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MODEL ÖNGÖRÜLÜ KONTROL EDİCİLERİN KİMYA MÜHENDİSLİĞİ 

UYGULAMALARIÜZERİNE BİR ARAŞTIRMA 

ÖZET 
Model öngörülü kontrol ediciler, bir sisteme ait modeli kullanarak bir öngörü ufku boyunca 
gelecek çıktı değerlerini hesaplayarak gelecekteki hataları en aza indirecek kontrol 
sinyallerini hesaplar. Doğrusal olmayan ya da parametreleri zamanla değişebilen sistemlerde 
kullanılabilmesi, ölü zamanlı sistemlere uygunluğu, gürbüzlüğü ve kullanım kolaylığı Model 
Öngörülü Kontrol algoritmasının en önemli avantajlarıdır. 

Bu çalışmada, Model Öngörülü Kontrol edicilerin kimya mühendisliğinin en öenmli 
uygulamalarından biri olan kimyasal reaktörlerde kullanımı ve performansı incelenmiştir. 
Propilen oksit ve su reaksiyonundan ortaya çıkan propilen glikolun konsantrasyonu ve 
reaktörün sıcaklığı, propilen oksit ve soğutma suyunun akış debisinin ayarlanması ile control 
edilmiş, soğutma suyu sıcaklığı ve propilen oksitin giriş konsantrasyonu bozucu etki olarak 
değerlendirilmiştir.  

Tasarlanan kontrol edici, ayar noktası değişimleri ve bozucu etkilere karşı cevabı yönünden 
incelenmiştir. Bu etkilere kontrol edicinin kısa sürede cevap verdiği gözlemlenmiştir. Ayrıca 
kontrol edicinin gürbüzlüğünü test etmek amacı ile sistem parametreleri değiştirilmiş ve 
kontrol edicinin yeni sistemde de o modele ait olmayan basamak cevabı ile reaktörü kontrol 
edebildiği gözlemlenmiştir. 
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AN INVESTIGATION ON MODEL PREDICTIVE CONTROLLERS’ 
APPLICATIONS OF A CHEMICAL ENGINEERING PROCESS 

 

SUMMARY 

 
Model predictive controllers calculate the control signals to minimize future errors by 
calculating future output values in a prediction horizon by using a model of the system. 
Successful applications to nonlinear systems, parametric uncertainties, dead time 
compensation, its robustness and ease of use are the main advantages of Model Predictive 
Control algorithm. 

In this study, applications and performance of MPC on chemical reactors, one of the most 
important chemical engineering applications, are examined. Propylene glycol concentration, 
resulting from reaction of propylene oxide and water, is controlled with reactor temperature 
by manipulating propylene oxide and coolant flow rates. Temperature of cooling water and 
initial concentration of propylene oxide are evaluated as measured disturbances.  

The designed controller is examined in terms of set point tracking and disturbance rejection. It 
is seen that the controller tracks the set point and rejects the effect of disturbances in a 
reasonably short time. Also in order to test the robustness of the controller, the system 
parameters have been changed and it is observed that the controller performs finely with old 
step response data model. 
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1. INTRODUCTION 

The chemical industry can be characterized as stable for redesign considerations, 
since economic factors prevent new design considerations. On the other hand the 
industry, especially petrochemical industry exhibits very dynamic market place 
conditions (Garcia et al.,1989). Under these circumstances, effective control 
structures acts as an important player for success and profit in the industry. 

Garcia et al. (1989) describes that success can be achieved by the integration of all 
aspects of automation of the decision making process. This integration must include 
process measurements via instrumentation, control of systems; analog and rapid 
sampling digital controllers for auxiliary systems and high capacity controls for 
multivariable plans with large computational capacities. Control of the systems must 
be followed by optimization step in which manipulation of process for economic and 
other concerns or constraints. Finally the allocation of raw materials and scheduling 
of operating plants must be organized in coordination with previous actions. 

It is a fact that in practice the operating point of a plant that satisfies the overall 
economic goals of the process will lie at the intersection of the constraints (Arkun, 
1978). Economic, safety and environmental, equipment, product quality and human 
preferences are the main constraints that a controller must handle. Garcia et al. 1978 
suggests that Model Predictive Control (MPC) techniques provide the only 
methodology to handle the constraints in a systematic way during the design and the 
implementation of the controller.  

MPC is defined as a class of control algorithms “in which there is a direct use of an 
explicit and separately identifiable model (Prett and Garcia, 1988). Muske and 
Rawlings (1993) suggested a more detailed description as “MPC refers to the class of 
control algorithms that compute a manipulated input profile by utilizing a process 
model to optimize an open loop performance objective subject to constraints over a 
future time horizon”.  
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MPC is an open code with certain principles which allow for future extensions rather 
than a strict structure. This flexibility brings a variety of advantages applicable to 
many industries and needs. Camacho and Bordons (1999) listed the advantages of 
MPC compared to other control techniques as: 

• It is particularly attractive to staff with limited knowledge, since the concepts 
are intuitive and tuning is relatively easy. 

• It is applicable to a great variety of processes, from those with relatively 
simple dynamics to more complex ones, including systems with long delay 
times or of non-minimum phase or unstable ones. 

• The multivariable case can easily be dealt with. 

• It has compensation for dead times. 

• It introduces feed forward control in a natural way to compensate for 
measurable disturbances 

• The resulting controller is an easy to implement linear control law. 

• Its extension to the treatment of constraints is conceptually simple and these 
can be systematically included during the design process. 

• It is very useful when future references are known. 

In this study, MPC application and performance will be investigated on one of the 
most important figures in chemical industry, chemical reactors. As a case study, 
production of ethylene glycol from the reaction of ethylene oxide-methanol mixture 
and water in a continuous stirred tank reactor, CSTR. The controller design 
necessitates development of system model which shows a nonlinear behavior. Multi-
input multi - input (MIMO) based MPC is developed, where the temperature of the 
reactor and concentration of product, ethylene glycol, is being controlled by 
manipulating ethylene oxide and coolant flow rates with presence of coolant 
temperature and water flow rates as measured disturbances.  

The performance of the controller is analyzed for set point tracking, disturbance 
rejection and robustness. 
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2. LITERATURE SURVEY 

2.1 A Brief History of MPC 

Although Model Predictive Control (MPC) originated in the late seventies, the theory 
behind dates back to 1950s and 1960s with the concept of using an open-loop 
optimal control computation as in MPC case. However implementations of the 
theory become possible with the sudden increase in the computational power.  

MPC describes a class of computer control algorithms that control the future 
behavior of a plant through the use of an explicit process model (Qin and Badgwell, 
2003). Based on this basic definitions and approaches, several industrial MPC 
algorithms have been developed and are shown in Figure 2.1. 

 

Figure 2.1 : Historical development of MPC algorithms, (Qin and Badgwell, 2003) 
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2.1.1 Linear Quadratic Gaussian Control (LQG) 

The idea behind MPC can be traced back to works by Kalman in the early 1960s on 
Linear Quadratic Gaussian (LQG) control (Qin and Badgwell, 2003). LQG concept 
is based on the formulation of the system by a discrete-time, linear state space model. 
State disturbances and measurement noises are also added to that model. These 
inputs were assumed to be Gaussian noise with zero mean and positive definite 
covariance, while the objective function penalizing squared input and state deviations 
was minimized. As in many MPC algorithms, LQG had also two weighting matrices 
for controller and set-point tracking concerns. Unlikely other MPC methods, LQG 
algorithm had infinite prediction horizon that ensured a powerful and robust 
stabilizing character.  

In the following years, extensions to handle controlling outputs, off-set control and 
computing steady-state were handled (Kwakernaak&Sivan,1972). However 
constraint handling and state identification issues were not addressed in LQG theory. 
LQG became a standard approach in the industry for a wide range of applications 
with thousands of real-world applications and roughly 400 patents per year based on 
the Kalman filter (Goodwin, Graebe and Salgado, 2001). Despite that wide range of 
applications, LQG received a little attention in control theory. Richalet et al. (1976) 
and Garcia et al. cited the reasons of that little attention as :  

• weakness in constraint handling 

• failures in process nonlinearities 

• lack of robustness in case of model uncertainties 

• lack of unique performance criteria 

• cultural reasons, reluctance of employees to new method.  

It should also be noted that another key figure of MPC algorithm, controlling a 
system by solving a sequence of open-loop dynamic optimization problem has also 
been discussed since 1960s. Propoi (1963) described a moving horizon control 
theory and Lee and Markus (1967) stated the logic of moving horizon concept in 
control.  
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2.1.2. Model Predictive Heuristic Control (MPHC) and Identification & 
Command (IDCOM) 

Despite all these academic studies, the gap between theory and practice was closed 
by two studies emerging form industry in the late seventies and started the MPC era.  

In 1978, Richalet et al. summarized the first description of MPC control applications 
which was presented in 1976 IFAC Conference (Richalet et al., 1976). The 
approached was named as Model Predictive Heuristic Control (MPHC) and the 
solution software was referred as IDCOM, an acronym for Identification & 
Command.  

Richalet et al. (1978) stated the main challenge as “with the availability of much 
powerful computers, should not the basic approaches to control system applications 
be considered?”. Indeed with more powerful computers with faster computation 
skills, fast access memory and higher storage capacities enhance the use of model 
and control history of process at each time step. The distinguishing features of 
IDCOM approach was summarized by Qin and Badgwell, 2003 as: 

• impulse response model for the plant, linear in inputs or internal variables, 

• quadratic performance objective over a finite prediction horizon, 

• future plant output behavior specified by a reference trajectory, 

• input and output constraints included in the formulation, 

• optimal inputs computed using a heuristic iterative algorithm, interpreted as 
the dual of the identification. 

Richalet et al. defined a model where inputs – output representation of the process. 
The process parameters were divided into sub categories. Inputs were categorized as 
manipulated variables (MV); inputs that were adjusted by the controller and 
disturbances; inputs that controller could not control. Due measuring capabilities of 
the system, disturbances were defined as measured disturbances (MD) and 
unmeasured disturbance (UD). The process outputs were referred as controlled 
variables (CV). The system related the inputs to influence the outputs directly.  
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MPHC algorithm was using an impulse model in which the model predicts the output 
at a given time depends on a linear combination of past input values. This model was 
obtained by evaluating the real plant data. The iterative nature of the control 
algorithm allows the constraints to be checked at each sampling time. Because the 
control law was not linear and could not be expressed as a transfer function, Richalet 
et al. (1978) referred as heuristic control, though it is called linear MPC today. 

The MPHC algorithm drives the predicted output future trajectory as closely as 
possible to a reference trajectory, defined as a first order path from the current output 
value to the desired trajectory. By this way, controller provides a natural way to 
control the aggressiveness of the algorithm; increasing the time constants lead to a 
slower but more robust controller. Using impulse model for identification of the 
multivariable system was considered and the procedure was reported to save time in 
identification. It was suggested that, assuming linearity in the neighborhood of an 
operating point, the most appropriate model is the impulse response model 

Rather than a fixed set point, IDCOM used a reference trajectory. The reference 
trajectory enhanced desired characteristics, like no overshoot or fixed time response. 
Robustness of the control system was also adjusted by reference trajectory.  

Richalet et al. described the MPHC application to a fluid catalytic cracking unit 
(FCCU) main fractionator column, a power plant steam generator and a poly-vinyl 
chloride plant. Benefits from these three constraint cases were reported as 
$150,000/yr for fractionator column and $220,000/year for poly-vinyl chloride plant. 

2.1.3. Dynamic Matrix Control (DMC) 

An independent MPC technology was developed by engineers in Shell Oil in early 
seventies, with an initial application in 1973. However, the details of developed 
unconstrained multivariable control algorithm were not reported until 1979. The 
method was presented in the National AIChE meeting in 1979 and Joint Automatic 
Control Conference in 1980 by Cutler and Ramaker (Cutler and Ramaker, 1980). 
The distinguishing features of DMC approach was summarized by Qin and 
Badgwell, 2003 as: 

• linear step response model for the plant, linear in inputs or internal variables, 

• quadratic performance objective over a finite prediction horizon, 
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• future plant output behavior specified by trying to follow the setpoint as 
closely as possible, 

• optimal inputs computed as the solution to a least-squares problem 

DMC was very successful in overcoming the main problem of LQG control, because 
DMC represents a revolutionary contribution in communicating the needs of industry 
in a fashion that both industry and academia can understand. Garcia and Morshedi 
(1986) stated that fact as DMC “contained very transparent tuning parameters of 
physical meaning to the user”. This ease of use and effectiveness give the result as 
“Today there is probably not a single major oil company in the world where DMC is 
not employed in most new installations or reconstructs” (Morari and Lee, 1999). 

Key features of DMC algorithm include use of a step response for calculation of the 
future errors of the system, which is the integral of impulse model used by IDCOM. 
Multiple outputs were handled by the superposition. Using the step response model, 
the predicted future output changes could be written as a linear combination of future 
output moves. The bound between these two was sustained via “Dynamic Matrix”. 
The quadratic objective function employed in DMC has two terms. One term 
represents the difference between the output and the reference trajectory and aim to 
adjust the set-point tracking capability. The other term represents the control move, 
penalizing the control effort to adjust the change in the manipulated variables to 
minimum. Tuning is carried out by manipulating these two terms, first one 
representing minimum error and the latter the robustness.  

In DMC design, step response model was used instead of impulse model used in 
MPHC. Also quadratic performance objective function over a finite prediction 
horizon was used and future behavior of the plant was specified to follow the set 
point.  

Cutler and Ramarker declared the results of the controller for a furnace temperature 
control. It was shown that the feed forward response of DMC algorithm was superior 
to that PID lead/lag compensator. 

The main similarities between DMC and MPHC were summarized by Martin (1981) 
as both methods: 

• utilized a non-minimal model presentation, 
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• considered predictive values of the controlled variable to find the future 
errors of the controlled process, 

• made use of an internal method, 

• updated the future predictions by using the actual measurements 

• had a tuning parameter to dampen the control action. 

2.1.4. Quadratic Dynamic Matrix Control (QDMC)  

Beyond all advantages of DMC and MPHC, there were drawbacks in constraint 
handling of multivariable cases. In order to overcome those problems, Cutler 
addressed a quadratic program in DMC algorithm in a 1983 AIChE Conference and 
the algorithm was later explained in detail by Garcia and Morshedi (1986). Key 
figures of QDMC include: 

• linear step response for the model, 

• quadratic performance objective over a finite prediction horizon, 

• future plant output behavior specified by trying to follow the set point as 
closely as possible subject to a move suppression term, 

• optimal inputs computed as the solution to a quadratic program (Qin and 
Badgwell, 2003). 

DMC quadratic objective function was rewritten in the form of a standard quadratic 
program. Future projected outputs were related with the input move vector through 
the dynamic matrix and by that way input and output constraints were collected into 
a matrix inequality involving the input move vector. The quadratic programming 
gradient vector, first derivative, was calculated at each sampling time, while 
quadratic programming Hessian matrix, second derivative, was calculated only once. 
The output constraints were reevaluated in the forms of input constraints using the 
system dynamic matrix.  

Garica and Morshedi (1986) presented the results of QDMC on a pyrolysis furnace. 
The fuel gas pressures in three burners and bounds on temperature zones were 
presented as the constraints of the system. The test results were reported as 
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successful for problems as large as twelve process inputs and twelve process outputs 
case. It was concluded that QDMC algorithm had proven particularly profitable in 
and on-line optimization environment. 

2.1.5. IDCOM-M, HIECON, SMCA and SMOC 

With the successful applications of DMC, MPHC and QDMC, the MPC strategy 
gained bigger interest and acceptance. The wider it was investigated, the more 
complex problems were acquainted. Especially the constraint handling problem and 
solving the objective function in one function were the main obstacles. Prett and 
Garcia (1988) commented on that problem: “The combination of multiple objectives 
into one objective function does not allow the designer to reflect the true 
performance requirements”. As a result the following studies were mainly focused on 
multi input – multi output (MIMO) case. 

A modified version of IDCOM, as IDCOM-M was presented by Setpoint Inc, where 
the M denotes MIMO structure. Nearly at the same time, Adersa introduced its 
algorithm as hierarchical constraint control (HEICON). The controller was described 
by Grosdidier, Froisy and Hammann (1988) and main features were summarized as: 

• linear impulse response of the model, 

• controllability supervisor to screen ill-conditioned plant subsets, 

• multi-objective function formulation; quadratic output objective followed by 
a quadratic input objective, 

• controls a subset of future points in time for each output, called the coincide 
points, chosen from a reference trajectory, 

• a single move is computed for each input, 

• constraints can be hard or soft, with hard constraints ranked in order of 
priority (Qin and Bagdwell, 2003). 

The IDCOM-M algorithm was different in the sense of using two separate objective 
functions, one for the outputs and one for the inputs. The desired output value was 
coming from a first order reference trajectory. Grosdidier et al. (1988), represented 
the capacity of the control for the FCCU problem, which was the case study of 
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original IDCOM. The control problem was to control the flue gas composition, flue 
gas temperature and regenerator bad temperature by manipulating feed oil flow rate, 
recycle oil flow rate and air flow rate to the regenerator. The system was tested for 
three cases. First case showed the successful operation of multi input-multi output 
control. The second case showed the constant measured disturbance rejection 
capacity. The third case demonstrated the need for the controllability supervisor, 
where on manipulated variable failed, the controller was set to choose the optimum 
control strategy. 

After introducing IDCOM-M, Setpoint Inc. represented Setpoint Multivariable 
Control Architecture (SMCA). SMCA offered an improved solution engine to solve 
a sequence of separate steady-state target optimizations. By this way a natural way to 
incorporate multiple control objectives and constraints was sustained. 

By the end of 1980’s Shell’s research team in France introduced Shell Multivariable 
Optimizing Controller (SMOC). Marquis and Broustail (1998) stated the idea that the 
developed model was a bridge between state-space and MPC algorithms. The aim 
was to combine the successful constraint handling ability of MPC algorithm with the 
richer framework of state-space models. The model was testes on a hydrotreater unit 
with four reactor beds in series. The control aim was to control the reactor 
temperatures and the temperature variations between reactors at the desired reference 
value. Maximum temperature limitations were the constraints, while first reactor 
inlet temperature and quench flows between reactors were the manipulated variables. 
State-space model was shown to play a natural role to overcome the temperature 
dependence of reactors. Qin and Bagdwell (2003) summarized the key figures of 
SMOC algorithm as: 

• State-space models were used so that the full range of linear dynamics could 
be represented, 

• An explicit disturbance model described the effect of unmeasured 
disturbances; the constant output disturbance was simply a special case, 

• A Kalman filter was used to estimate the plant states and unmeasured 
disturbances from output measurements, 

• A distinction was introduced between controlled variables appearing in the 
control objective and feedback variables that were used for state estimation, 
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• Input and output constraints were enforced via a quadratic program 
formulation. 

Beyond IDCOM-M, SMCA, HEICON and SMOC, several important algorithms 
were introduce in the late 1980’s; including Profimatics’ PCT algorithm and RMP 
algorithm by Honeywell. 

2.1.6. DMC-plus and RMPCT 

With the successful implementations of MPC algorithms, MPC vendors started to 
clear their position in the control market and tried strengthen their positions. 
Honeywell purchased Profimatics Inc and its algorithm PCT in 1995 and merged its 
RMPC algorithm to create RMPCT. In the same manner, Aspen Technology Inc 
purchased Setpoint Inc with its product SMCA and DMC Corporation with product 
DMC to create DMC-plus. The key figures of these combined technologies were 
summarized by Qin and Bagdwell (2003) as: 

• windows-based graphical user interfaces, 

• multiple optimization levels to address prioritized control objectives, 

• additional flexibility in the steady-state target optimization, including 
quadratic programming and economic objectives, 

• direct consideration of model uncertainty (robust control), 

• improved identification technology based on prediction error method and 
sub-space identification methods. 

 

2.2 Other MPC Algorithms and MPC Applications to Chemical Reactor 
Control 

After the successful applications which are referred as first and second generations 

MPC in Figure 2.1, a growing number of researches became available in the 

academia. Since MPC is an open code with main principles; use of an explicit model, 
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optimization at each time step and use of future time horizon, variations of these 

concepts lead to many researches. Variations in optimization techniques, 

investigation on robustness, tuning techniques, adaptation with other techniques like 

neural networks or fuzzy control have been studied by many researchers since then. 

Rouhani and Mehra (1982) developed mathematical issues and fundamental 

components of control structure for their model and referred as Model Algorithmic 

Control (MAC) instead of MPC. Rouhani and Mehra (1982) suggested that an off-

line identification of the plant is adequate, since online identification brought burden 

to computation. MAC algorithm used an impulse response. Differing form DMC, 

control horizon was not considered as a tuning parameter in MAC algorithm and was 

taken equal to the prediction horizon. The single input – single output case was 

examined in detail and for both deterministic and stochastic environment stability 

and robustness was evaluated.  

It was shown by Marchetti et al. (1983) that under certain circumstances, MAC 

algorithm can be defined to reflect a dead-beat type controller. Marchetti et al. (1983) 

also compared a single input – single output controller and a discrete PID controller 

for three representative process models and for an experimental continuous stirred 

tank heater. It was concluded that the predictive controller was quite effective, but 

they stated that a single input – single output controller did not utilize full 

capabilities of the predictive controller as in multivariable cases. Also a significant 

reduction in the dimensions of dynamic matrix was tested and shown not to 

significantly degrade the control system performance. 

Garcia and Prett (1986) summarized the current situation in model predictive 

controllers where all mathematical backgrounds of linear, unconstrained, constrained 

model predictive controllers are given and also the application of DMC on a heavy 

oil fractionator is studied as a case study.  

Clarke et al. (1987a) proposed a new control algorithm called Generalized Predictive 

Controller (GPC). The aim was to obtain a control rule for handling larger range of 
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control problems for larger range of plants. The method was claimed to be applicable 

to non-minimum phase or poorly identified plants with unknown order or dead time 

and to open loop unstable systems (to which DMC, MPHC and similar algorithms 

were not applicable without certain adjustments). In GPC, the process model was 

developed in discrete time and a disturbance term was included. These types of 

models are called “controlled auto regressive and moving average” (CARMA) 

models. More detailed discussions on extensions of GPC were discussed in the 

following paper by Clarke et al. (1987b) In order to overcome the problem of models 

of disturbances (such as changes in material quantity or quality), the CARMA model 

was divided by a differencing operator and “controlled auto regressive integrated 

moving average” (CARIMA) model was obtained (Camacho and Bordons, 1999). 

The major drawback of GPC was stated by Morari and Lee (1999) as “not being 

suitable for multivariable constrained systems, more commonly encountered in the 

oil and chemical industries”.  

Garcia et al. (1989) showed that all of the existing MPC algorithms, including 

MPHC, DMC and internal model control (IMC) and made their comparisons. After 

this study, the generic term Model Predictive Control was used for this class of 

algorithm. They suggested that there is a significant advantage of MPC in terms of 

the overall operating objectives of the process industries. Applications of MPC were 

also investigated for nonlinear systems and main attractions were identified.  

Riggs and Rhinehart (1990) compared nonlinear internal model control (IMC) and 

generic model control (GMC) on a single input – single output (SISO) exothermic 

continuous stirred tank reactor (CSTR) and SISO heat exchanger. It was concluded 

that both methods were relatively intensive to process/model mismatch for nonlinear 

systems and have relatively wide tuning bands. 

Sistu and Bequette et al. (1992) studied a comparison of globally linearizing control 

(GLC), a differential geometry based control, and nonlinear predictive control 

(NLPC), an optimization based technique, for temperature control of an exothermic 

continuous stirred tank reactor (CSTR). GLC linearize the output/input or the 
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state/input closed loop nonlinear system. This technique was only used on minimum 

phase systems, in which the inverse dynamics were stable. All state variables 

assumed to be measured for GLC. If there were unmeasured state variables, 

estimation techniques must be used. The results were obtained for considering 

perfect model, with measured and unmeasured disturbances, an uncertain model, and 

finally constraints on manipulated variable. For an unconstrained case, GLC gave 

same performance to NLMPC. However, NLMPC gave beter performance than GLC 

considering constraints on manipulated variable. 

Lee et al. (1994) proposed a new control scheme, which consisted of an Adaptive 

Model Predictive Control (AMPC) and state feedback control, for unstable nonlinear 

processes. Then, the final control inputs were the summation of feedback outputs and 

the control actions of the AMPC. The control law of AMPC was similar to that of 

Dynamic Matrix Control (DMC) but the output prediction was obtained by 

ARMAmodels, which is very useful for model parameter identification, in AMPC. 

The advantages of this proposed method were easy implementation to unstable 

nonlinear processes with robustness and simplicity of design. The performance of 

AMPC was tested by ajacketed continuous stirred tank reactor (CSTR) and two 

jacketed CSTRs in series with a seperator and compared with Generalized Predictive 

Control (GPC) and Adaptive Generalized Predictive Control (AGPC). The results 

showed that AGPC gave good performance for good set-point tarcking, in contrast 

GPC failed to overcome the effect of process change, and AMPC showed better 

stable control performance than AGPC. 

Santos et al. (2001) implemented a nonlinear model predictive control (NMPC) 

algorithm in a continuous stirred tank reactor (CSTR). The objective was to control 

the liquid level and temperature in the pilot plant where an irreversible exothermic 

chemical reactions simulated experimentally by steam injection. A first principle 

model was used to observe the dynamic behavior of the plant and that dynamic 

behavior was compared with the experimental data. The nonlinear MPC algorithm 

was shown be very useful for processes operating at or near singular points that 

cannot be captured by linear controllers and where higher order information is 
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needed. Nonlinear MPC was using a nonlinear dynamic model to predict the control 

steps effects on the controlled variables by deriving the output variables to the 

desired steady state setpoints, based on environmental, economic, safety and product 

quality considerations. The study showed that the model showed a very nonlinear 

behavior and was validate with the experimental data. Although it was appeared to 

have quite successful comparison between the experimental and the plant data, 

several sources of unmeasured disturbances as well as a significant degree of 

plant/model mismatch within the system. Despite these challenges, successful set 

point tracking and disturbance rejection was observed.  

Prasad et al. (2002) applied a multivariable multi-rate nonlinear MPC. The model 

was tested for styrene polymerization in a continuous stirred tank reactor. The 

control objective was to control of polymer properties such as number average 

molecular weights and polydispersity. The NMPC algorithm included a multi-rate 

Extended Kalman Filter (EKF) in order to handle state variable and parameter 

estimation. The multi-rate EKF was used for the design of the augmented disturbance 

model as estimator. Plant-model structural mismatch, parameter uncertainty and 

disturbances were considered for control simulations in open loop unsteady state 

CSTR. The results for the proposed control algorithm were shown to have superior 

performance compared to linear multi-rate and nonlinear single rate MPC algorithms. 

Afonso et al. (1996) investigated the performance of a receding horizon model 

predictive control applied to a real plant in order to show the applicability of model 

predictive controllers to real life beyond simulations. Continuous stirred tank reactor 

(CSTR) was chosen as the experimental case, where an industrial pseudo zero order 

exothermic chemical reaction was simulated in order to control temperature and level 

of the reactor. By making MPC algorithm formulation, the manipulated variables 

were calculated so as to minimize an objective function considered desired 

trajectories over the horizon. The rate of heat generated by reaction was calculated 

and converted into an equivalent steam flow rate. The performance of receding 

horizon model predictive control applied in a CSTR was compared with PI 

controller. A significant controller performance was said to be achieved with MPC 



 16 

when compared with the previously existing PI controller, operating in steady state 

or dynamically, despite both MPC and PI strategies showed the similar performance 

for level control. 

Park and Rhee (2001) studied a linear matrix inequality (LMI)-based robust model 

predictive control. The controller was applied to control the polymerization of 

methyl methacrylate in a continuous stirred tank reactor. The polytopic model was 

constructed to predict the responses to various control input sequences by using 

Jacobians of uncertain nonlinear model at several operating points. The controller 

was designed to minimize an upper bound objective function subject to constraints 

on the control input and plant output. The controller performance was checked for 

two cases; SISO and MIMO. In the SISO system, the manipulated variable was the 

jacket inlet temperature and the controlled variable was the monomer conversion. In 

MIMO system, the manipulated variables were the jacket inlet temperature and the 

feed flow rate, the controlled variables were the monomer conversion and the weight 

average molecular weight. According to the simulation results, despite the model 

uncertainty, the LMI-based robust model predictive controller performed quite 

satisfactorily for the property of continuous polymerization reactor and the robust 

stability was guaranteed.  

Biagiola and Figueroa (2004) proposed an application of state estimation based 

nonlinear model predictive controller to an unstable nonlinear process. The nonlinear 

process was chosen to be a jacketed exothermic reactor and control aim was to 

control the temperature of the reactor at a desired level. A state-space formulation 

was proposed to achieve the control objective. To update the optimization involved 

in nonlinear MPC strategy, state estimation based on the measured output was 

proposed. The computer simulations were developed for the performance of the 

nonlinear observer and the control strategy.  

Wu (2001) studied robust model predictive controller for a class of uncertain linear 

systems with structured time varying uncertainties, linear fractional transformation 

perturbations. The controller was designed to characterize as an optimization 
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problem of the worst-case objective function over infinite moving horizon. An 

adequate state-feedback synthesis condition was developed and formulated as LMI 

optimization. Then, the control action could be calculated on-line. The stability of 

controller was decided by the feasibility of the optimization problem. The 

performance of the robust MPC technique was implemented to an industrial CSTR 

with a first order, irreversible exothermic reaction with explicit input and output 

constraints for set point tracking without disturbance and disturbance rejection. 

According to simulation results, it was concluded that robust MPC technique was 

capable of incorporating model mismatch and constraints. 

Al-Ghazzawi et al. (2001) offered a tuning strategy based on the linear 

approximation between the closed-loop predicted output and the model predictive 

control tuning parameters. Linear model predictive controllers (LMPC) based on 

finite impulse response (FIR) models were developed. Al-Ghazzawi developed 

analytical expressions for the sensitivity of the closed-loop response of MPC with 

respect to output and input weights of the objective function. Both of the control and 

prediction horizon were kept constant predetermined values by depending on 

conventional tuning guidelines. The controller strategy performance was illustrated 

by using a linear model for a three product distillation column and a non-linear 

model for a CSTR. In CSTR, where an exothermic catalytic reaction was taking 

place, a linearized model was developed and converted to FIR to use it for MPC 

algorithm. The set point tracking, disturbance rejection and effect of modeling errors 

were considered, the performance of proposed method gave good results. There is 

also a comparison of the proposed on-line tuning method with an existing off-line 

tuning method. The off-line method had the control performance better than the 

proposed method. In addition to that off-line method expressed a considerably high 

sluggish response in distillation column example and unstable response in the CSTR 

example. 

Nagrath et al. (2002) developed a state estimation based model predictive control 

approach that had the same general philosophy with cascade control, which was 

examined to be commonly used in the operations of chemical processes to reject 
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disturbances that had a rapid effect on the measured state. The designed MPC was 

presented to be superior to cascade control in the additional advantage of constraint 

handling capacity.  The proposed controller was checked via an exothermic jacketed 

continuous stirred tank reactor, where the jacket temperature was used as a secondary 

measurement in order to infer disturbances in the jacket feed temperature and reactor 

feed flow rate. The state estimation was sustained by using a Kalman filter while a 

quadratic programming (QP)-based optimization for the predictive controller 

explicitly handled the manipulated variable constraints. The cascade strategy based 

model predictive controller scheme was compared to classical cascade control, and it 

can be shown that MPC-based cascade method performed better than it in the 

presence of constraints on jacket flow rate. 

A nonlinear model predictive control was presented by Biegler et al. (2002) based on 

a Wiener piecewise linear model. The LHN approach was used for Wiener model 

identification since it was to be straightforward and guarantee an accuracy of the 

static nonlinearity. After identifying the linear block by using a correlation technique, 

the intermediate signal was generated from the input signal and finally the static non-

linearity was estimated. A good representation of the inverse of the nonlinearity was 

necessary to implement NMPC algorithm. In order to identify it, direct identification, 

which was the identification of the nonlinear element of the model but switching 

inputs and outputs, was used. This proposed technique was illustrated by a SISO 

CSTR and a MIMO polymerization reactor and the response of NMPC and LMPC 

are compared. The results showed that the LMPC step response to a lower set point 

was slower but LMPC was faster for an upper step input. 

Hidalgo and Brosilow (1990) proposed a combination of a nonlinear model 

predictive controller and Coordinated Control. The combination yield to an effective 

control for reactors operating around an unstable operating point. The controller was 

checked for the continuous stirred tank reactor, in which free radical solution 

polymerization styrene monomer reaction took place. By manipulating the reactant 

styrene rate and the coolant flow rate, the product concentration was being 
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controlled. Hidalgo and Brosilow (1990) reported successful set point tracking for 

steady state, although significant modeling errors were present. 

2.3 Future of MPC Algorithms 

Beyond wide spread applications of Model Predictive Controller algorithms 
especially in the refinery and petrochemical industry, there is still an important area 
of possible practice area. Qin and Bagdwell (2003) summarized a composite view of 
MPC technology’s future. In this study, the main focus points for future MPC 
algorithms were summarized as basic controller formulation, adaptive MPC, Robust 
MPC and nonlinear MPC. 

As the systems to be controlled become more and more complex, it is not easy and 
meaningful to express all control objectives in single objective function. Qin and 
Bagdwell (2003) suggested that future MPC algorithms deal with multiple objective 
functions. With increasing computational power, prediction horizons would tend to 
be infinite rather than a proportion of a model horizon. Input parameterization using 
basis functions may become widespread and infinite control horizons with moves 
computed at each control interval would be possible.  

Although there is a remarkable need in the industry for adaptive control systems, the 
difficulty of adaptive control in the real world prevents those applications. As stated 
above, Generalized Predictive Controller (GPC) was the first adaptive MPC 
algorithm and was not found to be successful. Qin and Bagdwell (2003) forecasted 
that lack of adaptive control would not change in the near future. Adaptive PID 
controllers were assumed to be an adequate solution for the industries’ needs. 

MPC control algorithms rely solely on evaluating model mismatch and robustness. 
Robust control schemes would decrease the effort for tuning and testing in the 
industry. There are several successful robust MPC applications reported like, 
Kassmann et al. (2000), Kothare et al. (1996) and Scokaert and Mayne (1998). 
Robust designs would be more available in the future market. 

Although MPC strategies are widely used in the petrochemical and refinery 
industries, more nonlinear the systems become, the less MPC finds place. As can be 
seen from Figure 2.2, there is a large untouched area of applications for MPC 
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algorithms. The main reason of this open area is the increasing nonlinearity. Qin and 
Bagdwell suggested that next generation MPC technology would allow nonlinear 
models to be developed by combining process knowledge and operating data. 
Process test signals would be designed automatically so as to explore important 
regions of the operating space where the model is inadequate to control.  
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Figure 2.2 : Distribution of MPC applications vs the degree of process nonlinearity, 
(Qin and Badgwell, 2000) 
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3. MODEL PREDICTIVE CONTROL (MPC) 

3.1 MPC Strategy 

Camacho and Bordons (1999) offered an analogy for the sake of understanding MPC 

strategy. The strategy is very similar to the control strategy used in driving a car as in 

Figure 3.1. The driver knows the desired reference trajectory for a finite control 

horizon, and by taking into account the car characteristics (mental model of the car) 

decides which control actions (accelerator, brakes and steering) to take in order to 

follow the desired trajectory. Only the first control actions are taken at each instant, 

and the procedure is repeated for the next control decisions in a receding horizon 

fashion. With control schemes, driver can only use the car with a mirror and can take 

action after a deviation occurs. 

 

 

Figure 3.1: MPC analogy with car driving (Camacho and Bordons, 1999) 

MPC strategy can be better understood by the use of Figure 3.2. The main strategy of 

MPC controllers can be summarized in three steps (Camacho and Bordons, 1999). At 

an arbitrary sampling instant k, the future values of the system for a period of P 

discrete time steps (prediction horizon) (y(t+k) for k=1…P) are predicted at each 
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instant by making use of the system’s model available with past input applied and 

future inputs to be applied to the process. Past inputs (u(n-1), u(n-2)…,u(n-C+1)) are 

represented in solid lines in Figure 3.2, where dashed lines represent the future inputs 

(u(n), u(n+1),…,u(n+C)).In the second step, the set of future signals is calculated by 

optimizing a determined criterion in order to keep the process as close as possible to 

the reference trajectory, (r) in Figure 3.2. Only the first element of the future input is 

applied to the process since a new measurement of the output can be present in the 

next sampling instant. The procedure is repeated at each sampling instant with new 

measurements, which is called the receding strategy. 

 

Figure 3.2: MPC Strategy (Bemporad et al.,2006) 
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In order to implement MPC strategy, the basic structure in Figure 3.3 is used.  

 

Figure 3.3: Basic structure of MPC (Camacho and Bordons, 1999). 

As shown in Figure 3.3, a model uses past inputs and outputs of the system with the 

future inputs and predicts the plant’s future state. The predicted outputs are than 

compared with the reference trajectory and future errors are calculated. These future 

errors are optimized in the presence of constraints with objective function and 

optimizer sends the set of future control actions to the model. While doing so, only 

the first element of the future inputs is sent to plant to realize and the response of the 

plant is used to correct the model at each sampling period.  

3.2 MPC Prediction Model 

The model is the corner-stone of MPC; a complete design should include the 

necessary mechanisms for obtaining the best possible model (Camacho and Bordons, 

1999). The most common prediction model used in MPC design is the step response 

model, or namely discrete convolution model. The major advantage of the step 

response modeling is that, there is only need for input – output information of the 

process without concerning the model’s restrictions. Figure 3.4 represents an open 

loop step response of a linear process. 
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Figure 3.4: Open loop step response of a linear process (Seborg et al., 1989). 

Where ‘u’ represents inputs and ‘y’ is used to define outputs. The step response, 

obtained by giving a 1-2 % magnitude step change to the process, would tend to 

stabilize and the hi values tend to be zero. In other words, the subsequent ai values 

tend to be equal. 

       and             (3.1) 

The ‘a’ values represent the step response coefficient and ‘h’ values represent 

impulse response coefficients. For an open loop step response representation, the step 

response coefficients are the summation of all impulse response coefficients.  

          (3.2)   

 

The time required to reach the 99 % of the final value of the system is defined as the 

Model Horizon (M). Since M is an interval term, the time required for model horizon 

can be obtained simply multiplying M with sampling time.  
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Using open loop system response, for model horizon M input changes to predict the 

system’s output, the discrete convolution method is written as: 

         (3.3) 

 

 

 

Where the superscript ^ denotes the predicted values. Also it should be noted that 

∆u=ui- ui-1. If this representation is modified to predict the system’s output to every 

possible input change that can be introduced at each instant the resulting equation 

becomes 

         (3.4) 

 

In order to incorporate the model errors and disturbances: 

         (3.5) 

can be written. The suffix * is used to represent the real output value of the process. 

Equation 3.5 states that the difference between the predicted and the measured value 

is assumed to be constant for the next sampling time. This error value can be used to 

treat the model misprediction. 

Substituting Equation 3.5 into Equation 3.4 gives: 

         (3.7) 

When it is assumed that the same amount of error takes place in the discrete time of 

the model during prediction horizon, Equation 3.6 can be expanded for the prediction 

horizon, P as: 

     For j=1,2,…,P   (3.8) 
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3.3 MIMO Representation of the Step Response Model 

The single input – single output system defined in the previous section is not 

applicable for most of the models. Because of that reason MIMO extension of step 

response model for 2x2 system is developed using the superposition principles as 

Equation (3.7). 

         (3.9) 

 

       For j=1,2…,P 

 

3.4 Objective Function 

MPC algorithm follows a reference trajectory by the future outputs on the prediction 

horizon and penalizes the control effort on the control horizon. General objective 

function of the MPC can be written as: 

                    (3.10) 

 

In the optimization problem given in Equation 3.10, the first term is used to 

minimize the error resulting from the difference between predicted outputs and 

reference trajectory, ‘r’ during prediction horizon, P. The second term is the 

difference of control actions taken at each time step during control horizon, C. 

Equation 3.10 can be expressed literally as Equation 3.11: 

 

         (3.11) 

Weighting matrices w1 and w2 are positive definite matrices, with the magnitude of 

(CxC) and (PxP) respectively. These matrices are usually diagonal, real symmetric 
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positive definite weighting matrices, and λ 1 and λ2 represents the diagonal elements 

of the matrices. Through these matrices the closed loop behavior can be altered, 

therefore they are used as tuning parameters. 

In tuning, rather than assigning values independently, a ratio λ is assigned; where 

f=λ1/λ2. The literature tends to keep λ2 constant as 1 and change λ1 as tuning 

parameter. Regarding to the choice of giving weight to penalizing the control effort 

or set point tracking capacity, the value of f would be altered. 

3.5 Design of the Controller 

MPC algorithm can be designed with step response model of a MIMO system. To do 

so, predicted values must be subtracted from corresponding set point (r) to give: 

 

 

 

          

(3.9) 

 

 

Where first row of A matrix indicates the first manipulated input’s effect on the first 

and second controlled outputs, second row indicates the second manipulated input’s 

effect on the first and second controlled outputs.  
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Equation (3.9) can be simplified as: 

         (3.10) 

There are two predicted error vectors where E’ is the open loop prediction error of 

the process depicting the error that would have been made by the system over 

prediction horizon if no future control actions were taken. E is the prediction error of 

future and current errors. 

The future control effort can be described as: 

         (3.11) 

 

The quadratic objective function can be rewritten as: 

         (3.12) 

 

where KMPC is a constant. 

 

3.6. Singular Value Decomposition 

Singular Value Decomposition Method is used to observe the interaction between 

inputs and outputs. “SVD provides quantitative information about sensor placement, 

physical controllability, controller pairing and also can be used directly as a 

decoupling control strategy” (Moore, 1986).  

In the Singular Value Decomposition method, the steady state matrix is written as: 

          (3.13) 

where U is left singular vector, V is the right singular vector and Σ is called the 

singular values. 
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After forming G, the largest vector element of column U is paired with the largest 

vector element of V. The Condition Number (CN) is defined as the ratio of the 

largest and the smallest nonzero singular values. The larger the condition number, 

the more poor conditioning increased.  

          (3.14) 
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4. CASE STUDY: PRODUCTION OF PROPYLENE GLYCOL 

Performance of model predictive controller is examined in the production of 

propylene glycol from hydrolysis of propylene oxide in a continuous stirred tank 

reactor. 

Propylene glycol, known also as 1,2-propanediol is a tasteless, odorless and colorless 

chemical. Its main uses are in (The Innovation Group Report, 2002): 

• Unsaturated polyester resins (27%) 

• Functional fluids; antifreeze, de-icing, heat transfer (20 %) 

• Food, drug and cosmetic uses (20 %)  

• Liquid detergents (17 %) 

• Paints and coatings (5 %) 

• Tobacco humectant (2 %) 

• Miscellaneous (9 %) 

The demand of propylene glycol in USA market shows a constant growth with 

387,000 tones in 1999, 387,000 tones in 2000 and projection of 427,700 tones. The 

annual demand increase is forecasted as 2.0 %. Propylene glycol makes up about 25 

% of the major derivatives of propylene oxide. The commercial price is in the range 

of $ 1.4 to 1.5 in 2004. Especially increasing demand in cosmetics in their emollient 

bases for personal care products such as antiperspirants and deodorants, suntan 

lotions and use as enzyme stabilizer in liquid detergent industry satisfies a solid 

market demand on the product. 
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Propylene glycol is produced by the hydrolysis of propylene oxide in the presence of 
sulfuric acid as catalyst: 

   (4.1) 

In the CSTR, propylene oxide feed is in a mixture with methanol and reacts with 
excess water in an exothermic reaction. Due to the heat generation from exothermic 
reaction, temperature of the reactor is adapted by using a cooling coil with water as 
coolant. 

The MPC algorithm is designed to control the product concentration and temperature 
inside the reactor. Model of the reactor and control strategy will be presented below. 

Model of the Chemical Reactor 

The model of the CSTR for propylene glycol production is developed from material 

and energy balances. Before deriving balance equations, assumptions below are 

made: 

• Volume of the reactor is assumed to be constant, 

• The densities of all components are assumed to be constant, 

• The heat capacities of all components are assumed to be constant, 

• A quasi steady state is assumed for energy balance on heat exchanger and 

accumulation term is neglected. 

• Perfect mixing is assumed. Temperature of the reactor and concentration of 

product are assumed to be the same with exit flows temperature and 

concentration. 
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The set-up of CSTR is shown in Figure 4.1. For the sake of clarity, subscripts A for 

propylene oxide, B for water, M for methanol, CW for cooling water and C for 

propylene glycol are used. F is used for flow rates and C represents used for 

concentrations. 

 

FA ,
CA  , CM

FB ,
Cc

Fcw

FA + FB ,
CA, CB,CM, Cc  

Figure 4.1 : Set-up of CSTR of propylene glycol production. 

As noted before, propylene oxide and water react exothermally. Since the reaction 

occurs in the excess water, reaction is limited by propylene glycol with the reaction 

rate equation given in 4.2. 

         (4.2) 

Overall mass balance over the reactor for constant volume can be written as 

         (4.3) 

 

 

BAexit FFF +=

)exp(0 RT
ECkr AA

−
−=



 33 

Mass balances of components in the reactor are  

Propylene oxide balance: 

         (4.4) 

Water balance: 

         (4.5) 

Methanol balance: 

         (4.6) 

Propylene glycol balance: 

         (4.7) 

The energy balance around the reactor is written as 

         (4.8) 

 

 

Fogler (1999) defines the energy balance equation on heat exchanger as: 

         (4.9) 

where Ta1 and Ta2 are ambient temperatures for inlet and outlet coolant temperatures 
of the heat exchanger, respectively.  

         (4.10) 
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Simplifying equation (4.9), 

         (4.11) 

 

Solving equation (4.11) for outlet coolant temperature of the heat exchanger, 

         (4.12) 

Using equations (4.11) and (4.12), equation (4.13) is obtained by solving for heat 
transfer rate, Q, 

         (4.13) 

Equation (4.13) is substituted into the original energy balance equation (4.8) as, 

         (4.14) 

 

 

Using equations (4.4), (4.5), (4.6) and (4.7) for mass balance and (4.14) for energy 

balance the CSTR model is developed. The numerical values of constants are 

obtained from Fogler (1999) and Perry (1980). All numerical values are summarized 

in Table 4.1. 
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Table 4.1: Numerical values of CSTR design equations 

Parameter Definition Value 

FA Flow rate of propylene oxide and methanol mixture 0.733 lt/sec 

FB Flow rate of water 1.833 lt/sec 

FCW Flow rate of coolant, water 1.833 lt/sec 

CAi Initial concentration of propylene oxide entering the 
reactor 

7.39 mol/lt 

CBi Initial concentration of water entering the reactor 55.17 mol/lt 

CMi Initial concentration of methanol entering the reactor 12.35 mol/lt 

CCi Initial concentration of propylene glycol the reactor 0.0 mol/lt 

V Volume of the reactor 1136 lt 

Ti Initial temperature of feed streams 297 K 

Ta1 Initial temperature of coolant 293 K 

k0 Reaction rate constant 4.711*109 sec-1 

E Activation energy 18000 cal/mol 

R The gas constant 1.9872 cal/mol-K 

CpA Heat capacity of propylene oxide 146.54 J / mol-K 

CpB Heat capacity of water (used also for coolant) 75.362 J / mol-K 

CpC Heat capacity of propylene glycol 192.59 J / mol-K 
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Table 4.1: Numerical values of CSTR design equations (cont’d). 

CpM Heat capacity of methanol 81.64 J / mol-K 

∆Hrxn Heat of reaction 84667 J/mol 

ρCW Density of coolant 1000 kg/m3 

MW Molecular weight of coolant 18.01 gr/mol 

UA Heat transfer coefficient * Heat transfer area 28.20 J / sec-K 

 

Using equations (4.4), (4.5), (4.6) and (4.7) for mass balance and (4.14) for energy 
balance, the differential equations were solved with Matlab and steady state values 
response and steady state concentrations for four chemicals and reactor temperature 
were obtained and tabulated in Table 4.2. 

Table 4.2: Steady state values for concentrations and temperatures 

Parameter Definition Value 

CAss Steady state concentration of propylene oxide 0.01037 mol/lt 

CBss Steady state concentration of water 37.31 mol/lt 

CMss Steady state concentration of methanol 3.5279 mol/lt 

CCss Steady state concentration of propylene glycol 2.1006 mol/lt 

Tss Steady state temperature of the reactor 393.16 K 
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5. RESULTS & DISCUSSION 

The MPC methodology explained in Part 3 will be applied to CSTR defined and 

derived in Part 4. The controller design, tuning and performance analysis with 

traditional controllers will be represented in this section. 

5.1 Control Strategy 

In the control strategy for the CSTR defined in the previous section for propylene 

glycol production, concentration of the product propylene glycol (CC) and the 

temperature of the reactor (T) are considered to be controlled variables. Between 

these two controlled variables, reactor temperature will be the measured input to the 

system. The controlled variables are considered to be manipulated by propylene 

oxide – methanol mixture flow rate (FA) and coolant flow rate (FCW). Beyond that 

multi input – multi output (MIMO) structure, initial concentration of propylene oxide 

(CAi) and coolant temperature (Ta1) are considered as measured disturbances. The 

flow of control of CSTR is shown in Figure 5.1. 

 

Figure 5.1: Propylene glycol production control diagram. 
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5.2 Step Response Models 

Step responses are aimed to be obtained and used in the MPC design. To do so, open 

loop responses of controlled variables are obtained by giving step changes to the 

manipulated variables. These step response coefficients are than utilized in order to 

obtain the process condition by singular value decomposition method. Also step 

responses of measured disturbances are also obtained. 

Open loop responses of controlled variables, concentration of the product propylene 

glycol (CC) and the temperature of the reactor (T) for a step change in manipulated 

variables propylene oxide – methanol mixture flow rate (FA) and coolant flow rate 

(FCW) are given between Figure 5.2 and Figure 5.5. 
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Figure 5.2: Open loop step response of propylene glycol concentration CC for a 10 

% step change in ethylene oxide – methanol mixture (FA) from 0.733 lt/sec to 0.8063 

lt/sec. 
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Figure 5.3: Open loop step response of reactor temperature for a 10 % step change 

in ethylene oxide – methanol mixture (FA) from 0.733 lt/sec to 0.8063 lt/sec. 
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 Figure 5.4 Open loop step response of propylene glycol concentration CC for a 10 % 

step change in coolant flow rate (FCW) from1.833 lt/sec to 2.0163 lt/sec. 
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Figure 5.5 Open loop step response of reactor temperature for a 10 % step change in 

coolant flow rate (FCW) from1.833 lt/sec to 2.0163 lt/sec. 

Using the step responses steady state gain matrix is obtained. This matrix is then 

subject to Singular Value Decomposition method, and the condition number is found 

to be 567, which shows a poor-conditioned system and necessitates the use of a 

MIMO-MPC design. 

Open loop responses of controlled variables, concentration of the product propylene 

glycol (CC) and the temperature of the reactor (T) also for a step change in measured 

disturbances initial concentration of propylene oxide (CAi) and initial temperature of 

coolant (Ta1) are given between Figure 5.6 and Figure 5.9. 
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Figure 5.6 Open loop step response of propylene glycol concentration CC for a 10 % 

step change in initial propylene oxide concentration (CAi) from7.39 mol/lt to 8.129 

mol/lt. 
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.Figure 5.7 Open loop step response of reactor temperature for a 10 % step change in 

initial propylene oxide concentration (CAi) from7.39 mol/lt to 8.129 mol/lt. 
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Figure 5.8 Open loop step response of propylene glycol concentration CC for a 2 K 

step change in coolant initial temperature (Ta1) from 293 K to 295 K. 
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Figure 5.9 Open loop step response of reactor temperature for a 2 K step change in 

coolant initial temperature (Ta1) from 293 K to 295 K. 



 43 

5.3 Design of MIMO – MPC 

After examining open-loop responses of controlled variables to step changes, a multi 

input – multi output MPC model is developed in which propylene oxide – methanol 

mixture flow rate (FA) and coolant flow rate (FCW) are manipulated variables, 

concentration of the product propylene glycol (CC) and the temperature of the reactor 

(T) are controlled variables and initial concentration of propylene oxide (CAi) and 

coolant temperature (Ta1) are measured disturbances. Using the design equations and 

step response curves, the controller is developed and tested. Control algorithm is 

written in MATLAB. Also MPC toolbox of MATLAB code is improved to adjust 

problem definition. 

In order to determine the model horizon, open loop responses are examined. When 

Figure 5.3 is examined, it can be seen that propylene glycol concentration reaches 99 

% completion in about 2600 sec. Dividing the completion time with sampling time of 

10 seconds gives 260 as the model horizon (M). Prediction horizon is selected as 85 

% of model horizon as a rule of thumb as 221.  

Tuning of the developed MPC is carried out by manipulating weighting matrices 

f(λ1/ λ2) and control horizon (C).  

 

5.4 MPC Performance in Set Point Tracking 

The developed MPC is tested for set point tracking. First by taking a fixed control 

horizon, responses and integral absolute error (IAE) scores are examined. As fixed 

control horizon, 60 % of model horizon is selected as 156. The set point of propylene 

glycol (CC) is increased at a magnitude of 5 % from 2.1006 mol/lt to 2.2056 at 1000th 

second, and decreased at a magnitude of 10 % from 2.2056 to 1.9850 mol/lt at 3500th 

second. The performance of MPC for set point tracking is shown for different values 

of rate weights, 0.1, 0.05, 0.01, 0.005 and 0.001 at Figure 5.10. 
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Figure 5.10 : Response of CC to a 5 % increase in the set point of CC followed by 10 

% decrease in the set point of CC for different f values.  

The responses of reactor temperature (T), propylene oxide – methanol mixture flow 

rate (FA) and coolant flow rate (FCW) for CC concentration set point tracking is given 

in Figures 5.11 to 5.13. 
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.Figure 5.11 : Response of T to a 5 % increase in the set point of CC followed by 10 

% decrease in the set point of CC for different f values.  
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Figure 5.12 : Response of FA to a 5 % increase in the set point of CC followed by 10 

% decrease in the set point of CC for different f values.  
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Figure 5.13 : Response of FCW to a 5 % increase in the set point of CC followed by 

10 % decrease in the set point of CC for different f values.  
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IAE scores for set point tracking for different f values is given in Table 5.1. 

Table 5.1: IAE scores of CC set point tracking for different f values at C=156. 

Value of f IAE Score 

0.1 53.073 

0.05 34.542 

0.01 13.632 

0.005 9.540 

0.001 4.418 

Although IAE score improves as f value decreases, high peaks occur with f=0.005 in 

coolant and reactant flow rates at these small values. Therefore the best f value is 

chosen to be f=0.01. 

In order to observe the effect of control horizon (C), different values of C values are 

tested as a percentage of model horizon for f=0.01. Figure 5.14 represents responses 

of the system for set point tracking at different C values.  
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Figure 5.14 : Response of CC to a 5 % increase in the set point of CC followed by 10 

% decrease in the set point of CC for different C values.  
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The responses of reactor temperature (T), propylene oxide – methanol mixture flow 

rate (FA) and coolant flow rate (FCW) for CC concentration set point tracking at 

different C values is given in Figures 5.14 to 5.16. 
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Figure 5.15 : Response of T to a 5 % increase in the set point of CC followed by 10 

% decrease in the set point of CC for different f values.  

 



 48 

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 1000 2000 3000 4000 5000 6000
Time (sec)

Fl
ow

 R
at

e 
of

 A
+M

 (l
t/s

ec
)

156

52

104

208

 

Figure 5.16 : Response of FA to a 5 % increase in the set point of CC followed by 10 

% decrease in the set point of CC for different f values.  

1,00

1,20

1,40

1,60

1,80

2,00

2,20

2,40

2,60

2,80

0 1000 2000 3000 4000 5000 6000

Time (sec)

C
oo

la
nt

 F
lo

w
 R

at
e 

(lt
/s

ec
)

156
52
104
208

 

Figure 5.17 : Response of FCW to a 5 % increase in the set point of CC followed by 

10 % decrease in the set point of CC for different f values.  
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IAE scores for set point tracking at different control horizons is given in Table 5.2. 

Table 5.2: IAE scores of CC set point tracking for different C values at f=0.01. 

Value of  C IAE Score 

52 (20 % of M) 13.978 

104 (40 % of  M) 13.442 

156 (60 % of M) 13.632 

208 (80 % of M) 14.214 

 

Although there is not big difference in IAE scores, there exists a slight difference 

from set point for C=52 and C=208. So C=156 is chosen as the best case. In overall 

evaluation, f = 0.01 and C = 156 is chosen as the best case. 

5.5 MPC Performance in Disturbance Rejection 

Disturbance rejection performance of the developed MPC (f = 0.01 and C=156) is 

tested by manipulating measured disturbances; initial concentration of propylene 

oxide (CAi) and coolant temperature (Ta1) and expected to control for propylene 

glycol (Cc) and temperature set points. 

In the first case a disturbance of 10 % increase in the initial concentration of 

propylene oxide (CAi) from 7.39 mol/lt to 8.13 mol/lt at 1000th second. Figure 5.17 to 

Figure 5.20 represent the response of the system for changes in product concentration 

CC, reactor temperature (T), propylene oxide – methanol mixture flow rate (FA) and 

coolant flow rate (FCW). 

Although there response of CC is fast, there is a 2.4 % offset with IAE score of 22.34. 

Same deviation can be observed in temperature of the reactor with 0.04 %.  
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Figure 5.18 : Response of Cc to a 10 % increase in the initial concentration of 

propylene oxide.  
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Figure 5.19 : Response of T to a 10 % increase in the initial concentration of 

propylene oxide.  
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Figure 5.20 : Response of FA to a 10 % increase in the initial concentration of 

propylene oxide.  
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Figure 5.21 : Response of FCW to a 10 % increase in the initial concentration of 

propylene oxide.  
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In order to observe the controller’s performance in disturbance rejection, a change of 

2 Kelvin in the coolant temperature is applied to the process at 1000th second. Figure 

5.21 to Figure 5.24 shows the responses of the system for changes in product 

concentration CC, reactor temperature (T), propylene oxide – methanol mixture flow 

rate (FA) and coolant flow rate (FCW). 

Both responses to CC concentration and temperature are successful with IAE scores 

of 10.41 and 8.71, respectively. 
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Figure 5.22 : Response of Cc to a 2 K increase in the coolant temperature. 



 53 

393,16

393,16

393,16

393,16

393,16

393,16

393,16

393,16

0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec)

R
ea

ct
or

 T
em

pe
ra

tu
re

 (K
)

 

Figure 5.23 : Response of T to a 2 K increase in the coolant temperature. 

0,733

0,733

0,733

0,733

0,733

0,733

0,733

0,733

0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec)

Fl
ow

 R
at

e 
of

 A
+M

 (l
t/s

ec
)

 

Figure 5.24 : Response of FA to a 2 K increase in the coolant temperature. 
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Figure 5.25 : Response of FCW to a 2 K increase in the coolant temperature. 

 

5.6 MPC Performance for Robustness 

Robustness is defined by Seborg et al., (1989) as the controller’s insensitivity to 

changes in process conditions and to errors in the assumed process model. For the 

sake of analyzing controller robustness, a 10 % change in the reaction rate constant 

from k0= 4.711*109 sec-1 to 5.182*109 sec-1. After changing such a process 

parameter, steady state values are reevaluated as CAss=0.0086 mol/lt, CBss=37.308 

mol/lt, CMss=3.5279 mol/lt, CCss=2.1024 mol/lt and Tss=393.24 K. Using these values 

step responses are also reevaluated. 

Set point tracking is examined for the new data for set point changes of 5 % increase 

at 1000th second and 10 % decrease of set point of propylene glycol (CC) at 3500th 

second, while rate weight f = 0.01 and control horizon C = 156. The responses of 

propylene glycol (CC) and reactor temperature (T) with propylene oxide – methanol 

mixture flow rate (FA) and coolant flow rate (FCW) is presented in Figure 5.25 to 

Figure 5.28. Successful tracking is obtained with IAE score of 15.41. 
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Figure 5.26: Response of Cc to set point change. 
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Figure 5.27: Response of T to set point change. 
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Figure 5.28: Response of FA to set point change. 
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Figure 5.29: Response of FCW to set point change. 
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Performance of MPC controller with new process conditions is also evaluated with 

disturbance rejection. A disturbance of 10 % increase in the initial concentration of 

propylene oxide (CAi) from 7.39 mol/lt to 8.13 mol/lt at 1000th second. Figure 5.29 to 

Figure 5.32 shows the response of the system for changes in product concentration 

CC, reactor temperature (T), propylene oxide – methanol mixture flow rate (FA) and 

coolant flow rate (FCW). IAE score is obtained as 13.85. 
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Figure 5.30 : Response of Cc to disturbance rejection. 
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Figure 5.31 : Response of T to disturbance rejection. 
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Figure 5.32 : Response of FA to disturbance rejection. 
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Figure 5.33 : Response of FCW to disturbance rejection. 

 

As the second case, disturbance of 2 Kelvin increase in the coolant temperature is 

analyzed. Figure 5.33 to Figure 5.36 shows the response of the system for changes in 

product concentration CC, reactor temperature (T), propylene oxide – methanol 

mixture flow rate (FA) and coolant flow rate (FCW). The IAE score is obtained as 

8.21. 
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Figure 5.34 : Response of Cc to disturbance rejection. 
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Figure 5.35 : Response of T to disturbance rejection. 
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Figure 5.36 : Response of FA to disturbance rejection. 
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Figure 5.37 : Response of FCW to disturbance rejection. 
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5.7 Comparison of MPC with PID control 

After evaluating the MPC controller for set point tracking, disturbance rejection and 

robustness, a decentralized PID control is compared with the controller. Using 

general Ziegler-Nichols tuning rules, PID controller gain (KC), integral time (τI) and 

derivative time (τD) are found as 25.2, 1.25 and 5 for the first loop and 258, 1.25, 5 

for the second loop. 

The performance of the controllers is evaluated by their set point tracking capability. 

Set point tracking problem discussed before is applied to PID. The results for 

response to propylene glycol concentration and reactor temperature are given in 

Figure 5.37. As can be seen from the Figure 5.38, MPC controller reaches the set 

point faster with smaller peak. IAE score also proves the fact with 13.632 for MPC 

and 18.98 for PID. 
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Figure 5.38 : Responses of PID and MPC controller of Cc for set point tracking. 
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Figure 5.39 : Responses of PID and MPC controller of T for set point tracking. 
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6. CONCLUSION 

In this study, control of a chemical engineering application, continuous stirred tank 

reactor, is to be examined by the use of Model Predictive Controller. As a case study, 

production of propylene glycol resulting from exothermic reaction of propylene 

oxide – methanol mixture with excess water with the acid catalyst is chosen. 

The dynamic characteristics and interactions of the plant variables are investigated 

first. The model of the chemical reactor is obtained with mass and energy balances. 

Using balance equations, steady state values and steady state gain matrix are 

obtained. Analysis of steady state gain matrix by Singular Value Decomposition 

shows that the system is highly ill-conditioned and necessitates the use of a MIMO 

control algorithm. It was analyzed that, the control algorithm should have control the 

concentration of the product, propylene glycol, and the temperature of the reactor by 

manipulating propylene oxide – methanol mixture flow rate and coolant flow rate. 

Also initial concentration of propylene oxide and coolant temperature were 

considered as measured disturbances.  

The controller algorithm was set up using the code derived in adaptation with 

MATLAB MPC toolbox, using the linear step responses. From possible tuning 

parameters Prediction Horizon, Control Horizon and the ratio of weighting vectors 

f=λ1/ λ2, Prediction Horizon was kept constant as 85 % of the Model Horizon. The 

tuning was carried out by starting with a fixed Control Horizon as 60 % of Model 

Horizon and altering f values to achieve a better set point tracking. For constant 

Prediction Horizon P = 221 and Control Horizon C = 156, different f values are 

evaluated. As a result the response of f = 0.01 was chosen as the most desired case. 

By changing Control Horizon at this value of f, the tuning is completed by defining 

the best response. The resulting controller had the weight ratio of f=0.01 and Control 

Horizon of C = 156. 
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The response of the controller was also tested for disturbance rejection. The system 

was disturbed by changes in the initial concentration of propylene oxide and coolant 

temperature. It was also seen that the controller did not degrade under disturbance 

presence. 

Robustness of the controller was also tested by changing the system dynamic, a 

change in the reaction rate constant, and the system’s response was examined. It was 

concluded that although some small deficiencies the controller responded well to the 

changes. 

Finally the controller was compared with a traditional PID controller for set point 

tracking and MPC controller proved its superiority. 

As future works, the realization of the reactor at laboratory level and the effect of 

modeling errors would be compared using real data. Also rather than step response 

model, more iterative methods would be used for prediction algorithm such as neural 

networks or fuzzy systems. 
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