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SAĞLAMAK İÇİN YENİ BİR ENGELDEN SAKINMA YAKLAŞIMI
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A NOVEL OBSTACLE AVOIDANCE APPROACH
FOR NONHOLONOMIC GROUND VEHICLE AUTONOMY

SUMMARY

The majority of vehicular accidents are attributed to human error. Active safety
systems which are designed to eliminate the human errors in ground vehicles have
been growing year by year. Most of these systems are about vehicle stability.
Besides this, studies about collision warning and collision avoidance systems have
been very popular in recent years. These kind of semi-autonomous applications are the
sub-packages of the self driving full autonomous cars of the future. Obstacle avoidance
algorithms have a very critical task in both semi-autonomous and full-autonomous
applications.

In this thesis, a novel obstacle avoidance algorithm, "Follow the Gap Method" (FGM)
is designed for nonholonomic ground vehicles. Obstacle avoidance ability is one of
the most important subsystems of autonomous robots. These algorithms are different
from the classical path planning algorithms since no prior information is given to the
robot. Nature of the obstacle algorithm should be reactive because, coordinates of
any obstacle may change at any time and can not be known previously. This prevents
the use of the classical optimization techniques in obstacle avoidance problems. The
algorithm must compute just the next action in every instant, based on the current
context. There are too many studies about this subject in literature.

The most important property of the designed FGM algorithm is maximizing the
distance to obstacle value as much as possible. Before starting the algorithm, robot
dimension is added to obstacle dimensions in order to convert the problem into a
point robot obstacle avoidance problem. The FGM has 3 main parts. First part of the
algorithm calculates the gaps around the robot. Nonholonomic constraints and robot
field of view constraints are considered in this calculation. In second part, maximum
gap is selected and heading angle to the center of the maximum gap is calculated. Two
different methods are illustrated for this calculation. In the first method, Apollonius
and Cosinus theorems are used while a basic average is calculated in the second
method. In the last part of the FGM, a final reference angle is calculated by using
both the center of the maximum gap angle and the goal angle. This calculation is done
by using a fusing function which uses the distance to obstacle parameter inside. Gap
center angle and the goal angle may be in different directions. However, the final angle
approaches the gap center angle when the distance to obstacle approaches zero. This
guarantees the obstacle avoidance if there is at least one gap around the robot. The
fusing function is designed specifically to reflect this property.

Comparison of the algorithm is done with the Artificial Potential Fields (APF) method
and the A* shortest path algorithm. A safety metric which depends on the distance
to obstacle value is defined and used for fair comparison between methods. Series
of Monte Carlo simulations where the obstacles and the goal coordinate values are
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given randomly to each model are performed for a fair comparison. According to the
simulation results, the FGM results in safer trajectories than the others. This safety
is measured numerically using the designed safety metric. The FGM is free from the
local minimum problem which can be seen in the APF and APF based algorithms such
as the virtual force field (VFF) method. The FGM has only one tuning parameter alpha,
which adjusts the ratio between obstacle avoidance and arriving at the goal point. The
reactive nature of the algorithm provides successful results even in dynamic obstacle
scenarios.

Most of the obstacle avoidance algorithms in literature calculate only the reference
heading vector for obstacle avoidance. This can be enough in low speed values but
in higher values, the dynamic properties of the robot become important. This time,
performance of the obstacle avoidance algorithm depends on not only the maneuver
but also the speed of the robot. For this reason, speed decision is studied in a separated
section and a new speed planning strategy is developed. Two cascade connected fuzzy
inference systems (FIS) are used for speed planning. First block calculates a risk factor
by using the distance to obstacle and angle to obstacle values while the second FIS is
used for stabilizing the yaw dynamics. A safety metric is designed for Monte Carlo
simulations which shows that this new method is safer than the classical methods.

Low level speed controller also affects the avoidance performance. The aim of the low
level speed controller is to calculate the throttle and brake pedal signals in order to track
the desired speed. A new low level speed controller using fuzzy logic is designed in
this thesis. Similar cascaded FIS structure is used here as in speed planning algorithm.
Three input values for FIS are; speed error, integral of the speed error and the steering
angle values. According to the simulation results, the new method results in safer yaw
dynamics especially for the aggressive maneuver scenarios.

All designed algorithms are simulated and compared with the existing methods.
Kinematic and dynamic vehicle modeling issues and the used vehicle parameters are
explained in a separated section. Each algorithm is coded using C programming
language into the S-functions using Matlab/Simulink environment.

All designed algorithms are tested using experimental autonomous ground vehicle
platform. The experimental platform is a full autonomous ground vehicle which is
converted from a conventional electric vehicle during this thesis work. Conversion
procedure is divided into two groups as electrical and mechanical modifications.
Sensors, computer system, additional batteries and interface circuit of the vehicle
are explained in electrical modifications part. Automatic steering, automatic braking,
computer aided drawing of the vehicle are explained in mechanical modifications part.
Apart from these, two different interface softwares are developed for in-vehicle and
out-vehicle communication for this thesis. "Control Desk" tool of Dspace company
is used for in-vehicle interface software which is designed for testing the in-vehicle
communication, data recording and in-vehicle safety. C++ programming language
with Visual Studio platform is used for out-vehicle communication software, which
runs in a host PC. This software sends the desired coordinate values or emergency
signal to the vehicle, can drive the vehicle remotely and can visualize the critical data
of the vehicle.

Each of the designed algorithms runs real-time in Microautobox 1401/1501 hardware.
Algorithms are coded using C programming language, integrated in C-S functions with
10ms cycle time.
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HOLONOM OLMAYAN KARA TAŞITINDA OTONOMLUĞU
SAĞLAMAK İÇİN YENİ BİR ENGELDEN SAKINMA YAKLAŞIMI

ÖZET

Günümüzde yapılan trafik kazalarının önemli bir kısmı insan hatalarından kaynaklan-
maktadır. Kazaları önlemeye yönelik geliştirilen aktif güvenlik sistemleri giderek
çoğalmaktadır fakat hala yeterli seviyede değildir. Şu anda var olan güvenlik sistemleri
daha çok, araç stabilitesini sağlamaya yöneliktir. Bunun yanında, olası bir çarpışmayı
önceden tahmin edip uyarı veren veya kısa süreliğine otoriteyi sürücüden devralan
yarı otonom sistemler üzerindeki çalışmalar son yıllarda oldukça hız kazanmıştır. Bu
çalışmalarla varılması öngörülen son nokta ise, kendi kendini sürebilen tam otonom
araçlardır. Her iki yapıda da engelden kaçma algoritmalarının önemi oldukça fazladır.

Bu tezde, holonom olmayan otonom kara taşıtları için "Boşluğu Takip Et" (BTE) isimli
yeni bir engelden kaçma algoritması tasarlanmıştır. Engelden kaçma algoritmaları,
otonom yapıların en önemli alt sistemlerinden biridir. Bu algoritmalar, klasik
yörünge planlama algoritmalarından farklı olarak, ortamdaki engellerin hareket
esnasında algılanmasıyla dinamik olarak çalışmak zorundadır. Yani önceden belirli
bir harita yoktur ve hızlı cevap verme gereksinimi, klasik optimizasyon tekniklerinin
uygulanmasını engellemektedir. Konuyla ilgili günümüze kadar pek çok çalışma
mevcuttur.

Bu tezde tasarlanan BTE algoritmasının en önemli özelliği, engellerden kaçarken,
engellerle robot arasındaki mesafeyi mümkün olduğunca fazla kılmasıdır. Algoritma
hesaplama aşamasına geçmeden önce, robotun boyutunu, etrafındaki engellerin
boyutuna ekleyerek , kendisini bir nokta haline getirmektedir. Bu hazırlık aşamasından
sonra, BTE algoritması üç ana kısımdan oluşmaktadır. İlk kısımda öncelikle
aracın etrafındaki boşlukların listesi çıkartılır. Bu boşluklar hesaplanırken, aracın
holonom olmamaktan dolayı gelen kısıtları ve sensörlerin görüş açıları da hesaplara
katılmaktadır. BTE algoritmasının ikinci kısmında ise robotun çevresindeki en geniş
boşluk seçilir ve bu boşluğun merkezine doğru yönelen açı hesaplanır. En geniş
boşluğun merkezi hesaplanırken iki farklı metod gösterilmiştir. Bu metodların ilkinde,
Apollonius ve Kosinüs teoremlerinden faydalanılmış, diğerinde ise basitçe ortalama
alınmıştır. Her ikisinin de yol açtığı yörüngeler simülasyonlarla gösterilmiştir.
Algoritmanın üçüncü ve son kısmında ise, en geniş boşluğun merkezine yönelen açı
ile, hedefe giden açı değerleri kullanılarak bir referans yönelim açısı hesaplanır. Bu iki
açı değeri, aracın en yakın engelle olan mesafesine bağlı bir birleştirme fonksiyonuna
sokularak sonuca gidilir. En geniş boşluğun merkezi ve varmak istenilen hedef noktası,
birbiriyle çelişen doğrultularda olabilir. Fakat tasarlanan birleştirme fonksiyonu, robot
ile engel arasındaki mesafe sıfıra giderken, matematiksel olarak boşluğun merkezine
yakınsadığından, etrafta boşluk olduğu sürece engellerden sakınmayı garanti eder.

Algoritmanın diğer metodlarla güvenlik anlamında adil bir şekilde karşılaştırılabilmesi
için, araçla engeller arasındaki mesafeye bağlı bir fonksiyonun birinci normu
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karşılaştırma metriği olarak kullanılmıştır. Karşılaştırmalar, en yaygın bilinen
engelden kaçma algoritmalarından olan yapay potansiyel alan (YPA) metodu ve en kısa
yol stratejisi olan A* algoritmalarıyla, engellerin ve hedefin rastgele belirlendiği Monte
Carlo simülasyon tekniğiyle yapılmıştır. Yapılan karşılaştırmalarda, diğer metodlara
oranla daha güvenli yörüngeler elde edilmiştir. Tasarlanan algoritma, YPA ve YPA
türevli sanal kuvvet alanları metodundaki lokal minimum probleminden bağımsızdır.
Ayrıca, aracın holonomik olmayan kısıtları ve aracın görüş açısı da boşlukların
hesabında kullanılarak, araç görebildiği ve holonomik olmayan kısıtlarına rağmen
gidebileceği yönlere doğru yönlendirilir. Bunun yanında, algoritmanın ne kadar hedef
odaklı, ne kadar engelden kaçma odaklı olacağı da kullanıcı tarafından dışarıdan girilen
bir ayar parametresiyle belirlenebilmektedir. Ayar parametre sayısının 1 olması da
kullanım için kolaylık sağlamaktadır. Algoritmanın reaktif yapısı, dinamik engellerden
kaçma konusunda da başarılı sonuçlar elde edilmesini sağlamıştır. BTE algoritması,
sadece holonom olmayan kara taşıtlarına değil, engelden kaçma gereksinimi duyulan
tüm robotik uygulamalarda da kullanılabilir.

Literatürdeki engelden kaçma algoritmalarının en büyük eksikliklerinden biri,
stratejinin sadece robotun manevrasına yönelik geliştirilmesidir. Bunun temel nedeni,
algoritmaların genellikle düşük hızlarda çalışan mobil robotlar üzerinde geliştirilmiş
olması ve kinematik çözümlerin yeterli sayılmasıdır. Fakat robot hızı arttıkça, robotun
dinamik etkileri de artmaktadır.

Örneğin bu tezde kullanılan otonom kara aracı platformunda, engelden kaçmak için
hesaplanan direksiyon açısının uygulanması esnasında aniden yüksek bir hız referansı
girilip gaza basılırsa, araç stabilitesi bozulabilir ve araç savrulabilir. Yoğun engelli
bir ortamda aracın daha yavaş bir şekilde manevrasını gerçekleştirilmesi istenir.
Engelden kaçma algoritmasının performansı, aracın dinamik özellikleri de göz önüne
alındığında, aracın hızıyla da doğrudan alakalıdır. Bu nedenle bu tezde, sadece aracın
yöneliminin belirlenmesinin değil, aracın referans hızına karar verilmesi konusunda
da yeni bir metod geliştirilmiştir. Bu metodda, bulanık mantık yöntemi kullanılarak,
aracın en yakın engelle olan mesafesi ve araca olan açı bilgileriyle bir risk faktörü
hesaplanır. Bir başka bulanık çıkarıcıda da bu risk faktörüyle direksiyon açısı bilgisi
birlikte kullanılarak yeni bir hız karar mekanizması tasarlanmıştır. İki bulanık çıkarıcı
birbirlerine kaskat bağlanmıştır. Bu sayede, üç giriş için karar mekanizmasının tasarım
zorluğu ortadan kaldırılmış ve iki adet iki girişli karar mekanizması tasarlanmıştır.
Bu sayede toplam kural saysı da önemli ölçüde azaltılmıştır. Aracın engelle olan
mesafesi ve savrulma oranını içeren bir fonksiyon kullanılarak karşılaştırma için bir
güvenlik metriği oluşturulmuştur. Yapılan Monte Carlo simülasyonları sonucunda,
klasik metodlara göre daha güvenli sonuçlar elde edilmiştir.

Aracın alt seviye hız kontrolcüsü de engelden kaçma performansında doğrudan rol
oynamaktadır. Alt seviye kontrolcüsünün görevi, verilen hız referansına göre aracın
pedal girişlerine verilmesi gereken değerleri hesaplamaktır. Bu kontrolcü için de
yeni bir bulanık çıkarım yapısı tasarlanmış ve bu yapının içerisine de hız hatası, hız
hatasının integrali ve hız direksiyon açısı bilgileri yerleştirilmiştir. Hatanın türevi
yerine integralinin kullanılmasının nedeni, literatürde var olan ve hatanın kendisi ve
integralini kullanan fakat direksiyon sinyalini göz önüne almayan benzer yöntemle
adil olarak karşılaştırma yapılabilmesi içindir. Tasarlanan metodda, iki bulanık çıkarıcı
birbirlerine kaskat bağlanmıştır. Bu sayede üç giriş için karar mekanizmasının tasarım
zorluğu ortadan kaldırılmış ve iki adet iki girişli karar mekanizması tasarlanmıştır. Bu
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sayede toplam kural sayısı da önemli ölçüde azaltılmıştır.Alt seviye hız kontrolörünün
performansı için, dinamik araç modeli kullanılarak, karşılaştırmalı simülasyonlar
yapılmıştır. Yapılan karşılaştırmalarda yeni metodun direksiyon açısından bağımsız
çalışan klasik metoda göre, özellikle agresif manevra yapılan bölümlerde daha
güvenilir sonuçlar verdiği gösterilmiştir.

Tasarlanan tüm yeni algoritmalar, simülasyon ortamında denenip, diğer metodlarla
karşılaştırılmıştır. Bu simülasyonlar esnasında kullanılan araç kinematik ve dinamik
modelleri ve araç parametreleri tez içerisinde ayrı bir bölümde açıklanmıştır.
Modelleme için, Matlab/Simulink R© ortamı kullanılmıştır. Tüm algoritmalar, C
programlama dili kullanılarak, Simulink blokları içerisine, S-fonksiyonlar yardımıyla
entegre edilmiştir.

Tezde tasarlanan tüm algoritmalar ayrıca deneysel sistem üzerinde de gerçeklenmiştir.
Deneysel sistem, tez çalışması esnasında tam otonom bir kara aracına dönüştürülen
klasik bir elektrikli araçtır. Bu otonom aracın dönüştürülmesiyle ilgili yapılan
çalışmalar da tezde ayrıntılı olarak gösterilmiştir. Yapılan dönüştürme işlemi,
elektriksel ve mekanik modifikasyonlar olmak üzere, iki ana başlıkta incelenmiştir.

Elektriksel modifikasyonlar kısmında, araca otonomluk için sonradan takılan tüm
sensörler ve bilgisayar sistemleri yer almaktadır. Tez kapsamında tasarlanan tam
otonom kara aracına; etrafın algılanabilmesi, aracın konumlandırılması ve araç
durumlarının ölçülebilmesi için çeşitli sensörler yerleştirilmiştir. Ayrıca sinyal
seviyelerindeki uyumsuzluk ve kullanıcı arayüzü için de basit bir elektronik devre
tasarlanmıştır. Son olarak, ekstra takılan tüm sensör, motor ve bilgisayar sistemleri
için harici bir güç sistemi oluşturulmuş ve bu sistemler aracın lendi bataryalarından
bağımsız olarak beslenmiştir.

Mekanik modifikisayonlar kısmında ise, aracın fren ve direksiyon sisteminin otomatik
hale getirilmesi yer alır. Her iki sistem için bazı mekanik tasarımlar yapılmış ve
uygun tork-hız karakterisitiğini sağlayan elektrik motorlarıyla bu sistemler otomatik
hale getirilmiştir. Bunun yanında, sensör yerleşimi ve koruyucu parçaların tasarımı
için aracın bilgisayar ortamındaki çizimleri tasarımlarda kolaylık sağlamıştır.

Bunların dışında, aracın iç haberleşmesi ve dış haberleşmesi için iki ayrı arayüz
yazılımı geliştirilmiştir. Araç içi arayüz için Dspace firmasının "ControlDesk"
isimli yazılım paketi kullanılmıştır. Bu yazılımın amacı, araç içindeki haberleşmeyi
test etmek, veri toplamak ve araç içi güvenliği sağlamaktır. Aracın dışarıyla
haberleşmesi içinse, C++ programlama diliyle Visual Studio ortamında yazılan bir
arayüz programı geliştirilmiştir. Bu yazılım ile araca gitmesi istenen koordinatlar
kablosuz olarak gönderilebilmekte, araç uzaktan sürülebilmekte, kritik bilgiler araçtan
alınıp görselleştirilmekte ve araca acil durum sinyali gönderilebilmektedir.

Sonuç olarak tez kapsamında, 3 temel konuda yenilikler getirilmiştir. İlki, yeni
bir engelden kaçma algoritmasının tasarımı, ikincisi yeni bir hız referans belirleme
yaklaşımı ve sonuncusu da yeni bir alt seviye hız kontrol yaklaşımının geliştirilmesidir.
Bu tez kapsamında tasarlanan algoritmalar, araç içerisinde yer alan Microautobox
1401/1501 donanımı içerisinde gerçek zamanlı olarak koşmaktadır. Algoritmaların
koşturulması için, C programlama diliyle yazılan S-fonksiyonlar, Simulink bloklarıyla
entegre bir şekilde çalışmaktadır. Bütün çevrim için 10ms’lik bir örnekleme zamanı
kullanılmıştır.
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1. INTRODUCTION

1.1 Motivation

The majority of vehicular accidents are attributed to human error. Based on British

and American crash data, 93 percent of crashes were either wholly or partly caused

by human factors such as driver error, intoxication, or inattention. Semi-autonomous

and fully autonomous vehicle guidance would be one of the best approaches to prevent

this massive cost and human tragedy. Figure 1.1 shows the percentage of the traffic

accident sources of USA from [1]. As it can be seen, most of the accidents are directly

related with driver mistakes.

Figure 1.1: Percentage of the Traffic Accidents of USA [1].

Autonomy of ground vehicles is not a novel idea and it has been studied for a long

time. Most of the conventional vehicles cover active safety systems which take over

the authority from driver for safer operation. Today’s safety systems work mostly on

the stability level and therefore rely on sensors that measure the states of the vehicle

such as the yaw rate [5]. Future developments will focus on active guidance systems

that link the vehicle to its environment. This trend mainly originates from the rapid

development of environmental sensor systems such as Radio Detection And Ranging
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(RADAR), Light Detection And Ranging (LIDAR), or video and effective algorithms

for sensor fusion, object detection and tracking.

A roadmap of driver assistance and safety systems and their safety potential are

illustrated in Figure 1.2.

Figure 1.2: Roadmap of Active and Passive Safety Systems and their Safety Potential
[2].

According to the Figure 1.2, driver assistance ratio is growing each year and the

autonomous vehicles are the latest predicted technology for ground vehicles.

1.2 Semi-Autonomous Ground Vehicle

The conventional vehicles which are equipped with some of the above active safety

systems can be thought as semi-autonomous vehicles. Semi-autonomous vehicles take

the authority partially or fully from the human driver in dangerous situations. The

decision to use automation to assist or replace a human operator in safety-critical tasks

must account with the technological capabilities of the sensor control subsystems, the

autonomy capabilities and preferences of the human operator.

Collision avoidance is a system for warning and avoidance of a pending collision [6].

This term is generaly used in active safety area. The equivalent version of this word in

autonomous vehicles is “obstacle avoidance”. Both these two words can be used for

the same meaning in different sources.

Collision avoidance system has an extended functionality compared to the Obstacle

and Collision Warning. An autonomous intervention takes over the control of the
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vehicle in critical situations in order to avoid an accident. Longitudinal and lateral

control is done by the system during the defined time while the dangerous event takes

place [7].

Collision Avoidance systems, as a subsequent step to collision mitigation, are one of

the great challenges in the area of active safety for road vehicles. Collision mitigation

functions usually intervene when a collision is unavoidable, and actuate e.g. the brake

system in order to reduce the consequences of a collision by reducing the impact

speed. For collision mitigation functions it is generally true that the safety benefit

becomes larger when the impact speed reduction is larger. The mitigational effect

is achieved by reducing the amount of collision energy by reducing the collision

speed. The fundamental mechanism for collision avoidance is, however, different,

as here the trajectory of the involved vehicle(s) is changed in way to avoid an impact.

Principally, this can be done in two separate ways, which are addressed within the

two sub projects Collision Mitigation by Braking (CMbB) and Collision Avoidance

by Steering (CAbS). For Collision Mitigation Systems a special situation has been

identified where Collision Avoidance potential exist, when the motion of surrounding

traffic is studied and taken into account in the decision making. In that manner, CMbB

will judge a threat situation even from an "escape path" point of view an thereby

exhibits collision avoidance potential [8].

Collision avoidance systems in a semi-autonomous vehicle should share the authority

with the driver. A risk estimation for decision making for activating the collision

avoidance algorithm should also be done. [9] illustrates a risk estimation method

for collision avoidance system. In [3], optimal trajectory is calculated with Model

Predictive Control and this trajectory is then used for calculating the authority

management between driver and controller. Figure 1.3 illustrates the diagram of

this approach in which the “K” value determines the ratio of driver and controller

commands.

1.3 Fully Autonomous Ground Vehicle

A fully autonomous ground vehicle or in other words an unmanned ground vehicle

UGV is essentially an autonomous robot but is specifically a vehicle that operates on
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Figure 1.3: Authority Sharing in a Semi-Autonomous Vehicle [3].

the surface of the ground. A fully autonomous robot in the real world has the following

abilities [10].

• Perception - Viewing the world and interpreting what it sees.

• Localization - Keeping track of the robot’s position.

• Global Path Planning - Finding the fastest and safest way to get from start to goal.

• Local Navigation - Making sure the robot doesn’t tip, drive into holes or bump into

obstacles.

The list can be extended with different capabilities but these are the minimal abilities

that a UGV must have. Figure 1.4 illustrates some UGV examples for different aims.

(a) Carnegie Mellon’s UGV Win-
ner of DGC07 [11].

(b) “Guardium” Millitary UGV
[12].

(c) Irobots’ Autonomous Robotic
Vacuum [13].

Figure 1.4: Different UGV Implementations for Specific Aims.

The biggest competition for UGV’s is the DARPA (Defense Advanced Research

Projects Agency) Grand Challenge. The DARPA Grand Challenge is a prize
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competition for unmanned vehicles, funded by the DARPA, the most prominent

research organization of the United States Department of Defense. A lot of teams

from universities or technology companies [11], [4], [14], [15] have designed and

produced UGV’s for this competition. Every team has different hardware and

software architectures for their systems. Figure 1.5 illustrates the team MIT’s system

architecture.

Figure 1.5: System Architecture for Team MIT Vehicle for DARPA GC 2007 [4].

The main two blocks of the figure above which are directly related to this thesis

are Situational Planner and Vehicle Controller. Global planning is done in Mission

Planner block which includes predetermined waypoints that are given by competition

in a Route Network Definition File (RNDF). This file specifies accessible road

segments and provides information such as waypoints, stop sign locations, lane widths,

checkpoint locations, and parking spot locations. Situational planner can be thought

as local planner in order to calculate the trajectory for arriving the way points with its

obstacle and collision avoidance capability.

The Situational Planner identifies and optimizes a kino-dynamically feasible vehicle

trajectory that moves towards the RNDF waypoint selected by the Mission Planner

and Situational Interpreter using the constraints given by the Situational Interpreter.

Uncertainty in local situational awareness is handled through rapid replanning and

constraint tightening. The Situational Planner also accounts explicitly for vehicle
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safety, even with moving obstacles. The output is a desired vehicle trajectory, specified

as an ordered list of waypoints (each with position, velocity, and heading) that are

provided to the Vehicle Controller.

The Vehicle Controller uses the inputs from the Perceptual State Estimator to execute

the low-level control necessary to track the desired paths and velocity profiles issued

by the Situational Planner.

1.4 Purpose of the Thesis

Title of this thesis is "A Novel Obstacle Avoidance Approach for Nonholonomic

Ground Vehicle Autonomy". Obstacle avoidance is different from global planning

since it is activated when the environment is unknown. Obstacle avoidance algorithms

should work cooperatively with global planners. Global planners commands are

disabled and obstacle avoidance is activated when an unexpected obstacle scenario

is met. Goal point to the obstacle avoidance algorithm is given by global planner.

Figure 1.6 illustrates the sub modules of the designed UGV. Gray boxes show the new

designed algorithms in this thesis.

Figure 1.6: Sub Modules of the Designed UGV.

Purpose of the thesis is to design a new and effective obstacle avoidance method for a

nonholonomic ground vehicle. Formal definition of the problem for heading reference

calculation for obstacle avoidance is given in Section 4.2. Many of the obstacle

avoidance algorithms are studied in mobile robotics field where the robot’s speed

is relatively low. For this reason the researchers generally concentrates on finding

the desired heading angle of the robot. However, especially in higher speeds, robot

dynamics becomes more important and robot’s speed affects the obstacle avoidance
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performance along with the robot maneuver. Since the obstacle avoidance performance

depends not only the steering method but also the vehicle velocity and velocity tracking

capability, designing new speed planning and speed control methods are the other

purposes of the thesis. Literature overview for each problem is given in related

sections.

1.5 Contributions of the Thesis

Several contributions have been made within this thesis. Most of the results have

been published or accepted to be published in scientific journals or conference

proceedings. All designed algorithms are tested in simulations and experimental

platform. Contributions can be given in three parts.

First part is the calculation of the desired heading vector for obstacle avoidance which

is explained in Chapter 4 in detail. Main contributions about the newly designed

obstacle avoidance algorithm can be listed as;

• The algorithm results in safer trajectories in comparison with the other tested

methods.

• The algorithm has no local minimum problem.

• Nonholonomic constraints of the robot is taken into account and feasible trajectories

are generated while the other methods do not have this property.

• The field of view of the robot is taken into account and the robot is not forced to

move towards unperceived directions.

• Follow the Gap algorithm is easy to tune with only one tuning parameter, “alpha”.

The second part of the contributions are made within the new designed speed planning

algorithm in Chapter 5. Following contributions can be listed;

• Three parameters are used for speed planning by using two cascaded Fuzzy

Inference Systems (FIS),

• Danger level of the obstacle is calculated using both the distance to obstacle and

obstacle angle values.
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• Steering angle value is considered along with the danger level of the obstacles in

order to provide a stable yaw dynamics.

Finally, low level speed control is the third main part for the contributions which

explained in Chapter 6. Contributions about this subject are listed as;

• Two cascaded Fuzzy Inference Systems (FIS) are used for low level speed control.

• Steering angle value is considered for stable yaw dynamics.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 illustrates the kinematic and dynamic

vehicle modeling . Chapter 3 introduces the design of the experimental platform which

is a UGV and used for the experimental tests of the designed algorithms. Chapter 4

explains the novel obstacle avoidance algorithm called as the ”Follow the Gap Method”

in detail. Chapter 5 illustrates the new fuzzy speed planning strategy. The new low

level speed control method is given Chapter 6. Finally, simulation and experimental

results of the designed strategies together, are illustrated in Chapter 7.
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2. KINEMATIC AND DYNAMIC VEHICLE MODELING

2.1 Introduction

In this chapter, kinematic and dynamic vehicle modeling subjects are explained.

Vehicle modeling is very important for realistic simulations of designed algorithms.

In low speed values, kinematic vehicle model is enough for obstacle avoidance tests.

When the speed value increases, dynamic vehicle model becomes necessary for

realistic results. Both of these two models are used for the simulations in this thesis.

Matlab/Simulink environment is used for modeling calculations. Detailed information

about vehicle modeling concept can be found in [16], [17], [18] and [19].

2.2 Model Parameters

Model parameters which are used during the simulations of this thesis represent the

’Otonobil’ which is a pure electric two-seater vehicle with 6.5kW electric motor. It is

also used for the road tests of the designed algorithms. Figure 2.1 illustrates the used

EC-2 model electric vehicle from Bestar Company [20].

Figure 2.1: Base Vehicle Used for Modeling and Simulations.

Parameters that are used for both kinematic and dynamic vehicle model are illustrated

in Table 2.1. Pacejka tire parameters are taken from the appendix chapter of [21].
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Table 2.1: Vehicle Parameters.

Parameter Value Unit
Mass(M) 857 kg

Distance from c.g. to front axle(l f ) 0.92 m
Distance from c.g. to rear axle(lr) 0.78 m

Tire Inertia(Jtire) 6 kgm2

Tire Diameter(R) 0.28 m
Rolling Resistance Coefficient( fr) 0.016

Atmospheric Density(ρ) 1.2 kg/m3

Frontal Area(A) 2.11 m2

Aerodynamic Drag Coefficient(ξ ) 3
Distance from front axle to front side(n) 0.314 m
Distance from rear axle to rear side(m) 0.277 m

Gear Ratio(gr) 10
Gear Efficiency(ηg) 0.9
Camber Angle(γ) 0 deg

a0 1.6929
a1 -55.21
a2 1271.3
a3 1601.8
a4 6.4946
a5 4.8*10−3

a6 -3.87510−1

a7 1
a8 -4.54 *10−2

a9 4.28*10−3

a10 8.65*10−2

a111 0
a112 0
a12 0
a13 0
b0 1.65
b1 -7.62
b2 1122.6
b3 -7.3610−3

b4 144.82
b5 -7.66*10−2

b6 -3.8610−3

b7 8.50510−2

b8 7.57 *10−2

b9 2.36*10−2

b10 2.36*10−2
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2.3 Kinematic Vehicle Model

Kinematic modeling is the study of the mathematics of motion without considering the

forces that affect the motion. Figure 2.2 shows the vehicle parameters for kinematic

model.

Figure 2.2: Vehicle Parameters for Kinematic Model.

Kinematic vehicle modeling equations are illustrated as follows.

dx
dt

=V cos(Θ) (2.1)

dy
dt

=V sin(Θ) (2.2)

dΘ

dt
=

V
l f

tan(δ ) (2.3)

Inputs of the model are vehicle speed(V ) and steering angle (δ ). Outputs of the model

are the X-Y coordinates of the center of gravitiy (CoG) and the heading angle (Θ). In

order to calculate the vertex coordinates of such a rectangular shaped ground vehicle in

Cartesian space, basic trigonometric relations are used. Figure 2.3 shows the vertexes

and used parameters for this calculation.

Following equations are for calculating the midpoint coordinates of front and rear side

of the vehicle (A and B).

Ax = x−mcos(Θ)
Ay = y−msin(Θ)

(2.4)

Bx = x+(l f +n)cos(Θ)
By = y+(l f +n)sin(Θ)

(2.5)
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Figure 2.3: Vertexes and Related Parameters for Kinematic Model.

Vertexes are labeled as 1, 2, 3 and 4 in Figure 2.3. Equations for the vertex coordinates

are illustrated below.

1x = Bx +acos(Π

2 −Θ)

1y = By−asin(Π

2 −Θ)
(2.6)

2x = Bx−acos(Π

2 −Θ)

2y = By +asin(Π

2 −Θ)
(2.7)

3x = Ax +acos(Π

2 −Θ)

3y = Ay−asin(Π

2 −Θ)
(2.8)

4x = Ax−acos(Π

2 −Θ)

4y = Ay +asin(Π

2 −Θ)
(2.9)

A sample simulation of the kinematic model is illustrated in Figure 2.4 for the given

speed and steering angle profiles. Red dots in Figure 2.4c show the center of gravity

point which can be seen in Figure 2.3.

2.4 Dynamic Vehicle Model

Single track bicycle model with Pacejka tire equations are used for dynamic vehicle

modeling. This model includes both the longitudinal and the lateral dynamics. The

single-track model is obtained by lumping the two front wheels into one wheel in the

center line of the car, the same is done with the two rear wheels [17]. Figure 2.5

illustrates the single track vehicle parameters.

The augmented single track model consists of Pacejka tire model, steering angle

projection, lateral and longitudinal vehicle dynamics, kinematics and geometry and
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Figure 2.4: Kinematic Vehicle Model Simulation Results (Xinit = 0,Yinit = 0,θinit = 0).

Figure 2.5: Single Track Vehicle Model Parameters.

wheel velocity calculation subsystems. Block diagram of the dynamic vehicle model

is illustrated in Figure 2.6.

Explanations about each block are illustrated in following sections.

2.4.1 Pacejka tire model

Tires enable vehicle motion by providing for traction, braking, steering, and load

support. Tires are inflated with air, which provides a flexible cushion between the

vehicle and the road that smoothes out shock and provides for a comfortable ride.

Pacejka tire model is used for modeling tires of the vehicle. This model is based on the
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Figure 2.6: Dynamic Vehicle Model Block Diagram.

Pacejka Magic Formula which is obtained by empirical results. More information can

be found in [19]. Equation for calculating the longitudinal tire force is given below.

Fx( f ,r)(s) = Dsin(C arctan(B(s f ,r +Sh)−E(B(s f ,r +Sh)− arctan(B(s f ,r +Sh)))))+Sv

(2.10)

where B,C,D,E,Sv,Sh are six coefficients which depend on the vertical tire force Fz

and the camber angle γ . Calculation of these coefficiencts are illustrated below.

C = b0 (2.11)

D = µpFz (2.12)

BCD = (b3F2
z +b4Fz)e−b5Fz (2.13)

E = b6F2
z +b7Fz +b8 (2.14)

Sh = b9Fz +b10 (Horizontal Shift Value) (2.15)

Sv = 0 (Vertical Shift Value) (2.16)

Equation for calculating the lateral tire force is given below.

Fy( f ,r)(α) = Dl sin(Cl arctan(Bl(α +Shl)−E(Bα− arctan(Bl(α +Shl)))))+Svl

(2.17)

where Bl,Cl,Dl,El,Svl,Shl are six coefficients which depend on the vertical tire force

Fz and the camber angle γ . Calculation of these coefficiencts are illustrated below.
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Cl = a0 (2.18)

Dl = µypFz (2.19)

µyp = a1Fz +a2 (2.20)

El = a6Fz +a7 (2.21)

a11 = a111Fz +a7 (2.22)

BlClDl = a3 sin(2arctan( f racFza4))(1−a5|γ|) (2.23)

Shl = a8γ +a9Fz +a10 (2.24)

Svl = a11γFz +a12Fz +a13 (2.25)

2.4.2 Steering angle projection block

Steering angle projection block takes the front wheel longitudinal force Fx f , front

wheel lateral force Fy f , rear wheel longitudinal force Fxr, rear wheel lateral force

Fyr and steering angle values for rear and front wheels δ f , δr to calculate the

corresponding forces at the vehicle center of gravity Fx, Fy and Mz. Here, wheel

longitudinal and lateral forces are projected on chassis coordinate axes. Forces and

moment that affect vehicle chassis are calculated below in terms of wheel forces and

steering angles.

Fx =−sin(δ f )Fy f − sin(δr)Fyr + cos(δ f )Fx f + cos(δr)Fxr−Faero−Froll (2.26)

Fy = cos(δ f )Fy f + cos(δr)Fyr + sin(δ f )Fx f + sin(δr)Fxr (2.27)

Mz = l f cos(δ f )Fy f − lr cos(δr)Fyr + l f sin(δ f )Fx f − lr sin(δr)Fxr (2.28)

In Equation 2.26, Faero and Froll are aerodynamic resistive force and rolling resistance

force values respectively. They are calculated as illustrated below.

Faero =
ξ ρA

2
v2 (2.29)

Froll = MgFr (2.30)

where A is the frontal area, ξ is the aerodynamic drag coefficient, ρ is the atmospheric

density and Fr is the rolling resistance coefficient.
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2.4.3 Vehicle dynamics block

In this block vehicle side slip angle β vehicle speed V and yaw rate ψ̇ are calculated

using chassis forces Fx, Fy and yaw moment Mz. Equations are given below.

ψ̇ =
∫ t

t0

Mz

J
dt. (2.31)

V =
∫ t

t0

cos(β )Fx + sin(β )Fy

M
dt. (2.32)

β =
∫ t

t0

−sin(β )Fx + cos(β )Fy

Mv
−ψ dt. (2.33)

2.4.4 Kinematics and geometry block

The angle between wheel speed and the chassis for the front and rear wheels β f , βr are

calculated in this block. Equations are illustrated below.

β f = arctan(tan(β )+
l f ψ̇

vcos(β )
) (2.34)

βr = arctan(tan(β )− lrψ̇
vcos(β )

) (2.35)

2.4.5 Longitudinal wheel slip calculation block

Wheel slip is the measure of the difference between the rotational speed of the wheel

and the translational velocity of the wheel. In order to calculate the slip values for the

rear and front wheels s f , sr, longitudinal speed vector of front and rear wheels vx f , vxr

and wheel angular velocity values w f and wr must be calculated first. Equations are

illustrated below.

vx f =
√

(vcos(β ))2 +(vsin(β )+ ψ̇l f )2 cos(δ f −β f ) (2.36)

vxr =
√

(vcos(β ))2 +(vsin(β )− ψ̇lr)2 cos(δr−βr) (2.37)

w f =
∫ t

t0

Tf −Fx f R
Jtire

dt. (2.38)

wr =
∫ t

t0

Tr−FxrR
Jtire

dt. (2.39)

Tf and Tr are the input torque values given to the vehicle. Since this is a front driven

electric vehicle, Tf is calculated by using the electric motor torque Tm, gear ratio gr

and gear efficiency ηg values as illustrated below.

Tf = Tmgrηg (2.40)
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The torque-speed caharacteristic of the electric motor in nominal region with throttle

input thin is illustrated in Figure 2.7.

Figure 2.7: Electric Motor Toque-Speed Curve.

After the calculation of the vx f , vxr, w f and wr, wheel slip values are calculated as

illustrated below.

s f =
w f R− vx f

vx f
sr =

wrR− vxr

vxr
⇔ w f ,rR < vx,r(Braking) (2.41)

s f =
w f R− vx f

w f R
sr =

wrR− vxr

wrR
⇔ w f ,rR > vx,r(Accelerating) (2.42)

A sample simulation of the dynamic model is illustrated in Figure 2.8 for the given

speed and steering angle profiles. Red dots in Figure 2.8c show the center of gravity

point.

2.5 Conclusions

In this chapter, kinematic and dynamic vehicle modeling subjects are explained in

detail. Derivation of the equations in this chapter can be found in related references.

Developed models are used in order to simulate the newly designed algorithms for

obstacle avoidance, desired speed determination and low level speed control in the rest

of the thesis. All simulations are performed in Matlab/Simulink environment based on
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Figure 2.8: Dynamic Vehicle Model Simulation Results. (Xinit = 0,Yinit = 0,θinit =
0,vinit = 0)

the developed kinematic and dynamic vehicle models with the vehicle parameters that

are shown in Table 2.1.
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3. DEVELOPMENT OF THE EXPERIMENTAL PLATFORM "OTONOBİL"

3.1 Introduction

An experimental platform, ’Otonobil’ is developed in order to test the designed

algorithms. Experimental platform is an unmanned ground vehicle (UGV) and

converted from a conventional electric vehicle EV-2 from Bestarmotor company [20].

EV-2 is a pure electric vehicle with 6.5 kW electric motor and 72V 150Ah battery

system. Autonomous ground vehicle after the conversion process is illustrated in

Figure 3.1. Otonobil is one of the the first fully autonomous ground vehicles of Turkey.

This section illustrates the minimum design requirements for a UGV development,

electrical modifications, mechanical modifications and finally the communication and

interface software respectively.

Figure 3.1: Designed UGV, "Otonobil".

There are some special reasons for choosing the EV-2 as a base vehicle. These reasons

can be summarized as follows:

• Its minimal dimensions make the experimental tests easy on the road.
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• An internal combustion engine causes vibration to the system because of its

working principle. These vibrations may cause extra noise to sensors such as;

inertial measurement unit, laser scanners and etc. Filtering this noise causes the

loss of the original sensor data. But in a pure electric vehicle vibrations are lower

than combustion engine based vehicle.

• Since the vehicle does not have a transmission, there is no need to design an

additional mechanical system for automatic gear shift.

Otonobil’s additional components from rear and front side are illustrated in Figure 3.2.

(a) Front View.

(b) Rear View.

Figure 3.2: Otonobil’s Additional Components from Front and Rear Side.
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Even though the first aim is to convert the base vehicle into a UGV, some additional

features are also considered. First of all, human drivability feature is protected.

Additional information about this will be given in Mechanical Modifications part.

Another feature is drivability by a joystick from outside of the vehicle. Finally, the

main feature of the vehicle is its autonomy which is direclty related with the scope of

thesis. So, the vehicle has 3 operation modes:

• Classic Mode: Drive by human in vehicle.

• Remote Control Mode: Drive by human outside the vehicle.

• Autonomous Mode: Drive autonomously to a given desired location.

3.2 Minimum Design Requirements for an Unmanned Ground Vehicle

Development

There is a minimal set of hardware components that reside on almost all UGV. When

designing a UGV testbed, it is important to consider attributes such as cost, size, and

weight while ensuring modularity [22] . Following items summarize the additional

hardware systems of a typical UGV.

• Processing System: The processing system is the central point of a UGV, which is

responsible for doing all the data processing and decision making operations. This

hardware gathers data from environment, vehicle and interface software. Generally,

one computer is not enough and more than one computers are used simulataneously

in order to be sufficient for all of the calculations.

• Actuators/Controllers: The actuators and their controllers are responsable for

actuating the related components of the UGV such as steering wheel, brake pedal or

throttle pedal. Accurate positioning of these actuators is very important for getting

higher performance from a UGV.

• Sensors: Sensors are responsible for measuring the all necessary information

from the environment and the vehicle itself. GPS (Global Positioning System),

IMU(Inertial Measurement Unit), LIDAR (Light Detection and Ranging), camera

and encoders can be given as examples for UGV sensors.
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• Communication: Ultimately a UGV needs to communicate with an external device.

This may be as simple as sending progress data to a human interface or as complex

as interfacing with a group of UGVs.

3.3 Electrical Modifications

This section illustrtaes the electrical modifications that are made for Otonobil. These

modifications are; selection of the sensors and controllers, design of the additional

power system and design of the signal interface electronic circuit.

3.3.1 Sensors and controllers

In a UGV, there should be specialized sensors to perform mapping and state estimation.

More information about sensors that are used in intelligent vehicles can be found in

[23]. The sensors that are used in Otonobil for mapping and state estimation are listed

in Table 3.1. Gray colored sensors are for mapping of the environment & obstacles and

the others are for state estimation.

Table 3.1: Sensor List of Otonobil for State Estimation and Mapping.

Sensor Type Quantity Brand/Model
Laser Scanner 2 IBEO-LUX
Laser Scanner 1 SICK LMS 151
Camera 1 SONY-XCI-SX100
Ultrasonic Sensor 6 Banner-QT50ULB
Differential GPS 1 Trimble

SPS851-SPS551H
Digital Compass 1 KVH Azimuth1000
IMU 1 Crossbow

VG700AB-201
Optic Speed Sensor 1 Corsys-Datron LF II P
Potentiometer for Steer-
ing Wheel Position

1 Spectrol(5 kOhm)

These sensor data should be processed for localization and mapping. Trajectory

planning, tracking and obstacle avoidance operations are performed according to these

processed data. All these tasks need huge amount of processing power. That’s why the

tasks are distributed between 3 main computers on board. These computers and their

duties are given in Table 3.2.

Figure 3.3 illustrates the computational components of the Otonobil.
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Table 3.2: List of Computational Components of Otonobil.

Computer Description Duty
NI
PXI-8110RT
processor
PXI-7954R
FPGA
module on
PXI1000B
chassis

It has 2.26Ghz
quad-core
processor and
a powerful FPGA
module with
several I/O cards.

Localization,
mapping and
global path
planning

Dspace Mi-
croautobox
(MABX)
1401 /1501
/1507

It has 800Mhz pro-
cessor and several
I/O interfaces.

Local Trajectory
Planning and
tracking, low
level control
(throttle, steering,
brake), wireless
communication

SONY-
XCI-
SX100

It is a smart
camera, which can
process images
with its own
processor and
sends processed
data via UDP/IP.

Image Processing

IBEO ECU It can give both ob-
ject and raw data.
It has tracking al-
gorithms inside and
can classify the ob-
jects around it.

LIDAR Data Pro-
cessing

3.3.2 Additional power system

An extra isolated power supply is needed in order to supply the power for additional

sensors, actuators and computers. When calculating the additional power requirement,

the worst case (all the sensors, computers and actuators are using maximum power at

the same time) is considered. For this aim 4 piece of 12V/50Ah lead-acid batteries

are used by connecting them serial and parallel. 12V and 24V voltage references are

enough for all the additional components. Appropriate fuses and connectors are also

used for each new electrical component. Figure3.4 shows the new battery pack and

power module which includes the fuses and the connector box in the rear side of the

vehicle.
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Figure 3.3: Computational Components of Otonobil.

Figure 3.4: Additional Batteries and Power Box.

3.3.3 Vehicle interface system

One of the most important properties of a UGV is its drive-by-wire capability. An

electric circuit was designed and produced for this aim. Schematic and PCB layout of

the circuit are illustrated in Figure 3.5.

The aim of this circuit is to switch the acceleration signal to electric motor and

brake lamp signals between pedals and low level controller (MABX). According to

the position of the mode selection switch which determines the mode of the vehicle

(autonomous or classic mode), desired electric signals are given from the pedals or

MABX. Installed components for the interface system are illustrated in Figure 3.6.
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(a) Interface Circuit’s Schematic. (b) Interface Circuit’s Printed Circuit Board.

Figure 3.5: Interface Circuit.

Figure 3.6: Human Interface System.

3.4 Mechanical Modifications

In order to convert a conventional car into an autonomous one, some mechanical

modifications must be done as well as the electrical modifications. There are two

main mechanical modifications shown in Figure 3.7; steer by wire and brake by wire

systems.

Figure 3.7a illustrates the original vehicle steering and brake system while Figure

3.7b illustrates them after modification. Beside these, mounting of the sensors needs

some mechanical modifications too. All these works are explained in the following

subsections.

3.4.1 Using computer environment in mechanical design process

Computer aided design (CAD) drawing of the vehicle is illustrated in Figure 3.8 which

is used for establishing the additional components to the vehicle.
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(a) Before Modification. (b) After Modification.

Figure 3.7: Mechanical Modifications.

Figure 3.8: CAD Drawing of the Vehicle.

Basic measurements, consisting of simple dimensions of the vehicle help to build a

CAD model of the vehicle. Once we have these dimensions accurately and translate

them to CAD environment, any modification can be tested easily. This is very useful

for designing the end-production.

3.4.2 Automatic braking mechanism

An autonomous car should be able to do better than what human-beings act while

driving. These actions have to be performed by electro-mechanical systems. The

automatic braking mechanism is designed in order to actuate brake pedal of the vehicle

according to the low level speed controller’s output signals. The design has to be

detachable so it can easily be converted into a conventional car when it is in manual

mode. Final design is illustrated in Figure 3.9.
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Figure 3.9: Automatic Brake System for Otonobil.

Linear guide converts the rotational torque into linear force and pulls the pedal using

the bushing mechanism as illustrated in Figure 3.9.

3.4.3 Automatic steering mechanism

Similar to the automatic braking system, a UGV must steer itself according to the low

level steering controller’s output signals. Views of the steering system assembly in

CAD environment and after modification are illustrated in Figure 3.10.

Figure 3.10: Automatic Steering System for Otonobil.

A gear mechanism is used for connecting the steering column and the servo motor as

illustrated in Figure 3.10. The servo motor does not have a gearbox mechanism inside

which lowers the inertia of the motor. The reason for using that kind of servo motor is

about the manual mode of "Otonobil". Using this servo motor, it is possible to operate

steering wheel by hand as in a conventional vehicle.

3.5 Communication and Interface Software

There are two types of communication structure for a UGV, one is for inside and

the other is for outside of the vehicle. The sensors and computer system with their
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communication are illustrated in Figure 3.11. CAN, Ethernet, RS232 protocols and

analog signals are used for communication in Otonobil as shown in Figure 3.11.

Figure 3.11: Sensor and Computer System and Their Communication in Otonobil.

There are three operation modes of Otonobil ; "classic mode", "remote control mode"

and "autonomous mode" as it was explained previously. Switching between these

modes can be done not only using the interface system as it is illustrated in Figure 3.6

but also from outside of the vehicle. Outside communication scheme of the Otonobil

is illustrated in Figure 3.12.

Figure 3.12: Outside Communication Scheme of Otonobil.

Bluetooth protocol is used between joystick and PC. PC sends/receives data to RS232

protocol via radio frequency (RF). There are 2 RF transceivers from UDEA company
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[24] (UMD-B12P25) in the communication system, one is on PC side, the other is in

the vehicle. RF transceiver electric circuit is illustrated in Figure 3.13.

Figure 3.13: UMD-B12P25 RF Communication Module.

Two interface solutions are developed for this thesis for inside and outside

communication. Interface software inside the vehicle runs in a classical PC and

communicates with the MABX system. It is written using the "Control Desk" tool

of MABX. Important signals can be analyzed and saved. On vehicle side, data from

the sensors are gathered and processed by several algorithms running on National

Instrument’s (NI) computer. Then processed data is sent to MABX via CAN protocol.

The screenshot of the interface software which is designed for inside of the vehicle is

illustrated in Figure 3.14.

Figure 3.14: Interface Software for Inside of the Vehicle.

Otonobil has an interface software for the outside of the vehicle which sends and

receives data from vehicle via serial port of the PC, using the RF transceiver module.

This program is written using C++ in Visual Studio platform. A screenshot of this

interface is illustrated in Fig.3.15.
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Figure 3.15: Interface Software for Outside of the Vehicle.

This interface manages the communication and makes the necessary settings for serial

port. It also sends the operation mode of the vehicle which are the classical mode,

the joystick mode and the autonomous mode. Interface sends the joystick data to

the vehicle in “remote control mode”. The connected joystick is a standard game

console from Logitech, which can be seen in Figure 3.12. Alternatively, acceleration

and steering angle commands can be sent manually without a joystick in this mode.

In autonomous mode, GPS coordinates of the desired location are sent to the vehicle.

Any coordinate can be sent to the vehicle as the goal coordinates to reach in this mode.

On the right side of the Figure 3.15, the picture of the test field is shown and when the

user clicks to anywhere on the picture, coordinate values are calculated automatically

and sent to the vehicle.

An emergency button also sends emergency signal to the vehicle, which is interpreted

as brake and stop on the vehicle side. Additionally, the interface takes the GPS

position, vehicle speed and steering angle position values from the vehicle and shows

them to the user.

3.6 Conclusions

Conversion procedure of a conventional automobile into a UGV is illustrated in this

chapter. Conversion process is studied in 2 main parts, as electrical and mechanical
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modifications. In literature, it is not easy to find a paper which gives enough

information about autonomous vehicle conversion procedure. This chapter tries to

fill the gap in this area.

31



32



4. A NOVEL OBSTACLE AVOIDANCE ALGORITHM: "FOLLOW THE
GAP METHOD"

In this chapter, a novel obstacle avoidance method is designed and applied to the

experimental autonomous ground vehicle system. The proposed method brings a new

solution to the problem and has several advantages compared to previous methods [25].

This novel algorithm is easy to tune and it takes into consideration the field of view and

the nonholonomic constraints of the robot. Moreover the method does not have a local

minimum problem and results in safer trajectories because of its inherent properties

in the definition of the algorithm. The proposed algorithm is tested in simulations and

after the observation of successful results, experimental tests are performed using static

and dynamic obstacle scenarios. The experimental test platform is "Otonobil" with

Ackermann steering geometry which brings nonholonomic constraints is explained

in Chapter 3 . Experimental results show that the task of obstacle avoidance can be

achieved using the algorithm on the autonomous vehicle platform. The algorithm

is very promising for application in mobile and industrial robotics where obstacle

avoidance is a feature of the robotic system.

4.1 Introduction

Robot navigation refers to the robot’s ability to safely move towards the goal using

its knowledge and the sensorial information of the surrounding environment. Given

a map and a goal location, path planning involves finding a geometric path from the

actual location of the robot to the goal/target. This type of planning is referred to

static path planning due to the fact that the map used in the algorithm is static, and

not updated dynamically based on new information [26] [27]. There are many studies

involved with static planning, such as, Probabilistic Roadmaps (PRM) [28], Rapidly

Exploring Random Trees (RRT) [29] , Generalized-Sampling Based Methods [30],

Visibility Graphs [31], Voronoi Diagrams [32] and cell decomposition methods [33].

Beside these, studies about finding an optimal solution for nonholonomic robots, can
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be found in [34] [35]. The common ground of all these path planning methods is the

necessity for a map of the whole workspace.

Obstacle avoidance is different from static path planning with its aim of avoiding

unexpected obstacles along the robot’s trajectory. In other terms, it shapes up the

trajectory of the path planner as a dynamic path planning approach. Considering

the needs of autonomous robot control, it is obvious that detecting and avoiding

obstacles in real time is crucial for the performance. For this reason, many researchers

have turned their attention to the obstacle avoidance problem developing interesting

real-time approaches for avoiding unexpected static and dynamic obstacles.

Several methods have been proposed for obstacle avoidance starting from the 1980s

till now. The earliest versions of these obstacle avoidance methods are bug algorithms

[36]. These algorithms follow the easiest common sense approach of moving directly

towards the goal, until an obstacle is found, in which case the obstacle is contoured

until moving towards the goal is possible again. The trajectories of bug algorithms are

sometimes very long and the robot is prone to move too close to obstacles.

Another common approach is the artificial potential field (APF) method [37]. In the

APF approach, the obstacles to be avoided are represented by a repulsive artificial

potential and the goal is represented by an attractive potential, so that a robot reaches

the goal without colliding with obstacles. Main drawbacks of the APF method are

summarized in [38] and local minima is the most dangerous problem of APF. This

happens when all the vectors from obstacles and the goal point cancel each other out

and make it impossible for the robot to reach the goal. There are a great number

of studies focusing on this problem. The first method comes from definition of

the potential function by specifying a function with no local minima like harmonic

potential field approach [39]. However in this approach, the robot must know the

map of the whole environment and this contradicts reactiveness and local planning

properties of obstacle avoidance. Other approaches for local minimum avoidance

involve some practical ad-hoc solutions, such as those proposed in [40] [41] [42].

However, none of these approaches can offer an ultimate guarantee to avoid this.

The Virtual Force Field method (VFF) [43] uses a two-dimensional Cartesian

histogram grid for obstacle representation. Each cell in the histogram grid holds a
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certainty value that represents the confidence of the algorithm in the existence of an

obstacle at that location. After that, APF is applied to the histogram grid, therefore the

problems of the APF method still exists in the VFF method.

The Vector Field Histogram (VFH) [44] uses a two-dimensional Cartesian histogram

grid like in VFF. After that, the histogram grid is reduced to a one dimensional polar

histogram that is constructed around the robot’s momentary location. In the second

stage, the algorithm selects the most suitable sector from among all polar histogram

sectors with a low polar obstacle density, and the steering of the robot is aligned with

that direction. This method is very much goal oriented since it always selects the sector

which is the same direction as the goal, but the selected sector can be the wrong one in

some cases. This method also does not consider nonholonomic constraints of robots

like the other methods mentioned above. More information about the concepts for

dynamic obstacle avoidance can be found in [45].

In this chapter, a novel approach called the “Follow the Gap Method” (FGM) is

presented as a novel obstacle avoidance algorithm. FGM ensures safety by directing

the robot into the center of the maximum gap as much as possible while providing

the reach of the goal point. FGM calculates a gap array around the robot, selects the

appropriate gap, calculates the best heading vector through the gap by using specific

geometric theorems and finally calculates the final angle considering the goal point. An

important advantage of FGM over other methods is that it results in safer trajectories

which will be shown in simulations. Moreover FGM accounts for the nonholonomic

and the field of view constraints of the robot. Another important advantage is that it

does not have a local minimum problem. FGM considers the nonholonomic constraints

of the robot and field of view constraints coming from the sensor arrangement. Finally

FGM is easy to tune with only one tuning parameter. Simulations and real tests are

performed using the Ackerman steering ground vehicle platform. Successful results

are achieved in simulations and experimental tests which are illustrated in following

sections.

4.2 Problem Definition

Suppose that independent of the geometry of the robot and obstacles they are

considered to be circular objects with minimum radius to include all physical
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boundaries. Cartesian coordinate space is used for calculations. The location of the

robot and its radius values are given by the tuple (Xrob,Yrob,rrob) and similarly the

center location and radius of the obstacles are given by (Xobsn,Yobsn,robsn) for n’th

obstacle. The following assumptions are made to define the problem.

• The robot field of view is constrained by two rays with left Φ f ov_l and right

Φ f ov_r angles and a distance constraint with d f ov. The robot does not have prior

information about obstacles.

• The robot has nonholonomic constraint which is represented in a summarized form

as a minimum turn radius rmin .

• All the coordinates/locations and object boundaries are measurable and constraint

values Φ f ov_l , Φ f ov_r, d f ov, rmin are previously calculated according to the sensor

arrangement and the geometry of the vehicle.

Using these assumptions, the aim of the obstacle avoidance algorithm is to find a

heading reference purely reactive, in order to achieve the goal coordinates while

avoiding obstacles with as large distance as possible, considering the measurement

and nonholonomic constraints.

This chapter’s theme is to find the desired heading vector for obstacle avoidance. Since

no prior information is available to the robot, the nature of the algorithm should be

reactive because, coordinates of any obstacle may change at any time and it can not be

known previously. The algorithm must compute just the next action in every instant,

based on the current context. In other words, any classical optimization algorithm

like dynamic programming which calculates the reference heading values from goal

to initial coordinates is not possible for real time applications due to the unknown

sequencing of the obstacles during the journey. The problem is tried to be solved by

using a new heuristic and fusing function between maximum gap and goal point.

4.2.1 Point robot approach

As it was given in the problem definition, it is assumed that the robot and obstacles are

circular objects. In order to simplify the problem given previously, the radius of the

robot is added to the obstacle radius as illustrated in Figure 4.1.
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(a) Circular Robot with Circular Obstacles. (b) Point Robot with Enlarged Obstacles.

Figure 4.1: Obstacle Enlargement for Point Robot Representation.

The obstacle avoidance problem for a circular robot is now equivalent to obstacle

avoidance for a point robot in Cartesian space. This guarantees a trajectory without

collision if any gap is calculated. Otherwise, a collision risk exists because of the

physical dimensions of the robot.

4.2.2 Calculation of "distance to obstacle"

Distance to obstacle boundary value will be used for heading angle calculations during

the algorithm. For this reason, the formal definition of distance between the robot and

the n’th obstacle border(dn) is given here. Figure 4.2 illustrates the parameters of the

circular robot and the n’th obstacle.

(a) Circular Robot and Circular Obstacle
Parameters.

(b) Distance to Obstacle Geometry.

Figure 4.2: Distance to Obstacle Paramaeters and Geometry.
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Using the distance to obstacle geometry in Figure 4.2b, dn is found by using the

Pythagorean theorem as illustrated in Equation 1.

d =
√

(Xobsn−Xrob)2 +(Yobsn−Yrob)2

⇒ dn
2 +(robsn + rrob)

2 = d2

⇒ dn =
√
(Xobsn−Xrob)2 +(Yobsn−Yrob)2− (robsn + rrob)2

(4.1)

In the rest of the chapter, the circular robot is shown as a point robot whereas each

obstacle is enlarged with the robot’s radius.

4.3 Follow the Gap Method

The follow the gap method is based on the construction of a gap array around the

vehicle and calculation of the best heading angle for heading the robot into the center

of the maximum gap around, while simultaneously considering the goal point. These

two aims are considered simultaneously by using a fusing function. The algorithm can

be divided into three main parts as illustrated in Figure 4.3.

Figure 4.3: Steps of the Follow the Gap Method.

The steps shown in Figure 4.3 are explained in further detail in the rest of the chapter.

4.3.1 Calculation of the gap array and finding the maximum gap

After using the point robot approach, each obstacle around the robot is represented

with two parameters. These are the border angle values of the obstacles. A sample of

this representation is shown in Figure 4.4. (Φobsi_l and Φobsi_r denote the left and right

border angle values of the i’th obstacle respectively.)

In order to calculate the gap array, two more border values are needed in addition to the

borders of obstacles. Figure 4.5 shows the evaluation of the gap borders. These border

values are found by using the field of view of the robot and the movement constraints.

Nonholonomic constraints are very common when writing the kinematic constraints

38



Figure 4.4: Obstacle Representation.

for certain kind of robots. Since the experimental platform is a nonholonomic ground

vehicle , nonholonomic constraints are considered. Roughly speaking, a mechanical

system is said to be nonholonomic if the vector space of the possible motion directions

in a given configuration is restricted such that the restriction can not be converted into

an algebraic relation between configuration variables [46]. The physical meaning of

this constraint for the vehicle, which is used in simulations and experimental studies,

can be observed in its inability to move sideways. Instead of directly moving sideways,

the vehicle has to follow an arc to arrive at a lateral coordinate. There have to be both

longitudinal and lateral displacements at the same time in a car-like vehicle. Figure

4.5 illustrates the field of view and the nonholonomic movement constraint which

construct the border values for the vehicle. More information about nonholonomy

can be found in [46] [47].

Figure 4.5a illustrates both the field of view and nonholonomic movement constraint

separately. Circles represent the minimum radius (rmin) turn of the vehicle coming from

the nonholonomic constraint and the dashed lines are for the field of view. Figure 4.5b

illustrates the region in which the vehicle can view obstacles and reach any point in

spite of its nonholonomic constraints. In order to understand which boundary is active

for a boundary obstacle, decision rules are illustrated in Equation 4.2. The parameters

of interest are given in Figure 4.6.

dnhol < d⇒Φlim = Φnhol
dnhol ≥ d⇒Φlim = Φ f ov

(4.2)

where;
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(a) Field of View and Nonholonomic Movement
Constraint Separately.

(b) Measurable and Reachable
Region.

Figure 4.5: Gap Border Evaluation.

Φlim:Gap border angle (Φliml: For the left side of the vehicle. Φlimr: For the right side

of the vehicle.)

Φnhol: Border angle coming from nonholonomic constraint. (Φnhol_l: For the left side

of the vehicle. Φnhol_r : For the right side of the vehicle.)

Φ f ov: Border angle coming from field of view. (Φ f ov_l : For the left side of the vehicle.

Φ f ov_r: For the right side of the vehicle.)

dnhol: Nearest distance between nonholonomic constraint arc and obstacle border. (

dnhol_l : For the left side of the vehicle. dnhol_r: For the right side of the vehicle.)

d f ov: Nearest distance between field of view line and obstacle border. ( d f ov_l: For the

left side of the vehicle. d f ov_r: For the right side of the vehicle.)

In Figure 4.6, d f ov , Φ f ov , Φnhol and dnhol expressions are shown for both the left side

and the right side of the vehicle. Obstacle 1 and obstacle 3 are boundary obstacles

for the left and right side of the vehicle respectively. In an obstacle configuration as

illustrated in Figure 4.6, using Equation 4.2, the gap border angle for the left side of the

vehicle (Φlim_l) comes from the nonholonomic constraint (Φnhol_r) and the gap border

angle for the right side of the vehicle (Φlim_r) comes from the field of view constraint

(Φ f ov_r).
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Figure 4.6: Gap Border Parameters.

After the representation of the gap border and obstacle borders, the gap array can be

generated. There have to be N+1 gaps for N obstacles. N+1 elements of gap array are

illustrated below in terms of the previous definitions.

Gap[N +1] = [(Φlim_l−Φobs1_l)(Φobs1_r−Φobs2_l)..
..(Φobs(n−1)_r−Φobs(n)_l)(Φobs(n)_r−Φlim(n)_r)]

(4.3)

The maximum gap is the maximum of the gap array members and is selected for the

second step of the algorithm. If more than one maximum gap with the same value

exists, the algorithm selects the first calculated one.

4.3.2 Calculation of the gap center angle

After finding the maximum gap from the previous section, it is essential to find the

gap center angle (Φgap_c) which ensures that the robot move through the center of the

maximum gap. This is the angle of the median vector from robot to the line between

the obstacles creating/causing the maximum gap. The gap center angle is shown in

Figure 4.7.
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Figure 4.7: Gap Center Angle Representation.

In order to find the gap center angle, the Cosine and Apollonius theorems are used.

The details of these theorems are given in Appendix.

It can be seen from Figure 4.7 that there is a triangle with dashed lines and the aim

is to find the angle of median vector of this triangle. The triangle and the gap center

angle are shown in detail in Figure 4.8.

Figure 4.8: Gap Center Angle Parameterization.

The aim is to find the Φgap_c in terms of the measurable d1, d2, Φ1,Φ2 parameters

which are shown in Figure 4.8. (d1, d2 are distances to obstacles from the maximum

gap. Φ1,Φ2 are angles from obstacles of the maximum gap) Direction of the positive

angle values are counterclockwise from AE line while the negative direction angle

values are clockwise.
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Firstly, the Cosine Rule is applied to the ABC triangle as it is illustrated in Equation

4.4.

(2l)2 = d1
2 +d2

2−2d1d2 cos(Φ1 +Φ2)

l2 = d1
2+d2

2−2d1d2 cos(Φ1+Φ2)
4

(4.4)

After that, the Apollonius theorem is applied to the ABC triangle.

d1
2 +d2

2 = 2l2 +2h2 (4.5)

Replacing l2 with Equation 4.4;

h2 =
d1

2 +d2
2 +2d1d2 cos(Φ1 +Φ2)

4
(4.6)

Finally, the Cosine Rule is again applied to the ABD triangle as illustrated in Equation

4.7.

l2 = d1
2 +h2−2d1hcos(Φ1 +Φgap_c) (4.7)

Replacing l2 and h2 with Equation 4.4 and Equation 4.6;

d1
2+d2

2−2d1d2 cos(Φ1+Φ2)
4 =

d1
2 + d1

2+d2
2+2d1d2 cos(Φ1+Φ2)

4 −2d1

√
d1

2+d2
2+2d1d2 cos(Φ1+Φ2)

2 cos(Φ1 +Φgap_c)

⇒Φgap_c = arccos( d1+d2 cos(Φ1+Φ2)√
d1

2+d2
2+2d1d2 cos(Φ1+Φ2)

)

(4.8)

The gap center angle (Φgap_c) is found in terms of the measurable d1, d2, Φ1,Φ2

parameters in Equation 4.8.

The gap center angle could be found by calculating the average of Φ1 and Φ2 angles,

ignoring the d1 and d2 distance values.

Φgap_c_basic =
Φ1 +Φ2

2
(4.9)
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This variant of FGM, in which Φgap_c_basic is used instead of Φgap_c is called

FGM-basic for comparisons in the simulations section. However, FGM-basic causes

unsafe trajectories in some cases. The simulation results of such an obstacle

configuration are illustrated in Figure 4.9.

(a) Result of Φgap_c (FGM). (b) Result of Φgap_c_basic (FGM-basic).

Figure 4.9: Comparison of Φgap_c and Φgap_c_basic Gap Angle Calculation.

Figure 4.9a shows the result of Φgap_c and Figure 4.9b shows the result of Φgap_c_basic.

There are two obstacles at the same coordinates for both of the simulations. It is shown

that, Φgap_c has resulted in a safer trajectory. This is due to the calculations for finding

the angle of the median vector from the robot to the line between the obstacles, as it

was explained previously.

Here, with the term “safe”, maintaining a safe distance from the obstacle is meant. In

the simulations section, a metric is defined for measuring this safety and for measuring

the performances of different methods.

4.3.3 Calculation of the final heading angle

The last step of the algorithm is the calculation of the final heading angle. This final

angle reference will be the reference heading vector of the robot for avoiding obstacles

and arriving at the goal point. A sample configuration including obstacles and a goal

point is illustrated in Figure 4.10.

The final angle is the combination of the gap center angle and goal angle. The

combination structure depends on the minimum distance to obstacles around and

weight coefficients. If the obstacles are near the robot, it should consider safety first;
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Figure 4.10: Obstacles with Goal Point.

i.e. the gap center angle, rather than the goal angle and vice versa. Fusing function

which is illustrated in Equation 4.10 depicts the final angle calculation.

Φ f inal =

α

dmin
Φgap_c +βΦgoal

α

dmin
+β

where dmin = mini=1:n(dn) (4.10)

( Φgap_c : Gap Center Angle. Φgoal: Goal Angle. α: Weight Coefficient for gap. β :

Weight Coefficient for goal. n : Number of obstacles. dn: Distance to n’th obstacle.

dmin: Minimum of dn distance values. )

The ratio of α and β determines the behaviour of the robot. For this reason, two

parameters are not necessary for tuning. β is taken as “1” for simplicity and the α

coefficient is used as a weight factor between the gap center angle and the goal angle.

Equation 4.10 can be rewritten as:

Φ f inal =

α

dmin
Φgap_c +Φgoal

α

dmin
+1

where dmin = mini=1:n(dn) (4.11)

This weighted average function is not only dependent on tuning parameter but also

the minimum distance to the obstacle. Theoretically, the final angle approaches the

gap angle when the distance to the obstacle approaches zero. The fusing function is
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designed specifically to reflect this property. This can be seen from the Equation 4.12

by using the l’Hospital’s rule.

lim
dmin→0

Φ f inal
∼=

∞

∞
⇒ lim

dmin→0
Φ f inal

∼=
∂ ( α

dmin
Φgap_c+βΦgoal)

∂dmin
∂ ( α

dmin
+β )

∂dmin

=

−αΦgap_c

dmin
2

−α

dmin
2

= Φgap_c (4.12)

Figure 4.11 shows how Φ f inal changes with respect to α and minimum obstacle

distance. For this figure, Φgap_c is π/4 and Φ f inal is −π/4 which means the gap

center and the goal are in different directions.

Figure 4.11: Final Angle with Respect to Minimum Distance and α Coefficient
(Φgap_c = π/4 radian and Φgoal =−π/4 radian).

According to the Figure 4.11, Φ f inal converges to Φgap_c (π/4) for decreasing values

of dmin (an obstacle is approaching to the robot) and Φ f inal converges to Φgoal (−π/4)

for increasing values of dmin (an obstacle is moving far away). The α value determines

how much the robot is goal oriented or gap oriented. For α = 0, Φ f inal is equal to−π/4

and increasing values of alpha brings Φ f inal closer to Φgap_c(π/4) as is illustrated in

Figure 4.11.

When compared to other obstacle avoidance methods, FGM has several advantages.

FGM has only one tuning parameter, which is the α coefficient in Equation 4.11. So

tuning the algorithm is very easy. FGM does not have the local minimum problem, as

in APF and VFF. Different from previous avoidance algorithms, this new approach can

consider the nonholonomic constraints of the robot and only feasible trajectories are

generated. Another advantage is that the field of view of the robot is taken into account
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and the robot is not forced to move toward unmeasured directions. Finally, FGM steers

the robot to move towards the center of the maximum gap as much as possible. This

results in safer trajectories compared with previous approaches, as will also be shown

in simulations.

4.4 Simulations

Kinematic vehicle model which has been illustrated in Chapter 2 is used in simulations.

Every obstacle avoidance algorithm has tuning parameters for performance

improvements. Since a fair benchmarking is a very challenging problem for different

obstacle avoidance methods [48], comparisons have been done with the previously

tuned APF algorithm [49], as APF is one of the most widely used obstacle avoidance

algorithms in robotics area.

A series of Monte Carlo simulations are performed over random environments to

compare the performance of the FGM, FGM-basic, APF and A* methods. FGM-basic

is a variant of FGM, in which Φgap_c_basic is used instead of Φgap_c as explained in

Section 4.3.2.

All the algorithms are coded in S-Function using C programming language. A stereo

LIDAR (Light Detection and Ranging) sensor is mounted in front of the vehicle with

total 150 degree field of view and 10m range as the experimental platform used in

simulations. Circular obstacles with random radius and coordinate values are used in

simulations. Even though the vehicle has a rectangular shape, an equivalent minimum

radius circular robot is used for the calculations. This is done by taking the diagonal

of the rectangle as the diameter of the circle. Tuning parameter alpha parameter is

selected as 20. Simulation results of FGM for two different obstacle configurations are

shown in Figure 4.12. Goal coordinates are [70-70] for Configuration-A and [80-0] for

Configuration-B.

4.4.1 Artificial potential field theory

Before giving the comparisons in Section 4.4.2, APF method’s equations are illustrated

here. In the APF approach, the obstacles to be avoided are represented by a repulsive
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(a) Configuration A. (b) Configuration B.

Figure 4.12: Simulation Results of FGM for Different Obstacle Configurations.

artificial potential and the goal is represented by an attractive potential, so that a robot

reaches the goal without colliding with obstacles as it is illustrated in Figure 4.13.

Figure 4.13: APF Forces.

In general, the robot is represented as a particle under the influence of a scalar potential

field U [40], defined as follows.

U =Uatt +Urep, (4.13)

where Uatt and Urep are the attractive and repulsive potentials respectively. The

attraction influence tends to pull the robot towards the target position, while repulsion

tends to push the robot away from the obstacles.

The vector field of artificial forces F(q) is given by the gradient of U .

Fnet =−Fatt +Frep =−∇Uatt +∇Urep (4.14)
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The most commonly used form of potential field functions proposed by Khatib [37]

are defined as follows:

Repulsive Potential Field

Urep =

{
1
2η( 1

d −
1
d0
)2 d ≤ d0

0 d > d0
(4.15)

where d = |q−qo|, q is the current position of the robot, qo is the obstacle position, d0

is the influence distance of the force and η is an adjustable constant.

Attraction Potential Field

Uatt =
1
2

ξ d2 (4.16)

where d = |q− qa|, q is the current position of the robot, qa is the position of an

attraction point and ξ is an adjustable constant.

The corresponding force vectors for the fields above can be found by calculating

the gradients of these potentials. Following equations illustrates the attraction and

repulsion forces.

Fatt(q) =−∇Uatt = ξ (q−qa) (4.17)

Frep(q) = ∇Urep =

{
1
2η( 1

d −
1
d0
) (q−q0)

d3 d ≤ d0

0 d > d0
(4.18)

Direction of the total force vector Fnet gives the desired heading angle which is

calculated as illustrated in the following equation.

Φdes = arctan(
FnetY

FnetX
) (4.19)

Previously tuned parameters for the APF method is illustrated in Table 4.1.

Table 4.1: APF Parameters.

η ξ d0(m)
500 0,2 20

These APF parameters are used for both simulations and experimental tests.
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4.4.2 Comparisons

As it was mentioned before, FGM does not suffer from the local minimum problems

except the dead-end scenarios. Point robot can always avoid obstacle and reach to the

goal if there is a gap around itself. However in APF and APF based algorithms like

VFF, robot can not calculate any heading reference due to the local minimum problem

even there are gaps around itself. Figure 4.14 shows the trajectories of APF and FGM

in two different local minimum scenarios.

(a) Scenario1-FGM. (b) Scenario1-APF.

(c) Scenario2-FGM. (d) Scenario2-APF.

Figure 4.14: Trajectories of APF and FGM in Local Minimum Scenarios.

As it can be seen from the simulation results, FGM can reach the goal point while

avoiding obstacles but in APF method, robot gets stuck because of the local minimum

where all vectors from the obstacles and goal point zero each other. FGM selects the

first calculated gap value if there are equal maximum gaps as mentioned in Section

4.3.1. This provides FGM to move if at least one gap exists. However, as a result

of its local characteristic, a dead-end scenario of U-shaped obstacles is a problem

for FGM as it is for APF. Detecting the dead-end scenario and avoiding it needs an

upper level intelligence for such kind of local planners and can be solved with several
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ad-hoc approaches which have been studied in the literature extensively. In [42] virtual

obstacles and in [50] virtual goal points are added to the local map for trap conditions.

Beside these, [40] uses multiple goal points and [43] uses the wall following technique

for the same aim. One of these solutions can be used directly in FGM for dead-end

scenarios.

The following metric for obstacle avoidance safety is defined for the comparison. This

collision avoidance metric is based on the inverse of the distance-to-obstacle function.

The same metric was also used in [51].

f (t) =

{
1

dmin
− 1

d0
for dmin < d0

0 for dmin ≥ d0
(4.20)

where dmin is the closest distance between the vehicle and obstacles and the given

scalar d0 denotes the distance to an obstacle that poses no danger for collision during

execution.

The p’th norm of a function is defined as:

‖ f‖p = (
∫ t

t0
| f (t)|p dt)

1
p (4.21)

In this chapter, the first norm (p=1) of the collision avoidance metric is calculated and

taken as a performance criterion. This performance criterion measures the safety of the

trajectory or in other words how far away from obstacles the trajectory is. The aim of

FGM is obtaining the maximum distance to obstacles as much as possible reactively.

This brings an additional path length to the shortest path. Figure 4.15 illustrates the

trajectories of FGM, APF and A* shortest path algorithm for three different obstacle

scenarios. A* uses a best-first search and finds the shortest path between starting and

goal points [52]. A* is a global planning algorithm which means all the information

about the map is given before it starts, in contrast to reactive algorithms like FGM and

APF. In simulations, the A* algorithm uses 0,5 m grid size and does not consider any

measurement or kinematic constraint.

Forty Monte Carlo simulations are performed for FGM, FGM- basic, APF and A*

search methods and the results are illustrated in Figure 4.16. The collision avoidance

norm value of the A* algorithm is not added in Figure 4.16 because the collision
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(a) Scenario-A. (b) Scenario-B.

(c) Scenario-C.

Figure 4.15: Comparison of FGM, APF and A* Shortest Path Trajectories.

avoidance norm approaches infinity as the distance to obstacle value approaches zero.

This can be seen in Equation 16.

According to Figure 4.16, the collision avoidance norm of FGM is lower than both the

APF and FGM-basic methods which means the trajectories are safer. Despite this, total

traveled distance values are almost the same as it is illustrated in Figure 4.16. Average

values of collision norm and distance traveled for this 40 Monte Carlo simulations are

illustrated in Table 4.2.

Table 4.2: Average of Simulation Results (d0 = 25m).

Average Collision Norm Average Distance Traveled(m)
FGM 0.186 65.82

FGM-basic 0.243 64.94
APF 0.31 63.57
A* ' ∞ 58.81
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Figure 4.16: Collision Avoidance Norm and Traveled Distance Values for Follow the
Gap, Follow the Gap-basic and Artificial Potential Fields Methods.

According to Table 4.2, FGM is % 23 safer than the FGM-basic and % 40 safer than

the APF in terms of the norm of the defined metric while the total distance traveled

values are almost the same.

4.5 Experimental Tests

After designing the algorithm and successful simulation results, the Follow the Gap

method is implemented on the real autonomous vehicle, ‘Otonobil’. Otonobil has been

explained in Chapter 3.

The obstacle avoidance algorithm based on the Follow the Gap Method is coded using

C programming language. The real-time code runs in Microautobox hardware, which

is listed in Table 3.2 and shown in Figure 3.11. The only tuning parameter, alpha,

is selected as 20 in experimental tests as in the simulations. The field of view of

the LIDAR is 150 degree and its measurement range is restricted to 10m. The first

test configuration is composed of seven static obstacles with a goal point. The test

field and the obstacle configuration are illustrated in Figure 4.17. Vehicle is driven

with a 8km/h constant speed value in these tests. Speed planning and low level speed

controller design subjects are explained in Chapter 5 and Chapter 6.

Results of the algorithm are shown in Figure 4.18. Figure 4.18a shows the trajectory

of the vehicle with black dots. Blue dots are obstacle measurement results from the
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Figure 4.17: Test Field and First Obstacle Configuration.

LIDAR sensor. The goal point coordinates are [-35,50] which is shown with a red

dot and starting point coordinates are [-3,-3]. As can be seen in Figure 4.18a, static

perceived obstacles and even the goal point are a cluster of scattered points. The

reason for the scatter is that the LIDAR and GPS receivers have some measurement

error and noise. These two error sources directly affect the coordinate transformation

calculations. Figure 4.18b shows the steering wheel reference angle and steering wheel

real angle values during its journey. Steering motor’s own controller [53] is used for

tracking the desired steering angle.

(a) Vehicle Trajectory with Obstacle Measurement. (b) Steering Wheel Reference and Real Angle.

Figure 4.18: Experimental Results of Test-1.

The results of the second test are illustrated in Figure 4.19. This time the obstacle

configuration is different with the starting point coordinates [-57,58] and goal point

coordinates [-20,5]. According to Figure 4.19, the vehicle heads itself towards the

goal point which means the final angle is equal to the goal angle, until it measures an

obstacle. When it detects an obstacle, the appropriate heading vector is calculated by
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the Follow the Gap Method and the vehicle avoids obstacles and arrives at the goal

point. The FGM tries to maximize the distance to obstacle value while considering the

goal point.

(a) Vehicle Trajectory with Obstacle Measurement. (b) Steering Wheel Reference and Real Angle.

Figure 4.19: Experimental Results of Test-2.

Finally, the Follow the Gap Method is tested in a dynamic obstacle scenario. Figure

4.20 shows the trajectory of the system in a dynamic obstacle case. In Figure 4.20a,

for better analysis, the dynamic obstacle trajectory is illustrated in a 3-D plot where

the third axis is for time. In this 3-D illustration, collision means the intersection not

only for X-Y axis but also for X-Y and time axes. According to Figure 4.20, there is

no collision and the vehicle avoids dynamic obstacles successfully. Dynamic obstacles

are moving obstacles with unknown motion patterns, which are circled in Figure 4.20a.

These moving obstacles are the people who are running in front of the vehicle in this

scenario. A video demonstrating the vehicle performance within this scenario can be

found at http://www.youtube.com/watch?v=TohW9xokbaM .

4.6 Conclusions

A new approach called the “Follow the Gap Method” is presented in this chapter.

The proposed algorithm is proven to be successful in driving the nonholonomic

autonomous ground vehicle from an arbitrary initial location to a goal location while

avoiding collision with static and dynamic obstacles. The major contributions can be

listed as follows.
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(a) Vehicle Trajectory with Obstacle Measurement. (b) Steering Wheel Reference and Real Angle.

Figure 4.20: Experimental Results of Test-3.

• Gap center angle formulation enables the robot to head to the center of the

maximum gap around which results in safe trajectories. Figure 4.16 shows this type

of comparison between the Follow the Gap Method, Follow the Gap Method-basic

and Artificial Potential Fields Method using Monte Carlo simulations.

• There is no local minimum problem. The APF method and VFF method have this

serious problem as explained in the introduction.

• Nonholonomic constraint of the robot is taken into account and feasible trajectories

are generated while the other methods do not have this property.

• The field of view of the robot is taken into account and the robot is not forced to

move towards unperceived directions.

• Follow the Gap algorithm is easy to tune with only one tuning parameter, “alpha”.

In spite of successful results in both simulations and experimental tests, this new

algorithm can be further extended to the dynamic model of the robot. This chapter

illustrates the concept of the algorithm and it is seen that the kinematic vehicle model

is sufficient for the proof of concept. However, at high speed values, a dynamic

model and additional constraints from the dynamic vehicle model should be taken into

account.

Additional simulation results using dynamic model of the vehicle with newly designed

speed planning and speed control algorithms are illustrated in Chapter 7. Experimental
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tests of FGM with new designed speed planning and control algorithms are also

illustrated in Chapter 7 in static and dynamic obstacle scenarios.
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5. A NEW FUZZY SPEED PLANNING METHOD FOR SAFE NAVIGATION

This chapter introduces a new speed planning strategy for autonomous navigation.

Speed planning can be done considering lots of parameters using offline path planning

strategies. However, in an obstacle avoidance scenario, which can be thought as a

dynamic path planning, avoidance strategy must work fast. That is why previous

strategies generally concentrate only on steering maneuvers for obstacle avoidance.

This chapter concentrates on the speed planning part of the obstacle avoidance strategy.

To this aim, a new speed planning approach using fuzzy logic [54] is developed

for on-line speed planning with its purely reactive nature in this chapter. Methodic

simulations are carried out to verify and demonstrate the effectiveness of the new

method over previous methods. The maneuver strategy for obstacle avoidance is the

artificial potential field method.

5.1 Introduction

Automatic vehicle speed determination is presently one of the hottest research topics

in the intelligent transportation systems area. Cruise control (CC) and adaptive cruise

control (ACC) systems have been very popular in the last few decades. In CC systems,

the driver decides the reference speed and the vehicle automatically adjusts its speed to

the predetermined value. In ACC systems, the vehicle automatically adjusts its velocity

in order to maintain a proper distance between the preceding vehicle [55]. Both CC

and ACC systems bring semi-autonomy to the ground vehicle technology.

Obstacle avoidance is a dynamic path planning strategy which is activated when an

unexpected obstacle is met. Studies about obstacle avoidance for UGV are mostly

about the steering maneuvers. However, desired speed determination is as important

as the steering maneuver determination for avoiding obstacles. Figure 5.1 illustrates

the role of the desired speed determination in an autonomous vehicle. Most of

the obstacle avoidance algorithms ignore the desired speed determination part and

separated solutions are developed for the speed planning strategy.
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Figure 5.1: Role of Desired Speed Determination in a UGV.

Generally, speed reference is determined by using the information about road curvature

and vehicle dynamics for ground vehicles [56] [57]. But the condition of the

environmental factors, such as the obstacle density and minimum distance to obstacle

values are very important for autonomous vehicles reference speed determination.

In [56], velocity reference is calculated from both the road curvature and the minimum

obstacle distance values using fuzzy rules. In [58], desired velocity is planned using

the minimum distance to obstacle and the angle to the goal position values using fuzzy

logic. In [59], the criterion for vehicle speed determination is minimizing the lateral

acceleration which is mostly related with vehicle dynamics. In [60], speed planning is

performed using both vehicle dynamics and path properties. In [61], a speed planning

algorithm is designed which uses the angle between each path segment related with

the curvature of the planned trajectory.

In this chapter, a new type velocity planning method is developed using fuzzy logic.

This fuzzy system consists of two cascade connected Mamdani-type Fuzzy Inference

System for desired speed determination. This strategy considers both the danger level

of the obstacles around and lateral dynamics of the vehicle. Different from other

studies, the desired speed is found by considering the minimum distance between

obstacle and vehicle, the angle of the nearest obstacle and the steering angle values

together. The developed automatic speed determination strategy is used with the

artificial potential field (APF) obstacle avoidance method [37] and compared with

two speed planning methods that were used in APF, as a case study. APF theory

has been given in Chapter 4.4.1. Another advantage of this new fuzzy system is its

independent structure from the used obstacle avoidance method. It can be used with
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any of the obstacle avoidance methods in literature. This new method is used with the

new obstacle avoidance method FGM in Chapter 7.

5.2 Speed Planning Methods for APF

Originally, APF calculates the direction of the desired heading vector Fnet for obstacle

avoidance as it was illustrated in Figure 4.13. However, it does not contain any

information about the speed reference of the robot. There are some studies about

desired speed calculation for potential field method. Two of these methods are

illustrated below which are used for the comparisons with the new designed strategy.

5.2.1 Method A

In [43], desired speed is calculated as:

Vdes =

{
Vmax for |Frep|= 0
Vmax(1−|cosΘ|) for |Frep|> 0

(5.1)

Where, Θ is the angle of heading vector. This method runs the robot at its maximum

speed if there is not any obstacles around and the speed is reduced proportional to the

angle of the obstacle ahead.

5.2.2 Method B

In [62], another speed determination strategy is given as illustrated in the following

equation.

Vdes =Vinpute−ΣxF (5.2)

Where xF is the x-part of repulsive forces Frep and Vinput is the desired speed vector

which comes from static path planner. Any obstacle through the motion direction of

the vehicle reduces the desired speed of the static path planner.

In [40], desired speed is again the function of xF like in [62]. But this time the relation

is linear as shown in the following equation.

Vdes =CxF (5.3)
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Where C is the velocity coefficient.

None of these methods consider both the distance and angle of the obstacle

simultaneously. These two features are directly relational with the danger level of

the obstacles. As a human, we plan our trajectory using both of these two information.

If someone is near to us in the same direction, we have to reduce our speed and change

our direction. If it is near but in another direction, this is less critical and there is no

need to reduce the speed as much as the previous scenario. This new fuzzy method

evaluates both the distance and the angle of the obstacle for speed planning.

Another advantage of this new speed planning method is its consideration of the

vehicle dynamics at the same time. Avoidance algorithms can calculate aggressive

steering references independent of the vehicle’s speed and this might cause the loss of

vehicle stability. This new method considers the steering angle of the vehicle besides

the distance and angle of the nearest obstacle for speed planning.

5.3 Fuzzy Decision Making for Speed Planning

Design of the new speed planning algorithm using fuzzy logic rules is explained in the

following three subsections.

5.3.1 Method overview

Determination of the desired speed of an autonomous robot directly affects the

performance of the obstacle avoidance algorithm. Motivated by the fact that human

performance is reliable in driving ground vehicle, fuzzy logic methods are used in

order to mimick the experiences of the human driver without dealing with complicated

mathematical models.

In this chapter, three parameters are used for the calculation of the desired speed with

fuzzy logic. Two of them are for the danger level of the obstacle. These are the values

of minimum distance to vehicle dmin and angle of the nearest obstacle φnear. These

two inputs are for the first fuzzy block. This block determines the risk level of the

environment. The other parameter is the steering angle δ , which is used for stable

vehicle dynamics in the second fuzzy block . Figure 5.2 illustrates the schematic of the

cascaded fuzzy decision making approach.
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Figure 5.2: Cascade Fuzzy Connection for Speed Planning.

r f1 and r f2 are risk factor 1 and risk factor 2 values which vary between zero and one.

Zero means no risk and one means full of risk. Vmax is the maximum speed which can

be thought as the gain coefficient and Vdes is the desired speed value.

5.3.2 Design of Fuzzy-1 block

In human driving, we classify the objects around the vehicle in terms of risk level by

analyzing its distance to vehicle and the angle to vehicle values. We use minimum

distance to vehicle dmin and angle of the nearest obstacle φnear values in order to

calculate the risk factor of the obstacles around. If an obstacle is very near to the

vehicle and stands in the same direction as the vehicle, it is very risky. If the obstacle is

far away or in another direction, it is more negligible. Following meta-rules summarize

the behavior of the Fuzzy-1 block.

• If the nearest obstacle is close by vehicle and its location is in the same direction

with the vehicle, then it is a very risky situation.

• If the nearest obstacle is close by vehicle and its location is in different direction

with the vehicle, then it is a little risky situation.

• If the nearest obstacle is far away from vehicle and its location is in the same

direction with the vehicle, then it is a little risky situation.

• If the nearest obstacle is far away from vehicle and its location is in different

direction with the vehicle, then it is a very little risky situation.

Using this knowledge, fuzzy rules are constructed for Fuzzy-1 block. Membership

functions can be seen in Figure 5.3.

The fuzzy control rules are generated in the form of “if-then” structures. The proposed

fuzzy control rule base for Fuzzy-1 block is illustrated in Table 5.1.
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(a) Membership Functions for Input Vari-
able: dmin(deg).

(b) Membership Functions for Input Vari-
able: φnear(deg).

(c) Membership Functions for Output Vari-
able: RiscFactor1 (0-1).

Figure 5.3: Membership Functions for Inputs and Output of Fuzzy-1 Block.

Table 5.1: Rule Base for Fuzzy-1 Block. (For Inputs-VN:Very Near, N:Near,
M:Medium, F:Far, VF:Very Far, FL: Far Left, L: Left, OF: On Front,
R:Right, FR: Far Right. For Output-VS: Very Small, S: Small, M: Medium,
L: Large, VL: Very Large)

Input1-dmin

In
pu

t2
-φ

ne
ar

VN N M F VF
FL L M S VS VS
L VL L M S VS

OF VL VL L M S
R VL L M S VS

FR L M S VS VS

Fuzzy-1 block uses five membership functions for dmin and five membership functions

for φnear which results with 25 rules. The fuzzy surface obtained based on the

generated rules is illustrated in Figure 5.4 .

5.3.3 Design of Fuzzy-2 block

Vehicle dynamics is another point that has to be considered for speed planning. In this

subsection, vehicle speed planning helps for yaw stability by considering the steering

angle δ . Steering angle and r f1 values are fed to the second fuzzy block in order to

calculate the risk factor 2 r f2. A human driver should decrease, at least should not

increase the vehicle speed if the steer angle is too large. If the environment is risky in

terms of obstacles surrounding it, vehicle speed should be lower.Following meta-rules

summarize the behavior of the Fuzzy-2 block.
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Figure 5.4: Fuzzy Surface for Fuzzy-1 Block.

• If the risk level of the environment in terms of the obstacles surrounding the vehicle

is highly risky and the reference steering angle value is high, then it is a very risky

situation.

• If the risk level of the environment in terms of the obstacles surrounding the vehicle

is highly risky and the reference steering angle value is low, then it is a risky

situation.

• If the risk level of the environment in terms of the obstacles surrounding the vehicle

is low and the reference steering angle value is high, then it is a risky situation.

• If the risk level of the environment in terms of the obstacles surrounding the vehicle

is low and the reference steering angle value is low, then it is a very little risky

situation.

Using this knowledge, fuzzy rules are constructed for the Fuzzy-2 block. Membership

functions can be seen in Figure 5.5.

The proposed fuzzy control rule base for Fuzzy-2 block is illustrated in Table 5.2.

Fuzzy-2 block uses three membership functions for r f1 and three membership

functions for δ which results in 9 rules. The resulting fuzzy surface is illustrated in

Figure 5.6.

By using 2 cascaded fuzzy blocks, the system is designed with 34 rules in total. If

all the inputs were used in the same fuzzy block with same number of membership

65



(a) Membership Functions for Input Vari-
able: RiscFactor1 (0-1).

(b) Membership Functions for Input Vari-
able: Absolute Steering Angle (deg).

(c) Membership Functions for Output Vari-
able: RiscFactor2 (0-1).

Figure 5.5: Membership Functions for Inputs and Output of Fuzzy-2 Block.

Table 5.2: Rule Base for Fuzzy-2 Block. (For Inputs- L: Little, M: Medium, H: High.
For Output- VS: Very Small, S: Small, M: Medium, L: Large, VL: Very
Large

Input1-r f1

In
pu

t2
|δ
|

L M H

L VS S L
M S M VL
H L VL VL

functions, 75 rules had to determined in total and it would be harder to decide the rules

for three inputs.

5.4 Simulations and Comparisons

Simulations are performed using nonlinear single track vehicle model with yaw

dynamics in Matlab/Simulink R© environment. Modeling equations and model

parameters are given in Chapter 2.

The potential field method is coded using C programming language into the S-function

block. A snaphot from simulation environment is illustrated in Figure 5.7.

The new approach for vehicle speed decision is compared with the previous methods

in [43] and [62] which were explained in Equations 5.1 and 5.2. These methods are

entitled as Method-A and Method-B respectively. Vmax and Vinput values are selected
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Figure 5.6: Fuzzy Surface for Fuzzy-2 Block.

as 36km/h in Equations 5.1 and 5.2. Vmax value for the proposed fuzzy speed planning

algorithm is also selected as 36km/h. All methods use the same PI low level speed

controller for fair comparison. Designing the PI coefficients, which is not in the scope

of this study, is performed by trial and error method. KI is selected as 1000 and Kp is

selected as 100 for each simulation. Low level speed controller scheme is illustrated in

Figure 5.8.

Sample time of the simulation is 0.005ms. A sample simulation result which illustrates

the vehicle trajectory for both Method-A, Method-B and the new fuzzy method are

shown as stroboscopic plots in Figure 5.9. Eight circular obstacles with various

diameters are scattered in simulation environment. Each method is tested with the

same APF obstacle avoidance method and the same low level PI speed controller.

As can be seen in the simulation results, Method-A passes by obstacles very closely. In

Method-B, the vehicle loses its yaw stability and spins. The new fuzzy method is safer

than both of these two methods in terms of distance to obstacle and yaw rate values.

The following metric for obstacle avoidance and vehicle dynamics safety is defined for

a numerical comparison. This collision avoidance metric is based on the inverse of the

distance-to-obstacle function and yaw rate. A similar metric is used in [51].

f (t) =

{
1

dmin
− 1

d0
+0.1|ψ̇| for dmin < d0

0.1|ψ̇| for dmin ≥ d0
(5.4)
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Figure 5.7: Simulation Snapshot from Simulation Environment.

Figure 5.8: PI Controller for Low Level Speed Control.

Where dmin is the closest distance between the vehicle and obstacles and the given

scalar d0, denotes the distance to obstacle that poses no danger for collision during

execution.

P’th norm of a function is defined in the following equation.

‖ f‖p = (
∫ t

t0
| f (t)|p dt)

1
p (5.5)

Second norm (p = 2) of the collision avoidance metric is calculated and taken as a

performance criterion. This performance criterion measures the safety of the trajectory

or in other words how much the trajectory is away from obstacles and the yaw stability.

Twenty Monte Carlo simulations were performed for both Method-A, Method-B and
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(a) Trajectory of Method-A. (b) Trajectory of Method-B.

(c) Trajectory of New Fuzzy Method.

Figure 5.9: Trajectory Comparison of Three Algorithms.

new fuzzy method. Eight circular objects and goal coordinates are given to model

randomly in these simulations. The results are illustrated in Figure 5.10.

According to the Figure 5.10, the new fuzzy logic approach for speed decision is

generally better than the other two methods. Table 5.3 illustrates the average cost

value of the twenty simulations performed.

Table 5.3: Average Cost Comparison.

Method-A Method-B New Fuzzy Method
Average Cost 0.215 0.326 0.183

According to the Table 5.3, the proposed algorithm is %14.9 better than Method-A and

%43.9 better than Method-B in terms of the defined cost function.

5.5 Conclusions

A new type velocity planning method using fuzzy logic is developed in this

section. Different from the previous studies, this method consists of two cascaded

Mamdani-type Fuzzy Inference Systems for desired speed determination. In this way,
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Figure 5.10: Total Cost Values for 20 Monte Carlo Simulations.

three parameters are considered; two of them are for obstacles around and one is for

the vehicle stability. The cascaded structure results in a reduction of the number of

rules, from 75 to 34. Twenty Monte Carlo simulations are performed for a comparison

using dynamic vehicle model. A safety metric is designed for the comparison of

the algorithm with previous methods. Simulation results show that this new fuzzy

approach results in safer trajectories than the previous APF based speed planning

methods. Since the proposed method does not depend on any specific function of

the used obstacle avoidance method, which is artificial potential field method in our

case, it can be used with all obstacle avoidance or planning methods. It is also possible

to easily add extra parameters to the method with the same cascade fuzzy strategy.
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6. A NEW FUZZY SPEED CONTROL STRATEGY CONSIDERING THE
LATERAL VEHICLE DYNAMICS

This chapter introduces a new speed control strategy for

autonomous/semi-autonomous navigation of ground vehicles. Different from

the previous studies, steering angle is considered in addition to speed error and

integral of the speed error [63]. Because of the highly nonlinear nature of the vehicle

model, fuzzy logic strategy is used for controller design. Simulations are carried out

to verify and demonstrate the effectiveness of the new method over the classical one

which does not consider the steering angle. Both of these two methods have similar

performances when steering angle is relatively low. However, in a more aggressive

steering scenario, classical approach fails and vehicle loses its yaw stability while this

new method still continues to track the speed with a stable yaw dynamics.

6.1 Introduction

Vehicle speed control is one of the most critical research topics of intelligent

transportation area. The aim of the control is to achieve the predetermined speed value,

using throttle and brake inputs. Vehicle speed control or in other words, longitudinal

control is not only used in semi-autonomous applications like cruise control (CC) and

adaptive cruise control (ACC) but also in full autonomous navigation.

The complexity and non-linearity of vehicle dynamics makes the development of speed

controllers a difficult task. Different control strategies have been proposed in literature.

In [64], fixed gain and gain scheduling PID controllers as well as the adaptive control

method are proposed. Another PID controller is illustrated in [65]. Beside these,

complex nonlinear control strategies [66] [67] [68] [69] have been implemented to

solve the problem of longitudinal control. However, all of these methods require

an accurate model of the system and exact system parameters to achieve satisfactory

results. The nonlinearities and uncertainties in vehicle dynamics and both throttle and

brake characteristics makes it difficult to be successful in real applications.
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Fuzzy logic is very applicable for vehicle speed control due to its two main features.

The first one is it does not require an exact mathematic model of the controlled system.

This characteristic is very important when the controlled system is highly nonlinear

and difficult to obtain an exact model. The other feature is that it allows us to mimick

the behavior of a professional human driver and his experience. Inspired by these

features, there are several studies for speed control of the vehicle using fuzzy logic.

In [70], a throttle and brake fuzzy control system was designed to perform the

ACC+Stop&Go maneuvers. Two separated fuzzy controllers are designed to control

the throttle and brake pedals. In order to avoid simultaneous actions of both the

pedals, the values of the membership functions of the two controllers were well

defined. In [71], a hierarchical control system is proposed, in which, an upper level

controller determines the desired speed/acceleration for the controlled vehicle, while

a throttle/brake fuzzy control system is proposed as the lower level controller. An

additional switch logic algorithm is designed to avoid switching between throttle and

brake actuators. In [72], throttle and brake references are generated from the same

fuzzy controller. Different from other studies, the speed error and the integral of the

speed error values are the inputs of the controller in order to eliminate the steady state

error.

None of the previous studies consider the lateral vehicle dynamics in their vehicle

speed control strategy since they are mostly concentrated on longitudinal dynamics of

CC and ACC applications. But in a UGV, steering angle is determined autonomously

and sharp maneuvers are possible in case of sudden obstacles. This makes the lateral

dynamics very important for the speed control of the vehicle. Figure 6.1 illustrates the

role of the speed control in a UGV.

In this chapter a new speed control method is developed using fuzzy logic. This fuzzy

system consists of two cascade connected Mamdani-type Fuzzy Inference System for

vehicle speed control. Different from other studies, this new method considers both

the longitudinal and lateral vehicle dynamics. First fuzzy block works like classical

speed controller and calculates the desired throttle/brake reference values. The second

fuzzy block considers the steering angle command and adjusts the output of the first

fuzzy controller using steering angle information.
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Figure 6.1: Role of Speed Control in a UGV.

6.2 Fuzzy Speed Controller

Motivated by the fact that human performance is reliable in driving ground vehicles,

fuzzy logic methods are used in order to mimick the experiences of the human driver

without dealing with complicated mathematical models. Different from previous

studies, lateral dynamics for yaw stability is considered during the control process.

Three parameters are used for the calculation of the throttle and brake pedal outputs

with fuzzy logic. These inputs are used in the control scheme with 2 cascaded

Mamdani type fuzzy inference systems. Figure 6.2 illustrates this cascaded fuzzy

decision making approach. Two of the inputs, which are speed error ev and integral of

speed error, are used for classical speed control. This structure eliminates the steady

state speed error. k1 and k2 are the normalizing gain factors for the inputs of the

Fuzzy-1 block. The output of the first fuzzy block is given to the second fuzzy block

with absolute value of the steering angle command |δ |, which is the third input for

stable yaw dynamics. k3 is the normalizing gain factor for the steering input. All

inputs are guaranteed to be between zero and one using saturations.

6.2.1 Design of Fuzzy-1 block

This block is for the classical speed control of the vehicle. A similar version of this

block can be found in [72]. In this block, rules are defined using ev and integral of

the ev. Triangular membership functions are chosen for both inputs and the output of

the fuzzy block. Five fuzzy sets for both the two inputs are defined as; NB, NM, Z,

PM, and PB and also seven fuzzy sets for the output as; NB, NM, NL, Z, PL, PM and
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Figure 6.2: Cascade Fuzzy Connection for Speed Control.

PB . (NB: Negative Big. NM: Negative Medium. NL: Negative Little. Z: Zero. PL:

Positive Little. PM: Positive Medium PB: Positive Big)

Fuzzy-1 block uses the error signal and the integral of the error signal in order to

decide the desired acceleration value. Following meta-rules summarize the behavior

of the Fuzzy-1 block.

• If the speed error is highly positive and the integral of the error value is highly

positive, then the desired acceleration is highly positive.

• If the speed error is highly positive and the integral of the error value is highly

negative, then the desired acceleration is zero.

• If the speed error is highly negative and the integral of the error value is highly

positive, then the desired acceleration is negative.

• If the speed error is highly negative and the integral of the error value is highly

negative, then the desired acceleration is highly negative.

Using this knowledge, fuzzy rules are constructed for Fuzzy-1 block. Membership

functions can be seen in Figure 6.3.

The fuzzy control rules are generated in the form of “if-then” structure. The proposed

fuzzy control rule base for Fuzzy-1 block is illustrated in Table 6.1.

Fuzzy-1 block uses five membership functions for the “ev” and five membership

functions for the “integral of ev” which results in 25 rules. The obtained fuzzy surface

based on the generated rules is illustrated in Figure 6.4.
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(a) Membership Function for Input Variable:
Speed Error(ev).

(b) Membership Function for Input Variable:
Integral of the ev.

(c) Membership Function for Output Vari-
able: Acceleration(-1 - 1).

Figure 6.3: Membership Functions for Inputs and Output of Fuzzy-1 Block.

Table 6.1: Rule Base for Fuzzy-1 Block.

Input1-Speed Error ev

In
pu

t2
-∫ e v

NB NM Z PM PB
NB NB NB Z Z Z
NM NM NM Z Z PL
Z NM NM Z PL PM

PM NM NL PL PM PB
PB NM NL PM PB PB

6.2.2 Design of Fuzzy-2 block

The aim of this block is to provide the lateral stability of the vehicle while it follows a

predetermined speed value. Pushing the brake pedal or throttle pedal during the turning

period may cause skidding accidents depending on the steering angle, vehicle speed,

friction factors and vehicle parameters. An experienced driver cares about pushing the

pedals when he turns the steering wheel. Rules of Fuzzy-2 block are generated on this

basis.

Fuzz-2 block takes the output of the Fuzzy-1 block which is a classical acceleration

signal for speed control and fuses this data with |δ | value. The Fuzzy-2 block calculates

the pedal reference signals between minus one and one. The output values between

minus one and zero means a brake command and values between zero and one means

a throttle command.
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Figure 6.4: Fuzzy Surface for Fuzzy-1 Block.

Triangular membership functions are chosen for both inputs and the output of the fuzzy

block. Seven fuzzy sets for “acceleration” input are defined as; NB, NM, NL, Z, PL,

PM and PB. Four fuzzy sets for the absolute steering angle input are entitled as Z, L, M

and B. Finally for the output “pedal signal”, seven fuzzy sets are defined as NB, NM,

NL, Z, PL, PM and PB. (NB: Negative Big. NM: Negative Medium. NL: Negative

Little. Z: Zero. PL: Positive Little. PM: Positive Medium PB: Positive BigZ: Zero.

L: Little. M: Medium B: Big)

Following meta-rules summarize the behavior of the Fuzzy-2 block.

• If the desired acceleration is highly positive and the reference steering angle value

is high, then the pedal signal is a little positive.

• If the desired acceleration is highly positive and the reference steering angle value

is low, then the pedal signal is highly positive.

• If the desired acceleration is highly negative and the reference steering angle value

is high, then the pedal signal is a little negative.

• If the desired acceleration is highly negative and the reference steering angle value

is low, then the pedal signal is highly negative.

Using this knowledge, fuzzy rules are constructed for Fuzzy-2 block. Membership

functions can be seen in Figure 6.5.

The proposed fuzzy control rule base for Fuzzy-2 block is illustrated in Table 6.2.
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(a) Membership Function for Input
Variable: Acceleration.

(b) Membership Function for Input Variable:
Absolute Steer Angle( |δ |).

(c) Membership Function for Output Vari-
able: Pedal Signal (-1-1).

Figure 6.5: Membership Functions for Inputs and Output of Fuzzy-2 Block.

Table 6.2: Rule Base for Fuzzy-2 Block.

Input1-Acceleration

In
pu

t2
-|δ
|

NB NM NL Z PL PM PB
Z NB NM NL Z PL PM PB
L NM NM NL Z PL PM PM
M NL NL NL Z PL PL PL
B NL NL NL Z PL PL PL

The Fuzzy-2 block uses four membership functions for “steering angle” and seven

membership functions for “acceleration” which results with 28 rules. The fuzzy

surface obtained based on the generated rules is illustrated in Figure 6.6.

Five membership functions for the speed error, five membership functions for the

integral of speed error and four membership functions for steering angle are defined for

the whole fuzzy system. If all the inputs were used in the same fuzzy block, there had

to be 100 rule combinations. Using the cascaded strategy, two separated fuzzy blocks

reduce the total number from 100 to 53 which makes the design of the controller easier.

Besides this, it is easier to design the rules for two inputs instead of three inputs.

6.3 Simulations and Comparison

Simulations are performed using nonlinear single track vehicle model with yaw

dynamics in Matlab/Simulink R© environment. Modeling equations and model
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Figure 6.6: Fuzzy Surface for Fuzzy-2 Block.

parameters are given in Chapter 2. Values of the normalizing gain factors for three

inputs are selected as illustrated in Table 6.3.

Table 6.3: Normalizing Gain Factors.

k1 k2 k3
0.2 0.167 0.087

A randomly generated speed profile is given to the model for simulations. In order

to analyze the effect of the Fuzzy-2 block to the controller, simulations are performed

with only Fuzzy-1 controller at first, which is named as Structure-1. Then, the same

speed profile is used with both Fuzzy-1 and Fuzzy-2 controller which is also named as

Structure-2.

For a better comparison, two simulation scenarios are performed. For the first

simulation, a steering angle profile is given to the vehicle in addition to the desired

speed profile. This causes a very little difference in the performances of both structures.

The reason of this little difference is the effect of the Fuzzy-2 block which reduces the

acceleration rate in a steering situation. The benefit of the structure-2 can be seen

clearly in the second simulation. The speed profile, pedal outputs and given steering

angle profile for the first simulation are illustrated in Figure 6.7.

In the second simulation, the steering angle profile is more aggressive than the first

scenario. Even though the similar steering angle value is used in the first simulation,

this steering angle is given with higher speed values of the vehicle in the second one.

According to the results, Structure-1 fails when steering input is given, the vehicle loses
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Figure 6.7: Vehicle Speed Tracking Comparison of Structure-1 and Structure-2
(Simulation 1).

its yaw stability and starts to skid. After unstable yaw dynamics and skidding, it is not

possible to track the desired speed because it tries to give high throttle values in order

to achieve the given speed. Structure-2 reduces the acceleration (pedal opening) when

steering input is given and it tracks the desired speed with a stable yaw dynamics. The

speed profile, pedal outputs and given steering angle profile for the second simulation

are illustrated in Figure 6.8.

Figure 6.8: Vehicle Speed Tracking Comparison of Structure-1 and Structure-2
(Simulation 2).

The vehicle trajectories are illustrated in Figure 6.9 and Figure 6.10 for both of the

control structures respectively, using the stroboscopic plot technique. The vehicle is

represented as blue rectangles using its original dimension. The red points are the

mid-points of the front axle for each time sample.

According to the Figure 6.9, vehicle turns left in the beginning of the steering

command. After that, in the second phase of the steering command, which can be
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Figure 6.9: Unstable Vehicle Trajectory of Structure-1 (Simulation 2).

Figure 6.10: Unstable Vehicle Trajectory of Structure-1 (Simulation 2).

seen in Figure 6.8, vehicle tries to turn right but it starts skidding and loses its stability.

Conversely, Figure 6.10 shows a stable vehicle trajectory in which vehicle turns left

and then turns right properly according to the given steering angle command profile.

6.4 Experimental Results

Proposed method is experimentally tested in this part. Desired speed profile is given

by the Control-Desk interface and steering input is given by the human driver. Figure

6.11 illustrates the experimental test results of the low level speed controller.

Desired speed, real speed, steering input, throttle output and brake output values are

shown in Figure 6.11 According to the simulation results, it can be seen that vehicle

can track the desired speed profile using both the throttle and brake inputs. It is also

seen that, tracking capability increases when steering input is lower. Since the vehicle

speed data is noisy as it is seen, output of the fuzzy blocks are noisy too. In order not

be harmful to the vehicle motor driver, throttle output is given by using a low pass filter

to the motor driver.
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Figure 6.11: Experimental Results of Proposed Low Level Speed Controller.

6.5 Conclusions

A new type of speed control method using fuzzy logic is developed in this section.

Different from the previous studies, the new method considers steering angle in

addition to speed error and integral of the speed error. Because, steering angle value

may cause skidding accidents when it is applied with aggressive throttle or brake pedal

signals simultaneously.

Designed method consists of two cascaded Mamdani-type fuzzy inference systems for

speed control. The cascaded structure results in a reduction of the number of rules,

from 100 to 53. Dynamic vehicle model is used for the simulations. Simulations are

performed in order to show the effectiveness of this new method over the classical

approach.

According to the simulation results, both of these two methods have similar

performances when steering angle and the vehicle speed values are relatively low.

However, in a more aggressive steering scenario, classical approach fails and vehicle

loses its yaw stability while the new method still continues to track the speed with a

stable yaw dynamics.

Additional simulation and experimental results of this new speed control method are

illustrated in Chapter 7. Chapter 7 illustrates the results of newly designed obstacle
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avoidance (Follow the Gap), speed planning and low level speed control methods

together.
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7. SIMULATIONS AND EXPERIMENTAL RESULTS OF DESIGNED
STRATEGIES TOGETHER

Three new methods have been designed for heading angle calculation, speed planning

and low level speed control in order to safely avoid obstacles in Section 4, Section 5

and Section 6 respectively. Each method have been tested and comparisons have been

performed separately till this section. All the new designed methods are combined and

used together in simulations and experimental applications in this section.

7.1 Simulations

Dynamic vehicle model of designed autonomous vehicle is used for simulations.

Modeling equations and used parameters for the model are illustrated in Section 2.

Parameters for FGM, speed planning and low level speed control algorithms are used

as the same values which are illustrated in Section 4, Section 5 and Section 6. Two

random scenarios are simulated in this section. The first one is with static obstacles

and the second one is with dynamic obstacles.

7.1.1 Simulation scenario 1 - static obstacles

Figure 7.1 illustrates the resulted trajectory of the first obstacle scenario. In this

simulation, all obstacles are static and scattered randomly. Starting coordinate is [0,0]

and goal coordinate is [70,-30].

Figure 7.1 shows that the desired heading angle which is calculated by the new

designed obstacle avoidance algorithm FGM, which tries to maximize the distance to

obstacle value as much as possible and guides the vehicle to the goal point. Reference

speed, real speed , steering input and pedal input values for the first simulation are

illustrated in Figure 7.2.

It can be seen from Figure 7.2 that, vehicle reduces its speed in a dangerous situation

according to the speed planner which is designed in Section 5. Vehicle also reduces the
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Figure 7.1: Vehicle Trajectory for Simulation Scenario-1.

Figure 7.2: Reference Speed and Real Speed with Steering and Pedal Inputs for
Simulation Scenario-1.

pedal inputs in high steering angle regions as it is designed in low level speed controller

in Section 6.

7.1.2 Simulation Scenario 2 - dynamic obstacles

Figure 7.3 illustrates the resulted trajectory of the second obstacle scenario. In this

simulation, five obstacles are static and scattered randomly while three obstacles are

dynamic and moving linearly. Direction of the obstacles are shown with dashed arrows.

Starting coordinate is [0,0] and goal coordinate is [70,40].
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Figure 7.3: Vehicle Trajectory in 2D, for Simulation Scenario-2.

According to the Figure 7.3, it is hard to see if there is a collision with a 2D figure

. For this reason time axis is added to same figure and vehicle trajectory is shown in

Figure 7.4 in 3D. In this case, definition of the collision changes into the intersection

of three axis. This means that vehicle and any obstacle are in same place at the same

time. Figure 7.4 illustrates that there is no collision during the trajectory. Each cycle

of the FGM is performed in 10 msec . Purely reactive nature of the FGM provides the

vehicle to avoid dynamic obstacles easily.

Figure 7.4: Vehicle Trajectory in 3D, with Additional Time Axis for Simulation
Scenario-2.
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Figure 7.4 shows that there is no collision since any of the obstacles are not in same

coordinates with the vehicle at the same time. Results of the speed planning and low

level speed controller algorithms are shown in Figure 7.5 for the dynamic obstacle

scenario.

Figure 7.5: Reference Speed and Real Speed with Steering and Pedal Inputs for
Simulation Scenario-2.

After the simulations, all designed methods are tested experimentally for both static

and dynamic obstacle scenarios in next section.

7.2 Experimental Results

Experimental tests of the algorithms are performed using the designed UGV

’Otonobil’, which is explained in detail in Section 3. Test place is the football stadium

of Istanbul Technical University. Static obstacles are scattered randomly to the surface.

Goal point is near the penalty kick point. All parameters of the algorithms are used

as the same values with the simulations. Figure 7.6 illustrates the test field with static

obstacles and goal region. Goal region is the circle around a goal point with 2 meters

diameter. When the vehicle enters to this region, it assumes that it has achieved and

presses brake pedal automatically.

Experimental tests are performed for two main scenarios. First one is with static

obstacles and the second one is with dynamic obstacles as it was done in simulations.

No prior information is given to the vehicle about obstacle configuration. The only

information is the goal coordinate to be reached.
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Figure 7.6: Test Field for Experiments.

7.2.1 Experimental test scenario 1 - static obstacles

Figure 7.7 illustrates the resulted trajectory of the first obstacle scenario. In this test, all

obstacles are static and scattered randomly. Starting coordinate is [-1,-2] and center of

the goal coordinate is [50.9,-29.4]. Black dots show the center of gravity coordinate of

the vehicle and the blue dots are obstacle borders which are measured by the LIDAR

sensor. Red point illustrates the goal point. As it can be seen in Figure 7.7, static

perceived obstacles and even the goal point are a cluster of scattered points. The reason

for the scatter is that the LIDAR and GPS receivers have some measurement error and

noise. These 2 error sources directly affect the coordinate transformation calculations

and causes a little scatter in experimental figures.

Figure 7.7: Vehicle Trajectory for Experimental Test Scenario-1.
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Figure 7.7 shows that the desired heading angle which is calculated by the new

designed obstacle avoidance algorithm FGM, tries to maximize the distance to obstacle

value as much as possible and guides the vehicle to the goal point. Reference speed,

real speed , steering input and pedal inputs for the first experimental test are illustrated

in Figure 7.2.

Figure 7.8: Reference Speed and Real Speed with Steering and Pedal Inputs for
Experimental Test Scenario-1.

After the static obstacle scenario, final experimental tests are performed in dynamic

obstacle scenario.

7.2.2 Experimental test scenario 2 - dynamic obstacles

Figure 7.9 illustrates the resulted trajectory of the second experimental obstacle

scenario. Besides static obstacles on the ground, a dynamic obstacle who is me, runs

towards the vehicle and stops in front of it several times. Starting and goal coordinates

are same as the previous test.

According to the Figure 7.9, it seems that there are intersections between obstacles

and the vehicle. This is the result of 2D illustration as it was mentioned in simulations

section. For this reason, time axis is again added to Figure 7.9 and vehicle trajectory is

shown in Figure 7.10 in 3D. Figure 7.10 illustrates that there is no collision during the

trajectory. None of the obstacles are in the same place at the same time. Vehicle avoids

both the static and dynamic obstacles successfully using the new FGM algorithm.
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Figure 7.9: Vehicle Trajectory for Experimental Test Scenario-2.

Figure 7.10: Vehicle Trajectory in 3D, with Additional Time Axis for Experimental
Test Scenario-2.

Finally, results of the speed planning and low level speed controller algorithms are

shown in Figure 7.11 for the dynamic obstacle scenario of experimental tests.

It can be seen from Figure 7.11 that, vehicle reduces its speed in a dangerous situation

according to the speed planner which is designed in Section 5.

Vehicle also reduces the pedal inputs in high steering angle regions as it is designed

for low level speed controller in Section 6.

Steering angle reference value is calculated based on the Follow the Gap Method which

is illustrated in in Section 4.
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Figure 7.11: Reference Speed and Real Speed with Steering and Pedal Inputs for
Experimental Test Scenario-2.

7.3 Conclusions

In this section, three new methods are simulated and tested together. Follow the

Gap Method calculates the desired heading angle value and sends it to the automatic

steering system for obstacle avoidanc,e considering the nonholonomic and field of

view constraints. Similarly, vehicle speed is planned using the obstacle information

around and the steering command for safe navigation. Finally, low level speed

controller calculates the throttle and brake pedal signals in order to track the desired

speed value, considering the lateral vehicle dynamics.

Simulations and experimental tests are performed for both static and dynamic obstacle

scenarios. Single track dynamic vehicle model is used for the simulations and

successful results are obtained for both of the dynamic and static obstacle scenarios.

Vehicle trajectory and important graphs are shown in this chapter.

For experimental tests, no prior information is given to the vehicle about the

environment as it is same for the simulations. Experimental test results show that, the

unmanned ground vehicle avoids the static and dynamic obstacles successfully, adjusts

its speed according to the obstacle distribution around and tracks the desired speed

value considering the lateral vehicle dynamics. All of these operations are performed

in real-time, using the computer system of Otonobil. The related graphs and vehicle

trajectories are illustrated using the real time experimental data.
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8. CONCLUSIONS

This thesis brings new solutions for three sub-problems of an autonomous ground

vehicle. These sub-problems are calculation of the heading angle reference for obstacle

avoidance, desired speed determination and low level speed control.

First of all the Follow the Gap Method calculates the desired heading angle value

and sends it to the automatic steering system for obstacle avoidance considering the

nonholonomic and field of view constraints. Similarly, vehicle speed is planned using

the obstacle information around and the steering command for safe navigation. Finally,

low level speed controller calculates the throttle and brake pedal signals in order to

track the desired speed value, considering the lateral vehicle dynamics.

Obstacle avoidance ability is one of the most important subsystems of autonomous

robots and this is not just calculation of the heading angle reference value. Nature of

the obstacle algorithm should be reactive because, coordinates of any obstacle may

change at any time and can not be known previously. This prevents the use of the

classical optimization techniques in obstacle avoidance problems. The algorithm must

compute just the next action in every instant, based on the current context. There are

too many studies about this subject in literature.

The most important property of the designed FGM algorithm is maximizing the

distance to obstacle value as much as possible. Comparison of the algorithm is done

with the Artificial Potential Fields (APF) method and the A* shortest path algorithm.

According to the fair simulation results, the FGM results in safer trajectories than the

others. This safety is measured numerically using the designed safety metric. The

FGM is free from the local minimum problem which can be seen in the APF and APF

based algorithms such as the virtual force field (VFF) method. The FGM has only

one tuning parameter alpha, which adjusts the ratio between obstacle avoidance and

arriving at the goal point. The reactive nature of the algorithm provides successful

results even in dynamic obstacle scenarios.
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Determination of the desired speed value is very important too for obstacle avoidance,

like the desired heading angle calculation. Most of the obstacle avoidance algorithms

in literature calculate only the reference heading vector for obstacle avoidance. This

can be enough in low speed values but in higher values, the dynamic properties of

the robot become important. For this reason, speed decision is studied as a separated

problem and a new speed planning strategy is developed. Two cascade connected fuzzy

inference systems (FIS) are used for speed planning. First block calculates a risk factor

by using the distance to obstacle and angle to obstacle values while the second FIS is

used for stabilizing the yaw dynamics. A safety metric is designed for Monte Carlo

simulations which shows that this new method is safer than the classical methods.

Low level speed controller also affects the avoidance performance. The aim of the low

level speed controller is to calculate the throttle and brake pedal signals in order to track

the desired speed. A new low level speed controller using fuzzy logic is designed in

this thesis. Similar cascaded FIS structure is used here as in speed planning algorithm.

Three input values for FIS are; speed error, integral of the speed error and the steering

angle values. According to the simulation results, the new method results in safer yaw

dynamics especially for the aggressive maneuver scenarios.

All designed algorithms are simulated and compared with the existing methods.

Kinematic and dynamic vehicle modeling issues and the used vehicle parameters are

explained in a separated section. Each algorithm is coded using C programming

language into the S-functions using Matlab/Simulink environment.

Beside simulations, all designed algorithms are tested using experimental autonomous

ground vehicle platform. The experimental platform is a full autonomous ground

vehicle which is converted from a conventional electric vehicle during this thesis work.

Conversion procedure is also explained in detail within this thesis.

Both the simulation and experimental results show that these new methods have

significant advantages and results are very promising for future studies.
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APPENDIX A.1

Cosine Theorem(Law of Cosines):

Figure A.1 illustrates the notation for the Cosine Theorem.

Figure A.1: Cosine Theorem Notation

According to the Figure A.1, the law of cosines says:

a2 = b2 + c2−2bccosφ1 (A.1)

b2 = a2 + c2−2accosφ2 (A.2)

c2 = a2 +b2−2abcosφ3 (A.3)

APPENDIX A.2

Apollonius Theorem:

Figure A.1 illustrates the notation for the Apollonius Theorem.

Figure A.2: Apollonius Theorem Notation

According to the Figure A.2, Apollonius Theorem says:

b2 + c2 = 2m2 +2d2 (A.4)
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13-14, 2008 İstanbul, Turkey.
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