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PREPARATION OF ACRYLATE AND SULFONAMIDE BASED 

POLYMERIC SORBENTS FOR SEPARATION OF BIOMOLECULES 

SUMMARY 

To perform the isolation, purifcation or analysis of substances, at scales ranging from 

tonnage quantities to picograms is an important feature of our modern life. 

The polymeric sorbents are very important for separation of biomolecules, organic 

and inorganic wastes. 

In this thesis, Hydrazine, amine, carboxylic acid and methane sulfonic acid 

containing resins were prepared and were characterized by using spectroscopic and 

analytical methods. 

Hydrazine containing resin was prepared starting from crosslinked polyvinyl benzyl 

chloride resin (PVBC). The resin was reacted excess of hydrazine. And, CORE-

SHELL type resin was synthesized by using PVBC resin as initiator for SI-ATRP 

graft polymerization of poly (glycidiyl methacrylate). The grafted resin was  

interacted with excess of hydrazine to obtain hydrazine functionality (Figure 1).  

 

Figure 1: Preparation of the Resin1. 

The hydrazine function may react with aldehydes to form hydrazone (Figure 2). 

NH-NH2   +    RCHO NH-N=CH-R
HCl

-H2O

 

Figure 2: Hydrazine interaction with aldehyde. 

Invertase enzyme has aldehyde function therefore; the resin was used to separate the 

enzyme selectively. Sorption properties of the Resin1 were given in Table1. 
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Table.1 The D–R and Freundlich isotherm constants and correlation coefficients of 

isotherm models for the adsorption of invertase on hydrazine-functionalized 

beads. 

 

Temperature (K) 

 

Dubinin–Radushkevich (D–R) models constant 

 

Freundlich model 

constant 

 qexp (mg/g)         qm (mg/g)         Kx105 (mol2/kj2)       E(kj/mol)        

R2     

  n           KF             R2 

279 54.68                   59.15                   9,3                         2.32            

0.989  

0.8        51.94        0.970 

289 72.86                   85.88                   7.7                         2.55            

0.989 

0.9        83.93        0.944 

298 86.70                   87.67                   5.5                         3.02             

0.969 

1.11      111.05      0.924 

308 102.10                103.54                  1.5                         5.72             

0.950 

2.13      114.16      0.957 

Also, aldehyde sorption of the beads was investigated and the results were given in 

Table 2. 

Table 2. The aldehyde sorption capacity of the Resin 1 in methanol. 

Aldehyde Capacity ( mmol 

/ g. resin ) 

Regeneration( mmol / 

g. resin ) 

Salicyl aldehyde 0.205 0.200 

Acetaldehyde 1.756 1.746 

Benzaldehyde 0.448 0.417 

The methane sulfonic acid containing resin was prepared reaction with crosslinked 

chlorosulfonated resin and aminomethane sulfonic acid (Figure 3).  

 

 

 

 

 

Figure 3: Preparation of aminomethane sulfonic acid containing resin. 

The resin was interacted with basic dyes (crystal violet and methylene blue). The 

sorption properties of the resin depending on pH were given in Table 3. 

 

 

 

P S

O

O

Cl + P S

O

NH-CH2-SO3H

O

H2N-CH2-SO3H
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Table 3. Maximum dye sorption capacites of the resin 2 depending on pH 

Dye pH Capacity 

(g dye / g resin) 

Methylene Blue 2 0.16 

4 0.26 

8 0.37 

Crystal violet 2 - 

4 0.30 

8 0.40 

 

Trypsin was used as a basic protein. Adsorption capacities of the Resin 2 were 

investigated for different pH (Figure 4) and ionic strength (Figure 5). Experimental 

results were well fitted with Langmiur isotherm model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Effects of pH on trypsin adsorption on the Resin 3. 
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Figure 5: Effects of ionic strength on trypsin adsorption on the Resin2. 
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Poly (ethyl acrylate) was grafted onto PVBC by using SI-ATRP method. And, 

grafted resin was hydrolyzed in KOH and H2SO4 solutions respectively (Figure 6). 

 

PP CH2 Cl
CuBr, Bipyridine

Ethylacrylate

PP CH2 CH2-CH

          
C=O

OC2H5

n

PP CH2 CH2-CH

          
C=O

n

OH

hydrolysis

 

Figure 6: Preparation of the poly (acrylic acid) grafted onto PVBC resin. 

The resin was interacted basic dyes. Sorption properties were given in Table 4. 

Table 4: pH depending on dye sorption of the resin 3 

          Dye pH                  Capacity 

( mg dye / g resin) 

Methylene 

Blue 

4.0 210 

6.0 250 

7.0 300 

8.0 200 

Crystal violet 4.0 - 

6.0 190 

 7.0 250 

 8.0 200 
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BİYOMOLEKÜLLERİN AYRILMASI İÇİN SÜLFONAMİD VE AKRİLAT 

BAZLI POLİMERİK SORBENTLERİN HAZIRLANMASI 

ÖZET 

Eser miktarlardan tonlara varan miktarlardaki maddeleri ayırmak, saflaĢtırmak ve 

analiz etmek çevre ve insan sağlığı bakımından çok önemlidir. 

Polimerik sorbentler biyomoleküllerin, inorganik ve organik atıkların ayrılmasında 

oldukça önemlidir. 

Bu tezde hidrazin, amin, karboksilik asit ve metansülfonik asit içeren reçineler 

hazırlanmıĢ  spektroskopik ve analitik yöntemler kullanılarak karekterize edilmiĢtir. 

Hidrazin içeren reçine çapraz bağlı poli (vinil benzil klorür) (PVBC) reçineden 

baĢlayarak hazırlanmıĢtır. Reçine hidrazinin fazlasıyla reaksiyona sokulmuĢtur. 

Çekirdek-saçak tipindeki reçine, poli(glisidil metakrilat) (PGMA)’ ın aĢı  

polimerizasyonunda baĢlatıcı olarak PVBC’deki halojen baĢlatıcı grupları üzerinden 

SI-ATRP yöntemi kullanılarak sentezlenmiĢtir. PGMA aĢılanmıĢ reçine hidrazin ile 

modifiye etmek için hidrazinin fazlasıyla reaksiyona sokulmuĢtur (ġekil 1).  

 

Şekil 1: Reçine 1’in hazırlanması 

Hidrazin fonksiyonlu gruplar aldehidlerle hidrazon oluĢtururlar (ġekil 2). 

NH-NH2   +    RCHO NH-N=CH-R
HCl

-H2O

 

Şekil 2: Hidrazinin aldehidle etkileĢimi 

Ġnvertaz enzimi aldehid fonksiyonuna sahip olduğundan reçine invertaz enzimini 

seçici olarak ayırmak için kullanılmıĢtır. Reçine1’in adsorpsiyon özellikleri Çizelge 

1’de verilmiĢtir. 
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Çizelge 1: Hidrazin fonksiyonel küreler üzerine inveraz adsorpsiyonu için izoterm                           

modellerinin düzeltme faktörleri ve D–R ve Freundlich izoterm sabitleri. 

 

    Sıcaklık (K) 

 

Dubinin–Radushkevich (D–R) model sabitleri 

 

Freundlich model 

sabitleri 

 qexp (mg/g)         qm (mg/g)         Kx105 (mol2/kj2)       E(kj/mol)         

R2     

  n           KF             R2 

279 54.68                   59.15                   9.3                         2.32            

0.989  

0.8        51.94        0.970 

289 72.86                   85.88                   7.7                         2.55            

0.989 

0.9        83.93        0.944 

298 86.70                   87.67                   5.5                         3.02             

0.969 

1.11      111.05      0.924 

308 102.10                103.54                   1.5                         5.72             

0.950 

2.13      114.16      0.957 

 

Aynı zamanda kürelerin aldehid adsorplaması incelenmiĢ ve sonuçlar Çizelge 2’de 

verilmiĢtir. 

Çizelge 2: Reçine 1’in metanoldeki aldehid adsorplama kapasiteleri 

Aldehid Kapasite ( mmol 

/ g. reçine ) 

Geri kazanım ( mmol 

/ g. reçine ) 

Salisil aldehid 0,205 0.200 

Asetaldehid 1,756 1.746 

Benzaldehid 0,448 0,417 

Metansülfonik asit içeren reçine (Reçine 2) klorosülfolanmıĢ reçine ile aminometan 

sülfonik asitin reaksiyonuyla hazırlanmıĢtır (ġekil 3). 

 

 

 

 

 

 

                           Şekil 3: Aminometan sülfonik asit içeren reçinenin hazırlanması. 

Boya protein etkileĢimi benzer özelliktedir. Bu nedenle Reçine 3 bazik boyalarla 

etkileĢime sokulmuĢtur (Kristal violet ve metilen blue). Reçinenin pH’a bağlı 

adsorpsiyon özellikleri Çizelge 3’de verilmiĢtir. 
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Çizelge 3. Reçine2’ün pH’a bağlı maksimum boya adsorplama kapasiteleri 

Boya pH Kapasite 

(g boya / g reçine) 

Metilen Blue 2 0.16 

4 0.26 

8 0.37 

Kristal violet 2 - 

4 0.30 

8 0.40 

 

Bazik protein olarak tripsin kullanılmıĢtır. Reçinenin tripsin adsorplama kapasitesi 

farklı pH (ġekil 4) ve iyonik (Ģekil 5) ortamda incelenmiĢtir Ayrıca reçinenin 

adsorpsiyon izotermleri de elde edilmiĢ ve deneysel sonuçların Langmuir izoterm 

modeliyle uyumluluk gösterdiği tespit edilmiĢtir. 

 

 

 

 

 

 

 

 

 

 

  

                     Şekil 4: Reçine 3 için pH’ın tripsin adsorpsiyonuna etkisi. 
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Şekil 5: Reçine 3 için iyonik gücün tripsin adsorpsiyonuna etkisi. 
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Diğer karboksilik asit grubu taĢıyan reçinede poli(Etil akrilat)’ın  PVBC üzerine SI-

ATRP yöntemiyle aĢılanıp daha sonra  KOH ve H2SO4 çözeltileri ile  hidroliz 

edilmesiyle (ġekil 6) hazırlanmıĢtır. 

PP CH2 Cl
CuBr, Bipiridin

Etil akrilat

PP CH2 CH2-CH

          
C=O

OC2H5

n

PP CH2 CH2-CH

          
C=O

n

OH

hidroliz

 

Şekil 6: Poli(akrilik asit) aĢılanmıĢ PVBC reçine. 

Reçine bazik boyalarla etkileĢtirilmiĢtir. Sonuçlar Çizelge 4’de verilmiĢtir. 

                  Çizelge 4: Reçine 3 için pH’a bağlı boya adsorplanması. 

          Boya pH                  Kapasite 

( mg boya / g reçine) 

MetilenBlue 4.0 210 

6.0 250 

7.0 300 

8.0 200 

Kristal violet 4.0 - 

6.0 190 

 7.0 250 

 8.0 200 
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1. INTRODUCTION 

To perform the isolation, purification or analysis of substances, at scales ranging 

from tonnage quantities to picograms is an important feature of our modern life. 

These separations support all aspects of research and commerce and indeed a vast 

industry has arisen to provide the equipment to perform and control these important 

processes. To provide these capabilities a whole family of techniques has evolved to 

exploit differences in the physical or chemical properties of the compounds of 

interest, and to accommodate the scales on which the separations are performed. 

After all, a separation that works on the picogram scale based perhaps on capillary 

electrophoresis may not easily be transferred to the gram scale and will be utterly 

impossible on the kilogram scale. In such instances an alternative type of separation, 

based on a totally different principle must be sought.  

Basically, all separation techniques rely on thermodynamic differences between 

components to differentiate one component from another, while kinetic factors 

determine the speed at which separation can be achieved. This applies most 

obviously to distillation, chromatography and electrophoresis, but is also obvious in 

most of the other techniques; even particle size separation by sieving can be 

classified in this way [1]. 

The rapid development of biotechnology, pharmaceutical science and, medicine 

requires more reliable and efficient separation techniques for the isolation and 

purification of biomolecules such as proteins, enzymes, hormones and nucleic acids . 

All of these applications are based on the phenomenon of adsorption, in which one or 

more substances are retained on the surface of a solid adsorbent. Several types of 

adsorbent materials have been prepared and used in the various biotechnological and 

biomedical applications. The poly disperse beaded particles as solid supports, 

produced by suspension polymerization in the size range of 50–1000µm, are mostly 

used in the chromatographic area as a support materials for the immobilization of 

various ligands. 



 

 

 
2 

Immobilization of active biomolecules on solid supports for applications in 

biosensors and biotechnology is of great interest [2]. For these applications, active 

biomolecules, such as enzymes and antibodies, are generally employed as 

recognition elements because of their specific affinity for the adsorbates. The main 

considerations for immobilization of biomolecules are their stability, activity and 

concentration. Their stability is known to be elevated by covalent binding to a 

substrate [3-4].  

Tethering a bioactive compound or molecule to a solid substrate by an effective 

spacer can improve its bioactivity by reducing steric restrictions [3]. Various types of 

functional spacers, such as self-assembled monolayers and polymer brushes, have 

been used as supports for covalent immobilization of biomolecules. Polymer brushes 

have well-defined structures, excellent mechanical stability, and functional groups 

suitable for further surface functionalization. ATRP has been used to prepare 

polymer brushes of different functionalities for binding of active biomolecules [5-

19]. 

Carboxylic acids, epoxides, aldehydes, hydroxyls and primary amines are of 

common functional groups used for immobilization of biomolecules. 

Carboxyl polymer brushes have higher protein-binding capacities due to high 

concentrations of –COOH groups at the brush interface. In the case of reversible 

binding of biomolecules in bioseparation, the well-defined poly(acrylic acid) (PAA) 

and poly (methacrylic acid) brushes are generally used as the negatively charged 

polyelectrolytes, which can electrostatically bind positively charged enzymes, such 

as lysozyme [20] and pectinase [15]. PAA brushes have also been used for covalent 

coupling of both positively and negatively charged biomolecules [17, 21-22]. Well-

defined PAA brushes prepared via  

ATRP has been used to covalently bind different biomolecules including BSA [9], 

avidin [9], anti-C-reactive protein (anti-CRP) antibody [14], and ribonuclease A 

(RNase A) [16]. As expected, with the increase in the thickness of the PAA brush, 

the surface density of immobilized biomolecules also increases. 

Although PAA brushes have been widely used in the immobilization of 

biomolecules, it should be pointed out that pH is a major factor contributing to the 

dissociation of key functional groups within the active sites of enzymes [23-24]. At 

high concentration of the surface-grafted AAc polymer, the activity of enzymes 
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immobilized on the PAA brush-modified surfaces was affected adversely by the low 

pH value of PAA surfaces. The negative effects of pH on the enzyme activity can be 

avoided by using other neutral polymer brushes containing reactive groups, such as 

epoxides [17]. 

The epoxide groups can react readily and irreversibly with nucleophilic groups, such 

as –NH2, –SH, and –COOH. Thus, the epoxide group-containing polymers can serve 

as surface linkers for biomolecules [25–27]. The most common epoxide polymer 

brushes are based on poly (glycidyl methacrylate) (PGMA).Well-defined PGMA 

brushes can be prepared via surface-initiated ATRP of glycidyl methacrylate (GMA) 

from various substrate surfaces, including silicon wafers [17,28-29], silica particles 

[30], Fe3O4 particles [19] and polymer films [31-32]. 

In this thesis, firstly poly (VBC) beads were prepared by suspension polymerization 

and the beads were modified with poly (GMA), and PAA, using surface-initiated 

atom transfer radical polymerization, SI-ATRP, aiming to construct the material 

surface with a fibrous polymer. The epoxy groups of the fibrous polymer were 

reacted with hydrazine and ammonia. Consequently, a hydrazine functional and a 

carboxylic acid functional core-shell type polymer supported reagents were obtained. 

The hydrazine and amine functionalized poly (VBC-g-GMA) beads were used as an 

affinity support for adsorption of invertase from solution and yeast crude extract. The 

influence of pH, equilibrium time, ionic strength and initial invertase concentration 

on the adsorption capacities of both hydrazine and amine functionalized beads has 

been investigated. It was shown that the relative activity of immobilized invertase 

was higher than that of the free enzyme over broader pH and temperature ranges. 

After inactivation of enzyme, poly (VBC-g-GMA) beads can be regenerated easily 

and re loaded with the enzyme for repeated use. 

These polymers and a sulfonic acid functional chlorosulfonated poly (styrene-divinyl 

benzene) beads were also used for adsorption of textile dyes. Because dyes undergo 

same reactions like proteins, it was shown that these supported materials could be 

used for removal of textile dyes. 

Finally, because invartese has aldehyde functionality and  hydrazines forms 

hydrazones with aldehydes it was shown that hydrazine functionalized poly (VBC-g-

GMA) beads and poly (VBC) beads showed affinity through both aliphatic and 

aromatic aldehydes. 
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2. THEORETICAL PART 

2.1 Separation Techniques 

2.1.1 Chromatography 

Chromatography is a separation technique used in chemical laboratories to a wide 

extent, where it is used in analysis, isolation and purification. In terms of scale, at 

one extreme minute quantities of less than a nanogram are separated and identified 

during analysis, while hundreds of kilograms of material per hour are processed into 

refined products. It is the versatility of chromatography in its many variants that is 

behind its ubiquitous status in separation science, coupled with simplicity of 

approach and a reasonably well-developed framework in which the different 

chromatographic techniques operate. Chromatography is a physical method in which 

the components of a mixture are separated by their distribution between two phases; 

one of these phases in the form of a porous bed, bulk liquid, layer or film is generally 

immobile (stationary phase), while the other is a fluid (mobile phase) that percolates 

through or over the stationary phase. A separation results from repeated 

sorption/desorption events during the movement of the sample components along the 

stationary phase in the general direction of mobile-phase migration. Useful 

separations require an adequate difference in the strength of the physical interactions 

for the sample components in the two phases, combined with a favorable 

contribution from system transport properties that control sample movement within 

and between phases. Several factors are responsible to produce an acceptable 

separation. Individual compounds are distinguished by their ability to participate in 

common intermolecular interactions in the two phases, which can generally be 

characterized by equilibrium constant, and is thus a property predicted from chemical 

thermodynamics. Interactions are mainly physical in type or involve weak chemical 

bonds, for example dipole- dipole, hydrogen bond formation, charge transfer, etc., 

and reversible, since useful separations only result if the compound spends some 

time in both phases. During transport through or over the stationary phase, 
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differential transport phenomena, such as diffusion and flow anisotropy, result in 

dispersion of solute molecules around an average value, such that they occupy a 

finite distance along the stationary phase in the direction of migration. The extent of 

dispersion restricts the capacity of the chromatographic system to separate and, 

independent of favorable thermodynamic contributions to the separation, there is a 

finite number of dispersed zones that can be accommodated in the separation. 

Consequently, the optimization of a chromatographic separation depends on 

achieving favourable kinetic features if success is to be obtained. 

2.1.1.1 The Classification of chromatographic techniques 

The chromatographic techniques can be classified in terms of the phases employed 

for the separation (Figure 2.1) [1], with a further subdivision possible by the 

distribution process employed. In addition, for practical utility transport processes in 

at least one phase must be reasonably fast; for example, solid-solid chromatography, 

which may occur over geological time spans, is impractical in the laboratory because 

of the slow migration of solutes through the crystal lattice. Two distinct phases are 

required to set up the distribution component of the separation mechanism, which 

explains why gas-gas chromatography does not exist and liquid-liquid separations 

are restricted to immiscible solvents. When the mobile phase is a gas, the stationary 

phase can be a liquid or a solid and the separation techniques are called gas-liquid 

chromatography (GLC) and gas-solid chromatography (GSC). The simple term GC 

encompasses both techniques but, unless otherwise specified, it usually means GLC 

since this is the most common arrangement. Separations in GLC occur because of 

differences in gas-liquid partitioning and interfacial adsorption. In GSC, the retention 

mechanism is governed by interfacial adsorption or size exclusion, if a solid of 

controlled pore size, such as a zeolite, is used as the stationary phase. When the 

mobile phase is a supercritical fluid (SFC) the stationary phase can be a liquid or a 

solid, and the distribution process may be interfacial adsorption or absorption. 
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Figure 2.1: Family tree of chromatographic methods. 

When the mobile phase is a liquid the stationary phase can be a solid (liquid-solid 

chromatography, LSC) with interfacial adsorption as the dominant distribution 

process; a solid of controlled pore size (size exclusion chromatography, SEC), in 

which the distribution constant is characteristic of the ratio of the solute size to the 

dimensions of the stationary phase pore sizes; a solid with immobilized ionic groups 

accessible to solutes in the mobile phase with electrostatic interactions as the 

dominant distribution process (ion exchange chromatography or ion chromatography, 

IEC or IC); a solid with immobilized molecular recognition sites accessible to the 

analyte in the mobile phase (affinity chromatography, AC) in which the dominant 

distribution process process is the three-dimensional specificity of the molecular 

interactions between the receptor and the analyte (a technique used in 

biotechnology); a porous solid coated with a film of immiscible liquid (liquid-liquid 

chromatography, LLC) in which the dominant distribution process is partitioning; or 

a solid with a surface containing organic groups attached to it by chemical bonds 

(bonded-phase chromatography, BPC) in which the dominant distribution processes 

are interfacial adsorption and partitioning. 

2.1.1.2 Mode of zone displacement 

In nearly all chromatographic systems, transport of solute zones occurs entirely in the 

mobile phase. Transport is an essential component of the chromatographic system 

since the most common arrangement for the experiment employs a sample inlet and a 

detector at opposite ends of the column, with sample introduction and detection 

occurring in the mobile phase (GC, SFC, LC). In planar chromatographic systems 

(TLC, PC), sample introduction and detection is performed in the stationary phase, 
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but the detection is of solute zones that have been transported different distances by 

the mobile phase. In GC the movement of solute molecules from the stationary to the 

mobile phase is controlled by the vapor pressure of the solutes in the column, and is 

usually manipulated by varying temperature. At an optimum temperature sample, 

molecules will spend some of their time in the mobile phase, where they will be 

transported through the column, and sometime in the stationary phase, where they 

are differentiated by their capacity for intermolecular interactions with the stationary 

phase. Displacement of solute zones can be achieved in three distinct ways: frontal 

analysis, elution and displacement (Figure 2.2) [1]. 

 

 

Figure 2.2: Mode of zone displacement in chromatography. 

2.1.1.3 Instrumentation 

Modern chromatographic methods are instrumental techniques in which the optimal 

conditions for the separation are set and varied by electromechanical devices 

controlled by a computer external to the column or layer. Separations are largely 

automated with important features of the instrumentation being control of the Sow 
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and composition of the mobile phase, provision of an inlet system for sample 

introduction, column temperature control, online detection to monitor the separation, 

and display and archiving of the results. Instrument requirements differ significantly 

according to the needs of the method employed. Unattended operation is usually 

possible by automated sample storage or preparation devices for time-sequenced 

sample introduction. 

2.1.2 Electrophoresis 

Electrophoresis is a basically analytical method in which separations are based on the 

differing mobilities (i.e. speed and direction of movement) of two or more charged 

analytes (ionic compounds) or particles held in a conducting medium under the 

influence of an applied direct current electric field (Figure 2.3 ). 

 

Figure 2.3: The basic principle of all electrophoretic separations is that charged ions 

attempt to move in an electric field towards the electrode of opposite 

polarity. Neutral compounds do not move. 

Electrophoresis therefore contrasts to chromatography, which, is defined as a 

method, used primarily for the separation of two or more components of a mixture, 

in which the components are distributed between two phases, one of which is 

stationary while the other moves. Another difference is that in chromatography the 

modeling of the separation from first principles is complex, dificult and imprecise 

whereas a relatively simple theoretical background to electrophoresis has been 

developed. 

In electrophoresis, the movement is towards the electrode of opposite charge to that 

of the particle or ion being separated. Cations are positively charged ions and move 

towards the negative electrode (the cathode). Anions are negatively charged ions and 

move to the positive electrode (the anode). It is important to note that neutral species 

do not move under the influence of the electric field, although they may diffuse from 

the load position or be carried by electro osmotic flow. The rate of migration 

(velocity) of any charged particle in an electric field can, at its simplest, be 

considered to be the vector sum of a driving force (the electrical force) and any 
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resisting or aiding forces. Any ion, compound or body carrying an overall charge at a 

given pH value will move in solution under appropriate conditions. In simple 

solutions, ions will move freely toward the electrode of opposite charge and the 

product of the charge on the ion and the applied electric field (E) gives the electric 

force experienced by the ion. However, since even a simple ion can be considered as 

a particle this movement is opposed by a frictional drag given by Stokes‘ law [1]. 

2.1.3 Extraction                                                                                             

Extractions are common in the world around us. Each time we brew a cup of tea or a 

pot of coffee, and each time we launder our clothes, we are performing a chemical 

extraction process. Perhaps because of this familiarity, extraction processes in 

chemical laboratories are often not fully appreciated, or fully understood. Quite 

simply, an extraction is the process of moving one on more compounds from one 

phase to another. However behind this simple definition lies a great deal of subtlety: 

separations are contrary to thermodynamic intuition, because entropy is gained 

through mixing, not separation; extraction methods are developed based on a drive 

towards equilibrium, but the kinetics of mass transfer cannot be ignored. 

Extractions are carried out for a variety of reasons, for example when distillation is 

either impractical (e.g., distillations are favorable when the relative volatility of the 

compounds to be separated is greater than about 1.2) or is too expensive, to isolate 

material for characterization, to purify compounds for subsequent processing, etc. 

Extractions can be classified according to a number of schemes: 

- analytical versus preparative (depending on the quantity of pure compound to 

be separated); 

- batch versus continuous (depending on the mode offending the material to be 

separated into the extraction apparatus) 

- based on the types of phases involved (called liquid-liquid extraction, gas-

solid extraction, etc.). 

2.1.4 Ion exchange 

Ion exchange has been described as the oldest scientific phenomenon known. This 

claim arises from descriptions that occur in the Bible and in the writings of Aristotle, 

but the first scientific explanation to ion exchange is attributed to two English 
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agricultural chemists in 1850. These were J. T. Way and H. S. Thompson, who 

independently observed the replacement of calcium in soils by ammonium ions. This 

discovery was the precursor to the study of inorganic materials capable of ‗base‘ 

exchange, and in 1858 C. H. Eichorn showed that natural zeolite minerals (chabazite 

and natrolite) could reversibly exchange cations. H. Gans who, at the turn of the 

century, patented a series of synthetic amorphous aluminosilicates for this purpose 

recognized the importance of this property in water softening. He called them 

‗permutites‘, and they were widely used to soften industrial and domestic water 

supplies until recent times, as well as being employed in nuclear waste treatment. 

Permutites had low ion Exchange capacities and were both chemically and 

mechanically unstable. 

This early work has generated some myths commonly stated in elementary texts, 

namely that zeolite minerals are responsible for the ‗base‘ exchange in soils and that 

permutites are synthetic zeolites. The presence of clay minerals in soils accounts for 

the majority of their exchange capacity, and zeolites by definition must be 

crystalline.  

2.1.4.1 What is ion exchange? 

A basic definition of ion exchange is that it is the transfer of ions across a boundary; 

this would then cover movement of ions from one liquid phase to another. A simple 

representation of the process, when univalent cations are being transferred is given in 

the chemical equation below:                                                                                   

                                                               (2.1)       

Here M
-
Ac

+
 represents a solid carrying a negative charge (‗solid anion‘, sometimes 

described as a ‗fixed ion‘) neutralized by the A
+
 ions inside its structure. 

The A
+ 

ions are replaced by B
+ 

originally in the solution phase (normally aqueous). 

The subscripts ‗c‘ and ‗s‘ refer to the solid and solution phase, respectively. 

2.1.4.2 General properties of exchange media 

An ideal ion exchange medium is one that fulfils the following criteria: 

1. A regular and reproducible composition and structure; 

2. High exchange capacity; 
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3. A rapid rate of exchange (i.e. an open porous structure); 

4. Chemical and thermal stability and resistance to ‗poisoning‘ as well as radiation 

stability when used in the nuclear industry; 

5. Mechanical strength stability and attrition resistance; 

6. Consistency in particle size, and compatibility with the demands of the use of 

large columns in industry. 

2.1.5 Membrane separation 

The property of membranes used in separation processes is their ability to control the 

permeation of different species. Most membranes can be divided to one of the two 

broad categories. In micro porous membranes, permeants are separated by pressure-

driven flow through tiny pores. A separation is achieved between different permeants 

because one of the permeants is excluded (filtered) from some of the pores through 

which the smaller permeants move. In solution-diffusion membranes the membrane 

material is a dense polymer layer and contains no fixed pores. Permeants dissolve in 

the membrane material as in a liquid and then diffuse through the membrane down a 

concentration gradient. Separation of different permeants occurs because of 

differences in the solubility of the permeant in the membrane material and the rate at 

which the permeant diffuses through the membrane. The difference between the 

pore-flow and the solution-diffusion mechanisms lies in the relative size and lifetime 

of pores in the membrane. In dense polymeric solution-diffusion membranes, no 

permanent pores exist. However, tiny free volume elements, a few tenths of a 

nanometre in diameter, exist between the polymer chains from which the membrane 

is made. These free-volume elements are present as statistical fluctuations that 

appear and disappear on a timescale only slightly slower than the motion of 

molecules traversing the membrane. Permeating molecules diffuse from free-volume 

element to free-volume element at a rate determined by the thermal motion of the 

polymer chains from which the membrane is made. In contrast, in a pore-flow 

membrane the pores are fixed and do not fluctuate in position or size on the timescale 

of molecular motion. The larger the individual free-volume elements are, the more 

likely they are to be present long enough to produce pore-flow characteristics in the 

membrane. As a rule of thumb, the transition between permanent (pore-flow) and 

transient (solution-diffusion) pores appears to be in the range 0.5-1.0 nm diameter. 

This means that the processes of gas separation, reverse osmosis and pervaporation, 
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all of which involve separation of permeants with molecular weights of less than 

200, use solution-diffusion membranes. On the other hand, microfiltration and ultra 

filtration, which involve separation of macromolecular or colloidal material, use 

finely micro porous pore-flow membranes [1]. 

2.2 Functional Polymers 

Functional polymers include a variety of polymeric materials and a number of 

engineering plastics. These polymer systems often show more specific and better 

properties if processed as polymer aggregates. For example, organic polymers with 

polyconjugated double bonds consisting of special structures are known as synthetic 

metals, which show substantially high electron conductivity in a fiber or film form. 

On the other hand, ceramic materials with new properties, such as elasticity, have 

only recently prepared by organic synthetic techniques.  

Recently, microporous polymeric materials as well as microcapsules have become of 

interest in a variety of industrial fields, not only in the general chemical industry, but 

also in the pharmaceutical, biomedical and electronics industries. Microporous 

membranes made of vinyl polymers are being applied as separators or filters to 

concentrate oxygen from air and to produce ultrahigh grades of water for the 

semiconductor industry. Other types of microporous vinyl polymers are used as 

highly hydrophilic materials in the fields of cosmetics and environmental hygiene. 

The science and technology required for the preparation of microcapsules from 

different natural and synthetic polymeric materials has made rapid progress. They are 

used in various fields for their ability to solidify liquids; to isolate reactive 

compounds; to remove color, odor, and toxicity; as well as to regulate and control the 

release of included compounds. The immobilization of enzymes and the development 

of polymeric drugs are also playing an important role. 

In addition, highly water-absorbing and oil-absorbing resins are of interest. These 

have developed rapidly in recent years by unique grafting and crosslinking of 

hydrophilic polymers. Transparent polymeric materials with optical functions are 

also noteworthy. Some are biocompatible, such as poly (2-hydroxethyl 

methacrylate), which serves as a material for soft contact lenses. Plastic optical fibers 
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are also widely used as substitutes for glass and quartz devices in various fields of 

technology, especially the biomedical and communication sciences. 

The chemistry of so-called electronic functional polymers, in a narrow sense, has 

developed into a very exciting subject, particularly in the last 10 years. Some of the 

most attractive materials in this field are the photosensitive and photo responsive 

polymers. By using these phenomena, specifically designed polymers undergo 

reversible crosslinking reactions to become insoluble or soluble. A variety of both 

negative and positive types of photo resists is being produced. They are initially used 

in printing, paint, and color industries. The technology to exploit deep ultraviolet 

(UV) radiation resist with reversible functionality will be one of the most important 

developments in this industry in the near future. Other subjects of interest in this 

field, which are under development, are the electronic or X-Ray sensitive resists, as 

well as the design of more functional photo memory materials [33]. 

2.3 Polymer Beads by Suspension Polymerization 

There are a lot of methods for the production of polymer particles by heterogeneous 

polymerization processes. These are emulsion, emulsifier-free emulsion, dispersion, 

precipitation and suspension polymerization. Suspension polymerization is 

particularly suited to the production of large polymer beads, typically in the range 5–

1000 mm. The other processes referred to produce much smaller particles, and have 

been reviewed elsewhere [34-35]. 

Hoffman and Delbruch first developed suspension polymerization in 1909 [36]. 

Bauer and Lauth performed the first suspension polymerization based on acrylic 

monomers leading to the formation of beads in 1931 [37]. 

In suspension polymerization, the initiator is soluble in the monomer phase, which is 

dispersed by pulverized into the dispersion medium to form droplets (i.e. an 

emulsion is formed). The solubility of the dispersed monomer (droplet) phase and 

also the resultant polymer in the dispersion medium are usually low. The volume 

fraction of the monomer phase is usually within the range 0.1–0.5. Polymerisation 

reactions may be performed at lower monomer volume fractions, but are not usually 

economically viable. At higher volume fractions, the concentration of continuous 

phase may be insufficient to fill the space between droplets [38]. 
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Polymerization proceeds in the droplet phase, and in most cases occurs by a free 

radical mechanism. Suspension polymerization usually requires the addition of small 

amounts of a stabilizer to hinder coalescence and break-up of droplets during 

polymerization. The size distribution of the initial emulsion droplets and, hence of 

the polymer beads that are formed, is dependent upon the balance between droplet 

break-up and droplet coalescence. The type in turn controls this and speed of agitator 

used, the volume fraction of the monomer phase, and the type and concentration of 

stabilizer used. 

If the polymer is soluble in the monomer, a gel forms within the droplets at low 

conversion, leading to harder spheres at high conversion. If the polymer is insoluble 

in the monomer solution, precipitation will occur within the droplets, which will 

result in the formation of opaque, often irregularly shaped particles. If the polymer is 

partially soluble in the monomer mixture, the composition of the final product can be 

difficult to predict. Polymer beads find applications in a number of technologies, 

such as molding plastics. However, their largest application is in chromatographic 

separation media (e.g. as ion exchange resins and as supports for enzyme 

immobilization). Such applications frequently require large particle surface areas, 

which necessitates the formation of pores (of the required dimensions) in the bead 

structure. The polymer beads may be made porous by the inclusion of an inert 

diluents (or porogen) to the monomer phase, which may be extracted after 

polymerization [39]. 

2.3.1 Process conditions and droplet stability  

In forming an emulsion by a comminution method, such as stirring, it has to be 

considered the final average droplet size. In the absence of recoalescence of droplets, 

this will be determined by the volume fraction of the oil phase (f), the mass (Ws) of 

stabiliser added (per unit volume of emulsion) and the properties of the stabilizer 

molecules, such as the molecular weight (Ms) and area subtended per surfactant 

molecule (As) at the oil: water interface. 

                                                                                               (2.2) 
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where max is the monolayer (plateau) volume of the adsorbed amount (mol area
-1

) in 

the corresponding adsorption isotherm for that stabilizer at the oil:water interface 

(assuming Langmuirian type isotherm), and NA is the Avagadro constant. It may be 

shown that the average particle diameter (d) is given by: 

                                                                                                 (2.3) 

if it is assumed all added stabilizer is adsorbed. 

With regard to the total energy (work) input into the process, part of this energy is 

used to form the droplets (W1 =   d


 where N is the number of droplets 

formed,  is the oil: water interfacial tension), but most (W1) is lost irreversibly as 

heat. It may be readily shown that 

                                                                                              (2.4) 

where Vo is the total volume of the oil (monomer) phase to be emulsified. Hence, for 

a given amount of oil, and a given W1 (difficult to control, but may be related to the 

stirring rate), d decreases as decreases, as found by Hopff [40]. For a given system, 

if the stirring rate (W1) is increased, d should decrease. 

However in a stirred tank reactor, a balance between break-up and coalescence of the 

droplets determines the size distribution and mean size of the emulsion droplets 

during agitation, leading to a steady-state average droplet diameter greater than that 

predicted by Eq. (2.3). These two processes will continue to occur until a stage in the 

polymerization reaction at which the partially polymerized beads are sticky. At this 

point, satellite droplets (formed from droplet break-up) will attach to the surface of 

the polymer bead. In a product designed for chromatographic columns this will result 

in poor packing characteristics and brittle beads. Control of coalescence and break-

up rates is therefore critical for production of polymer beads of uniform size. The 

rate of droplet coalescence is controlled by liquid drainage in the film between 

approaching droplets, and more significantly the rigidity of the two corresponding 

oil: water interfaces, since this controls the damping of thermally or mechanically 

induced oscillations in the film thickness. 
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It has been shown that in a batch reactor, coalescence and droplet break-up occur in 

different regions of the reactor [41–43]. Coalescence is found to occur predominantly 

in the region of circulating flow (where the shear stress is least), whereas droplet 

break-up is found to occur mainly in regions of high shear, such as in the vicinity of 

the agitator. 

 2.3.2 Stabilizers and control of stability 

The majority of droplet stabilizers used in suspension polymerization are either 

water-soluble polymers or small, usually inorganic particles, which adsorb at the oil: 

water interface. Surfactants are sometimes added in low concentrations in particular 

to aid the initial dispersion process, but may have some stabilizing function as well. 

2.3.3 Polymeric stabilizers  

The well-known polymeric stabilizers used for oil-in-water suspension 

polymerization reactions are poly (vinyl alcohol)-co-(vinyl acetate) (formed from the 

partial hydrolysis (80–95%) of poly (vinyl acetate)), poly (vinyl pyrrolidone), salts of 

acrylic acid polymers, cellulose ethers and natural gums. Polymeric stabilizers used 

in inverse suspension polymerization reactions include block copolymers (e.g. poly 

(hydroxystearic acid)-co-(ethylene oxide) [44]. Surfactants used for oil-in-water 

suspensions include Spans [45] and the anionic emulsifier (sodium 12-butinoyloxy-

9-octadecenate) [46]. 

The stabilizing properties of such polymers are influenced by various factors 

including molecular weight, copolymer composition and structure such as the 

blockiness and the presence and positioning of any branching [47]. For example, 

Goodall and Greenhill-Hooper used two partially hydrolyzed (88 and 98%) 

poly(vinyl acetate) samples to stabilize styrene: water emulsions. They found that the 

88% hydrolyzed polymer adsorbed more strongly at the styrene: water interface than 

the 98% hydrolyzed sample. This resulted in a thicker layer of interfacial polymer 

and a more stable emulsion [48]. 

Since the stabilizer is adsorbed at the oil: water interface it will reduce the interfacial 

tension, which in itself would lead to smaller droplets on break-up. However, more 

significantly, the stabilizer forms an interfacial layer around the droplets, which 

reduces the rate of coalescence by a steric stabilization mechanism [49]. On the other 
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hand, the rate of droplet break-up is also reduced (in effect counteracting the effect of 

the reduced interfacial tension referred to above), since the much higher dilational 

modulus of the structured interfacial layer reduces the droplet elongation process 

involved in droplet break-up. Certain polymeric stabilizers (in particular modified 

cellulose ethers) also have the effect of reducing the rate of radical diffusion from the 

droplet phase into the continuous phase [50]. This will reduce the possibility of 

emulsion polymerization occurring in the continuous phase, which may result in the 

formation of small latex particles. 

2.3.4 Polymerizations conditions and kinetics  

Batch polymerizations are usually performed in a stirred tank type reactor. The 

stabilized monomer droplets may be considered as micro reactors, with the 

polymerization proceeding therein. This mini-bulk polymerization is usually initiated 

thermally and allowed to proceed to completion [51]. 

Suspension polymerization shows various advantages over actual bulk 

polymerization, including, ease of heat dissipation from the reaction and, hence, 

better temperature control and lower viscosity of the system throughout the reaction. 

Advantages compared with emulsion polymerization include lower levels impurities 

in the product and lower separation costs. 

The monomer droplets are large enough to contain a large number of free radicals 

(may be as many as 10
8
) [52] and this is why the polymerization in general proceeds 

with a similar mechanism to that of bulk polymerization, particularly when the 

polymer is soluble in the monomer. 

Since polymerization occurs within the monomer droplets, this generally requires the 

use of an oil-soluble initiator, which is usually thermally activated (e.g. benzoyl 

peroxide or azobisisobutyronitrile (AIBN)), although suspension polymerization 

reactions have been initiated using ultrasound [53] or ultraviolet sources [54]. Other 

oil-soluble initiators which have been used for suspension polymerization reactions 

include: diethyl, dicetyl, and dimyristyl peroxydicarbonates peroxydicarbonates [55-

56], and butylperoxyneodecanoate [56]. Mathur et al. have used water-soluble 

initiators, which are insoluble in oil, to initiate oil-in-water vinyl suspension 

polymerization reactions [57]. This requires the use of a phase transfer catalyst, 
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which transfers the radical precursor into the organic phase, where the generated free 

radicals initiate polymerization. 

It has been shown that the concentration and type of (oil-soluble) initiator used in the 

suspension polymerization of a given monomer both have an effect, not only on the 

polymerization kinetics, but also on the average size and polydispersity of the beads 

that are formed [58-59]. Dowding et al. [59] produced porous suspension copolymers 

initiated using two different initiators (benzoyl peroxide and AIBN) and found that 

the initiator not only affected the final bead size, but also the average pore size. 

Average pore radii were found to be greater for benzoyl peroxide-initiated systems 

than for comparable systems initiated using AIBN. Typically, the concentrations of 

initiator used are 0.1–0.5 wt% (based on monomer). However, Mrazek et al. have 

reported that addition of part of the initiator during the reaction allows the amount of 

the initiator used to be reduced by as much as 15%, without any changes in the yield 

and the reaction time [60]. 

2.4 Controlled Polymerization Techniques  

The term-controlled polymerization indicates control of a certain kinetic feature of a 

polymerization or structural aspect of the polymer molecules formed, or both. The 

ultimate goal is to obtain a high degree of control over compositional and structural 

variables that affect the physical properties of macromolecules, including molecular 

weight, molecular weight distribution (MWD), end functionality, tacticity, 

stereochemistry, block sequence, and block topology, where the parameters of 

molecular characterization are well represented by the ensemble average. 

The experimental criteria for living polymerizations is the absence of chain transfer 

and termination can be obtained from both linear semi logarithmic kinetic plot ( ln 

([M]0/[M] ) vs. time) and linear dependence of number average molecular weight 

(Mn) vs. monomer conversion (Mn vs. conversion). There are no absolute living 

systems and the careful control of the experimental conditions (counter ion, 

temperature, and solvent) is necessary to obtain sufficient livingness to prepare well-

defined polymers. 
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2.4.1 Anionic polymerization  

Ziegler and Schlenk first developed the concept of anionic polymerization in early 

1910. Their pioneering work on the polymerization of diene initiated with sodium 

metal set the stage for the use of alkali metal containing aromatic hydrocarbon 

complexes as initiators for various α-olefins. In 1939, Scott and coworkers used for 

the first time the alkali metal complexes of aromatic hydrocarbon as initiators for the 

polymerization of styrene and diene. However, in 1956, it was Michael Szwarc who 

demonstrated unambiguously the mechanism of anionic polymerization of styrene, 

which drew significant and unprecedented attention to the field of anionic 

polymerization of vinyl monomers [61-62]. Michael Szwarc used sodium 

naphthalenide as an initiator for the polymerization of styrene in tetrahydrofuran 

(THF). Upon contact with styrene, the green color of the radical anions immediately 

turned into red indicating formation of styryl anions. He suggested that the initiation 

occurs via electron transfer from the sodium naphthalenide radical anion to styrene 

monomer. The styryl radical anion forms upon addition of an electron from the 

sodium naphthalenide and dimerizes to form a dianion. After the incorporation of all 

the monomer, the red color of the reaction mixture persists, indicating that the chain 

ends remain intact and active for further propagation. This was demonstrated by the 

resumption of propagation with a fresh addition of another portion of styrene. After 

determining the relative viscosity of the first polymerized solution at its full 

conversion, another portion of styrene monomer was added and polymerization was 

continued. Thus, Szwarc characterized this behavior of the polymerization as living 

polymerization and called the polymers as living polymers [62]. Here, the term living 

refers to the ability of the chain ends of these polymers retaining. their reactivity for 

a sufficient time enabling continued propagation without termination and transfer 

reactions. 

2.4.2 Cationic polymerization  

Since the first reports of living cationic polymerization of vinyl ethers [63] and 

isobuthylene  [64] in the 1980s, the scope of living cationic polymerization of vinyl 

monomers has been expanding rapidly in terms of monomers and initiating systems. 

Compared to anionic polymerization, living cationic polymerization can proceed 

under much less rigorous and much more flexible experimental conditions. The high 

vacuum technique is not indispensable, since alternative routes can consume 
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adventitious moisture without terminating the living chains. Nonetheless, rigorous 

purification of reagents is still required for the best control. 

Initiation and propagation take place by electrophilic addition of the monomers to the 

active cationic sites. Therefore, the monomer must be nucleophilic and its 

substituents should be able to stabilize the resulting positive charge. 

With a few exceptions [65-66], living cationic polymerization is initiated by the 

initiator/co initiator (Lewis acid) binary system. Selection of an initiating system for 

a given monomer is of crucial importance, as there are no universal initiators such as 

organolithiums in anionic polymerization. For example, while weak Lewis acids 

such as zinc halides may be necessary to effect living polymerization of the more 

reactive vinyl ethers, they are not effective for the living polymerization of the less 

reactive monomers, such as isobuthylene and Styrene. 

2.4.3 Controlled radical polymerization (CRP)  

All CRP systems have a dynamic equilibrium between propagating radicals and 

various dormant species [67-68]. There are two types of equilibria. Radicals may be 

reversibly trapped in a deactivation/activation process, according to Figure 2.4 or 

they can be involved in a degenerative exchange process (Figure 2.5). 

 

Figure 2.4: Controlled polymerization via deactivation/activation process. 

 

Figure 2.5: Controlled polymerization via degenerative exchange process. 

The first one is more widely used and relies on the persistent radical effect (PRE) 

[69]. In systems obeying the PRE, newly generated radicals are rapidly trapped in a 
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deactivation process (with a rate constant of deactivation, kda) by species X (which is 

typically a stable radical such as a nitroxide [70] or an organometallic species such as 

a cobalt porphyrine [71]). The dormant species are activated (with a rate constant ka) 

either spontaneously/thermally, in the presence of light, or with an appropriate 

catalyst (as in ATRP) [72] to reform the growing centers. Radicals can propagate (kp) 

but also terminate (kt). 

Good control over MW, polydispersity, and chain architecture in all CRP systems 

requires very fast exchange between active and dormant species. 

Ideally, a growing radical should react with only a few monomer units before it is 

converted back into a dormant species. Consequently, it would remain active only for 

a few milliseconds.  

2.4.3.1 Atom transfer radical polymerization (ATRP)  

The most widely used CRP technique is ATRP [72-73]. This originates from the 

commercial availability of all necessary ATRP reagents, including transition metal 

compounds and ligands used as catalysts, as well as alkyl halide initiators, and also 

from the large range of monomers polymerizable by this technique under a wide 

range of conditions. 

The basic working mechanism of ATRP involves homolytic cleavage of an alkyl 

halide bond R–X (or macromolecular Pn –X) by a transition metal complex Mt
n
/L 

(such as CuBr/bpy2) (bpy : bipyridine). This reaction generates reversibly (with the 

activation rate constant, ka) the corresponding higher oxidation state metal halide 

complex X–Mt
n+1

/L (such as CuBr2/bpy2) and an alkyl radical R• (a representative 

example of this process is illustrated in Figure 2.6) [73]. R• can then propagate with 

a vinyl monomer (kp), terminate by coupling and/or disproportionation (kt), or can be 

reversibly deactivated by X–Mt
n+1

/L (kda). Radical termination is diminished because 

of the PRE [69] that ultimately shifts the equilibrium toward the dormant species 

(activation rate constant << deactivation rate constant). The values of the rate 

constants in Figure 2.6 refer to styrene polymerization at 110 
0
C 
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Figure 2.6: Polymerization of styrene by ATRP. 

The synthesis of polymers with low polydispersities and predetermined MWs 

requires a sufficient concentration of deactivator. Polydispersities decrease with 

monomer conversion (p) and concentration of deactivator but increase with the kp/kda 

ratio. 

2.4.3.2 Stable free radical polymerization (SFRP) : Aminoxyl-mediated 

polymerization (NMP) and organometallic-mediated radical 

polymerization (OMRP) systems 

SFRP and, more specifically, nitroxide-mediated polymerization [70] (NMP) or 

organometallic-mediated radical polymerization (OMRP) [71] systems rely on the 

reversible homolytic cleavage of a relatively weak bond in a covalent species to 

generate a growing radical and a less reactive species (usually the persistent radical, 

but can be also species with an even number of electrons). This species should react 

reversibly only with growing radicals and should not react amongst themselves or 

with monomers to initiate the growth of new chains, and they should not participate 

in side reactions such as the abstraction of β-H atoms. 

Nitroxides (aminoxyl radicals) were employed as stable free radicals in the 

polymerization of (meth)acrylates. The field of NMP became important after the 

paper by Georges who used TEMPO (2,2,6,6-tetramethyl-1-piperidynyl-N-oxy) as a 

mediator in styrene polymerization (Figure 2.7) [70]. TEMPO and substituted 

TEMPO derivatives form relatively strong covalent bonds in alkoxyamines that have 

very low equilibrium constants in NMP (ratio of rate constants of dissociation 

(activation) and coupling (deactivation), kd/kc = Keq = 2.0 10
−11

 M at 120 
◦
C for PS 

[68] and therefore require high polymerization temperatures. 

 



 

 

 
24 

 

Figure 2.7: Polymerization of styrene by TEMPO. 

The OMRP of MA with Co porphyrines [71], one of the most successful CRP 

systems, leads to well-defined high MW polyacrylates and has been recently 

extended to PVAc [74]. However, similar compounds in polymerization of 

methacrylates act as very efficient catalytic chain TAs [75].  

2.4.3.3 Degenerative transfer (DT) processes   

Conventional free radical initiators are used in DT processes, and control is by the 

presence of Transfer agents- TAs-  (RX) which exchange a group/atom X between 

all growing chains. This thermodynamically neutral (degenerative) transfer reaction 

should be fast in comparison to propagation (kexch > kp). At any instant, the 

concentration of dormant species Pn –X is much larger than that of the active species 

Pn∗. Degree of polymerization is defined by the ratio of concentrations of consumed 

monomer to the sum of concentrations of the consumed TA and the decomposed 

initiator. 

DT processes do not operate via the PRE. A steady state concentration of radicals is 

established via initiation and termination processes. In some cases, the exchange 

process may occur via some long-lived intermediates, which can either retard 

polymerization or participate in side reactions such as the trapping of growing 

radicals (Figure 2.8). 

 

Figure 2.8: The mechanism of degenerative transfer (DT) processes. 
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2.4.3.4 Reversible addition-fragmentation transfer (RAFT)  

RAFT polymerization is among the most successful DT processes [76-77]. While 

addition-fragmentation chemistry was originally applied to the polymerization of 

unsaturated methacrylate esters (prepared by catalytic chain transfer) [78], RAFT 

employs various dithioesters, dithiocarbamates, trithiocarbonates, and xanthates as 

TAs leading to polymers with low polydispersities and various controlled 

architectures (Figure 2.9) for a broad range of monomers [79-80]. The structure of a 

dithioester has a very strong effect on control. Both R and Z groups must be carefully 

selected to provide control. Generally, R∗ should be more stable than Pn∗, to be 

formed and to efficiently initiate the polymerization. More precisely, the selection of 

the R group should also take into account stability of the dormant species and rate of 

addition of R∗ 
to monomer. The structure of group Z is equally important. Strongly 

stabilizing Z groups such as Ph are efficient for styrene and methacrylate but they 

retard polymerization of acrylates and inhibit polymerization of vinyl esters. On the 

other hand, very weakly stabilizing groups, such as –NR2 in dithiocarbamates or –

OR in xanthates, are good for vinyl esters but less efficient for styrene.  

 

Figure 2.9: RAFT Mechanism of methyl methacrylate 

2.5 Surface Modification of Polymer Beads Using ATRP.  

Grafting of polymers on a solid surface plays an important role in many areas of 

science and technology, e.g., colloidal stabilization, adhesion, lubrication and 

rheology [81–83]. The conformation of those polymers in a solvent can dramatically 
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change with graft density; [84-85] at low graft densities, they will assume a 

―mushroom‖ conformation with the coil dimension similar to that of ungrafted 

chains. With increasing graft density, graft chains will be obliged to stretch away 

from the surface, forming the so-called ―polymer brush‖. Polymer brushes may be 

categorized into two groups different in graft density. One is the ―semi-dilute‖ brush, 

in which polymer chains overlap with each other but their volume fraction is still so 

low that the free energy of interaction can be approximated by a binary interaction, 

and the elastic free energy, by that of a Gaussian chain. Structure and properties of 

semi-dilute polymer brushes are relatively well understood both experimentally and 

theoretically. Theoretical analyses [86-87] predicted that the equilibrium thickness 

(Le) of the semi-dilute polymer brush in good solvent varies like  Le ∝ Nσ
1/3

 where N 

and σ are the degree of polymerization and the surface density of the graft chains, 

respectively. The most important feature of this expression is that Le depends on N in 

a linear way, while the dimension of an isolated chain in good solvent is scaled as 

N
3/5

. This means that the graft chains adopt a stretched conformation. Extensive 

efforts have been made to characterize the semi-dilute polymer brushes 

systematically prepared by the ―grafting to‖ method using end-functionalized 

polymers or block copolymers with the terminal group or one of the blocks 

selectively adsorbed on the surface. For example, neutron reflectometry [88] and the 

interaction forces between polymer brush surfaces were directly measured by a 

surface force apparatus [89] and an atomic force microscope (AFM) [87] studied the 

brush height and the segment density profile in good solvent. These studies have 

supported the theoretical predictions mentioned above. 

The other category is the ―concentrated‖ brush or the high-density brush, for which 

the above-mentioned approximations are no longer valid and higher-order 

interactions should be taken into account. In this regime, therefore, graft chains are 

expected to exhibit different properties from those in the semi-dilute regime due to 

higher-order interactions between graft chains. Theoretical analyses taking account 

of these interactions predicted that the repulsive force will much more steeply 

increase with increasing graft density [90-91]. However, the structure and properties 

of high-density polymer brushes could not be well studied experimentally because of 

the difficulty of preparing well-defined high-density brushes. The above-mentioned 

grafting to method gives limited graft densities due to the concentration gradient 
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built up by the already grafted chains [92]. Namely, once the surface is significantly 

covered with polymers, they give a strong kinetic hindrance against the grafting of 

new chains. An alternative method to prepare polymer brushes is the ―grafting-from‖ 

method, that is, the graft polymerization starting with initiating sites fixed on the 

surface. In this technique, the addition of monomer to growing chain ends or to 

primary radicals is not strongly hindered by the already grafted chains in a good 

solvent condition. Therefore, this technique is more promising to produce a polymer 

film with a larger thickness and a higher graft density than the grafting-to technique 

[93]. Earlier strategies were mostly based on conventional free radical 

polymerization (FRP), which successfully gave grafted films of increased density. 

However, no clear experimental evidence has been reported to confirm the 

achievement of structure and properties specific to high-density brushes, which 

suggests that the achieved graft density may still be in the semi-dilute regime. The 

generally poor control of chain length and chain-length distribution by conventional 

FRP poses complexities in defining the prepared brushes. In a polydisperse brush, 

longer chains will form the outer fringe of the swollen brush with a relatively low 

segmental density, which may mask the possibly unique properties of the higher 

density portion of the brush near the substrate surface. 

Living polymerization techniques including anionic, cationic, ring-opening, ring-

opening metathesis, and living radical polymerizations were successfully applied to 

surface-initiated graft polymerization to prepare a polymer brush with the basic brush 

parameters controlled [94]. Of these techniques, living radical polymerization (LRP) 

has been most widely used for its tolerance to impurities and versatility to various 

monomers. Surface initiated LRP has proved to provide a dramatic increase of graft 

density, giving well-defined high-density polymer brushes. Recent studies have 

revealed that such brushes have characteristic structure and properties quite different 

and unpredictable from those of the semi-dilute polymer brushes previously studied. 

ATRP has been widely applied to surface-initiated graft polymerization on a variety 

of materials including flat substrates [95], fine particles [96], and porous materials 

[97]. 

Ejaz et al. first succeeded in synthesizing a dense brush of low-polydispersity poly 

(methyl methacrylate) (PMMA) by the surface-initiated ATRP with copper/ligand 

complexes. They deposited a commercially available silane-coupling agent, 2-(4-
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chlorosulfonylphenyl) ethyltriethoxysilane (CTS), on a silicon wafer by the 

Langmuir–Blodgett technique to form a covalent bond by the coupling reaction with 

the silanol group on the silicon surface [95]. Figure 2.10 schematically illustrates the 

graft polymerization process: the activator such as a Cu(I) complex abstracts the 

halogen atom of the immobilized initiating dormant species, e.g., a chloride 

functional polymer supported reagent, or the grown dormant chain, giving a 

propagating radical, to which some monomer units are added until it is recapped to 

be a dormant chain. This cycle occurs repeatedly and randomly on the halogenated 

sites on the surface, thus allowing all graft chains to grow slowly and nearly 

simultaneously, when viewed in a longer time scale, hence in a controlled fashion. 
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         Figure 2.10: Schematic illustration of surface-initiated atom transfer       

radical polymerization on a polymer support. 

2.6 Proteins 

A protein is a biopolymer composed of basic building blocks called amino acids. 

Naturally, occurring proteins are made up to 20 different amino acids. Proteins are 

the most abundant biopolymers in living cells (constituting about 40 to 70 percent of 

dry cell weight) and have biological functions: 

1) Structural components (e.g. collagen, keratin) 
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2) Catalysts (e.g. enzymes, catalytic antibodies) 

3) Transport molecules (e.g. hemoglobin, serum albumin) 

4) Protective molecules (e.g. antibodies) 

A protein molecule can be a single poly (amino acid) chain or may comprise more 

than one poly (amino acid) chain, held together by covalent bonds or non-covalent 

interactions. A protein usually coils up and folds into a specific three-dimensional 

configuration, depending on the intrinsic properties of the protein as well as on the 

environment in which the protein exist. Structure of a protein can be defined at 

different level, these being, 

a) Primary 

b) Secondary 

c) Tertiary 

d) Quaternary 

The primary structure of a protein is the sequence of amino acids present in the poly 

(amino acid) chains. The secondary structure describes the local structure of linear 

segments of the protein molecule. The three most common types of secondary 

structure are alpha helices, the beta sheets and the turns. The tertiary structure is the 

three-dimensional arrangement of all the atoms present in a single poly (amino acid) 

chain. The quaternary structure describes the arrangement of poly (amino acid) 

chains (subunits) in a particular protein. 

Proteins are not entirely rigid molecules. In addition to these levels of structure, 

proteins may shift between several related structures while they perform their 

functions. In the context of these functional rearrangements, these tertiary or 

quaternary structures are usually referred to as conformations, and transitions 

between them are called conformational changes. The binding of a substrate 

molecule to an enzyme‘s active site, or the physical region of the protein that 

participates in chemical catalysis often induces such changes. In solution, proteins 

also undergo variation in structure through thermal vibration and the collision with 

other molecules. 
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2.6.1 Enzymes  

The best-known role of proteins in the cell is as enzymes, which catalyze chemical 

reactions. Enzymes are usually highly specific and accelerate only one or a few 

chemical reactions. Enzymes carry out most of the reactions involved in metabolism, 

as well as manipulating DNA in processes such as DNA replication, DNA repair, and 

transcription. Some enzymes act on other proteins to add or remove chemical groups 

in a process known as post-translational modification. About 4000 reactions are 

known to be catalyzed by enzymes [98].  

The rate acceleration conferred by enzymatic catalysis is often enormous  as much as 

10
17

 fold increase in rate over the uncatalyzed reaction in the case of orotate 

decarboxylase (78 million years without the enzyme, 18 milliseconds with the 

enzyme) [99]. 

The molecules bound and acted upon by enzymes are called substrates. Although 

enzymes can consist of hundreds of amino acids, it is usually only a small fraction of 

the residues that come in contact with the substrate, and an even smaller fraction — 3 

to 4 residues on average — that are directly involved in catalysis. The region of the 

enzyme that binds the substrate and contains the catalytic residues are known as the 

active site.  

2.7 Protein Isolation 

2.7.1 The aim for isolating proteins  

To gain perception: As working with living systems, it is necessary to isolate the 

component parts so that they may be studied, separately and in their interaction with 

other parts. The knowledge that is gained in this way may be put to practical use, for 

example, in the design of medicines, pesticides, or industrial processes. 

To use in Medicine:  Many proteins may be used as medicines to make up for losses 

or inadequate synthesis. Examples are hormones, such as insulin, which is used in 

the therapy of diabetes, and blood fractions, such as the so-called Factor VIII, which 

is used in the therapy of hemophilia. Other proteins may be used in medical 

diagnostics, an example being the enzymes glucose oxidase and peroxidase, which 

are used to measure glucose levels in biological fluids, such as blood and urine. 
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In every case, a pure protein is desirable as impurities may either be misleading, 

dangerous or unproductive, respectively. Protein isolation is, therefore, a very 

common, almost central, procedure in biochemistry. 

2.7.2 Properties of proteins that affect the methods used in their study 

Proteins have two properties, which determine the overall approach to protein 

isolation and make this different from the approach used to isolate small natural 

molecules. 

- Proteins are labile. As molecules go, proteins are relatively large and delicate 

and their shape is easily changed, a process called denaturation, which leads 

to loss of their biological activity. This means that only mild procedures can 

be used and techniques such as boiling and distillation, which are commonly 

used in organic chemistry, are thus verboten. 

- Proteins are similar to one another. All proteins are composed of essentially 

the same amino acids, differ only in the proportions, and sequence of their 

amino acids, and in the 3-D folding of the amino acid chains. Consequently, 

processes with a high discriminating potential are needed to separate proteins. 

2.7.3 The General idea of protein isolation  

In a protein isolation one have to attempt to purify a particular protein, from some 

biological (cellular) material, or from a bio product, since proteins are only 

synthesized by living systems. The aim is to separate the protein of interest from all 

non-protein material and all other proteins which occur in the same material. 

Removing the other proteins is the difficult part because all proteins are similar in 

their gross properties. In an ideal case, without any loss of the protein of interest, the 

total amount of protein would decrease while the activity (which defines the 

particular protein of interest) would remain the same (Fig. 2.11) [100]. 
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a

b

a

b

A                                                                       B
 

Figure 2.11:  Schematic representation of a protein isolation. 

At the beginning (Fig. 2.11 A) there is a small amount of the desired protein -a- and a 

large amount of total protein -b-. In the course of the isolation, -b- is reduced and 

consequently (Fig. 2.11 B) only -a- remains. Ideally, the amount of -a- remains 

unchanged but, in practice, this is seldom achieved and less than 100% recovery of 

purified protein is usually obtained. 

As a general principle, one should aim to achieve the isolation of a protein; 

-  In as few steps as possible and, 

- In as short a time as possible. 

This decreases losses and the generation of isolation artifacts. In addition, to further 

study the protein, the isolation will have to be done many times over and the effort 

put into devising a quick, simple, isolation procedure will be repaid many times over. 

The overall approach to the isolation of a protein is shown in Fig. 2.12 [100]. 
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Figure 2.12: An overview of protein isolation. 

To isolate a protein, one must start with some way of measuring the presence of the 

protein and of distinguishing it from all other proteins that might be present in the 

same material. This is achieved by a method, which measure the unique activity of 

the protein. With such an assay, likely materials can be analyzed in order to select 

one containing a large amount of the protein of interest, for use as the starting 

material. 

Having selected a source material, it is necessary to extract the protein into a soluble 

form. This may be achieved by homogenizing the material in a buffer of low osmotic 

strength (the low osmotic pressure helps to lyses cells and organelles), and clarifying 

the extract by filtration and/or centrifugation steps.  

The clarified extract is typically subjected to preparative fractionation. At this stage 

salting out usefully serves to separate protein from non-protein material. It is 

necessary to assay the fractions obtained, in order to select the fraction containing the 
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protein of interest. The selected fraction can then be subjected to further preparative 

fractionation, as required, until a pure fraction is obtained. 

Experience has shown that there is an optimal sequence in which preparative 

methods may be applied. As a first approach it is best to apply salting out (or TPP) 

early in the procedure, followed by ion exchange or affinity chromatography. Salting 

out can, with advantage, be followed by hydrophobic interaction chromatography, 

because hydrophobic interactions are favored by high salt concentration. The 

precipitate obtained from TPP, however, is low in salt and so can be applied directly 

to an ion-exchange system, without prior desalting. Generally, molecular exclusion 

chromatography should be reserved for late in the isolation when only a few 

components remain, since it is not a highly discriminating technique. Affinity 

chromatography often achieves the desirable aims of a rapid isolation using a 

minimum number of steps and so it should always be explored and preferentially 

used where possible. 

In this thesis a new a polymer supported material with hydrazine function was 

synthesized for using in preparative fractionation step of protein isolation. This 

hydrazine functional beads showed affinity toward invertase enzyme.  

2.8 Chromatographic Purification Techniques in Protein Isolation  

After concentration of the extract by one of the methods mentioned above, a 

chromatographic technique can be applied to the extract. Proteins are purified using 

chromatographic techniques (Fig. 2.13) [101] which separate according to 

differences in specific properties, as shown in Table 2.1. 

Table 2.1: Chromatographic techniques used in protein purification. 

Protein property                                                        Technique 

Charge                                                                     Ion Exchange (IEX) 

Size                                                                      Gel Filtration interaction (HIC)   (GF) 

Hydrophobicity                                                       Hydrophobic  

Biorecognition                                                        Affinity (AC) 
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Figure 2.13: Separation techniques in chromatographic purification. 

2.8.1 Ion exchange chromatography 

Separation in ion exchange chromatography depends upon the reversible adsorption 

of charged solute molecules to immobilized ion exchange groups of opposite charge. 

Most ion exchange experiments are performed in five main stages (Fig 2.14) [102]. 

Starting buffer counter ions           Subtances to be separated Gradient ions

starting

conditions

1
Adsorption of
sample subtances

2  
Start of 
desorption

3
End of 
desorption

4

Regeneration

5

 

Figure 2.14: The principle of ion exchange chromatography (salt gradient elution). 
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The first stage is equilibration in which the ion exchanger is brought to a starting 

state, in terms of pH and ionic strength, which allows the binding of the desired 

solute molecules. The exchanger groups are associated at this time with 

exchangeable counter-ions (usually simple anions or cations, such as chloride or 

sodium). 

The second stage is sample application and adsorption, in which solute molecules 

carrying the appropriate charge displace counter-ions and bind reversibly to the 

matrix. Unbound substances can be washed out from the exchanger bed using 

starting buffer. 

In the third stage, substances are removed from the column by changing to elution 

conditions unfavorable for ionic bonding of the solute molecules. This normally 

involves increasing the ionic strength of the eluting buffer or changing its pH. In Fig. 

2.14 desorption is achieved by the introduction of an increasing salt concentration 

gradient and solute molecules are released from the column in the order of their 

strengths of binding, the most weakly bound substances being eluted first. 

The fourth and fifth stages are the removal from the column of substances not eluted 

under the previous experimental conditions and re-equilibration at the starting 

conditions for the next purification. 

Separation is obtained since different substances have different degrees of interaction 

with the ion exchanger due to differences in their charges, charge densities and 

distribution of charge on their surfaces. These interactions can be controlled by 

varying conditions such as ionic strength and pH. The differences in charge 

properties of biological compounds are often considerable, and since ion exchange 

chromatography is capable of separating species with very minor differences in 

properties, for example two proteins differing by only one charged amino acid, it is a 

very powerful separation technique. 

2.8.1.1 The matrix 

An ion exchanger consists of an insoluble matrix to which charged groups have been 

covalently bound. The charged groups are associated with mobile counterions. These 

counter-ions can be reversibly exchanged with other ions of the same charge without 

altering the matrix. It is possible to have both positively and negatively charged 

exchangers (Fig. 2.15). Positively charged exchangers have negatively charged 
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counter-ions (anions) available for exchange and are called anion exchangers. 

Negatively charged exchangers have positively charged counter-ions (cations) and 

are termed cation exchangers. 

Anion exchanger with
exchangeable counter ions

Cation exchanger with
exchangeable counter ions

 

Figure 2.15: Ion exchanger types. 

2.8.1.2 Charged groups 

The presence of charged groups is a fundamental property of an ion exchanger. The 

type of group determines the type and strength of the ion exchanger; their total 

number and availability determines the capacity. There is a variety of groups which 

have been chosen for use in ion exchangers [103]; some of these are shown in Table 

2.2. 

Table 2.2: Functional groups used on ion exchangers. 

Anion Exchangers                                                              Functional Group 

Diethylaminoethyl (DEAE)                                      -O-CH2-CH2-N
+
H(CH2CH3)2 

Quaternary aminoethyl (QAE)                        -O-CH2-CH2-N
+
(C2H5)2-CH2-CHOH-

CH3 

Cation exchangers                                                              Functional group 

Carboxymethyl (CM)                                                             -O-CH2-COO
-
 

Sulphopropyl (SP)                                           -O-CH2-CHOH-CH2-O-CH2-CH2-

CH2SO3
-
 

Methyl sulphonate (S)                               -O-CH2-CHOH-CH2-O-CH2-CHOH-

CH2SO3
- 

Sulphonic and quaternary amino groups are used to form strong ion exchangers; the 

other groups form weak ion exchangers. The terms strong and weak refer to the 

extent of variation of ionization with pH and not the strength of binding. Strong ion 
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exchangers are completely ionized over a wide pH range whereas with weak ion 

exchangers, the degree of dissociation and thus exchange capacity varies much more 

markedly with pH. 

2.8.2 Affinity chromatography 

Affinity chromatography separates proteins on the basis of a reversible interaction 

between a protein and a specific ligand coupled to a chromatography matrix. The 

technique is ideal for a capture or intermediate step in a purification protocol and can 

be used whenever a suitable ligand is available for the protein of interest. With high 

selectivity, hence high resolution, and high capacity for the protein of interest, 

purification levels in the order of several thousand-fold with high recovery of active 

material are achievable. Target protein is collected in a purified, concentrated form. 

Biological interactions between ligand and target molecule can be a result of 

electrostatic or hydrophobic interactions, van der Waals' forces and/or hydrogen 

bonding. To elute the target molecule from the affinity medium the interaction can be 

reversed, either specifically using a competitive ligand, or non-specifically, by 

changing the pH, ionic strength or polarity. 

In a single step, affinity purification can offer immense timesaving over less selective 

multistep procedures. The concentrating effect enables large volumes to be 

processed. Target molecules can be purified from complex biological mixtures, 

native forms can be separated from denatured forms of the same substance and small 

amounts of biological material can be purified from high levels of contaminating 

substances. 

For an even higher degree of purity, or when there is no suitable ligand for affinity 

purification, an efficient multi-step process must be developed using the purification 

strategy of Capture, Intermediate Purification and Polishing (CIPP). When applying 

this strategy affinity chromatography offers an ideal capture or intermediate step in 

any purification protocol and can be used whenever a suitable ligand is available for 

the protein of interest. 

Successful affinity purification requires a biospecific ligand that can be covalently 

attached to a chromatography matrix. The coupled ligand must retain its specific 

binding affinity for the target molecules and, after washing away unbound material, 

the binding between the ligand and target molecule must be reversible to allow the 
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target molecules to be removed in an active form. Any component can be used as a 

ligand to purify its respective binding partner. Some typical biological interactions, 

frequently used in affinity chromatography, are listed below: 

• Enzyme  →  substrate analogue, inhibitor, cofactor. 

• Antibody  → antigen, virus, cell. 

• Lectin →  polysaccharide, glycoprotein, cell surface receptor, cell. 

• Nucleic acid  → complementary base sequence, histones, nucleic acid polymerase, 

nucleic acid binding protein. 

• Hormone, vitamin →  receptor, carrier protein. 

• Glutathione →  glutathione-S-transferase or GST fusion proteins. 

• Metal ions  → Poly (His) fusion proteins, native proteins with histidine, cysteine 

and/or 

Tryptophan residues on their surfaces. 

Fig. 2.16  shows the stages in an affinity purification [101]. 
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  1. Affinity medium is equilibrated in                                                                                                                   

                                                                                             binding buffer        

                                                                                                 

 

       2. Sample is applied under conditions 

                                                                         that favor specific binding of the target    

                                                                        molecule to a binding subtances(ligand).                                                                                                                                                                                                           

                                                                                  

 

 

    3.Target protein is recovered by changing   

                                                        conditions to favor elution of the bound molecules  

                                                                                      

4.Affinity medium is re-equilibrated with   

                                                                                      binding buffer 

 

Figure 2.16: Affinity purification steps. 
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2.8.2.1 Affinity medium matrix  

The list below highlights properties required for efficient chromatographic matrix : 

 Extremely low non-specific adsorption, essential since the success of affinity     

chromatography relies on specific interactions. 

 An open pore structure ensures high capacity binding even for large 

biomolecules, since the interior of the matrix is available for ligand 

attachment. 

 Good flow properties for rapid separation. 

 Stability under a range of experimental conditions such as high and low pH, 

detergents and dissociating agents. 

In affinity chromatography, the particle size and porosity are designed to maximize 

the surface area available for coupling a ligand and binding the target molecule. A 

small mean particle size with high porosity increases the surface area. Increasing the 

degree of crosslinking of the matrix improves the chemical stability, in order to 

tolerate potentially harsh elution and wash conditions, and creates a rigid matrix that 

can withstand high flow rates. These high flow rates, although not always used 

during a separation, save considerable time during column equilibration and cleaning 

procedures. 

2.8.2.2 The ligands of affinity medium  

The ligand is the molecule that binds reversibly to a specific molecule or group of 

molecules, enabling purification by affinity chromatography. 

The selection of the ligand for affinity chromatography is influenced by two factors: 

the ligand must exhibit specific and reversible binding affinity for the target 

substance(s) and it must have chemically modifiable groups that allow it to be 

attached to the matrix without destroying binding activity. 

The dissociation constant (kD) for the ligand - target complex should ideally be in the 

range 10
-4

 to 10
-8

 M in free solution. 

Interactions involving dissociation constants greater than 10
-4 

M, for example the 

binding reaction between an enzyme and a weak inhibitor, are likely to be too weak 

for successful affinity chromatography. Conversely, if the dissociation constant is 

lower than approximately 10
-8

 M, for example the affinity between a hormone and 
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hormone receptor, elution of the bound substance without causing inactivation is 

likely to be difficult. If no information on the strength of the binding complex is 

available, a trial and error approach must be used [101]. 

2.8.3 Hydrophobic interaction (HI) chromatography  

HI-chromatography [104] was discovered serendipitously when, in control 

experiments, ligands were omitted from the matrix/spacer arm combination. It was 

found that the resulting resins were nevertheless effective at separating proteins, due 

to hydrophobic interactions between the sample proteins and the aliphatic spacer 

arms. Following this discovery, HI-resins were purposefully designed to optimize the 

hydrophobic interaction. Hydrophobic bonds are increased in strength by an increase 

in buffer ionic strength. HI-chromatography therefore conveniently fits into an 

isolation scheme, immediately after a salting out step, as the high salt levels will 

promote binding to the HI-resin. Proteins can subsequently be eluted by decreasing 

the buffer ionic strength, either in a stepwise manner or in a gradient. 

2.9 Protein Interactions with Solid Surfaces  

Generally, the surfaces of materials of almost any type that come into contact with 

protein mixtures tend to become quickly occupied by proteins. Protein interactions 

with solid surfaces have been studied, and several reviews are available [105–109]. 

2.9.1 Interfaces 

Interfaces and interactions that take place in interfacial regions can be complex. In 

fact, the interface has been described as a fourth state of matter [110]. The properties 

of atoms or atomic groups at a material surface are different from those of the bulk 

material. The first layer of atoms, in contact with the fluid phase, is particularly 

unique. Chemical composition, molecular orientation, and properties relevant to 

crystallinity differ at the surface. In addition, surfaces have different electrical and 

optical properties and can be characterized by atomic- or molecular-level textures 

and roughnesses. Surfaces have wettabilities or hydrophobic/hydrophilic balances 

related to the factors named above. Further, surfaces are generally energetically 

heterogeneous. For example, although a surface may be assigned a particular 
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wettability, it would most likely be the result of a distribution of surface regions of 

varying wettabilities. 

In spite of this complexity, many researchers have met with success in describing 

some aspect of protein adsorption in terms of one or several surface properties. The 

effects of charge distribution, surface energy, and surface hydrophobicity have 

received much attention [105–109]. The extent of protein adsorption or biological 

adhesion in general could be determined purely by surface energetics, that is, the 

surface energies of the synthetic material, liquid medium, and adsorbates involved. 

Such an approach would imply that the free energy of adsorption is minimized at 

equilibrium. Adsorption would be favored if it caused the free energy function to 

decrease and would not be favored if it caused the function to increase. In the 

absence of electrostatic and specific receptor–ligand interactions, the change in free 

energy upon adsorption could be written 

FadsAS+AL+SL                                                                                                              (2.5) 

where Fads(J/m
2
) is the free energy of adsorption per unit of surface area, and  AS,  

AL and SL (J/m
2
) are the adsorbate-solid, adsorbate-liquid, and solid-liquid 

interfacial energies, respectively. 

If all the required interfacial energies of equation (2.5) could be estimated, one could 

predict the relative extent of adsorption among different surfaces. This would lead to 

a distinction between two situations [111-112], depending on whether adsorbate 

surface energy is greater than or less than the surface energy of the suspending 

liquid. Concerning protein adsorption from aqueous media, equation (2.5) would 

predict increasing adsorption with decreasing surface energy. In other words, a given 

protein would be expected to adsorb with greater affinity to hydrophobic as opposed 

to hydrophilic surfaces. 

2.9.2 Isoelectronic point, pI  

The isoelectronic point or isoionic point is the pH at which the amino acid does not 

migrate in an electric field.  This means it is the pH at which the amino acid is 

neutral. If the pH of the solution is greater than the pI, the net charge of the protein 

would be negative, whereas if the pH is less than the pI, the net charge of the protein 

would be positive. The pI is given by the average of the pKa‘s that involve the 
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zwitterion so that give the boundaries to its existence. There are three cases to 

consider: 

1) Neutral side chains 

These amino acids are characterized by two pKa‘s : pKa1 and pKa2 for the carboxylic 

acid and the amine respectively. The isoelectronic point is the average of, these two 

pKa‘s,   

pI=1/2(pKa1+pKa2)                                                                                                (2.6) 

At very acidic pH (below pKa1) the amino acid have an overall positive charge and 

at very basic pH (above pKa2 ) the amino acid have an overall negative charge 

(Figure 2.17). 

 

Figure 2.17: The overall charge of amino acids with neutral side chains. 

The other two cases introduce other ionizable groups in the side chain "R" described 

by a third acid dissociation constant, pKa3 

2) Acidic side chains  

The pI will be at a lower pH because the acidic side chain introduces an extra 

negative charge. So the neutral form exists under more acidic conditions when the 

extra negative charge has been neutralized.  For example, for aspartic acid shown in 

Figure 2.18, the neutral form is dominant between pH 1.88 and 3.65, pI is halfway 

between these two values, so that pI = 1/2 (pKa1 + pKa3),  so pI = 2.77.  

 

Figure 2.18: The overall charge of amino acids with acidic side chains. 



 

 

 
45 

3) Basic side chains  

The pI will be at a higher pH because the basic side chain introduces an extra 

positive charge. So the neutral form exists under more basic conditions when the 

extra positive charge has been neutralized.  For example, for histidine the neutral 

form is dominant between pH 6.00 and 9.17, pI is halfway between these two values, 

so that  pI = 1/2 (pKa2 + pKa3),  so pI = 7.59. 

2.9.3 Proteins at interfaces  

The net charge of a protein in solution is dependent on the difference between pH of 

the solution and the isoelectric point (pI) of the protein. The maximum adsorption 

occurs at the isoelectric point. As the out-of-balance charge of a protein increases, it 

will be in a more extended form than when the net charge is zero [113]. 

Norde and Lyklema [114] suggested that the degree to which pH affects the 

adsorption of a protein is determined by its conformational stability. They found that 

plateau values of adsorbed mass were independent of pH for structurally stable 

proteins, whereas those of less stable proteins varied considerably, apparently 

because less stable proteins were able to change structure with solution conditions. 

The effect of pH on protein adsorption and desorption can depend on solution history 

as well [115]. Kondo and Higashitani [116] studied the adsorption of model proteins 

with wide variation in molecular properties. They explained the pH dependence of 

adsorbed mass in terms of lateral interactions. In particular, they suggested that 

lateral interactions between large protein molecules are stronger than those between 

small molecules. Large proteins would thus be expected to show maximum 

adsorption around their pI‘s, whereas the effect of pH on smaller proteins would be 

less pronounced. 

Ionic strength also affects protein adsorption. At low ionic strength, protein surface 

charge fully contributes to the total electrostatic interaction [113]. At high ionic 

strength, the surface charges of proteins are shielded, reducing electrostatic 

interactions between proteins, whether attractive or repulsive [115]. Luey et al. [117] 

showed that ionic strength effects on adsorbed mass are very much related to solid 

surface properties. They observed that increased ionic strength reduced the 

electrostatic repulsion between negatively charged -lactoglobulin molecules and the 
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hydrophilic, negatively charged surface they studied. By contrast, increased ionic 

strength resulted in little change in adsorbed mass at hydrophobic surfaces. 

2.9.4 Surface-induced conformational changes  

It is well known that a given protein can exist in multiple adsorbed conformational 

states on a surface [118–120]. These states can be distinguished by differences in 

occupied area, binding strength, tendency to undergo exchange events with other 

proteins, and catalytic activity or function. All these features of adsorbed protein are 

interrelated and can be time-dependent. For example, decreases in surfactant-

mediated elution of proteins from an adsorbed layer are observed as protein–surface 

contact time increases [121]. It has been observed that the extent of conformational 

change experienced by adsorbed fibrinogen increases with contact surface 

hydrophobicity [122]. This is consistent with findings of Elwing et al. [123], who 

used elipsometry to make inferences regarding conformational changes experienced 

by complement factor III, a plasma protein, on hydrophilic and hydrophobic silica 

surfaces. The results of Elwing et al. also showed that greater values of adsorbed 

mass were found on hydrophobic as opposed to hydrophilic surfaces. Protein 

molecules are assumed, in general, to change conformation to a greater extent on 

hydrophobic surfaces. This is due to the effect of hydrophobic interactions between 

the solid surface and hydrophobic regions in the protein molecule. In fact, surface-

induced unfolding is often characterized as entropically driven, because the 

hydrophobic protein interior associates with hydrophobic regions of the surface 

during unfolding. These interactions can give the molecule an extended structure, 

covering a relatively large area of the surface. If the repulsive force normally acting 

between native protein molecules is decreased for such structurally altered 

molecules, one would expect to measure a greater adsorbed mass on hydrophobic as 

opposed to hydrophilic surfaces. On the other hand, adsorption of positively charged 

protein to hydrophilic (negatively charged) silica can result in greater conformational 

change than adsorption of the same protein to hydrophobic silica, even with a greater 

extent of adsorption being observed at the hydrophobic silica surface [124]. It is thus 

important to recognize that multiple factors affect the extents of protein adsorption 

and conformational change. 
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2.9.5 Steady-state adsorption behavior 

Numerous protein adsorption isotherms have been constructed and compared based 

on temperature, pH, ionic strength, conformational stability of the protein in solution, 

and solid surface charge and hydrophobicity. The effects of protein conformational 

stability and solid surface properties are revealed with effects of pH and ionic 

strength. 

The effect of pH and ionic strength on protein adsorption is dependent on which type 

of interactions predominate (e.g., electrostatic, hydrophobic, or van der Waals 

interactions). At a negatively charged surface, if electrostatic interactions 

predominate, adsorbed mass should be greater at pH values below the isoelectric 

point relative to pH values above it. Below the isoelectric point, the protein and 

surface would be of opposite charge, whereas both the protein and surface would be 

negatively charged at pH values greater than the isoelectric point. As ionic strength 

increases, the electrostatic interaction would be reduced because of shielding of the 

protein by counterions; consequently, increasing the ionic strength should decrease 

adsorbed mass at pH values less than the isoelectric point and increase the adsorbed 

mass at greater values of pH. The relationship between adsorbed mass and changes 

in pH and ionic strength becomes inextricably linked to protein conformational 

stability. In general, pH and ionic strength conditions that lead to a less stable 

conformation for the protein in solution will lead to an increased adsorbed mass, 

assuming that the protein molecule would be more stable on the solid surface [117]. 

2.9.6 Models for protein adsorption 

The thermodynamic treatment of protein adsorption from solution could be directly 

analogous to that for adsorption of small nonpolar molecules from the vapor phase 

for which there are several well-developed surface equations of state. For such 

simple molecule adsorption, the adsorbent surface geometric and energetic 

irregularities along with specific sorbate–surface interactions are generally the chief 

complexities. For protein adsorption in practice, however, thermodynamic treatment 

of equilibria is severely limited by the additional complexities arising from specific 

solvent–protein interactions, protein conformational variations both in solution and 

on the adsorbent surface, and frequent multipoint attachment configurations. 
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The most models used for protein adsorption equilibria are simple empirical or semi 

theoretical models that are useful according to their goodness-of-fit to the 

experimental data. The semi theoretically based Langmuir adsorption isotherm given 

by : 

q=qmC/(KD+C)                                                                                                        (2.7) 

Where q is quantity adsorbed per unit of adsorbent, C is concentration of protein in 

solution, qm is maximum quantity adsorbed at high C, and KD is the disassociation or 

binding constant. Although the physical assumptions underlying the development of 

this model are not followed by protein adsorption via ion Exchange, the model 

nonetheless has provided a good fit if salt concentration-dependent parameters are 

used.   

Another common adsorption model is the temkin isotherm model. The Temkin 

isotherm can be expressed by the following equation : 

X=a+blnC                                                                                                               (2.8) 

Where X is q is quantity adsorbed per unit of adsorbent, C is concentration of protein 

in solution, a and b are constants related to adsorption capacity and intensity of 

adsorption. 

Numerous ion exchange protein adsorption studies have been performed with 

measures of adherence to the Langmuirian behavior. 

The thermodynamic parameters such as change in standard free energy (ΔGº), 

enthalpy (ΔHº) and entropy (ΔSº) can be determined by using the following 

equations: 

 

                                                                                     (2.9) 

Where R (8.314 J/mol K) is the gas constant, T (K) the absolute temperature and Kc 

(L/g) is the standard thermodynamic equilibrium constant defined by qe/Ce. By 

plotting, a graph of ln Kc versus 1/T the values, ΔH
◦
 and ΔS

◦
 can be estimated from 

the slopes and intercepts. 
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2.9.7 Kinetics modeling 

Adsorption is time-dependent process and it is very important to know the rate of 

adsorption for design and evaluate the adsorbent for the adsorption of proteins. In 

many cases, the kinetics of adsorption based on the overall adsorption rate by the 

adsorbents is described by the first order Lagergren model and pseudo second-order. 

The first-order rate expression of Lagergren is given as:  

                                                                                               (2.10) 

Where qe and qt are the amount of dye adsorbed on adsorbent at equilibrium and time 

t, respectively (mg/g), and k1 is the rate constant of first order adsorption (min
-1

). 

Integrating equation (7) for the boundary conditions t = 0 to t = t is the following: 

 log(qeq – qt) = log qeq– (k1·t) / 2.303                                                                     (2.11) 

The plot of log (qe-qt) versus t will give a straight line and the value of k1 can be 

obtained from the slope of the graph. The second-order kinetic model is expressed 

as: 

                                                                                              (2.12) 

Where, k2 is the pseudo-second-order rate constant of adsorption (g mg
-1

min
-1

). The 

linearized integrated form of (9) is given as: 

1/qt = 1 / k2qeqt + 1 / qeq                                                                                        (2.13) 

If the pseudo second-order kinetics is applicable to the system, then the plot of t / qt 

versus t will give a linear relationship with 1 / qe and 1 / k2qe
2
 as a slope and 

intercept, respectively. 

The values of qe and k2 can be determined from the slope and intercept and there is 

no need to know any parameters beforehand. The pseudo second-order kinetics 

model has been successfully applied to several biosorption systems as reported by 

McKay and Ho [125]. 
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3. EXPERIMENTAL PART I 

3.1 Materials and Instruments 

3.1.1 Materials 

Invertase (-fructofuranosidase, EC 3.2.1.26, Grade VII from baker‘s yeast) (Sigma–

Aldrich), glucose oxidase (GOD, EC 1.1.3.4. Type II from Aspergillus niger) 

(Sigma–Aldrich), peroxidase (POD, EC 1.11.1.7, Type II from horseradish) (Sigma–

Aldrich), bovine serum albumin (BSA) (Sigma–Aldrich), o-dianisidine 

dihydrochloride (Sigma–Aldrich), sucrose (Sigma–Aldrich), glucose (Sigma–

Aldrich), ethyleneglycol dimethacrylate (EGDMA) (Fluka), glycidyl methacrylate 

(GMA) (Fluka), α‘- α‘- azobisisobutyronitrile (AIBN) (Fluka), bipyridine (Fluka), 

hydrazine (Fluka), 2-methyl pyrrolidone (NMP) (Fluka), 4-vinylbenzyl chloride 

(Fluka), polyvinyl alcohol (fully hydrolyzed very low molecular weight, MW 7000–

10,000) (Sigma–Aldrich), CuBr (Fluka), Tris-HCl 

(tris(hydroxymethyl)aminomethane-HCl) (Sigma–Aldrich), Chlorosulfonic acid 

(Sigma–Aldrich), styrene (Fluka), divinylbenzene (DVB) (Sigma–Aldrich), 

Aminomethanesulphonic acid (Fluka), Ethyl acrylate (Fluka), Methylene Blue, 

Crystal violet (Merck), Acetaldehyde (Fluka), Benzaldehyde (Fluka) salicyl aldehyde 

(Fluka),    Hydrazine (Fluka),  

3.1.2 Instruments 

JEOL (JSM 5600) scanning electron microscope, UV-Vis Spectrophotometer 

(Perkin-Elmer Lamda 25), Dionex HPLC system. FT-IR (Nicolet 380), Sonicator  

Model Misonix S-4000, Illinois, USA) 

3.2 Preparation of Polymeric Sorbents  

Polymeric methacrylate, acrylate and sulfonamide based sorbents were prepared and 

modified with hydrazine, amine, carboxylic acid and sulfonic acid groups to adsorb 

different bioactive molecules, dyes and aldehydes.  
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3.3 Preparation of PVBC (polyvinyl chloride) Microspheres  

Crosslinked PVBC microspheres were prepared by suspension polymerization 

according to the literature [126]. VBC (5.0 mL, 31.9 mmol), EGDMA (1.5 mL, 7.8 

mmol), and AIBN (0.12 g, 0.71 mmol) were dissolved in toluene (7.2 mL). The 

resulting solution was dispersed in an aqueous medium, prepared by dissolution of 

PVA (0.25 g) in water (80 mL). The polymerization was carried out in a 

magnetically stirred glass flask (100 mL) at 78 °C for 8 h. After polymerization, the 

PVBC microspheres were washed exhaustively with water and ethanol respectively, 

to remove the diluents and unreacted monomers. They were subsequently dried in 

vacuum at 50 °C. The microspheres were sieved and a proper size fraction (75-150 

µm diameters) was isolated. 

3.4 Grafting of Poly (glycidyl methacrylate) (PGMA) onto PVBC by Surface 

Initiated Atom Transfer Radical Polymerization (SI-ATRP)   

Graft polymerization of glycidyl methacrylate (GMA) was achieved through PVBC 

initiation sites on the beaded polymer. 

PVBC microspheres was accomplished in a magnetically stirred glass flask (100 mL) 

by immersing the microspheres (5 g) into a reaction mixture containing 20 mL (0.15 

mol) of GMA, 0.432 g (3 mmol) of CuBr, 0.936 g (6 mmol) of bipyridine, and 10 

mL Dioxane. The suspension was purged with nitrogen for approximately 10 min to 

remove the dissolved oxygen. The flask was then sealed. Polymerization was carried 

out at 65 °C for 18h.  

At the end of the reaction period, the reaction content was poured into 250 ml 

acetone to remove homopolymer and the grafted resin was added to 10% of EDTA 

solution to remove copper salt contaminants. The mixture was filtered and was 

washed with excess of water (500 ml) and alcohol (100 ml) respectively. Vacuum 

dried sample weighed 20 g. 

In addition, grafting kinetics of PGMA onto resin was investigated at different 

reaction times and conversion time plot was obtained. 

3.4.1 Epoxy content of the poly(GMA) grafted resin   

The amount of available functional epoxy group content of the resin  was determined 

by pyridine-HCl method according to the literature [127]. 
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0.2 g of the graft resin was left in contact with 10 mL of pyridine-HCl solution and 

refluxed for 1 hour. After filtration, 2 mL of filtrate was taken and epoxy content of 

the solution was determined by titration with 0.055 M NaOH solution in the presence 

of phenol-phatalein color indicator. Epoxy content of the resin was found as 7.1 

mmol / g resin.   

3.4.2 Modification of the poly(GMA) grafted resin with hydrazine (resin 1) and 

ammonia  

The beads about (10 g) were transferred into a reaction flask containing hydrazine 

(50 mL) and 2-methyl pyrrolidone (30 mL) at 0 °C and the mixture was shaken at 

150 rpm at room temperature for 24 h and the reaction mixture was heated at 90 °C 

for 5 h. After cooling, the hydrazine modified beads were transferred into purified 

water (500mL) and stirred magnetically for 2 h. The beads were then filtered and 

were washed sequentially with purified water (1.0 L) and methanol (25 mL). The 

hydrazine functionalized poly (VBC-g-GMA) beads  were dried under vacuum at 

25°C for 24 h.  

Poly (VBC-g-GMA) beads (10 g) were also aminated with 0.5M ammonia at pH 

10.0, and at 65 °C in a reactor. The reaction was carried out for 5 h. After the 

reaction, the aminated beads were washed with excess of distilled water. 

3.4.3 Determination of hydrazine content of the resin 1    

Resin 1 (about 0.1 g) was transferred in a mixture of HCl (0.6 M, 50 mL) and KI 

(0.1M, 5 mL), and stirred continuously at room temperature for 24 h. The consumed 

iodine was determined by titration with 0.1M sodium thiosulfate solution. The 

hydrazine content of the polymer beads was found as 6.4 mmol.g
-1

. 

3.4.4 Sorption of the invertase enzyme of the resin 1 

Sorption experiments of resin 1 were performed depending on pH, ionic strength and 

temperature.   

3.4.4.1 Preparation of the buffer solutions 

Buffer solution were prepared from acetic acid (50 mM) and sodium acetate (50 

mM) for pH 4-5, sodium hydrogen phosphate (50 mM) and  potassium dihydrogen 

phosphate (50 mM) for pH 6 and (tris(hydroxymethyl) aminomethane-HCl (50 mM) 

for pH 7.0–8.0, respectively. 
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3.4.4.2 Purification of invertase from crude yeast extract 

Saccharomyces cerevisiae cells were cultured and were maintained on the medium 

containing sucrose (30.0 g/L); peptone (5.0 g/L) and yeast extract 3.0 g/L at pH 6.0. 

The culture was maintained on agar slants at 30 
0
C for 18 h by periodic transfer and 

was used for inoculation of S. cerevisiae cells to liquid medium (10 mL). The same 

medium (100 mL) was used as invertase production medium. The medium was 

incubated at 30 
0
C and 200 rpm for 24 h. At the end of incubation period, yeast 

biomass was harvested by centrifugation at 5.000 rpm, 4 
0
C for 10 min. The biomass 

was washed twice and suspended in Tris–HCl buffer (20 mM, pH 7.5). The yeast 

cells suspension was sonicated four times for 30 s using a sonicator. The homogenate 

was centrifuged at 4
0
C and at 15.000 rpm for 10 min and the supernatant obtained 

was used as the source of invertase. 

The purification of invertase was carried out as described above except that crude 

yeast extract solution was used as an adsorption medium instead of pure invertase 

solution. The elution of proteins from affinity beads was determined by measuring 

the initial and final concentrations of protein within the adsorption medium using 

Coomassie Brilliant Blue as the method described by Bradford [128]. A calibration 

curve constructed with invertase solution of known concentration (0.05–0.50 

mg/mL) was used in the calculation of protein in the solutions. 

The activity of invertase was determined by measuring the amount of glucose 

liberated from the invertase-catalysed hydrolysis of sucrose per unit time as 

described in literature [129]. A Dionex HPLC system (Dionex Co., Germering, 

Germany) was used for the determination of the purity of the purified invertase 

samples. The HPLC system consisted of a quaternary pump with an on-line vacuum 

degasser (Model P580 A), an auto sampler, a column oven (Model STH 585) and an 

UV–vis diode array detector (Model 340 S). Chromatographic separation of proteins 

was achieved on a Supelco, Discovery, BIO Wide Pore C5 HPLC column 

(150mm×4.6mmi.d.;5µm) protected by a guard column (Supelco C5; 20mm, 4.6 

i.d.). All sample solutions used in chromatographic studied was pre-filtered through a 

syringe membrane filter (0.2µm, Millipore) to remove particles and large aggregates. 

HPLC mobile phases A and B were prepared by adding trifluoroacetic acid (TFA; 

0.1%, v/v) to MilliQwater and 75% acetonitrile and 25% MilliQwater, vice-versa 

respectively. The mobile phases were filtered prior to use. The chromatographic 
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separation was performed using a gradient at 1.0mL/min flow rate (0–25 min, phase 

B from 0% to 100%) and the sample injection volume of the auto sampler was 20µL. 

The UV–vis detector was set at 220 nm and the temperature was maintained at 25 

°C.  

3.4.4.3 Effect of pH, temperature and ionic strength on invertase adsorption 

Adsorption of invertase on both hydrazine and amino groups functionalized beads 

was studied at various pHs (50mM, pH 3.5, 4, 5.0, 6, 6.5, 7 and 8). The effects of 

temperature and ionic strength on invertase adsorption were carried out at pH 4.0 for 

both affinity beads at four different temperatures (i.e., 5, 15, 25 and 35 
0
C) and at 

different NaCl concentrations (between 0.2 and 1.0 M), respectively. All experiments 

were conducted in duplicates with 50 mg affinity beads and initial concentration of 

invertase was 0.5 mg/mL in each set experiments. 

3.4.4.4 Effect of initial concentration of invertase on adsorption capacities 

To determine the adsorption capacities of both affinity beads, the initial 

concentration of invertase was changed between 0.125 and 2.0 mg/mL in acetate 

buffer (5.0 mL, pH 4.0). A calibration curve was prepared using invertase as a 

standard (0.1–2.0 mg/mL). The amount of invertase adsorbed onto affinity beads was 

determined by subtracting the absorbance at 280 nm after adsorption from the value 

before adsorptions using UV–vis spectrophotometer. 

3.4.4.5 Dynamic binding capacity experiments 

The continuous system was made from Pyrex glass (length 6.0 cm, diameter 1.8 cm, 

total volume 15.3 mL). A 10 g of dry hydrazine functionalized poly (VBC-g-GMA) 

beads was soaked in de-ionized water for 24 h and then packed in a column (the bed 

volume, 13.3 mL). The column was equilibrated with acetate buffer (50 mM, pH 

4.0). Invertase solution (2.0 mg/mL) was prepared in acetate buffer (50 mM, pH 4.0), 

and introduced into the column by means of peristaltic pump at a constant flow rate. 

When the adsorptive sides of the hydrazine functionalized beads in the column were 

saturated, the column was washed with 50 mL of the same buffer solution to remove 

non-specifically adsorbed protein. Dynamic binding capacity (DBC)was calculated 

from breakthrough curves at 5% breakthrough point using the method of Griffith et 
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al. [40]. At 5% breakthrough, the total amount of protein in the system (including 

column and dead space) is calculated from equation giving as; 

 Q5% = A u Co   dt                                                                                (3.3) 

where Q5% is the total amount of invertase adsorbed at 5% breakthrough point (mg), 

u is superficial velocity of liquid phase (cm/h), t is the time of adsorption (h), A is the 

cross-sectional area of column (cm
2
) Co and C are the concentrations of invertase in 

feeding solution and in effluent at the moment of t, respectively (mg/mL). The 

protein contained in the dead space is calculated by 

 Qd = Vd C0                                                                                                              (3.4) 

where Vd is the dead volume (mL) and Qd is the amount of protein in dead volume 

(mg).So, the DBC at 5% breakthrough is estimated as follows. 

                                                                                                 (3.5) 

Where, m is the mass of adsorbent (g) in the sedimented bed volume. 

3.4.4.6 Adsorption isotherms and thermodynamic parameters 

The adsorption isotherm was obtained from batch experiment at different 

temperatures. Three theoretical isotherm models, Langmuir and Scatchard‘s equation 

[130,131], Freundlich [132] and Dubinin–Radushkevich [133] were used to analyze 

the experimental data. One of the most widely used isotherm equations for modeling 

adsorption data is the Langmuir equation, which for dilute solutions may be 

represented as: 

 qe = qm bCe / 1 + bCe                                                                                              (3.6) 

In order to confirm the Langmuir isotherm mechanism, the experimental data was 

analyzed according to the Scatchard‘s plot [131]. 

                                                                                                 (3.7) 

In Eqs. (3.6) and (3.7), Ce is the equilibrium concentration of protein in solution 

(mg/L), qe is the equilibrium amount of protein adsorbed on the affinity beads at time 

t (mg/g). qm is the maximum adsorption capacity of the affinity beads (mg/g) and b 

(i.e., the adversely of dissociation constant of the ligand/surface interaction, Kd, or 

equal to association constant, Ka, (b = Ka = (1/Kd)) is the energy of adsorption 



 

 

 
57 

dissociation constant. Kd has dimension of concentration, and the protein binding is 

stronger when it is smaller. The Freundlich expression is an empirical equation based 

on adsorption on a heterogeneous surface. The Freundlich equation is commonly 

presented as: 

qe  KF (Ce)
1/n

                                                                                                            (3.8) 

where KF and n are the Freundlich constants characteristic of the system. KF and n 

are indicator of the adsorption capacity and adsorption intensity, respectively. The 

slope and the intercept of the linear Freundlich equation are equal to 1/n and ln KF, 

respectively. The Dubinin–Radushkevich (D–R) isotherm is also widely used in 

adsorption studies because it does not assume a homogeneous surface or constant 

adsorption potential [133]. The D–R equation is given by the following relationship: 

ln qe = ln qm − Kε
2
                                                                                                   (3.9) 

where qe is the amount of the invertase adsorbed at the equilibrium, K is the constant 

related to the mean free energy of sorption, qm is the theoretical saturation capacity, 

and ε is the Polanyi potential, equal to RT ln (1 + (1/Ce)). The values of qm and K can 

be obtained by plotting ln qe versus ε
2
. The constant (K) is related to the mean free 

energy of adsorption per mole of the adsorbate as it is transferred to the surface of 

the solid from infinite distance in the solution, and the mean free energy (E) can be 

computed using the following relationship [133]. The Dubinin–Radushkevich (D–R) 

constant can give the valuable information regarding the mean energy of adsorption 

by the following equation: 

E = (2K)
−1/2 

                                                                                                       (3.10) 

3.4.4.7 Kinetic studies 

In order to analyze the adsorption kinetics of invertase, the pseudo first-order and the 

pseudo second-order kinetics models were applied to the experimental data. The 

first-order rate equation of Lagergren is one of the most widely used for the 

adsorption of solute from a liquid solution. It may be rearranged to obtain a linear 

form and represented as follows: 

log (qeq – qt ) = log qeq – (k1 · t) / 2.303                                                                 (3.11) 

The second-order equation based on adsorption equilibrium capacity may be 

expressed in the form: 
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1/qt=1/k2qeqt + 1/qeq                                                                                            (3.12) 

where k1 and k2 are the rate constant of the first and second order adsorption (min
−1

) 

(gmg
−1

 min
−1

), respectively and qeq and qt denote the amounts of adsorbed invertase 

at equilibrium and at time t (mg/g), respectively. 

3.4.4.8 Activity assays of free and immobilized invertase      

The activities of both free and immobilized enzyme were determined as described 

literature [129]. The activity-pH profiles of the free and immobilized invertase were 

studied in acetate buffer (50 mM) in the pH range 4.0–5.5 and in phosphate buffer 

(50 mM) in the range pH 6.0–8.5. The effect of temperature on the free and 

immobilized invertase was studied in acetate (50 mM, pH 5.5), and phosphate buffer 

(50 mM, pH 6.0), respectively. 

The results of dependence of invertase activity on pH, temperature, and storage 

stability are presented in a normalized form with the highest value of each set being 

assigned the value of 100% activity. Km and Vmax values of the free enzyme were 

determined by measuring initial rates of the reaction with sucrose (30–300 mM) in 

acetate buffer (50 mM, pH 5.5) at 35
0
C. Km and Vmax were calculated from the initial 

rate of the kinetic data. The activities of the free and the immobilized invertase were 

expressed in µmol glucose/min/mg of enzyme. Sucrose hydrolysis performance of 

the free and immobilized enzyme preparations was determined by measuring the 

glucose content of the medium according to a method described in literature [134] 

using an UV/Vis spectrophotometer at 525 nm. 

3.4.5.9 Reusability and storage stability of enzymes 

To determine the reusability of the hydrazine functionalized beads for adsorption and 

cleaning of invertase was repeated six times by using the same affinity beads. 

Enzyme desorption were performed in a NaOH solution (1.0 M). The enzyme 

adsorbed beads were placed in the cleaning medium while stirring at 100 rpm at 

25
0
C for 2 h. The beads were removed from cleaning medium washed several times 

with acetate buffer (50 mM, pH 5.5) and were then reused in subsequence enzyme 

immobilization. The storage stability of invertase was studied in wet states. The 

enzyme immobilized affinity beads were stored in phosphate buffer (50 mM) at 4°C. 

The activity of the immobilized invertase was determined as described above for a 
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storage period of up to 2 months. The residual activity was defined as the fraction of 

total activity recovered after immobilization of invertase on the affinity beads 

compared with the same quantity of free enzyme. 

3.5  Preparation of Crosslinked Poly (styrene-divinyl benzene) Beads 

Beads were prepared by the suspension polymerization of a mixtured styrene (54 

mL, 0.48 mol) and DVB (55 % grade, 10 ml, 0.038 mol) in toluene  (60 mL), using 

gum-Arabic as stabilizer, according to literature [135].
 
The beads were sieved and the 

420-590 µm size fractions were used for further reactions. 

3.5.1 Chlorosulfonation of the resin  

The beaded polymer was chlorosulfonated using chlorosulfonic acid as described in 

the literature [135]. The degree of chlorosulfonation was determined by analysis of 

the liberation of chloride ions. For these purpose, a polymer (0.2 g.) sample was 

added to 10% NaOH (20 ml) and boiled for 4 h. After filtration and neutralization 

with HNO3 (5 M), the chlorine content was determined by the mercuric-thiocyanate 

[135].  

3.5.2 Preparation of aminosulphonic based resin (Resin 2) 

Chlorosulfonated resin 2 (10 g) was added portion wise to a stirred of 

aminomethanesulphonic acid 6 g (0.049 mol) and 7 mL triethylamine (acid 

scavenger) in  30 mL 1-methyl-2-pyrrolidone (NMP) 30 mL at 0 °C. The mixture 

was shaken with a continuous shaker for at room temperature for 12 hours. The 

reaction content was poured into water (500 mL), filtered and washed with excess 

water and acetone respectively. The resin dried under vacuum at room temperature 

for 24 h. The yield was 12.5 g. 

3.5.3 Determination of sulphonamide content of the resin 2 

For determination of the sulphonamide content, 0,2g. polymer sample was left in 

contact with 20 ml 0.5 M NaOH for 24 h. After filtration, 1 ml of the filtrate was 

taken and the base content of the solution was determined by titration with 0.1 M 

HCl solution in the presence of phenol–phatalein color indicator. A total 

sulphonamide content of the polymer was calculated as 3.1 mmol g
-1

 resin. 
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3.6 Interaction of Trypsin with Resin 2  

3.6.1 Effect of pH , temperature and ionic strength on trypsin adsorption 

The trypsin adsorption experiments were carried out batch wise by using  50 mg 

beads and  5 ml of trypsin  (0.3mg/mL)  at different pH medium and ionic strentgh. 

The pH values were varied between 4.0 and 8.0.  Invertase adsorption of the resin 2  

was  studied at pH 4 and at 5, 15, 30 and 37 
0
C. In addition, these experiments were 

investigated at different NaCl concentrations (between 0.2 and 1.0M) at room 

temperature. In a typical adsorption experiment was conducted with solution and 

initial concentration of trypsin was in each set experiments. Trypsin adsorption by 

the beads was determined by measuring the initial and final concentration of trypsin 

by using UV-Vis spectrophotometer. 

3.6.2 Effect of initial concentration of trypsin on adsorption capacities  

To determine the adsorption capacity of the resin 2, the initial concentration of 

trypsin was changed between 0.1 and 1.5 mg/mL at pH 4.0. A calibration curve was 

prepared using invertase as a standard (0.1–2.0 mg/mL). The amount of trypsin 

adsorbed onto the beads was determined by subtracting the absorbance at 280 nm 

after adsorption from the value before adsorptions using UV–vis spectrophotometer. 

3.6.3 Desorption of trypsin 

The desorption of adsorbed trypsin from the resin was studied in a batch system. The 

trypsin adsorbed on the beads were placed within desorption medium containing 1.0 

M KSCN at pH 8.0, and the amount of released trypsin was determined for 3 h. In 

order to show the reusability of the resin, adsorption–desorption cycle of trypsin was 

repeated 4 times. 

3.6.4 Adsorption isotherms  

The adsorption isotherm was obtained from batch experiment at different 

temperatures. Two theoretical isotherm models, Langmuir [130] and Freundlich 

[132] were used to analyze the experimental data.  

In order to confirm the Langmuir isotherm mechanism, the experimental data was 

analyzed according to the Scatchard‘s plot. 



 

 

 
61 

3.6.5 Trypsin Sorption Kinetics of the Resin 2 

For this purpose, 50 mg of resin 2 interacted with 5 mL of buffer solution (pH =4). 

Then the mixture was filtered, 5 mL of 0.3 mg /mL trypsin was added to the resin. 

The mixtures were stirred magnetic stirring bar and aliquots of the solution were 

taken at appropriate time intervals for analysis of the residual protein contents 

analysed by using UV.Vis spectrophotometer. The measurements were carried out at 

280 nm. 

In order to analyze the adsorption kinetic results of trypsin, the pseudo first-order and 

the pseudo second-order kinetic model which was described by  Ho [125].  
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4. EXPERIMENTAL PART II 

Synthesized polymeric sorbents were used in environmental applications: removal of 

aldehydes by using hydrazine functional sorbent (resin1) and basic dyes removal by 

acid containing sorbents (resin 2 and resin 3).  

4.1 Aldehyde Adsorption Experiments of Resin 1 

Invertase enzyme has aldehyde group. Therefore, the resin can be used to remove 

aldehydes from organic solutions. The maximum loading capacity of the resin 1 and 

aldehyde desorption conditions of the resin 1 were investigated. 

4.1.1 Aldehyde loading capacities of the resin 1 

Acetaldehyde, benzaldehyde, and salicylaldehyde were used in the sorption 

experiments. To estimate the maximum aldehyde binding capacities of the resin 1, 

0.5 g of resin 1 was interacted with 15 mmol of aldehyde in 20 mL of methanol for 

24 h at room temperature. This amount was chosen in order to have a 7.5–8.7-fold 

excess of the theoretical capacities. At the end of this period, the resin was removed 

by filtration and a sample of each filtrate (1 mL) was diluted with methanol up to 

appropriate concentrations (10
-5

 M). Quantitative determinations of aldehydes were 

carried out colorimetrically according to the procedure based on 2,4- 

dinitrophenylhydrazone formation yielding an absorption maximum around 480 nm 

[127]. 

The amounts of sorbed aldehydes were calculated by subtracting the final aldehyde 

contents (nonsorbed amounts) from the initial contents of the interacted solutions.   

4.1.2 Aldehyde desorption from loaded resin 1 

In order to investigate the desorption capacity of resin 1, aldehyde-loaded sample 

(0.2 g) were treated with 5 M HCl solutions of carbonyl-free methanol/water (1 : 1) 

mixtures. After filtration of solutions, desorbed aldehyde was calculated according to 

the procedure explained above.  
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4.2 Extraction of Basic Dyes 

The synthesized other polymeric sorbents were used in basic dye removal from 

aqueous solutions.  

Dye capacities of the resin were determined by mixing a weighed amount of polymer 

sample (0.2 g) with 20 mL aqueous dye solution (1 g dye/100 mL water). In these 

experiments, the dyes Methylene blue and Crystal violet were used as basic dyes. 

The mixture was stirred for 24 h and then was filtered. The dye concentrations were 

determined colorimetrically at different wavelengths and the dye loading capacities 

were calculated from the initial and final dye contents of the solution. 1 mL of the 

filtrate was used for determination of the residual dye. 

4.2.1 Dye sorption kinetics of the resin 2 

Batch kinetic experiment was studied by using highly diluted dye solution (1.3x10
-3

 

g dye /L water). For this purpose, resin (0.2 g.) was wetted with distilled water (1.5 

mL) and added to a solution of dye (90 mL). The mixtures were stirred with a 

magnetic stirring bar and aliquots of the solution (5 mL) were taken at appropriate 

time intervals for the analysis of the residual dye contents by the method as described 

above. 

4.2.2 Regeneration of the basic dye loaded resin 

The dye loaded samples (0.1 g) were interacted with 10 mL of H2SO4 (5 M) and 

stirred at room temperature for 24 h. After cooling, the mixtures were filtered, and 2 

mL of the filtrate was removed for colorimetric analysis of the dyes. Regeneration 

capacity of the resin was found as 0.38 g / g resin for methylene blue.  

4.3 Poly (ethyl acrylate) Grafting onto PVBC Microspheres 

Graft polymerization of ethyl acrylate was achieved through chlorine initiation sites 

on the crosslinked Polyvinyl benzyl chloride.   A typical procedure is as follows:  

0.053 g, (3.68 mmol) of CuBr, 0.172 g (1.09 mmol) of bipyridine and 2 mL  of ethyl 

acrylate were put in a polymerization tube under nitrogen atmosphere.  Polymer 

sample (0.1 g) was added to the flask and the mixture was heated to 90 °C  for 20 h. 

At the end of the reaction period, the reaction content was poured into 100 mL 

acetone to remove homopolymer and the grafted resin was added to 10% of EDTA 
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solution to remove copper salt. The mixture was filtered and was washed with excess 

of water and alcohol, respectively. Vacuum dried sample weighed 0.468 g. 

Also, grafting kinetics of Poly (ethyl acrylate) from resin was investigated at 

different reaction times and conversion time plot was obtained. 

4.3.1 Hydrolysis of the poly (ethyl acrylate) graft PVBC microspheres (Resin 3)  

5 g of the poly (ethyl acrylate) grafted resin was interacted with 50 mL of 10 % 

NaOH for 24 h and 50 mL of 1 M  H2SO4  for 8 h respectively. Hydrolyzed resin was 

filtered and was washed with excess of water and acetone respectively. The resin was 

dried under vacuum. 

The resin was characterized by using titrimetric method and FT-IR 

spectrophotometric method. 

4.3.2 Determination of carboxylic acid content of the resin 3 

For the determination of the carboxylic acid content, 0.3 g of the resin was left in 

contact with 10 mL of NaOH (0.2 M) for 1 day. After filtration, 2 mL of the filtrate 

was taken and acid content of the solution was determined by filtration with 0.1 M 

HCl in the presence of phenol-phatalein color indicator. A total carboxylic acid 

content was found 3.56 mmol.g
-1

 resin. 

4.3.3 Basic dyes removal studies 

Dye adsorption capacities of the resin 3 were determined by mixing a 0.2 of resin 

sample with 20 mL aqueous basic dye solutions. In these experiments, the dyes 

Methylene Blue and Crystal violet were used (stock dye solution 1.0 g dye/100 mL 

water). The mixture was stirred for 24 h at room temperature and then was filtered. 

Methylene Blue and Crystal violet concentrations were determined 

spectrophotometericaly at 664 and 590 nm, respectively, and the dye loading 

capacities of the resin were calculated from the initial and final dye contents of the 

solutions. 

4.3.4 Basic dyes sorption kinetics of the resin 3 

Resin 3 is able to remove the basic dyes completely even from highly diluted 

aqueous dye solutions, which are industrially highly important. Here batch kinetic 

sorption experiments were performed with dilute dye solutions between (2.5x10
-3 

and
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1.3x10
-3

 g/L) to investigate the efficiency of the resin in the presence of trace 

quantities of dyes.  

For this purpose resin 3 ( 0.2 g.) was wetted with distilled water (1.5 mL) and was 

added to a solution of dyes (100 ml of 0.1 g. dyes in 90 mL water). The mixtures 

were stirred magnetic stirring bar and aliquots of the solution (5 mL) were taken at 

appropriate time intervals for analysis of the residual dye contents by the method as 

described above. 

4.3.5 Regeneration of the Basic dye loaded resin 3 

For the regeneration of the dye loaded resin 3, H2SO4 (5.0 M) solution was used as a 

regeneration agent according to the literature. When dye adsorbed resin were 

contacted with 5 M H2SO4 for 24 h, all the adsorbed Methylene Blue and Crystal 

Violet were desorbed from the resin 3. 
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5. RESULTS AND DISCUSSION I 

In this part, separation results of biomolecules by polymeric sorbents were given. 

5.1. Synthesis and Characterization of Hydrazine Modified Resin 

The Resin 1 was prepared starting from copolymerization VBC-EGDMA by using 

suspension polymerization method. The surface morphology of the beads was 

exemplified by scanning electron microscopy (SEM) micrographs in Figure 5.1.  

 

Figure 5.1: SEM micrograph the PVBC beads at 200× magnification. 

The PVBC/EGDMA beads have spherical form with a smooth surface. Fibrous 

polymer grafted beads can be suitable matrices due to their intrinsically high specific 

surfaces, providing the quantity and accessibility of the interaction sites for high 

immobilization capacity. 

The PGMA was grafted from the PVBC beads by using ATRP method (Figure 5.2). 

The surface halogen atoms (i.e., Cl) of the p(VBC) beads were successfully used as 

the initiating groups for atom transfer radical polymerization. Bipyridine and CuBr 

were used for SI-ATRP of glycidylmethacrylate. 
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                                 Figure 5.2: Preparation of PGMA grafted from PVBC. 

The SI-ATRP reactions were carried out at different time intervals for determination 

of the mass increase. The grafting percentage (GP) was determined by calculating the 

percentage increase in weight using following equation: 

                                                                                 (5.1) 

Where, m0 and mgf are the weights of the beads before and after grafting, 

respectively. The grafting percentage – time plot is presented in Figure 5.4. 

As seen in this figure, an increase in the grafting time from 3 to 18 h leads to increase 

more than 250% in grafting percentage. There was not found homopolymer in the 

polymerizing mixture by precipitation in ethanol. 

The PVBC resin was modified with excess of hydrazine to obtain hydrazine 

modified Resin 1 (Figure 5.3). 
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Figure 5.3: Modification of p (VBC-g-GMA) resin with hydrazine. 

The equilibrium-swelling ratios of the PVBC, p (VBC-g-GMA) and hydrazine 

functionalized beads were determined as 1.12, 1.36 and 1.43, weight basis, 

respectively. The hydrazine functionalization of PGMA brushes causes an increase 

inswelling ratio due to introduction of hydrazine groups. Specific surface area of the 

PVBC, p (VBC-g-GMA) and hydrazine functionalized beads was found to be 4.1, 

5.3 and 6.3m
2
/g, respectively. 
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Figure 5.4: Grafting efficiency of p(GMA) from the p(VBC/ EGDMA) beads versus 

time plot. 

The resin was characterized determination of the epoxy content. The maximum 

epoxy group content of the beads was determined as 7.1 mmol/g. The amount of 
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hydrazine and/or amino group contents of the beads were found to be 6.4 and 6.7 

mmol/g beads, respectively, by using the difference between initial and final iodine 

concentration in the solution. 

FTIR spectra of the PVBC, p (VBC-g-GMA) and hydrazine functionalized beads 

were presented in Figure 5.5. The peak at 2951 cm
−1 

is the characteristic adsorption 

peak of the aromatic ring of the PVBC beads (Fig.5.5 A). The FTIR spectra of the 

grafted p(VBC-g-GMA) beads have symmetric and asymmetric vibrations of the 

epoxy rings are observed at 1253 and 904 cm
−1

, respectively (Figure 5.5 B). The 

FTIR spectra of hydrazine functionalized beads had absorption bands different from 

that of the poly (VBC-g-GMA) beads (Figure 5.5 B) at 3243 and 1653cm
−1

 

corresponds to the –NH2 stretching vibration and N–H deformation, respectively. 

These are due to the incorporation of the hydrazine groups on the grafted polymer 

structure (Figure 5.5 C). 

 

Figure 5.5: The FTIR spectra: (A) PVBC, (B) p(VBC-g-GMA) and (C) poly(VBC-

g-GMA)-hydrazine beads. 
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5.2 Invertase Adsorption of Resin 1  

The invertase sorption experiments were examined in different solid/liquid ratio, 

different pH and ionic strength. 

5.2.1 Purification of invertase from crude yeast extract  

Purification of invertase from crude yeast extract was studied in a batch system. The 

purity and the amount of adsorbed invertase on the hydrazine-functionalized beads 

were determined by HPLC using the eluent obtained from protein-adsorbed beads. 

The chromatogram of the standard invertase sample with a retention time 17.3 min 

was presented in Figure 5.6. The initial and remaining concentrations of invertase in 

the samples were calculated by integration of the peak areas. 

 

Figure 5.6: HPLC chromatogram for hydrazine functionalized beads showing: (A) 

commercial invertase, (B) purified invertase with the hydrazine 

functionalized beads. 

The purity of eluted invertase was determined by HPLC as 92% with a recovery of 

67%. Thus, hydrazine functionalized beads provided an efficient single step 

purification protocol to purify invertase from crude yeast extract, showing a high 

binding capacity and a high selectivity for invertase. 
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5.2.2 Solid/liquid ratio 

The effect of the solid/liquid ratio on the adsorption efficiency of the hydrazine-

functionalized beads was studied by varying the amount of beads from 25 to 125 mg 

in the adsorption medium (5.0 mL), while keeping other parameters (pH, agitation 

speed, initial concentration of invertase, contact time and volume of the adsorption 

medium) constant and the results are presented in Fig 5.7. As seen in this figure, it 

can be observed that adsorption efficiency of the beads improved with increasing 

dose while in constant protein solution (5 mL). This is expected due to the fact that 

the higher dose of beads in the solution, the greater availability of interaction sites for 

the invertase molecules. At 0.5 mg/L initial concentration of invertase, the percent 

maximum invertase adsorption efficiency was about 70% at the solid/liquid ratio of 

10 mg/mL for affinity beads. In other words, the percent adsorption efficiency was 

about 70% in use at 5.0mL adsorption solution with 50 mg affinity beads. The 

equilibrium amount of protein adsorbed on the affinity beads (q) from adsorption 

medium was decreased with increasing adsorbent dosage in the 5.0 mL adsorption 

medium. This result was anticipated because for a fixed initial solute concentration, 

increasing adsorbent doses provides greater surface area (or adsorption sites), 

whereas the adsorbed invertase molecules quantity (q) per unit weight of the beads 

decreased by increasing the affinity beads quantity. In the remaining invertase 

adsorption experiments, a 50 mg of affinity beads were used in 5.0 mL adsorption 

medium. 
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Figure 5.7: Effect of adsorbent dosage on the adsorption of invertase on the    

hydrazine functionalized beads. Experimental conditions; initial 

concentration of invertase 0.5 mg/mL; pH: 4.0; temperature: 25 
0
C. 

5.2.3 Effect of pH on invertase adsorption capacity 

The pH value of the solution affects both external charge distribution of invertase 

molecules and the functional groups of the affinity beads. In order to investigate the 

effects of pH on the invertase adsorption efficiency and capacity of both affinity 

beads, the medium pH was changed between pH 3.5 and 8.0. As seen in Figure 5.8, 

the maximum invertase adsorption capacity for hydrazine and amino groups 

functionalized beads were observed at around pH 4.0 and 5.5, respectively. The 

isoelectronic (pI) value of invertase is 3.2. The invertase molecules have net negative 

charges when medium pH is higher than 3.2 [136]. On the other hand, the pKa value 

of the hydrazine and amino groups is around 8.1 and 7.4, respectively. Thus, both 

functional groups have net positive charge at below their pKa values. At around pH 

4.0 and 5.5, the electrostatic interaction between invertase molecules and both 

affinity beads should be predominant. Increasing the pH thereafter caused a decrease 

in adsorption capacity. Specific interactions between invertase molecules and 

hydrazine and/or amino functionalized affinity beads at pH 4.0 and 5.5, respectively, 

may result from both the ionization states of functional groups on affinity beads (i.e. 

primary, secondary amino and hydroxyl groups on the polymer chains) and the 
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amino acid side chains and carbohydrate moieties of the invertase molecules. 

Proteins that change conformation as a function of their environment (pH, salt, 

temperature etc.), such as invertase, it has a molecular mass of 123 kDa, and it could 

change conformational structure upon binding on a functional surface. Thus, 

invertase molecules would expand and contact according to the variation of the 

ionizable groups on its surfaces. At pH 4.0 and 5.5, the resulting invertase adsorption 

may be also due to suitable conformation of invertase molecules on both hydrazine 

and amino functionalized fibrous beads surface, respectively. As medium pH rises, 

the hydrazine and/or amino functionalized grafted polymer chains are closely 

packed, limiting the interaction of invertase with functional groups, thus, a decrease 

in adsorption capacity will be observed for both affinity beads. In addition, at pHs 

above the pKa value of invertase, the carboxylic groups are ionized and interact with 

functional groups of both the affinity beads. On the other hand, in the basic pH 

region, the functional groups of the grafted polymer chains were deprotonated and 

the amounts of adsorbed invertase for both functionalized beads were consequently 

decreased. 
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Figure 5.8: Effects of pH on invertase adsorption on the hydrazine and amino group 

functionalized beads. Experimental conditions; initial concentration of 

invertase 0.5 mg/mL; contact time: 2 h; temperature: 25 °C. 

 

 



 

 

 
75 

5.2.4 Effect of ionic strength on adsorption capacity  

The enthalpy of adsorption would be affected not only by the pH value on the 

electron donating capability, but also by the salt concentration on the electrostatic 

interaction between invertase and the functional groups of both affinity beads. As 

seen in Figure 5.0, the adsorption capacity of the hydrazine functionalized beads was 

not significantly changed for invertase with increasing NaCl concentration from zero 

to 1.0M as the ionic strength increases. A similar observation was reported 

previously by Johansson et al. [137]. They studied the interaction of several multi-

modal ligands with negatively charged biomolecules [137]. Different type 

multimodal ligands were immobilized on Sepharose 6 support and the adsorption 

properties of the negatively charged protein BSA was under different NaCl 

concentrations. They reported that the non-aromatic multi-modal anion-exchange 

ligands based on primary or secondary amines (or both) are optimal for the capture 

of proteins at high salt conditions. They also suggested that these new multi-modal 

anion-exchange ligands could be designed to take advantage not only of electrostatic 

but also of hydrogen bond interactions. In our case, the immobilized hydrazine 

ligand has a primary and a secondary amino group. In addition, during the epoxy ring 

opening reaction a hydroxyl group was formed in the proximity of the hydrazine 

ligand. Thus, the relative position of the hydroxyl groups on the hydrazine modified 

polymer chains could also provide an additional hydrogen bonding sites for the target 

biomolecules. Thus, a created specific binding side could also improve the 

adsorption capacity of invertase. On the other hand, the adsorption capacity of the 

amino group modified beads was reduced for invertase about 2.69 folds with 

increasing salt concentration (Fig.5.9). 
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Figure 5.9: Effects of ionic strength on invertase adsorption on the hydrazine and 

amino group functionalized beads. 

5.2.5 Effect of initial concentration of invertase 

The adsorption capacity of invertase for hydrazine and amine groups functionalized 

beads were determined by changing the initial concentration of invertase between 0.1 

and 2.0 mg/mL (Figure 5.10). An increase the invertase concentration in adsorption 

medium led to a linear increase in the amount of adsorbed invertase onto both 

affinity beads up to 2.0mg/mL invertase in the adsorption medium. It should be noted 

that there was a high amount of invertase adsorption on the hydrazine functionalized 

beads was observed (86.7 mg/g) compared to amine groups functionalized 

counterpart (30.4 mg/g). The hydrazine functionalized affinity beads significantly 

increased the invertase adsorption capacity about 2.84 fold compared to amino 

groups containing beads. From these equilibrium adsorptions, it can be concluded 

that the invertase was specifically adsorbed by the hydrazine functionalized beads 

compared to amino group functionalized one. 
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Figure 5.10: Effects of initial concentration of invertase on the adsorption capacity  

of the hydrazine and amino group functionalized beads. 

5.2.6 Evaluation of adsorption isotherms   

Three theoretical isotherm models viz. Langmuir and Scatchard equation‘s, 

Freundlich and Dubinin–Radushkevich (D–R) models) were used to analyse the 

experimental data. The Langmuir model is based on the assumption of surface 

homogeneity such as equally available adsorption sites, monolayer surface coverage, 

and no interaction between adsorbed species. Both the corresponding semi-reciprocal 

plots (Ceq/qeq versus Ceq) and Scatchard plots (qeq/Ceq versus qeq) of the experimental 

data gave a non-linear plot for the affinity beads. In other words, a non-linear 

Scatchard plot indicates the adsorption heterogeneity [138-139]. Since the Langmuir 

model is formulated for homogenous adsorption. The adsorption of invertase onto 

the affinity beads cannot be described in terms of this model. When the Scatchard 

plots showed a deviation from linearity, the experimental datawere analyzed in terms 

of the Freundlich and D–R models. These isotherm models are usually adopted for 

heterogeneous adsorption. The linear plots of ln q versus ln C showed that the 

Freundlich isotherm can be representative for the invertase adsorption. The 

magnitude of KF and n values of Freundlich model showed easy uptake of invertase 

from aqueous medium with a high adsorption capacity of the affinity beads at high 

temperatures. Values of n>1 for affinity beads indicates positive cooperativity in 
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binding and a heterogeneous nature of adsorption (Table 5.1). On the other hand, as 

seen in Table 5.1, the n values of the hydrazine-functionalized fibrous polymer were 

n < 1 at 5 and 15
 ◦
C and increased with the increasing of the temperatures. This could 

be resulted from the increase fibrous chains mobility at high temperatures. At low 

temperatures, the grafted fibrous polymer chains can be a compact form and results a 

negative cooperativity in binding of invertase. Thus, the experimental results showed 

that the fibrous polymer with functional hydrazine groups is an effective adsorbent 

for invertase at high temperature from aqueous medium. 

The adsorption behavior might be predicted the physical adsorption in the range of 

1–8 kJ/mol of the mean adsorption energies (E), and the chemical adsorption in more 

than 8 kJ/mol of the mean adsorption energies (E) [141]. D–R isotherms and 

parameters invertase was presented in Figure 5.11 and Table 5.1, respectively. E 

values were calculated as 3.02 kJ/mol for invertase, and found to be in the range of a 

typical free energy attributed to physical adsorption. At different temperature, the 

mean adsorption energy (E) of invertase from 2.32 to 5.72 kJ/mol reflected that the 

adsorptions were predominant on physical adsorption process. So, the D–R isotherm 

model best described the experimental data compared to other applied isotherm 

models. 
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Figure 5.11: Experimental and model isotherm plots for the adsorption of invertase    

on the affinity beads. 
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Table 5.1: The D–R and Freundlich isotherm constants and correlation coefficients      

of isotherm models for the adsorption of invertase on hydrazine-

functionalized beads. 

 

Temperature (K) 

 

          Dubinin–Radushkevich (D–R) models constant 

 

Freundlich model constant 

 qexp (mg/g)         qm (mg/g)         Kx105 (mol2/kj2)       E(kj/mol)         R2       n           KF             R2 

279 54.68                   59.15                   9.3                         2.32            0.989  0.8        51.94        0.970 

          289 72.86                   85.88                   7.7                         2.55            0.989 0.9        83.93        0.944 

298 86.70                   87.67                   5.5                         3.02             0.969 1.11      111.05      0.924 

308 102.10                103.54                  1.5                         5.72             0.950 2.13      114.16      0.957 

5.2.7 Kinetic studies 

In Figure 5.12, the invertase adsorption rate is high at the beginning of adsorption 

and saturation levels were completely reached at about 120 min for invertase. After 

this equilibrium period, the amount of adsorbed protein molecules on the beads did 

not significantly change with time. A rapid removal of the invertase by the 

hydrazine-functionalized beads is desirable providing for a short solution adsorbent 

contact time in the actual process. This result is important, as equilibrium time is one 

of the important parameters for an economical protein and/or enzyme separation and 

purification system. In order to analyze the adsorption kinetics of invertase, the first-

order and the second-order kinetics models were applied to the experimental data. 

The second-order equation fitted well with the experimental data (Figure 5.10). The 

comparison of experimental adsorption capacities and the theoretical values 

estimated from the first-order equation are presented in Table 5.2. The theoretical q 

values for the affinity beads were very close to the experimental q values in the case 

of the second-order kinetics. The second-order kinetics best described the data. In 

addition, Arrhenius plots in the temperature range from 5 to 35°C obtained from 1/T 

versus lnk2 (k2; second-order rate constant) appear linear; activation energies were 

found to be 11.04 kJ/mol for the hydrazine-functionalized beads. The lower 

activation energy calculated for the hydrazine ligand indicates that the adsorption of 
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invertase is a favorable process. This result also supports that the second-order 

kinetic model well fit the experimental data. 

Table 5.2: The pseudo first and pseudo second-order kinetics constants for 

adsorption of invertase on the hydrazine-functionalized beads. 

 

Temperature 

 

qexp(mg/g) 

    

Pseudo 

First order 

    

PseudoSecond 

order 

  

  qeq (mg/g) k1 x 102 

(min-1)   
      R2  qeq (mg/g) k1 x 1o2 

(g.min-1 

   .mg-1)   

R2 

279 54.68 215.28 8.29 0.931  58.8   9.76 0.990 

289 72.86 577.13 10.82 0.952  76.9   11.02 0.994 

298 86.73 107.66 6.21 0.960  90.9 13.88 0.996 

308 102.14 251.02 8.17 0.952  108.6 14.84 0.997 
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Figure 5.12: Second-order kinetics plots for invertase adsorption on the affinity 

beads. Experimental conditions; initial concentration of invertase 0.5 

mg/mL; pH: 4.0; temperature: 25 °C; 50 mg of affinity beads was 

used in 5.0 mL adsorption medium. 

5.2.8 Breakthrough capacity of invertase 

Breakthrough curves of invertase in column are shown in Figure 5.13. The sharp 

breakthrough curve implies efficient adsorption performance and higher availability 

of column. The dynamic adsorption capacity of adsorbent in column was 68.2 mg/g, 

which was lower than batch adsorption capacity (86.7 mg/g). Complete saturation of 

the bed occurred after 70 bed volumes for low flow rate. The adsorption capacity 

decreased from 68.2 mg/g to 57.5 mg/g polymer with the increase of the flow rate 

from 0.08 to 0.17 mL/min (Figure 5.11). An increase in the flow rate reduces the 
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protein solution volume treated efficiently until breakthrough point and therefore 

decreases the service time of column. This is due to decrease in contact time between 

the invertase and the hydrazine functionalized beads at higher flow rates. When the 

flow rate decreases the contact time in the column is longer. Thus, invertase 

molecules have more time to diffuse the layers of the affinity beads and a better 

adsorption capacity is obtained. 
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Figure 5.13: Breakthrough curves of invertase for hydrazine functionalized beads: 

initial concentration of invertase: 2.0 mgmL
−1

; temperature: 25 °C ; 

pH 4.0 

5.2.9 The effect of pH and temperature on the free and immobilized enzyme 

activity 

The effect of pH on the activity of the free and immobilized invertase for hydrolysis 

of sucrose to glucose and fructose was examined in the pH range 4.0–8.5 at 35°C. As 

seen from Figure 5.14, the hydrolysis reaction has maximum activity for free and 

immobilized enzymes at pH 5.0 and at pH 6.0, respectively. This shift may depend 

on the immobilization method as well as the basic character of the support material. 

The pH profiles of the immobilized invertase display strongly improved stability of 

the optimum pH value, in comparison to that of the free form, which means that the 

immobilization method preserved the enzyme activity. Effect of temperature on the 

relative activity of free and immobilized invertase for affinity beads is shown in 

Figure 5.15. The immobilized enzyme showed an optimum reaction temperature 
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between 45 and 55°C, whereas free enzyme had an optimum temperature about 

45°C. As was evident from the data, the immobilized enzyme possessed a better 

heat-resistance than that of the free enzyme. The immobilization of invertase on the 

fibrous polymer via electrostatic interaction might also reduce the conformational 

flexibility and may result in higher activation energy for the molecule to reorganize 

the proper conformation for the binding to substrate sucrose [140–143]. 
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Figure 5.14: Effect of pH on the free and immobilized invertase activity: the relative 

activities at the optimum pH were taken as 100% for free and 

immobilized invertase. Experimental conditions; pH: 4.0–8.5; 

Temperature: 35°C. 
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Figure 5.15: Effect of temperature on the free and immobilized invertase activity; the 

relative activities at optimum temperature were taken as 100% for free 

and immobilized invertase. Experimental conditions; pH: 5.5; 

Temperature: 35°C. 



 

 

 
83 

5.2.10 Storage stability of the invertase preparations  

The free and the immobilized invertase preparations were stored at 4°C in the wet 

states. The activity loss of the immobilized invertase was about 27% in the 2 month 

storage period. The free enzyme lost all its activity within 5 week. Thus, the 

immobilized invertase exhibits higher storage stability than that of the free form 

(Figure 5.16). The higher stability of the immobilized invertase could be attributed to 

the prevention of denaturation as a result of multipoint interaction of invertase 

molecules on the hydrazine functionalized polymer chains. On the basis of this 

observation, PGMA grafted and hydrazine functionalized beads should provide a 

stabilization effect, minimizing possible distortion effects imposed from aqueous 

medium on the conformational structure of the immobilized enzyme. The generated 

multipoint ionic interactions between enzyme and hydrazine functional groups 

should also convey a higher conformational stability to the immobilized enzyme. 

Thus, the affinity beads and the immobilization method provide higher shelf life 

when compared with that of its free enzyme [144–148] . 

 

Figure 5.16: Storage stabilities of the free and immobilized invertase. Storage 

conditions: pH: 6.0, Temperature: 35°C. 

5.2.11 Regeneration of the beads for reuse in enzyme immobilization  

The cleaning of adsorbed invertase after inactivation from the affinity beads was 

achieved under alkaline condition. The invertase adsorbed on the hydrazine 
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functionalized p(VBC/EGDMA-g-GMA) beads was placed within the cleaning 

medium containing 1.0M NaOH. The adsorption–desorption cycle of invertase was 

repeated six times by using the same affinity beads. The immobilization capacity of 

the affinity beads did not change significantly after six times use in the repeated use 

of the support after regeneration of the affinity beads in 1.0M NaOH for 2 h. The 

sixth adsorption–desorption cycle of invertase, the amount of immobilized enzyme 

(83.5 mg/g beads) was about 3.6% lower than that of the first use (86.7 mg protein/g 

beads). This indicates that the prepared hydrazine functionalized beads were of high 

stability in repeated utilization. 

5.3 Preparation and Characterization of the Resin 2 

Sulfonic acid containing resin was prepared reaction with crosslinked 

chlorosulfonated polystyrene resin and aminomethane sulfonic acid (Figure 5.17). 

 

 

 

Figure 5.17: Preparation of the Resin 2. 

The resin 2 was characterized by FT-IR spectroscopy (Figure 5.18). In the 

sulfonamide resin, S=O stretching vibration occurs at 1323 cm
_1

 and 1122 cm
-1

. The 

S=O stretching vibrations in sulfonic acid group are observed at 1409 cm
-1 

and 1033 

cm
-1

.  
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Figure 5.18: FT-IR spectrum of the Resin 2. 

5.3.1  Effect of pH on trypsin adsorption capacity 

Adsorption experiments were investigated at pH 4.0–8.0 (Figure 5.19). As seen in 

the Figure 5.20, the electrostatic interaction between trypsin and the resin was the 

strongest at around pH 4 and gave the highest adsorption capacity. The isoelectronic 

(pI) value of trypsin is 10.5. The trypsin molecules would be cationic at pH values 

below 10.5. The trypsin molecules have net positive charges when medium pH is less 

than 10.5. On the other hand, the sulfonic acid group of the beads has pKa =1.6 

value. Therefore functional group has net negative charges when medium pH is 

higher than 1.6. At around pH 4.0, the electrostatic interaction between the protein 

‗‗trypsin‘‘ and ion-exchange adsorbent should be predominant. Increasing the pH 

thereafter caused a decrease in adsorption. Proteins that change conformation as a 

function of their environment (pH, salt, temperature, etc.), such as trypsin, which has 

a molecular mass of 24 kDa, could change conformation upon binding functional 

surface. Thus, trypsin molecules would expand and contact according to the variation 

of the ionizable groups on the surfaces. At pH 4.0, the resulting trypsin adsorption 

may also be due to suitable conformation of trypsin molecules on the polymer 

surface. At pHs above the pKa value of 1.6, the sulfonic groups are ionized and 

interact with basic protein trypsin. On the other hand, in the basic pH region, the 
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amino groups of the trypsin were deprotonated and the amount of adsorbed trypsin 

was consequently decreased. 

 

 

 

 

 

 

 

 

 

Figure 5.19: Effects of pH on the trypsin adsorption capacity of the Resin 2. 

5.3.2  Effect of ionic strenght on trypsin adsorption capacity 

The ionic strenght effects on adsorption capacity of Resin 2 were studied by using 

NaCl solution. The adsorption capacity of the Resin 2 was decreased for trypsin from 

35,49 mg/g to 23,78 mg/g with increasing NaCl concentration from zero to 1.0M 

(Figure 5.20). The decrease in trypsin adsorption capacity of the beads with 

increasing ionic strength should be resulted from decrease in the electrostatic 

interactions between trypsin and ion-exchange beads. This behavior may be 

explained by the formation of more compact structures of the trypsin molecules at 

high-ionic strengths because of the conformational changes. 
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Figure 5.20: Effects of ionic strenght on the trypsin adsorption capacity of the 

Resin2. 

5.3.3 Effect of initial concentration of invertase 

Figure 5.21 shows the effects of the initial concentration of trysin on the resin 

capacity for four different temperatures (5, 15, 30, 37 
0
C). As seen in this figure, with 

increasing trypsin concentration in the solution, the adsorbed amount of trypsin per 

unit mass of polymer beads increases and then approaches saturation. 

 

Figure 5.21: Effects of initial concentration on the trypsin adsorption capacity of the  

Resin 2. 
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5.3.4 Evaluation of adsorption isotherms   

Two theoretical isotherm models (Langmuir and Freundlich) were used to analyze 

the experimental data. The corresponding semi-reciprocal plot (Ceq/qeq versus Ceq) of 

the experimental data gave a linear plot (Figure 5.22) with a correlation factor of 

0.976 for the affinity beads at 30
0
C. The non-linear plot of ln q versus ln C 

(correlation factor = 0.67) at 30
0
C showed that adsorption of invertase onto the 

affinity beads cannot be described in terms of the Freundlich isotherm. Langmuir and 

Freundlich isotherm constants and correlation coefficients of isotherm models for the 

adsorption of trypsin were given in Table 5.3. 
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Figure 5.22: Langmiur isotherm plot of trypsin adsorption onto resin 2. 

Table 5.3: Langmuir and Freundlich isotherm constants and correlation coefficients 

of isotherm models for the adsorption of trypsin on Resin 2. 

 

Temperature 

(K) 

 

Langmuir  models constant 

 

Freundlich model 

constant 

 qexp (mg/g)         qm (mg/g)         K (ml/mg)                        R2       n           KF             R2 

278 55                        63.7                   4.62                         0.992  1.93        55.7        0.86 

288 72.86                   53                      8.32                          0.98 2.04      83.93        0.98 

303 86.70                   84                     14.78                         0.976 2.17      111.05      0.67 

310 119.92                129.87                 18                            0.992 2.05      114.16      0.79 
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5.3.5 Kinetic studies 

In order to analyze the adsorption kinetics of trypsin, the pseudo first-order and the 

pseudo second-order kinetics models were applied to the experimental data. First 

order and Second order kinetic parameters for the adsorption trypsin were given in 

Table 5.4. 

Table 5.4: First order and Second order kinetic parameters for the adsorption trypsin. 

    Kinetic Model k 

 

R
2
 

Pseudo First order 0.019 min
-1

 0.984 

Pseudo Second 

order 

8.1x10
-4

 g.min
-1

.mg
-1

 0.976 

5.3.6 Regeneration of the beads for reuse in trypsin immobilization  

The adsorption–desorption cycle of invertase was repeated four times by using the 

same beads. The immobilization capacity of the beads did not change significantly 

after four times use in the repeated use of the support after regeneration of the 

affinity beads in 1.0 M KSCN at pH 8.0 for 3 h.  
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6. RESULTS and DISCUSSION II 

Environmental application results of the synthesized sorbents were given in this part. 

Invertase enzyme has aldehyde group. Hydrazine group can sorb aldehyde groups 

selectively from the organic mixture by hydrazone formation. It is very important to 

separate organic contaminants from the solvents. Therefore, the resin1 was used to 

separate aldehydes.  

6.1 Aldehyde Sorption Capacity of The Resin 1 

Based on the reversible aldehyde-binding ability of hydrazine, aldehyde sorption of 

the polymer can be represented as shown in Figure 6.1. 

NH-NH2   +    RCHO NH-N=CH-R
HCl

-H2O

 

Figure 6.1: Aldehyde binding mechanism of the Resin 1. 

The aldehyde sorption must proceed via hydrazone formation. To break up the 

hydrazone moiety, concentrated HCl solution is used and the aldehyde sorbed is 

released from the polymer. This fact is the key point of the reversible aldehyde 

binding, which allows recovery of the sorbed aldehyde. After separation of the 

stripped aldehyde the hydrazine groups in the polymer are in hydrazinium 

hydrochloride salt form. These are readily converted into free hydrazine form by a 

simple base treatment (1 M NaOH), and the crosslinked polymer becomes 

regenerated. In order to show practical efficiency of the resinous product, the resin 

samples were contacted separately with two-fold excess of aldehydes for 24 h at 

room temperature. The loading capacities in these conditions were found by 

determination of the residual aldehyde concentrations of the solutions (Table 6.1). 

The aldehyde determination was carried out colorimatically by using 2,4-

dinitrophenyl hydrazine method. 
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Table 6.1: The aldehyde sorption capacity of the resin 1 in methanol. 

Aldehyde Capacity ( mmol 

/ g. resin ) 

Regeneration( mmol / 

g. resin ) 

Salicyl aldehyde 0.205 0.200 

Acetaldehyde 1.756 1.746 

Benzaldehyde 0.448 0.417 

Having a low molecular weight, acetaldehyde is expected to show higher binding 

ability. Most probably the acidic character of the phenolic OH group in 

salicylaldehyde is responsible for its high uptake, due to the basicity of the resin 

itself. 

6.1.1 Recovery of the sorbed aldehydes and regeneration of the Resin1 

Desorption experiments were performed by using 5 M HCl and results were given in 

Table 6.1. The benzaldehyde loaded resin was desorbed about 93% in the first 

experiment. The second desorption, the resin was regenerated 100%.   

6.2 Extraction of Basic Dyes 

Dye sorption was similar to protein sorption. Acidic function containing sorbents can 

interact basic proteins and basic dyes. Therefore, dye contaminants are very serious 

problem for environment and human health. 

We used our resins for removal of basic dyes. Also, dye sorbed resins will used to 

separation of biomolecules. 

6.2.1 Dye sorption characteristics of Resin 2 

Dye extraction experiments were carried out simply by contacting wetted bead 

samples with aqueous dye solutions at room temperature. Capacities were assigned 

by colorimetrical analysis of residual dye contents. Dye sorptions capacities are 

given in Table 6.2. 
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Table 6.2: Sorption capacities of the Resin 2. 

Dye Dye concentration 

(g dye / 100 mL) 

Capacity 

(g dye/ g resin) 

Methylene Blue 0.40 0.38 

0.50 0.40 

0.75 0.39 

1.00 0.39 

Crystal violet 0.40 0.39 

0.50 0.42 

0.75 0.44 

1.00 0.40 

These experiments were studied different dye concentrations and the loading 

experiments indicate no significant capacity change is observed at different initial 

dye concentrations.  

The resin shows reasonably high dye sorptions. It is important to note that the resin 

can be used in a wide pH range (Table 6.3).   

At low pH, the sulfonic acid groups on the surface of resin that are responsible for 

binding with basic dye are predominantly protonated (-SO3H), hence incapable of 

binding basic dye. As pH increased, sorption became favorable due to the 

deprotonation of the acid groups (-SO3H), resulting in sorption sites that were 

available for binding with basic dye. With increasing pH, the number of positively 

charged sites decreased and the number of negatively charged sites increased. This 

phenomenon favors the sorption of positively charged dye due to electrostatic 

attraction. 
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Table 6.3: Maximum dye sorption capacity of the resin 2 depending on pH. 

Dye pH Capacity 

(g dye / g resin) 

Methylene Blue 2 0.16 

4 0.26 

8 0.37 

Crystal violet 2 - 

4 0.30 

8 0.40 

6.2.2 Dye sorption kinetics of the Resin 2  

This material is able to remove the basic dyes completely even from highly diluted 

aqueous dye solutions, which are industrially highly important. Here batch kinetic 

sorption experiments were performed with very dilute dye solutions (1.3x10 
-3

 g L
-1

) 

to investigate the efficiency of the resin in the presence of trace quantities of dyes, 

The (concentration – time) plot (Figure 6.2) shows that within about 40 minutes 

contact time, the dye concentration falls to zero. 

 

Figure 6.2: Dye sorption kinetics of the Resin 2. 

The kinetic data was treated with the Ho‘s pseudo-second-order rate equation [125]. 

The pseudo-second-order model plots of methylene blue and crystal violet sorption 

are shown in Figure 6.3. The high values of correlation coefficients showed that the 

data fitted well to the pseudo-second-order rate kinetic model (Table 6.4). 
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Figure 6.3: The pseudo-second-order model plots of methylene blue and crystal    

violet sorbed by the Resin 2 

Table 6.4: Pseudo-second order kinetic parameters for the adsorption of methylene 

                   blue and crystal violet. 

Dye k2 

( g.min
-1

.mg
-1

) 

R
2
 

Methylene blue 3.84 0.9999 

Crystal violet 9.94 1 

6.2.3 Regeneration of the Resin 2 

Alkaline regeneration works well for strong and weak basic sorbents and acid 

regeneration works for most dyes. 

For the regeneration of dyes from loaded resin, 5 M H2SO4 was used. When loaded 

samples were contacted with 5 M H2SO4 for 24 h, the amount of recovered dyes is 

around 0.38 g dye / g polymer for methylene blue and 0.39 about 93% of the 

capacity of fresh polymer.  

Additionally, the resin does not hydrolyze in acid and base solutions, due to the high 

stability of the sulfonamide linkage to acid and base hydrolysis. This property is very 

important for the regeneration. 
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6.3 Preparation and Characterization of the Resin 3 

In this study, core-shell types of polymers with poly(ethylacrylate) shells were 

obtained by SI-ATRP method. Graft polymerization of ethylacrylate can be obtained 

from the chloromethyl initiator groups on the p(VBC) beads (Figure 6.4). In the 

polymerizations [CuBr/[L] ratio was chosen as 1/2. 

PP CH2 Cl
CuBr, Bipyridine

Ethylacrylate

PP CH2 CH2-CH

          
C=O

OC2H5

n

PP CH2 CH2-CH

          
C=O

n

OH

hydrolysis

Figure 6.4: Preparation of Resin 3. 

The grafting degree reaches to 368.2% (assigned by mass increase) in 20 h. The 

grafting degree-time plot was given in Fig.6.5. 
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Figure 6.5: Conversion-time plot of the Resin 3. 

FT-IR spectra of the grafted beads represent strong C–O stretching vibrations band at 

1721 cm
-1

, which indicate incorporation of the poly(ethylacrylate) on the p(VBC) 

resin structure (Figure 6.6a). Poly (acrylic acid) function on the beads surface was 

obtained after alkali hydrolysis of poly (ethylacrylate) core-shell structure of the 

resin. Carboxylic acid content was determined by using titrimetric method and was 

found to be 3.56 mmol/g resin. The hydrolyzed resin was also characterized by FT-

IR spectroscopy (Figure 6.6b). In the hydrolyzed resin, C=O stretching vibration 

bands are observed at both 3356 cm
-1

 and 1600 cm
-1

.  
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Figure 6.6: FT-IR spectra of Resin 3. 

6.4 Dyes Removal Studies 

The basic dyes removal experiments from aqueous solution were carried out simply 

by contacting swelled resin samples with aqueous dye solutions at room temperature. 

The adsorption capacities of the resin were determined using colorimetrical analysis. 

The adsorption capacities of the resin for Methylene Blue and Crystal Violet were 

300 and 250 mg dye/g resin, respectively. It is important to note that the resin can be 

used over a wide pH range (Table 6.5), with significant differences in the adsorption 

capacity for both dyes. 

At low pH, the carboxyl groups on the surface of resin that are responsible for 

binding with basic dye are predominantly protonated (-COOH), hence incapable of 

binding basic dye. As pH increased, sorption became favorable due to the 

deprotonation of the carboxyl groups (-COO
_
), resulting in sorption sites that were 

available for binding with basic dye. With increasing pH, the number of positively 

charged sites decreased and the number of negatively charged sites increased. This 

phenomenon favors the sorption of positively charged dye due to electrostatic 

attraction. This property is important for industrial applications.  
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Table 6.5  pH depending on dye sorption of the resin 3 

          Dye pH                  Capacity 

( mg dye / g resin) 

Methylene 

Blue 

4.0 210 

6.0 250 

7.0 300 

8.0 200 

Crystal violet 4.0 - 

6.0 190 

 7.0 250 

 8.0 200 

6.4.1 Dye adsorption kinetics of the resin 3 

This material is able to remove the anionic dyes completely even from highly diluted 

aqueous dye solutions, which are highly important. We performed batch kinetic 

sorption experiments with highly diluted dye solutions between (2.5x10
-3 

and 1.3x10 

-3
 g / L) to investigate the efficiency of the resin in the presence of low dye 

concentrations. The concentration– time plot (Fiure 6.7) shows that within about 60 

minutes contact time, the dye concentration of crystal violet falls to zero. 

 

Figure 6.7: Methylene blue and crystal violet adsorption kinetics of the Resin 3 
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The sorption kinetics is an important aspect of pollutants removal process control.  

The linear form of the equation that describes the adsorption kinetics corresponding 

to the pseudo second-order model [125] is as follows: 

t/ qt = 1 / k2qe
2
 + 1 / qe t                                                                         (6.1) 

The rate parameters k2 and qe can be directly obtained from the intercept and slope 

of the plot of t/qt versus t (Fig.6.8). If the pseudo-second order kinetics is applicable, 

the plot gives a linear relationship, which allows computation of k2. 

 

Figure 6.8: The pseudo-second-order model plots of  Methylene Blue and Crystal 

Violet adsorbed by the resin 

Table 6.6: Pseudo-second order kinetic constants for basic dyes sorption onto the         

Resin 3. 

Dye k2 

( g.min
-1

.mg
-1

) 

R
2
 

Methylene blue 1.24 0.9999 

   Crystal violet 4.60 0.9996 

The kinetic values were obtained by linear regression are reported in Table 6.6 The 

high values of correlation coefficients showed that the data fitted well to the pseudo-

second-order rate kinetic model. 
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6.4.2 Regeneration of the Resin 3 

For the regeneration of dyes from loaded resin, 5 M H2SO4 was used. When the dye 

adsorbed samples were contacted with 5 M H2SO4 for 24 h, the amount of recovered 

dyes is around 0.25 g dye / g polymer for Methylene Blue and 0.21 g dye / g polymer 

for crystal violet. These values are about 83 % of the capacity of fresh polymer. 

Regeneration experiments were repeated twice. Colorless beads were obtained after 

the regeneration process. 
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7. CONCLUSION 

In this thesis, hydrazine, amine, carboxylic acid and methanesulfonic acid containing 

resins were prepared and characterized. 

Hydrazine, amine, carboxylic acid containing resins were synthesized starting from 

crosslinked polyvinyl benzyl chloride. Poly (glycidyl methacrylate) and poly (ethyl 

acrylate) were grafted onto the PVBC by using ATRP method. Grafted resins were 

modified hydrazine, amine and carboxylic acid groups by using ring opening and 

ester hydrolysis respectively. 

Hydrazine group can sorb aldehyde to form hydrazone. This mechanism was used in 

sorption of enzymes. The resin 1 was interacted different enzymes but invertase 

enzyme can be sorb selectively pH between 4 and 5.5 respectively. Hydrazine 

function resin sorpion capacity of the invertase was found higher than according to 

the amine function resin. 

Sorption experiments were investigated depending on pH, ionic strength and 

temperatue. The adsorption isotherms and kinetic characteristics of the resins were 

studied. In addition, thermodynamic parameters of the resin were found.  

Poly (ethyl acrylate) was grafted onto PVBC by ATRP and was hydrolyzed ester 

group to obtain poly (acrylic acid) group (Resin 3). Resin 3 was used to remove basic 

dyes. Dye sorption properties depending on pH, dye sorption kinetics and desorption 

of the dye loaded resin was investigated. 

Methanesulfonic acid function was obtained starting from reaction with crosslinked 

chlorosulfonated poly (styrene) and methane sulfonic acid (Resin2). Resin 2 has 

sulfonamide group. Sulfonamides do not hydrolyze in acidic and basic media easily. 

This property is very important for regeneration process. Resin 2 was used sorption 

of Trypsin protein and sorption of the protein was studied in different pH, ionic 

strength and temperature. Sorption kinetics, and desorption conditions were also 

investigated. The resin was also used to remove basic dyes from water. 



 

 

 
104 

 

 

 

 

 

 

 

 

 



 

 

 
105 

 

REFERENCES 

[1] Cooke M., Poole C. F., Wilson I. D., and Adlard E. D. (Eds.), 2000:           

‘Encyclopedia of    Separation Science’,Academic Press.  

[2] Kiralp, S., Topcu, A., Bayramoğlu, G., M. Yakup Arıca, and Toppare, L.   

,2008: Alcohol determination via covalent enzyme immobilization on 

magnetic beads, Sensors and Actuators B: Chemical, 128, 2, 521-528,  

[3] Goddard J. M., and Hotchkiss J. H., 2007: Polymer surface modification for 

the attachment of bioactive compounds, Prog Polym Sci, 32, 698–725. 

[4] Grazu V., Abian O., Mateo C., Batista-Viera F., Fernandez-Lafuente R., 

Guisan J. M., 2005: Stabilization of enzymes by multipoint 

immobilization of thiolated proteins on new epoxy-thiol supports, 

Biotechnol Bioeng, 90, 597–605. 

[5] Bayramoglu, G., Arıca, M. Y., 2009: Preparation and characterization of comb 

type polymer coated poly(HEMA/EGDMA) microspheres containing 

surface-anchored sulfonic acid: Application in γ-globulin separation, 

Reactive and Functional Polymers, 69, 189-196,  

[6] Bayramoglu, G., Yavuz, E., Senkal, B. F., and Arıca, M. Y., 2009: Glycidyl 

methacrylate grafted on p(VBC) beads by SI-ATRP technique: 

Modified with hydrazine as a salt resistance ligand for adsorption of 

invertase, Colloids and Surfaces A: Physicochemical and Engineering 

Aspects, 345, 127-134,  

[7] Xu F. J., Li Y. L., Kang E. T., and Neoh K. G.,.2005: Heparin-coupled 

poly(poly(ethylene glycol) monomethacrylate)–Si(1 1 1) hybrids and 

their blood compatible surfaces, Biomacromolecules, 6, 1759–68. 

[8] DeFife M. K., Shive S. M., Hagen K.M., Clapper D.L., and Anderson J.M., 

1999: Effects of photochemically immobilized polymer coatings on 

protein adsorption, cell adhesion, and the foreign body reaction to 

silicone rubber, J Biomed Mater Res, 44, 298–307. 

[9] Dong R., Krishnan S., Baird B. A., Lindau M., and Ober C. K., 2007: 

Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces. 

Biomacromolecules, 8, 3082–92. 

[10] Hasegawa T., Matsuura K., Ariga K., and Kobayashi K., 2003: Multilayer 

adsorption and molecular organisation of rigid cylindrical 

glycoconjugate poly(phenylisocyanate) on hydrophilic surfaces, 

Macromolecules, 33, 2772–5. 

[11] Miyata T., Jikihara A., and Nakamae K., 1996: Preparation of poly(2-

glucosyloxyethyl methacrylate)–concanavalin A complex hydrogel 

and its glucose-sensitivity, Macromol Chem Phys, 197, 1135–46. 



 

 

 
106 

[12] Okada M., 2001: Molecular design and syntheses of glycopolymers. Prog 

Polym Sci, 26, 67–104. 

    [13] Huang J., Li
 
X., Zheng

 
Y.,Zhang

 
Y., Zhao

 
R., Gao

 
X., Yan

 
H., 2008: 

Immobilization of Penicillin G Acylase on Poly[(glycidyl 

methacrylate)-co-(glycerol monomethacrylate)]-Grafted Magnetic 

Microspheres,
 
Macromolecular Bioscience, 8, 508-515. 

    [14] Kurosawa S., Aizawa H., Talib Z. A., Atthoff B., and Hilborn J., 2004: 

Synthesis of tethered-polymer brush by atom transfer radical 

polymerization from a plasma-polymerized-film-coated quartz crystal 

microbalance and its application for immunosensors, Biosens 

Bioelectron, 20, 1165–76. 

     [15] Lei Z., and Bi S., 2007: Preparation and properties of immobilized pectinase 

onto the amphiphilic PS-b-PAA diblock copolymers, J Biotechnol, 

128, 112–9. 

[16] Cullen S. P., Liu X., MandelI C., Himpsel F.J., and Gopalan P., 2008: 

Polymeric brushes as functional templates for immobilizing 

ribonuclease A: study of binding kinetics and activity, Langmuir, 24, 

913–20. 

[17] Xu F. J., Cai Q. J., Li Y. L., Kang E. T., and Neoh K.G., 2005: Covalent 

immobilization of glucose oxidase on well-defined poly(glycidyl 

methacrylate)–Si(1 1 1) hybrids from surface-initiated atom-transfer 

radical polymerization, Biomacromolecules, 6, 1012–20. 

[18] Kawakita H., Masunaga H., Nomura K., Uezu K., Akiba I., Tsuneda S., 

2007: Adsorption of bovine serum albumin to a polymer brush 

prepared by atom-transfer radical polymerization in a porous 

inorganic membrane, J Porous Mater, 14, 387–91. 

[19] Huang J., Han B., Yue W., and Yan H., 2007: Magnetic polymer 

microspheres with polymer brushes and the immobilization of protein 

on the brushes. J Mater Chem, 17, 3812–8. 

[20] Bayramoğlu, G., Ekici, G., Beşirli, N., Arica, M. Y., 2007:  Preparation of 

ion-exchange beads based on poly(methacrylic acid) brush grafted 

chitosan beads: Isolation of lysozyme from egg white in batch system, 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 

310, 68-77. 

[21] Ying L., Yin C., Zhou R. X., Leong K. W., Mao H. Q., Kang E. T, et al., 

2003: Immobilization of galactose ligands on acrylic acid graft-

copolymerized poly(ethylene terephthalate) film and its application to 

hepatocyte culture. Biomacromolecules, 4, 157–65. 

[22] Yin C., Ying L., Zhang P. C., Zhou R. X., Kang E. T., Leong K. W., et al., 

2003: High density of immobilized galactose ligand enhances 

hepatocyte attachment and function. J Biomed Mater Res A, 67A, 

1093–104. 

[23] Dumont J., Fortier G., 1996: Behavior of glucose oxidase immobilized in 

various electropolymerized thin films,  Biotechnol Bioeng, 49, 544–

52. 



 

 

 
107 

[24] Cen L., Neoh K. G., and Kang E. T., 2003: Surface functionalization of 

polypyrrole film with glucose oxidase and viologen, Biosens 

Bioelectron, 18, 363–74. 

[25] Bayramoğlu, and G., Arıca, M. Y., 2008: Preparation of 

poly(glycidylmethacrylate–methylmethacrylate) magnetic beads: 

Application in lipase immobilization, Journal of Molecular Catalysis 

B: Enzymatic, 55, Pages 76-83  

[26] Arica M. Y., Bayramoglu G., Bicak N., 2004: Characterisation of tyrosinase 

immobilised onto spacer-arm attached glycidyl methacrylatebased 

reactive microbeads,  Process Biochem, 39, 2007–17. 

[27] Bayramoğlu, G., Loğoğlu, E., and Arica, M. Y., 2007: Cytochrome c 

adsorption on glutamic acid ligand immobilized magnetic 

poly(methylmethacrylate-co-glycidylmethacrylate) beads, Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, 297, 55-

62,  

[28] Yu W. H., Kang E. T, and Neoh K. G., 2004: Controlled grafting of well-

defined epoxide polymers on hydrogen-terminated silicon substrates 

by surface-initiated ATRP at ambient temperature,  Langmuir, 20, 

8294. 

[29] Edmondson S., and Huck W. T. S.., 2004: Controlled growthand subsequent 

chemical modification of poly(glycidyl methacrylate) brushes on 

silicon wafers. J Mater Chem, 14, 730–4. 

[30] Iwata R., Satoh R., Iwasaki Y., and Akiyoshi K., 2008: Covalent 

immobilizationm of antibody fragments on well-defined polymer 

brushes via sitedirected method, Colloids Surf B: Biointerfaces, 62, 

288–98. 

[31] Bayramoğlu G., and Arıca M.Y., 2009: Immobilization of laccase onto 

poly(glycidylmethacrylate) brush grafted 

poly(hydroxyethylmethacrylate) films: Enzymatic oxidation of 

phenolic compounds, Materials Science and Engineering: C, 29, 

1990-1997,  

[32] Sun C, Zhou F, Shi L, Yu B, Gao P, Zhang J, et al., 2006: Tribological 

properties of chemically bonded polyimide films on silicon with 

polyglycidyl methacrylate brush as adhesive layer. Appl Surf Sci, 253, 

1729–35. 

[33] Takemoto K., Ottenbrite R.M., Kamachi M. (Eds.), 1997: Functional 

Monomers and Polymers, CRC Press 

[34] Gilbert R. G., 1995: Emulsion Polymerization: A Mechanistic Approach, 

Academic, London,  

[35] Lovell P.A., and El-Aasser M. S., 1997: Emulsion Polymerization and 

Emulsion Polymers, Wiley, Chichester,. 

[36] Hoffman F., and Delbruch K., Patent, 1909: No. 250 690, Farbenfabriken 

Bayer, Germany. 

[37] Bauer W., and Lauth H., Patent (Ger.) 1931: No. 656,134, Rohm and Haas, 

Darmstadt,  



 

 

 
108 

[38] Munzer M., Trommsdorff E., Schildknecht C. E., Skeist I. (Eds.), 1977: 

Polymerization Processes, Wiley, New York, , p. 106. 

[39] Seidl J., Malinsky J., Dusek K., and Heitz W., 1967: Adv. Polym. Sci. 5 113. 

[40] Hopff H., and Lutz E., 1958: Kunstst. Plast. 5 341. 

[41] Y. Mlynek, W. Resnick, 1976: AIChE J., 22, 289. 

[42] B. Weinstein, 1973: AIChE J. 19, 304. 

[43] C.A. Coulaloglou, L.L. Tavlarides, 1976: AIChE J. 22, 289. 

[44] J. Hernandez-Barajas, D.J. Hunkeler, 1995: Polym. Adv. Technol., 6, 509. 

[45] G.J. Wang, M. Li, X.F. Chen, 1997: J. Appl. Polym. Sci. 65 789. 

[46] X.L. Xu, Z.C. Zhang, B. Fei, X.W. Ge, M.W. Zhang, 1998: Acta Polym. Sin. 

134. 

[47] Mendizabal E., Castellanosortega J. R., and Puig J.E., 1992: A method for 

selecting a polyvinyl alcohol as stabilizer in suspension 

polymerization. Colloids Surf. 63, 209-217. 

[48] Goodall A. R., and Greenhill-Hooper M. J., 1990: Makromol. Chem. 

Macromol. Symp., 35, 499. 

[49] Dawkins J.V., in: Geoffrey A., Bevington J. C., (Eds.), 1989: Comprehensive 

Polymer Science. The Synthesis, Characterization and Applications of 

Polymers, vol. 4, Pergamon, Oxford,. 

[50] S.M. Ahmed, 1984: J. Dispers. Sci. Technol., 5, 421. 

[51] Grulke E. A., in: Mark H. F., Bikales N. M., Overberger C. G., Menges G., 

Kroschwitz J. I., (Eds.), 1989: Encyclopedia of Polymer Science and 

Engineering, vol. 16, Wiley, New York, p. 443. 

[52] Kalfas G., and Ray W. H., 1993: Modeling and experimental studies of 

aqueous suspension polymerization processes. 1. Modeling and 

simulations, Ind. Eng. Chem. Res., 32, 1822-1830. 

[53] Blondeau D., Bigan M., and Despres P., 1995: Ultrasound suspension 

polymerization method for preparation of 2-hydroxyethylmethacrylate 

macroporous copolymers, React. Funct. Polym., 27, 163-173.  

[54] Saito R., Ni X., Ichimura A., and Ishizu K., 1998: Synthesis of core–shell 

type microsphere with reactive seed microspheres, J. Appl. Polym. 

Sci. 69, 211-216. 

[55] Arslanalp C., Erbay E., Bilgic T., and Savasci O. T., 1991: Agitation scale-

up model for the suspension polymerization of vinyl chloride, 

Angewandle Makromol. Chem., 211, 35-51. 

[56] Rogestedt M., Jonsson T., Hjertberg T., 1993: Effect of polymerization 

initiator on early colour of poly(vinyl chloride). J. Appl. Polym. Sci., 

49, 1055-1063. 

[57] Mathur R., Mathur S., Kanoongo N., Narang C. K., and Mathur N. K., 

1992: Use of phase transfer catalysts to aid initiation in suspension 

vinyl polymerization,  Polymer, 33, 217-218. 



 

 

 
109 

[58] Uyama H., Kato H., and Kobayashi S., 1994: Dispersion polymerization of N-

vinylformamide in polar media. Preparation of monodisperse 

hydrophilic polymer particles. Polym. J., 26, 858-863. 

[59] Dowding P.J., Goodwin J.W., and Vincent B., 1998: The characterization of 

porous styrene–glycidyl methacrylate copolymer beads prepared by 

suspension polymerization, Colloids Surf. A Physicochem. Eng. Asp. 

145, 263-270. 

[60] Mrazek Z., Lukas R., and Sevcik S., 1991: On gradual dosage of the initiator 

in the suspension polymerization of vinyl chloride. Polym. Eng. Sci., 

31, 313-320. 

[61] Szwarc, M., Levy,M. Milkovich, R., 1956: Polymerization initiated by electron 

transfer to monomer. A new method of formation of block polymers. 

J. Am. Chem. Soc., 78, 2656-2657. 

[62] Szwarc, M., 1956:  ‗Living' Polymers. Nature (London), 178, 1168-1169. 

[63] Miyamoto, M., Sawamoto, M. And Higashimura, T., 1984: Living 

polymerization of isobutyl vinyl ether with hydrogen iodide/iodine 

initiating system. Macromolecules, 17, 26-268. 

[64] Faust, R. and Kennedy, J. P., 1986:  Polym. Bull., 15, 317 

[65] Cho, C. G., Feit, B. A. and Webster, O. W., 1990: Cationic polymerization of 

isobutyl vinyl ether: livingness enhancement by dialkyl sulphides, 

Macromolecules, 23, 1918-1923. 

[66] Lin, C.-H. and Matyjaszewski, K., 1990:  Polym. Prep., 31, 599. 

[67] Greszta, D., Mardare, D. And Matyjaszewski, K., 1994: Living radical 

polymerization. 1. Possibilities and limitations, Macromolecules, 27, 

638-644. 

[68] Goto, A. and Fukuda, T., 2004:  Kinetics of living radical polymerization. 

Prog. Pol. Sci., 29, 329-385. 

[69] Fischer, H., 2001: The Persistent Radical Effect:  A Principle for Selective 

Radical Reactions and Living Radical Polymerizations. Chem. Rev., 

101, 3581-3610. 

[70] Georges, M.K., Veregin, R.P.N., Kazmaier, P.M. and Hamer, G.K., 1993: 

Narrow molecular weight resins by a free-radical polymerization 

process Macromolecules, 26, 2987-2988. 

[71] Wayland, B. B., Poszmik, G., Mukerjee, S. L. and Fryd, M., 1994: Living 

Radical Polymerization of Acrylates by Organocobalt Porphyrin 

Complexes. J. Am. Chem. Soc., 116, 7943-7944. 

[72] Wang, J.-S. and Matyjaszewski, K., 1995: Controlled/"living" radical 

polymerization. atom transfer radical polymerization in the presence 

of transition-metal complexes. J. Am. Chem. Soc., 117, 5614-5615. 

[73] Matyjaszewski, K. and Xia, J.. 2001: Atom Transfer Radical Polymerization. 

Chem. Rev., 101, 2921-2990. 



 

 

 
110 

[74] Peng, C.-H., Scricco, J., Li, S., Fryd, M. And Wayland, B.B., 2008: Organo-

Cobalt Mediated Living Radical Polymerization of Vinyl Acetate. 

Macromolecules, 41, 2368-2373. 

[75] Gridnev, A.A. and Ittel, S.D., 2001: Catalytic Chain Transfer in Free-Radical 

Polymerizations, Chem. Rev., 101, 3611-3660. 

[76] Moad, G., Rizzardo, E. And Thang, S. H., 2005:  Living Radical 

Polymerization by the RAFT Process, Aust. J. Chem., 58, 379-410. 

[77] Perrier, S. and Takolpuckdee, P., 2005: Macromolecular design via reversible 

addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) 

polymerization. J. Polym. Sci., Part A: Polym. Chem., 43, 5347-5393. 

[78] Moad, C. L., Moad, G., Rizzardo, E. and Thang, S. H., 1996: Chain Transfer 

Activity of ω-Unsaturated Methyl Methacrylate Oligomers, 

Macromolecules, 29, 7717-7726. 

[79] Chiefari, J., Chong, Y. K., Ercole, F., Krstina, J., Jeffery, J., Le, T. P. T., 

Mayadunne, R. T. A., Meijs, G. F., Moad, C. L., Moad, G., 

Rizzardo, E. and Thang, S. H., 1998: Living Free-Radical 

Polymerization by Reversible Addition−Fragmentation Chain 

Transfer:  The RAFT Process, Macromolecules, 31, 5559-5562. 

[80] Favier, A. and Charreyre, M.-T., 2006: Experimental Requirements for an 

Efficient Control of Free-Radical Polymerizations via the Reversible 

Addition-Fragmentation Chain Transfer (RAFT) Process, Macromol. 

Rapid Commun., 27, 653-692. 

[81] Buchmeiser M. R, 1997:  Synthesis of Polyenes That Contain Mesogenic Side 

Chains via the Living Polymerization of 4-(Ferrocenylethynyl)-4‗-

ethynyltolan, Macromolecules, 30, 2274-2277. 

[82] Buchmeiser M. R., Schuler N., Kaltenhauser G., Ongania K-H, Lagoja I., 

Wurst K., Schottenberger H., 1998: Living Polymerization of Novel 

Conjugatively Spaced Ferrocenylacetylenes, Macromolecules, 31, 

3175-3183. 

[83] Buchmeiser M. R, Schuler N., Schottenberger H., Kohl I., and Hallbrucker 

A., 2000: Ferrocenyl- and octamethylferrocenyl-substituted 

phenylenevinylene-, thienylenevinylene-, and 1,1′-

ferrocenylenevinylene spaced ethynes: Synthesis, metathesis 

polymerization, and polymer properties, Des Monomers Polymers 3, 

421-445. 

[84] Trnka T. M., and Grubbs R. H., 2001: The Development of L2X2Ru CHR 

Olefin Metathesis Catalysts:  An Organometallic Success Story, Acc 

Chem Res., 34, 18-29. 

[85] Matyjaszewski K., 1993: Ranking living systems, Macromolecules, 26, 1787-

1788. 

[86] Schrock R. R., 1993: In: Brunelle D.J. (Ed.), Ring-opening polymerization, 

Hanser, Munich, p, 129. 

[87] Schrock R. R., 1995: The Alkoxide Ligand in Olefin and Acetylene Metathesis 

Reactions, Polyhedron, 14, 3177. 



 

 

 
111 

[88] Ivin K. J., and Mol J. C., 1997: Olefin metathesis and metathesis 

polymerization, Academic, San Diego, CA. 

[89] Weskamp T., Kohl F. J. and  Herrmann W. A., 1999: N-heterocyclic 

carbenes: novel ruthenium–alkylidene complexes. J Organomet 

Chem, 582, 362-365. 

[90] Bielawski C. W. and Grubbs R. H., 2000: Highly Efficient Ring-Opening 

Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts 

Containing N-Heterocyclic Carbene Ligands,  Angew Chem., 112, 

3025-3028. 

[91] Lynn D. M., Kanaoka R. H. and Grubbs R. H., 1996: Living Ring-Opening 

Metathesis Polymerization in Aqueous Media Catalyzed by Well-

Defined Ruthenium Carbene Complexes, J Am Chem Soc. 118, 784-

790. 

[92] France M. B., Grubbs R. H., and McGrath D. V. and Paciello R. A., 1993: 

Chain transfer during the aqueous ring-opening metathesis 

polymerization of 7-oxanorbornene derivatives, Macromolecules 26, 

4742-4747. 

[93] Mohr B., Lynn D. M. and Grubbs R. H., 1996: Synthesis of Water-Soluble, 

Aliphatic Phosphines and Their Application to Well-Defined 

Ruthenium Olefin Metathesis Catalysts, Organometallics, 15, 4317-

4325. 

[94] Liu X., Guo S., Mirkin C. A., 2003: Surface and Site-Specific Ring-Opening 

Metathesis Polymerization Initiated by Dip-Pen Nanolithography,  

Angew Chem., 42, 4785-4789. 

[95] Klavetter F. L, Grubbs R. H., 1988: Polycyclooctatetraene (polyacetylene): 

synthesis and properties, J Am Chem Soc. 110, 7807-7813. 

[96] Cabrera K., Lubda D., Eggenweiler H. M, Minakuchi H., and Nakanishi 

K., 2000: J High Res Chromatogr., 23, 93. 

[97] Schrock R. R., 1990: Living ring-opening metathesis polymerization catalyzed 

by well-characterized transition-metal alkylidene complexes, Acc 

Chem Res., 23, 158-165. 

[98] Bairoch A, 2000: "The ENZYME database in 2000" Nucleic Acids Research 

28, 304–305 

[99] Radzicka A., and Wolfenden R., 1995: A proficient enzyme,  Science 6, 267, 

90–93. 

[100] Dennison C., 2002: A Guide to Protein Isolation, Kluwer Academic 

Publishers, Newyork, p3. 

[101] Amersham Biosciences Corp., Affinity Chromatography, Principles and 

Methods, 2002: Amersham Biosciences Corp., 800 Centennial 

Avenue, PO Box 1327, Piscataway NJ 08855, USA, p.7 

[102] Amersham Biosciences Corp., Ion Exchange Chromatography Principles and 

Methods, 2002: Amersham Biosciences Corp., 800 Centennial 

Avenue, PO Box 1327, Piscataway NJ 08855, USA, p.10 



 

 

 
112 

[103] Himmelhoch, S. R., 1971: Chromatography of proteins on ion-exchange 

adsorbents,  Meth. Enzymol., 22, 273—286,  

[104] Ochoa, J. L., 1978: Hydrophobic (interaction) chromatography, Biochimie, 60, 

1-15. 

[105] Andrade J. D., in Andrade J. D. (ed.), 1985: Surface and Interfacial Aspects 

of Biomedical Polymers. Volume 2; Protein Adsorption, Plenum 

Press, New York, p. 1–80. 

[106] Norde W., 1986: Adsorption of proteins from solution at the solid-liquid 

interface. Adv. Colloid Interface Sci. 25, 267–340. 

[107] Horbett T.A. and Brash J.L. in J.L. Brash and T.A. Horbett (Eds.), 1987: 

Proteins at Interfaces: Physicochemical and Biochemical Studies, 

ACS Symp. Series 343, American Chemical Society, Washington, 

D.C., p. 1–35. 

[108] Brash J.L. and Horbett T.A. in Horbett T.A. and Brash J.L. (Eds.), 1995: 

Proteins at Interfaces II: Fundamentals and Applications, ACS Symp. 

Series 602, American Chemical Society,Washington, D.C., p. 1–23. 

[109] Andrade J.D., Hlady V., Feng L., and Tingey K. in Brash J.L. and 

Wojciechowski P.W. (Eds.), 1996: Interfacial Phenomena and 

Bioproducts, Dekker, New York, p. 19–56. 

[110] Duke C.B.,  1984: J. Vac. Sci. Technol., A 2, 139–143. 

[111] Absolom D., Lamberti F., Policova Z., Zingg W., Oss C. V., and Neumann 

A., 1983: Surface thermodynamics of bacterial adhesion. Appl. 

Environ. Microbiol., 46, 90–97.  

[112] Absolom D.R., Hawthorne L.A. and Chang G., 1988: Endothelialization of 

polymer surfaces. J. Biomed. Mater. Res. 22, 271–285. 

[113] Lee S. and Ruckenstein E., 1988: Adsorption of proteins onto polymeric 

surfaces of different hydrophilicities—a case study with bovine serum 

albumin. J. Colloid Interfac. Sci. 125, 365– 379. 

[114] Norde W. and Lyklema J., 1978: The adsorption of human plasma albumin 

and bovine pancreas ribonuclease at negatively charged polystyrene 

surfaces : I. Adsorption isotherms. Effects of charge, ionic strength, 

and temperature. J. Colloid Interfac. Sci. 66, 257– 265. 

[115] Bagchi P., Birmbaum S.,1981: Effect of pH on the adsorption of 

immunoglobulin G on anionic poly(vinyltoluene) model latex 

particles. J. Colloid Interfac. Sci. 83, 460– 478. 

[116] Kondo A., Higashitani K., 1992: Adsorption of model proteins with wide 

variation in molecular properties on colloidal particles, J. Colloid 

Interfac. Sci. 150, 344–351. 

[117] Luey J., McGuire J. and Sproull R .D., 1991: The effect of pH and NaCl 

concentration on adsorption of β-lactoglobulin at hydrophilic and 

hydrophobic silicon surfaces. J. Colloid Interface Sci. 143, 489–500. 

[118] Kondo A., Oku S., Higashitani K., 1991: Structural changes in protein 

molecules adsorbed on ultrafine silica particles. J. Colloid Interface 

Sci. 143, 214–221. 



 

 

 
113 

[119] Kondo A., Murakami F. and Higashitani K., 1992: Circular dichroism 

studies on conformational changes in protein molecules upon 

adsorption on ultrafine polystyrene particles. Biotechnol. Bioeng. 40, 

889–894. 

[120] Norde W. and Favier J.P., 1992: Structure of adsorbed and desorbed proteins. 

Colloids Surf. 64, 87–93. 

[121] Bohnert J. L. and Horbett T. A., 1986: Changes in adsorbed fibrinogen and 

albumin interactions with polymers indicated by decreases in 

detergent elutability. J. Colloid Interface Sci. 111, 363–377. 

[122] Lu D. R., Park K., 1991: Effect of surface hydrophobicity on the 

conformational changes of adsorbed fibrinogen. J. Colloid Interface 

Sci. 144, 271–281. 

[123] Elwing H., Welin S., Askendal A. and Lundstrom I., 1988: J. Colloid 

Interface Sci. 123, 306–308. 

[124] McGuire J., Wahlgren M. C. and Arnebrant T., 1995: Structural Stability 

Effects on the Adsorption and Dodecyltrimethylammonium Bromide-

Mediated Elutability of Bacteriophage T4 Lysozyme at Silica 

Surfaces. J. Colloid Interface Sci. 170, 182–192. 

[125] Ho Y. S. and McKay G., 1999: Pseudo-second order model for sorption 

processes, Process Biochemistry, 34, 451–465 

[126] Cheng Z., Zhu X., Shi Z. L., Neoh K. G. and Kang E. T., 2005: Polymer 

Microspheres with Permanent Antibacterial Surface from Surface-

Initiated Atom Transfer Radical Polymerization. Ind. Eng. Chem. Res. 

44, 7098-7104. 

[127] Sidney S.,1967: Quantitative Organic Analysis, third ed., Wiley, New York. 

[128] Bradford M. M.,  1976: A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye 

binding. Anal. Biochem. 72, 248-254. 

[129] Arica M. Y., Bayramoglu G., 2006: Invertase reversibly immobilized onto 

polyethylenimine-grafted poly(GMA–MMA) beads for sucrose 

hydrolysis. J. Mol. Catal. B, 38, 131-138. 

[130] Langmuir I., 1918: The adsorption of gases on plane surfaces of glass, mica 

and platinum, J Am. Chem. Soc. 40, 1361–1403. 

[131] Scatchard G., 1949: The attractions of proteins for small molecules and ions, 

Ann. N.Y. Acad. Sci. 51, 660–673. 

[132] Freundlich H. M. F., 1906: Over the adsorption in solution. J. Phys. Chem. 

57, 385–391. 

[133] Dubinin M. M., Radushkevich L. V., 1947: Equation of the characteristic 

curve of activated charcoal. Chemisches Zentralblatt, 1, 875–882. 

[134] Bayramoglu, G., Arica, M. Y., 2004:  Polyethyleneimine-grafted 

poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) 

membranes for reversible glucose oxidase immobilization. Biochem 

Eng J.,  20, 73-77. 



 

 

 
114 

[135] Senkal B. F., Bicak N., 1997: Aldehyde separation by polymer-supported 

oligo(ethyleneimines. Polym. Sci. Part A: Polym. Chem. 35, 2857-

2864. 

[136] Vicente C., Sebastian B., Fontaniella B., Marquez A., Filho L. X. and 

Legaz M. E., 2001: Bioskin as an affinity matrix for the separation of 

glycoproteins. J. Chromatogr. A, 917, 55-61. 

[137] Johansson B. L., Belew M., Eriksson S., Glad G., Lind O., Maloisel J. L. 

and Norrman N., 2003: J. Chromatogr. A: Preparation and 

characterization of prototypes for multi-modal separation media aimed 

for capture of negatively charged biomolecules at high salt conditions. 

1016, 21-33. 

[138] Blanco R., Arai A., Grinberg N., Yarmush D. M. and Karger B. L., 1989: 

Role of association on protein adsorption isotherms. β-Lactoglobulin 

A adsorbed on a weakly hydrophobic surface, J. Chromatogr. 482, 1–

12. 

[139] Suen S. Y., Etzel M. R., 1992: A mathematical analysis of affinity membrane 

bioseparations, Chem. Eng. Sci. 47, 1335–1364. 

[140] Kahraman M. V., Bayramoglu G., Kayaman-Apohan, N. and Gungor A., 

2007: UV-curable methacrylated/fumaric acid modified epoxy as a 

potential support for enzyme immobilization, React Funct Polym, 67, 

97-103. 

[141] Mateo C., Palomo J. M., Fernandez-Lorente G., Guisan J. M. and 

Fernandez-Lafuente R., 2007: Improvement of enzyme activity, 

stability and selectivity via immobilization techniques, Enzyme 

Microb Technol, 40, 1451-1463. 

[142] Bayramoglu G., Arica M. Y. and Bicak N., 2004: Characterisation of 

tyrosinase immobilised onto spacer-arm attached glycidyl 

methacrylate-based reactive microbeads, Process Biochem, 39, 2007-

2017. 

[143] Sanjay, G. and Sugunan, S., 2008: Acid activated montmorillonite: an 

efficient immobilization support for improving reusability, storage 

stability and operational stability of enzymes,  J Porous Mater, 15, 

359-367. 

[144] Neri D. F. M., Balcao V. M., Carneiro-da-Cunha M. G., Carvalho, Jr L. B. 

and Teixeira, J. A., 2008: Immobilization of a galactosidase from 

Kluyveromyces lactis onto a polysiloxane-polyvinyl alcohol magnetic 

(mPOS-PVA) composite for lactose hydrolysis. J. A. Catal Commun, 

9, 2334-2339. 

[145] Nestorson A., Neoh K. G., Kang E. T., Jarnstrom L. and Leufven A., 2008: 
Enzyme immobilization in latex dispersion coatings for active food 

packaging.   Packag Technol Sci,  21, 193-205. 

[146] Bayramoglu G., Kaya B., Arica, M. Y., 2005: Immobilization of Candida 

rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) 

microspheres. Food Chem, 92, 261-268. 



 

 

 
115 

[147] Arica, M. Y., 2000: Immobilization of polyphenol oxidase on 

carboxymethylcellulose hydrogel beads: preparation and 

characterization, Polym Int, 49, 775-781. 

[148] Arica M. Y., Yilmaz M. and Bayramoglu, G., 2007: Chitosan-grafted 

poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) 

membranes for reversible enzyme immobilization, J Appl Polym Sci, 

103, 3084-3093. 

 

 

 

 

 

 

 

 

 

 



 

 

 
116 

 



 

 

 
117 

 

CURRICULUM VITAE  

Candidate’s full name: Erdem YAVUZ  

Place and date of birth: Yalova 22/06/1975  

Permanent Address: Fatih Mah. Adnan Kahveci Cad. Ankara Sit. C Blok D:16 

Büyük Çekmece-İstanbul   

Universities and 

Colleges attended:  

Istanbul Technical University (Chemical Engineering)  

Istanbul Technical University (Polymer Science and Technology)    

Publications: 

- Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous 

solutions , Bahire Filiz Senkal, Emir Tugrul Tekin, Erdem Yavuz, Polymers For 

Advanced Technologies 2009, 20 (3), 308-311  

- Thiol Containing Sulfonamide Based Polymeric Sorbent for Mercury Extraction, 

Yavuz E, Barim G, Senkal BF, Journal of Applied Polymer Science, 2009, 114(3), 

1879-1883 

- Glycidyl methacrylate grafted on p(VBC) beads by SI-ATRP technique: Modified 

with hydrazine as a salt resistance ligand for adsorption of invertase, Bayramoglu G, 

Yavuz E, Senkal BF, Arica MY, Colloids And Surfaces A-Physicochemical And 

Engineering Aspects, 2009, 345(1-3), 127-134 

- Poly(vinylbenzylchloride) Beads Grafted with Polymer Brushes Carrying 

Hydrazine Ligand for Reversible Enzyme Immobilization, Yavuz E, Bayramoglu G, 

Senkal BF, Arica MY, Journal Of Applied Polymer Science, 113, 4, 2661-2669 

- Poly(glycidylmethacrylate) brushes generated on poly(VBC) beads by SI-ATRP 

technique: Hydrazine and amino groups functionalized for invertase adsorption and 

purification, Yavuz E, Bayramoglu G, Senkal BF, Arica MY, Journal Of 

Chromatography B-Analytical Technologies In The Biomedical And Life Sciences, 

2009, 877(14-15), 1479-1486       

- The synthesis of new polymeric sorbent and its application in preconcentration of 

cadmium and lead in water samples, B. Filiz Senkal, Muharrem Ince, Erdem Yavuz, 

Mehmet Yaman, Talanta 72 (2007) 962–967 

 



 

 

 
118 

- Preparation of poly(glycidyl methacrylate) grafted sulfonamide based polystyrene 

resin with tertiary amine for the removal of dye from water, Bahire Filiz Senkal, 

Fatih Bildik, Erdem Yavuz , Ayfer Sarac, Reactive & Functional Polymers 67 

(2007) 1471–1477 

- Sulfonamide based polymeric sorbents for selective mercury extraction, Bahire 

Filiz Senkal, E. Yavuz, Reactive & Functional Polymers 67 (2007) 1465–1470 

- Removal of dyes from water by poly(vinyl pyrrolidone) hydrogel, Senkal BF, Erkal 

D, Yavuz E,  Polymers For Advanced Technologies 17 (11-12): 924-927 Nov-Dec 

2006 

- Preparation of poly(vinyl pyrrolidone) grafted sulfonamide based polystyrene resin 

and its use for the removal of dye from water, Senkal BF, Yavuz E, Polymers For 

Advanced Technologies 17 (11-12): 928-931 Nov-Dec 2006   

- Ureasulfonamide polymeric sorbent for selective mercury extraction, Senkal BF, 

Yavuz E, Monatshefte Fur Chemie 137 (7): 929-934 Jul 2006 

- Preparation of a new polymeric surfactant for emulsion polymerization, Sarac A, 

Senkal BF, Yavuz E, Gursel YH, Journal of Applied Polymer Science 101 (1): 348-

352 Jul 5 2006 

- Crosslinked poly(glycidyl methacrylate)-based resin for removal of mercury from 

aqueous solutions, Senkal BF, Yavuz E, Journal Of Applied Polymer Scıence 101 

(1): 348-352 Jul 5 2005 

- Poly(acrylamide) grafts on spherical polyvinyl pyridine resin for removal of 

mercury from aqueous solutions, Erdem Yavuz, Bahire Filiz Şenkal , Niyazi Bicak, 

Reactive & Functional Polymers 2005, 65, 121–125 

- Poly (Acrylamide) Grafts On Spherical Polymeric Sulfonamide Based Resin For 

Selective Removal of Mercury Ions From Aqueous Solutions, B. F. Senkal, E. 

Yavuz, N. Bicak, Macromol. Sym. 2004, 217, 169-178 

 

 

 

 

 

 


	1.pdf
	2.pdf
	3.pdf

