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FOREWORD 

Recently, membrane-based gas separation technology has attracted great interest; 

particularly studies on mixed matrix membrane development for enhancing the 

separation performance are gradually increasing. As a novel material, metal organic 

frameworks are seen as promising candidates for this purpose. In this thesis study, 

zeolite-like metal organic framework was synthesized and incorporated into a 

polyimide to develop mixed matrix membranes for CO2 removal from natural gas. 
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Sod-ZMOF/MATRIMID MIXED MATRIX MEMBRANES FOR CO2 

SEPARATION 

SUMMARY 

Mixed matrix membranes (MMM) have attracted great interest for applications of 

gas separation as they combine the processability of polymeric membranes with 

superior permeability and selectivity of inorganic membranes. These hybrid 

membranes have been conventionally obtained by dispersing zeolites in a polymer 

matrix. In recent years, metal organic frameworks (MOF) have been introduced as a 

new class of microporous materials and they are seen as a good alternative to zeolites 

in mixed matrix membrane fabrication either for the ease of synthesizing and 

structural diversity. Furthermore, MOFs show good adhesion with polymers without 

requiring any surface treatment or coupling agent, since they have organic linkers 

having affinity with polymer chains. 

 

In this work, sod-ZMOF (Zeolite-like Metal Organic Framework which has a 

sodalite topology) crystals were synthesized with the aim of developing 

polymer/MOF MMMs for CO2/CH4 separation. Sod-ZMOF was chosen as the 

dispersed phase due to its superior CO2/CH4 separation potential by means of having 

anionic framework and charge-compensating extra framework ions, which increase 

the interactions with guest molecules. In addition, Matrimid
®
 was chosen as the 

continuous phase since it has high thermal stability, good permeability and 

selectivity properties as a commercially available polymer.  

  

Sod-ZMOF crystals were synthesized by classical solvothermal method reported in 

the literature. The as-synthesized sod-ZMOFs were ion-exchanged with alkali Na
+
 

cations. The obtained X-Ray Diffraction (XRD) patterns were compatible with the 

ones published in the literature, which means the desired particles were synthesized 

successfully. Thermogravimetric analysis (TGA) of as-synthesized and ion-

exchanged sod-ZMOF crystals indicated that the material was highly stable and the 

thermal stability of the material was conserved after alkali metal ion-exchange 

procedure.  

 

Sod-ZMOF/Matrimid MMMs were prepared with the synthesized micron-size MOFs 

and annealed at 200 ºC for 48 hours. XRD patterns of the MMMs showed that sod-

ZMOF crystals conserved their structural stability through the MMM preparation 

procedure. Scanning electron microscopy (SEM) images of MMMs showed a 

homogeneous dispersion of MOF particles in the polymer matrix and absence of 

interfacial voids at MOF/polymer interface. According to the pure gas permeability 

measurements, CH4 and CO2 permeabilities increased as the amount of incorporated 

MOF increased, while there was no significant change in the ideal selectivities. With 

10 wt % MOF loading into the polymer matrix, single gas permeabilities increased 

approximately 35% compared with the pure polymer membrane. 
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CO2 AYIRMA AMAÇLI Sod-ZMOF/MATRIMID KARIŞIK MATRİSLİ 

MEMBRANLAR 

ÖZET 

Karışık matrisli membranlar (KMM), polimerik membranların işlenebilirliği ile 

inorganik membranların üstün geçirgenlik ve seçicilik özelliklerini birleştirdikleri 

için gaz ayırma uygulamalarında büyük ilgi çekmektedirler. Bu hibrit membranlar 

yaygın olarak bir polimer matrisi içerisinde zeolitlerin dağıtılması ile elde 

edilmektedir. Son yıllarda, metal organik kafesler (MOF) yeni bir mikrogözenekli 

malzeme sınıfı olarak tanıtılmış ve hem sentezlenmelerindeki kolaylık hem de 

yapısal çeşitlendirilebilirlikleri nedeniyle karışık matrisli membran yapımında 

zeolitlere iyi bir alternatif olarak sunulmuştur. Ayrıca MOFlar polimer zincirleriyle 

birleşme eğilimi gösteren organik bağlayıcılara sahip olduklarından, herhangi bir 

yüzey işlemine veya uyumlaştırıcı ajana ihtiyaç duymadan polimerle 

tutunabilmektedir. Literatürde birçok MOF çeşidi ile hazırlanan KMMlere ait 

çalışmalarda MOFların kısmi organik yapısı sayesinde polimerle çok iyi 

birleşebildiği ve çeşitli gaz çiftlerinin ayırma performansını artırdığı rapor edilmiştir. 

 

Bu çalışmada, CO2/CH4 ayırma amaçlı polimer/MOF KMM yapımında kullanılmak 

üzere sod-ZMOF (sodalit topolojisine sahip, zeolit benzeri metal organik kafes) 

kristalleri sentezlenmiştir. Anyonik kafese ve moleküllerle olan etkileşimi artıran yük 

dengeleyici kafes dışı iyonlara sahip olmaları nedeniyle üstün CO2/CH4 ayırma 

potansiyelinden dolayı sod-ZMOF dağılan faz olarak seçilmiştir. ZMOFlarla ilgili 

daha önce çeşitli gaz adsorpsiyon çalışmaları yapılmış olmasına rağmen membran 

yapımında kullanılmaları ve gaz ayırma özelliklerinin incelenmesi deneysel olarak 

ilk defa bu çalışmada gerçekleştirilmiştir. Yüksek ısıl dayanıklılığa sahip olması, 

ayrıca seçicilik ve geçirgenlik özellikleri iyi olan ticari bir ürün olması nedeniyle 

polimer matrisi olarak Matrimid
®
 5218 seçilmiştir.  

 

Sod-ZMOF kristalleri, literatürde bildirilen klasik solvotermal yöntemle 

sentezlenmiştir. Sentezlenen malzeme X-ışını toz difraktometre (XRD) ile analiz 

edilmiş ve literatürdeki çalışmalarla oldukça uyumlu bir XRD deseni elde edilmiştir. 

Sod-ZMOF kristalleri taramalı elektron mikroskobu (SEM) ile incelendiğinde, çok 

yüzlü düzenli taneciklerin oluştuğu ve tanecik boyutunun literatürde de belirtildiği 

gibi 50-200 µm arasında olduğu görülmüştür. Ancak polimer matrisi içerisine 

katılarak KMM hazırlanabilmesi için tanecik boyutunun daha küçük olması 

gerektiğinden, boyut küçültme için sentez koşullarında (sıcaklık, pH, reaksiyon 

süresi, vb.) değişiklikler yapılarak farklı denemeler yapılmıştır.  Sentezde kullanılan 

nitrik asit (HNO3) miktarı yarı yarıya azaltılarak yapılan deneme başarıyla 

sonuçlanmış, bu yöntemle tanecik boyutu 2-30 µm arasında dağılım gösteren sod-

ZMOF kristalleri elde edilmiştir.  
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Sentezlenen Sod-ZMOF’un yapısında bulunan yük dengeleyici imidazolyum 

katyonları, literatürde belirtilen iyon değişimi yöntemi kullanılarak Na
+ 

katyonları ile 

değiştirilmiştir. İyon değişimi yapılan parçacıkların SEM görüntülerinde 

morfolojilerinin değiştiği gözlemlenmiş; fakat elde edilen XRD deseni ile yapısında 

bir bozunmanın gerçekleşmediği, kristalinitenin kaybolmadığı görülmüştür. Sentez 

sonrası ve iyon değiştirilmiş sod-ZMOF kristallerine ait termogravimetrik analiz 

(TGA) sonuçları, malzemenin yüksek ısıl dayanıma sahip olduğunu ve alkali metal 

(Na
+
) ile yapılan iyon değişimi prosedürü sonrasında malzemenin termal dayanımını 

koruduğunu göstermiştir. TGA termogramları, malzemenin yaklaşık 280 ºC’ye kadar 

termal olarak stabil olduğunu göstermiştir. 

 

Sentezlenen 2-30 µm boyutundaki Sod-ZMOF kristallerinin yapısal ve termal 

analizleri tamamlandıktan sonra %5 ve %10 sod-ZMOF katkılı KMMler 

hazırlanmıştır. Sod-ZMOF parçacıkları manyetik karıştırma ve ultrasonik banyo 

kullanılarak dimetilformamid (DMF) içerisinde iyice dağıtıldıktan sonra Matrimid
®

 

ilave edilerek iyice çözünmesi sağlanmıştır. Elde edilen film çözeltisi, film 

aplikatörü yardımıyla cam/ayna yüzeye dökülerek döküm-evaporasyon yöntemi ile 

film elde edilmiştir. Oluşan film, analizlere ve gaz geçirgenlik ölçümlerine 

başlamadan önce 200 ºC’de 48 saat bekletilerek tavlanmıştır. Tavlama sonrasında 

elde edilen membranların kalınlıkları 45-65 µm arasında bulunmuştur. Daha sonra 

membranların saf gaz (CO2 ve CH4) geçirgenlikleri 35 ºC sıcaklıkta sabit hacim-

değişken basınç yöntemi ile ölçülmüştür. 

 

Sod-ZMOF kristallerinin membran hazırlama sürecinde (gerek film çözeltisi içinde 

mekanik karıştırma gerekse tavlama işlemi sırasında yüksek sıcaklıklarda) zarar 

görüp görmediğini anlamak için katkılı membranlara ait XRD desenleri elde edilmiş, 

analiz sonucunda sod-ZMOF taneciklerinin bu süreçte kristal yapısını kaybetmediği 

görülmüştür. KMMlerin SEM görüntüleri, MOF taneciklerinin polimer matrisi 

içerisinde homojen bir şekilde dağıldığını ve MOF/polimer arayüzünde boşlukların 

olmadığını göstermiştir. Bu sonuçlar, beklendiği gibi sod-ZMOF kristallerinin 

herhangi bir yüzey uyumlaştırıcı işleme gereksinim duymadan kendiliğinden 

polimere çok iyi yapıştığını ve kusursuz KMMler oluşturulabileceğini göstermiştir. 

 

Tavlama işlemi sonrasında saf Matrimid ve karışık matrisli membranlarda hapsolan 

çözücü (DMF) kalıntısını tayin etmek için TGA analizleri yapılmıştır. DMF’in 

kaynama noktası olan 153 ºC’ye kadar membranlarda dikkate değer bir kütle kaybı 

görülmemiştir. Buna göre, tavlama işlemi ile çözücünün hemen hemen tümüyle 

uzaklaştırılabildiği görülmüştür. Diğer yandan, önemli bir kütle kaybı görülmese de 

sod-ZMOF katkılı membranlarda bu sıcaklığa kadar olan kaybın daha fazla olduğu 

görülmüştür. Bu durum da, membranların yapısına katılan sod-ZMOF taneciklerinin 

sahip oldukları geniş gözeneklerde bir miktar çözücünün hapsolmuş olabileceğini 

göstermiştir. Ayrıca sod-ZMOF’un organik yapısının yaklaşık 380 ºC’de tamamen 

kaybolmasına bağlı olarak katkılı membranlarda 300-400 ºC arasındaki kütle 

kaybının saf membranlara göre daha fazla olduğu görülmüştür. Diferansiyel taramalı 

kalorimetri (DSC) analizleri ile KMMlerin camsı geçiş sıcaklıkları (Tg) ölçülmüş ve 

saf matrimid membran ile kıyaslanmıştır. KMMlerin Tg değerleri saf matrimid 

membranın Tg değerine çok yakın çıkmıştır, aradaki birkaç derecelik farklar deneysel 

hata sınırları içerisinde yer aldığından ayrıca yorumlanmamıştır. 
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Saf gaz geçirgenlik ölçümlerinde, polimer matrisi içerisine katılan MOF miktarı 

arttıkça CH4 ve CO2 geçirgenlikleri artarken seçiciliklerde önemli bir değişim 

olmadığı görülmüştür. Saf matrimide kıyasla CO2 geçirgenlikleri %5 sod-ZMOF 

katkısı ile %22 artarken, %10 sod-ZMOF katkısı ile %35 artış göstermiştir. Sod-

ZMOF kristalleri 9.6 Å boyutunda oldukça geniş gözenek açıklığına sahip 

olduklarından, polimer matrisi içinde her iki gaz molekülünün de rahatlıkla geçebileceği 

yollar oluşturduğu ve bu nedenle geçirgenlikleri artırdığı düşünülmektedir. 
 

Bununla birlikte, KMMlerin ideal CO2/CH4 seçicilikleri saf polimer membranla 

kıyaslandığında önemli bir değişiklik olmadığı, az miktarda düştüğü görülmüştür. Bu 

durum Maxwell modeli ile de açıklanabilir. Bu modele göre, polimer matrisi 

içerisine katılan malzemenin, membrandan geçirilen gazlara karşı polimerden daha 

geçirgen olması durumunda seçicilikte artış sağlanamayacağı öngörülmektedir. Buna 

karşılık seçicilikteki düşüşün ihmal edilebilecek kadar küçük olması, SEM 

görüntülerinden yola çıkılarak yapılan yorumları doğrular nitelikte olup membran 

yapısında polimer/MOF arayüzünde seçici olmayan boşlukların bulunmadığını 

açıklamaktadır.  

 

Diğer taraftan, Na
+
 ile iyon değişimi yapılan sod-ZMOF’la hazırlanan KMMde, 

yukarıda söylenenlerin aksine seçiciliğin az da olsa arttığı görülmüştür. Bu 

farklılığın, yapıya katılan Na
+ 

iyonlarının CO2 molekülleriyle elektrostatik etkileşimi 

artırması ile meydana geldiği düşünülmüştür. Daha önce literatürde yapılan 

adsorpsiyon çalışmalarında da, Na
+
 iyonlarının güçlü kuadrupol momente sahip olan 

CO2 moleküllerine karşı ilgisinin yüksek olduğu ve bu nedenle Na
+
 ile iyon değişimi 

yapılan sod-ZMOF’ların adsorpsiyon kapasitesinde artış gözlendiği söylenmiştir. 

 

Sonuç olarak, sod-ZMOF tipi MOFlar poliimid CO2 ayırma membranlarının 

performanslarını artırmada umut vaat etmektedirler. İleriki çalışmalarda yüksek 

oranda sod-ZMOF katkısı içeren karışık matrisli membranların gaz karışımlarını 

ayırmadaki performanslarının incelenmesi, bu malzemelerin kullanım potansiyelini 

ortaya koyacaktır. 
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1.  INTRODUCTION 

Traditional gas separation processes are cryogenic distillation, absorption and 

pressure swing adsorption. From the economic perspective, these processes are 

typically high energy consuming and most of them are complex processes that 

require large-scale equipments, which increase the capital and operating cost. The 

membrane systems are more energy-efficient compared with conventional separation 

methods [1-4]. They offer many advantages such as ease of operation, high stability 

and high efficiency, low capital and operating costs, low energy requirement, flexible 

size and being environmentally friendly. By means of these features, industrial gas 

separation using membranes have been of great interest over the past few decades. 

Oxygen enrichment or inert gas (nitrogen) generation from air, hydrogen recovery 

from syngas, separation and recovery of CO2 from biogas and natural gas, 

greenhouse gas capture from air and the removal of volatile organic compounds from 

waste streams are some current applications of gas separation membranes [5-10]. 

In this section, a general overview of the membrane-based gas separation theory is 

obtained. Then, importance of natural gas separation is emphasized and current 

situation of separation processes are exhibited. At the end, purpose of the thesis is 

clarified. 

1.1 Membrane-Based Gas Separation 

The membrane is a thin barrier that separates two phases by restricting transport of 

some components in a selective manner. A driving force, which can be 

concentration, pressure, temperature or electrical potential difference, provides 

differential transport through a membrane [5, 7]. A schematic representation of a gas 

separation membrane is shown in Figure 1.1. Currently, a large number of materials 

can be used for membrane fabrication, including polymers, zeolites, silica and carbon 

molecular sieves. Membrane module types can be classified as flat sheets (plate-in-

frame or spiral wound configurations), tubes, and hollow fibers [11]. 
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Figure 1.1 : Schematic presentation of a gas separation membrane [12]. 

Although membrane-based gas separation has been widely used for industrial 

applications only since 1980s, the history of this technology may be attributed back 

over nearly two centuries [3, 13]. In 1829, Thomas Graham, a Scottish chemist, 

carried out the first recorded experiments when he observed gaseous osmosis for the 

air-carbon dioxide system through a wet pig bladder [3, 14]. In 1866, he proposed 

“solution-diffusion” theory for gas permeation through a membrane, which is still the 

accepted model for gas transport in polymeric membranes [3, 4, 13]. Afterwards, in 

1879, Von Wroblewski evaluated Graham’s model and developed a formula for the 

permeability coefficient as the penetrant flux multiplied by the membrane thickness 

divided by the trans-membrane pressure. He also defined the permeability of a gas as 

the product of diffusion and solubility coefficients, which is now a crucial model in 

membrane permeation. Kayser indicated the validity of Henry’s law in 1891 for the 

absorption of carbon dioxide in natural rubber. Many other fundamental scientific 

studies and contributions related with the development of membrane-based gas 

separation were also performed by several scientists (Knudsen, Shakespear, Daynes 

and Barrer among many others) in the twentieth century [3, 4].  

The first practical application of membrane-based gas separation was in the years 

between 1943 and 1945, as a part of the Manhattan Project. In this project, finely 

microporous metal membranes were used to separate U
235

F6 from U
238

F6 in a 

separation facility built in Tennessee, USA. This plant represented the first large-

scale use of gas separation membranes and for the next 40 years, it remained as the 

largest membrane separation plant of the world. Unfortunately, the project was 
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unique and very secret so this application had basically no influence on the long-term 

development of membrane-based gas separation [13]. The golden age of membrane 

science started in 1960 with the invention of the asymmetric phase-inverted 

membranes made of cellulose acetate by Loeb and Sourirajan. Then in 1980, Permea 

produced the first commercially feasible gas separation membrane, which was a 

hydrogen separation membrane launched as Prism®. This successful application 

presented an attractive alternative for separation applications of different gas 

mixtures and accelerated the development of novel membrane materials [3, 4, 13-

16]. The significant milestones in the chronological development of membrane-based 

gas separation technology are shown in Figure 1.2.  

 

Figure 1.2 : Historical development of membrane-based gas separation [13]. 

Today, membrane-based gas separation systems have been applied in a large number 

of industrial sectors. Membrane technology competes well with other conventional 

separation methods due to some specific characteristics and inherent advantages such 

as [4, 17]: 

 Ease of installation and operation, 
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 Low capital investment and low energy consumption, 

 Space and weight efficiency (being compact and modular), 

 Simplicity and economic viability of scale-up or scale-down (being flexible), 

 Operation under mild conditions, 

 Possibility of being combined with other separation systems for influential 

hybrid processes, 

 Being environmentally friendly. 

1.2 Natural Gas Purification 

Natural gas is one of the most significant energy sources of the world. When 

compared with other conventional fossil fuels such as coal and crude oil, it is 

evaluated as an environmentally friendly fuel due to lower emission rates of carbon 

dioxide, nitrous oxide, etc. [18, 20]. The emission levels of natural gas and other 

fossil fuels can be seen in Table 1.1. With respect to these favorable features, its 

usage is becoming widespread and the demand for natural gas has been increasing 

every year [11, 20].  

Table 1.1 : Emission levels for natural gas and other fossil fuels [22]. 

Pollutant Natural Gas Oil Coal 

Carbon dioxide 117000 164000 208000 

Carbon monoxide 40 33 208 

Nitrogen oxides 92 448 457 

Sulfur dioxide 1 1122 2591 

Particulates 7 84 2744 

Mercury 0.000 0.007 0.016 

Natural gas is a mixture of hydrocarbon gases (mainly CH4) including some 

impurities such as nitrogen (N2), carbon dioxide (CO2) and hydrogen sulfide (H2S). 

As natural gas is extracted from wells at different compositions and pressures, the 

raw natural gas composition varies from source to source. The CH4 content is 

generally in the range of 75-90% [10, 19-21]. Table 1.2 shows a generalized 

composition for natural gas obtained from different types of reservoirs. 
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Prior to transportation in the pipeline and domestic use of natural gas, it requires 

some treatment mainly such as removal of CO2, N2, H2S and H2O [10, 14, 20]. 

Carbon dioxide content of the natural gas is usually at high levels, varying in a wide 

range from 4 to 50%. Even in some natural gas fields as much as 70% CO2 exists 

[10, 23].  Carbon dioxide causes a reduction in heating value of the gas and also it 

becomes acidic and corrosive in the presence of water, leading to problems in 

transportation pipeline [14, 25]. Correspondingly, before the delivery to a pipeline, 

CO2 content has to be reduced to below 2% to meet sales specifications [24].  The 

most commonly used conventional method for CO2 separation from natural gas 

(sweetening) is amine absorption process [11, 25, 26]. In this process, briefly CO2 is 

absorbed into the aqueous solutions of alkanolamines. Monoethanolamine (MEA), 

diethanolamine (DEA) and methyldiethanolamine (MDEA) are the most widely used 

amines in the process. Although amine absorption is a mature method for CO2 

capture, it has some drawbacks such as being high energy consuming, requiring very 

large areas for process equipments and problems arising from operating and disposal 

of corrosive amine solutions [11, 27, 28].  

Table 1.2 : Typical composition of natural gas before purification, and sales 

specifications, [10, 16]. 

Gas Chemical Formula Amount Sales specifications 

Methane CH4 70-90 90% 

Ethane C2H6  < 3 - 4% 

Propane C3H8 0-20
a
  

Butane C4H10  ~3%
b
 

Carbon dioxide CO2 4-50 < 2% 

Oxygen O2 0-0.2 - 

Nitrogen N2 0-5 < 4% 

Hydrogen sulphide H2S 0-5 < 4 ppm 

Water H2O Saturated < 100 ppm 

Rare gases Ar, He, Ne, Xe Trace - 

    
a
 Total amount of C2-C4 

    
b
 Total amount of C3-C5 

Recently, membrane-based gas separation processes have started to be preferred as 

they are simple, energy-efficient and environmentally friendly operations [11]. There 

are examples for the application of membrane-based gas separations in commercial-

scale. Especially polymeric membranes such as cellulose acetate, polyimides and 

polyamides are used for separation CO2 from CH4 [25, 29, 30]. From the energy and 
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environmental perspective, membrane technology is expected to become widespread 

over the following years [31]. In parallel with, development of new materials and 

procedures will be required to meet the desired specifications. 

1.3 Research Objectives 

The fundamental aim of this thesis is to develop efficient and commercially viable 

mixed matrix membranes for separation of CO2/CH4 gas mixtures (natural gas 

purification). To achieve this purpose, the below steps are followed: 

 Selecting the proper polymer and MOF for the desired purpose, 

 Synthesizing sod-ZMOF crystals having a sodalite topology for using in 

mixed matrix membrane preparation, 

 Characterizing the structural and thermal properties of synthesized sod-

ZMOF particles, 

 Constituting and developing an appropriate membrane preparation method to 

obtain defect-free composite membranes, 

 Characterizing the morphology, thermal properties and gas separation 

features of pure and mixed matrix membranes, 

 Comparing the performances of pure and mixed matrix membranes, 

 Investigating the effect of ion exchange procedure to sod-ZMOF 

characteristics and to gas separation performance of membranes containing 

ZMOF. 

The thesis is organized according to these objectives. Chapter 2 gives some 

background about the gas transport mechanisms of membranes and also membrane 

materials. Chapter 3 explains the materials used and experimental methodology. 

Chapter 4 clarifies the results and discussions. Finally, Chapter 5 concludes the 

discussions and presents the feasible future studies. 
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2.  THEORY AND BACKGROUND 

In the concept of gas separation, membranes act as semi-permeable barriers which 

separate one or more gases from a gas mixture to generate a permeate stream rich in 

a specific gas. The simplicity and energy efficiency of membrane processes make 

them highly attractive compared to complex and energy-intense conventional gas 

separation methods such as cryogenic distillation and absorption [32-34]. 

This chapter provides a theoretical background into gas transport mechanisms and 

performance characterization in membranes, covers the literature review on the 

materials used in membrane fabrication, briefly introduces mixed matrix membranes 

and then draws attention to metal organic frameworks, which are novel materials 

started to be used in mixed matrix membrane preparation. 

2.1 Gas Transport Through Membranes 

The most significant feature of gas separation membranes is their ability to control 

the permeation rate of different species. The first mechanism for this selective 

transport was “solution-diffusion model”, which was developed by Thomas Graham 

[13, 14]. There are five possible mechanisms for gas transport through membranes: 

Knudsen diffusion, molecular sieving, solution-diffusion, surface diffusion and 

capillary condensation.  

Knudsen diffusion takes place in porous membranes when gas molecules are passing 

through pores of the membrane that are small enough to prevent bulk diffusion. In 

this mechanism, separation occurs due to the difference in the mean free path of gas 

molecules, resulting from collisions with pore walls [14, 32]. 

Molecular sieving takes place when gas mixtures are separated by size exclusion. 

According to this model, the diffusion of smaller gas molecules occurs faster while 

larger gas molecules are restrained through membranes with carefully controlled 

pore size relative to the kinetic diameters of the permeating gas molecules [32]. 

Therefore, separation of a gas pair with molecular sieving can be succeeded when 
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membrane has pore diameters between the kinetic diameters of two penetrant gas 

molecules. 

Solution-diffusion mechanism takes place in polymeric membranes, which are 

typically non-porous. According to this model, gas transport is considered to consist 

of three basic steps: Firstly gas molecules from the upstream gas phase sorb into the 

membrane, then they diffuses through the membrane cross-section and finally they 

desorb into the downstream side. This mechanism is explained comprehensively in 

section 2.2 [3, 14, 32]. 

Surface diffusion takes place in porous membranes by the migration of adsorbed gas 

molecules through the pore walls. The level of interaction between the pore surface 

and adsorbed gas molecules determines the surface diffusion rate and separation 

efficiency. 

Capillary condensation also takes place in porous membranes when the adsorbed gas 

molecules undergo partial condensation within the pores due to the vapour pressure 

drop. Diffusion of this condensed component through the pore becomes faster than 

gases and the condensable gas can be separated by this way [32]. 

Among these methods, Knudsen diffusion, molecular sieving and solution-diffusion 

are usually more effective. These separation mechanisms are illustrated in Figure 2.1. 

 

Figure 2.1 : Schematic representation of three most common possible mechanisms 

for membrane-based gas separation [35]. 
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2.2 Polymeric Membranes for Gas Separation 

The most dominantly-used mechanism for gas permeation through dense polymeric 

membranes is “solution-diffusion” model [36-38]. According to this model, the 

permeation of of gas molecules is controlled by two main mechanisms: solubility and 

diffusivity. Solubility can be defined as the number of gas molecules dissolved in the 

membrane while diffusivity is the mobility of gas molecules through the molecular-

scale gaps in membrane cross-section [4,39]. Permeability (P) is a measure of the 

membrane’s ability to permeate gases and it is basically described as the product of 

solubility coefficient (S) and diffusion coefficient (D), which is described in 

Equation 2.1. 

                                                                                      (2.1) 

In SI system, the unit of P is mol·(m
2
·s·Pa), but the most commonly used unit for P 

is Barrer, which stands for 10
-10

 cm
3
(STP)·cm/cm

2
·s·cmHg. The permeability 

coefficients of different gases in polymer membranes generally vary in a wide range 

between 10
-4

 and 10
4
 Barrer [36, 40, 41].  

Gas transport through a dense polymer membrane is described by Equation 2.2 

   
            

 

 
                                 (2.2) 

where ji is the molar flux of component i (cm
3
-STP/cm

2
·s), l is the membrane 

thickness,     is the partial pressure of component i on the feed side and      is the 

partial pressure of component i on the permeate side [28]. This equation is also 

expressed as in terms of permeability coefficient, as it can be seen in Equation 2.3 

   
  

 
                                             (2.3) 

where    is the pressure difference throughout the membrane. In other words, 

permeability is the gas flux across the membrane under the pressure difference 

(driving force) and normalized to the unit thickness of the membrane. Equation 2.4 

represents this mathematically [36, 40]. 

   
    

   
                                           (2.4) 
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The separation performance of a membrane is measured by (perm)selectivity. It is 

the second key parameter for gas while permeability is the first one. The ideal 

selectivity of a polymer membrane for gas A over gas B named as αA/B, is 

mathematically the proportion of the permeability of gas A (    to the permeability 

of gas B (  ). It can be also written as the product of sorption selectivity 

        and diffusion selectivity         of the gas pair, as shown in Equation 2.5 

[39, 40, 42]. Sorption selectivity shows the relative concentration of the components 

A and B within the membrane material and it is proportional to the relative 

condensability of components in the membrane. On the other hand, diffusion 

selectivity, which is also called as mobility selectivity, shows the relative motion of 

individual gas molecules of the components A and B, and it is proportional with the 

size of the permeant gas molecules [28].  

     
  

  
 

  

  

  

  
                                      (2.5) 

The above equation is especially useful for determining the ideal gas performance of 

membranes in single gas conditions, for permanent gases at relatively low pressure. 

For mixed gas streams including highly soluble gas streams such as CO2 and 

hydrocarbons, it is more accurate to calculate the “actual” selectivity with the 

following equation 2.6 

    
  

     

     
                                          (2.6) 

where    and    are the mole fractions of the components A and B in the permeated 

stream while    and    are the corresponding mole fractions in the feed stream [11, 

40]. 

Rate of diffusion and sorption through membranes depends on the state of the 

polymer material, whether the membrane is below or above its glass transition 

temperature (Tg) [14, 36, 39]. Below Tg, polymer is in glassy state and above Tg, it is 

in rubbery state. In other words, polymer material changes from glassy state to 

rubbery state when the temperature reaches Tg. When considered from this point of 

view, polymers can be classified as two main categories: rubbery and glassy, 

depending on the Tg. While rubbery polymers are soft and elastic as a result of 

movements in polymer chains, glassy polymers are rigid and hard because of 

prohibited movement of polymer segments [13]. Above the glass transition 
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temperature, the membrane material is also assumed to reach thermodynamic 

equilibrium [3, 39]. Diffusivity (mobility) is higher in rubbery state due to the 

thermal motion of the polymer segments. The thermal motion of the polymer 

molecules leads to the growth of temporary molecular-scale spaces (free volume) 

between the polymer chains and the permeant gas molecules jump through these tiny 

gaps. While the diffusivity coefficients of rubbery polymers are usually very high for 

many gases, their diffusivity selectivities are quite small. Consequently, these 

polymer materials should be preferred when solubility selectivity is dominant [3, 11, 

13]. In glassy state, the mobility of polymer segments are very limited so this state is 

also called as frozen state. In this frozen state, inefficient chain packing and excess 

free volume exist in the polymer matrix due to being in non-equilibrium [3, 39]. 

Figure 2.2 indicates the polymer free volume and state as a function of temperature. 

 

Figure 2.2 : The relation between specific volume and temperature for a typical 

polymer [13]. 

Solubility of gases in rubbery polymers is similar to the dissolution of gases in 

liquids. They are assumed to be in thermodynamic equilibrium and solubility of the 

gas in the polymer matrix generally obeys Henry’s Law, which is shown below 

                                                (2.7) 

where CD is the concentration of gas in the polymer matrix, kD is the Henry’s 

solubility constant for the particular polymer-gas pair (cm
3
-STP/cm

3 
polymer cmHg) 

and p is the partial pressure of the permeant gas. According to this equation, the gas 
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concentration in the polymer is linearly proportional to the external partial pressure 

[4, 14, 39]. 

On the other hand, the solubility of gases in glassy polymers obeys a more complex 

sorption isotherm, which named as dual mode sorption model [13, 14]. This model is 

a combination of Henry’s Law and Langmuir sorption. This theory is shown in 

Equation 2.8 and the sorption isotherms are illustrated in Figure 2.3. 

            
  

    

    
                           (2.8) 

where C is the total gas concentration in the polymer matrix, CD is the gas 

concentration in the Henry type sites, CH is the gas concentration in the Langmuir 

sites,   
  is the Langmuir sorption capacity (the sorption capacity of the unrelaxed 

volume) and b is the Langmuir affinity constant (the ratio of rate constants of 

adsorption and desorption in the holes or defects). Indeed, CD stands for the sorption 

of the diffusible species and CH stands for the sorption in microvoids or defects [13, 

14, 39].  

 

Figure 2.3 : Schematic represantation of Henry type, Langmuir type and dual mode 

sorption [13]. 

As the above figure indicates, Langmuir sorption dominates at lower pressures as the 

penetrant molecules prefer to fill the free volume. As pressure increases, the 

Langmuir sites (microvoids) reach the saturation limit and Henry’s law sorption 

starts to play a larger role [11, 14]. 
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For an efficient separation, polymers are desired to both have high permeability and 

high selectivity. Higher permeability decreases the required membrane area and 

thereby decreases the capital cost for the process while higher selectivity results in 

higher purity product gas. However, the performance of polymeric membranes is 

restricted by the trade-off upper bound that was initially published by Robeson in 

1991. This trade-off relation was represented on the basis of a comprehensive 

literature research, quantifying all the permeation and selectivity data of different gas 

pairs for available polymer materials. According to this trade-off trend, there is an 

inverse relation between permeability and selectivity. Polymers with high 

selectivities commonly have low permeabilities and polymers with high 

permeabilities commonly have low selectivities [8, 42, 43]. Figure 2.4 presents the 

upper-bound for various gas pairs, with selectivity on the ordinate, and permeability 

of the more permeable gas, on the abscissa (in logaritmic scale). 

 

Figure 2.4 : Permeability/selectivity trade-off maps for: (a) O2/N2; (b) CO2/CH4; 

(c) H2/N2; (d) C3H8/CH4 [36]. 
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Robeson then reviewed these upper bounds with the presently available data in the 

literature and the upper bound positions shifted in 2008 [44]. Prior and present upper 

bound relationships for CO2/CH4 gas pair are shown in Figure 2.5. As seen on the 

figure, almost all of the available polymer materials (shown with dots) are under the 

trade-off line. 

 

Figure 2.5 : Permeability/selectivity trade-off relationship for CO2/CH4 [44]. 

Membrane technology for CO2 removal from natural gas started to be commercially 

used in 1980s  and still it has been widely used for this purpose. Especially 

polymeric membranes have been preferred in industrial processes due to their 

processability and ease of fabrication. The most common polymer materials used for 

CO2 removal are cellulose acetate, polyimides and perfluoropolymers [45]. Table 2.1 

summarizes literature data for CH4/CO2 separation performance of several polymer 

membranes. 

Table 2.1 : Single gas permeability and CO2/CH4 selectivity for several polymer 

membranes at 35ºC. 

Polymer 
Pressure 

(bar) 

Permeability (Barrer) CO2/CH4 

Selectivity 
Ref. 

CH4 CO2 

Cellulose acetate (CA) 0.27 0.21 5.96 29.07 [46] 

6FDA-DAM:DABA 10 4.59 133 29 [23] 

Matrimid 5218 2 0.15 5.39 35.93 [47] 

Poly-[perfluoro(2-methylene-

4-methyl-1,3-ioxolane)] 
7.8 2 67 33.5 [48] 
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2.3 Inorganic Membranes for Gas Separation 

The first large-scale inorganic membranes were developed in 1940s for separation of 

uranium isotopes to enrich uranium in Manhattan Project. The project was very 

secret as they were being developed for military purposes. Therefore, the usage of 

inorganic membranes started to be identified and become widespread with non-

nuclear applications of them. In the 1970s, Union Carbide introduced Ucarsep
R
 

membranes, consisting of a thin layer of zirconia generated on the inner side of a 

tubular carbon. Then in the 1980s, both research-development and industrial 

application of inorganic membranes increased. Primarily with the Robeson trade-off 

trend being published, inorganic membranes started to become attractive due to their 

enhanced gas permeation and separation properties [37, 43, 49].  

Inorganic membranes can be classified into two main categories: porous inorganic 

membranes and dense (non-porous) inorganic membranes. Ceramic membranes (e.g. 

alumina, silica, titania, glass), porous metals (e.g. stainless steel, silver), zeolite and 

carbon membranes are several examples of commercially used porous inorganic 

membranes. These membranes generally have high permeabilities but low 

selectivities. On the other hand, dense membranes such as palladium and its alloys 

have better selectivities but low permeabilities. Therefore, commonly porous 

inorganic membranes have been used for industrial applications. Studies have 

particularly focused on molecular sieve membranes such as zeolite, silica and carbon 

membranes, as they mostly lie above the Robeson trade-off line [37, 49]. Table 2.2 

shows a brief literature overview of inorganic molecular sieve membranes for 

CH4/CO2 separation.  

Table 2.2 : Single gas permeability and CO2/CH4 selectivity for several molecular 

sieve membranes. 

Membrane 
Temp. 

(K) 

Permeance                     

(10
-8

/mol.m
2
.s.Pa) 

CO2/CH4 

Selectivity 
Reference 

CH4 CO2 

SAPO-34 295 0.46 66.0 143 [50] 

DDR-type zeolite 298 0.11 30.0 280 [51] 

Si(400) 298 0.07 22.8 326 [52] 

As also seen from the table, zeolite and silica membranes possess high separation 

selectivities. A majority of them are in or near the commercially attractive region. 
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They also have high thermal stability, well-defined pore structure and high surface 

area. However, they have fragile structures, which make the formation of industrial-

scale membranes difficult. In addition, inorganic membrane fabrication requires 

higher cost as they are more expensive than organic polymer membranes [43, 49]. 

2.4 Mixed Matrix Membranes for Gas Separation 

As it was discussed in previous sections, the performance of polymer membranes are 

limited by a trade-off upper bound proposed by Robeson although they are easy to 

operate and suitable for many applications. On the other hand, inorganic membranes 

exhibit significantly higher separation performance but some problems such as being 

inherently brittle, low reproducibility and complicated fabrication procedures pose an 

obstacle on the industrial applications of them. These limitations of polymeric and 

inorganic membranes revealed the need for development of new membrane materials 

or new techniques to enhance the separation processes [7, 53, 54]. 

In 1970s, Paul and Kemp found that addition of zeolite 5A particles into a rubbery 

polymer polydimethyl siloxane (PDMS) considerably increased the diffusion time 

lag for CO2 and CH4, but had a minor effect on steady-state permeation. This was the 

first time MMMs were reported for gas separation. Then in mid-1980s, researchers at 

Universal Oil Products (UOP) firstly reported that composite polymer/adsorbent 

(zeolite) membranes show better separation performance compared to the 

corresponding pure polymeric membranes. They incorporated silicalite particles into 

the polymer cellulose acetate (CA) matrix and observed an enhanced O2/N2 

separation performance [8, 54].  

Recently, MMMs have been of great interest for researches as they are assumed to be 

promising candidates for exceeding the trade-off line. MMMs consist of an organic 

polymer phase (continuous phase) and inorganic particle phase (dispersed phase), as 

shown schematically in Figure 2.6. These composite membranes combine the low 

cost and processability of polymer membranes with superior permeability and 

selectivity of inorganic membranes. In other words, they potentially provide a 

solution both to the trade-off issues of the polymeric membranes and to the high cost 

and inherent fragility problems of inorganic membranes. While continuous phase is 
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typically a polymer; dispersed phase may be zeolite, carbon molecular sieves (CMS) 

or nano-sized particles [7, 8, 13, 53]. 

 

Figure 2.6 : Schematic representation of a MMM. 

There are several models used to determine the separation performance of MMMs. 

First one was derived by Maxwell in 1870s for the evaluation of the dielectric 

properties of composite materials. This so-called Maxwell model has been accepted 

and widely used for estimating permeability and selectivity of MMMs, particularly 

the ones containing low amounts of inorganic particles. Maxwell model was 

developed assuming ideal morphology that there are no defective voids in 

polymer/inorganic particle interphase At low loadings of inorganic particles, the 

permeation of gas molecules takes place by combination of diffusion through the 

polymer matrix and through the pores of filler particles dispersed in polymer phase. 

The effective permeability of a MMM including a dilute suspension of spherical 

inorganic particles can be calculated by Equation 2.9, which is the well-known 

Maxwell equation 

     
                

               
                             (2.9) 

where P is the overall permeability of the MMM,    is the permeability of the 

continuous (polymer) phase,    is the permeability of the dispersed (inorganic) phase 

and   is the volume fraction of the dispersed phase [8, 13, 54].  

As seen on Figure 2.7, individual inorganic particles are considered to be well 

dispersed and separated from each other in the polymer matrix. In this case, one 

inorganic particle is only in contact with one or two other particles and the average 

permeability increases moderately according to the above Maxwell equation. 

However, the situation is different at particle loadings above the percolation 

threshold, which is a critical value where inorganic particles form continuous 

channels within the membrane and almost all particles attached to the channels. This 
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critical loading value is considered to be about 30 volume percent. Above the 

percolation threshold, permeation of gases takes place through two interpenetrated 

continuous phases. At very high inorganic particle loadings, polymer phase is 

assumed to become the dispersed phase, so the continuous and dispersed phases 

reverse in the Maxwell model [13]. 

 

Figure 2.7 : Schematic representation of gas permeation through MMMs containing 

(a) low loadings, (b) high loadings of zeolite particles [13]. 

Conventionally zeolites, carbon molecular sieves (CMSs) and silica nanoparticles 

have been used as dispersed phase in MMM fabrication [7]. There are numerous 

studies in the literature carried out about the gas separation performance of MMMs 

comprising these conventional fillers dispersed in different polymer materials. Table 

2.3 summarizes practically some of the reported CH4/CO2 separation properties of 

these MMMs. 

Although conventional fillers have been widely used in MMM formation, the 

preparation of defect-free flat dense membranes requires some special techniques 

and treatment. One of the problems reported is the agglomeration of inorganic 

particles during the MMM solution preparation. In this case, mixing techniques are 

applied to break up particle agglomerates. Another problem is the partial 

incompatibility between polymer and inorganic particle that causes voids at the 

polymer/filler interface. This problem mostly takes place in glassy polymers having 

poor polymer chain mobility. It results in a weak interaction between the polymer 

matrix and filler particles and growth of undesirable channels between two phases. 

Gas molecules bypass these non-selective voids so the selectivity weakens at the end. 

Several techniques have been used to avoid the formation of these defects at the 

interface. One of them is to embed low molecular-weight additives (LMWA) to film 
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solution, which act as compatibilizer. Silane-coupling agents have been also used for 

modification of filler’s external surface and promoting adhesion between the 

polymer and filler particles. Annealing above the glass transition temperature (Tg) 

also improves the adhesion between polymer and filler particles by eliminating the 

stress generated during solvent evaporation. Priming is also used as a technique to 

enhance the adhesion between polymer and filler, which is coating of filler particles 

with a thin layer of polymer before incorporating them into the bulk polymer [7, 55]. 

Table 2.3 : Comparison of various pure polymer and MMM single gas 

permeabilities and ideal selectivities of CO2/CH4 at 35ºC. 

Polymer 

matrix 

Filler 

(loading) 

Additive
 

(loading) 

Pure polymer  MMM Ref. 

    

a         

b
      

         
  

PES
c
 

SAPO-34 

(20 wt %) 

- 

4.45 33.2 

 5.77 37.0 

[55] 

HMA         

(4 wt %) 
 2.07 40.6 

HMA       

(10 wt %) 
 1.34 44.7 

P84 PI
d
 

Zeolite 4A 

(20 wt %) 
- 

5.72 6.6 

 4.62 6.7 

[56] Zeolite 13X 

(20 wt %) 
-  5.28 6.2 

Zeolite 13X 

(20 wt %) 
-  11.22 25.1 

 PS
e
 MCM-41  

(20 wt %) - 4.50 26.5  7.80 23.0 [57] 

 PC
f
 

Zeolite 4A 

(20 wt %) 

pNA ( wt 

%) 
8.80 23.5  3.97 51.0 [58] 

Matrimid
®
 5218 

Meso ZSM-

5 (20 wt %) 
- 7.29 34.7  8.65 66.1 [59] 

CA
g
 

Silicalite-1 

(25 wt %) 
- 11 41.0  18 40.0 [60] 

Matrimid
®
 5218 

CMS
h
        

(19 vol %)  
- 

10 35.3 

 10.60 46.7 

[61] 
CMS        

(36 vol %) 
-  12.60 68.6 

Ultem
® 

1000 

CMS        

(16 vol %)  
- 

1.45 38.8 

 2.51 43.0 

[61] 
CMS        

(35 vol %) 
-  4.48 53.7 

a 
Permeability of CO2, 1 Barrer = 10

-10 
cm

3
(STP)·cm/cm

2
·s·cmHg 

b
 Permselectivity of CO2 to CH4 

c 
PES: Polyethersulfone, 

d
 PI: Polyimide, 

e
 PS: Polysulfone 

f
 PC: Polycarbonate, 

g
 CA: Cellulose acetate 
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The gas separation performance of MMMs varies in a wide range as it is affected by 

many different factors, as can be seen in Table 2.3. The preparation technique, the 

zeolite-loading amount, the convenience of both polymer and inorganic material for 

separation of the specific gas pair and some other parameters are effective on the 

performance of MMMs [56].  

Although the sieving characteristics of some conventional fillers such as zeolites, 

silica and CMS are suitable for separating particular gas pairs, there are still some 

issues needed to be overcome meeting the expectations for industrial applications. As 

mentioned before, the zeolite/polymer interface incompatibility is one of the most 

important problems that leads to poor gas separation performance. Therefore, several 

researches have been done about the usage of promising alternative materials. Some 

of these emerging materials are carbon nanotubes, clay and metal organic 

frameworks (MOFs) [7, 62].   

2.5 MOF-Containing Mixed Matrix Membranes 

Metal organic frameworks (MOFs) are a novel class of hybrid materials consisting of 

metal clusters bridged by organic linkers to create nanoporous structures. They are 

also named as coordination polymers [24, 62]. Li et al. first reported MOF synthesis 

in 1999 for MOF-5 crystals [63]. Afterwards, several thousand MOF materials have 

been synthesized [62]. Figure 2.8 illustrates some MOF types having different 

frameworks and porosities.  

As they have high surface area, high thermal and chemical stability, tunable pore 

volume and chemical properties, MOFs are seen as attractive materials for several 

applications such as gas separation membranes, selective gas adsorption, hydrogen 

storage, etc. Utilization of MOFs as dispersed phase in a mixed matrix membrane 

(MMM) has become an attractive research area. The organic linkers in MOFs have 

affinity to polymer chains so the control of MOF/polymer interface is easier than 

zeolite/polymer interface. Defect-free MMMs can be fabricated with MOF particles 

without any modification through surface treatment unlike zeolites. Another 

important advantage of MOFs over zeolites is that numerous MOFs can be 

synthesized with different pore sizes and functionalities by changing the combination 

of metal and organic linker. Furthermore, MOFs have higher pore volume and lower 
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density than zeolites. These unique characteristics make the usage of MOFs more 

advantageous than zeolites in composite membrane preparation [25, 30, 62].  

 

Figure 2.8 : A few MOF types with different forms of frameworks and porosity :   

(a) HKUST-1, (b) MOF-5, (c) Sod-ZMOF, (d) Rho-ZMOF [7]. 

The MOF containing MMMs were first explored by Yehia and co-workers in 2004 

[64]. They incorporated copper(II) biphenyl dicarboxylate-triethylenediamine in 

poly(3-acetoxyethylthiophene) for the fabrication of MMM and obtained 

improvements in CH4 selectivity compared to neat polymer membrane [53, 64]. 

Zeolitic imidazolate frameworks (ZIFs) were then introduced as a subclass of MOFs 

whose frameworks resemble the framework of zeolites. ZIFs also have exceptionally 

high thermal and chemical stability, very high surface area and microporosity that 

make them ideal candidates for gas separation applications [30]. Researches 

indicated that some ZIF types could be described as attractive molecular sieves for 

small gas molecules such as CO2 and H2 [62, 65, 66].  

Recently, several MOF containing MMMs have been reported investigating the gas 

separation performance for different types of MOF or ZIF materials. Table 2.4 gives 

a brief literature review about the reported CH4/CO2 separation properties of these 

MMMs. 
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Table 2.4 : Comparison of various pure polymer and MOF containing MMM single 

gas permeabilities and ideal selectivities for CO2/CH4 at 35ºC. 

Polymer 

matrix 
Filler Loading 

Pure polymer  MMM 
Ref.     

           
        

         
 

Matrimid MOF-5 

10 wt % 

9 41 

 11.1 51.0 

[53] 20 wt %  13.8 40.5 

30 wt %  20.2 44.7 

Matrimid 
Cu-BPY-

HFS
c 
 

10 wt % 

7.29 34.71 

 7.81 31.9 

[9] 
20 wt %  9.88 27.6 

30 wt %  10.36 27.4 

40 wt %  15.06 25.6 

PVAc
d
 CuTPA

e
 15 wt % 2.44 34.9  3.26 40.4 [67] 

PS Cu3(BTC)2
f 5 wt % 

6.54 18.5 
 7.55 21.5 

[68] 
10 wt %  7.93 7.4 

  20 wt % 

9.52 39.7 

 9.08 50.4 

[66] 

  30 wt %  14.20 38.7 

Matrimid ZIF-8 40 wt %  24.55 28.6 

  50 wt %  4.54 126 

  60 wt %  7.89 82.4 

Ultem ZIF-90A
g
 15 wt % 1.45 38.5  1.98 39.5 [62] 

Matrimid ZIF-90A 15 wt % 7.80 35  10.2 35 [62] 

6FDA-

DAM 

ZIF-90A 15 wt % 
390 24 

 720 37 
[62] 

ZIF-90B
h
 15 wt %  590 34 

a 
Permeability of CO2, 1 Barrer = 10

-10 
cm

3
(STP)·cm/cm

2
·s·cmHg 

b
 Permselectivity of CO2 to CH4 

c 
Cu-BPY-HFS: Cu-4,4’-bipyridine–hexafluorosilicate 

d
 PVAc: Polyvinyl acetate, 

e
 CuTPA: a MOF of copper and terephthalic acid 

f
 Cu3(BTC)2: Copper (II)-benzene-1,3,5-tricarboxylate 

g
 ZIF-90A: ZIF-90 particles formed in DMF/methanol mixture 

g
 ZIF-90B: ZIF-90 particles formed in DMF/water mixture 

As also seen in Table 2.4, several studies have shown that MOFs are very promising 

candidates for selective gas separation due to their superior selectivity and tunable 

properties [7]. Although some MOF materials were incorporated into polymer 

matrices and investigated for separation of particular gas pairs, there are still many 

types waiting for investigation.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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3.  MATERIALS AND EXPERIMENTAL PROCEDURES 

In mixed matrix membrane fabrication, many different types of polymer/filler 

combinations and preparation methods can be used to obtain highly selective MMMs 

for the specific component in a gas mixture.  

This section firstly presents the criteria to determine suitable materials for the 

introduced purpose. After that, the experimental procedures both for synthesis and 

ion-exchange of MOF crystals, and preparation of MMMs are explained. Finally, the 

characterization techniques for MOF particles and membranes are reported. 

3.1 Material Selection 

In MMM preparation, material selection for both the continuous phase (polymer 

matrix) and the dispersed phase (inorganic or inorganic-organic hybrid material) are 

key aspects. While the polymer material basically determines the minimum 

performance of the resultant MMM, the addition of appropriately selected dispersed 

particles may improve the separation performance by preferentially passing the 

desired component(s) if defect-free membranes could be obtained [69]. 

3.1.1 Polymer selection 

A variety of polymer materials such as cellulose acetate, polysulfones, 

polycarbonates and polyimides have been commonly used for commercial gas 

separations. For natural gas purification (CO2, H2S, H2O removal), glassy polymeric 

membranes have been widely preferred [23, 66]. As mentioned before, glassy 

polymers favor the permeation of smaller molecules because the decrease in 

diffusion coefficients with increasing permeate size is relatively higher in glassy 

materials compared to rubbers. Therefore, when used to separate CO2 from a 

CH4/CO2 gas pair, glassy polymers preferentially permeate CO2 [13, 16]. Among 

other glassy polymers, polyimide materials are particularly attractive as they have 

high thermal, mechanical and chemical resistance as well as having high 
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permeability and selectivity values. They are assumed to endure high-pressure 

natural gas feeds due to their strong mechanical properties [23, 66].  

Matrimid is a commercially available polyimide that has a relatively higher gas 

separation performance for CH4/CO2 gas pair compared to other polyimides [25, 70]. 

It also has high Tg and good processability [71]. According to the previous studies [9, 

53, 72, 73], its CO2/CH4 ideal selectivity has been reported as approximately between 

35 and 41 at low or moderate pressures and at 35ºC temperature.  There are also 

several studies that different MOF particles incorporated into Matrimid polymer 

matrix and CO2/CH4 separation performance successfully enhanced [9, 53, 62]. 

These studies indicate that Matrimid polyimide has a promising background about 

natural gas purification and highly selective MMMs could be developed with other 

MOF materials that have not been studied yet.  

Consequently, commercially available Matrimid
®

 5218, which consists of 3,3’,4,4’-

benzophenone tetracarboxylic dianhydride and diamiophenylindane monomers, was 

chosen in this study as the polymer material for preparing membranes. It is soluble in 

many common organic solvents such as N-methylpyrolidone (NMP), N,N’-dimethyl 

formamide (DMF), N,N’,dimethylacetamide (DMAc) and chloroform [59, 74]. The 

chemical structure and physical properties of Matrimid
®
 5218 are indicated in Table 

3.1. Matrimid
®
 5218 was purchased from Huntsman Advanced Materials Americas 

Inc. 

Table 3.1 : Chemical structure and physical properties of Matrimid
®
 5218 [72, 75]. 

Polymer Chemical Structure Density (g/cm
3
) Tg (ºC) 

Matrimid
®
 

5218 

 

1.23 308 

3.1.2 MOF selection 

Selecting the appropriate filler material improves the separation performance of 

MMMs compared to the corresponding pure polymer membrane, in the absence of 

interfacial defects. The chemical structure, surface characteristics, particle size 

distribution and aspect ratio of the filler material are assumed to be very crucial for 
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the performance of resultant MMMs [69, 76]. While using conventional fillers such 

as zeolite, silica and activated carbons, one of the most important problems is non-

selective voids formed at the filler/polymer interface due to poor compatibilities of 

two phases.  Some recent studies propose that preparation of defect-free MMMs is 

relatively easy when MOFs are used as filler rather than traditional inorganic fillers. 

This superiority is attributed to the partially organic structure of MOF materials, 

which increases their interaction with the polymer bulk material. By this way, the 

formation of undesired micro-gaps at the interface could be prevented [25, 66, 76].  

While using MOFs as dispersed particles in MMMs, selecting the appropriate MOF 

type to achieve desired separation performance is a challenge because there are 

thousands of MOFs that could potentially be used [25, 77]. As mentioned in section 

2.5, multiple MOFs have been investigated as fillers in MMMs [9, 53, 65-68]. 

However, there are still many which have not been explored yet. Zeolite-like metal 

organic frameworks (ZMOFs) can be regarded as one type of them. Although several 

gas adsorption studies about ZMOFs were carried out before [78-80], no MMM 

studies have been performed using these materials as the dispersed phase.  

ZMOFs are a novel subclass of MOFs possessing anionic framework unlike other 

MOFs and ZIFs which typically have neutral framework. They have framework 

topologies resembling zeolites; transition metals replace Si or Al atoms and organic 

linkers (imidazolate units, symbolized as IM) replace oxygen bridges (e.g. -Si-O-Si-) 

in zeolites [78, 80, 81]. A schematical depiction of similarities between zeolites and 

ZMOFs/ZIFs is illustrated in Figure 3.1. 

 

Figure 3.1 : The bridging angles in (a) ZMOFs/ZIFs and (b) zeolites [82] 

The charge-compensating extra-framework cations exist in the pores of ZMOF 

structures which increase the interactions with guest molecules and improve their gas 

separation, gas storage and ion-exchange capability.  The ion-exchange process is 

assumed to change the binding energy of adsorbate molecules to the ZMOF structure 

as it changes the electron density in the pores of ZMOF. Hence, ZMOFs have a 
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potential to be optimized for any specific gas molecule(s). ZMOFs are also reported 

to be stable in the presence of water, while most of the MOFs are unstable [79, 80]. 

In this work, sod-ZMOF was chosen as filler material using in MMMs. It represents 

the first example of MOFs with sodalite topology which has anionic framework. 

Metal ion source of sod-ZMOF is indium (III) and bridging linker is double 

deprotonated 4,5-imidazoledicarboxylic acid (H3ImDC). It has micropores whose 

diameters are approximately 9.6 Å. The crystal structure of sod-ZMOF is 

demonstrated in Figure 3.2. The negatively charged framework of sod-ZMOF is 

charge-compensated by imidazolium cations which can easily be ion-exchanged with 

alkali metal ions.  

 

Figure 3.2 : A fragment of the sod-ZMOF crystal [83]. 

Sod-ZMOF is also insoluble in water and common organic solvents, and has very 

high thermal, chemical and mechanical stability. Calleja et al. [79] followed the 

thermal stability of sod-ZMOF crystals by XRD and the patterns showed that their 

crystallinity begins to disappear at 250 ºC, as it can be seen on Figure 3.3.  

 

Figure 3.3 : Experimental XRD patterns of as-synthesized sod-ZMOF material at 

different temperatures [79]. 
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This study proved the structural stability of sod-ZMOF material, which was also a 

criterion while choosing the appropriate ZMOF type for MMM preparation. When it 

was compared with rho-ZMOF, which is another ZMOF material having rhombic 

topology, sod-ZMOF was reported as thermally and chemically more stable [80, 83, 

84].  

In another study performed by Chen et al. [80], CO2 adsorption isotherms of ZIF-8 

and ZMOF samples were obtained and they were compared with each other. ZIF-8 

was a good choice for comparison as it is a widely investigated ZIF material having 

the same sodalite topology as sod-ZMOF. Table 3.2 summarizes the textural 

properties and CO2 capture capacities of these materials. Figure 3.3 also presents the 

CO2 and N2 adsorption-desorption isotherms of sod-ZMOF and ZIF-8 particles at 25 

ºC temperature. As can be seen in the table, sod-ZMOF exhibits much higher 

adsorption capacity than ZIF-8, even its surface area is considerably smaller. This 

superior performance was attributed to the charged structure of ZMOF materials. The 

charge-compensating extraframework cations in the cavities of ZMOF interact with 

adsorbate molecules having quadrupoles (e.g. CO2) and generate new adsorption 

sites for these molecules [80]. This study was also effective for choosing sod-ZMOF 

as a filler material to test whether the proven high affinity for CO2 would also 

enhance the separation performance of polymer membranes or not. 

Table 3.2 : Textural properties and CO2 capture capacities of ZMOF and ZIF-8          

samples [80]. 

Sample SBET (m
2
/g)

a
 Vpore (cm

3
/g)

b
 CO2 uptake (mg/g)

c
 

ZIF-8 1450 0.50 30 

Sod-ZMOF 375 0.16 53 

Li
+
-sod-ZMOF* 345 0.16 54 

Na
+
-sod-ZMOF* 373 0.17 56 

K
+
-sod-ZMOF* 363 0.16 61 

a
 SBET: BET surface area of the sample 

b
 Vpore : Pore volume of the sample 

c
 CO2 uptake (mg/g) measured at 1 bar pressure. 

* sod-ZMOF particles ion-exchanged with lithium (Li
+
), sodium (Na

+
) and potassium (K

+
) cations. 
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Figure 3.4 : CO2 and N2 adsorption-desorption isotherms of (a) sod-ZMOF, and (b)   

ZIF-8 [80]. 

3.2 Sod-ZMOF Synthesis and Ion-Exchange Procedure 

Sod-ZMOF was synthesized with classical solvothermal method following the 

procedure published in literature [79, 84]. The purities and suppliers of the chemicals 

used for sod-ZMOF synthesis are summarized in Table 3.3. 

Table 3.3 : The list of materials used for sod-ZMOF synthesis 

4,5-Imidazoledicarboxylic acid (H3ImDC), indium nitrate (In(NO3)3·XH2O), 

dimethylformamide (DMF), acetonitrile (CH3CN), imidazole (Im) and nitric acid 

(HNO3); (with 1 In:3 H3ImDC:6.9 Im:24 HNO3:446 DMF:220 CH3CN molar ratio) 

were respectively added into a vial and stirred for an hour. After mixing well, the 

milky dispersion was heated up to 85ºC for 12 h and then up to 105 ºC for 23 h in an 

oven. The first step is nucleation time (tn) and the second step is crystallization time 

(tc). After the reaction was completed at solvothermal conditions, colorless 

polyhedral crystals were collected by filtration, washed with methanol to remove the 

remaining DMF from the surface and pores of the MOF material, and air-dried at 

Material Purity Supplier 

4,5-Imidazoledicarboxylic acid (H3ImDC) 97 % Sigma-Aldrich 

Indium nitrate (In(NO3)3·XH2O) 99.9 % Sigma-Aldrich 

Dimethylformamide (DMF) ≥ 99.8 % Merck 

Acetonitrile (CH3CN) ≥ 99.9 % Merck 

Imidazole (Im) ≥ 99 % Sigma-Aldrich 

Nitric acid (HNO3) 65 % Carlo Erba 
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room temperature. The obtained crystals had a particle size between 50-200 µm, as 

reported in the literature [79, 80]. Nevertheless, the particles must be smaller for 

incorporating into a polymer matrix and preparing MMMs, so different studies were 

performed by changing the synthesis conditions (synthesis temperature/time, pH of 

the reaction medium, etc.) for particle size reduction. By using one-half of the nitric 

acid used before, the smaller particles were obtained which could be assumed to be 

suitable for MMM preparation. 

Sod-ZMOF was further ion-exchanged with a standard ion-exchange procedure [79- 

80]: 0.1 M NaCl solution was prepared and sod-ZMOF crystals were stirred in this 

mixture for 24 h at room temperature. The ion-exchange process was repeated 4 

times, refreshing the solution every day. Ion-exchanged sod-ZMOF materials are 

named as Na
+
-sod-ZMOF. 

3.3 Membrane Preparation 

The procedure for flat dense membrane preparation can briefly be described with 

following steps: 

 Preparation of homogeneous polymer/(filler)/solvent film solution, 

 Casting the solution on a smooth surface (glass, mirror, etc.), 

 Evaporation of the solvent, 

 Annealing at high temperatures for removal of the residual solvent. 

This procedure may both be used for pure polymeric and mixed matrix membrane 

formation. Nevertheless, the details in these procedures may also vary in a wide 

range for MMMs as they depend on the polymers, solvents and fillers used [8]. 

3.3.1 Pure polymer membranes 

In this work, pure polymer membranes were fabricated to use as the reference when 

interpreting the effect of fillers loaded in MMMs. Pure polymer membranes were 

prepared by dissolving a certain amount of Matrimid in DMF solvent. Matrimid
®
 

5218 was placed in a vacuum oven at 120 ºC and dried overnight under active 

vacuum prior to use in membrane formation. Dense membranes were prepared from 

a DMF solution containing 15 wt% Matrimid. The conventional solution-casting 

technique was used. A particular amount of Matrimid and required DMF was 



30 

weighed and the Matrimid was added into the solvent periodically (with 2-hour 

intervals) in 5 equal portions to have an effective solvation. After the total amount of 

polymer was added and dissolved, the film solution was stirred overnight on a 

magnetic stirrer. Then, the stirring was stopped and the film solution was poured on a 

smooth mirror surface after waiting for about half an hour to minimize air bubbles in 

the solution. The steps for preparing flat dense films are itemized as follows: 

 Membranes were cast in a laminar flow hood onto a mirror substrate using a 

film casting knife and table, having 500 µm initial thickness, for obtaining a 

flat membrane. 

 The film then quickly placed in an oven at 80 ºC for three hours and after 

solvent evaporation, it was peeled off from the mirror surface.  

 It was placed in the oven again and kept at 100ºC overnight.  

 Then it was heated to 200ºC with 1ºC/min heating rate and further annealed at 

this temperature for 48 h under vacuum to completely remove the residual 

solvent.  

 It was cooled down to room temperature inside the oven naturally and further 

stored in a desiccator.  

The average membrane thickness was 35 µm after annealing. 

3.3.2 Mixed matrix membranes 

In this study, sod-ZMOF particles were used for the first time as fillers in MMM 

fabrication, therefore there is not an applicable preparation technique published in 

literature specific for this MOF type. The previously reported preparation methods 

[53, 76, 85] for some other MOF particles were used to develop a convenient 

method. Prior to membrane preparation, both Matrimid® 5218 and sod-ZMOF were 

dried overnight at 120°C under vacuum. Dense MMMs containing 5 and 10 wt% 

sod-ZMOF were prepared.  

According to the determined loading, a particular amount of sod-ZMOF was 

dispersed in DMF. The suspension was stirred overnight on a magnetic stirrer. Then, 

the mixture was bath sonicated for 30 min to ensure a well dispersion before the 

required quantity of Matrimid (with a 15/85 Matrimid/solvent ratio) was added. 

Matrimid was again added into the dispersion periodically (with 2-hour intervals) in 
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5 equal portions. After the total amount of polymer powder was added, the whole 

mixture was allowed to stir for another night. Subsequently, the surface of a flat 

mirror was cleaned with ethanol and the film solution casted on it using a casting 

knife, having 800 µm initial thickness. Then the same heat treatment and annealing 

procedure (48 h at 200ºC) was applied as in pure polymer membrane. The thickness 

of dried MMMs varied from 45 to 65 μm. Figure 3.4 presents the general procedure 

appied for MMM preparation. 

 

Figure 3.5 : General sheme for the preparation of MOF-containing MMMs. 

3.4 Characterization Techniques 

In this section, characterization techniques for both sod-ZMOF particles and 

membranes were presented. Firstly, structural and thermal properties of sod-ZMOF 

crystals were examined prior to preparation of MMMs. Then, standard 

characterization methods were applied to determine the membrane properties 

following the preparation of pure polymeric and mixed matrix membranes.  

3.4.1 Characterization of sod-ZMOF crystals 

Structural and morphological characterization of sod-ZMOF was made by X-ray 

diffraction (XRD) and scanning electron microscopy. Thermogravimetric analysis 

(TGA) was also used for thermal characterization of MOF particles. 

3.4.1.1 X-ray diffraction 

Powder X-ray diffraction (PXRD or XRD) is a powerful technique for characterizing 

materials based on their constituent crystal structures. It is a noncontact and 

nondestructive method. In this technique, any material is irradiated by a 
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monochromated X-ray beam. If the material has crystalline structure (containing 

repeated arrays of atoms), it generates unique diffraction peaks. These diffraction 

peaks are material-specific so they are named as fingerprint of material. By this way, 

XRD is very significant in materials science as it can uniquely identify the presence 

and composition of phases. In a typical XRD analysis, the diffracted intensities are 

measured as a function of diffraction angle 2θ and the orientation of the sample, 

where 2θ is the angle between the diffracted and incident X-rays. By using powder 

X-ray diffractogram, it is also possible to quantitively calculate the crystallinity of 

samples [86, 87]. 

In this study, XRD patterns for synthesized sod-ZMOF particles were obtained to 

compare with the ones reported in literature to investigate whether the synthesis was 

performed successfully or not. It was obtained on a Panalytical X’Pert PRO 

diffractometer using CuKα (λ=1.54 Å) radiation in the 2θ range between 5º and 50º. 

3.4.1.2 Scanning electron microscopy 

Scanning electron microscopy (SEM) is an instrument used for the purpose of 

detailed morphological characterization. It provides highly magnified images of the 

surface of materials. The resolution of the SEM can generally approach less than 1 

nm and the magnification can be adjusted from about 10 times (x10) to more than 

500000 times (x500000) [87, 88].  

In this study, SEM analysis was carried out using a JEOL JSM-6390LV instrument. 

Sod-ZMOF particles were attached on a sample holder with an adhesive carbon foil 

and coated with platinum (Pt) for 1 min at 15 mA, in order to obtain conductivity. An 

Emitech K550X instrument was used for coating. Samples were then characterized 

under high vacuum and a potential difference of 10 kV, at magnifications between 

x100 and x3000.  

3.4.1.3 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) is a thermal analysis technique which examines 

the mass change of the sample as a function of temperature. The thermal events 

causing change in the mass of the sample are not only melting, crystallization or 

glass transition, but also absorption, desorption, sublimation, vaporization, oxidation, 

reduction and decomposition. TGA is used to characterize the thermal stability and 
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decomposition of materials under controlled conditions, and also to examine the 

kinetics of the occurring physico-chemical processes taking place in the sample. The 

quantity of volatile components such as absorbed moisture, residual solvent, etc. can 

be detected using this analysis technique [89].  

In this study, TGA analyses of sod-ZMOF particles were carried out with a Perkin-

Elmer Diamond TG/DTA instrument. A small amount of powder was weighed and 

analyzed between 50ºC and 550ºC with a scanning rate of 4ºC/min under flowing air 

of 100 ml/min. The obtained thermogram was then used to determine the 

decomposition temperature and thermal stability of sod-ZMOF material. 

3.4.2 Membrane Characterization 

Membrane characterization was carried out using some analysis techniques such as 

SEM, TGA, and differential scanning calorimetry (DSC) and gas separation 

properties of them were further investigated by gas permeability measurements. 

3.4.2.1 Morphological and thermal characterization 

SEM was used to investigate the cross-sections of mixed matrix membranes in order 

to determine the adhesion between continuous and dispersed phases. The thickness 

of the membranes was also confirmed by SEM images. Prior to analysis with SEM, a 

small piece of membrane was cut out and broken by immersing in liquid nitrogen for 

a few minutes to obtain a cross-section. Then, the sample was placed on a sample 

holder with an adhesive carbon foil and coated with platinum for 90 seconds. Finally, 

the MMM samples were examined via SEM and the images of cross-sections were 

obtained under high vacuum and a potential difference of 10 kV, at magnifications 

varying between x1500 and x10000. 

Thermal characterization of membranes were mainly performed by two common 

methods: TGA and DSC. The basic principles of TGA were previously summarized. 

The TGA analyses of membranes were also carried out between 50ºC and 550ºC, but 

they were heated with a scanning rate of 10ºC/min under flowing N2 of 200 ml/min. 

The obtained thermogram was then used to determine the amount of moisture and 

residual solvent in the sample. The data was also used as guide while determining a 

program for DSC analyses. 
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Differential scanning calorymetry (DSC) is a widely used technique for determining 

glass transition, melting and crystallization temperatures as well as heat of fusion for 

polymeric materials. DSC is an instrument basically containing two heat sensitive 

plates in a furnace, with thermocouples attached to the base of these two holders. The 

sample is placed in a sealed pan and inserted in one of these plates, and an identical 

empty sealed pan is inserted in the other plate as reference. Then, the temperature 

difference between the sample and reference pans is measured as a function of 

temperature or time, under controlled temperature conditions. This temperature 

difference is proportional with the change in heat flux. When the sample goes 

through a phase transformation, heat is absorbed or released and it causes a 

temperature difference between sample and reference. By this way, Tg of polymers is 

observed as a differential increase in the heat capacity of the sample due to the 

increase of molecular motion in the polymer [89, 90]. 

In this study, DSC measurements of membranes were performed with a Perkin-

Elmer DSC-4000 instrument. A small amount of sample was weighed and placed in 

a standard alumina pan. After sealing, it was inserted into the DSC for analysis and a 

four-step heating sequence was applied. Firstly, the sample was heated from 30ºC to 

310ºC with a heating rate of 20ºC/min, where 310ºC is slightly above the Tg of the 

polymer (Reported average Tg for Matrimid
®
 5218 was 308ºC). This heating step 

was applied because it is desired to erase the previous thermal history of a sample. 

Then, it was maintained at 310ºC for 5 min before cooling the sample to 250ºC with 

30ºC/min rate. As a final step, the sample was re-heated from 250ºC to 400ºC with a 

heating rate of 10ºC/min. 400ºC is a temperature higher enough from the predicted Tg 

of the sample, so it is appropriate for seeing the glass transition obviously. This 

heating cycle was applied under inert N2 atmosphere and Tg was calculated by half 

Cp extrapolation method.  

3.4.2.2 Gas permeation measurements 

The permeability measurements were performed with a constant volume-variable 

pressure permeation system. In this system, a pressure difference is created between 

two sides of the membrane, which was readily inserted in a permeation cell, and the 

gas permeation is provided towards the downstream chamber that has a constant 

volume. The gas stream accumulating at this calibrated volume leads to an increase 
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in pressure and the amount of permeate gas may be determined by following the 

pressure raise. Figure 3.5 presents the schematic illustration of the system. As it also 

can be seen from the figure, the permeation system principally consists of a 

permeation cell, upstream and downstream transducers, data acquision system and a 

gas chromatogram (GC). Permeation cell includes two halves and tightly encloses 

the membrane between them. Upstream transducer measures the upstream (feed) 

pressure and downstream transducer measures the downstream (permeate) pressure. 

Data acquision system records the upstream and downstream pressures, which are 

required for calculating the permeability, every one minute. The GC is also used for 

measuring the composition of feed and permeate streams while mixed gas conditions 

exist. 

 

Figure 3.6 : Schematic depiction of the constant volume-variable pressure system 

used in this study. 

Prior to be inserted into the permeation cell for permeation measurements, the 

membranes were immobilized by masking. For masking a membrane, a circle which 

has a smaller diameter from the membrane was cut out from an aluminum sheet and 

the membrane was attached on the adhesive side of the sheet. A same-size hole was 

also made on another smaller circle of aluminum sheet, which has a diameter slightly 

bigger than membrane. Then, the membrane was sandwiched between these two 

sheets and as a final step, the boundary between the membrane and the aluminum 

sheet on upstream side (reverse side of the aluminum sheet where membrane was 

attached) of the masked membrane was sealed with epoxy to avoid any leaks. The 
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membrane was ready for permeation measurements after the epoxy was completely 

hardened, which takes approximately 24 hours. 

For gas permeation measurements, the masked membrane was attached to the lower 

half of the permeation cell and the upper half of the cell was placed onto it. 

Afterwards, the sealed cell was attached to the piping system through Swagelok® 

VCR fittings. Prior to feeding the gas to the upstream; the upstream and downstream 

sides were evacuated for 24 hours using a vacuum pump in order to remove residual 

solvent and any adsorbed gases in the membrane. Then, the gas was fed to the 

upstream after the valve connecting two sides of the membrane was closed. A time 

lag was observed in the first measurement. This means that it takes a certain time for 

gas molecules to fill the free volume of the membrane. After this time elapses, the 

membrane reaches steady-state and the rate of pressure increase in the downstream 

becomes linear. After each measurement, this rate of pressure increase (the slope of 

downstream pressure versus time) was calculated and it was repeated until the slope 

became almost constant for three following measurements. 

The permeabilities were calculated from the pressure change vs. time at steady-state 

condition, by using Equation 3.2 

   
         

     
                                                  (3.2) 

where αm is the rate of pressure increase in the downstream during measurement, αl is 

the rate of leak in the downstream, V is the volume of the downstream side, l is the 

thickness of the membrane, A is the permeation area of the sample, R is the ideal gas 

constant, T is the temperature where the measurements were taken, and ΔP is the 

pressure difference between the upstream and the downstream. 

In this study, all single gas measurements were carried out at 4000 mbar upstream 

pressure and 35ºC temperature. The downstream side was evacuated overnight prior 

to work with another gas stream in order to sweep away the gas molecules belonging 

to the previous feed stream. 
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4.   RESULTS AND DISCUSSIONS 

This chapter mainly consists of two parts. The first part presents the result for 

structural and thermal characterization of sod-ZMOF particles, and the second part 

gives the results for membranes and compares the properties of sod-ZMOF 

containing MMMs with pure Matrimid® 5218 membrane. 

4.1 Sod-ZMOF Characterization 

Sod-ZMOF crystals were obtained by following the reported solvothermal synthesis 

method [79, 84], so the resultant data obtained from characterization were also 

compared with the published ones. 

Firstly, the particles were analyzed with X-ray diffraction. Figure 4.1 shows the XRD 

pattern of sod-ZMOF particles, both published [79] and synthesized in this study. 

 

Figure 4.1 : Comparison of XRD patterns of sod-ZMOF crystals, synthesized in this 

study and the published one [79]. 
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As it can be obviously seen on Figure 4.1, the XRD pattern of the sod-ZMOF 

crystals synthesized in this study was quite similar to the published one, which was 

synthesized with the same method [79]. It confirms that the sod-ZMOF particles 

were successfully synthesized. 

Figure 4.2 presents the SEM images of the as-synthesized and Na
+
 ion-exchanged 

sod-ZMOF particles. The images showed that as-synthesized sod-ZMOF samples 

were comprised of distinctly regular multi-faceted (tetrahedral) crystals. The SEM 

images showed the crystal particle size ranged from 2 µm to 20 µm for as-

synthesized sod-ZMOF particles (Figures 4.2a and 4.2b).  

On the other hand, Figures 4.2c and 4.2d indicates that the morphology of the sod-

ZMOF crystals appeared to be substantially modified during the ion-exchange 

process. Nevertheless, the crystal structure did not collapse; as it was also confirmed 

by XRD patterns [79] showing the whole crystallinity were maintained during the 

ion-exchange procedure when pure methanol was used as the solvent medium.  

 

Figure 4.2 : SEM images of  (a-b) as-synthesized, (c-d) Na
+
-sod-ZMOF crystals. 
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In Figure 4.3, the TGA diagrams of both as-synthesized and ion-exchanged sod-

ZMOF particles were presented. The thermogram for as-synthesized sod-ZMOF 

shows that there is not considerable weight loss until 200°C. Although the derivative 

thermogravimetric analysis (DTG) curve was not included in the figure for 

preventing complexity, there was a peak centered at 288°C, which was attributed to 

the degradation of structure-directing agent (SDA), imidazolium at about this 

temperature. As the thermal stability of ZMOFs are determined by the loss of SDAs, 

sod-ZMOFs could be said to remain thermally stable until about 290°C. In a recent 

study [79], it was illustrated by XRD patterns that the crystallinity of sod-ZMOF 

started to collapse at 250°C, as it was also indicated in the previous section (Figure 

3.3). The next remarkable weight loss was seen at approximately 380°C, and this is 

related with the removal of organic linker of the framework. At this point, the crystal 

structure of the sod-ZMOF was assumed to be totally disappeared.  

 

Figure 4.3 : TGA curves for as-synthesized and Na
+
-sod-ZMOF crystals. 

The cumulative weight losses at certain temperatures, starting from 50°C, were also 

indicated in Table 4.1. According to the table, the weight loss until reaching 153°C, 

which is the boiling point of DMF, was higher for ion-exchanged sod-ZMOF 

particles. This result can be described by having larger cavities after ion-exchange 
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process, as the organic imidazolium cations in the cavities were partially exchanged 

with smaller Na
+ 

ions. As a result, higher amount of solvent could be trapped in these 

larger cavities. On the other hand, total weight loss at the end of temperature 

scanning was smaller in ion-exchanged sod-ZMOF, this could also be explained by 

the increase in inorganic structure. Especially from 200°C to 300°C, there was a 

considerable difference (approximately 5%) in weight loss between two samples, as 

the organic SDA collapsed at this temperature interval and it was partially replaced 

by inorganic cations during ion-exchange.  

Table 4.1 : Cumulative weight loss of sod-ZMOF particles, obtained from the    

TGA data. 

Sample 
Cumulative weight loss (%) 

100°C 153°C 200°C 300°C 400°C 500°C 

As-synthesized sod-ZMOF 0.42 0.60 1.91 32.08 59.11 73.77 

Na
+
- sod-ZMOF 1.79 3.02 3.82 29.19 54.07 68.70 

4.2 Characterization of Membranes 

For all membranes prepared in this study, morphological (SEM) and thermal (TGA, 

DSC) analysis as well as gas permeation measurements were performed.  

4.2.1 Morphology 

Figure 4.4 indicates the morphology of MMMs prepared by loading different 

amounts of both as-synthesized and ion-exchanged sod-ZMOF particles, obtained 

with SEM. The SEM images of sod-ZMOF/Matrimid membrane cross-sections 

showed good interfacial contact between sod-ZMOF crystals and polymer matrix, 

since there were no apparent voids at the polymer/filler interface. They also showed 

that there was a good particle distribution of sod-ZMOF particles in the continuous 

phase, as homogeneous morphologies were detected with virtually no agglomeration 

of MOF particles. These results signify that sod-ZMOF crystals showed excellent 

adhesion with the Matrimid® without any surface-compatibilization procedures and 

defect-free MMMs were obtained. Thus, these MMMs were considered to be 

promising candidates for enhanced gas permeation properties. 
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Figure 4.4 : SEM images of MMMs containing: (a-b) 5 wt% as-synthesized sod-

ZMOF, (c-d) 10 wt% as-synthesized sod-ZMOF, (e-f) 10 wt% ion-

exchanged sod-ZMOF particles. 

The SEM images also showed that sod-ZMOF particles became smaller as they were 

incorporated into the polymer matrix to form MMMs, which was assumed to occur 

during mechanical stirring and sonicating processes.  

In this study, it was also questioned whether these particles maintained their 

crystallinity after all mechanical and thermal treatments through MMM preparation 

or not. For this purpose, a MMM prepared containing 20% sod-ZMOF with the same 

procedure applied to the other membranes, and it was further analyzed with powder 

XRD. Figure 4.5b shows the XRD pattern of this MMM, in contrast to pure 

Matrimid® 5218 and as-synthesized sod-ZMOF crystals. According to the pattern 

obtained, there was no considerable loss in crystallinity of sod-ZMOF particles, only 

slight changes of some reflections. Thus, it can be said that the crystalline structure 
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of sod-ZMOF material was substantially conserved through the MMM preparation 

process. 

 

Figure 4.5 : XRD patterns of (a) pure Matrimid® 5218, (b) MMM containing        

20 wt% sod-ZMOF, (c) as-synthesized sod-ZMOF particles. 

4.2.2  Thermal properties 

The membranes were investigated with TGA in order to determine the amount of 

moisture and residual solvent exist within the membrane. Figure 4.6 shows the TGA 

thermograms of mixed matrix membranes loaded with different amounts of (5 or 10 

wt%) as-synthesized and Na
+
-ion-exchanged sod-ZMOF particles. TGA curve of 

pure Matrimid® membrane was included for comparison. Table 4.2 also lists the 

cumulative weight loss in these samples. For both pure and sod-ZMOF containing 

Matrimid membranes, there was not considerable weight loss until the boiling point 

of DMF (153°C). This confirms that the removal of residual solvent as well as the 

adsorbed moisture was carried out successfully, with annealing the membranes at 

200°C. Nevertheless, it must be noticed that the amount of residual solvent was 

higher in MMMs compared to the pure polymer membrane. This difference was 

attributed to the presence of sod-ZMOF particles having large cavities potentially 

entrapping more solvent at the interface. The weight losses between 300°C and 

400°C were also relatively higher in MMMs, as the organic structure of sod-ZMOF 
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was totally lost at nearly 380°C. This was also confirmed quantitively by making a 

comparison between 5 wt% and 10 wt% sod-ZMOF containing MMMs: the weight 

loss at the temperature interval 300°C-400°C was 3.5% for 10% sod-

ZMOF/Matrimid membrane while it was 1.77% for 5% sod-ZMOF/Matrimid 

membrane. In other words, the weight loss doubled in MMMs between 300°C and 

400°C when the sod-ZMOF loading amount doubled, due to the lost of organic 

linkers in sod-ZMOF framework at this temperature interval. 

 

Figure 4.6 : TGA curves for pure and sod-ZMOF containing Matrimid membranes. 

Table 4.2 : Cumulative weight loss of pure and sod-ZMOF containing Matrimid 

membranes, obtained from the TGA data. 

Membrane 
Cumulative weight loss (%) 

100°C 153°C 200°C 300°C 400°C 500°C 

Pure Matrimid® 5218 0.080 0.144 0.382 1.377 2.148 8.04 

5% sod-ZMOF/Matrimid 0.211 0.320 0.449 1.172 2.944 16.84 

10% sod-ZMOF/Matrimid 0.174 0.298 0.366 1.296 4.796 19.62 

10% Na
+
-sod-ZMOF/Matrimid 0.167 0.316 0.410 2.088 4.910 20.22 
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Figure 4.7 presents the DSC thermograms for MMMs. As the average Tg value for 

pure Matrimid® 5218 membrane was about 310°C, the Tg increased slightly with 

sod-ZMOF loading. These small increases could be a result of chain rigidification, 

which takes place when polymer chains in direct contact with MOF surface rigidify 

compared to the bulk polymer chains and form higher-Tg regions within the 

membrane. However, the increase of Tg values were not further interpreted as they 

were also falling within the experimental error.  

 

Figure 4.7 : DSC thermograms MMMs containing (a) 5 wt% as-synthesized sod-

ZMOF, (b) 10 wt% as-synthesized sod-ZMOF, (c) 10 wt% Na
+
-sod-

ZMOF particles. 

4.2.3 Gas separation properties 

Table 4.3 summarizes the average single gas permeabilities and CO2/CH4 ideal 

selectivities for MMMs and also for neat polymer membrane in order to compare the 

performances. 

Table 4.3 : CH4/ CO2 separation performance of pure Matrimid and MMMs. 

Membrane 
Permeability (Barrer) Ideal 

selectivity CH4 CO2 

Pure Matrimid® 0.10 3.80 37.8 

5% sod-ZMOF/Matrimid® 0.13 4.64 36.8 

10% sod-ZMOF/Matrimid® 0.14 5.12 36.7 

10% Na
+
-sod-ZMOF/Matrimid® 0.12 4.60 38.9 
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The obtained data indicated that the permeabilities for both gases increased with the 

incorporation of sod-ZMOF particles into the polymer matrix. 5 wt% and 10 wt% 

sod-ZMOF-loaded MMMs confirmed that permeabilities increased as the filler 

content increased. The increase in the permeability of CO2 was 35% with 10 wt% 

sod-ZMOF loading while it was 22% for 5 wt% loading. It was also illustrated in 

Figure 4.8, which presents the permeabilities as a function of sod-ZMOF content in 

Matrimid matrix. The permeability improvement was an expected result as sod-

ZMOF crystals have extra large cavities (9.6 Å) and generate paths inside the 

polymer matrix that gas molecules could readily pass through. 

 

Figure 4.8 : CH4 and CO2 permeabilities of Matrimid® membranes as a function of 

sod-ZMOF content. 

On the other hand, the ideal selectivities slightly decreased in MMMs (except the one 

containing ion-exchanged sod-ZMOF) compared to the pure polymer membrane. 

This data could also be explained by the Maxwell model, which assumes that there 

will be no improvement in selectivity when the gas permeability of the dispersed 

particle is much larger than that of the polymer matrix. Since these selectivity 

decreases were relatively negligible, the membrane could be said to be free of 

interfacial defects, which would have a distinct adverse effect on the selectivity. 

Hence, the results for MMMs also agrees with the SEM images showing no 

significant voids at the polymer/filler interface. The membrane which contains ion-
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exchanged sod-ZMOF exhibited a different behavior from the ones containing as-

synthesized sod-ZMOF. It showed an increase in the selectivity different from the 

others. This may be attributed to the differences in electrostatic interaction of 

different gas molecules with the introduced alkali metal ions (Na
+
). Na

+
 cations 

could be said to have higher affinity to CO2, which has a strong quadrupole moment. 

For a better evaluation, the pure-component CO2 and CH4 gas transport properties of 

sod-ZMOF-loaded MMMs were illustrated on a Robeson plot in Figure 4.9. It can 

also be seen on this figure that the incorporation of sod-ZMOF particles improved 

the separation performance of the membranes by increasing the CO2 permeability 

without any significant loss in selectivity.  

 

Figure 4.9 : Single gas separation performances of pure Matrimid® membranes and 

sod-ZMOF/Matrimid® MMMs shown on the Robeson diagram [44]. 
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5.  CONCLUSIONS 

This study focused on the development of MOF/polymer MMMs with the aim of 

using in natural gas purification applications. Sod-ZMOF crystals were synthesized 

and characterized, then they were incorporated into Matrimid® 5218 matrix. 

Following the morphological and thermal characterization, gas permeation properties 

of membranes were also tested at 35°C temperature and 4000 mbar upstream 

pressure. 

The XRD pattern of the MMM showed that sod-ZMOF maintained its crystallinity 

through and after the mechanical and heating processes in the membrane preparation 

procedure. The SEM images of MMMs showed no apparent voids or defects at the 

filler/polymer interface and that ZMOF particles were dispersed homogenously in 

the polymer matrix. This result indicates that there was a good compatibility between 

the sod-ZMOF crystals and the polymer (Matrimid®) matrix, which could be 

attributed to the partial organic framework of the MOF particles. 

The TGA results of membranes showed that almost all of the residual solvent or 

moisture within the membrane could be evacuated by annealing the membranes at 

200°C for 48 h. In addition, DSC results indicated that there was a slight increase in 

Tg of membranes with incorporation of sod-ZMOF particles into the polymer matrix. 

The gas permeability measurements indicated that incorporation of sod-ZMOF 

particles into the Matrimid® matrix enhanced the permeabilities with almost no loss 

of selectivities. They also provide increase both in the CO2 permeability and 

selectivity with the opportunity of fine tuning through ion exchange  

In conclusion, sod-ZMOF type MOFs are seen as promising performance enhancers 

for polyimide CO2 separation membranes. Further studies for measuring CO2/CH4 

binary gas mixture separation properties are assumed to better clarify the 

performance of these MMMs. Studies will also be performed with MMMs 

containing higher amounts of sod-ZMOF loadings. 
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