimal Solution for Linear Adaptive Filters

In linear systems, MSE performance function is quadratic function of the weights. It
is bowl shaped surface and adaptive process continuously adjusts weights in order to
find bottom of the bowl. There is one and only one minimum (optimal) solution
when the cost function used is MSE, and that gradient descent methods will converge
to the solution.

The solution is mathematically tractable if certain statistical information about the
input and desired response is available. This solution is known as the Wiener
solution.

 10

If the cross correlation function between the input xk and the desired response dk, is
nxd)(φ and the input autocorrelation function is nxx)(φ , then the unconstrained

solution,)()(zW opt is

[][] 1)()()()(−−ΦΦ= zzzW xxxd
opt (3.17)

where)(zxdΦ and)(zxxΦ are the z-transform of nxd)(φ and nxx)(φ , respectively.
Note that this solution allows for the filter)()(zW opt to be non-causal. The Shannon-

Bode solution for the optimal causal filters is

[] 1 1() () () () ()opt
causal xd xx xxW z z z z

− −− +

+

⎡ ⎤⎡ ⎤ ⎡ ⎤= Φ Φ Φ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (3.18)

where,)()()(zzz xxxxxx
−+ ΦΦ=Φ and)(zxx

+Φ has all the poles and zeros of
)(zxxΦ which are inside the unit circle in the z-plane. Furthermore, the [.]+ operator

means, “take the time series generated by the inverse-z-transform of the operand,
retain only the causal section (set the non-causal entries to zero), and take the z-
transform of the result”. Mathematical analysis of a system constrained to be causal
is not simple, but in certain specific cases, useful results may be obtained.[35]

For modelling and controlling of the linear systems, linear adaptive filters are used,
hence the linear adaptive filters and their properties are discussed in this chapter, in
next chapter, nonlinear adaptive filters will be discussed. For more information of
linear filters please refer, Appendix A.

 11

4 NON- LINEAR ADAPTIVE FILTERS

Non linear adaptive filers are used to for controlling and plant modelling of non
linear plants. For inverse control, the command input is applied to a non linear
controller, whose adjustable parameters are adapted, so that when the output of the
controller drives the plant input, the plant output becomes a best squares match to the
reference model’s output. The resulting controller would be a good inverse only for
the particular input command signal not in general. If the characteristics of the
command input signal were to change, it would be necessary for the controller to
adapt rapidly and keep up with the changes. As long as this is feasible, non linear
inverse control will work. [1]

Figure 4.1 : Modelling an Unknown System with Neural Network

Figure 4.1 illustrates the structure of the nonlinear adaptive filters. Input signal is
tabbed, possibly the output signal is tapped; the output the filter is nonlinear function
of both delayed inputs and outputs. The nonlinear function may be implemented in
any way, in this work neural networks are used.

A neural network is an interconnected set of very simple processing elements called
neurons. Each neuron computes an internal sum which is equal to a constant plus the

 12

weighted sum of its inputs. [31] The output of the non linear function is called
activation function. It is chosen tangent sigmoid in this work.

#

1

tansig .
inputs

i
i

neronoutput constant w input
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ (4.1)

Figure 4.2 : Neuron

The neural networks may be connected randomly, but it is better to arrange them in

order. Layers are groups of identical neurons where each neuron has identical inputs,

these inputs are the outputs of the previous layer. The final layer of the network is

called output layer. The other layers are called hidden layers. The layered network

has feedforward structure (non-recurrent) which computes a static nonlinear

function. Dynamics are introduced via tabbed delay at the input to the network.

In non linear filter following notation is used: N(a,b):α,β… which means: “The filter

input is composed of a tapped delay line with ‘a’ delayed copies of the exogenous

input vector xk , and ‘b’ delayed copies of the output vector . Furthermore, there are

‘α’ neurons in the neural network’s first layer of neurons, ‘β’ neurons in the second

layer, and so on.” For instance, the filter in Figure 4.1 would be represented as

N(2,2):3:3:1

 13

4.1 Adapting Nonlinear Filters

Gradient Descent algorithms may be used to adapt the weights of adaptive nonlinear

filter with feedforward and externally recurrent network. Due to the differences in

details, two networks are discussed separately.

4.1.1 Adapting a Feedforward Neural Network

A feedforward neural network may be adapted using backpropagation algorithm,

discovered independently by several researchers [41, 29] and popularized by

Rumelhard, Hinton and Williams. [35] In this method weights are updated

recursively, based on the error at the output. The figure is shown below.

Figure 4.3 : Feedforward Neural Network

Output of network is function of inputs and weight vector

),,........,,(1 Wxxxfy nkkkk −−= (4.2)

Feedforward

Neural Network

xk

xk-1

yk-1

ky
∧

 14

The error is the difference between the actual and the desired output. Sum of square

of the error, which is called as “cost function” is minimized by adapting the weight

vector. It is done by adapting the weighs in the direction of negative gradient of the

cost function.

The minimization process is; any arbitrary weight,)(
:
ı

jiw -the one which connects

neuron i in the layer l-1 with neuron j in layer l -in network, is selected. The

derivative of the error squared with respect to that weight is computed. After

calculating the derivatives, weights will be updated. Proceeding the chain rule

)(
:

)(

)(

2

)(
:

2

ı
ji

ı
j

ı
j

ı
ji w

s

sw ∂

∂

∂

∂
=

∂

∂ ++ εε
 (4.3)

)1()(−= ı
i

ı
j aδ

where

)(

2
)(

ı
j

ı
j s∂

∂
=
∆ ε

δ (4.4)

The values of)1(−ı
ia are known from the forward pass network. Then)(ı

jδ should be

calculated.

The output layer of the network has no activation function then)()(L
i

L
ii say == ,

and i
L

i εδ 2)(−= . In the hidden layers, no specific error signal exists. The chain rule

expansion is used for determining an equivalent sensitivity of the output.

)(

2
)(

ı
i

ı
i s∂

∂
=
∆ ε

δ (4.5)

 ∑
∂

∂

∂

∂

∂

∂
=

+

+
j

ı
i

ı
i

ı
i

ı
j

ı
j s

a
a

s

s)(

)(

)(

)1(

)1(

2ε

 15

 ∑ ++=
j

ı
ji

ı
j

ı
i wsf)1(

:
)1()(')(δ l=1:L-1

Thus)(ı
jδ is calculated by propagating values of)1(+ı

jδ backwards through the

network. To sum up, there are two operations in backpropagation forward phase and
reverse phase. In forward phase, the input is propagated to the output to compute yk.
In the reverse phase, the error is applied at the output, changed into)(L

iδ form and
)(L

iδ is propagated backward through the network. The weights are updated using
)(l

iδ and)(l
ia as;

)1()()(
:

−−=∆ l
j

l
j

l
ji aw µδ (4.6)

Calculating Jacobians of Neural Networks:

It is necessary to calculate the Jacobian of the function implemented by a neural
network. The neural network is the function of inputs and weights y=f(X,W), the two
Jacobians may be calculated as ,

W
y

∂
∂ and

X
y

∂
∂

The difference between derivation for backpropagation algorithm is the definition of
iδ which is defined as

)(
)(

ı
i

Tı
i s

yv
∂
∂

=
∆

δ (4.7)

where v is the error vector.

Backpropagation algorithm is used to propagate the redefined δs backward through

the network. If δs are propagated to the inputs, and define

)0(
)0(

i

T
i s

yv
∂
∂

=
∆

δ (4.8)

 16

and

[]
X
y

v kT
Nx ∂

∂
=)0()0(

1 ,...,δδ (4.9)

Since

)1(
)(

:

)(
−=

∂

∂ ı
iı

ji

ı
j a

w

s
, (4.10)

[]
W
y

va kTı
i

l
j ∂

∂
=− ,...,.....,)1()(δ (4.11)

Where the terms in T
kv y W∂ ∂ are ordered according to the same implementation-

dependent ordering of [])(
:
ı

jiwW =

This ability of the backpropagation algorithm is called the “dual-subroutine”

introduced by Werbos. Dual subroutine is the recursive calculation of the Jacobians

with the network.

4.1.2 Adapting an Externally-Recurrent Neural Network

Up to now computation the Jacobians of network and adapting feedforward network
are discussed. These algorithms are extended to externally recurrent neural
networks. This was firs done by Williams and Zipser and called “real time recurrent
learning” (RTRL). Similar presentation is showned as below.

),,........,,,........,,(11 Wyyxxxfy mkknkkkk −−−−= (4.12)

The figure of the externally Recurrent Neural Network is shown in below.

 17

Figure 4.4: Externally Recurrent Neural Network

For calculating sum of squared error;

W
y

W
kT

k ∂
∂

−=
∂

∂ ++

ε
ε

2
2

 (4.13)

W
y

y
y

W
x

x
y

W
y

W
y ik

m

i ik

kik
n

i ik

kkk

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

=
∂
∂ −

+

= −

−
+

= −

+

∑∑
00

 (4.14)

The first term Wyk ∂∂ in Equation 4.14, is a Jacobian, and it has direct effect of a

chance in weights on yk and which is calculated by dual subroutine of the
backpropagation algorithm. The second term is zero because xk is not a function of

W, so Wxk ∂∂+ is zero. The last term may split up two parts. ikk yy −∂∂ is a
component of matrix Xyk ∂∂ , because the delayed versions of yk are part of the

network’s input vector X. The dual subroutine algorithm is used to compute this first

Externally
Recurrent
Neural Network

xk

xk-1

yk-1

ky
∧

Delay

 18

part. The second part is Wy ik ∂∂ −
+ is the previously calculated values of Wyk ∂∂+ .

When the system is “turned on” Wyk ∂∂+ are set to zero for I=0, -1, -2,,, and the

rest of the terms are calculated recursively from that point on.

The dual-subroutine calculates the Jacobians in a way that the weight update is done
with simple matrix multiplication, Lets,

TT

mk

T

k

T

k
kw W

y
W
y

W
y

yd
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= −
+

−
+

−
+∆

21)((4.15)

and

TT

mk

k

T

k

k

T

k

k
kx y

y
y
y

y
y

yd
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
−−−

∆

21

)((4.16)

The weight update is calculated as

T

kwkx
kT

k ydyd
W
y

W ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +
∂
∂

=∆)()(2µε (4.17)

4.2 Optimal Solution for Non Linear Adaptive Filters

In principle, a neural network can emulate a very general nonlinear function. It has
been shown that any “smooth” static nonlinear function may be approximated by a
two-layer neural network with a “sufficient” number of neurons in its hidden layer
[21]. Furthermore, a NARX filter can compute any dynamical finite-state-machine
(It can emulate any computer with finite memory) [36].

In practice, a neural network rarely achieves its full potential. In solution space,
gradient descent algorithms converges a local minimum, not a global minimum, but a
neural network will get quite close to this bound.

 19

The theorem below shows the optimal solution, suppose that input vector of adaptive
filter is Xk and the output is yk, and the desired response is dk, then the optimal filter
shows the function

 []kxk Xdy Ε= (4.19)

It is proved as; suppose that yk is the claimed optimal estimate, and
∧

ky is another

estimate,
∧

ky must yield an MSE no smaller than does yk

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Ε=

∧∧ 2

)(kkk ydyMSE (4.20)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−Ε=

∧ 2

kkkk yyyd (4.21)

()[] 0=−Ε kkk Xyd (4.21)

()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−Ε+≥

∧
2

2)(
T

kk
T

kkk yyydyMSE (4.22)

Recall that []kxk Xdy Ε= and hence

()[] 0=−Ε kkk Xyd (4.23)

Since
∧

− kk yy is deterministic function of Xk

() 0=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−Ε

∧

kkk
T

kk Xyyyd (4.24)

 20

By iterated the expectation

() () 0)()(=⎥⎦
⎤

⎢⎣
⎡ −+−Ε=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+−ΕΕ

∧∧

kkk
T

kkkkk
T

kk XyyydXyyyd (4.25)

which shows

)()(kk yMSEyMSE ≥
∧

 (4.26)

 21

5 SYSTEM IDENTIFICATION

Systems generally work insufficiently, in order to take better performance; the
engineers often aim to control the systems. If there is a need of better control, the
model of the system should be known. In simple systems, it is reliable to build
mathematical model from physics, but in most cases, it is difficult because the
system involves complex equations or it is totally unknown, so the states of the
system cannot be determined.

For these cases, the model of the system cannot be found by using physical laws.
Then, a new method that should be introduced. The procedure to get the
mathematical model of the system by using input and output data is called “system
identification”.

5.1 Identification of Linear Systems

If a black box model is trying to be identified, the structure of the model may be
chosen to be either: a state-space implementation of adjusted by subspace
methods[40]; an auto-regressive ARMA IIR filter adjusted by recursive least-squares
methods [24]; or an FIR model adjusted by an algorithm such as LMS [44]

They have different advantages. The state-space methods are numerically very
robust. The ARMA model has many fewer parameters than FIR, and hence may
learn more quickly. The FIR model is very simple and unbiased by zero-mean
disturbances if they are uncorrelated with the system input. Adaptive FIR models are
used to identify linear system in this thesis.

Black-box adaptive system identification is performed as shown in Figure 5.1. The
plant is excited with the signal uk, and the disturbed output yk is measured. The plant

model P
∧

 is also excited with uk , and its output
∧

ky is computed. The modelling

error, which is the difference between the model output and the measured plant
output, is used by the adaptation algorithm, to update the weight values of adaptive
filter.

 22

Figure 5.1 : Adaptive System Identification

The desired response of the filter is yk , the input of the filter is uk, the output of the

filter is
∧

ky The input of the filter and the desired response are used to compute

Wiener solution for the optimal plant model.

[]nkknuy yu +−Ε=)(φ (5.1)

[])(nknknkk wupu +++ +∗Ε= (5.2)

[] []nkknknkk wuupu +++ Ε∗Ε=)((5.3)

nuunnuy p)(*)(φφ = (5.4)

where pk is the impulse response of the plant. If the disturbance is zero-mean and
uncorrelated with the plant input, then

nuunnuy p)(*)(φφ = (5.5)

)()()(zzPz uuuy Φ=Φ (5.6)

)(
)(

)(
)(

z
z

zP
uu

uy
opt

Φ

Φ
=

∧

 (5.7)

Σ

∧

ky

ku Plant

_

∧

P

Σ
+

+

Dist kw

 ky +

 23

)()(
)(

zPzP
opt

=
∧

 (5.8)

Which means adaptive model converges the plant.

5.2 Identification of Nonlinear Systems

Modelling of nonlinear systems, are more complicated than modelling of linear
systems. In this work NARX model is used for modelling, since sufficient ordered
NARX is a universal appoximater of any universal dynamic system.

The delayed outputs of are the inputs of the model in NARX as a feedback. When
training an adaptive plant model two kinds of connections may be applied, parallel
connection and series-parallel connection. It is depend on the connection of the
feedback. If the feedback is connected model output, it is called parallel connection
or the feedback may be connected plant output which is a series connection showned
in Figure 5.2.

Figure 5.2 : Parallel and Series-Parallel Connection Identification

In parallel connection identification networks are trained either real-time-recurrent-
learning (RTRL) or backpropagation-through-time (BPTT). Parallel connection for
system identification is simple, but is biased by disturbance. The series-parallel
connection for system identification is more complex to train, but is unbiased by
disturbance. In this work, nonlinear system identification is done with both
configuration.

 24

5.3 Simulation Examples

This part introduces the plants used throughout this thesis as examples of their
respective control categories, also modelling of the plants are showned. Both linear
and nonlinear systems are examined. The examples were chosen because they are
typical of actual control problems, but simple enough to be thoroughly understood.
In the following pages, the dynamics of each plant are outlined, reference signals that
the plant’s outputs are required to track are specified, and the characteristics of
expected disturbances are presented.

5.3.1 Linear Plant

The dynamics of linear continuous-time systems may be expressed mathematically in
a number of ways. One of these is by linear constant coefficient differential
equations. In this work, the both examples are defined by differential equations.

Continuous-time plants are discreatized by realizing that the plant input is held
constant for T seconds (where T is the sampling period), and the plant output is
sampled every T seconds. The transfer function of the plant in the z-transform
domain may then be readily calculated from the transfer function in the (Laplace) s-
plane. Notationally, we say

1 ()() (1) H sH z z
s

− ⎧ ⎫= − ⎨ ⎬
⎩ ⎭

Z (5.9)

where the operator Z {.} means “take the inverse Laplace transform of (.), sample
the resulting time sequence at 1/T samples per second, and return the z-transform of
the sampled sequence.” The resulting transfer function H(z), along with its region of
convergence in the z-plane, uniquely defines a linear time invariant discrete-time
system. Important properties of the system may be quickly deduced from H(z). [31]

The roots of its denominator polynomial are called poles, and the roots of its
numerator polynomial are called zeros if H(z) is in rational polynomial form. If all of
the poles are within the unit circle in the z-plane, the system is stable and causal. If
any pole is outside the unit circle, the system is either unstable or non-causal. If all of
the zeros are inside the unit circle, the system is called minimum phase, that a stable,
causal inverse of the system exists. This makes controlling the system relatively
easy. If any zero is outside the unit circle, the system is called non-minimum phase,
and a stable, causal inverse does not exist. However, a delayed, causal, approximate

 25

inverse does exist, and works very well for controlling such systems. In this thesis
only minimum phase plant is introduced for linear example.

The linear example was selected from reference [31]. The goal is to control the
temperature of a tank of liquid. The flow-rate of water into the tank is constant and
equal to the flow rate of water out of the tank. The temperature of the incoming
liquid is controlled by a mixing valve that adjusts the relative amounts of hot and
cold supplies of the water (see Figure. 5.3). A length of pipe, assumed to have
negligible heat loss, separates the mixing valve from the tank. This distance causes a
time delay between the application of a change in the mixing valve and the discharge
of the flow with the changed temperature into the tank. If our goal were to design an
analog controller for this plant, this time delay significantly complicates the task. No
exact analysis techniques are available to handle pure delays, so approximations,
such as the Pade Approximation should be used to design the controller.

It is assumed that the mixing in the tank is instantaneous, and that negligible heat is
lost in the pipe connecting the valve to the tank, the differential equation governing
the tank temperature is

() () ()t t v d
m mT t T t T t
M M

τ
• •

•

+ = − (5.10)

Figure 5.3 : Tank Temperature Control

where

vT = temperature of water immediately after the control valve and directly

controllable by the valve,

tT =tank temperature,

 26

 m
•

= mass flow rate, ()in outm m
• •

=

M =water mass contained in the tank,

dτ = delay time of water between valve and tank.

When transformed, let a m M
•

= , the transfer function from vT to tT becomes

()
(/) 1

d seH s
s a

τ−

=
+

 (5.11)

The equivalent z-transform of the discretized plant may be computed as

1 ()() (1) H sH z z
s

− ⎧ ⎫= − ⎨ ⎬
⎩ ⎭

Z (5.12)

The delay time is approximated by using Pade approximation, as d T Tτ θ ψ= −
0 1ψ≤ < .

[]
1() (1)

(/) 1

sT sTe eH z z
s s a

θ ψ−
− ⎧ ⎫⎪ ⎪= − ⎨ ⎬+⎪ ⎪⎩ ⎭
Z

 (1) 1

a T aT

a T a T

aT

e eze e
z z e

ψ

ψ ψ

θ

− −

− −

−

+− −=
−

 (5.13)

The location of the zeros of H(z), may be considered, θ zeros located at infinity;
alternately, θ poles at the origin. These zeros (or poles) correspond to the built-in
time delay of the system. Because of them, a non-delayed inverse cannot be
constructed. However, a perfect stable and causal inverse with delay of at least θ time
steps may be realizable.

The remaining (finite) zero of H(z) will be either inside or outside the unit circle,
depending on the value of dτ . If the zero is inside the unit circle, the system is

minimum phase. A perfect stable and causal delayed inverse may be constructed. If
the zero is outside the unit circle, the system is non-minimum phase.

m = 2 kg/s;

M = 10 kg;

T = 1 s;

 27

θ =2 time steps

The value ψ for was chosen to be 0.55 so finite zero is inside unit circle. With all the
variables substituted, the transfer functions become:

3 2

0.7402() 0.1042
0.8187

zH z
z z

+
=

−
 (5.14)

The transfer function is realized through the following difference equation

1 2 30.8187 0.1042 0.0771k k k ky y u u− − −= + + (5.15)

The bode diagram, pole-zero map and impulse response of the transfer function are
presented in Figure 5.4, Figure 5.5 and Figure 5.6 respectively.

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B
)

10-2 10-1 100 101
-450

-360

-270

-180

-90

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

Figure 5.4 : Bode Diagram of Linear Plant

Range of Operation: The reference signal of the plant will be required to track
when performing simulations. When constraints on the control effort are considered,
they will be as follows: The control effort is allowed to be in the range -0ºC to 0.1ºC.
Physically, this means that the hot reservoir is a 0.1 ºC hot liquid source, and that the
cold reservoir is a 0ºC cold liquid source. These constraints will be taken into
account in control phase.

 28

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 5.5 : Pole Zero Map of Linear Plant

0 2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n (samples)

 A
m

pl
itu

de

Impulse Response

Figure 5.6 : Impulse Response of Linear Plant

First of all the aim is to identify the plant, as accurate as possible, it is known that,
the input signal should include plants cut of frequency, which is 0.02Hz. A sine wave
may be adequate to achieve this, since sine wave is applied to all filters and neural
networks.

Figure 5.7: 20 Tab FIR Filter

FIR FILTER
xk

xk-1

xk-19

ky
∧

 29

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
FIR Plant Identification

O
ut

pu
ts

Time

Plant Response
Filter Response

0 10 20 30 40 50 60
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
Error values of FIR Plant Identification

O
ut

pu
ts

Time

Figure 5.8: Linear Plant Identification with FIR Filter, µ=0.1

First example 20 tab FIR filter shown in Figure 5.7 with µ=0.1, is used with 60 time
steps, the simulation results of error and identification are showned on Figure 5.8.

The learning rate is changed to µ=0.01, all the other remain unchanged in second
simulation, is showned on Figure 5.9, as seen the leaning rate has direct effect on
learning, the smaller values of µ causes slower adaptation. In third simulation, the
value of is changed to µ=0.8, which causes unstability, is showned on Figure 5.10.

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
FIR Plant Identification

O
ut

pu
ts

Time

Plant Response
Filter Response

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Error values of FIR Plant Identification

O
ut

pu
ts

Time

Figure 5.9: Linear Plant Identification with FIR Filter, µ=0.01

 30

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
FIR Plant Identification

O
ut

pu
ts

Time

Plant Response
Filter Response

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Error values of FIR Plant Identification

O
ut

pu
ts

Time

Figure 5.10 : Linear Plant Identification with FIR Filter, µ=0.8

After the investigation the plant identification via FIR filter, the plant identification is
also done using neural networks. In first example the identification of plant is done
by feedforward neural network, NN(20,1), 5,1, (xk, xk-1,.., xk-19,yk-1) , shown in Figure
5.11 µ is selected µ=0.1, and in order to use a nonlinear activation function, a linear
activation function y=x is used. The training and validation results are showned in
Figure 5.12. As same learning rate is used, neural network has slower adaptation.

Figure 5.11 : Feedforward Neural Network

xk

xk-1

yk-1

ky
∧

xk-19

Feedforward

Neural Network

 31

0 20 40 60 80 100 120 140 160 180 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Train Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Test(Validation) Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

Figure 5.12 : Linear Plant Identification with Feedforward NN, with µ=0.1
linear activation function and 200 time steps

A second neural network identification is done using µ=0.01 all other is unchanged,
NN (20,1),5,1 (xk, xk-1,.., xk-19,yk-1) is showed in Figure 5.13 and Figure 5.14 shows
training and validation results. As showned on figure there is not a good result is
achieved for 200 time steps if the time step is increased better results will be
achieved.

Figure 5.13 : Feedforward Neural Network

Feedforward

Neural Network

xk

xk-1

yk-1

ky
∧

xk-19

 32

0 20 40 60 80 100 120 140 160 180 200
-1.5

-1

-0.5

0

0.5

1

1.5
Train Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

0 20 40 60 80 100 120 140 160 180 200
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Test(Validation) Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

Figure 5.14 : Linear Plant Identification with Feedforward NN, with µ=0.01
Using Linear Activation Function for 200 Time Steps

Third neural network identification is examined by changing the activation function
to a nonlinear function tangent sigmoid. The configuration is showed in Figure 5.15.
Learning rate is selected as µ=0.1, the results are showned in Figure 5.16. If the
results are compared with first neural network example, it may be seen that an error
which is caused by nonlinearity in activation function can not be eliminated for 200
time steps.

Figure 5.15: Feedforward Neural Network

Feedforward

Neural Network

xk

xk-1

yk-1

ky
∧

xk-19

 33

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Train Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Test(Validation) Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

Figure 5.16: Linear Plant Identification with Feedforward NN, with µ=0.1
Using Nonlinear Activation Function for 200 time steps

In this part externally-recurrent neural network with one output from itself,
NN(20,1),5,1 is used for identification of linear plant which is showed in Figure 5.17.
First example is done using with µ=0.1, and linear activation function y=x, is used.
Training and validation results are showned in Figure 5.18. Better results are
obtained by externally-recurrent neural network, compared to feedforward neural
network.

Figure 5.17: Externally Recurrent Neural Network

Externally
Recurrent Neural
Network

xk

xk-1

yk-1

ky
∧

xk-19

k 1y
∧

−

 34

0 20 40 60 80 100 120 140 160 180 200
-1.5

-1

-0.5

0

0.5

1

1.5
Train Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Test(Validation) Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

Figure 5.18 : Linear Plant Identification with Externally-Recurrent NN with
Using Linear Activation Function for 200 Time Steps

Second example is done by using learning rate µ=0.1, and nonlinear activation
function tangent sigmoid. Training and validation results are showned in Figure
5.19. There is no such a big difference using linear or non linear activation function
in externally recurrent neural network, compared to feedforward neural network (See
Figure 5.12). The best result is obtained with FIR filter with learning rate µ=0.1, than
externally recurrent neural network with linear activation function and with learning
rate µ=0.1, and the worse result is obtained with FIR Filter with learning rate µ=0.8,
As shown in figures learning rate has direct effect on adaptation, if it is chosen small
a slow adaptation is obtained, if it is chosen big, unstability may obtained. A linear
system may be identified with neural networks. Better results are obtained with linear
activation function, also nonlinear activation functions may be used for
identification, although they cause slower learning.

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Train Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Test(Validation) Results

ou
tp

ut
s

time steps

Plant Output
Neural Network Output
Error
Plant Input

Figure 5.19 : Linear Plant Identification with Externally-Recurrent NN with
µ=0.1 Using Nonlinear Activation Function for 200 Time Steps

 35

Disturbances: There are several possible sources of disturbance for this particular
plant. There could be heat loss in the pipe between the valve and the tank, loss in the
tank itself, non instantaneous mixing in the tank, or poorly regulated hot and cold
reservoirs. It is quite reasonable to assume that the pipes and tank are very well
insulated, and so heat loss is not considered to be significant. In this section,
disturbance is set to zero. For other sections it is assumed that the hot source is
poorly regulated. It heats up and cools down in a periodic fashion. Let

Th=0.1+0.005sin(2лt/60+φ) (5.16)

where φ is random variable, uniformly distributed between [−л; л], and independent
of uk .

() 0.005sin((2 / 60)))dist k tπ ϕ= + (5.17)

5.3.2 Nonlinear Plant

Unlike linear systems, nonlinear systems do not satisfy the superposition principle.
Therefore, they cannot be described in terms of impulse responses or transfer
functions. They may be described in the time domain. Continuous time systems may
be described by systems of nonlinear differential equations, and discrete time
systems may be described with sets of nonlinear difference equations. [31]

It is not always possible to analytically discreatize a set of nonlinear differential
equations. In many cases it is necessary to discreatize the plant by simulating
(numerically integrating) the differential equations over the sampling period. At
times, dozens of integration steps need to be taken to advance the system from its
current state to its state after a sampling period. Some work has already been done in
the area of nonlinear adaptive inverse control [2, 4].

This work focused on nonlinear a SISO plant and successful feedforward control was
achieved. It is considered difficult nonlinear control problems with greater practical
motivation. Much more insight may be gathered from studying them since we
already have an expectation of what their limits of performance might be. The
dynamics are computed by simulating the continuous-time differential equations
since they cannot be analytically discretized.

The control problem is; autopilots for ships are often designed to keep the ship’s
heading angle in a desired direction (see Figure 5.20). There are some applications,
such as course changing and turning, however, where it is desirable to be able to
track a time-varying reference direction. This scenario was selected as an example of

 36

a very nonlinear control problem. The primary reference is [39] but [30] and [31]
was also consulted for additional insight into the meanings of some of the parameters
involved.

The model of a ship may be expressed as

() rkd kψ ψ δ
•• •

+ = (5.18)

Where ()tψ is the heading angle of the ship, rδ is the rudder and ()d ψ
•

 is a

damping term of the form

3 2

3 2 1 0()d d d d dψ ψ ψ ψ
• • • •

= + + + (5.19)

Because of the symmetry, most ships have the property that 2 0 0d d= =

Figure 5.20 : Illustration of Heading Angle

There is a nonlinear dynamical relationship between its heading and rudder angle,
also a dynamical relationship with rudder angle with respect to the (steering) wheel
position. The rudder angle δr does not follow the wheel angle δw exactly. The rudder
is rate-limited to 6º per second until | δw -δr |≤3º then the rudder operates in the linear
range of its characteristic. One other restriction is that the rudder angle may not
exceed 35º in either direction. The ship dynamics may be represented as shown in
Figure 5.21

 37

Figure 5.21 : Block Diagram of Ship Yaw Dynamics from Wheel Angle δw to
the Heading Angle ψ

To summarize, the system dynamics are controlled by the coupled pair of differential

equations

() [() () (())]rt k t disturbance t d tψ δ ψ
•• •

= + − (5.20)

()35 () ()
35() 6 []

3

w
r

r

tsat t
t sat

δ δ
δ
• −

= (5.21)

1, 1
() , 1 1

1, otherwise

x
sat x x x

− < − < −⎧
⎪= − ≤ <⎨
⎪
⎩

 (5.22)

Constants are added to convert from degrees to radians and to allow the use of the
normalized saturation function sat(x). All parameters were taken from references
[39, 31].

k = 0:0107, d1 = 9:42; d3 = 2:24;

So it corresponds to the dynamics of a Royal Navy warship traveling at sixteen
knots.

Stabilizing the Dynamics:

The dynamics of the ship are unstable. This may easily be seen by applying a step
function to the control input. The plant output for step inputs ranging in magnitude of
180 is shown in Figure 5.22(a). A bounded input does not produce a bounded output,
and hence the dynamics are unstable. A very simple feedback circuit may stabilize
the dynamics. The stabilized ship block diagram is shown in Figure 5.23. The step

 38

response of the stabilized dynamics is shown in Figure 5.22(b). Now, bounded inputs
produce bounded outputs. In fact, the feedback loop makes a pretty good control
system all by itself. The nonlinear controller will enhance the dynamic response
where it can (when the rudder rate and angle limits are not saturated).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

0

100

200

300

400

500

600

700

800

time

H
ea

di
ng

 A
ng

le

 Step Response of Nonlinear Plant

0 500 1000 1500 2000 2500 3000
-50

0

50

100

150

200
 Step Response of Nonlinear Plant

time

H
ea

di
ng

 A
ng

le

Figure 5.22 : Step Response of Ship Yaw Dynamics with Stabilized and Non-
Stabilized Plant

Figure 5.23: Stabilized Plant

Range of Operation: Since the nonlinear controller can not improve performance
when the rudder dynamics are in their saturation region, only relatively small
perturbations around a fixed heading need to be considered. A default “steady”
heading of 0º was used, with perturbations limited to ±30º around that heading. More
specifically, the reference command to be tracked was a first-order Markov process,
generated by filtering i.i.d. uniform random numbers with maximum magnitude 0.05
using a one-pole filter with the pole at z = 0.99.

Disturbances: The disturbances experienced in the dynamics of the ship are caused
almost exclusively by the action of sea waves acting on the rudder angle, and by
wind acting on the superstructure. Here, we consider only the effects of waves, as is
done in reference [39, 31]. The power spectral density of wave height as a function
of wave frequency is

 39

0 10 20 30 40 50 60
-4

-3

-2

-1

0

1

2

3

4

time

A
m

pl
itu

de

Sample Wave Time Series

Figure 5.24 : Disturbance Signal

42

4 5
19.5

() exp[]
(2) 2

g gS f
f U f

α β
π π

⎧ ⎫
= − ⎨ ⎬

⎩ ⎭
 (5.23)

where

f =wave frequency (Hz)

α =Phillips constant (38.1 10x −)

β =dimensionless constant (0.74)

19.5U =wind velocity 19.5m above sea level (knots)

g =acceleration due to gravity

The nominal wind velocity U19.5 was taken to be 20 knots.

In order to generate wave disturbances, i.i.d. uniformly distributed random numbers
with maximum magnitude 1 are passed through a filter having the same power
spectral density S(f) Using the random uniform input and this filter, a sample wave
time series is plotted in Figure 5.24

 In linear plant, the effect of learning rate and activation function are discussed, this
part is focused on the number of delayed inputs, and also a comparison between
feedforward and externally-recurrent neural network. In all examples learning rate is
set to µ=0.1 and tangent sigmoid is used as activation function.

In first example a feedforward neural network N(4,0),20:1 (xk, xk-1,.., xk-3,) is used to
identify the system. It takes only the input signal, result is showned in Figure 5.25.

 40

The network is not capable of identifying the plant. The number of inputs are
increased in second example that a feedforward neural network N(6,1),20:1(xk, xk-1,.., xk-

5,yk-1) is used for identification. This network is capable to identify the model of the
system. Results are showned in Figure 5.26. The third example is a comparison
between feedforward and externally-recurrent neural network that externally
recurrent neural network, with one delayed output signal from itself, N(6,1),20:1 is
used for identification the plant. Result is showned in Figure 5.27. As shown in
figures, both methods are capable to identify this system if sufficient number of
delayed inputs are given to the system.

Up to now identification of both linear and nonlinear plants are investigated. In next
chapters, these plants are tried to be controlled with FIR filters and neural networks,
than the disturbance is tried to be cancelled.

0 500 1000 1500 2000 2500
-8

-6

-4

-2

0

2

4

6

8

10
Training Results of Plant Identification With FF NN N(4,0):20,1

O
ut

pu
ts

time steps

Plant Model Response
Plant Response

0 500 1000 1500 2000 2500
-15

-10

-5

0

5

10

15
Validation Results of Plant Identification With .FF. NN. N(4,0):20,1

O
ut

pu
ts

time steps

Plant Model Response
Plant Response

Figure 5.25 : Training and Validation Results of Plant Modelling with
Feedforward Neural Network

0 500 1000 1500 2000 2500
-10

-5

0

5

10

15
Training Results of Plant Identification With FF. NN N(6,1):20,1

O
ut

pu
ts

time steps

Plant Model Response
Plant Response

0 500 1000 1500 2000 2500
-8

-6

-4

-2

0

2

4

6

8
Validation Results of Plant Identification With FF. N(6,1):20,1

O
ut

pu
ts

time steps

Plant Model Response
Plant Response

Figure 5.26 : Training and Validation Results of Plant Modelling with
Feedforward Neural Network with more inputs.

 41

0 500 1000 1500 2000 2500
-8

-6

-4

-2

0

2

4

6

8

10
Training Results of Plant Identification With Ex.Rec.NN N(6,1):20,1

O
ut

pu
ts

time steps

Plant Model Response
Plant Response

0 500 1000 1500 2000 2500
-8

-6

-4

-2

0

2

4

6

8

10
Validation Results of Plant Identification With Ex.Rec.NN. N(6,1):20,1

O
ut

pu
ts

time steps

Plant Model Response
Plant Response

Figure 5.27 Training Results and Validation Results of Plant Modelling with
Externally Recurrent Neural Network

 42

6 ADAPTIVE FEEDFORWARD CONTROL

6.1 Introduction

Three filters the plant model P, the controller C, and the disturbance canceller X,
need to be adapt to perform adaptive inverse control on Figure 6.1. How to adapt P to
make a plant model has already been addressed. This chapter presents an algorithm
which may be used to train C to perform constrained model-reference based control
of a linear or nonlinear plant.

Figure 6.1 : Adaptive Inverse Control

This chapter is organized into two parts. The first part develops an algorithm to train
a controller to perform constrained control, and discusses an efficient
implementation. The second part presents results from simulations for the plants.

Optimal controller is a controller which minimizes the mean-squared system error.
Due to constraints on its architecture, controller may not achieve this level of
performance. For example, the controller is restricted to be a linear system, or to be
causal, so it may be said the “optimal controller” as being the one which minimizes
the mean-squared system error while satisfying the architecture constraints. Note
that; the optimal solution for a linear system is the Wiener solution is known from
Chapter 3

 43

6.2 Constrained Controller via BPTM Algorithm

This part presents an algorithm, which trains a controller to perform constrained
model-reference based control of a linear or nonlinear plant. A key hurdle which
must be overcome by the algorithm is to find a mechanism for converting the system
error to an adaptation signal used to adjust C. We need some functional block which
uses the system error and some form of plant state information to compute the
controller error. This block is denoted as “?” in Figure 6.2

Figure 6.2 : Adaptive Inverse Control

This functional block must describe an algorithm which also satisfies the following
design criteria:

• The algorithm must work with linear and nonlinear plants.

• The algorithm must not be biased by disturbances.

• The algorithm must work for autoregressive implementations of P
∧

 and C.

• The algorithm must minimize a cost function of the system error and the
control effort.

Figure 6.3 shows the general framework to be used. Rather than manipulating the
block diagram to generate an indirect error signal with which to adapt C, the system
error signal is used directly. It is back-propagated through the plant model, and used
to adapt the controller. For this reason, the algorithm is named “Backpropagation
Through (Plant) Model” (BPTM).[31]

 44

Figure 6.3 : Structure Diagram Illustrating BPTM Method

The aim is to train the controller C, to minimize the squared system error over a
certain trajectory and to simultaneously minimize some function of the control effort.
The system is run for K time steps. At the end of the K time steps, the following sum
is computed

(){ }∑
=

−−+=
K

j
rjjj

Tsys
jk

Tsys
jkK uuuhQeeJ

0
1

)()(,,, (6.1)

The function h(.) which can be differentiable, defines the cost function associated
directly with the control signal uk , and is used to penalize excessive control effort,
slew rate and so forth. The system error is the signal ()sys

k k ke d y= − , and the

symmetric matrix Q is a weighting matrix which assigns different performance
objectives to each plant output. To minimize the system error over a trajectory of
length K and simultaneously minimize a function of the control effort, we must
minimize the function Jk

In this approach the weighs of controller is not adapted in real time. Time is divided
into epochs of K time samples in length, and adaptation of the controller weights is
performed at the end of each epoch. In this work, a real-time approach was preferred.
Therefore, the same trick is employed as used in [46, 31]. The cost matrix JK is
stochastically approximated at each time step as

(){ }rjjj

Tsys
jk

Tsys
jkK uuuhQeeJ −−+= ,,, 1

)()((6.2)

The gradients of the approximate cost function Jk are not the same as the gradients
found for the true cost function JK . Therefore, adaptation is a “noisy” process. In

 45

practice, however, it works well. Continuing, if we let g(.) be the function
implemented by the controller C, and f(.) be the function implemented by the plant

model P
∧

, we can state without loss of generality

),,,,,,,(121 Wrrruuugu qkkkmkkkk −−−−−= (6.3)

1 2 1(, , , , , ,)k k k k n k k k py f y u u u u u− − − − −= (6.4)

where W are the adjustable parameters (weights) of the controller. As is typical for
LMS and backpropagation-like learning methods, the controller weights are updated
in the direction of the negative gradient of the cost functional

k
T

k J
W

W
∂
∂

−=∆
+

µ (6.5)

(){ }() ()
1, , ,sys T sys T

jk jk j j j re Qe h u u u
W

µ
+

− −

∂
= − +

∂

where µ is the adaptive learning rate. The adaptation algorithm is derived as

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∆ ∑

=

−
+

−

−
+ r

j

jk

T

jk

rkkkT
k

T
k

W
u

u
uuh

W
yQeW

0

,),,(2
µ

 (6.6)

Using Equation 6.3 and 6.4 and the chain rule for ordered derivatives, two further
substitutions may be made at this time

∑
=

−
+

−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂
∂ r

j

jk

jk

kkk

W
u

u
u

W
u

W
u

0
 (6.7)

∑∑
=

−
+

−=

−
+

−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
∂
∂ n

j

jk

jk

k
p

j

jk

jk

kk

W
y

y
y

W
u

u
y

W
y

10
 (6.8)

Dimension of each term in Eqs. (6.6), (6.7), and (6.8) are (if the plant has Ni inputs
and No outputs, and the controller has NW weights)

NiNijk

k

NiNojk

k

NijkNoNojk

k

NwN

k

NN

k

u
u

u
y

u
h

y
y

W
y

W
u

oWi ×−×−×−×−×

+

×

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

1

(.)

 46

Also

[] [] [] [] []1 1 1 1o o W
k k kN N N Ni No No

Q W u e y
× × × × ×

6.2.1 Linear FIR Plant Model, Linear FIR Controller

General update rules are obtained up to now. These rules are specialized for linear
plants at this section. Any stable linear plant and linear controller may be
approximated with arbitrary precision by FIR filters. In this section the plant model
and the controller are assumed to be FIR. The input to the controller filter is a
tapped-delay-line of q+1 vectors, each of length No. This composite vector, at time
k, to be

[]TT
qk

T
k

T
kk rrrR −−

∆

= ,....., 1 (6.9)

It was noted that the plant has Ni inputs. Therefore, the controller will have Ni
different linear filters operating on Rk to produce the control signal uk. Let TW1 be the
first such filter, 2

TW be the second, and so on.

These filters may organized into a matrix CW such that

[]TNiC WWWW ,.....21= (6.10)

Then,

kCk RWu = (6.11)

However, for adapting all the weight values of the controller it is useful to define the
column vector of weights to be

[]TT
Ni

TT WWWW ,....., 21= (6.12)

 47

It should be noted that CW is a matrix while W is a vector; both W and CW contains

identical information. One is rearrangement of the other. We wish to adapt the values

in W to optimize Jk.

The input vector of the plant and plant model is;

[]TT
pk

T
k

T
kk uuuU −−

∆

= ,....., 1 (6.13)

The plant model output can be computed as,

k
p

k UWy ∧= (6.14)

In order to compute Equation (6.6), three quantities () k jh u −∂ ⋅ ∂ , ku W+∂ ∂ ,

ky W+∂ ∂ ,should be calculated

The () k jh u −∂ ⋅ ∂ can be calculated by a used-specified function h(.) as below

TT

rk

T

k

T

k
k u

h
u
h

u
hdH

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

⋅∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

⋅∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

⋅∂
=

−−

∆)()()(

1

 (6.15)

The second term ku W+∂ ∂ is calculated as below since the controller is assumed to

be FIR

W
u

W
u kk

∂
∂

=
∂
∂+

 (6.16)

From the definition of uk in Equation (6.3) ku W∂ ∂ is computed as

 48

{ }
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==
∂
∂

T
k

T
k

T
k

T
k

T
k

T
k

k

R

R
R

RRRdiag
W
u

00

00
00

...., (6.17)

The last term ky W+∂ ∂ , as expanded in Equation (6.8) may be simplified as

0

p
k jk k

j k j

uy y
W u W

++
−

= −

∂∂ ∂
=

∂ ∂ ∂∑ (6.18)

In this summation there are two terms, the first term k k jy u −∂ ∂ is equal to the
p

W∧

associated with the input k ju −∂ , the second term k ju W+
−∂ ∂ is calculated for this

time step and previous p time steps. If two of them are put it together,
TT

pk
T

k
T

k
k W

u
W

u
W
u

dU
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= −−
∆

1 (6.19)

So Equation (6.18) computed as,

k
p

k dUW
W
y

∧=
∂
∂+

 (6.19)

If all of them are put it together Equation(6.6) can be specialized for linear plants as

T

k
T

k
p

T
kk dUdHWW ⎟

⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ −=∆ ∧ϑεµ 2 (6.20)

 49

6.2.2 Nonlinear NARX Plant Model, Nonlinear NARX Controller

The dynamical behaviour of most nonlinear systems may not be approximated by a
nonlinear transversal model very well. Whereas for the linear plant we had some
freedom to choose the structure of the plant model, here we need to restrict ourselves
to a single paradigm. The BPTM algorithm, for a linear plant, was able to compute
the impulse response of the plant model, regardless of the structure of the model, and
use that to update the controller.

It is assumed that NARX neural network filters are used for both the plant model and
the controller. Such filters are capable of controlling any (controllable) nonlinear
system with acceptable accuracy. It is desired to compute the weight-update ∆Wk of
Equation. (6.6). Linear deviation of the terms are differ in nonlinear case, the terms,
Equations (6.7) and (6.8), are repeated here for convenience

∑
=

−
+

−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂
∂ m

j

jk

jk

kkk

W
u

u
u

W
u

W
u

0

 (6.7)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
∂
∂ −

+

= −=

−
+

−

+

∑∑ W
y

y
y

W
u

u
y

W
y jk

n

j jk

k
p

j

jk

jk

kk

10
 (6.8)

The terms which are needed to be computed each iteration are

W
uk

∂
∂

jk

k

u
u

−∂
∂

jk

k

u
y

−∂
∂

 and
jk

k

y
y

−∂
∂

The first term, ku W∂ ∂ has the direct effect of the controller weights on the

controller output, the other terms have effect of the inputs of the controller and plant

model. All terms are Jacobian matrices and are very simple to calculate for any

neural network, using the backpropagation algorithm.

 50

The term of ku W+∂ ∂ Equation (6.7) is computed by determining the values of

ku W∂ ∂ and k k ju u −∂ ∂ . These are found by back-propagating unit vectors iv e
∧

=

through the controller neural network by using Equations. (4.9) and (4.11).

 To compute the term ky W+∂ ∂ of Equation (6.8), it is needed to know k k jy u −∂ ∂

and k k jy y −∂ ∂ , which are found by back-propagating unit vectors iv e
∧

= through the

plant-model neural network and using Equation (4.9). A practical implementation is

realized to compact the notation into a collection of matrices as before. The

definitions of dUk and dHk remain unchanged from Equations. (6.19), and (6.15).

Furthermore, it is defined

TT

nk
T

k
T

k
k W

y
W

y
W

y
dY

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= −
+

−−
∆

21 (6.21)

TT

pk

k

T

k

k

T

k

k
kU y

y
u
y

u
y

Y
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=∂
−−

∆

1

 (6.22)

TT

nk

k

T

k

k

T

k

k
kY y

y
y
y

y
y

Y
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=∂
−−−

∆

21

 (6.23)

TT

pk

k

T

k

k

T

k

k
kU u

u
u
u

u
u

U
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=∂
−−−

∆

21

 (6.24)

6.3 Simulation Examples

We have seen some analytic results pertaining to constrained control, and an
algorithm for adapting a controller to perform constrained control. This final section
presents a number of simulation examples to demonstrate the algorithm just
developed.

 51

6.3.1 Linear Plant

The first example is for the minimum-phase tank of Section.5.3.1. Equation (5.15) is
the difference equation specifying the dynamics of the plant. For all simulations, the
input source is as Equation (6.25) which has frequency 0.02 Hz.

20.05 0.12sin()
5k

ku π
= + (6.25)

When constraints on the control effort were considered, the control signal uk was
restricted to be between 0ºC and 0.1ºC. The controller was a four-tap FIR filter. It
appears to be a hard limit on the control signal. The actual equation governing the
penalty function is

2

2

0.1() , if < 0;
0.01

0.1() () , if > 0.1;
0.01

0, otherwhise.

k
k

k
k k

u u

uh u u

−⎧
⎪
⎪

+⎪= ⎨
⎪
⎪
⎪⎩

 (6.26)

Simulations were performed to determine the controller with and without constraints
on the control effort, also plant identification is performed during simulations.
Figure 6.4 and Figure 6.5 show the tracking performance of the unconstrained and
constrained controllers for identical input signals for last 100 time steps. The red line
shows the discrete-time output of the plant, governing the plant output. The black
line shows the FIR(20,0) filter output and the green line shows the desired response
of the plant output. System Error and Model Error for both algorithms, are also
plotted with dark blue and light blue lines respectively in whole simulation time in
Figure 6.6 and 6.7 for the 200 time steps

0 20 40 60 80 100 120
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Linear Plant Constrained Control with Identification

fu
nc

tio
n

time

Plant Output
Plant Model Output
System Error
Modelling Error
Desired Output

Figure 6.4 : Constrained Control Effort

 52

Figure 6.5 : Unconstrained Control Effort

0 50 100 150 200 250 300
-0.15

-0.1

-0.05

0

0.05

0.1
Linear Plant Constrained Control Error Values

E
rro

r V
al

ue
s

time

System Error
Modelling Error

Figure 6.6 : Modelling and System Error Values of Constrained Control

0 50 100 150 200 250 300
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
Linear Plant Unconstrained Control Error Values

E
rro

r V
al

ue
s

time

System Error
Modelling Error

Figure 6.7 : Modelling and System Error Values of Uncon strained Control

0 20 40 60 80 100 120

-0.1
-0.05
0
0.05
0.1
0.15
0.2

Plant Output

System Error

Desired Output

0.25
Modelling Error

 53

6.3.2 Nonlinear Plant

The goal was to control the heading angle of a large ocean going ship (Section.

3.3.1), with constraints on the maximum rudder angle and the rate-of-change of the

rudder angle. In this example constraints were built into the dynamics of the ship,

and thus no external penalty function was used to adapt the controller to perform

constrained control. This method worked very well, and guaranteed that the

constraints would be met, regardless of the control input signal.

It is not recommended for linear plants because it implicitly causes the plant

dynamics to become nonlinear, and thus a linear plant model is no longer feasible

and a linear controller will no longer work well. [31]

0 500 1000 1500 2000 2500
-15

-10

-5

0

5

10

15
Training Results of Plant Control With FF NN N(6,1):20,1

O
ut

pu
ts

time steps

Plant Response
Desired Response

Figure 6.8 Constrained Control of Plant with FF NN

The ship was commanded to track a first-order Markov process which generated the

desired heading angle. The Markov process had a pole at z= 0.99 and was fed by

i.i.d. uniform random numbers with maximum magnitude 1. A feedforward

N(6,1):20:1 , (xk, xk-1,.., xk-19,yk-1) controller was trained to control the ship. The red

line is the desired heading angle, and the blue line is the actual heading angle as a

function of time. This plant is nonminimum-phase. The meaning of “nonminimum-

phase” in the context of nonlinear control is that a stable, causal inverse does not

exist. We must use a delay in the reference model in order to provide good control.

 54

0 500 1000 1500 2000 2500
-15

-10

-5

0

5

10

15

20
Training Results of Plant Control Under Disturbance with FF. NN N(6,1):20,1

O
ut

pu
ts

time steps

Plant Response
Desired

Figure 6.9 Constrained Control of Plant with FF NN

As showned a feedforward controller is trained and a good performance is achieved

with this controller. The disturbance effect is not taken into account in this example.

The effect of disturbance defined in Section 5.3.2 is added to the system, and the

controller is tried to be control the system. As shown in Figure 6.9 controller is not

efficiently capable of controlling the plant. The disturbance effect is increased, in

third example, the maximum magnitude of the uniform numbers are changed to 6.

As shown in Figure 6.10, the neural network is not capable to control the plant. The

disturbance should be cancelled, which will describe in Chapter 7.

0 500 1000 1500 2000 2500
-15

-10

-5

0

5

10

15
Training Results of Plant Control Under Disturbance with FF. NN N(6,1):20,1

O
ut

pu
ts

time steps

Plant Response
Desired

Figure 6.10: Constrained Control of Plant under Disturbance Effect

6.3.3 Summary

This chapter has two divisions. The first derives an algorithm to perform constrained

control in the adaptive inverse control paradigm; and the second demonstrates this

 55

algorithm with examples. It was shown analytically, and verified with simulations,

that precision of control comes at the cost of high control effort. If very precise

control is desired, the actuator signals are very large. Problems with large control

effort include (1) The actuator may not be able to respond to the control command

due to its physical design, thus causing degradation in the control which is not

accounted for in the design; and (2) The actuator or the system being controlled may

be damaged by excessive control effort. Since this is a significant problem, a method

is devised to perform adaptive inverse control with constraints on the control effort.

The controller is adapted such that the mean-squared system error is minimized

under the constraint. Simulations have shown that this works very well.

If the plant is nonminimum-phase, its inverse does not exist. However, if a delay in
the control action is acceptable, then a “delayed inverse” does exist, and very precise
control can be performed. Choosing the correct delay is a significant design issue.
The overall conclusion is that very good feedforward control may be achieved, when
there is no disturbance, if a disturbance effect is added to the system. The constrained
control may not capable to control the system, so a disturbance canceller should be
introduced to achieve a good performance.

 56

7 DISTURBANCE CANCELLING

7.1 Introduction

A disturbance-free dynamical system may be controlled with a feedforward adaptive
controller. The plant output tracks the desired output as closely as possible in a
mean-squared-error sense. It remains to determine what can be done to mitigate plant
disturbance should it be present.

Analysis is done on an alternate technique, which is optimal for linear systems, but
slightly sub-optimal for nonlinear systems. Method for adapting the disturbance
canceller is introduced, and simulations are presented.

7.1.1 Structure of the Disturbance Canceller

This section of analysis concerns itself with the mathematical function that the
disturbance cancelling circuit must compute. A little careful thought in this direction
leads to a great deal of insight, and some surprising conclusions are reached. First,
we must consider some issues of timing which arise since we are performing
discrete-time control. Then investigate the function of the disturbance canceller.

Issues of Timing

A discrete-time digital controller is implemented for the type of adaptive inverse
control examined in this thesis. Due to the discrete-time nature of the control scheme,
a subtle issue arises which is not present in continuous-time control systems.
Consider the timing diagram in Figure. 7.1

Suppose sampling rate of the system is equal to 1/T samples per second, then the
discrete-time/continuous-time correspondence is: t=kT seconds, where t is the
physical time in seconds and k is the discrete-time index. The kth command to the
plant uk takes place at t=kT, and the kth plant output yk is sampled in the
neighbourhood of t=kT seconds. More precisely, supposing that the plant might not
be strictly proper, yk must be measured at time ()t kT += seconds. [31]

 57

Figure 7.1 : Input Output Timing of a Discrete-Time Control System

The command input to the plant uk takes finite time to compute, so rk must be
supplied at ()t kT −= seconds to be able to compute the disturbance-cancelling signal

uk in time. We must also be able to compute
~

ku slightly before time t=kT. This brings

us to the important point: To cancel disturbance, there must have an estimate of wk

A useful way of looking the overall system is drawn in Figure 7.2. Using operator
notation, we restate that the control goal is for X to produce an output so

that ()k ky M r
→

= . We can express yk as

()1ˆ() (,)k k k k ky w P C r X w u−= + + (7.1)

The dashed line in the Figure 7.2 shows that X takes the optional signal uk. This
signal is used when controlling nonlinear plants as it allows the disturbance canceller
some knowledge of the plant state.

Figure 7.2 : A Useful way of Looking at Feedforward System Dynamics

 58

Next ()k ky M r
→

= is substituted and the desired response of X is rearranged and solved

as

()() 1
1ˆ ˆ(,) () ()opt

k k kX w u P M r w C r−
− = − −

 ()1 ˆ()k k kP P u w u−= − −

The controller has adapted until () ()k kP u M r
→ →

= . The function of X is a deterministic

combination of known (by adaptation) elements P and 1P− , but also of the unknown
signal kw . Because of the inherent delay in discrete-time systems, we only know

1kw − at any time, so kw must be estimated from previous samples of 1kw − , 2kw − ,..

Assuming that the adaptive plant model is perfect and that the controller has been
adapted to convergence, the internal structure of X is then shown in Figure 7.3. The

kw signal is computed by estimating its value from previous samples of kw
∧

 . These

are combined and passed through the plant inverse to compute the desired signal
~

ku

Figure 7.3 : Internal Structure of X

The disturbance canceller contains two parts. The first part is an estimator part which
depends on the dynamics of the disturbance source. The second part is the canceller
part which depends on the dynamics of the plant. The diagram simplifies for a linear
plant since some of the circuitry cancels. Figure 7.4 shows the structure of X for a
linear plant.

One very important point to notice is that the disturbance canceller still depends on
both the disturbance dynamics and the plant dynamics. If the process generating the

 59

disturbance is not generated by filtering white noise using a linear filter, then the
estimator required will in general be a nonlinear function.

Figure 7.4 : Internal Structure of X if the Plant is Linear

7.2 Synthesis of the Disturbance Canceller via the BPTM Algorithm

How a disturbance cancelling filter can be inserted into the control-system design
was discussed in first part. This, the second part of our discussion on disturbance
cancelling, describes a method to adapt the disturbance cancelling filter.

7.2.1 Training X In-Place

The method works on the following basis. As the system error is composed of three
parts:

• The first part of the system error is dependent on the input command vector

kr
→

 in C. This part of the system error is reduced by adapting C.

• The second part of the system error is dependent on the estimated disturbance

vector kw
∧

 in X. This part of the system error is reduced by adapting X.

• The third part is the minimum-mean-squared-error. This part of the system
error is independent of both the input command vector in C and the estimate
disturbance vector in X. It is either irreducible (if the system dynamics
prohibit improvement), or may be reduced by making the tapped delay lines
at the input to X or C larger. In any case, adaptation of the weights in X or C
will not reduce the minimum-mean-squared-error.

 60

• The fourth possible part of the system error is the part which is dependent on
both the input command vector and the disturbance vector. However, by
assumption, kr and kw are independent, so this part of the system error is zero.

The system error is reduced by using the BPTM algorithm adapting C, as discussed
in Chapter 5; hence the component of the system error dependent on the input kr is

reduced. Since the disturbance and minimum-mean-squared-error are independent
of kr , their presence will not bias the solution of C. The controller will learn to

control the feedforward dynamics of the system, but not to cancel disturbance.

If BPTM algorithm is used and system error backpropagated through the plant
model, it is used to adapt X as well, the disturbance canceller would learn to reduce
the component of the system error dependent on the estimated disturbance signal.
The component of the system error due to unconverged C and minimum-mean-
squared-error will not bias the disturbance canceller. This method is illustrated in
Figure 7.5 where a complete integrated nonlinear control system is drawn. The plant
model is adapted directly, as before. The controller is adapted by backpropagating
the system error through the plant model and using the BPTM algorithm of Chapter
6.

The disturbance canceller is adapted by backpropagating the system error through the
copy of the plant model and using the BPTM algorithm as well. The BPTM
algorithm serves two functions: it is able to adapt both C and X. Using BPTM to
adapt X works well for either linear or nonlinear systems.

7.3 Simulation Examples

Some analytical results were discussed, related to disturbance cancelling. It is time to
present some simulation results for the plants of Chapter 5 in order to verify the
analytical results of this chapter and to demonstrate the viability of the disturbance
cancelling method.

7.3.1 Linear Plant

The first example is the minimum-phase tank of Section 5.3.1. We have already seen
(cf. Chapter 6) simulation results showing that this plant may be very effectively
controlled in a feedforward sense using either a linear FIR or nonlinear NARX filter
as a controller.

 61

Figure 7.5 : Disturbace Cancelling via X-In Place

Controllers were adapted to perform either unconstrained control, or control where
the control effort was limited to be between 0ºC and 0.1ºC. We now look at the
problem of disturbance cancelling. The disturbance experienced by this plant was
specified to be fluctuation in the temperature of the hot source that the disturbance is
statistically dependent on the control signal. However, it can be shown that the
disturbance is not correlated with uk, and so the plant model will adapt to an unbiased
solution, despite the disturbance.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10-3

time steps

O
ut

pu
ts

Disturbance graph of linear plant

Figure 7.6 Disturbance Graph of Linear Plant

 62

Another interesting feature of this disturbance is that it is a nonlinear random
process. That is, the least mean-squared-error predictor of the current disturbance
value given all previous disturbance values is a nonlinear function. We will find that
the disturbance cancelling filter X, which gives good performance is therefore a
nonlinear NARX filter.

Simulation was performed to adapt disturbance cancelling filter X . There were no
constraints on the control effort. In the plots the system was run for 2500 seconds
with the disturbance canceller turned off. Then, the disturbance canceller was turned
on and the system was allowed to run for an additional 2500 seconds. The
disturbance cancelling filter X was adapted to convergence for first 2500 seconds
during simulation was performed.

The disturbance cancelling filter X was a sixty-tap FIR filter whose input was the

estimate of the disturbance 1kw
∧

− . It adapts to the solution shown in Figure 7.6. The

solution comprises a three-step-ahead estimator (due to the inherent two-step delay in
the plant, and the one-step delay in the disturbance measurement process) convolved
with a delayed plant inverse.

7.3.2 Nonlinear Plant

Simulations were also performed to demonstrate disturbance cancelling for the
nonlinear plant of Section 5.3.2. The reader may recall that the nonlinear plant was
selected to be a large ocean-going ship for which we would like to control the
heading angle. The plant was initially unstable, and was stabilized using feedback.
Simple unity feedback was used to stabilize the ship. This feedback has two effects.
Most importantly, it stabilizes the system dynamics. Secondly, however, it also
performs some disturbance rejection. The feedback works in such a way that the
input command is modified to cancel any error in the output, and this error can
include disturbance. Therefore, we find that the results for disturbance cancelling for
the nonlinear plants are not as spectacular as the results for the linear plants. The
reason for this is; the system error with disturbance and without disturbance are not
very different. The disturbance canceller, NN(60, 1),60,1, , (xk, xk-1,.., xk-59,yk-1) improves
upon the system error with disturbance, but the difference is so small that the
disturbance canceller may be considered unnecessary for these plants. The graph of
disturbance is showned on Figure 7.9. The system was run for 2500 seconds with the
disturbance canceller turned off. Then, the disturbance canceller was turned on and
the system was allowed to run for an additional 2500 seconds. The disturbance

 63

cancelling filter X was adapted to convergence for first 2500 seconds during
simulation was performed.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Disturbance Graph

time steps

O
ut

pu
ts

Figure 7-9: The Graph of Disturbance

7.3.3 Summary

This chapter discusses disturbance cancelling for linear and nonlinear, plants. It is
organized into two main divisions. The first division presents method to adapt a
disturbance canceller; and the third division presents results to verify the analysis and
the disturbance cancelling algorithm.

The method works for linear and nonlinear plants, and uses the BPTM algorithm
developed in Chapter 4 to adapt the disturbance canceller weights. The second
division of the chapter presented simulations to verify the analytical results and the
disturbance cancelling algorithms. Simulations were performed to test disturbance
cancelling for all of the plants introduced in Chapter 5, with the conclusion that
better performance was always obtained using the disturbance canceller. The overall
conclusion is that extremely good disturbance cancelling may be achieved.

 64

8 SUMMARY

The problem of controlling a plant may be separated into three separate tasks:
stabilization of the plant dynamics; control of plant dynamics; and control of plant
disturbance. Conventional control techniques treat all three problems simultaneously.
Compromises are necessary to achieve good solutions.

Adaptive inverse control is a method to achieve two tasks separately. First, the plant
is stabilized, using conventional methods, secondly, the plant is controlled using a
feedforward controller; thirdly, a disturbance canceller is used to reject plant
disturbances. Adaptive filters are used as controller and disturbance canceller.

8.1 Constrained Adaptive Feedforward Control

It is assumed that the plant is stable. If it is not stable, it must first be stabilized using
conventional feedback. Adaptive inverse control is used to control the stabilized
plant.

Next task is to make an adaptive plant model. This process was briefly outlined in
Chapter 5. It is assumed that the adaptive plant modelling task continues while the
plant is operating, so that any time-variations in the plant dynamics are learned, and
so that the controller learns to control the plant as it varies. Thirdly, it is needed to
train a feedforward controller for the plant. This task is well understood for SISO
linear plants [45] and has been studied for nonlinear plants [2]. In this thesis, the aim
is to satisfy constraints on the control effort. Precision of control comes at the cost of
high control effort. If very precise control is desired, the actuator signals are very
important. Problems with control effort include (1) The actuator do not respond to
the control command due to its physical design and (2) The actuator or the system
being controlled is damaged by excessive control effort. Since this is a significant
problem, a method is devised to perform adaptive inverse control with constraints on
the control effort.

A gradient-descent based algorithm was used to update the weights of the controller.
The algorithm allows separate implementation of the adaptive controller and plant

 65

model; only local information is needed for the weight update. Very general user-
specified constraints on the control effort may be satisfied. Simulation results show
that very good performance may be achieved.

If the plant is nonminimum-phase, its inverse does not exist however a “delayed
inverse” does exist..

8.2 Disturbance Cancelling

The plant output will track the desired output if there is no disturbance. If there is
disturbance, then the plant output will track a signal which is equal to the desired
output plus the disturbance. For this reason, a disturbance rejection method is
required.

Instead of closing the loop directly, an adaptive filter is trained to perform
disturbance cancelling. This method does not bias the plant model if the plant is
linear, but does bias the model somewhat if the plant is nonlinear.

The function performed by this disturbance-cancelling filter has two parts. The first
part estimates the current disturbance value given past disturbances; the second
computes a signal to cancel the disturbance.

The algorithm developed to adapt a feedforward controller also used to adapt the
disturbance canceller. This is a great boon to the system designer—only one
algorithm needs to be coded! Simulation results show that disturbance cancelling
works very well for linear, and good for nonlinear, plants.

 66

BIBLIOGRAPHY

[1] Astrom, K.J. and Wittenmark, B., 1995 Adaptive Control. Addison-Wesley,
Reading, MA, second edition.

[2] Bilello, M. 1996 Nonlinear Adaptive Inverse Control. PhD thesis, Stanford
University, Stanford, CA.

[3] Boyd, S.P., 1991 Linear controller design: Limits of performance. Prentice Hall,
Englewood Cliffs, NJ.

[4] Carbonell, D., 1996 Neural Networks Based Nonlinear Adaptive Inverse Control
Algorithms. Thesis for the Engineer degree, Stanford University,
Stanford, CA.

[5] Economou, C.G. and Morari, M., 1986 Internal model control. 5. Extension to
nonlinear systems. Industrial and Engineering Chemistry Process
Design and Development, 25(2):403–11.

[6] Economou, C.G. and Morari, M. 1986 Internal model control. 6. Multiloop
design. Industrial and Engineering Chemistry Process Design and
Development, 25(2):411–19

[7] Franklin, G. F., Powell, J.D. and Emami-Naeini, A., 1994 Feedback Control
of Dynamic Systems. Addison-Wesley, Reading, MA, third edition.

[8] Franklin, G. F., Powell, J.D. and Workman M. L., 1990. Digital Control of
Dynamic Systems. Addison-Wesley, Reading, MA, second edition.

[9] Garcia, C. E. and Morari. M. Internal model control. 1982. 1. A unifying
review and some new results. Industrial and Engineering Chemistry
Process Design and Development, 21(2):308–23.

[10] Garcia, C.E. and Morari, M. Internal model control. 1985. 2. Design
procedure for multivariable systems. Industrial and Engineering
Chemistry Process Design and Development, 24(2):472– 84.

 67

[11] Garcia, C.E. and Morari, M., Internal model control.1985 3. Multivariable
control law computation and tuning guidelines. Industrial and
Engineering Chemistry Process Design and Development, 24(2):484–
94.

[12] Gazit, R. Neural control of a multi-link robot arm. Project report for Stanford
University class “EE373A,B”, June 1994.

[13] Gersho, A. And Gray, R.M. 1992. Vector Quantization and Signal
Compression. Kluwer Academic Publishers, Boston, MA.

[14] Grace, A., Laub, A.J., Little, J.N. and Thompson, C. M., 1992.Control
System Toolbox for use with MATLAB. The Math Works Inc, Natick,
MA.

[15] Gren, M.,1995. Linear Robust Control. Prentice Hall, Englewood Cliffs, NJ.

[16] Hassibi, B., Sayed, A.H. and Kailath, T., 1996. H1 optimality of the LMS
algorithm. IEEE Transactions on Signal Processing, 44(2):267–80.

[17] Haykin, H., 1996. Adaptive Filter Theory. Prentice Hall, Upper Saddle River,
NJ, third edition.

[18] Hizal, A., 1999. Improved Adaptive Model Control, ARI,51, 181-190.

[19] Kailath, T., 1980. Linear Systems. Prentice Hall, Englewood Cliffs, NJ.

[20] Kaminsky, F.C. Kirchhoff R.H., Syu C.Y., and Manwell J.F., 1991.A
comparison of alternative approaches for the synthetic generation of a
wind speed time series. Transactions of the American Society of
Mechanical Engineers. Journal of Solar Energy Engineering,
113(4):280–89.

[21] Kolmogorov, A.N., 1957. On the representation of continuous functions of
many variables by superposition of continuous functions of one
variable and addition. Dokl. Akad. Nauk USSR, 114:953–56.

[22] Levin, A.U. and Narendra, K.S., 1993. Control of nonlinear dynamical
systems using neural networks: Controllability and stabilization.
IEEE Transactions on Neural Networks, 4(2):192– 206.

 68

[23] Liu, M.C., 1998. Statistical Analysis of Quantization—Extended from
Widrow’s Quantization Theory. PhD thesis, Stanford University,
Stanford, CA.

[24] Ljung, L., 1987. System Identification: Theorey for the user. Prentice Hall,
Englewood Cliffs, NJ.

[25] Murray, R. M. , Li, Z. and Sastry S. S., 1994. A Mathematical Introduction to
Robotic Manipulation. CRC Press, Boca Raton.

[26] Narendra K. S. and Parthasarathy K., 1990. Identification and control of
dynamical systems using neural networks. IEEE Transactions on
Neural Networks, 1(1):4–27.

[27] Nguyen, D., 1991 Applications of Neural Networks in Adaptive Control. PhD
thesis, Stanford University, Stanford, CA.

[28] Oppenheim, A.V. and Schafer, R.W., 1989. Discrete-Time Signal Processing.
Prentice Hall, Englewood Cliffs, NJ.

[29] Parker, D.B., 1982. Learning logic. Technical Report Invention Report S81–64,
File 1, Office of Technology Licencing, Stanford University.

[30] Paulsen, M. J. and Egeland, O., 1996. An output feedback tracking controller
for ships with nonlinear damping terms. Modeling, Identification and
Control, 17(2):97–106.

[31] Plett, G.L. ,1998.Adaptive inverse control of plants with disturbances. PhD
thesis, Stanford University, Stanford, CA.

[32] Puskorius, G.V. and Feldkamp, L.A., Decoupled extended Kalman filter
training of feedforward layered networks. In Proceedings of the 1991
International Joint Conference on Neural Networks (San Diego:
1990), volume II, pages 133–141, New York, 1991. IEEE Neural
Networks Society.

[33] Puskorius, G.V. and Feldkamp, L.A., Recurrent network training with the
decoupled extended Kalman filter algorithm. In Science of Artificial
Neural Networks (Orlando Florida: 21–24 April 1992), volume 1710,
part 2, pages 461–473, New York, 1992. SPIE Proceedings Series.

 69

[34] Rivera, D. E., Morari, M. and Skogestad, S., 1986. Internal model control. 4.
PID controller design. Industrial and Engineering Chemistry Process
Design and Development, 25(1):252–65.

[35] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986. Learning internal
representations by error propagation. Parallel Distributed Processing,
volume 1, chapter 8. The MIT Press, Cambridge, MA.

[36] Siegelmann, H. T., Horne, B. B. and Giles, C. L., 1997. Computational
capabilities of recurrent NARX neural networks. IEEE Transactions
on Systems, Man and Cybernetics—Part B: Cybernetics, 27(2):208–
215.

[37] Touretzky, S. 1988. Advances in Neural Information Processing Systems
(Denver: 1988), pages 133–140, San Mateo, CA.

[38] Slotine, J. E. and Li, W., 1990. Applied Nonlinear Control. Prentice Hall,
Englewood Cliffs, NJ.

[39] Sutton, R. and Jess, I. M., 1991. A design study of a self-organizing fuzzy
autopilot for ship control. Proceedings of the Institution of
Mechanical Engineers. Part I: Journal of Systems and Control
Engineering, 205:35–47.

[40] Overschee, P. and DeMoor, B., 1996. Subspace Identification for Linear
Systems. Kluwer Academic Press, Boston, MA

[41] Werbos, P., 1974. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University,
Cambridge, MA.

[42] Werbos, P., 1988. Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1(4):339–356.

[43] Widrow B. and Lehr, M.A.. ,1990. 30 years of adaptive neural networks:
Perceptron, Madaline, and backpropagation. Proceedings of the IEEE,
78(9):1415–42.

[44] Widrow, B. and Stearns, S.D. 1985. Adaptive Signal Processing. Prentice-
Hall, Englewood Cliffs, NJ.

 70

[45] Widrow, B. and Walach, E., 1996. Adaptive Inverse Control. Prentice Hall P
T R, Upper Saddle River, NJ.

[46] Williams, R. J. and Zipser, D., 1989. Experimental analysis of the real-time
recurrent learning algorithm. Connection Science, 1(1):87–111.

[47] Zhou, K., Doyle, J. C. and Glover K., 1996. Robust and Optimal Control.
Prentice Hall, Englewood Cliffs, NJ.

 71

APPENDIX A

Performance Surface

Linear Combiner is a part of adaptive filter which is illustrated in Figure, is the start
point of adaptive filtering.

 Figure: Adaptive linear combiner

Linear combiner comprises of an input signal vector, weights a summer to add the
weighted signals.

The inputs signal.

[]Tnklkkkk xxxxX ,.....,...., 21=

Weight vector

Σ

Σ

x1k

x2k

xlk

Weigths

 W

Output Signal

•

•

Input Signal

Xk

dk

 Desired Response

εk =dk -yk

Error

yk=WTXk

 72

[]nl
T wwwwW ,.....,...., 21=

The weights assumed to be fixed then the kth output signal vector

WXXWxwy T
kk

T
n

l
lklk ===∑

=1

The error between the desired response dk and kth output signal yk at kth sampling time
is

WXdXWdyd T
kkk

T
kkkk −=−=−=∈

The square of error is

WXXWWXdd T
kk

TT
kkkk +−=∈ 222

The mean square error between the desired response

[] [] [] []WXXEWWXdEdEEMSE T
kk

TT
kkkk +−=∈==

∆

222ξ

The cross correlation matrix P is defined as;

[] P

xd

xd
xd

EXdE

nkk

kk

kk

T
kk

∆

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= 2

1

The input correlation matrix R is defined as;

[] R
xx

xx
xxxx

EXXE

nknk

kk

kkkk
T
kk

∆

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= 12

2111

By writing MSE in terms of P and R

 73

[] RWWWPdE TT
k +−= 22ξ

It can be easily seen that that MSE performance function is quadratic function of the
weights. It is bowl shaped surface and adaptive process continuously adjusts weights
in order to find bottom of the bowl.

The optimal weight vector which minimizes MSE is accomplished by steepest
descent algorithm.

The Gradient and Minimum MSE

Gradients of performance surface may be obtained by differentiating the MSE
function in Equation 2.9 with respect to the weight vector, which is used Steepest
Descent Algorithm.

[]

[]
RWP

w
E

w
E

n

k

k

22
2

1

2

+−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∈∂

∂
∈∂

=∇
∆

Gradient is set to zero in order to find optimal weight vector W*

PRW 1* −=

In Equation it is assumed that R is positive definite and R-1 exists. This solution is
called Wiener solution and the minimum MSE for finite impulse response can be
obtained by substituting W*

[] ***2
min 2 WPRWWdE T

k
T

−+=ξ

[] [] PRPPRRPRdE TT
k

11.12
min 2 −−− −+=ξ

By simplification

[] *2
min WPdE T

k −=ξ

 74

Hence we obtain ;

)()(**
min WWRWW T −−+= ξξ

The Method of Steepest Descent

The method of steepest descent uses negative gradient while updating the weigth
vector.

)(1 kkk WW −∇+=+ µ

k∇ stands fort he gradient at kth iteration, the scalar parameter µ is called the

convergence factor that controls stability and the rate of adaptation. It is necessary to
select convergence factor as below for stability.

max

1
λ

>µ >0

Where maxλ is the eigenvalue of R

The Least Mean Squares (LMS) Algorithm

The Least Mean Squres Algorithm is an implementation of Steepent Descent
Algorithm, where estimation of gradient is used instead of the actual gradient.

The actual gradient

[]
⎥
⎦

⎤
⎢
⎣

⎡
∂
∈∂

=∇
W

E k
2

The estimation of gradient

 75

kk

n

k

k

k

n

k

k

k X

w

w

w

w
∈−=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∂
∈∂

∂
∈∂

∈=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∂
∈∂

∂
∈∂

=∇
∆∧

22
1

2

1

2

 76

APPENDIX B

Linear Plant Identification with FIR Filter

%This function is for Linar Plnat Identification with FIR filter

clc

clear

Ts=1;

H2 = tf(1,[5 1],'inputdelay',1.45)

Hd = c2d(H2,1,'zoh')

n=200;

wn_dm=10;

mu=0.1;

inp_dm=zeros(1,wn_dm);

out_dm=zeros(1,n);

w_dm=zeros(1,wn_dm);

sigma=1e-6;

nLMS=0;

for k=1:1:n

 I(k)=sin(2*pi*k/5);

end

[out_p t]=lsim(Hd,I);

for k=1:n

 inp_dm=[I(k) inp_dm(1:wn_dm-1)];

 out_dm(k)=inp_dm*w_dm';

 e_dm(k)=out_p(k)-out_dm(k);

 77

 if k<100 & k>=170

 mu=0.1;

 end

 if k>170

 mu=0.1;

 end

 if nLMS==1

 w_dm=w_dm+((inp_dm/(sigma +(inp_dm*inp_dm')))*mu*e_dm(k));

 elseif nLMS==0

 w_dm=w_dm+2*mu*inp_dm*e_dm(k);

 end

end

Pdm=filt(w_dm,[1],Ts);

SE=e_dm.^2;

MSE=(abs(e_dm)/length(e_dm)).^2;

%step(Hd,Pdm)

[out_m t]=lsim(Pdm,I);

figure

plot(out_p(1:n), 'r')

hold on

plot(out_m(1:n), 'b')

plot(e_dm(1:n), 'k')

title('Linear Plant Identification')

ylabel('function')

xlabel('time')

h = legend('Plant Output', 'Filter Output' ,'Error',3);

last_error=e_dm(200)

 78

Linear Plant Identification With Feedforward Neural Network

% this function is the main funtion of training Feedforward %Neural Network

clear

clc

global M % train iteration number

global M1 % grafic first model value

global M2 % grafic limit model value

global N % test iteration number

global N1 % grafic first plant value

global N2 % grafic limit plant value

M=200;

M1=1;

M2=M;

N=200;

N1=1;

N2=N;

[P T]=Do_LinearPlanttrain_Data;

[Wij_0 Wjk_0]=LinearPlantweigthleri_Initialize;

[Wij Wjk A]=LinearPlanttrain_Process(Wij_0, Wjk_0, P, T);

[PV TV]=Do_LinearPlanttest_Data;

LinearPlanttest_Process(Wij, Wjk, PV, TV);

%this function is for preparing the train data

function [P T]=Do_LinearPlanttrain_Data;

 79

global M

y(1)=0;

y(2)=0;

y(3)=0;

u(2)=0;

u(1)=0;

for k=4:M+6

 u(k)=sin(2*pi*k/5);

 y(k)=LinearPlant(y(k-1), u(k-2), u(k-3));

end

yp_minus_one =y(6:M+5);

up_minus_two =u(5:M+4);

up_minus_three =u(4:M+3);

yp =y(7:M+6);

 P =[yp_minus_one; up_minus_two; up_minus_three];

T =yp;

%This function initializes Neural Networks Weigths

function [Wij Wjk]=LinearPlantweigthleri_Initialize;

Wij=rand(3,2);

Wjk=rand(2,1);

%This funtion Trains Feedforward Neural Network

function [Wij Wmn A44]=LinearPlanttrain_Process(Wij, Wmn, P, T)

global M

 80

global M1

global M2

mu=0.01;

%mu=0.1;

for k=1:M

 S1=Wij'*P(:,k);

 %A1=tansig(S1);

 S4=Wmn'*A1;

 A4=purelin(S4);

 A44(k)=A4;

 E(k)=T(k)-A4;

 %update weigths

 E4=2*E(k);

 dWmn=mu*A1*E(k)';

 Wmn=Wmn+dWmn;

 %update weigths

 E1=dpurelin(S1,A1).*(Wmn*E4);

 %E1=dtansig(S1,A1).*(Wmn*E4);

 dWij=mu*(P(:,k)*E1');

 Wij=Wij+dWij;

 W11(k)=Wij(1,1);

 Error(k)=(E(k))^2;

end

 81

LinearPlant_Process_Graphics(T, A44, E, P(1,:),'r', 'k', M1, M2, 'Train Results',
'Plant Output', 'Neural Network Output', 'Error', 'Plant Input')

%this function is for preparing the Test datas

function [PV TV]=Do_LinearPlanttest_Data;

global N

ytt(1)=0;

ytt(2)=0;

ytt(3)=0;

utt(2)=0;

utt(1)=0;

for k=4:N+6

 utt(k)=sin(2*pi*k/5);

 ytt(k)=LinearPlant(ytt(k-1), utt(k-2), utt(k-3));

end

yt_minus_one =ytt(6:N+5);

ut_minus_two =utt(5:N+4);

ut_minus_three =utt(4:N+3);

yt =ytt(7:N+6);

PV =[yt_minus_one; ut_minus_two; ut_minus_three];

TV =yt;

% for testing procedure I use the following codes

function LinearPlanttest_Process(Wij, Wmn, PV, TV)

global N

global N1

 82

global N2

for k=1:N

 S1t=Wij'*PV(:,k);

 A1t=purelin(S1t);

 %A1t=tansig(S1t);

 S4t=Wmn'*A1t;

 A4t=purelin(S4t);

 A3333(k)=A4t;

 et(k)=TV(k)-A4t;

 Error(k)=(TV(k)-A4t)^2;

end

LinearPlant_Process_Graphics(TV, A3333, et, PV(1,:),'r', 'k', N1,
N2,'Test(Validation) Results', 'Plant Output', 'Neural Network Output', 'Error', 'Plant
Input')

% to produce actual plant output I use the following codes

function y=LinearPlant(y_1,u_2, u_3);

 y=(0.818*y_1)+(0.1042*u_2)+(0.0771*u_3);

end

% to produce graphs I use the following codes

function LinearPlant_Process_Graphics(T, A,ErrorMSE, u, Tcolor, Acolor, P1, P2,
titleG, POut, NNout,Error, Input)

figure

plot (T(P1:P2), Tcolor));

hold on

plot (A(P1:P2), Acolor)

plot(ErrorMSE(P1:P2))

 83

plot(u(P1:P2), 'g')

title(titleG)

ylabel('outputs')

xlabel('time steps')

h = legend(POut, NNout ,Error,Input, 4);

Linear Plant Identification With Externally Recurrent Neural Network

% The only difference between Externally Recurrent network anf feedforward neural

Network is updating the weigthis here is the code

function [Wij Wmn A44]=LinearPlanttrain_Process(Wij, Wmn, P, T)

global M

global M1

global M2

mu=0.01;

%mu=0.1;

dyk_dyk1(1)=0;

dWmn=[0;0];

dWij=[0 0;0 0;0 0];

for k=2:M

 S1=Wij'*P(:,k);

 A1=tansig(S1);

 S4=Wmn'*A1;

 A4=purelin(S4);

 A44(k)=A4;

 E(k)=T(k)-A4;

 84

 %Calculating Jacobians

 Ek(k)=E(k);

 Ej=dtansig(S1,A1).*Wmn*E(k);

 Ei=Wij*Ej;

 dyk_dyk1(k)=Ei(1);

 %Jacobian W

 dWmn=2*mu*E(k).*(A1+dyk_dyk1(k)*dWmn);

 Wmn=Wmn+dWmn;

 dWij=2*mu*E(k).*(P(:,k)*(Ej/E(k))'+dyk_dyk1(k)*dWij)

 Wij=Wij+dWij;

 Error(k)=(E(k))^2;

end

LinearPlant_Process_Graphics(T, A44, E, P(1,:),'r', 'k', M1, M2, 'Train Results',
'Plant Output', 'Neural Network Output', 'Error', 'Plant Input')

Nonlinear Plant Identification

Figure : Simulink Diagram of Nonlinear Plant Identification

 85

Figure : Simulink Diagrams Subsystem Plant in Nonlinear Plant Identification

Figure : Simulink Diagrams Plant Subsystem1 in Plant in Nonlinear Plant
Identification

Figure : Simulink Diagrams Plant Subsystem2 in Plant in Nonlinear Plant
Identification

%This Function is implements the Rudder Angle Limiter for Nonlinear Ship

function sat_Q=sat1(d_Q);

if (d_Q/35)<-1

 sat_Q=-1;

end

if (d_Q/35)>=-1 & (d_Q/35)<=1

 86

 sat_Q=d_Q;

end

if (d_Q/35)>1

 sat_Q=1;

end

%This Function is implements the Rudder Rate Limiter for Nonlinear Ship

function sat_Q_d=sat2(d_Q_dd);

if (d_Q_dd/3)<-1

 sat_Q_d=-1*2;

end

if (d_Q_dd/3)>=-1 & (d_Q_dd/3)<=1

 sat_Q_d=d_Q_dd;

end

if (d_Q_dd/3)>1

 sat_Q_d=1*2;

end

 %This Function is for identification of Nonlinear Ship

function [A4]=NlPlant_Ide(u, y,);

global k

global t

global u_

global y_

global Wij

global Wmn

global A44

 87

t=int64(k*5);

if t<3

 u_(1,:)=0;

 y_(1,:)=0;

 u_(2,:)=0;

 y_(2,:)=0;

 Error=ones(1,127);

 A44=0;

 Wij=rand(5,2);

 Wmn=rand(2,1);

end

if t>=3

 u_(1,:)=0;

 y_(1,:)=0;

 u_(2,:)=0;

 y_(2,:)=0;

 u_(t,:)=u;

 y_(t,:)=y;

 P=[y_(t-2,:) ;y_(t-1,:); u_(t,:); u_(t-1,:) ;u_(t-2,:)];

 mu=0.01;

 S1=Wij'*P;

 A1=tansig(S1);

 S4=Wmn'*A1;

 A4=purelin(S4);

 88

 A44(t)=A4;

 E=y_(t,:)-A4;

 %update weigths

 E4=2*E;

 dWmn=mu*A1*E';

 Wmn=Wmn+dWmn;

 %update weigths

 E1=dtansig(S1,A1).*(Wmn*E4);

 dWij=mu*(P*E1');

 Wij=Wij+dWij;

 W11(t)=Wij(1,1);

 Error(t)=(E)^2;

end

k=k+0.2;

plot(Error)

hold on

end

Linear Plant Control with Contrained control FIR Filter

%this code is used for uncontrained control of linear Plant

clear

 89

clc

n=3000;

n1=n-100;

Wc1=rand(1,3);

Wc2=rand(1,3);

Wc3=rand(1,3);

Wc4=rand(1,3);

Wc=[Wc1; Wc2; Wc3; Wc4];

Wp(6,:)=rand(1,4);

mu_p=0.5;

mu_c=20;

yp(4)=0; yp(5)=0;

yp(3)=0;

yp(2)=0;

yp(1)=0;

r(1)=0.05+(0.12*sin(2*pi*1/5));

r(2)=0.05+(0.12*sin(2*pi*2/5));

r(3)=0.05+(0.12*sin(2*pi*3/5));

r(4)=0.05+(0.12*sin(2*pi*4/5));

r(5)=0.05+(0.12*sin(2*pi*5/5));

yk(3)=0; yk(4)=0; yk(5)=0;

yk(2)=0;

yk(1)=0;

for k=6:n+5

 if k>1000

 mu_p=0.1;

 90

 mu_c=10;

 end

 r(k)=0.05+(0.12*sin(2*pi*k/5));

 R1k(:,:)=[r(k) r(k-1) r(k-2) r(k-3)];

 R2k(:,:)=[r(k-1) r(k-2) r(k-3) r(k-4)];

 R3k(:,:)=[r(k-2) r(k-3) r(k-4) r(k-5)];

 R1(:,:)=[r(k) r(k-1) r(k-2)];

 R2(:,:)=[r(k-1) r(k-2) r(k-3)];

 R3(:,:)=[r(k-2) r(k-3) r(k-4)];

 R4(:,:)=[r(k-3) r(k-4) r(k-5)];

 Rk=[R1; R2; R3; R4]';

 Uk=Wc*Rk;

 U=Uk(4,1:4);

 yk(k)=U*Wp(k,:)';

 yp(k)=0.818*yp(k-1)+0.1042*U(3)+0.0771*U(4);

 d(k)= r(k-3);

 e(k)=yp(k)-yk(k);

 e1(k)=d(k)-yk(k);

 dWp=(2*mu_p*e(k)*U);

 Wp(k+1,:)= Wp(k,:)+dWp;

 dWc1= 2*mu_c*e1(k)*(Wp(k,:).*R1k);

 dWc2= 2*mu_c*e1(k)*(Wp(k-1,:).*R2k);

 dWc3= 2*mu_c*e1(k)*(Wp(k-2,:).*R3k);

 dWc=[dWc1;dWc2;dWc3]';

 91

 Wc=Wc+dWc;

end

figure

plot(yp(n1:n), 'r')

hold on

plot(yk(n1:n),'k')

plot(e1(n1:n),'b')

plot(e(n1:n),'c')

plot(d(n1:n),'g')

title('Linear Plant Control with Identification')

ylabel('function')

xlabel('time')

legend('Plant Output', 'Plant Model Output' ,'System Error','Modelling Error
','Desired Output',5);

Linear Plant Control with Contrained control FIR Filter

%this code is used for contrained control of linear Plant

clear

clc

n=1000;

n1=n-100;

Wc1=rand(1,3);

Wc2=rand(1,3);

Wc3=rand(1,3);

Wc4=rand(1,3);

Wc=[Wc1; Wc2; Wc3; Wc4];

Wp(6,:)=rand(1,4);

 92

mu_p=0.05;

mu_c=20;

yp(4)=0; yp(5)=0;

yp(3)=0;

yp(2)=0;

yp(1)=0;

r(1)=0.05+(0.12*sin(2*pi*1/5));

r(2)=0.05+(0.12*sin(2*pi*2/5));

r(3)=0.05+(0.12*sin(2*pi*3/5));

r(4)=0.05+(0.12*sin(2*pi*4/5));

r(5)=0.05+(0.12*sin(2*pi*5/5));

yk(4)=0; yk(5)=0;

yk(3)=0;

yk(2)=0;

for k=6:n+5

 if k>1000

 mu_p=0.1;

 mu_c=0.3;

 end

 if k>3000

 mu_p=0.0001;

 mu_c=0.3;

 end

 r(k)=0.05+(0.12*sin(2*pi*k/5));

 if r(k)<0

 hrk(k)=((r(k)-0.1))^2;

 93

 elseif r(k)>0.1

 hrk(k)=((r(k)+0.1))^2;

 elseif r(k)<0.1&r(k)>0

 hrk(k)=0;

 end

 R1k(:,:)=[r(k) r(k-1) r(k-2) r(k-3)];

 R2k(:,:)=[r(k-1) r(k-2) r(k-3) r(k-4)];

 R3k(:,:)=[r(k-2) r(k-3) r(k-4) r(k-5)];

 R1(:,:)=[r(k) r(k-1) r(k-2)];

 R2(:,:)=[r(k-1) r(k-2) r(k-3)];

 R3(:,:)=[r(k-2) r(k-3) r(k-4)];

 R4(:,:)=[r(k-3) r(k-4) r(k-5)];

 Rk=[R1; R2; R3; R4]';

 Uk=Wc*Rk;

 U=Uk(4,1:4);

 yk(k)=U*Wp(k,:)';

 yp(k)=0.818*yp(k-1)+0.1042*U(3)+0.0771*U(4);

 d(k)= r(k-3);

 e(k)=yp(k)-yk(k);

 e1(k)=d(k)-yk(k);

 94

 dWp=2*mu_p*e(k)*U;

 Wp(k+1,:)= Wp(k,:)+dWp;

 if U(1)<0

 dHk1=2*(((U(1)-0.1)/0.01));

 end

 if U(1)>0.1

 dHk1=2*((U(1)+0.1)/0.01);

 end

 if U(1)<0.1& U(1)>0

 dHk1=0;

 end

 if U(2)<0

 dHk2=2*(((U(2)-0.1)/0.01));

 end

 if U(2)>0.1

 dHk2=2*((U(2)+0.1)/0.01);

 end

 if U(2)<0.1& U(2)>0

 dHk2=0;

 end

 if U(3)<0

 dHk3=2*(((U(3)-0.1)/0.01));

 end

 95

 if U(3)>0.1

 dHk3=2*((U(3)+0.1)/0.01);

 end

 if U(3)<0.1& U(3)>0

 dHk3=0;

 end

 if U(4)<0

 dHk4=2*(((U(4)-0.1)/0.01));

 end

 if U(4)>0.1

 dHk4=2*((U(4)+0.1)/0.01);

 end

 if U(4)<=0.1& U(4)>=0

 dHk4=0;

 end

 dHk=[dHk1 dHk2 dHk3 dHk4];

 dUk1=R1k;

 dUk2=R2k;

 dUk3=R3k;

 a1= mu_c*2*e1(k)*Wp(k,:).*R1k;

 a2= mu_c*2*e1(k)*Wp(k-1,:).*R2k;

 a3= mu_c*2*e1(k)*Wp(k-2,:).*R3k;

 a=[a1; a2; a3];

 b1=dHk.*dUk1;

 96

 b2=dHk.*dUk2;

 b3=dHk.*dUk3;

 b=[b1/100; b2/100; b3/100];

 dWc=(a-b)';

 Wc=Wc+dWc;

end

figure

plot(yp(n1:n), 'r')

hold on

plot(yk(n1:n),'k')

plot(e1(n1:n),'b')

plot(e(n1:n),'c')

plot(d(n1:n),'g')

title('Linear Plant Constrained Control with Identification')

ylabel('function')

xlabel('time')

legend('Plant Output', 'Plant Model Output' ,'System Error','Modelling Error
','Desired Output',5);

Nonlinear Plant Control

Figure : Simulink Diagram of Nonlinear Plant Control

 97

%This Function Produces plant input signal

function [u]=controller(u_1, r);

global k

global t

global u_

global Wc_ij

global Wc_jk

global Ac_1

global Sc_1

global A44

global Rc

t=int32(k*5);

if t<4

 u_(1,:)=0;

 u_(2,:)=0;

 u_(3,:)=0;

 r_(1,:)=r;

 r_(2,:)=r;

 r_(3,:)=r;

 Wc_ij=rand(6,2);

 Wc_jk =rand(2,1);

 Sc_1=[0; 0];

 Ac_1=[0; 0];

 Wc=vertcat(Wc_ij,Wc_jk');

 Rc=[0; 0; 0; 0; 0; 0];

 98

 u=0;

end

if t>=4

 u_(1,:)=0; u_(2,:)=0; u_(3,:)=0;

 r_(1,:)=r; r_(2,:)=r; r_(3,:)=r; r_(t,:)=r;

 Rc=[r_(t,:); r_(t-1,:); r_(t-2,:); r_(t-3,:); u_(t-1,:) ;u_(t-2,:)];

 Sc_1=(Wc_ij')*(Rc);

 Ac_1=tansig(Sc_1);

 Sc_2=Wc_jk'*Ac_1;

 Ac_2=purelin(Sc_2);

 u=Ac_2;

end

%This Function Updates Controller weigths

function [Wc]=update_C_W(yk);

global Wc_ij

global Wc_jk

global Ac_1

global Sc_1

global Rc

global k

global t

t=int16(k*5);

if t>=4

 mu=0.0002;

 99

 Q=1;

 dk =Rc(1);

 %Back Propagation

 Ec=dk-yk;

 dWc_jk=zeros(2,1);

 dWc_ij=zeros(6,2);

 %update weigths

 Ec_1=2*Ec*Q;

 dWc_jk=mu*Ac_1*Ec_1';

 Wc_jk=Wc_jk+dWc_jk;

 %update weigths

 Ec_2=dtansig(Sc_1,Ac_1).*(Wc_jk*Ec_1);

 dWc_ij=mu*(Rc*Ec_2');

 Wc_ij=Wc_ij+dWc_ij;

end

Linear plant disturbance cancelling

Figure : Simulink Diagram of Nonlinear Plant Control

 100

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem
Disturbance Canceller

 101

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem
Pcopy

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem
Modeller

Nonlinear Plant Disturbance Cancelling

 102

Figure : Simulink Diagram of Nonlinear Plant Disturbance Cancelling

Figure : Simulink Diagram of Nonlinear Plant Disturbance Cancelling of subsystem
Controller

Figure : Simulink Diagram of Linear Plant Disturbance Cancelling of subsystem
Disturbance Canceller

%This function creates the input values of Copy plant Model

function [PP]=P_al(u, y);

global k

global t

global uu_

 103

global yy_

global Wij

global Wmn

global A44

if t<3

 uu_(1,:)=0;

 yy_(1,:)=0;

 uu_(2,:)=0;

 yy_(2,:)=0;

 PP=[0; 0; 0; 0];

end

if t>=3

 uu_(1,:)=0;

 yy_(1,:)=0;

 uu_(2,:)=0;

 yy_(2,:)=0;

 uu_(t,:)=u;

 yy_(t,:)=y;

 PP=[yy_(t-1,:); uu_(t,:); uu_(t-1,:) ;uu_(t-2,:)];

end

end

%This function is the disturbance canceller, that its output is the

%estimate of the disturbance

function [uu]=y_al(y, y1, u);

 104

global k

global t

global dd

global uuuu

global Wx_ij

global Wx_mn

global Ax44

t=int32(k*5);

if t<3

 u_(1,:)=0;

 uuuu(1,:)=0;

 u_(2,:)=0;

 uuuu(2,:)=0;

 Errorx=1;

 E=1;

 Ax44=0;

 Ax4=0;

 Wx_ij=rand(4,2);

 Wx_mn=rand(2,1);

 Px=[0; 0; 0; 0];

 dd(t,:)=y-y1;

end

if t>=3

 u_(1,:)=0;

 uuuu(1,:)=0;

 105

 u_(2,:)=0;

 uuuu(2,:)=0;

 u_(t,:)=u;

 uuuu(t,:)=y;

 dd(t,:)=y-y1;

 Px=[dd(t-1,:); u_(t,:); u_(t-1,:) ;u_(t-2,:)];

 mu_x=0.001;

 Sx1=Wx_ij'*Px;

 Ax1=tansig(Sx1);

 Sx4=Wx_mn'*Ax1;

 Ax4=purelin(Sx4);

 Ax44(t)=Ax4;

 Ex=dd(t,:)-Ax4;

 %update weigths

 Ex4=2*Ex;

 dWx_mn=mu_x*Ax1*Ex';

 Wx_mn=Wx_mn+dWx_mn;

 %update weigths

 Ex1=dtansig(Sx1,Ax1).*(Wx_mn*Ex4);

 dWx_ij=mu_x*(Px*Ex1');

 Wx_ij=Wx_ij+dWx_ij;

 Error_x(t)=(Ex)^2;

end

uu=Ax4;

end

 106

CURRICULUM VITAE

Deniz Er was born in Bornova in1980. She graduated from Söke Hilmi Fırat
Anatolian High Scholl in 1998, and bachelors degree from Yeditepe University, in
System Engineering. She has been a graduate student in Istanbul Technical
University since 2004. She is working in Sonar Arge.

