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DETERMINATION OF A METHODOLOGY  
FOR FAILURE AVOIDANCE OF ADBLUE TANKS 

SUMMARY 

This study aims to determine a methodology for failure avoidance of AdBlue tanks 
through durability tests. 

Today, the use of plastic components in vehicles has increased in great number, as a 
result of plastic material properties such as lightness and corrosion resistance. In 
conjunction with this, the need for research of plastic components’ durability has 
been arisen. 

This study, firstly mentions the durability tests of plastic tanks that are used to store 
the AdBlue which is used in today’s Mercedes-Benz buses, to decrease the exhaust 
emissions according to the EURO IV regulation. The durability tests of AdBlue tanks 
have been conducted in Hydropuls (shaker) test rig within the Mercedes-Benz Turk 
A.S. Development Bus Test Center. Therefore, the equipment of the test rig has been 
described firstly, followed by the explanation of how a load collective sample is 
obtained from the collected data on the road, for durability tests in Hydropuls.  

In the following step, the measurements recorded throughout the tests, hardware and 
equations used to obtain the test results are mentioned. In Hydropuls tests, for the 
damage calculations, strain gauges were applied at high stress locations based on 
finite element analysis and previous test experiences.  

In the final section, the factors affecting the durability of AdBlue tanks such as 
AdBlue level, test excitation frequency, fixing points and the constructive properties 
have been analyzed. Furthermore the strain threshold values, which cause the 
damage most on tanks, were emphasized. Finally, to reduce the AdBlue tank damage 
to its minimum value, a methodology for failure avoidance was determined. 
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ADBLUE TANKLARINDA HASAR ÖNLEME  
METODOLOJİSİNİN BELİRLENMESİ 

ÖZET 

Bu çalışma AdBlue tankları üzerinde yapılan dayanım testleri aracılığıyla, hasar 
önleme methodolojisinin belirlenmesini amaçlar. 

Plastik parçaların taşıtlarda kullanımı, hafiflik ve korozyon dayanımı gibi etkenler 
göz önünde bulundurulduğunda geçmiş yıllara oranla günümüzde daha da çok 
artmıştır. Bu artışla birlikte, kullanılan plastik parçaların dayanımlarının incelenmesi 
gereği de ortaya çıkmıştır. 

Bu çalışmada ilk olarak günümüz Mercedes-Benz otobüslerinde egzoz emisyonlarını 
EURO IV normlarına uygun hale getirmek için kullanılan AdBlue sıvısının 
depolanmasında kullanılan plastik tankların dayanım testlerine değinilmiştir. Bu 
dayanım testleri, Mercedes-Benz Türk A.Ş. bünyesinde geliştirme test merkezinde 
bulunan Hidropuls (sarsıcı) test ünitesinde gerçekleştirilmiştir. Bu kapsamda ilk 
olarak Hidropuls testlerinde kullanılan ekipmanlar incelenmiş, sonrasında ise 
dayanım testlerinde yoldan alınan sinyalin parça üzerine uygulanabilmesi amacıyla 
örnek bir yükleme kollektifinin elde edilmesi anlatılmıştır. 

Bir sonraki adımda, tank üzerinde test esnasında yapılan ölçümler, kullanılan 
donanım ve ölçüm sonuçlarını elde etmede kullanılacak denklemler anlatılmıştır. 
Testlerde, tank üzerinden birim uzamayı ölçerek hasar hesabına geçebilmek için, 
daha önceden hasar yeri bilenen yerlere veya yapılan sonlu elemanlar analizlerinde 
gerilme yığılmalarının yoğun olduğu bölgelere strain gauge (birim uzama ölçer) 
uygulaması yapılmıştır.   

Çalışmanın son kısmında, testleri gerçekleştirilen AdBlue tanklarında dayanıma etki 
eden sıvı yüksekliği, test frekansı, bağlantı noktası ve tankın konstrüktif özellikleri 
gibi etkenlerin dayanım üzerindeki etkisi incelenmiştir. Ayrıca en çok hasar yaratan 
muhtemel birim uzama eşik değeri ile ilgili bir çalışmaya da yer verilmiştir. Son 
olarak, tank dayanımını etkileyen parametreler göz önünde bulundurularak, AdBlue 
tanklarında hasarın azaltılmasını amaçlayan hasar önleme metodolojisi belirlenmiştir. 
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1. INTRODUCTION 

The use of nonmetallic materials in vehicles has grown considerably over the past 

few years, and the application of plastics in the automotive industry is now wider and 

more sophisticated than in any other area of engineering. Recently, much of the 

consumption of plastics has been in manufacture of bodywork with polymers. 

However, plastics are not only used in manufacturing of bodywork, also many 

varieties of plastics are used in other components of vehicles. (i.e. fuel & AdBlue 

tanks) 

Plastic materials have come to be used frequently for automotive tanks in recent 

years owing to their light weight, freedom for forming various shapes and corrosion 

resistance, among other reasons. An automotive tank is subjected to variable road 

conditions during its life. In this study, the durability criteria of AdBlue tanks are 

investigated.  

AdBlue is a registered trademark for AUS32 (Aqueous Urea Solution 32%), it is also 

often referred to as Automotive Urea Solution. AdBlue is a solution consisting of 

high purity urea dissolved and suspended within de-ionised water. AdBlue is carried 

in a separate tank to the fuel and never mix with the fuel, as seen in Figure 1.1. It is 

injected into the exhaust gases as a post combustion process and reduces harmful 

NOx (Nitrous Oxide) by converting it into Nitrogen and Oxygen. 
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Figure 1.1. The Location of AdBlue Tank in Bus 

As seen in Figure 1.1, AdBlue tanks have smaller volumes than fuel tanks because 

the consumption of AdBlue is approximately at 3 to 5% of the diesel usage. A real 

picture of an AdBlue tank which is used in Mercedes-Benz buses can be seen in 

Figure 1.2. 

 

Figure 1.2. AdBlue Tank 

Polyethylene (PE) is one of the plastic materials used for AdBlue tanks because of its 

high corrosion resistance. In this study, tested AdBlue tank material is linear-low 

density polyethylene (LLDPE). 
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Figure 1.3 outlines the factors influencing the fatigue life of polyethylene AdBlue 

tanks with respect to this failure mechanism. Load conditions include stress and 

frequency, while temperature and AdBlue swelling can be cited as environmental 

conditions. Factors related to the molecular structure include the molecular weight 

and its distribution as well as type of branch component and its concentration. 

Molding conditions that also affect fatigue failure include the resin temperature and 

cooling condition. Among these various factors, the principal ones examined when 

evaluating the durability of plastic AdBlue tanks are stress and frequency [2]. 

 

Figure 1.3. Cause and Effect Diagram of Fatigue Failure 

The aim of this study is to develop a failure avoidance methodology of AdBlue tanks 

by using strain-gage rosette measurements. The measurement points have been 

chosen according to critical locations of finite element calculations. Due to the 

different constructive properties, plastic AdBlue tanks are tested with respect to the 

durability point of view. These tanks are tested in Mercedes-Benz Turk A.S. testing 

facilities by using servo hydraulic actuators (Hydropuls) to exactly simulate road 

profile in vertical, longitudinal and lateral directions. In the second and third 

chapters; Hydropuls test equipments, accelerated test method for AdBlue tanks, 

Hydropuls tests and strain measurements are represented in details. Finally, the last 

chapter of this study deals with the results of the measurements which were 

evaluated by means of data counting algorithms and damage analysis of nCode 

software. 
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2. ACCELERATED TEST METHOD OF ADBLUE TANKS IN 

HYDROPULS 

The interaction of various intensities of loading and the sequence of high and low 

loads can have a marked influence on component life, which is not accurately 

predictable from simple fatigue tests. Fortunately, the current availability of 

servohydraulic systems make it possible to conduct controlled, realistic fatigue test 

on both components and assemblies. 

The term “accelerating test”, is all too often taken to mean simply increasing the 

frequency or removing the non-damaging sections of the load application, whereas it 

should mean the determination of realistic component lives or properties in the 

shortest amount of elapsed time [1]. 

Principally, accelerated tests are executed by using servohydraulic test systems. In 

this study, plastic AdBlue tank tests were done in Hydropuls which is a 

servohydraulic test unit consists of adequate components for accelerated tests. 

2.1 Servohydraulic Test Systems and Components 

A servohydraulic test system includes hydraulic actuators, servovalves, feedback 

transducers, hydraulic distribution and servohydraulic control systems. An example 

of a servohydraulic test system for a single hydraulic actuator is shown in a 

simplified form in Figure 2.1 [4]. 
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Figure 2.1. Servohydraulic Test System Components  

2.1.1 Hydraulic Actuators 

In a servohydraulic system, typical actuator is powered by high-pressure hydraulic 

oil. The direction and amount of oil flow, and therefore the actuator force and 

position, are controlled by a servovalve. A load cell or LVDT (linear variable 

displacement transducer), which responds usually to either the force or displacement 

of the actuator, feeds an electrical signal back to the amplifier, where the 

instantaneous signal value and the intended signal from program source are 

compared. Then servovalve corrects the force or position [1]. Typical hydraulic 

actuator is shown in Figure 2.2.  
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Figure 2.2. Hydraulic Actuator 

There are three critical parameters for a hydraulic actuator. These are cylinder length, 

piston area, piston and rod mass. These parameters determine maximum stroke of the 

rod, maximum force capability of the actuator and the maximum actuator 

acceleration respectively [4]. 

In Hydropuls tests, MTS Series 244 hydraulic actuators which have 15 and 100 kN 

force ratings, are used. 

2.1.2 Servovalves 

Servovalve, which is the heart of the servohydraulic test system, controls hydraulic 

flow to the actuator that moves the actuator piston rod. 

A typical servovalve that is used in Hydropuls tests is shown in Figure 2.3.  
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Figure 2.3. Servovalve  

In Figure 2.4 [13], when the current value is zero (i=0) there is no action in actuator. 

The actuator gets into motion in one direction when the current value is positive 

(i>0), and the actuator moves inverse direction when the current value is negative 

(i<0) [4]. 

 

Figure 2.4. Actuator and Servovalve Assembly 

In Hydropuls tests, MTS two-stage, four-way 252 Series servovalves are used. 
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2.1.3 Feedback Transducers 

A load or displacement transducer (load-cell or LVDT) provides feedback on 

whether or not the actuator is moving as intended.  

2.1.3.1 Load Cell 

A load cell is a typical transducer that is used to convert a force into an electrical 

signal and mounted on the free end of the piston rod. Through a mechanical 

arrangement, the strain gauge in the load cell converts the deformation (strain) to 

electrical signals. A typical example of a strain gauge based load cell which has a 2,5 

kN force capacity, is shown in Figure 2.5 [12]. However, load cells are not necessary 

in Hydropuls tests owing to performing the accelerated tests with displacement 

control. 

 

Figure 2.5. Strain Gauge Based Load Cell  

2.1.3.2 Linear Variable Displacement Transducer (LVDT) 

A linear variable displacement transducer (LVDT) provides a piston rod 

displacement feedback signal to the system control. The LVDT is coaxially mounted 

within the actuator piston rod and produces an analog signal with excellent linearity.  

A view of a LVDT is shown in Figure 2.6 [4]. 
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Figure 2.6. Linear Variable Displacement Transducer (LVDT) 

When the core moves in one direction, the voltage in one coil is increases and the 

other decreases. This causes the output voltage to increase from zero to a maximum. 

The phase of the voltage indicates the direction of the displacement. 

2.1.4 Hydraulic Distribution System 

A hydraulic distribution system, which consists of hydraulic power unit and 

hydraulic service manifold, is shown in Figure 2.7. 

 

Figure 2.7. Hydraulic Distribution System 
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2.1.4.1 Hydraulic Power Unit 

A hydraulic power unit provides pressurized flow to hydraulic motors, cylinders, and 

other hydraulic component. Power unit contains a fluid reservoir, multiple pump 

stages and coolers to keep fluid at a safe working temperature. In Hydropuls tests, 

two different hydraulic power units which have 90 and 110 kW power capacities are 

used. 

2.1.4.2 Hydraulic Service Manifold 

A hydraulic service manifold is a hydraulic pressure and flow regulation device that 

controls pressure of a test station independent from the main hydraulic power unit, as 

seen in Figure 2.8. Installing a hydraulic manifold between the power unit and 

servovalve, allows the operator to turn each hydraulic circuit on and off and set the 

pressure level. In Hydropuls tests, MTS Series 293 hydraulic service manifold is 

used.  

 

Figure 2.8. Hydraulic Service Manifold  

2.1.5 Servohydraulic Test System Control 

The configuration of the system components is shown in Figure 2.9. This kind of 

configuration provides a means of comparing a command (programmer output) 

signal with a feedback (transducer output) signal to generate a signal that controls the 

servovalve [4]. 
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Figure 2.9. Servohydraulic Test System Control 

In closed-loop control, command and feedback comparison and controlling 

servovalve is totally a function of the control circuitry and occurs without operator 

interaction [4]. 

As stated before, all AdBlue tank tests are performed by using Hydropuls test rig 

which consists of all these components. 

2.2 From Road Data to Time Optimized Block Programme Test 

Accelerated durability testing is suitable for a component, sub-assembly or a whole 

vehicle. Test must replicate the same failure mechanisms as seen in the real world 

and should be representative of the real loading environment. Also, tests should be 

accelerated where possible to reduce time scales and costs [5]. There are three 

principal test methods of shortening test time without obtaining dubious results [1]. 

The first applies to constant-amplitude testing. In this type of testing, it may be 

possible to increase the frequency of the cycle loading, bearing in mind the possible 

effect of hysteresis. 
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The second method, compressed time testing, applies to programmed loading, where 

it should be possible to avoid the use of, or remove the non-damaging sections of the 

load-time history.  

The third method is to run test rigs day and night for 24 hours per day. By doing this 

many laboratories can achieve 168 hours of testing per week instead of 40 hours. Of 

course, continuous operation requires good, automatic and cutout systems [1]. 

In this study, the second method was used to perform accelerated tests in Hydropuls. 

A flow chart of the compressed time testing process is shown in Figure 2.10. In this 

process, the data which collected at the proving ground was edited and finally the test 

data obtained. In data processing, nCode ICE-flow GlyphWorks software was used. 

 

Figure 2.10. Compressed Time Testing Process 

Plastic AdBlue tank tests are performed by executing the following steps 

respectively. 

2.2.1 Data Acquisition at Proving Ground 

Data acquisition at proving ground is the sampling of the real world to generate data 

that can be manipulated by a computer. The proving ground consists of various road 

conditions that simulate real road types, as shown Figure 2.11. 
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Figure 2.11. Proving Ground  

While collecting data at proving ground, a wide variety of transducers are used to 

measure performance parameters for vehicles. Examples include mechanical, optical, 

electrical, or magnetic sensors such as accelerometers, strain gauges and 

thermocouples. Outputs are recorded by a computer. These data are also the basis for 

the testing of operational strength and fatigue calculation. 

In Figure 2.12 shows the acceleration data which has a 400 Hz sample rate, collected 

at proving ground with accelerometers in vertical direction. 

  

Figure 2.12. Time History of Collected Acceleration Data  

This collected data in vertical direction was shifted to the desired maximum vertical 

acceleration value which is 3.5g, shown in Figure 2.13 as blue signal. Same 

calculations were made to other directions. Thus, maximum acceleration values were 

obtained as 1,5 and 2g for  foreaft and lateral directions respectively. 
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2.2.2 Data Editing   

In this process, nCode ICE-flow GlyphWorks software identifies regions in a 

collected data where the signal exceeds defined limits and filters signal parts which 

cause no or very less damage to the component without losing damage content 

compared to the original data [6]. Figure 2.13 shows the data reduction. The 

collected data which is under 0,35g was eliminated because of the non-damaging 

effect. The duration of the signal decreased from approximately 750 seconds to 450 

seconds. 

 

Figure 2.13. Data Reduction  

2.2.3 Range Pair Counting 

After filtering the non-damaging parts of the signal, the fatigue life of the component 

can be estimated with the help of counting algorithms. Data counting algorithms are 

necessary to decrease the duration of the Hydropuls tests and simplify the variety of 

measured signal. From collected data some information can be obtained. These are 

amplitude of the signal, maximum, minimum and mean values, frequency, sequence 

and phase of each wave as seen Figure 2.14 [5]. 
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Figure 2.14. Properties of Collected Data 

There are two kind of counting algorithm; one or two parametric. One parametric 

counting algorithm provides the information of the number of cycles and one other 

value (i.e. amplitude). However with two parametric counting algorithms, two other 

values can be obtained (i.e. amplitude, mean). 

Range pair, one parametric counting algorithm, is not sequential and only complete 

waves are recognized, as seen in Figure 2.15. Also, it counts the points in pair and 

suitable for fatigue life estimation with loss of the influence of mean value [3]. 

 

Figure 2.15. Principal of Range Pair Counting and Wave Pairs 

In this study, range pair counting was used for time optimized block programmed 

test, as shown in Figure 2.16. 
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Figure 2.16. Range Pair Counting 

2.2.4 Block Programme Loading 

2.2.4.1 Loading Patterns 

There are three primary, dynamic patterns of loading to be considered in fatigue 

testing, and these are illustrated in Figure 2.17 [1]. 

 

Figure 2.17. Fatigue Loading Patterns 

The first pattern is sinusoidal, constant amplitude loading. This is the most common 

type of loading used in most simple material fatigue tests. The second primary 

loading pattern is block programme loading which is derived from sinusoidal 

oscillations but amplitude is varied in discrete blocks of cycles. This type of loading 

in Figure 2.17 shows a regular pattern of ascending and descending amplitudes and 
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this is the form in which Dr. Gassner originally applied his technique in 1939 [1]. In 

component tests, this type of loading is generally used so that in this study, the block 

programme loading was applied in Hydropuls for AdBlue tank tests because of the 

ease of specification and repeatability. 

2.2.4.2 Gassner’s Block Programme Loading  

The first variable amplitude loading spectrum was introduced by Gassner for 

aeronautical structures, the historical Eight-Block-Programme Test in Figure 2.18 

[7]. The reason of the block programming was that random loading processes could 

not be yet simulated by existing simple testing machines at that time.  

 

Figure 2.18. Gassner’s Block Programme 

In plastic AdBlue tank tests, by using range pair counting, a load collective was 

constructed for x, y and z directions, as shown in Figure 2.19. 

 

Figure 2.19. Load Collective for x, y and z Directions 
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After ignoring the non-damaging parts of the data (a < ±0,35g), this load collective 

was divided into seven steps as done in Figure 2.20 and test spectrum was obtained 

for z direction. This was also done for x and y directions. 

 

Figure 2.20. Test Spectrum of Plastic AdBlue Tank Testing for z Direction 

It is important that the loading steps should be equal in magnitude and that the 

number of cycles for each step would be arranged to be uniformly distributed about 

the plotted line as shown in Figure 2.20 [1]. It should be noted that because of the 

logarithmic presentation, the cycle steps do not appear to be divided equally.  

Besides the Hydropuls tests, some computations should be done to calculate the 

service life of a component and compare the damage effect between test signal and 

collected data at proving ground. 

2.3 Damage Calculation  

2.3.1 Cumulative Damage and Life Prediction (Miner’s Rule)  

Predicting fatigue damage for structural components subjected to variable loading 

conditions is a complex issue. The first, simplest, and most widely used damage 

model is the linear damage. This rule is often referred to as Miner’s rule (1945) [11]. 

According to the Miner’s rule if a component is subjected to cyclic loading but not 

regularly repeated loading at the same amplitude, each block of the cycles consumes 

a determinable amount of the component’s life. Each block’s effect on the 
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component life is expressed as a fraction and when the summation of the various 

fractions equals unity, the life of the component is at the end [1]. 

With the help of Figure 2.21 [4] and Figure 2.22 [7], Miner’s rule can be explained 

easily. 

 

Figure 2.21. List of Cycle Counts and S-N Curve 

 

Figure 2.22. S-N Curve and Calculation of Fatigue Life 

If the cycle to failure at a stress of i is Ni and the actual cycle in loading history at 

stress i is ni, then the damage caused by this loading history is: 

n
i

i=1 i

nD = 
N∑   (2.1) 

Failure occurs when D=1 [1]. In Figure 2.22, prolongation of the S-N curve changes 

with the kind of the material.  



 20

2.3.2 Relative Damage 

Relative damage provides a simple way of comparing two time series of a single test 

in a fatigue damage context. It calculates a suitable stress-life (S-N) curve and uses 

range pair counting and Miner’s rule to calculate a damage value for each time series 

[6]. In Figure 2.23, the comparison of damages between the original time series data 

and edited data for one block loading is shown graphically. Although the duration of 

the signal decreased from 750 seconds to 450 seconds, the damage effects are almost 

same. 

 

Figure 2.23. Damage Comparison between Original and Edited Time Series Data for 

One Block Loading 



 21

3. HYDROPULS TESTS AND STRAIN MEASUREMENTS 

3.1 Test Definition 

The aim of the Hydropuls tests is to develop a failure avoidance methodology by 

using strain-gage rosette measurements for one version of AdBlue Tank which have 

also four different types. 

Throughout the Hydropuls testing, totally 4 types of plastic AdBlue tanks, as seen in 

Figure 3.1, have been tested either with block and sweep loading in case of full and 

¾ volumes [14]. 

 

Figure 3.1. Tested Plastic AdBlue Tank Types 

These tanks were mounted on a test rig as seen in Figure 3.2. To construct the test 

signal, block programme has been utilized, as stated before in Section 2.2.4. 
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Figure 3.2. Hydropuls Test Rig 

The Hydropuls test rig has the following properties; 

• Two degree of freedom: in x and z directions. 

• Three dimensional testing: third dimension is the resultant of x and y 

directions.  

• Programming technique: Block programming. 

• Testing specimens are limited 1,5 m width.  

• Hydraulic actuator in z direction: MTS model 244.22, 100kN 

• Hydraulic actuator in x direction: MTS model 244.11, 15kN.   

The relative damages on stress concentration areas are investigated with respect to 

one block loading. The frequency responses of plastic AdBlue tanks at different 

AdBlue levels are also examined with the help of sweep loading. Throughout the 

testing, strain data was collected from one complete block programme as mentioned 

in Section 2.2.4 and a sweep loading which varies from 1 to 20 Hz, with 1 mm 

amplitude and 0,1 Hz/sec increasing ratio was executed. Since the directions of the 

principal stresses are not known, strain gauges rosettes are required to collect strain 

data. As seen in Figure 3.3, strain gauges rosettes were applied at high stress 

locations based on finite element analysis and previous test experiences. 
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Figure 3.3. Strain Gauge Rosette Location 

 After one block and sweep loading, the collected strain data was plotted as time 

series. An example of time history of strain data for both block and sweep loading is 

shown in Figure 3.4 and Figure 3.5.  

 

Figure 3.4. Time History of Strain Data for Block Loading 
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Figure 3.5. Time History of Strain Data for Sweep Loading 

The effects and results of these loadings will be discussed in the next Chapter.  

3.2 Data Acquisition at Hydropuls Tests 

In plastic AdBlue tank tests, strain data was collected by ESAM (Electronic Signal 

Acquisition Module, as seen in Figure 3.6) which is a measuring system used to wide 

variety of measurements. ESAM can measure up to eight analog channels and up to 

four digital channels. Strain gauge rosettes outputs were connected at these analog 

channels and the collected data was monitored and analyzed on the computer with 

the help of ESAM software.  

 

Figure 3.6. ESAM Data Traveller 
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Before data acquisition, strain gauge rosette parameters (rosette type, resistance and 

gauge factor) and material properties (elastic modulus and Poisson’s ratio) should be 

set correctly in ESAM software.  

There are three basic geometry types of strain gage rosettes that are allowed by 

ESAM, 45o, 60o, and T rosettes. The strain on the test specimen is transferred 

directly to the strain gauge, which responds with a linear change in electrical 

resistance (R). Gauge factor (GF) of a strain gauge is defined as the ratio of the 

change in electrical resistance to the change in strain as seen in Equation (3.1) [8]. 

R RGF = 
ε

Δ  (3.1) 

While collecting strain data on plastic Adblue tanks, 120 Ohms, 45o, type 

3/120RY81 HBM strain gauges rosettes were used, as shown in Figure 3.7. 

 

Figure 3.7. Strain Gauge Rosette 

3.3 Strain Gauge Rosette Calculations 

To obtain correct results, the grids in the rosettes must be numbered in a particular 

way. Gauge grids must be numbered in the counter clockwise direction. In a 45o 

rosette, the axis of grid 2 must be 45° away from grid 1’s axis; and grid 3 must be 

90° away from the grid 1, as seen in Figure 3.7. 

3.3.1 Maximum and Minimum Principal Strain & Stress 

The planes on which the shear stress is equal to zero is called principal planes and 

the normal stresses on the principal planes are called principal stresses. Following 

mathematical relationships are used for calculation of the maximum and minimum 
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principal strain and stress values. 1 2 3, ande e e  show the measured strains, 

respectively for grids 1, 2 and 3 [9]. 

Maximum principal strain: 

( ) ( )
2 21 3

max 1 2 2 3
1 .

2 2

e e
e e e eε

+
= + − + −  (3.2) 

Minimum principal strain: 

( ) ( )
2 21 3

min 1 2 2 3
1 .

2 2

e e
e e e eε

+
= − − + −  (3.3) 

 

And the angle between grid 1 and principal axis: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−

= −
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3121 2tan
2
1

ee
eeeθ  (3.4) 

Maximum and minimum principal stresses are calculated from the principal strains 

by using Hooke's law. However, material properties like elastic modulus (E) and 

Poisson’s ratio (ν ) must be known for calculations. 

Maximum principal stress: 

6
max max min2

E ( ).10
1-

σ ε ν ε
ν

−= +  (3.5) 

Minimum principal stress: 

6
min min max2

E ( ).10
1-

σ ε ν ε
ν

−= +  (3.6) 

In these formulas, it is assumed that maxε  and minε  are expressed in μm/m. [9]. 

3.3.2 Absolute Principal Stress & Strain 

Absolute principal value is the value of maximum or minimum principal strain or 

stress, which has grater absolute value. For example, if the maximum principal strain 

is 120 μm/m and the minimum principal strain is -110 μm/m, than the absolute 

principal strain will be 120 μm/m [9]. 
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In the next chapter, the analysis of collected strain data and its damage effect on 

plastic AdBlue tanks will be evaluated. While doing this, the absolute values of both 

strain and stress will be used since the absolute value of strain or stress has bigger 

effect on fatigue life. 
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4. ANALYSIS AND EVALUATION OF DURABILITY FOR ADBLUE 

TANKS 

To evaluate tanks with respect to the durability point of view, a comparative damage 

analysis is done by using the strain measurements.  

Due to the repeatability of the test results, each block program is adjusted for 

different volume requirements. To analyze the collected data, durability software 

tools are utilized. In the evaluation of the results, data counting algorithms and 

relative damage criteria are used. 

Throughout the testing, durability of tanks is evaluated with respect to the following 

points. 

• Estimated critical strain value 

• AdBlue level effect 

• Test excitation frequency effect 

• Fixing points effect 

• Constructive properties effect 

4.1 Determination of Estimated Critical Strain Value 

Figure 4.1 shows an overview of the test result of all four tanks with respect to 

estimated critical strain value. The x and y axis shows the strain range and damage 

values respectively. The data acquisition locations are given in Table 4.1. 
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Figure 4.1. Strain Amplitude and Damage Histograms 
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Table 4.1. Data Acquisition Locations of Block Loading 

Channel 
Number Data Acquisition Area 

1 Type -1 Bottom Hole 
2 Type-2 Bottom Corner 
3 Type-3 Upper Hole 
4 Type-3 Bottom Corner 
5 Type-4 Bottom Corner 
6 Type-2 Upper Hole 
7 Type-4 Upper Hole 

General overview is obtained by comparing the strain amplitudes measured from 

high stress locations. The relative damage (based on Miner’s Rule) approach for 

fatigue damage assessment indicates that a significant amount of damage occurs 

between 2000-3000 µm/m strain values at high stress locations [14]. Therefore, for 

this range of strains, a life time calculation should be carried out to see if this area is 

o.k. or not. 

4.2 AdBlue Level Effect 

Another critical point which affects AdBlue tank durability is liquid level. During the 

vehicle driving, the consumption of AdBlue is approximately at 3 to 5% of the diesel 

usage, thus AdBlue level changes continuously. Thus, an evaluation has been done 

by using nCode software with the help of damage analysis tool to determine which 

overall liquid level condition was most damaging to AdBlue tanks. The results of this 

analysis can be clearly seen in Figure 4.2 and Table 4.2. The full tank is expected to 

cause more damage due to the larger mass. However, the results show that the fuller 

than ¾ tanks, the smaller damage scenario for the bottom corner and hole areas [14].  
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Figure 4.2. Damage Comparison Between Full & ¾ Liquid Levels 

Table 4.2. Data Acquisition Locations of Sweep Loading 

Channel 
Number Data Acquisition Area 

1 Type -1 Bottom Hole (full) 
2 Type-1 Bottom Hole (¾) 
3 Type-3 Upper Hole (full) 
4 Type-3 Upper Hole (¾) 
5 Type-2 Bottom Corner (full) 
6 Type-2 Bottom Corner (¾) 

The reason is that when the liquid level decreases, the hydrostatic force acting point 

is shifting to the corner region due to the geometrical diversity of the tank, which 

causes more damage for this point, see Figure 4.3. Based on this result, it is assumed 

that, an AdBlue level of ¾-tank is a critical volume for tested AdBlue tanks. 
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Figure 4.3. Hydrostatic Force Acting Points Due to Different AdBlue Levels 

4.3 Test Excitation Frequency Effect 

In most service applications, plastic-based materials are likely to be subjected to 

similar forces to the metallic equivalents. It will be seen, that in general the type of 

material should not necessarily affect the choice of realistic test loads, but it may 

influence other details of a test specification, such as loading frequency.  

The tanks are exposed to an effective frequency range of 9-12 Hz which is obtained 

from frequency analysis of the proving ground signal. Frequency analysis data is 

typically presented in graphical form as a Power Spectral Density (PSD). Essentially 

a PSD displays the amplitude of each sinusoidal wave of a particular frequency. 

PSDs are useful for detecting resonance in components [10]. Therefore, to see the 

exact effect of the test excitation frequency on the measurement points, a 

comparative frequency spectrum analysis has been done with the help of sweep 

loading.  

In Figure 4.4 the strain PSD analysis (Power Spectral Density) at two critical 

locations can be seen. The red curve has a peak value around 14 Hz, likewise the 

peak value of the blue curve is approximately at 16,5 Hz. It can be said that around 

these values the tanks will be in resonance zone [14].  
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Figure 4.4. Strain PSD of Sweep Data 

These frequency analyses have done for the all tank types at two different volumes 

(full and ¾). These analysis results are given in Figure 4.5 for all tank types. As a 

result, principally, the estimated natural frequency of side walls of the tanks should 

be higher than the test frequency range. 

 

Figure 4.5. Test Excitation Frequency Effect 
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4.4 Fixing Points Effect 

The fixing points create a bending effect over the tanks. This causes the tank wall to 

expand and contract under stress which also causes more damage than usual. To 

determine the effect of the fixing points, the tanks which have different fixing points 

have been tested, as seen in Figure 4.6. By doing this, a type-1 tank was chosen as a 

default tank and the all changes were applied over this type of tank.  

 

Figure 4.6. Models with Various Fixing Points 

Figure 4.7 show the results of comparative damage analysis with respect to using 

various fixing points. At the end of these tests, it has been observed that increasing 

the number of fixing points, which makes tanks more rigid, causes more damage. 

Therefore, it is important to use fixings with the correct flexibility to allow the tank 

to move freely [14]. 
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Figure 4.7. Damage Comparison of Failure Areas by Using Various Fixing Points 

4.5 Constructive Properties Effect 

The tank types as mentioned in Section 3.1 have some constructive design properties 

such as, holes, ribs, recesses, corner radius and fixing points. The nomenclatures of 

these properties are shown in Figure 4.8 and numerical values are given in Table 4.3 

for each tank type.  

 

Figure 4.8. Nomenclature of Constructive Properties 



 36

Table 4.3. Design Specification of Plastic Tanks 

Constructive  Points Type 1 Type 2 Type 3 Type 4 

Wall Thickness (mm) 5 5 6 6 
Recesses Width (mm) 20 No Recesses No Recesses No Recesses
Rib Height (mm) 13 13 13 13 
Holes Radius (mm) 25 25 25 25 
Bottom Corner Radius 
(mm) 

10 10 25 25 

Number of Holes 1 3 3 4 

Number of Fixing 
Points 

1 above, 1 
middle of 

front side, 4 
bottom  

2 above,  
4 bottom  

2 above,  
4 bottom  

2 above,  
4 bottom  

Known Failure Area Bottom 
Hole 

Bottom 
Corner 

Upper Hole No Crack 

For example, ribs and recesses are often added to rotationally molded parts to stiffen 

them and depend mainly on their height and width. Likewise, holes provide stiffness 

for plastic tanks and improve airflow for heat transfer. Another main concern with 

molded-through holes is sloshing. Therefore the number of holes and diameter are 

important to reduce the liquid sloshing in tanks. Besides, the corner radius of plastic 

tanks is also an important parameter which affects the durability. The radius value 

should be correctly chosen to avoid the stress concentration at critical corners [14]. 

These constructive points affect the durability of plastic tanks directly and thus 

another comparative damage analysis has been done by evaluating constructive 

properties of AdBlue tanks, see Figure 4.9 and Table 4.4. 
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Figure 4.9.  Damage Comparison of Failure Areas between Various Tank Types  

Table 4.4. Data Acquisition Locations  

Channel 
Number Data Acquisition Area 

1 Type -1 Side Wall 
2 Type-1 Bottom Hole 
3 Type-2 Upper Hole  
4 Type-3 Upper Hole  
5 Type-4 Upper Hole 
6 Type-2 Bottom Corner 
7 Type-3 Bottom Corner 
8 Type-4 Bottom Corner 

After the comparative damage analysis between various tanks, the desired values of 

these constructive properties are showed in Table 4.5. 

Table 4.5. Desired Values of Constructive Properties of AdBlue Tanks 

Constructive Properties Desired Values 

Wall thickness ≥ 6 mm 
Ribs height ≥ 13 mm 
Recesses width ≥ 18 mm 
Hole radius ≥ 25 mm 
Bottom corner radius ≥ 25 mm 
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It’s assumed that, ribs height and recesses width principally is recommended higher 

than 13 and 18 mm respectively. Also, on critical locations such as corner and holes 

radiuses are suggested higher than 25 mm. Finally, wall thickness is recommended 

higher than 6 mm [14]. 

Based on all these results, it’s assumed that the analyzed parameters which affect 

durability of tanks should be applied with correct methodology, as seen in Table 4.6 

Table 4.6. Failure Avoidance Methodology 

Specifications Desired Values 

Wall thickness ≥ 6 mm 
Ribs height ≥ 13 mm 
Recesses width ≥ 18 mm 
Number of holes 1 Hole (same location on type-1) 
Hole radius ≥ 25 mm 
Bottom corner radius ≥ 25 mm 

Fixing points 
1 fixing point above of tank and 1 fixing point in the 

middle of front side of the tank. 4 fixing points 
bottom of tank 

Hole area Corner area 
Estimated critical strain value

≤ 2000 µm/m ≤ 3000 µm/m 
Natural Frequency Response 
of Side Walls Away from 9-12 Hz range 
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5. DISCUSSION AND CONCLUSION 

Based on the results of this study, a guideline for determining a methodology for 

failure avoidance of AdBlue tanks has been developed. In this study, it has been 

observed that there are some main factors which affect the fatigue life of AdBlue 

tanks. With respect to durability point of view, the effect of estimated critical strain 

value, AdBlue level, test excitation frequency, fixing points and constructive 

properties has been investigated in this methodology. 

When these effects are analyzed one by one, the results show that each effect causes 

severe damage on various locations of these tanks. After evaluating strain 

measurements during the Hydropuls test, it is concluded that improving on these 

factors increase sufficiently the fatigue life of tanks.   

The strain measurements show that estimated damage occurs between 2000-3000 

µm/m strain values on high stress concentration areas. Also, it is interesting to note 

that the fuller than ¾ tank, the smaller the damage scenario for the bottom corner and 

hole areas due to the geometrical diversity of the tanks. 

Another main concern affecting fatigue life of tanks is test excitation frequency. The 

measurements show that the estimated natural frequency of side walls of the tanks 

should be away from 9-12 Hz which is the effective test frequency interval acting on 

the tanks from proving ground testing. 

Apart from these, the location and number of fixing points cause serious damage 

effect on critical areas of tanks. It was found out that the tanks should be allowed to 

move freely by using the correct number of fixing points. 

Finally, modifications on constructive properties, such as 6 mm wall thickness, 13 

mm ribs height, 25 mm recesses width, 1 hole, 25 mm corner and 25 mm hole radius 

are recommended for better structural durability. Furthermore, with all these tests 

and improvements, this methodology which was enhanced for AdBlue tanks can be a 

beneficial reference for the plastic fuel tanks that will be tested in the future. 
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