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SEMI ACTIVE SUSPENSION CONTROL WITH 
MAGNETORHEOLOGICAL DAMPERS  

SUMMARY 

In this study, control algorithms are applied to semi active suspension system with 
MR (magnetorheologic) dampers to improve both handling and comfort as much as 
it is possible. First of all, the suspension types are explained that have been today. A 
brief comparison is made between the suspension types that are explained and the 
semi active suspension system that is studied in this project is evaluated in details. 
The damper types that are generally put in semi active suspension are explained and 
the MR damper is decided to be used in this project. And the working principle and 
structure of MR dampers are presented briefly. 

First, the mathematical model that the control algorithms will be applied to is 
decided and the governing equations are derived. Then, the control types are decided 
and the algorithms according to the mathematical model are prepared. In this project, 
switch control, Skyhook control, State feedback control and LQR (Linear quadratic 
Regulator) control systems are used. Conventional passive suspension system and 
semi active suspension system with MR damper flow diagrams are drawn in 
SIMULINK module of MATLAB software. The disturbance that comes from the 
road is created in various forms. Following, responses of different control types for 
different disturbance types are compared with the responses of conventional passive 
system gives. Also, the comparisons with passive suspension system are made with 
different values of each specific controller to see the behavior of that controller for 
different parameters. Finally, all controllers are compared on the same ground by 
using the responses of conventional passive suspension system. 
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MAGNETOREOLOJ ĐK DAMPERL Đ YARI AKT ĐF SÜSPANSĐYON 
KONTROLÜ 

ÖZET 

Bu çalışmada motorlu taşıtlarda günümüzde aranan konfor ve yol tutuşunu mümkün 
olabildiğince aynı anda arttırmak için MR (Magnetoreolojik) damperli yarı aktif 
süspansiyonlar üzerinde kontrol uygulamaları yapılmıştır. Öncelikle şimdiye kadar 
kullanılan ve günümüzde kullanılmakta olan süspansiyon çeşitleri kısa olarak 
anlatılmıştır. Đncelenen bu süspansiyon çeşitlerinin kısa olarak karşılaştırması 
yapılmış ve projede kullanılmış olan yarı aktif süspansiyon çeşidi ayrıntılı olarak 
incelenmiştir. Yarı aktif süspansiyonlarda kullanılan damper çeşitleri kısa olarak 
anlatılmış olup, en uygun olan MR (manyetoreolojik) damperin kullanılmasına karar 
verilmiştir. MR damperin kısaca yapısı ve çalışma prensibi anlatılmıştır.  

Önce kontrol uygulamalarının yapılacağı matematik modele karar verilmiş ve 
denklemleri çıkarılmıştır. Daha sonra hangi kontrol çeşitlerinin kullanılacağına karar 
verilmiş ve çıkarılan matematik modele göre algoritmalar hazırlanmıştır. Çalışmada 
anahtar kontrolü, Skyhook kontrolü, durum geri beslemeli kontrol ve LQR (Linear 
Quadratic Regulator) kontrolü kullanılmıştır. Klasik pasif süspansiyon sistemi ve 
MR damperli yarı aktif süspansiyon için SIMULINK diagramları hazırlanmıştır. 
Daha sonra belirlenmiş olan yoldan gelen bozucu sinyaller hazırlanmıştır. Uygulanan 
tüm kontrol tiplerinin yoldan gelen bozucu sinyal tiplerine göre verdiği cevaplar 
pasif sistemin verdiği cevaplar ile karşılaştırılmıştır. Titreşim geçirgenlik oranları her 
kontrolcünün en iyi değerine gore incelenmiştir. Aynı zamanda pasif sistemle yapılan 
karşılaştırmalar bu kontrolcülerin farklı değerleri için de yapılmış ve o kontrolcünün 
farklı parametreler için nasıl cevap verdikleri gözlenmiştir. En son olarak tüm 
kontrolcüler pasif sisteme göre verdikleri cevaplara bakılarak karşılaştırılmıştır. 
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1. INTRODUCTION 

Since the industrial machines were developed, vibration isolation has become a 

major problem for human beings. Especially in motor vehicles, comfort is one of the 

most important factors that the customers are interested in. Because of the demand 

for more comfort and handling factors, automotive firms started to make big 

investments for the research studies that are related with vibration isolation and 

suspension systems. 

On the other hand, the harming effects of vibrations to human body were proved by 

researchers too. Prolonged exposures to vibrations contributed to the health disorders 

in human body. Even though there is not a certain work, research or theory on which 

vibration causes a certain injury, it is almost agreed by researchers that health 

disorders and failures are related to the magnitude and frequency of the vibration that 

is resulting from the road disturbances. These failures and disorders appear because 

of the vibrations transmitted through solid materials. And in the last century, 

suspension systems were developed to isolate the vibrations such that they prevent 

the vibrations to be transmitted to the vehicle body. 

Nowadays, three types of suspension systems are used: passive suspension, active 

suspension, semi active suspension. These systems are described in the succeeding 

sections.
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2. SUSPENSION SYSTEM TYPES 

New suspension systems have been developed or existing systems are improved as 

the demand for comfort increased. In general, three suspension systems have been 

used to isolate the vibrations resulting from road. These are passive, active and semi 

active suspension systems. 

2.1 Passive Suspension System 

At the beginning, all vehicles had passive suspension systems. Even today, most of 

the vehicles still have passive suspension systems. These system have some springs 

and dampers to isolate vibrations. A passive suspension system is shown in Figure 

2.1. Working principle is based on energy dissipation in the damper. The most 

important disadvantage of the passive suspension system is the trade-off between 

road holding capability and the comfort. When it comes to improve the road holding 

capability, the comfort decreases and vice versa. Decreasing the damping coefficient 

enhances the comfort but in this case wheel deflection increases which decreases the 

road holding capability of the vehicle. 

 

 

 

 

 

 

Figure 2.1: Passive suspension system model. 

In practice, passive dampers do not have only one damper coefficient but two. The 

passive suspension damper mechanism consists of two orifices closed with springs at 

the end of each orifice. Because of this mechanism, the system uses different orifices 

when the piston travels up or down. So the system has two different damper
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coefficients depending on the sign of the relative velocity of the base with respect to 

the body. When the piston travels upwards, the spring on the upper chamber does 

pressure to the orifice onto which the spring is mounted, so the orifice gets closed 

leading the oil to travel to the lower chamber from the other orifice (Figure 2.2). But 

when an MR damper control system malfunctions, it works as a passive suspension 

system with one damper coefficient. To make the comparisons easier, in this study 

only one passive damper coefficient is taken into account.  

Figure 2.2 shows the behavior of the passive damper containing two orifices and 

therefore two damper coefficients. A comparison between the passive dampers with 

one damping coefficient and two damping coefficients can be seen in Figure 2.3, 

Figure 2.4 and Figure 2.5 for body accelerations, displacements and suspension 

deflections. 

According to the results, in sum, the difference between two orifice dampers and one 

orifice dampers did not yield to large differences. Two orifice damper has 1500 kg/s 

damper coefficient if the suspension deflection is positive and 800 kg/s damper 

coefficient if the suspension deflection is negative. According to these two orifice 

damper parameters, the difference in acceleration is 5 percent and in displacement 

the difference is 8 percent. 

Figure 2.2: Damper coefficient distribution of passive damper with two damper 
coefficients. 
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Figure 2.3: Body accelerations of passive dampers with one and two damping 
coefficients under the step excitation. 

Figure 2.4: Body displacements of passive dampers with one and two damping 
coefficients under the step excitation. 

Figure 2.5: Suspension deflections of passive dampers with one and two damping 
coefficients under the step excitation. 
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2.2 Active Suspension System 

Active suspension systems are the best suspension system type if we compare its 

performance with those of passive suspension systems and semi active suspension 

systems. The working principle of the active suspension system is based on a control 

system that is activated to directly control the force generated by the suspension 

system. The control system will usually intervene to displacements and parameters. 

Since there is a continuous force generation and intervene to vehicle parameters, both 

road holding capability and comfort factors can be achieved.  

Although it has good performance when compared with passive and semi active 

suspension systems, this can be attained only with complex control systems. Active 

suspension can only be applied to a vehicle with parametric measurements. But this 

makes the control system and structure more complex than passive and semi active 

systems. Also it is needed to add external energy to generate the force so this makes 

the system complex and expensive. Active suspension is not used in practice in 

today's vehicles because of its disadvantages. 

 

Figure 2.6: Active suspension system model. 

In active systems, there is always a damping force generated by the control system 

and actuator. With active damping coefficient Cactive and the vertical suspension 

velocity ��� , the damping force of an active suspension system can be given by; 

1xCF actived &=                                                                                                            (2.1) 

2.3 Semi-active Suspension System 

Semi active suspension systems can be considered as a transition from passive 

suspension systems to active suspension systems. The basic working principle is 

based on the active control of the damping. Unlike the active suspension systems, it 
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does not require much energy. This is because the system only controls amount of 

energy dissipation. Since only energy dissipation is allowed, it consumes less energy 

and does not require complex control systems, some military and luxury vehicles 

contain semi active suspension systems at present.  

These advantages also made the semi active suspension system very popular in other 

engineering disciplines too. Today many tall buildings are being constructed on semi 

active suspension systems with MR (magnetorheological) dampers to isolate the 

vibration that is created by the earthquakes, and there are many studies and projects 

to implement the semi active systems in the bridges to prevent the big displacements 

originated from the winds and weights of the objects on them. 

 

Figure 2.7: Semi active suspension system model. 

If we express the semi active suspension working principle mathematically, where 

CSA is the semi active damping coefficient; 
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According to this equation, the semi active damping force will be generated only if 

the product of relative velocity between the sprung mass and the base multiplied by 

the velocity of sprung mass is positive. This definition means the system will 

dissipate energy in damper. But in the contrary, the force becomes zero because only 

the active suspension system can generate forces and isolate the vibrations in 

negative condition. Semi active suspension systems do not provide good vibration 

isolation as active suspension systems do but when they are compared with respect to 

their costs and energy consumptions, semi active suspensions are much more 
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efficient than active systems. Besides, semi active suspensions can work as a passive 

suspension when it is malfunctioned. If the control system or sensors get out of 

order, the semi active system still works as a passive system. So this makes semi 

active suspensions more reliable. 
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3. SEMI ACTIVE DAMPERS 

In almost every vehicle of today, semi active systems have been used. Because of the 

structure and control requirements of semi active systems, the structure will surely 

need special dampers instead of a simple viscous damper used in passive suspension 

systems. 

3.1 Friction Dampers 

Working principle of these dampers depends on the simple friction rules. The energy 

is dissipated during the friction. By means of semi active control, the amount of 

friction can be adjusted by changing the nominal force that creates the friction force. 

These dampers are not used in suspension systems in today's vehicles. But they are 

related with the braking systems or some transmission systems.  

 

 

 

 

 

 

 

Figure 3.1: Working principle of a friction damper. 

If a force Fn is applied to a mass by means of a pad with a desired amount, during the 

relative motion between the pad and the plate, a friction force will occur because of 

the friction between the pad and plate. So since a friction is present, a damping force 

Fd will exist. If we have the chance to change Fd, then it means we have a semi active 

damper. If we decrease the normal force, the friction force will decrease leading to a 

less damping force. On the contrary, if we increase the normal force, the friction
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force will increase leading to a higher damping force. But adjusting the normal force 

is not easy by means of control tools. So friction dampers are not preferred in semi 

active suspensions. But it has wide usage in industrial applications, washing 

machines and even in trains because of its low cost and easy maintenance. 

 

 

 

Figure 3.2: A helical spring suspension with friction damper. 

3.2 ER (Electrorheological) Dampers 

ER dampers consist of ER fluids. The ER damper is a mixture of oil and particulates 

that are semiconducting. When an electric field is applied to the ER damper, the 

viscosity of the fluid increases. With the change of viscosity of the fluid in an ER 

damper, the variable damping can be obtained. This is provided by the electric field, 

because during the electric field, particulates get in an order and shaped as a line 

which causes that viscosity and subsequently the damper coefficient increase. 

Figure 3.3: Structure of the ER damper. 

At the first stages of the research studies on semi active damping, the researchers 

concentrated on ER dampers. ER dampers need so much voltage to influence the 

order of the particulates and ER dampers have longer response times when compared 

with the MR dampers. The advantages of wide operational temperatures of MR 

dampers also made people concentrate on MR dampers. While ER dampers have an 
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operational temperature range between 10 °C and 40 °C, MR dampers showed an 

operational temperature between -40 °C and 150 °C. When the same amount of 

viscosity was present in both an ER damper and MR damper, the MR liquid showed 

a shear stress of 100 kPa while the ER liquid showed a shear stress of approximately 

10 kPa.  

3.3 MR (Magnetorheological) Dampers 

Nowadays, in some military and luxury vehicles, semi active suspension systems 

having MR dampers are preferred because of their advantages when compared with 

other semi active damper types. The MR damper contains an MR fluid that consists 

of lubricated oil and particulates that is sensitive to magnetic field. When a magnetic 

field is applied to an MR damper, the particulates are arranged in the order of 

magnetic field lines leading the viscosity of the MR fluid to change. As the viscosity 

of the fluid increases, the damping coefficient increases. 

Figure 3.4: The arrangement steps of particulates in an MR damper. 

3.3.1 Comparison of the MR dampers and ER dampers 

MR dampers are widely used in many industrial applications today. Especially in 

automotive semi active suspensions, it became indispensable in the last years. The 

MR dampers have many advantages when they are compared with the ER dampers. 

The most significant advantages are for the less affection by impurities, smaller 

power supply, larger yield stress and wider range of operable temperature. MR 

dampers can operate in a wider range of temperature and does not need a high 

voltage power supply and its stability is not affected by impurities in the fluid. 

During the manufacturing of the dampers some impurities and dirt can be found. 

Also some surfactants, dispersants and friction modifiers are put into the MR damper 

to improve stability, seal and bearing life. In ER dampers the impurities and additives 

can affect the arrangement of the particles and the electric field that modifies the 
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viscosity of the ER fluid. So ER dampers must be manufactured and used carefully 

while MR dampers can be used in harder environment situations and manufactured 

simpler. Power requirements are better for MR dampers as well. In ER dampers, 

electric field that modifies the viscosity of the ER fluid needs too much voltage. So 

increment in the viscosity costs too much energy in contrary to the MR dampers. MR 

dampers work with magnetic fields instead of an electric field. The magnetic field in 

an MR damper can easily be formed with very small electric currents. The 

particulates immediately can be arranged in the order of lines of magnetic fields. So 

this makes MR dampers to be energy saving. The main differences between the ER 

and MR dampers can be seen in Table 3.1. 

Table 3.1: Comparison of MR dampers and ER dampers 

Property MR Fluids ER Fluids 
Max yield stress 50-100 kPa 2-5 kPa 
Maximum field -250 kA/m 4kV/mm 
Apparent plastic 

viscosity 
0.1-10 Pa-s 0.1-1.0 Pa-s 

Operable temperature 
range 

(-40) - 150 °C +10 - 90 °C 

Stability Unaffected by most impurities Cannot tolerate impurities 
Density 3-4 g/cm3 1-2 g/cm3 

Maximum energy 
density 

0.1 Joules/cm3 0.001 Joules/cm3 

Power supply 2-50 V, 1-2 A 2000-5000V, 1 - 10 mA 

3.3.2 Working principle of an MR damper 

 

 

 

 

 

Figure 3.5: Scheme of MR damper. 

The suspension dampers are designed for the energy dissipation created at the orifice 

in the damper. When the piston of the damper tries to move forwards and backwards, 

a resistance occurs as a function of the velocity of the piston. By applying a magnetic 
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field, the viscosity of an MR fluid can be changed. So the damping coefficient 

changes with the modification of the viscosity. The accumulator at the end of the MR 

damper acts like a spring in the damper. If the fluid expands because of temperature 

increase, the accumulator will decrease in size. And during the fluid transfer from 

down to up or up to down, accumulator will act like fluid so this will prevent 

cavitations. Cavitations are not desired because it affects the damping coefficient and 

damping force. 

 

 

 

 

 

 

 

Figure 3.6: An example of MR damper of LORD Corporation. 

3.4 Dampers with Controllable Orifice 

In this type of semi active dampers, the damper coefficient changes with the area of 

the orifice. If the area of the orifice increases, the fluid passes through the orifice 

easier leading the damper having a lower damper coefficient. If higher damper 

coefficients are desired, the orifice area is reduced. The reduced orifice area makes 

the damper fluid pass through the orifice less leading the damper coefficient to a 

higher value. These dampers are used in early semi active suspension systems in 

vehicles.   

 

 

 

 

Figure 3.7: Dampers with controllable orifice 
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4. MATHEMATICAL MODEL AND ROAD DISTURBANCE SIGNALS 

In this project, a quarter car model is used. The vibration isolation performances of 

the controllers are evaluated according to this mathematical model. And the 

performances of the controllers are analyzed by using two different road disturbance 

signals. In this part, how to create these disturbance signals and the mathematical 

suspension model on which this thesis is based will be explained. 

4.1 Quarter Car Model 

This model is the simplest model that is used to examine the vibration and bounces in 

vertical direction. It is only used to show the displacement, accelerations etc. in the 

vertical direction. We did not add the tire dynamics into the model because we 

assumed that the suspension system is mounted to experimental setup and the road 

disturbances are assumed to be exciting directly to the suspension system. 

 

 

 

 

 

Figure 4.1: Quarter car model. 

Let "c" denote the damper coefficient, "x1" the sprung mass displacement, "x0" the 

base displacement, "k" the spring coefficient, "m" the sprung mass. Then the 

mathematical model of the passive suspension system and the acceleration of the 

sprung mass can be written as follows:  

0)()( 01011 =−+−+ xxkxxcxm &&&&                                                                             (4.1) 

)()( 01011 xx
m

k
xx

m

c
x −−−= &&&&                                                                    (4.2)
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4.2 Road Disturbance Signals 

In this study, two different road excitation signals are used. The signals are generated 

with MATLAB/SIMULINK toolbox blocks. Firstly, the first signal is the product of 

a set of sine waves and the second one is a simple step shaped obstacle. 

4.2.1 Random road excitation of sine waves 

This signal is used in this study to see the performance of the controllers as the 

system is advancing on a road with disturbances having different amplitudes. The 

signal is created in MATLAB/SIMULINK by multiplying 4 different sine waves. 

The SIMULINK diagram of the random sine road excitation and the shape of the 

disturbance can be seen in Figure 4.2 and 4.3 respectively. 

 

 

 

 

 

 

Figure 4.2: Block diagram of random sinus road excitation 

Figure 4.3: Random road excitation of sine waves 
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4.2.2 Step shaped obstacle 

This signal is used in this thesis to observe the performance of the controllers when 

the suspension system encounters sharp obstacles such as a 10 cm obstacle. This is 

mostly used to see how quick the controlled system recovers itself to its prior 

position after being subjected to the obstacle. The signal is created in 

MATLAB/SIMULINK by drawing the signal in the signal builder. Below in Figure 

4.4, the signal builder block can be seen, and in Figure 4.5, step shaped obstacle can 

be seen as a MATLAB plot. 

Figure 4.4: Signal builder block. 

Figure 4.5: Step shaped obstacle excitation. 
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5. SEMI ACTIVE CONTROL ALGORITHMS 

In this section, the aim is to find the best control algorithm for all types of road 

disturbances that are used in this thesis. Many controllers are implemented into a 

semi active suspension system and their performances are evaluated for two different 

road excitations. The results for different controller parameters are noted and shown. 

For the random sine road excitation, the RMS values are calculated to quantify the 

performance of different controllers.  

All semi active control systems will be compared with the passive system. Hence, 

beforehand it will be good to explain the passive suspension system briefly.  

 

 

 

 

 

 

Figure 5.1: Passive suspension system. 

The passive system has a constant damper coefficient and it works with only one 

damping coefficient for all of its life time. This limits the improvement of both the 

road holding and comfort. We can define the passive suspension system by assigning 

a constant damper coefficient to the damper value. Below given values are for a 

typical mid-size car. 

skgC passive /1290=  

mNk /19960=  

kgm 365=  

0)()( 01011 =−+−+ xxkxxcxm passive &&&&                                                                      (5.1)



17 

 

)()( 01011 xx
m

k
xx

m

c
x passive −+−−= &&&&                                                                        (5.2) 

In Figure 5.2, the block diagram of the passive suspension system that is used in 

comparison with the other semi active suspension systems can be seen. The block 

diagram is drawn in SIMULINK. 

Figure 5.2: SIMULINK diagram of the passive suspension system. 

5.1 Semi-active ON/OFF System 

This control algorithm is easy enough to understand and can be applied to a quarter 

car model. It is based on switching the damper coefficient to one of the desired 

values if the conditions of that value are met. The system is not versatile in terms of 

performance because only two damping values can be selected with this control 

system so this limits the use of two specific damping value for all kinds of road 

disturbances. 

The control algorithm lets us use only two damping values. It is a simple switch 

system. csoft is selected as the same with passive suspension system and chard is 

selected according to the second order system with damping ratio of ξ = 0.65. With 

csoft damping coefficient in soft mode and chard damping coefficient in hard mode, 

semi active ON/OFF system control algorithm can be described as: 

skgcsoft /1290=  

skgchard /3511=  
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The system changes its damping value according to the velocity relationship of the 

base and sprung mass. With ��� velocity of sprung mass, ��� velocity of the base and 

���� � ���� the relative velocity between the sprung mass and base, the algorithm 

decides which damping to be used. If the product of the relative velocity and sprung 

mass velocity is positive, the system chooses the hard mode of damper. But if the 

product of the relative velocity and the sprung mass velocity is negative, the system 

chooses the soft mode. 

The mathematical model is nearly the same as the passive suspension system 

mathematical model; the difference is that two different damping values are 

employed. The block diagram of a semi active ON/OFF system is drawn in 

SIMULINK. 

Figure 5.3: SIMULINK diagram of semi active ON/OFF system. 

All graphs are drawn for the values of csoft = 1290 kg/s and chard = 3511 kg/s. The 

performance of the control system will be evaluated in response to both the random 

sine road excitation and step shaped obstacle excitation. Other results are given in 

tables to compare briefly all the results for all values of the ON/OFF system. It can 

be seen easily that a trade off is present between acceleration, displacement and 

suspension deflection. The ON/OFF system yielded different results under the sine 

and step excitations. 
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Figure 5.4: Damper coefficient of the ON/OFF system under the sine excitation 

Figure 5.5: Body acceleration of the ON/OFF and passive systems under the sine 
excitation. 

Figure 5.6: Body displacement of the ON/OFF and passive systems under the sine 
excitation. 
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Figure 5.7: Suspension deflections of the ON/OFF and passive systems under the 
sine excitation. 

Figure 5.8: Damper coefficient of the ON/OFF system under the step excitation. 

Figure 5.9: Body accelerations of the ON/OFF and passive systems under the step 
excitation. 
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Figure 5.10: Body displacements of the ON/OFF and passive systems under the step 
excitation. 

Figure 5.11: Suspension deflections of the ON/OFF and passive systems under the 
step excitation. 

To compare the performance of the ON/OFF system for different Chard/Csoft values, 

the RMS values of the acceleration, displacement and suspension deflection must be 

found; because being under random sinus road excitation, it is not easy to compare 

the results by looking at the ratios of the peak points. Six Chard/Csoft ratios are selected 

and the RMS results are calculated for the accelerations, displacements and 

suspension deflections. Improvements are made in comparison to the passive system 

and the results are given in terms of percentage of improvements of the RMS values. 

This gives us the opportunity to evaluate the results affected by Chard/Csoft ratios. 
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Table 5.1: RMS values of the body acceleration of the ON/OFF and passive systems 
for different Chard/Csoft values under the sine excitation. 

Chard/Csoft Passive (RMS) ON/OFF (RMS) Improvement (%) 

2000/1290 1,27106 0,997222 21,54 
2500/1290 1,268896 0,894209 29,53 
3000/1290 1,267689 0,827039 34,76 
3511/1290 1,267623 0,779925 38,47 
4000/1290 1,268496 0,751081 40,79 
4500/1290 1,26913 0,722538 43,07 

Table 5.2: RMS values of the body displacement of the ON/OFF and passive 
systems for different Chard/Csoft values under the sine excitation. 

Chard/Csoft Passive (RMS) ON/OFF (RMS) Improvement (%) 

2000/1290 0,032041 0,027497 14,18 
2500/1290 0,032037 0,025728 19,69 
3000/1290 0,031929 0,024391 23,61 
3511/1290 0,032004 0,023543 26,44 
4000/1290 0,031994 0,02282 28,67 
4500/1290 0,032042 0,022275 30,48 

Table 5.3: RMS values of the suspension deflection of the ON/OFF and passive 
systems for different Chard/Csoft values under the sine excitation. 

Chard/Csoft Passive (RMS) ON/OFF (RMS) Improvement (%) 

2000/1290 0,020763 0,015064 27,45 
2500/1290 0,020757 0,012859 38,05 
3000/1290 0,020762 0,011389 45,14 
3511/1290 0,02076 0,010338 50,20 
4000/1290 0,02076 0,009631 53,61 
4500/1290 0,020759 0,009072 56,30 

Following, the performance of the ON/OFF system is evaluated under step shaped 

obstacle excitation on the second step. In this part, as in the sine excitation process, 

six different Chard/Csoft values are used to find the improvement of the semi active 

ON/OFF system against the passive system. The improvements in terms of the 

percentages are found by using the points of highest values for the following outputs: 

acceleration, displacement and suspension deflection. In every Chard/Csoft ratio, the 

semi active system reached the steady state solution earlier than the passive system. 

So the behavior of the ON/OFF system is evaluated for the points where the 

maximum acceleration, displacement and suspension deflection occur. 
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Table 5.4: Maximum acceleration values of the ON/OFF and passive suspension 
systems for different Chard/Csoft values under the step excitation. 

Chard/Csoft Passive (m/s2) ON/OFF (m/s2) Improvement (%) 

2000/1290 1,7322 1,681 2,96 
2500/1290 1,7322 1,7772 -2,60 
3000/1290 1,7322 1,9736 -13,94 
3511/1290 1,7322 2,1816 -25,94 
4000/1290 1,7322 2,3943 -38,22 
4500/1290 1,7322 2,6364 -52,20 

Table 5.5: Maximum displacement values of the ON/OFF and passive suspension 
systems for different Chard/Csoft values under the step excitation. 

Chard/Csoft Passive (m) ON/OFF (m) Improvement (%) 

2000/1290 0,1276 0,122 4,39 
2500/1290 0,1276 0,1188 6,90 
3000/1290 0,1276 0,116 9,09 
3511/1290 0,1276 0,1135 11,05 
4000/1290 0,1276 0,1115 12,62 
4500/1290 0,1276 0,1096 14,11 

Table 5.6: Maximum suspension deflection values of the ON/OFF and passive 
suspension systems for different Chard/Csoft values under the step 
excitation. 

Chard/Csoft Passive (m) ON/OFF (m) Improvement (%) 

2000/1290 0,0276 0,022 20,29 
2500/1290 0,0276 0,0188 31,88 
3000/1290 0,0276 0,016 42,03 
3511/1290 0,0276 0,0135 51,09 
4000/1290 0,0276 0,0115 58,33 
4500/1290 0,0276 0,00963 65,11 
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5.2 Skyhook Control Law 

The skyhook control system is one of the most popular control systems that is used to 

control the semi-active suspension damper. It is widely used in semi-active damper 

control studies and it is observed that it eliminates the tradeoff between the resonance 

frequency control and high frequency control. In Skyhook control scheme, it is 

assumed that the damper between the base and the sprung mass is fixed to a fictional 

point in the sky. It must be known that this configuration is not possible in real life 

and is a fictional assumption. The skyhook model behaves as it generates a force to 

reduce the velocity of the sprung mass but conventional models aim to reduce the 

relative velocity between the sprung mass and the base. 

 

 

 

 

 

 

 

Figure 5.12: The model for the skyhook system. 

We need to emulate the damper, shown as fixed to a fictional point in the sky, as it 

behaves in the conventional mass, spring and damper system. Hence, firstly we need 

to define the speed of the sprung mass relative to the base. 

0110 xxx &&& −=                                                                                                             (5.5) 

This relative velocity value is positive for two cases as follows: if the sprung mass 

and the base are separating from each other or the velocity of the sprung mass is 

bigger than the one of base when they are traveling in the same direction. If we 

consider the force that is provided by the skyhook damper, we can see that it is in the 

negative X1 direction. So we can write the skyhook damper force as follows; 

1xCF SKYSKY &=                                                                                                          (5.6) 
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Now we need to translate this equation to an equation as this force is provided by a 

semi-active damper. 

Figure 5.13: Model of a semi active system that is defined with skyhook parameters. 

As it can be seen in equation 5.7, we defined the skyhook damper as a controllable 

semi-active damper. Hence, we can define the real semi-active damper coefficient in 

terms of the skyhook damper coefficient. 

10.xCF LECONTROLLABLECONTROLLAB &=                                                                              (5.7) 
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To obtain an algorithm that defines the change of the semi-active damper coefficient 

according to the base speed and the relative speed of the sprung mass with respect to 

base, CSKY (Skyhook damper coefficient) must be found. This constant can be 

considered as the damper constant of the passive suspension system. If the second 

order system is checked, the natural frequency and damper coefficient of the system 

can be found by the parameter values given below. 

mNk /19960=  

kgm 365=  

For damping ratio ξ = 0.65, the damping coefficient of a second order system can be 

found. The second order system defines a conventional passive suspension system. 

The natural frequency and damper coefficient will be defined with the parameters of 

this system. 

0=++ kxxcxm &&&                                                                                                       (5.9) 
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The undamped natural frequency of a second order system is: 

Hzsrad
m

k
n 177.1/395.7

365

19960 ≅===ω                                                     (5.10) 
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nSKYn

SKY /3511395.765.02...2..2 ≅==⇒= ωξωξ                          (5.11) 

In skyhook control, the damping value is changed continuously by modifying the 

constant damping CSKY. First it can be recognized as an ON/OFF system because of 

the switch between CSA (semi active damper coefficient) and Cmin (minimum damper 

coefficient of the skyhook system) values. Because CSKY modified with the relative 

velocity between sprung mass and base and the velocity of sprung mass itself, the 

system will always have variable damping during all process. As it must be known 

that a skyhook model like shown in Figure 5.12 is not possible in practice, it provides 

us to have variable damping. By fixing the damper to a fictional point in the sky, the 

system has a condition that damping force changes with only sprung mass velocity 

not with the relative velocity between the sprung mass and base. 
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In condition given in equation 5.10, the system will have 2 different coefficients 

during the process. Cmin is a single value that provides the damping; it does not 

change and works only when the product of the relative velocity and sprung mass 

velocity is negative. CSA is the main damping coefficient; if the product of the 

relative velocity and sprung mass velocity is positive, the system will have this semi 

active damping coefficient. This coefficient is formed with velocities by applying the 

skyhook rule to a constant CSKY value that we found by applying our parameters to 

the second order system. 

skgc /800min =  

1.xcF SKYd &=                 (5.13) 

).(. 011 xxcxcF SASKYd &&& −==               (5.14) 
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The semi active damper coefficient will be CSA. But it will change with the variation 

of the relative velocity and sprung mass velocity. But the damper coefficient will 

have limits, because the viscosity of the damper fluid cannot reach to too high 

values. For these, the semi active damper coefficient can be defined as follows; 
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The model of the skyhook system is drawn in SIMULINK. The skyhook model is 

defined in the subsystem of block diagram. 

Figure 5.14: SIMULINK diagram of a semi active Skyhook system. 

Figure 5.15: Semi active damper subsystem that shows the skyhook algorithm. 
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All graphs are drawn with value of underdamped case ξ = 0.65 damping ratio. The 

performance of the control system will be evaluated with both the random sine road 

excitation and step shaped obstacle excitation. The results will be shown in terms of 

the acceleration, body displacement and suspension deflection. The performance of a 

skyhook system is compared with the passive suspension system. The behavior of the 

skyhook control system is evaluated for different damping ratios. Thus, we will be 

able to determine the trade-off between the parameters such as body acceleration 

which defines the comfort, body displacements and suspension deflections 

determining the road holding capability. 

Figure 5.16: Damping coefficient of the skyhook system under the sine excitation. 

Figure 5.17: Body accelerations of the skyhook and passive systems under the sine 
excitation. 
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Figure 5.18: Body displacements of the skyhook and passive systems under the sine 
excitation. 

Figure 5.19: Suspension deflections of the skyhook and passive systems under the 
sine excitation. 

Figure 5.20: Damping coefficient of the skyhook system under the step excitation. 
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Figure 5.21: Body accelerations of the skyhook and passive systems under the step 
excitations. 

Figure 5.22: Body displacements of the skyhook and passive systems under the step 
excitation. 

Figure 5.23: Suspension deflections of the skyhook and passive systems under the 
step excitation. 
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To compare the performance of the skyhook system for every CSKY value, the RMS 

values of the acceleration, displacement and suspension deflection must be found. 

Finding the RMS values will make the evaluation of performances easier for the sine 

excitation. Six CSKY ratios are selected and the RMS results are found for the 

accelerations, displacements and suspension deflections. Improvements are made 

according to the passive system and the results are given in percentages. This gives 

us the opportunity to evaluate the results affected by the parameter CSKY. 

Table 5.7: RMS values of the body acceleration of the skyhook and passive systems 
for different CSKY values under the sine excitation. 

CSKY Passive (RMS) Skyhook (RMS) Improvement (%) 

2000 1,292708 0,826337 36,08 
2500 1,288151 0,736905 42,79 
3000 1,28538 0,689453 46,36 
3511 1,296764 0,664607 48,75 
4000 1,286271 0,641049 50,16 
4500 1,29013 0,633889 50,87 

Table 5.8: RMS values of the body displacement of the skyhook and passive systems 
for different CSKY values under the sine excitation. 

CSKY Passive (RMS) Skyhook (RMS) Improvement (%) 

2000 0,032677 0,024467 25,12 
2500 0,032553 0,022701 30,26 
3000 0,032512 0,021669 33,35 
3511 0,033161 0,02151 35,13 
4000 0,032517 0,020562 36,77 
4500 0,032687 0,020367 37,69 

Table 5.9: RMS values of the suspension deflection of the skyhook and passive 
systems for different CSKY values under the sine excitation. 

CSKY Passive (RMS) Skyhook (RMS) Improvement (%) 

2000 0,021123 0,015142 28,32 
2500 0,02106 0,013605 35,40 
3000 0,021054 0,012639 39,97 
3511 0,021323 0,011942 43,99 
4000 0,020989 0,011363 45,86 
4500 0,021071 0,011037 47,62 
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The performance of the skyhook system is evaluated under the step excitation to see 

its behavior for sudden impacts. Different CSKY values are used to find the 

improvement of the skyhook system against passive system. The improvements in 

terms of percentages calculated for the points with highest values for the following 

variables; acceleration, displacement and suspension deflection. For CSKY ratio, semi 

active system reached to steady state earlier than the passive system. So the behavior 

of the skyhook system is evaluated at the points where the maximum acceleration, 

displacement and suspension deflection occur. 

Table 5.10: Maximum body acceleration values of the skyhook and passive 
suspension systems for different CSKY values under the step excitation. 

CSKY Passive (m/s2) Skyhook (m/s2) Improvement (%) 

2000 1,731979 1,130697 34,72 
2500 1,731979 1,151236 33,53 
3000 1,731979 1,277632 26,23 
3511 1,731979 1,554667 10,24 
4000 1,731979 1,830684 -5,70 
4500 1,731979 2,120208 -22,42 

Table 5.11: Maximum body displacement values of the skyhook and passive 
suspension systems for different CSKY values under the step excitation. 

CSKY Passive (m) Skyhook (m) Improvement (%) 

2000 0,127583 0,114779 10,04 
2500 0,127583 0,112145 12,10 
3000 0,127583 0,109938 13,83 
3511 0,127583 0,10803 15,33 
4000 0,127583 0,106465 16,55 
4500 0,127583 0,105082 17,64 

Table 5.12: Maximum suspension deflection values of the skyhook and passive 
suspension systems for different CSKY values under the step excitation. 

CSKY Passive (m) Skyhook (m) Improvement (%) 

2000 0,027583 0,014779 46,42 
2500 0,027583 0,012145 55,97 
3000 0,027583 0,009938 63,97 
3511 0,027583 0,00803 70,89 
4000 0,027583 0,006465 76,56 
4500 0,027583 0,005082 81,58 
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The maximum C damper coefficient value affects the acceleration, displacement and 

suspension deflection values. So the performance of the skyhook system is evaluated 

for different maximum saturation levels as well. The results for both the sine and step 

excitations are given. For values more than 15000 kg/s saturation levels, the results 

begin to oscillate too much that do not give acceptable values. All table results are 

obtained with the C damper value of 3511 kg/s. 3511 kg/s value is found for ξ = 0.65 

the damping ratio. 

Table 5.13: RMS values of the body acceleration of the skyhook and passive system 
for different saturation levels under the sine excitation. 

Saturation Passive (RMS) Skyhook (RMS) Improvement (%) 

15000 1,29362 0,635473 50,88 
10000 1,29362 0,656836 49,22 
5000 1,29362 0,738841 42,89 

Table 5.14: RMS values of the body displacement of the skyhook and passive 
system for different saturation levels under the sine excitation. 

Saturation Passive (RMS) Skyhook (RMS) Improvement (%) 

15000 0,03273 0,020586 37,10 
10000 0,03273 0,02095 35,99 
5000 0,03273 0,022669 30,74 

Table 5.15: RMS values of the suspension deflection of the skyhook and passive 
system for different saturation levels under the sine excitation. 

Saturation Passive (RMS) Skyhook (RMS) Improvement (%) 
15000 0,021111 0,012063 42,86 
10000 0,021111 0,011866 43,79 
5000 0,021111 0,011876 43,74 

Table 5.16: Maximum body acceleration values of the skyhook and passive system 
for different saturation levels under the step excitation. 

Saturation Passive (m/s2) Skyhook (m/s2) Improvement (%) 

15000 1,731979 1,364275 21,23 
10000 1,731979 1,554667 10,24 
5000 1,731979 1,965426 -13,48 
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Table 5.17: Maximum body displacement values of the skyhook and passive system 
for different saturation levels under the step excitation. 

Saturation Passive (m) Skyhook (m) Improvement (%) 

15000 0,127583 0,106801 16,29 
10000 0,127583 0,10803 15,33 
5000 0,127583 0,111293 12,77 

Table 5.18: Maximum suspension deflection values of the skyhook and passive 
system for different saturation levels under the step excitation. 

Saturation Passive (m) Skyhook (m) Improvement (%) 

15000 0,027583 0,006801 75,34 
10000 0,027583 0,00803 70,89 
5000 0,027583 0,011293 59,06 
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5.3 State Feedback Control with Pole Placement 

State feedback control is a method employed in feedback control systems to place the 

closed loop poles of a plant in pre-determined locations in the s-plane. Placing poles 

is desirable because the location of the poles corresponds directly to the eigenvalues 

of the system, which control the characteristics of the response of the system. 

It is shown that if the system considered is completely state controllable, then poles 

of the closed loop system may be placed at any desired locations by means of the 

state feedback through an appropriate state feedback gain matrix. (K. Ogata, 2001) 

To find the state feedback gain matrix, closed loop poles must be selected. These 

poles can be selected according to the analyses made with the frequency response 

and transient response. The closed loop poles are selected according to these tools to 

obtain desired speed, bandwidth, damping ratio, etc. With this pole assignment 

method, the system must be proved that it meets the necessary and sufficient 

conditions. According to these conditions, closed loop poles can be placed in any 

desired location which makes the system completely state controllable (K. Ogata, 

2002). 

First we will present the state space equations of a simple system. With x state 

vector, y output signal, u control signal, A nxn constant matrix, B, nx1 constant 

matrix, C 1xn constant matrix, D constant, the state space representation can be 

written as follows; 

DuCxy

BuAxx

+=
+=&

                                                                                                          (5.17) 

The control signal must be chosen as if the input signal is determined by an 

instantaneous state. If K is defined as state feedback gain matrix, the state feedback 

control signal will be as follows; 

Kxu −=                   (5.18) 

With the state feedback system, the output is returned to the zero reference input 

because of the state feedback. But in general, the output is not always zero. Hence 

that output is returned to a zero reference signal to reach the output closer to zero in 

the next step. The system can be defined as; 
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)().()( txBKAtx −=&                (5.19) 

)0()( )( xetx BKA−=&                (5.20) 

 

 

 

Figure 5.24: Closed looped control system with u = -Kx 

x(0) defines the initial state. Stability and transient response characteristics of the 

system are determined by the eigenvalues of (A-BK) matrix. If the state feedback 

gain matrix is chosen good, the (A-BK) matrix will be a stable matrix and x(t) will 

reach zero in infinite time. If the poles of this matrix are at the left half plane, the 

system will find its stability. But in order to choose the poles arbitrarily, the system 

must satisfy the completely state controllable condition. 

To place the eigenvalues of (A-BK) arbitrarily, the system must be completely state 

controllable. To approve the complete controllability, the controllability matrix M 

must have a rank of n. 

[ ] nBAABBRankRankM n == −1......MMM                  (5.21) 

The model of the system that is used in semi active control was defined in equation 

4.1. This equation can be rewritten in state space form by applying the semi active 

control. 
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Then, state feedback closed loop control can be defined as below; 
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u is the input signal and [k1 k2] is the state feedback matrix. According to these 

values, the damper coefficient can be defined with equation 5.31. 

Kxu −=               (5.27) 
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Also the state controllability of the system is checked. The controllability is made 

with MATLAB. The "ctrb" command gives the result of controllability matrix M. 

The rank of M is 2 which satisfies the complete state controllability. 

In state feedback control, since the complete state controllability is satisfied, the 

poles can be chosen arbitrarily. For this, damping ratio is taken into account. For a 

second order system, the undamped natural frequency can be calculated as; 

0=++ kxxcxm &&&                (5.32) 

Hzsrad
m

k
n 177.1/395.7

365

19960 ≅===ω             (5.33) 

The place for the poles can be found with the rules of second order system that are 

defined below; 

)1( 2
1 −+= ξξωns               (5.34) 

)1( 2
2 −−= ξξωns              (5.35) 
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The state feedback matrix K is determined by using the Ackermann's formula. To 

this end, determination, MATLAB program is used. The "acker" command gives the 

state feedback matrix according to the defined closed loop poles. 

The block diagram of the state feedback control is drawn in SIMULINK. The state 

feedback control applied to a viscous damper is inside the subsystem of the block 

diagram. 

Figure 5.25: SIMULINK diagram of the semi active state feedback control system. 

Figure 5.26: Semi active damper subsystem that shows the state feedback control. 

All plots are drawn according to the poles defined with the undamped natural 

frequency that is found for ξ = 0.65 damping ratio. The performance of the control 

system will be evaluated with both the random sine road excitation and step shaped 

obstacle excitation. The performance of the state feedback control is compared with 

the passive suspension system. The behavior of the state feedback pole assignment is 

evaluated for different damping ratios. 
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Figure 5.27: Damping coefficient for the pole assignment under the sine excitation. 

Figure 5.28: Body accelerations for the pole assignment and passive systems under 
the sine excitation. 

Figure 5.29: Body displacements for the pole assignment and passive systems under 
the sine excitation. 
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Figure 5.30: Suspension deflections for pole assignment and passive systems under 
the sine excitation. 

Figure 5.31: Damping coefficient for the pole assignment under the step excitation. 

Figure 5.32: Body accelerations for the pole assignment and passive systems under 
the step excitation. 
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Figure 5.33: Body displacements for the pole assignment and passive systems under 
the step excitations. 

Figure 5.34: Suspension deflections for the pole assignment and passive systems 
under the step excitation. 

The performance of the state feedback pole assignment for different ξ damping ratios 

is evaluated with the help of RMS values. RMS values are found for sine excitations 

to make the comparison between the state feedback pole assignment and passive 

suspension systems. Eleven different ξ damping ratio values are taken into account to 

see the behavior of the system under the sine and step excitations. For the damping 

ratio, ξ = 2, the system response does not change because of the saturation. The 

damping coefficient values pass beyond the saturation level 10000 kg/s for all 

process time. 

 

 



42 

 

Table 5.19: RMS values of the body acceleration for the pole assignment and 
passive systems for different ξ values under the sine excitation. 

ξ 
(damping 

ratio) 
Poles k1 / k2 

Passive 
(RMS) 

State 
Feedback 
(RMS) 

Improvement 
(%) 

0,5 -3,7 ± 6,4086 i 0,0751 / 7,4 1,286266 0,878061 31,74 
0,6 -4,44 ± 5,92 i 0,0751 / 8,88 1,286556 0,822401 36,08 
0,7 -5,18  ± 5,2847 i 0,0751 / 10,36 1,286418 0,781624 39,24 
0,8 -5,92 ± 4,44 i 0,0751 / 11,84 1,283949 0,749622 41,62 
0,9 -6,66 ± 3,2256 i 0,0751 / 13,32 1,286148 0,73256 43,04 
1 -7,4 / -7,4 0,0751 / 14,8 1,285491 0,716583 44,26 

1,2 -13,7886 / -3,914 0,0751 / 17,76 1,288839 0,695293 46,05 
1,4 -17,6105 / -3,1095 0,0751 / 20,72 1,282668 0,678129 47,13 
1,6 -21,0826 / -2,5974 0,0751 / 23,68 1,288567 0,673993 47,69 
1,8 -24,3953 / -2,2447 0,0751 / 26,64 1,283027 0,662813 48,34 
2 -276172 / -1,9828 0,0751 / 29,6 1,283038 0,661405 48,45 

Table 5.20: RMS values of the body displacement for the pole assignment and 
passive systems for different ξ values under the sine excitation. 

ξ 
(damping 

ratio) 
Poles k1 / k2 

Passive 
(RMS) 

State 
Feedback 
(RMS) 

Improvement 
(%) 

0,5 -3,7 ± 6,4086 i 0,0751 / 7,4 0,032616 0,025905 20,58 
0,6 -4,44 ± 5,92 i 0,0751 / 8,88 0,032717 0,025018 23,53 
0,7 -5,18  ± 5,2847 i 0,0751 / 10,36 0,032694 0,024307 25,65 
0,8 -5,92 ± 4,44 i 0,0751 / 11,84 0,032494 0,023606 27,35 
0,9 -6,66 ± 3,2256 i 0,0751 / 13,32 0,032712 0,023466 28,26 
1 -7,4 / -7,4 0,0751 / 14,8 0,032645 0,023111 29,21 

1,2 -13,7886 / -3,914 0,0751 / 17,76 0,032586 0,022592 30,67 
1,4 -17,6105 / -3,1095 0,0751 / 20,72 0,032464 0,022286 31,35 
1,6 -21,0826 / -2,5974 0,0751 / 23,68 0,032655 0,022224 31,94 
1,8 -24,3953 / -2,2447 0,0751 / 26,64 0,032441 0,021939 32,37 

2 -276172 / -1,9828 0,0751 / 29,6 0,032444 0,021914 32,46 
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Table 5.21: RMS values of the suspension deflection for the pole assignment and 
passive systems for different ξ values under the sine excitation. 

ξ 
(damping 

ratio) 
Poles k1 / k2 

Passive 
(RMS) 

State 
Feedback 
(RMS) 

Improvement 
(%) 

0,5 -3,7 ± 6,4086 i 0,0751 / 7,4 0,020811 0,011336 45,53 
0,6 -4,44 ± 5,92 i 0,0751 / 8,88 0,020801 0,009657 53,57 
0,7 -5,18  ± 5,2847 i 0,0751 / 10,36 0,020808 0,008431 59,48 
0,8 -5,92 ± 4,44 i 0,0751 / 11,84 0,020794 0,007452 64,16 
0,9 -6,66 ± 3,2256 i 0,0751 / 13,32 0,020806 0,006705 67,77 
1 -7,4 / -7,4 0,0751 / 14,8 0,020814 0,006091 70,74 

1,2 -13,7886 / -3,914 0,0751 / 17,76 0,020841 0,005119 75,44 
1,4 -17,6105 / -3,1095 0,0751 / 20,72 0,020801 0,004425 78,73 
1,6 -21,0826 / -2,5974 0,0751 / 23,68 0,020842 0,003901 81,28 
1,8 -24,3953 / -2,2447 0,0751 / 26,64 0,020804 0,003478 83,28 

2 -276172 / -1,9828 0,0751 / 29,6 0,020804 0,003384 83,73 

Performance of the state feedback pole assignment is evaluated under the step 

excitation as well to see its behavior for impact displacements. Different ξ damping 

ratio values are selected to see how much the maximum acceleration, displacement 

and suspension deflections values are affected. For each ξ damping ratio, semi active 

system reached to steady state earlier than the passive system. So behavior of the 

state feedback pole assignment is evaluated for the maximum acceleration, 

displacement and suspension deflection points. 

Table 5.22: Maximum body acceleration values for the pole assignment and passive 
systems for different ξ values under the step excitation. 

ξ 
(damping 

ratio) 
Poles k1 / k2 

Passive 
(m/s2) 

State 
Feedback 

(m/s2) 

Improvement 
(%) 

0,4 2,96 ± 6,7822 i 0.0751 / 5.92 1,732039 1,630997 5,83 
0,5 -3,7 ± 6,4086 i 0,0751 / 7,4 1,732045 1,775494 -2,51 
0,6 -4,44 ± 5,92 i 0,0751 / 8,88 1,732048 1,983048 -14,49 
0,7 -5,18  ± 5,2847 i 0,0751 / 10,36 1,732021 2,204697 -27,29 
0,8 -5,92 ± 4,44 i 0,0751 / 11,84 1,732005 2,468838 -42,54 
0,9 -6,66 ± 3,2256 i 0,0751 / 13,32 1,731999 2,7437 -58,41 
1 -7,4 / -7,4 0,0751 / 14,8 1,731997 3,024219 -74,61 

1,2 -13,7886 / -3,914 0,0751 / 17,76 1,731998 3,596472 -107,65 
1,4 -17,6105 / -3,1095 0,0751 / 20,72 1,732041 4,171961 -140,87 
1,6 -21,0826 / -2,5974 0,0751 / 23,68 1,732038 4,759327 -174,78 
1,8 -24,3953 / -2,2447 0,0751 / 26,64 1,73203 5,342535 -208,46 
2 -276172 / -1,9828 0,0751 / 29,6 1,732027 5,49193 -217,08 
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Table 5.23: Maximum body displacement values for the pole assignment and 
passive systems for the different ξ values under the step excitation. 

ξ 
(damping 

ratio) 
Poles k1 / k2 

Passive 
(m) 

State 
Feedback 

(m) 

Improvement 
(%) 

0,4 2,96 ± 6,7822 i 0.0751 / 5.92 0,127584 0,119906 6,02 
0,5 -3,7 ± 6,4086 i 0,0751 / 7,4 0,127584 0,116753 8,49 
0,6 -4,44 ± 5,92 i 0,0751 / 8,88 0,127584 0,114311 10,40 
0,7 -5,18  ± 5,2847 i 0,0751 / 10,36 0,127583 0,112379 11,92 
0,8 -5,92 ± 4,44 i 0,0751 / 11,84 0,127583 0,110813 13,14 
0,9 -6,66 ± 3,2256 i 0,0751 / 13,32 0,127583 0,109516 14,16 
1 -7,4 / -7,4 0,0751 / 14,8 0,127583 0,108439 15,01 

1,2 -13,7886 / -3,914 0,0751 / 17,76 0,127583 0,106748 16,33 
1,4 -17,6105 / -3,1095 0,0751 / 20,72 0,127583 0,105506 17,30 
1,6 -21,0826 / -2,5974 0,0751 / 23,68 0,127583 0,10456 18,05 
1,8 -24,3953 / -2,2447 0,0751 / 26,64 0,127583 0,103828 18,62 
2 -276172 / -1,9828 0,0751 / 29,6 0,127583 0,103689 18,73 

Table 5.24: Maximum suspension deflection values for the pole assignment and 
passive systems for different ξ values under the step excitation. 

ξ 
(damping 

ratio) 
Poles k1 / k2 

Passive 
(m) 

State 
Feedback 

(m) 

Improvement 
(%) 

0,4 2,96 ± 6,7822 i 0.0751 / 5.92 0,027584 0,019906 27,83 
0,5 -3,7 ± 6,4086 i 0,0751 / 7,4 0,027584 0,016753 39,27 
0,6 -4,44 ± 5,92 i 0,0751 / 8,88 0,027584 0,014311 48,12 
0,7 -5,18  ± 5,2847 i 0,0751 / 10,36 0,027583 0,012379 55,12 
0,8 -5,92 ± 4,44 i 0,0751 / 11,84 0,027583 0,010813 60,80 
0,9 -6,66 ± 3,2256 i 0,0751 / 13,32 0,027583 0,009516 65,50 
1 -7,4 / -7,4 0,0751 / 14,8 0,027583 0,008439 69,41 

1,2 -13,7886 / -3,914 0,0751 / 17,76 0,027583 0,006748 75,54 
1,4 -17,6105 / -3,1095 0,0751 / 20,72 0,027584 0,005506 80,04 
1,6 -21,0826 / -2,5974 0,0751 / 23,68 0,027583 0,00456 83,47 
1,8 -24,3953 / -2,2447 0,0751 / 26,64 0,027583 0,003828 86,12 
2 -276172 / -1,9828 0,0751 / 29,6 0,027583 0,003689 86,63 

Because all MR dampers have an upper limit for the maximum damper coefficient C, 

saturation is set on the systems to simulate the effect of these limits. Hence, the 

performance of state feedback pole assignment is also evaluated under different 

saturation levels as well. But in state feedback control k1 gain defines the change in 

damper coefficient, while k2 defines the base C damping coefficient. So most of the 

time damper coefficient becomes in the vicinity of the base value defined by k2. 

Hence, changing saturation level to a different value does not change performance in 
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terms of accelerations, displacements and suspension deflections while the C damper 

value is not oscillating much. 

Saturation levels affect the limit that state feedback pole assignment can use the 

maximum damping ratio. Below, the plots are given that show the limits which the 

maximum damping ratio can be used. Beyond those points, increasing the damping 

ratio does not change the acceleration, displacement and suspension deflection 

performances.  

Figure 5.35: Maximum damping ratio that can be selected with 15000 kg/s 
saturation limit. 

Figure 5.36: Maximum damping ratio that can be selected with 10000 kg/s 
saturation limit. 
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Figure 5.37: Maximum damping ratio that can be selected with 5000 kg/s saturation 
limit. 

Natural frequency of the system affects the performance of the pole assignment 

system as well. Hence, for different natural frequency values, performance of the 

pole assignment system is evaluated under the sine and step excitations. 

Table 5.25: RMS values of the body acceleration for the pole assignment and 
passive systems for different ωn values under the sine excitation. 

ωn k1 / k2 Passive (RMS) State Feedback (RMS) Improvement (%) 

2 -50,6849 / 2,8 1,289003 1,223366 5,09 
3 -45,6849 / 4,2 1,286054 1,162903 9,58 
4 -38,6849 / 5,6 1,282346 1,096769 14,47 
6 -18,6849 / 8,4 1,285227 0,939985 26,86 
8 9,3151 / 11,52 1,28857 0,77093 40,17 
10 45,3151 / 14 1,289591 0,754255 41,51 
12 89,3151 / 16,8 1,289602 0,761478 40,95 
15 170,3151 / 21 1,289296 0,771143 40,19 

Table 5.26: RMS values of the body displacement for the pole assignment and 
passive systems for different ωn values under the sine excitation. 

ωn k1 / k2 Passive (RMS) State Feedback (RMS) Improvement (%) 

2 -50,6849 / 2,8 0,03273 0,033874 -3,50 
3 -45,6849 / 4,2 0,032682 0,032949 -0,82 
4 -38,6849 / 5,6 0,032437 0,031653 2,42 
6 -18,6849 / 8,4 0,032508 0,02825 13,10 
8 9,3151 / 11,52 0,032725 0,023674 27,66 
10 45,3151 / 14 0,032757 0,023356 28,70 
12 89,3151 / 16,8 0,032701 0,023199 29,06 
15 170,3151 / 21 0,032749 0,023129 29,37 
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Table 5.27: RMS values of the suspension deflection for the pole assignment and 
passive systems for different ωn values under the sine excitation. 

ωn k1 / k2 Passive (RMS) State Feedback (RMS) Improvement (%) 

2 -50,6849 / 2,8 0,020807 0,021375 -2,73 
3 -45,6849 / 4,2 0,020804 0,020223 2,79 
4 -38,6849 / 5,6 0,020785 0,018819 9,46 
6 -18,6849 / 8,4 0,020829 0,01419 31,87 
8 9,3151 / 11,52 0,020798 0,008348 59,86 
10 45,3151 / 14 0,020819 0,008512 59,11 
12 89,3151 / 16,8 0,020823 0,008637 58,52 
15 170,3151 / 21 0,020812 0,008789 57,77 

Table 5.28: Maximum body acceleration values for the pole assignment and passive 
systems for different ωn values under the step excitation. 

ωn k1 / k2 Passive (m/s2) State Feedback (RMS) Improvement (%) 

2 -50,6849 / 2,8 1,732149 1,971576 -13,82 
3 -45,6849 / 4,2 1,732154 1,917887 -10,72 
4 -38,6849 / 5,6 1,732031 1,822897 -5,25 
6 -18,6849 / 8,4 1,732046 1,614208 6,80 
8 9,3151 / 11,52 1,732006 2,816604 -62,62 
10 45,3151 / 14 1,731998 2,808583 -62,16 
12 89,3151 / 16,8 1,731998 2,808583 -62,16 
15 170,3151 / 21 1,731998 2,808583 -62,16 

Table 5.29: Maximum body displacement values for the pole assignment and 
passive systems for the different ωn values under the step excitation. 

ωn k1 / k2 Passive (m) State Feedback (RMS) Improvement (%) 

2 -50,6849 / 2,8 0,127585 0,134098 -5,10 
3 -45,6849 / 4,2 0,127585 0,133169 -4,38 
4 -38,6849 / 5,6 0,127583 0,131527 -3,09 
6 -18,6849 / 8,4 0,127584 0,127917 -0,26 
8 9,3151 / 11,52 0,127583 0,109185 14,42 
10 45,3151 / 14 0,127582 0,10927 14,35 
12 89,3151 / 16,8 0,127583 0,10927 14,35 
15 170,3151 / 21 0,127583 0,10927 14,35 
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Table 5.30: Maximum suspension deflection values for the pole assignment and 
passive systems for different ωn values under the step excitation. 

ωn k1 / k2 Passive (m) State Feedback (RMS) Improvement (%) 

2 -50,6849 / 2,8 0,027585 0,034098 -23,61 
3 -45,6849 / 4,2 0,027585 0,033169 -20,24 
4 -38,6849 / 5,6 0,027583 0,031527 -14,30 
6 -18,6849 / 8,4 0,027583 0,027917 -1,21 
8 9,3151 / 11,52 0,027584 0,009185 66,70 
10 45,3151 / 14 0,027583 0,00927 66,39 
12 89,3151 / 16,8 0,027583 0,00927 66,39 
15 170,3151 / 21 0,027583 0,00927 66,39 
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5.4 LQR (Linear Quadratic Regulator) System 

In optimal regulator problem, the aim of the system is to find a K gain matrix that 

minimizes a performance index. The system equations and the gain matrix can be 

defined as follows: 

BuAxx +=&                                   (5.36) 

Kxu −=                 (5.37) 

Then, if these are the system and the gain matrix K, optimal control can be provided 

by minimizing the performance index defined as; 

∫
∞

+=
0

)( dtRuuQxxJ TT               (5.38) 

where Q and R are nxn real symmetric matrices. While Q defines the expenditure of 

energy of states, R defines the expenditure of energy of control signals. These 

matrices show the error and expenditure of energy of the related parameters (Ogata, 

2001). 

If the elements of the gain matrix K can be found for the minimum performance 

index, then u=-Kx becomes optimal. This is called optimal control law. 

 

 

 

 

 

Figure 5.38: Optimal regulator system. 

In optimal control, if the A-BK matrix is stable, then this method always gives zero 

asymptotic error. To find the optimal K gain matrix, the reduced-matrix Riccati 

equation (5.39) must be solved for the P matrix. If P matrix exists, the system or A-

BK matrix is stable (Ogata, 2001). Please check Modern Control Engineering, Ogata 

(2001) for details. 

01 =+−+ − QPBPBRPAPA TT              (5.39) 
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We can define the P matrix for our system as defined with the following equations 

below; 















−= 0

10

m

kA  

[ ]10=B  

PxxdtRuuQxxJ TTT =+= ∫
∞

0

)(               (5.40) 

If a positive-definite P matrix can be found from the reduced-matrix Riccati 

equation, then the system or A-BK matrix is stable. 

LQR diagram is the same as state feedback pole assignment SIMULINK diagram. 

The difference between them is in the calculation method of the K gain matrix.  

Figure 5.39: SIMULINK diagram of the semi active LQR control system. 

 

 

 

 

 

 

Figure 5.40: Semi active damper subsystem that shows the LQR control 
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The LQR system is evaluated under the step and sine excitations as we did in 

previous three control systems. For the sine excitation analysis, the gain matrix, the 

Q matrix and the R matrix are used as presented below: 

[ ]0091.100914.0=K  









=

100000

01000
Q  

[ ]100=R  

Figure 5.41: Damping coefficient of the LQR under the sine excitation. 

Figure 5.42: Body accelerations of the LQR and passive systems under the sine 
excitation. 
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Figure 5.43: Body displacements of the LQR and passive systems under the sine 
excitation. 

Figure 5.44: Suspension deflections of the LQR and passive systems under the sine 
excitation. 

For the step excitation, the K gain matrix, the Q matrix and the R matrix are used that 

is given below: 

[ ]4939.50914.0=K  









=

30000

01000
Q  

[ ]100=R  

 

 

 

 



53 

 

Figure 5.45: Damping coefficient of the LQR under the step excitation. 

Figure 5.46: Body accelerations of the LQR and passive systems under the step 
excitation. 

Figure 5.47: Body displacements of the LQR and passive systems under the step 
excitation. 
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Figure 5.48: Suspension deflection of LQR and passive system under step load. 

The performance of the LQR system is evaluated by changing three parameters. The 

changes in acceleration, body displacement and suspension deflection values are 

given in tables with the change of Q(1,1), Q(2,2) and R(1,1). When Q(1,1) changes, 

R(1,1) is held constant as 1 and Q(2,2) is held constant as 10. Every change of the 

parameter is calculated for both the sine and step excitations. 

Table 5.31: RMS values of body acceleration for the LQR with different Q(1,1) 
values and passive system under the sine excitation. 

Q(1,1) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 

10 0,0914 / 3,191 1,285058 1,361809 -5,97 
20 0,1826 / 3,2195 1,289451 1,355697 -5,14 
30 0,2736 / 3,2476 1,285108 1,349524 -5,01 
50 0,4553 / 3,3031 1,290739 1,348493 -4,47 
75 0,6815 / 3,3709 1,286591 1,313671 -2,10 
100 0,9068 / 3,4371 1,288253 1,299446 -0,87 
150 1,3547 / 3,5650 1,292058 1,274176 1,38 
200 1,7991 / 3,6876 1,285741 1,241177 3,47 
300 2,6774 / 3,9185 1,287116 1,171791 8,96 
400 3,5426 / 4,1334 1,287958 1,150186 10,70 
500 4,3950 / 4,3348 1,284667 1,111286 13,50 
750 6,4742 / 4,7905 1,285025 1,058026 17,66 
1000 8,4850 / 5,1933 1,289304 1,008603 21,77 
1500 12,3258 / 5,8866 1,293658 0,958243 25,93 
2000 15,9581 / 6,4743 1,288504 0,919837 28,61 
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Table 5.32: RMS values of body displacement for the LQR with different Q(1,1) 
values and passive system under the sine excitation. 

Q(1,1) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 
10 0,0914 / 3,191 0,032545 0,033771 -3,77 
20 0,1826 / 3,2195 0,032814 0,03387 -3,22 
30 0,2736 / 3,2476 0,032657 0,03361 -2,92 
50 0,4553 / 3,3031 0,032653 0,033262 -1,87 
75 0,6815 / 3,3709 0,032693 0,032897 -0,62 
100 0,9068 / 3,4371 0,032594 0,032442 0,47 
150 1,3547 / 3,5650 0,032753 0,031868 2,70 
200 1,7991 / 3,6876 0,032637 0,031187 4,44 
300 2,6774 / 3,9185 0,032637 0,03014 7,65 
400 3,5426 / 4,1334 0,032626 0,029276 10,27 

500 4,3950 / 4,3348 0,032646 0,028736 11,98 

750 6,4742 / 4,7905 0,032628 0,027341 16,20 
1000 8,4850 / 5,1933 0,032785 0,026512 19,13 
1500 12,3258 / 5,8866 0,032798 0,025184 23,21 
2000 15,9581 / 6,4743 0,032676 0,02428 25,69 

Table 5.33: RMS values of suspension deflection for the LQR with different Q(1,1) 
values and passive system under the sine excitation. 

Q(1,1) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 

10 0,0914 / 3,191 0,020816 0,022394 -7,58 
20 0,1826 / 3,2195 0,020832 0,022186 -6,50 
30 0,2736 / 3,2476 0,020796 0,02204 -5,98 
50 0,4553 / 3,3031 0,020863 0,021634 -3,70 
75 0,6815 / 3,3709 0,020821 0,021099 -1,34 
100 0,9068 / 3,4371 0,020832 0,020619 1,02 
150 1,3547 / 3,5650 0,02086 0,019699 5,57 
200 1,7991 / 3,6876 0,020828 0,01895 9,02 
300 2,6774 / 3,9185 0,020796 0,017536 15,68 
400 3,5426 / 4,1334 0,020806 0,016461 20,88 

500 4,3950 / 4,3348 0,020822 0,015789 24,17 

750 6,4742 / 4,7905 0,020779 0,013945 32,89 
1000 8,4850 / 5,1933 0,020833 0,012749 38,80 
1500 12,3258 / 5,8866 0,02088 0,011354 45,62 
2000 15,9581 / 6,4743 0,02079 0,010439 49,79 
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Table 5.34: Maximum body acceleration values for the LQR with different Q(1,1) 
values and passive system under the step excitation. 

Q(1,1) k1 / k2 Passive (m/s2) LQR (m/s2) Improvement (%) 

10 0,0914 / 3,191 1,732162 1,782765 -2,92 
20 0,1826 / 3,2195 1,732162 1,782182 -2,89 
30 0,2736 / 3,2476 1,732162 1,781938 -2,87 
50 0,4553 / 3,3031 1,732162 1,781549 -2,85 
75 0,6815 / 3,3709 1,732162 1,781284 -2,84 
100 0,9068 / 3,4371 1,732162 1,781227 -2,83 
150 1,3547 / 3,5650 1,732162 1,7864 -3,13 
200 1,7991 / 3,6876 1,732162 1,792553 -3,49 
300 2,6774 / 3,9185 1,732162 1,815488 -4,81 
400 3,5426 / 4,1334 1,732162 1,847995 -6,69 
500 4,3950 / 4,3348 1,732162 1,888423 -9,02 
750 6,4742 / 4,7905 1,732162 2,016787 -16,43 
1000 8,4850 / 5,1933 1,732162 2,175607 -25,60 
1500 12,3258 / 5,8866 1,732162 2,558439 -47,70 
2000 15,9581 / 6,4743 1,732162 2,978703 -71,96 

 

Table 5.35: Maximum body displacement values for the LQR with different Q(1,1) 
values and passive system under the step excitation. 

Q(1,1) k1 / k2 Passive (m) LQR (m) Improvement (%) 

10 0,0914 / 3,191 0,127586 0,128909 -1,04 
20 0,1826 / 3,2195 0,127586 0,12863 -0,82 
30 0,2736 / 3,2476 0,127586 0,128363 -0,61 
50 0,4553 / 3,3031 0,127586 0,127836 -0,20 
75 0,6815 / 3,3709 0,127586 0,127198 0,30 
100 0,9068 / 3,4371 0,127586 0,126579 0,79 
150 1,3547 / 3,5650 0,127586 0,125397 1,72 
200 1,7991 / 3,6876 0,127586 0,124297 2,58 
300 2,6774 / 3,9185 0,127586 0,122322 4,13 
400 3,5426 / 4,1334 0,127586 0,120564 5,50 
500 4,3950 / 4,3348 0,127586 0,119014 6,72 
750 6,4742 / 4,7905 0,127586 0,115803 9,24 
1000 8,4850 / 5,1933 0,127586 0,113316 11,18 
1500 12,3258 / 5,8866 0,127586 0,109804 13,94 
2000 15,9581 / 6,4743 0,127586 0,107268 15,92 
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Table 5.36: Maximum suspension deflection values for the LQR with different 
Q(1,1) values and passive system under the step excitation. 

Q(1,1) k1 / k2 Passive (m) LQR (m) Improvement (%) 
10 0,0914 / 3,191 0,027586 0,028909 -4,80 
20 0,1826 / 3,2195 0,027586 0,02863 -3,78 
30 0,2736 / 3,2476 0,027586 0,028363 -2,82 
50 0,4553 / 3,3031 0,027586 0,027836 -0,91 
75 0,6815 / 3,3709 0,027586 0,027198 1,41 
100 0,9068 / 3,4371 0,027586 0,026579 3,65 
150 1,3547 / 3,5650 0,027586 0,025397 7,94 
200 1,7991 / 3,6876 0,027586 0,024297 11,92 
300 2,6774 / 3,9185 0,027586 0,022322 19,08 
400 3,5426 / 4,1334 0,027586 0,020564 25,45 
500 4,3950 / 4,3348 0,027586 0,019014 31,07 
750 6,4742 / 4,7905 0,027586 0,015803 42,71 
1000 8,4850 / 5,1933 0,027586 0,013316 51,73 
1500 12,3258 / 5,8866 0,027586 0,009804 64,46 
2000 15,9581 / 6,4743 0,027586 0,007268 73,65 

When Q(2,2) is changed, R(1,1) is held constant as 100 and Q(1,1) is held constant 

as 1000. The results can be seen for both cases that while Q(2,2) is less than Q(1,1) 

and Q(2,2) is larger than Q(1,1). The outputs are computed for different parameter 

values under both the sine and step excitations. 

Table 5.37: RMS values of body acceleration for the LQR with different Q(2,2) 
values and passive system under the sine excitation. 

Q(2,2) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 

100 0,0914 / 1,0875 1,287728 1,734194 -34,67 
500 0,0914 / 2,2766 1,285235 1,687909 -31,33 
1000 0,0914 / 3,1910 1,285058 1,361809 -5,97 
2000 0,0914 / 4,4925 1,286597 1,118943 13,03 
3000 0,0914 / 5,4939 1,288143 1,010345 21,57 
5000 0,0914 / 7,0840 1,291525 0,898718 30,41 
10000 0,0914 / 10,0091 1,285739 0,787471 38,75 
15000 0,0914 / 12,2549 1,288454 0,748767 41,89 
25000 0,0914 / 15,8172 1,289146 0,708832 45,02 
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Table 5.38: RMS values of body displacement for the LQR with different Q(2,2) 
values and passive system under the sine excitation. 

Q(2,2) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 
100 0,0914 / 1,0875 0,032682 0,039856 -21,95 
500 0,0914 / 2,2766 0,032556 0,038978 -19,73 
1000 0,0914 / 3,1910 0,032545 0,033771 -3,77 
2000 0,0914 / 4,4925 0,032674 0,029933 8,39 
3000 0,0914 / 5,4939 0,032752 0,028161 14,02 
5000 0,0914 / 7,0840 0,032815 0,026334 19,75 
10000 0,0914 / 10,0091 0,032529 0,024251 25,45 
15000 0,0914 / 12,2549 0,032725 0,023701 27,58 
25000 0,0914 / 15,8172 0,032651 0,022889 29,90 

Table 5.39: RMS values of suspension deflection for the LQR with different Q(2,2) 
values and passive system under the sine excitation. 

Q(2,2) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 
100 0,0914 / 1,0875 0,020838 0,0299 -43,49 
500 0,0914 / 2,2766 0,020839 0,028926 -38,81 
1000 0,0914 / 3,1910 0,020816 0,022394 -7,58 
2000 0,0914 / 4,4925 0,020826 0,017165 17,58 
3000 0,0914 / 5,4939 0,020822 0,014579 29,98 
5000 0,0914 / 7,0840 0,020846 0,011763 43,57 
10000 0,0914 / 10,0091 0,020824 0,008692 58,26 
15000 0,0914 / 12,2549 0,020836 0,007247 65,22 
25000 0,0914 / 15,8172 0,020852 0,005721 72,56 

Table 5.40: Maximum body acceleration values for the LQR with different Q(2,2) 
values and passive system under the step excitation.. 

Q(2,2) k1 / k2 Passive (m/s2) LQR (m/s2) Improvement (%) 

100 0,0914 / 1,0875 1,732162 1,976731 -14,12 
500 0,0914 / 2,2766 1,732162 1,958257 -13,05 
1000 0,0914 / 3,1910 1,732162 1,782765 -2,92 
2000 0,0914 / 4,4925 1,732162 1,647048 4,91 
3000 0,0914 / 5,4939 1,732162 1,621845 6,37 
5000 0,0914 / 7,0840 1,732162 1,734851 -0,16 
10000 0,0914 / 10,0091 1,732162 2,152511 -24,27 
15000 0,0914 / 12,2549 1,732162 2,544433 -46,89 
25000 0,0914 / 15,8172 1,732162 3,21677 -85,71 
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Table 5.41: Maximum body displacement values for the LQR with different Q(2,2) 
values and passive system under the step excitation. 

Q(2,2) k1 / k2 Passive (m) LQR (m) Improvement (%) 
100 0,0914 / 1,0875 0,127586 0,134188 -5,17 
500 0,0914 / 2,2766 0,127586 0,133524 -4,65 
1000 0,0914 / 3,1910 0,127586 0,128909 -1,04 
2000 0,0914 / 4,4925 0,127586 0,123925 2,87 
3000 0,0914 / 5,4939 0,127586 0,120969 5,19 
5000 0,0914 / 7,0840 0,127586 0,11734 8,03 
10000 0,0914 / 10,0091 0,127586 0,112785 11,60 
15000 0,0914 / 12,2549 0,127586 0,110413 13,46 
25000 0,0914 / 15,8172 0,127586 0,107789 15,52 

Table 5.42: Maximum suspension deflection values for the LQR with different 
Q(2,2) values and passive system under the step excitation. 

Q(2,2) k1 / k2 Passive (m) LQR (m) Improvement (%) 
100 0,0914 / 1,0875 0,027586 0,034188 -23,93 
500 0,0914 / 2,2766 0,027586 0,033524 -21,53 
1000 0,0914 / 3,1910 0,027586 0,028909 -4,80 
2000 0,0914 / 4,4925 0,027586 0,023925 13,27 
3000 0,0914 / 5,4939 0,027586 0,020969 23,99 
5000 0,0914 / 7,0840 0,027586 0,01734 37,14 
10000 0,0914 / 10,0091 0,027586 0,012785 53,65 
15000 0,0914 / 12,2549 0,027586 0,010413 62,25 
25000 0,0914 / 15,8172 0,027586 0,007789 71,76 

Finally, when R(1,1) is changed, Q(2,2) is held constant as 1000 and Q(1,1) is held 

constant as 1000. The results can be seen both for R(1,1) is less than Q(1,1) and 

Q(2,2), and vice versa. 

Table 5.43: RMS values of body acceleration for the LQR with different R(1,1) 
values and passive system under the sine excitation. 

R(1,1) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 

1 8,4850 / 31,89 1,288837 0,680893 47,17 
5 1,7991 / 14,2688 1,294682 0,730023 43,61 
10 0,9068 / 10,0903 1,294118 0,795116 38,56 
20 0,4553 / 7,1352 1,288441 0,889193 30,99 
30 0,3039 / 5,8259 1,289015 0,974379 24,41 
50 0,1826 / 4,5128 1,288353 1,11766 13,25 
100 0,0914 / 3,1910 1,285058 1,361809 -5,97 
150 0,0609 / 2,6055 1,286542 1,551032 -20,56 
250 0,0366 / 2,0182 1,287002 1,734082 -34,74 
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Table 5.44: RMS values of body displacement for the LQR with different R(1,1) 
values and passive system under the sine excitation. 

R(1,1) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 
1 8,4850 / 31,89 0,032644 0,022452 31,22 
5 1,7991 / 14,2688 0,032899 0,023327 29,10 
10 0,9068 / 10,0903 0,032939 0,024483 25,67 
20 0,4553 / 7,1352 0,032758 0,026181 20,08 
30 0,3039 / 5,8259 0,032728 0,027561 15,79 
50 0,1826 / 4,5128 0,032805 0,029992 8,57 
100 0,0914 / 3,1910 0,032545 0,033771 -3,77 
150 0,0609 / 2,6055 0,032679 0,036922 -12,98 
250 0,0366 / 2,0182 0,032705 0,039891 -21,97 

Table 5.45: RMS values of suspension deflection for the LQR with different R(1,1) 
values and passive system under the sine excitation. 

R(1,1) k1 / k2 Passive (RMS) LQR (RMS) Improvement (%) 
1 8,4850 / 31,89 0,020793 0,00402 80,67 
5 1,7991 / 14,2688 0,02085 0,006324 69,67 
10 0,9068 / 10,0903 0,020859 0,008591 58,81 
20 0,4553 / 7,1352 0,020827 0,011579 44,40 
30 0,3039 / 5,8259 0,020828 0,013771 33,88 
50 0,1826 / 4,5128 0,020824 0,017074 18,01 
100 0,0914 / 3,1910 0,020816 0,022394 -7,58 
150 0,0609 / 2,6055 0,020824 0,026237 -25,99 
250 0,0366 / 2,0182 0,020828 0,029897 -43,54 

Table 5.46: Maximum body acceleration values for the LQR with different R(1,1) 
values and passive system under the step excitation. 

R(1,1) k1 / k2 Passive (m/s2) LQR (m/s2) Improvement (%) 

1 8,4850 / 31,89 1,732027 5,49193 -217,08 
5 1,7991 / 14,2688 1,731997 3,076064 -77,60 
10 0,9068 / 10,0903 1,732024 2,23269 -28,91 
20 0,4553 / 7,1352 1,732044 1,770645 -2,23 
30 0,3039 / 5,8259 1,732039 1,642303 5,18 
50 0,1826 / 4,5128 1,73203 1,64991 4,74 
100 0,0914 / 3,1910 1,732162 1,782765 -2,92 
150 0,0609 / 2,6055 1,732162 1,886393 -8,90 
250 0,0366 / 2,0182 1,732162 1,976731 -14,12 

 

 

 



61 

 

Table 5.47: Maximum body displacement values for the LQR with different R(1,1) 
values and passive system under the step excitation. 

R(1,1) k1 / k2 Passive (m) LQR (m) Improvement (%) 
1 8,4850 / 31,89 0,127583 0,103689 18,73 
5 1,7991 / 14,2688 0,127583 0,107815 15,49 
10 0,9068 / 10,0903 0,127583 0,11202 12,20 
20 0,4553 / 7,1352 0,127584 0,116845 8,42 
30 0,3039 / 5,8259 0,127584 0,11986 6,05 
50 0,1826 / 4,5128 0,127583 0,12373 3,02 
100 0,0914 / 3,1910 0,127586 0,128909 -1,04 
150 0,0609 / 2,6055 0,127586 0,131792 -3,30 
250 0,0366 / 2,0182 0,127586 0,134188 -5,17 

Table 5.48: Maximum suspension deflection values for the LQR with different 
R(1,1) values and passive system under the step excitation. 

R(1,1) k1 / k2 Passive (m) LQR (m) Improvement (%) 
1 8,4850 / 31,89 0,027583 0,003689 86,63 
5 1,7991 / 14,2688 0,027583 0,007815 71,67 
10 0,9068 / 10,0903 0,027583 0,01202 56,42 
20 0,4553 / 7,1352 0,027584 0,016845 38,93 
30 0,3039 / 5,8259 0,027584 0,01986 28,00 
50 0,1826 / 4,5128 0,027583 0,02373 13,97 
100 0,0914 / 3,1910 0,027586 0,028909 -4,80 
150 0,0609 / 2,6055 0,027586 0,031792 -15,25 
250 0,0366 / 2,0182 0,027586 0,034188 -23,93 

 

 

 

 

 

 

 

 

 

 

 



62 

 

5.5 Delay Effects of MR Dampers 

In practice, the damper coefficient of an MR damper cannot be changed suddenly, 

because the MR dampers have a delay time in response to a magnetic field to change 

the viscosity of its MR fluid. In the conventional MR dampers today, the delay time 

in response to a signal changes between 20 ms and 40 ms.  

In order to see the delay effect of MR dampers, the responses of Skyhook control law 

with and without delay are compared with each other. The skyhook control law with 

a saturation level of 10000 kg/s and a skyhook damper coefficient of 2000 kg/s are  

chosen to see the delay effect for 30 ms delay. Since the system decides the damper 

coefficient later than it should, the system has a damper coefficient softer than those 

of the ones without delay.  

The system performance is summarized in Figures 5.49 to 5.56. In sum, delay effect 

improves the performance of control laws, in particular for suddenly changing 

excitations. 

Figure 5.49: Damper coefficient of the skyhook control laws with and without delay 
under the sine excitation. 
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Figure 5.50: Body accelerations of the passive and skyhook systems with and 
without delay under the sine excitation. 

Figure 5.51: Body displacements of the passive and skyhook system with and 
without delay under the sine excitation. 

Figure 5.52: Suspension deflections of the passive and skyhook system with and 
without delay under the sine excitation. 



64 

 

Figure 5.53: Damper coefficients of the passive and skyhook system with and 
without delay under the step excitation. 

Figure 5.54: Body accelerations of the passive and skyhook systems with and 
without delay under the sine excitation. 

Figure 5.55: Body displacements of the passive and skyhook systems with and 
without delay under the sine excitation. 
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Figure 5.56: Suspension deflections of the passive and skyhook system with and 
without delay under the sine excitation.
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5.6 Transmissibility of the Control Systems 

All control systems are compared based on their transmissibility performances. The 

parameters for different control laws are selected to have the best performance of the 

selected control law. For the ON/OFF control law, 2500 kg/s hard mode damping is 

used. For the skyhook control law, skyhook damper coefficient of 3000 kg/s is 

selected. The state feedback pole assignment system uses the K gain matrix that is 

found with ξ = 0.4 damping ratios and the LQR system uses the K gain matrix found 

with Q(1,1)=1000, Q(2,2)=4000 and R(1,1)=100 matrix element values. 

A simple sine signal is used to plot the graph in Figure 5.57. The excitation 

frequency is increased from 0 to 30 rad/s and the amplitude of 0.01 m is used for the 

sine signal. The equation of the signal that is used in transmissibility analysis can be 

written as; 

)sin(01.00 wtx =               (5.41) 

According to Figure 5.57, the Skyhook control law gave the best transmissibility 

performance both below the resonance frequency of its own and high frequencies. 

Figure 5.57: Transmissibility of the control systems. 
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5.7 Model of an MR Damper With Current Values 

MR dampers can be modeled by several mathematical and statistical models. One of 

them is to model  the MR damper with Lookup tables in SIMULINK toolbox of 

MATLAB. The damper characteristics can be seen in Figures 5.58 and 5.59. The 

algorithm used in this studyreads the data of the MR damper of the LORD 

corporation. The damper coefficients are given in Table 5.50 for corresponding 

current and velocity values.  The damper coefficient values in Table 5.50 are found 

by dividing the force values in Table 5.49 by the corresponding velocity values. A 

SIMULINK diagram of the Lookup Table model of the MR damper model is given 

in Figure 5.60. Also an analysis is made with Skyhook control law with CSKY=3000 

kg/s value by using Lookup Table model to see the distribution of current under the 

step excitation. 

Table 5.49: Force versus velocity values of the MR damper of LORD Corporation 
used in this study. 

Current 
(A) 

F (kN) 
0,016 
m/s 

0,039 
m/s 

0,079 
m/s 

0,157 
m/s 

0,314 
m/s 

0,471 
m/s 

0,628 
m/s 

0 0,13 0,15 0,16 0,17 0,27 0,42 0,62 
0,5 1,05 1,11 1,17 1,33 1,55 1,7 1,86 
1 2,14 2,27 2,44 2,62 2,95 3,15 3,34 

1,5 2,86 3,08 3,44 3,66 3,96 4,18 4,4 
2 3,36 3,55 4,03 4,22 4,55 4,78 4,99 

2,5 3,65 3,72 4,42 4,53 4,87 5,07 5,29 

Figure 5.58: Force versus velocity values of an MR damper of LORD corporation. 



 

Table 5.50: Damper coefficient map of an MR damper of LORD Corporation for 
corresponding current and velocity values.

Current 
(A) 0,016 

m/s 
0 8125 

0,5 65625 
1 133750 

1,5 178750 
2 210000 

2,5 228125 

Figure 5.59: Damper coefficient map of an
the corresponding current and velocity values.

The Lookup Table model is applied to the Skyhook control law to see the current 

values and distribution. According to the diagram, the system first decides the 

velocity range that the suspension moves. Following

column is created for that specif

coefficient value calculated

created damper coefficien

corresponding to value

distribution that is applied to 

excitation can be seen.
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Damper coefficient map of an MR damper of LORD Corporation for 
corresponding current and velocity values. 

C (kg/s) 
0,039 
m/s 

0,079 
m/s 

0,157 
m/s 

0,314 
m/s 

3846 2025 1083 859 
 28461 14810 8471 4936 
 58205 30886 16688 9394 
 78974 43544 23312 12611 
 91026 51013 26878 14490 
 95385 55949 28854 15509 

Damper coefficient map of an MR damper of LORD Corporation for 
corresponding current and velocity values. 

The Lookup Table model is applied to the Skyhook control law to see the current 

values and distribution. According to the diagram, the system first decides the 

that the suspension moves. Following, a new damper coefficient 

column is created for that specific suspension velocity. The model takes the damper 

calculated by Skyhook algorithm and finds its place in the newly 

created damper coefficient column. Then, it finds the value of 

value of the damper coefficient. In Figure 5.61, the current 

distribution that is applied to the damper by the Skyhook control law

excitation can be seen. 

Damper coefficient map of an MR damper of LORD Corporation for the 

0,471 
m/s 

0,628 
m/s 

891 987 
3609 2962 
6687 5318 
8874 7006 
10149 7946 
10764 8424 

 

MR damper of LORD Corporation for 

The Lookup Table model is applied to the Skyhook control law to see the current 

values and distribution. According to the diagram, the system first decides the 

, a new damper coefficient 

ic suspension velocity. The model takes the damper 

Skyhook algorithm and finds its place in the newly 

it finds the value of the current 

of the damper coefficient. In Figure 5.61, the current 

control law under the step 
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Figure 5.60: The SIMULINK diagram of Lookup Table model of an MR damper. 

 

Figure 5.61: The distribution of current applied to the damper by the Skyhook 
control law under the step excitation.
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5.8 Adaptive Control Models for Semi-active Suspension Systems 

Adaptive control algorithms can be applied to the semi active suspension systems 

with MR dampers. For different types of road excitations, control systems can assign 

different damper coefficients to the damper to make an optimization of vibration 

isolation. Many patents and research studies are present today for the adaptive 

control models of semi active suspension models. Since the purpose of this study is 

to compare the performances of the different control algorithms, adaptive algorithms 

are not evaluated. 

According to patent DE19804005, displacement can be determined by an 

accelerometer through an algorithm. With a second algorithm, road surface model 

can be estimated and the resonance region which the road signal corresponds can be 

found. For each road signal type, different control system parameter can be applied 

and the signal is guided through high or low-pass filters depending on the resonance 

region and the corresponding parts of the road excitation. 

In patent DE4315917, the suspension deflection and the acceleration values are 

measured. The velocity of the damper and sprung mass can be found by 

differentiating the stroke of the damper and integrating the acceleration signal. The 

values found by differentiation and integration are summed to determine the road 

excitation. After this point a specific control signal can be produced to overcome the 

vibration of the road input. 

US6202011 patent describes an ECS (Electronic Suspension Control System). This 

system contains wheel speed sensor to measure the speed of rear and front wheels, a 

throttle position sensor to measure the open status of the valve, a stop lamb for the 

brake, a rough road detecting algorithm which the datas that are gathered from the 

sensors mentioned before. The rough road detecting algorithm applies FFT (Fast 

Fourier Transform) to the inputted data. According to this data and the wheel speed, 

system decides control signal. 

The system in US6164665 patent contains a system with a variable damper 

coefficient enhances both the road holding capability and comfort. Position sensors 

measures the level of the body relative to its axles. Electronic regulator manipulates 

the air amount inside the air spring to set the body height to the desired position. The 

signal calculated in the electronic regulator is a value of the acceleration of the body 
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and helps to find the bad road parameter. After the determination of this signal, 

regulator calculates a shock absorption with the help of bad road parameter. 

In this study, for different control algorithms can be applied. For the ON/OFF and 

Skyhook control laws, the systems can be switched between damper coefficients 

corresponding to smooth road and curb impact excitations. For the ON/OFF control 

law, the hard mode damping can be selected as 2000 kg/s and below to improve the 

curb impact performances and then, it can be increased to 5000 kg/s to get a better 

vibration isolation for high frequency low amplitude road excitation. For the skyhook 

control law, this adaptive control algorithm can be applied as well. According to the 

results in Section 5.2, for curb impact excitations, the skyhook control law can have a 

CSKY value of 2000 kg/s or below and for continuous and smooth road excitations, it 

can be increased to 4000 kg/s for better performance under curb impact excitations. 

For the state feedback pole assignment and LQR control laws, the adaptive control 

system can be used as well. Especially the LQR control law is the most suitable one 

for the adaptive control algorithm amongst the other control laws used in this study. 

Because the elements of the diagonal Q and R matrices can be changed to a specific 

value for the corresponding road excitation. In pole assignment, the K gain matrix 

can be changed to values for the damping ratio of 0.4 under curb impact excitations. 

For the sine excitations, the K gain matrix can be modified to the value for the 

damping ratio 1.6 and higher.  
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6. COMPARISON OF PERFORMANCES OF CONTROL SYSTEMS 

All control systems that were analyzed in this thesis are evaluated for both the sine 

and step excitations. Each controller gives different results from each other. So the 

performances of the controllers are evaluated for different road conditions and usage. 

6.1 ON/OFF System 

The semi active ON/OFF system is a simple switch system that allows to use only 

two different damping coefficients. In other semi active systems that are used in this 

thesis, have infinite number of damper coefficients is possible. 

The damping coefficient can take only two values because it is a switch system. If 

the condition of hard damper is met, then the damper has the harder damping mode. 

As it is seen in the plot of the damping coefficient, the damper travels between 3511 

kg/s and 1290 kg/s. But the damper does not take values between 3511 kg/s and 1290 

kg/s. In theory, damper coefficient rises from 1290 kg/s to 3511 kg/s and falls from  

3511 kg/s  to 1290 kg/s at the same time step. But in practice, it never falls or rises at 

the same time step. There is always a very small delay between the coefficient 

changes. 

The ON/OFF system gives better results when it is compared with the passive 

system. In acceleration values that define the comfort, the semi active ON/OFF 

system has better RMS values as the hard damping value increases. At the damping 

coefficient value of 10000 kg/s, the acceleration can be improved at about 50 

percent. But after this point, comfort increases too slowly. And beyond very large 

damping coefficient, the system starts to give worse comfort results. Setting the 

damping coefficient to 10000 kg/s gives a good result for the sine excitation; but at 

high frequency road disturbances, it does not give good results. This is because the 

system cannot manipulate itself to take a damping value between 10000 kg/s and 

1290 kg/s. The system must take average values to damp the mild disturbance. When 
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the system encounters with mild disturbance, the system has its damping coefficient 

set to 10000 kg/s so this makes it to show large responses at high frequencies.  

For body displacements and suspension deflection that defines the road holding 

capability, as the damping coefficient increases, the displacement and suspension 

deflection decreases as well. As the damper hardens, the body cannot become too 

independent from the base. Because of this high dependency, the suspension 

deflection decreases leading to a high road holding capability. 

But this capability increases the sensitivity to high impact disturbances. If the hard 

mode damping is increased too much, the system cannot damp the sudden impacts. 

As it can be seen in the Table 5.4, very large hard damping coefficient, makes the 

comfort response of the system worse. Hence, there is a tradeoff between this sudden 

impact response and road holding capability. For all values of hard damping mode 

that are evaluated in the tables that show the response of the ON/OFF system for the 

step shaped obstacle, the system reaches steady state earlier than passive system. 

Even when the system gives the same transient response characteristics, the semi 

active ON/OFF system reaches the steady state earlier. According to all of these 

results, the semi active ON/OFF system is better than the passive system for smooth 

road disturbances when compared with their accelerations and suspension 

deflections. But in transient response of high end impact disturbance, as the damping 

increases, the comfort drops dramatically for the ON/OFF system. 

For the ON/OFF system, a damping coefficient in the vicinity of 2500 kg/s is suitable 

for a versatile motor vehicle. The responses of both the sine and step excitations are 

at the acceptable levels for hard mode damping coefficient of 2500 kg/s. 

6.2 Skyhook System 

The skyhook system is based on the modification of a constant damping coefficient 

as a function of the sprung mass velocity and the relative velocity between the 

sprung mass and base. It is nearly the same as the ON/OFF control system, because it 

works with a switch system as well. If the conditions are met, the hard mode 

damping is activated. If the product of the sprung mass velocity and the relative 

velocity is negative, then the system has minimum damping ratio. 
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The main difference between the ON/OFF system and skyhook system is the hard 

mode damping. The hard mode damping of the ON/OFF system is constant which is 

not constant in the skyhook system. In the skyhook system, a constant skyhook 

damping coefficient is selected for the model that the damper is fixed at a fictional 

point in the sky. When the skyhook system is transformed into a classical quarter car 

model, the skyhook damping coefficient is modified as a function of sprung mass 

velocity and relative velocity. At first look the system can be thought as a passive 

system but the skyhook damper is not used as a constant damper coefficient. The 

main damper coefficient of the system is determined by the algorithm that modifies 

the base skyhook damper with the ratio of sprung mass velocity and relative velocity. 

The skyhook system in this study is limited with 10000 kg/s damping coefficient to 

simulate the maximum damping limit which is assumed that the MR damper can 

reach.  

The skyhook damper is selected according to a simple second order spring mass 

damper system. The performance of the system with respect to the acceleration, 

displacement and suspension deflection responses is evaluated for different damping 

ratios. In part 5.2, it can be seen that the damping ratio changes only the constant 

skyhook damper coefficient, hence the tables are formed with different skyhook 

damper coefficients.  

In Table 5.7, it can be seen that after the damper coefficient value of 4500 - 5000 

kg/s the acceleration defining the comfort cannot be improved anymore. The 

improvement increases too slowly after this point, but for a little improvement, there 

is no need to increase the damping too much since it will lead to large oscillations in 

acceleration performance and the system will not give good results under high 

impact disturbances. 

The skyhook control system gives the most versatile performance in the vicinity of 

damper coefficient of 3000 kg/s. Good performance is obtained under both the step 

and sine excitations.  

The skyhook system gives better results than the ON/OFF system for the body 

displacements and accelerations. If we compare the base hard mode damping values 

of Skyhook and ON/OFF systems, it can be easily seen that the skyhook system 

gives better improved results for the acceleration and body displacements but the 
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suspension deflection performance is not as good as the acceleration and body 

displacement, because the hard mode damping has a constant value in the ON/OFF 

system; it cannot take intermediate values. As there are no intermediate damping 

values, the ON/OFF system applies harder damping coefficient than it is needed. 

Hence, the ON/OFF system does not give good results for the acceleration 

performance. But having higher damping value than the system needs in a specific 

time step provides ON/OFF system more road holding capability than the skyhook 

system has. Nonetheless, the difference is not too much than that of skyhook system 

in suspension deflection performance. Also a comparison between the skyhook and 

ON/OFF systems can be seen in tables below; 

Table 6.1: Comparison of acceleration performances of the skyhook and ON/OFF 
systems under the sine excitation.  

Chard & Cskyhook Skyhook (RMS) ON/OFF (RMS) 

2000 36,08 21,54 
2500 42,79 29,53 
3000 46,36 34,76 
3511 48,75 38,47 
4000 50,16 40,79 
4500 50,87 43,07 

Table 6.2: Comparison of body displacement performances of the skyhook and 
ON/OFF systems under the sine excitation. 

Chard & Cskyhook Skyhook (RMS) ON/OFF (RMS) 

2000 25,12 14,18 
2500 30,26 19,69 
3000 33,35 23,61 
3511 35,13 26,44 
4000 36,77 28,67 
4500 37,69 30,48 

Table 6.3: Comparison of suspension deflection performances of the skyhook and 
ON/OFF systems under the sine excitation. 

Chard & Cskyhook Skyhook (RMS) ON/OFF (RMS) 

2000 28,32 27,45 
2500 35,40 38,05 
3000 39,97 45,14 
3511 43,99 50,20 
4000 45,86 53,61 
4500 47,62 56,30 
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The main performance difference can also be seen in the high end impact responses. 

The skyhook system has far better results than those of the ON/OFF system. For 

larger values, the maximum acceleration performances are deteriorating for both 

methods. But this deterioration in the maximum acceleration reduction is lower for 

the skyhook system. For lower hard mode damping values, the skyhook system also 

yields better maximum acceleration reduction. But for the ON/OFF system, system 

cannot modify the damper coefficient according to the level of impact because of the 

constant hard mode damping; and the corresponding performance is not satisfactory. 

6.3 State Feedback Pole Assignment 

With respect to the nature of the control system, the state feedback pole assignment 

and LQR control systems are different from the skyhook and ON/OFF system. In the 

skyhook and ON/OFF systems, if the conditions are not met, the model acts a passive 

suspension system meaning no electric current is sent into MR damper to change the 

viscosity of damper fluid. 

In the control systems designed by pole assignment and LQR method, the semi 

active control system is continuously modifying the damping coefficient. And there 

is not a constant base damper coefficient that is exposed to change with an algorithm. 

The control system decides the damping coefficient according to equation (5.29). 

The difference between the LQR and pole assignment is not the block diagram but 

the values k1 and k2 of the K gain matrix. 

In both the pole assignment and LQR methods, state feedback is used. The difference 

is that the K matrix is found by using different methods which are explained earlier. 

For the pole assignment method, the results are taken with the damping ratios 

ranging from 0.5 to 2. With lower damping ratio values, the step responses are better 

than those of the higher values. Only with damping ratio 0.4 and lower values, good 

results can be obtained but this increases the settling time. The passive system 

reaches stability earlier than the pole assignment control system if the damping ratio 

is too low. 

Comfort and road holding capability of the pole assignment method under the sine 

excitation increase as the damping ratio increases. If the damping ratio increases, the 

acceleration, body displacement and suspension deflection increase as well. But after 
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damping ratio of 2, system cannot be improved anymore because the saturation 

prevents the damping coefficient to have values beyond 10000 kg/s. This is set 

because it is needed to simulate the limit of an actual MR damper. 

By using second order system pole definitions, the first gain of matrix K does not 

change. But the second gain changes with the damping ratio. According to this, the 

base value of the damping coefficient is determined by the second gain. The second 

gain is larger than the first gain for all damping ratios. So the damping value will be 

around a value that is defined by the product of the mass and the second gain. After 

the value of 2, because the system will reach the saturation limit, pole assignment 

control system will begin to work as a passive system and the damper coefficient is 

set to 10000 kg/s. Saturation levels affect this property of the pole assignment 

system. If a better MR damper is used in this system which means having a higher 

saturation level, the system damping can have higher values. But this leads to peak 

points in the accelerations which is not desired. If the saturation level is reduced to 

5000 kg/s, the system will not be able to use a damping value higher than 0.9; 

because the system will always have the same damper coefficient set at 0.9. 

The pole assignment system has better results between the damping ratios of 0.4 and 

0.5; leading to a performance which acceleration are reduced both under the step and 

sine excitations. 

Natural frequency affects the performance of the pole assignment system as well. As 

the natural frequency increases, the values of gain matrix K increases leading to 

higher damping coefficient. But larger damping coefficient causes the system to give 

worse results under high end impact excitations. But in the vicinity of 12 rad/s, 

system performance cannot be improved anymore because of the saturation limit. 

6.4 LQR System 

The LQR system is nearly the same as pole assignment system. The only difference 

is the method to find the gain matrix K. We can adjust the gain matrix K as it is 

desired by changing the costs Q(1,1), Q(2,2) and R(1,1). 

Q and R matrices are selected diagonal to make the calculations and trials easier. If 

these matrices are not selected as diagonal, Q(1,2) and Q(2,1) will change "y" shown 

in state space representation. But in diagonal form we can make this adjustment by 
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changing only Q(2,2) value. So diagonal Q and R matrices grant us easiness in trials 

and analyses. 

For the effect of Q(1,1) on the system, it is noticed that with higher Q(1,1) value, the 

system has larger acceleration, body displacement and suspension deflection values.  

But increasing the Q(1,1) affects the reduction in accelerations under high end 

impact loads. 

For the effects of Q(2,2) on the system, it can be seen that increasing Q(2,2) 

improves the responses in terms of accelerations, displacements and suspension 

deflections. There is also some improvement for the high end impact acceleration 

reduction. The Q(2,2) value causes the same performance deterioration if it is 

increased too much. 

For the effects of R(1,1) on the system, increasing R(1,1) value reduces the 

improvement of accelerations, body displacements and suspension deflections 

because the energy expenditure on the signals will increase. 

For the LQR control system, the best results are obtained within the trials made in 

the thesis with Q(2,2) = 4000, Q(1,1) = 1000 and R(1,1) = 100. 

For LQR control system, the values that are selected are not important. The 

important part of energy expenditure matrix selection is the relative magnitude of 

these costs. If the ratio between the R(1,1) and Q(1,1) is 100, then there will be no 

difference between the selections of 100 - 1 and 1 - 0.01 consecutively. The same 

rule is valid for the relationship between R(1,1) and Q(2,2) as well.  

The LQR system is very flexible when it is compared with the pole assignment 

method in which the poles are selected according to the values of quarter car model 

parameters. For some cases, the pole assignment method gives better results with its 

higher damping ratios than the LQR control system gives. But this affects the high 

end impact disturbance; With the LQR system, the gain matrices K that are found 

with the pole assignment can be found too. Because there is no limitation to define 

the K matrix, by making several trials for the LQR control system, desired values can 

be obtained. 
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7. CONCLUSION AND DISCUSSION 

In this thesis, mainly 4 different control systems were examined and applied to a 

semi active suspension system. For analyses, two different road disturbances were 

modeled and used for the evaluations of performances of the control systems. A 

quarter car model was selected to apply the control system on it. Results of all 

control systems were obtained by SIMULINK toolbox of MATLAB program. And 

all data was listed in tables and graphs. 

According to the results, the Skyhook control law gave better and more flexible 

results than those of the ON/OFF system. Having the ability of damper coefficient 

assignment according to the disturbance provided the Skyhook control law better 

performance.  

The pole assignment gave nearly the same results as the Skyhook control. But the 

pole assignment method has limitations because the gain k1 is too low. Larger values 

of k2 determines the base damping coefficient and k1 determines the damper 

coefficient change. Because of low k1, most of the time the pole assignment method 

acts as a passive system that has a damping coefficient determined by the product of 

the mass and k2. 

The LQR system has the most flexibility because it can be set as a pole assignment 

system by considering a cost function. By changing the parameters Q(1,1), Q(2,2) 

and R(1,1) on a trial-and-error base, the desired parameters can be found. This is 

very useful when we need a control system for a specific usage. With further studies 

the LQR system can be improved with certain conditions. By assigning different gain 

matrices for different road disturbances, it will give better results. By calculating the 

RMS of acceleration values for a time period, then the gain matrix can be adjusted, 

i.e., adaptive system. For example if the vehicle travels on a smooth section, then the 

gain matrix K can be modified to a larger value leading to a larger damper 

coefficient. If the vehicle travels on a road with large disturbances, then the gain
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 matrix K can be modified to a lower value to damp the high impacts which increases 

the reduction in acceleration to improve comfort. 

Also the control system can be tested with other controllers such as fuzzy logic and 

H∞ controllers to find better results when compared with the ones analyzed in this 

thesis in future studies. 
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