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AN INVESTIGATION ON IMC BASED FUZZY PID CONTROLLERS 

SUMMARY 

 

In this study, certain self tuning algorithms and Multi-Region Self Tuning Method 

for Fuzzy IMC PID controllers have been proposed. As basis, recently proposed 

IMC based Fuzzy PID controller tuning technique is investigated. The performance 
of Fuzzy IMC PID controller has been compared with that of classical PID 

controller. For comparison, temperature response curve of reboiler of a reactive 

distillation column was modeled by using graphical method. Then step response 

analysis were conducted for both type of controllers on the model. Following this, 
some different process transfer functions were replaced with reboiler model in order 

to enlarge data field for comparison. Fuzzy IMC PID controller has demonstrated 

better results in general but seemed to need further improvement in controlling high 

order and high delay time processes. So, some self tuning strategies were 
investigated in order to obtain a self tuning algorithm experience for Fuzzy IMC PID 

controllers. As a result, self tuning rules have been prepared and these rules include 

necessary self tuning algorithms and coefficients for controlling various kinds of 

processes, whose time delay and time constant properties vary in a very large range, 
by using Self Tuning Fuzzy IMC PID controller. Simulation results showed that, 

proposed Multi-Region Self Tuning Fuzzy IMC PID controller provided better 

results for all kinds of processes compared to Non-self tuning Fuzzy IMC PID 

controller. Especially for very high time delay processes, Multi-Region Self Tuning 
Fuzzy IMC PID performance was far more successful than that of its non-self tuning 

counterpart.  
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DAHİLİ MODEL KONTROL TEMELLİ BULANIK PID KONTROL 

EDİCİLER ÜZERİNE BİR ARAŞTIRMA 

 

ÖZET 

 

 

Bu çalışmada, Dahili Model Kontrol Temelli Bulanık PID Kontrol Ediciler 

(DMKTBPID) için birtakım öz ayar kuralları ve Çok Bölgeli Öz Ayar Yöntemi 
önerilmiştir. Geliştirme işlemine temel olarak yakın geçmişte Bulanık PID kontrol 

ediciler için önerilmiş olan Dahili Model Kontrol yöntemi incelenmiştir. Bu kontrol 

stratejisinin performansı klasik PID kontrol edici ile kıyaslanmıştır. Kıyaslama için, 

öncelikle bir reaktif distilasyon kolonunun reboylerine ait sıcaklık grafiği 
modellenmiş ve bu model üzerinden basamak cevabı karşılaştırması yapılmıştır. 

Ardından, reboyler modeli birtakım farklı transfer fonksiyonları ile değiştirilerek 

kıyaslama için yeterli veri zenginliğine ulaşılması amaçlanmıştır. Bu çalışmalarda, 

DMKTBPID, klasik PID kontrol ediciye göre daha iyi sonuçlar vermiştir fakat bu 
kontrol edicinin yüksek mertebeli veya yüksek zaman gecikmeli sistemlerin kontrolü 

için birtakım geliştirmelere ihtiyaç duyduğu gözlenmiştir. Bunun için, DMKTBPID 

kontrol ediciler için birtakım öz ayar yöntemleri önerilmiş ve bu yolla bu kontro l 

ediciler için bir öz ayar algoritma tecrübesine erişilmesi amaçlanmıştır. Sonuç olarak 
birtakım öz ayar kuralları oluşturulmuştur ve bu kurallar, Öz Ayarlı DMKTBPID 

kontrol ediciler kullanılarak zaman sabiti ve zaman gecikmesi çok geniş menzillerde 

değişen farklı proseslerin başarıyla kontrol edilebilmesi için gerekli öz ayar 

algoritmaları ve katsayılarını içermektedir. Gerçekleştirilen bir dizi simülasyon 
çalışması sonucunda elde edilen sonuçlara göre, Çok Bölgeli Öz ayarlı DMKTBPID 

kontrol edicinin öz ayarsız klasik DMKTBPID kontrol ediciye göre çok daha iyi 

performans sergilediği sonucuna ulaşılmıştır. Özellikle çok yüksek zaman 

gecikmesine sahip proseslerin kontrolünde Çok Bölgeli Öz Ayarlı DMKTBPID 
kontrol edicinin uzak ara daha başarılı sonuçlar sağladığı gözlenmiştir.    
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1. INTRODUCTION 

Classical P, PI, PD and PID type controllers are most commonly used ones in 

process industries today. Since their design strategies and online tuning methods 

have been developed in great proportions during historical progress, substitution of a 

classical controller in to any control scheme is treated to be the fastest and most 

convenient way of composing a successful control loop [1]. 

During the historical progress of control studies, classical controllers have been 

applied to many control systems and all these applications provided these controllers 

with large number of design techniques and tuning strategies. Thus, classical P, PI, 

PD and PID type controllers have generally been the most trusted solution to control 

any given process scheme.  

On the other hand, it is known that, classical controllers owe their success to 

mathematical equations that are based on generalized relationships between process 

parameters and controller parameters. Thus, their performance is not generally 

appropriate for processes possessing nonlinear properties. On the other hand, high 

order systems and processes with large time delay are also not easy to be controlled 

properly by a classical controller in general [1].  

In general, Fuzzy Logic Controllers show better results for high time delay and/or 

high order processes. One important disadvantage of fuzzy logic controllers against 

classical controller is that it is rather new concept compared to classical PID 

controller. Since the studies on fuzzy logic controllers are not as old as the ones on 

classical controllers, design and tuning strategies that are produced for fuzzy 

controllers are very few compared to classical controller design and tuning methods 

[1]. Recently proposed design strategy for fuzzy PID controllers based on IMC 

technique shows great potential for further improvement [1]. But, while it provides 

enhanced control performance for some sort of processes, it still has certain 

drawbacks for very high time delay processes and some high order processes.  
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In this study, a newly proposed IMC tuned Fuzzy PID controller and classical PID 

controller performances are compared for a variety of processes one of which is the 

process model generated for a real reboiler equipment of a reactive distillation 

column.  

Following the examination of proposed controllers’ performance, a variety of self 

tuning strategies for Fuzzy IMC PID controllers are developed in this study. As a 

result, self tuning algorithms have been prepared and these algorithms include 

necessary self tuning mechanisms that produce new coefficients for controlling 

various kinds of processes, whose time delay and time constant properties vary in a 

very large range, by using Self Tuning Fuzzy IMC PID controller. Several simulation 

studies were conducted and achieved results showed that, proposed Multi Region Self 

Tuning Fuzzy IMC PID controller provided better results for all kinds of processes 

compared to Non-self tuning Fuzzy IMC PID controller. Self tuning Fuzzy IMC PID 

performance was far more successful than that of its non-self tuning counterpart 

especially for very high time delay processes.  

In this study; Chapter 2, gives brief information about conventional and reactive 

distillation technologies. 

In Chapter 3, theoretical information about PI, PD, PID controllers, Ziegler Nichols 

tuning method and IMC technique can be found together with an overview of fuzzy 

logic and fuzzy control.  

Chapter 4 involves detailed calculations about modeling studies and controller design 

studies. 

Chapter 5 includes information about proposed self tuning strategies and simulation 

results obtained. 

In Chapter 6, conclusions for the study and suggestions for the future work are 

presented.  
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2. DISTILLATION THEORY 

2.1 Conventional Distillation 

Distillation is based on the fact that the vapor of a boiling mixture will be richer in 

the components that have lower boiling points. Therefore, when this vapor is cooled 

and condensed, the condensate will contain more volatile components. At the same 

time, the original mixture will contain more of the less volatile material. Distillation 

columns are designed to achieve this separation efficiently. Although many people 

have a fair idea what “distillation” means, the important aspects that seem to be 

missed from the manufacturing point of view are that [2]:  

 Distillation is the most common separation technique 

 It consumes enormous amounts of energy, both in terms of cooling and heating 

requirements 

 It can contribute to more than 50% of plant operating costs 

The best way to reduce operating costs of existing units, is to improve their 

efficiency and operation via process optimization and control. To achieve this 

improvement, a thorough understanding of distillation principles and how 

distillation systems are designed is essential. 

One way of classifying distillation column types is to look at how they are operated. 

Thus we have batch and continuous columns [2].  

2.1.1 Types of distillation columns 

a) Batch Columns  

In batch operation, the feed to the column is introduced batch-wise. That is, the 

column is charged with a 'batch' and then the distillation process is carried out. 

When the desired task is achieved, a next batch of feed is introduced. 
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b) Continuous Columns  

In contrast, continuous columns process a continuous feed stream. No interruptions 

occur unless there is a problem with the column or surrounding process units. They 

are capable of handling high throughputs and are the most common of the two types. 

We shall concentrate only on this class of columns. 

Continuous columns can be further classified further as following:  

According to the nature of the feed that they are processing  

 Binary columns - feed contains only two components.  

 Multi-component columns - feed contains more than two components.  

According to the number of product streams they have  

 Two product column – column has two product streams. 

 Multi-product column - column has more than two product streams.  

According to the extra feed exit location when it is used to help with the separation 

 Extractive distillation - where the extra feed appears in the bottom product 

stream  

 Azeotropic distillation - where the extra feed appears at the top product stream 

According to the type of column internals 

 Tray column - where trays of various designs are used to hold up the liquid to 

provide better contact between vapor and liquid, hence better separation 

 Packed column - where instead of trays, 'packing' is used to enhance contact 

between vapor and liquid [2] 

2.1.2  Main components of distillation columns 

Distillation columns are made up of several components, each of which is used either 

to transfer heat energy or enhance material transfer. A typical distillation contains 

several major components [2]:  

 A vertical shell where the separation of liquid components is carried out.  

 Column internals such as trays/plates and/or packing which are used to    

enhance component separations.  
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 A reboiler to provide the necessary vaporization for the distillation process.  

 A condenser to cool and condense the vapor leaving the top of the column.  

 A reflux drum to hold the condensed vapor from the top of the column so that  

liquid (reflux) can be recycled back to the column.  

The vertical shell houses the column internals and together with the condenser and 

reboiler, constitutes a distillation column. A schematic of a typical distillation unit 

with a single feed and two product streams is shown in Figure 2.1 [2]. 

 

 

Figure 2.1: Schematic demonstration of a typical single feed distillation with two  

product streams [2]. 

The liquid mixture that is to be processed is known as the feed and this is 

introduced usually somewhere near the middle of the column to a tray known as the 

feed tray. The feed tray divides the column into a top (enriching or rectification) 

section and a bottom (stripping) section. The feed flows down the column where it 

is collected at the bottom in the reboiler.  Heat is supplied to the reboiler to generate 

vapor. The source of heat input can be any suitable fluid, although in most chemical 

plants this is normally steam. In refineries, the heating source may be the output 

streams of other columns.  The vapor raised in the reboiler is re-introduced into the 

unit at the bottom of the column. The liquid removed from the reboiler is known as 

the bottoms product or simply, bottoms. The vapor moves up the column, and as it  
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exits the top of the unit, it is cooled by a condenser. The condensed liquid is stored in 

a holding vessel known as the reflux drum. Some of this liquid is recycled back to 

the top of the column and this is called the reflux. The condensed liquid that is 

removed from the system is known as the distillate or top product. Thus, there are 

internal flows of vapor and liquid within the column as well as external flows of 

feeds and product streams, into and out of the column [2].  

2.2 Reactive Distillation 

The must of experiencing dramatic and suffering changes in lifestyle for the modern 

society is an inevitable truth which will sharply reduce per capita energy consumption  

in order to achieve a sustainable supply of energy [2]. The end of cheap energy era 

affected chemical industry in great proportions. As results of innovative studies which 

concentrate on decreasing costs and increasing profits, old chemical processes have 

been replaced by the ones that provide heat/energy, time and material savings. 

Economic and environmental conditions have encouraged industry to concentrate on 

technologies based on process “intensification”. This area of study which is subject to 

growing interest is defined as any chemical engineering development that provide the 

producers with chance of needing smaller inventories of chemical materials and 

maintaining higher energy efficiency. Reactive distillation is an excellent example of 

process intensification. It can provide an economically and environmentally attractive 

alternative to conventional multiunit flowsheets in some systems [3].  

In chemical process industries, chemical reaction and purification of the desired 

products by distillation are generally conducted in separate sections. In a number of 

cases, the performance of this so called conventional process structure can be 

enhanced in great amounts by combination of reaction and distillation in a single 

multifunctional process unit. Reactive distillation (RD) is the globally known title 

given to this technology. “Catalytic distillation” could also be used for some cases in 

which heterogeneous catalyst particles are used in column which may improve 

reaction performance [4]. The process diagrams for both the conventional 

configuration and reactive distillation are given in Figure 2.2 [5]. This integration 

phenomenon has some important advantages. It can help chemical equilibrium 

limitations to be broken in some cases. Besides that, higher selectivities can be 

achieved. The heat of reaction can be integrated in order to be used for distillation  



 

 7 

purposes. Auxiliary solvents can be avoided and azeotropic or closely boiling 

mixtures can be more easily separated than in non reactive columns. Increased 

process efficiency and reduction of investment and operational costs are natural 

results achieved by this approach. Some of these advantages are obtained by using 

reaction to improve separation performance; others are obtained by using separation 

to improve features of reaction environment [4]. 

 

Figure 2.2: Processing alternatives for a typical A + B  C + D reaction. a) 

Conventional reactor followed by a separator configuration b) Reactive 
distillation scheme [5] 

Growing technology of reactive distillation which provided cost-effectiveness and 

compactness to the chemical plant, later kept finding great interest for production of 

many other chemicals. Along with esterifications and etherification, other reactions 

such as acetalization, hydrogenation, alkylation and hydration have been explored. 

Some of the objectives of existing and potential applications of reactive distillation 

are to: go beyond equilibrium limitation, maintain high selectivity towards a desired 

product, ensure energy integration, and perform difficult separations [4]. Figure 2.3 

shows a photograph of Eastman methyl acetate reactive distillation column while  
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Figure 2.4 gives detailed demonstration about advantage of simplicity provided by 

reactive distillation. 

Further general information and technical detail about reactive distillation could be 

briefly obtained from Appendix - A. 

 

Figure 2.3: The Eastman methyl acetate reactive distillation column [3] 

 

Figure 2.4: a) Flow diagram for conventional methyl acetate production process b)   

Reactive distillation unit proposed to replace the conventional process [5]. 
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Advantages of reactive distillation come forward in those systems where certain 

chemical and phase equilibrium conditions exist. Because there are many types of 

reactions, there are many types of reactive distillation columns. Therefore, 

examination of the ideal classical situation can be appropriate to easily outline the 

basics. Taking into account the system in which the chemical reaction involves two 

reactants producing two products. The reversible reaction occurs in the liquid phase 

[3]. 

A + B  C + D 

 

The products should be taken away from the reactants by distillation for reactive 

distillation to work properly. This needs the products to be lighter and/or heavier 

than the reactants. In terms of the relative volatilities that belong to the four 

components, an ideal case is when one product is the lightest and the other product 

is the heaviest, with the reactants having the intermediate boiling points [3]. 

αC >αA >αB > αD 

 

Flowsheet of the concerning ideal reactive distillation column is given in Figure 

2.5. In this situation, the lighter reactant A is fed into the lower section of the 

column but not at the very bottom. The heavier reactant B is fed into the upper 

section of the column but not at the very top. The middle of the column is the 

reactive section and contains NRX trays. Figure 2.6 shows a single reactive tray on 

which the net reaction rate of the reversible reaction depends on the forward and 

backward specific reaction rates (kF and kB) and the liquid holdup (or amount of 

catalyst) on the tray (Mn). The vapor flowrates through the reaction section change 

from tray to tray because of the heat of the reaction [3].  
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Figure 2.5: Ideal reactive distillation column [3] 

 

Figure 2.6: One reactive tray in detail [3]        

As component A flows up the column, it reacts with B flowing down. Very light 

product C, which is swiftly removed in the vapor phase from the reaction zone, flows 

up the column. In same manner, very heavy product D is quickly taken away in the 

liquid phase and descends along the column [3]. 

The advantages of reactive distillation can be listed briefly as follows [5]: 
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 Simplifying or removing the separation system equipment can give possibility 

to important capital cost saving. 

 Conversion of reactants can be pushed up to 100%, which will reduce recycle 

costs. 

 Removing one of the products from the reaction mixture or decreasing the 

concentration of one of the reactants can lead to reduction of the rates of side 

reactions and therefore can improve selectivity for the desired products. 

 Catalyst requirement for the same degree of conversion can be reduced. 

 Reactive distillation is particularly advantageous when the reactor product is a 

mixture of species that can form several azeotropes with each other. Reactive 

distillation conditions can allow the azeotropes to be reacted away in a single 

vessel. 

 By-product formation rate can be reduced. 

 If the reaction is exothermic, the heat of reaction can be used to provide the 

heat of vaporization and reduce the reboiler duty. 

 Avoidance of hot spots and runaways may be possible using liquid 

vaporization as thermal fly wheel [5]. 

Against the above-mentioned advantages of reactive distillation, there are several 

constraints and foreseen difficulties [5]: 

 The reactants and products must have suitable volatility to maintain high 

concentrations of reactants and low concentrations of products in the reaction 

zone. 

 If the residence time for the reaction is long, a large column size and large tray 

hold-ups will be needed. In such cases, it may be more economic to use a 

reactor-separator arrangement.  

 It is difficult to design reactive distillation processes for very large flow rates 

since liquid distribution problems may occur in reactive distillation columns. 

 The optimum conditions of temperature and pressure for distillation 

may be very distinct from those for reaction and vice versa [5]. 
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2.3 Reactive Distillation Process Under Investigation 

In this study, vapor phase temperature profile among the reboiler of a reactive 

distillation process is observed. The concerning reactive distillation process produces 

acetate esters from fusel alcohols. Feed stream of the reactive distillation column is 

fusel oil that is composed of 16% water, 17.12% ethyl alcohol, 1.86% n-propyl 

alcohol, 4.04% isobutyl alcohol, 60.99% isoamyl alcohol. This feed stream gives 

esterification reaction with glacial acetic acid. Since esterification reaction is an 

equilibrium reaction, one of the products water and ester compounds should be 

removed from product mixture. In process of producing acetates from fusel oil, 

removal of light esters such as propyl acetate and ethyl acetate together with the water 

coming from feed stream and reaction product stream is determined to be the best 

method [6].  

The column used for this process is composed of 4 packing compartments. All of 

these compartments are 40 cm in length and 8 cm in diameter. Packing sections are 

filled with Rasching rings in order to enhance liquid-vapor contact surface. The feed 

stream is continuously pumped over the second compartment. The water stream 

composed of feed stream water content and reaction product water lefts the column 

by distillate stream together with light esters. Ester content of the distillate stream is 

fed back to system with reflux while water content is easily separated from light ester 

stream as bottom product of a secondary separation process and removed from the 

system [6].   

The temperature of the reboiler of the column increases and decreases according to 

the amount of heating power exerted to the system. As a result of experimental 

studies, Tanrıverdi [6] obtained temperature vs. heat data of the reboiler system. The 

graphical representation of system response is given in Figure 2.7. Tanrıverdi and 

Ġskender [7] studied on the relevant process to analyze the performance of a double 

slope PID controller which introduced different proportional, derivative and integral 

gains for positive and negative step actions [7].  
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Figure 2.7: Temperature profile among the reboiler of the reactive distillation 

column producing acetate esters [6]. 

Ġskender and Tanrıverdi [8] also investigated the performance of a self tuning 

controller on same reboiler system. As a conclusion of their studies, it is particularly 

mentioned that, the temperature at the top of the reactive distillation column should 

be kept between 79 °C and 87 °C. Since the water content of distillate stream seems 

to disappear for temperatures less than 79 °C, the column flow regime is 

interrupted. On the other hand, the column temperature at the top should be kept 

less than 87 °C to prevent bottom product components from passing in to top 

product stream [8]. 

Cebeci [9] also performed a series of studies on the same reactive distillation 

reboiler process and made observations about performance of an IMC Based Dual 

Phase PID controller in controlling reboiler temperature. Dual phase PID controller 

concept introduces determination of two different sets of controller parameters for 

both the vapor and the liquid phases of the reboiler content [9].    

In this study, performance of a new concept that couples Internal Model Control 

(IMC) design method with Fuzzy PID Controller will be investigated. An IMC 

Fuzzy PID Controller will be designed to control the temperature of the vapor phase 

of the concerning reboiler system. Furthermore, some self tuning strategies will be 

introduced into non-self tuning Fuzzy IMC PID controller scheme in order to 

evaluate a generalized set of self-tuning algorithms for Fuzzy IMC PID Controllers 

to be designed in the future. 
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3.  CONTROL THEORY 

3.1 About PID Control 

“PID control” is the method of feedback control that uses the PID controller as the main 

tool. The basic structure of conventional feedback control systems is shown in Figure 

3.1, using a block diagram representation. In this figure, the process is the object to be 

controlled. The purpose of control is to make the process variable y follow the set-point 

value r. To achieve this purpose, the manipulated variable u is changed at the command 

of the controller. As an example of processes, consider a heating tank in which some 

liquid is heated to a desired temperature by burning fuel gas. The process variable y is 

the temperature of the liquid, and the manipulated variable u is the flow of the fuel gas. 

The “disturbance” is any factor, other than the manipulated variable, that influences the 

process variable. PID control is one of the earlier control strategies.  The PID 

controller was first placed on the market in 1939 and has remained the most widely 

used controller in process control until today [10]. Its early implementation was in 

pneumatic devices, followed by vacuum and solid state analog electronics, before 

arriving at today’s digital implementation of microprocessors. It has a simple control 

structure which was understood by plant operators and which they found relatively 

easy to tune. Since many control systems using PID control have proved 

satisfactory, it still has a wide range of applications in industrial control. According 

to a survey for process control systems conducted in 1989, more than 90 % of the 

control loops were of the PID type. PID control has been an active research topic for 

many years; see the monographs. Since many process plants controlled by PID 

controllers have similar dynamics it has been found possible to set satisfactory 

controller parameters from less plant information than a complete mathematical 

model. These techniques came about because of the desire to adjust controller 

parameters in situ with a minimum of effort, and also because of the possible 

difficulty and poor cost benefit of obtaining mathematical models [11]. 
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Figure 3.1: A feedback control loop with PID controller embedded, including 

disturbance and noise variables [11]. 

3.2 Proportional Control  

A proportional controller moves its output proportional to the deviation in the 

controlled variable from set point: 

  

                                                            (3.1) 

 

e = +-(r − c), the sign selected to produce negative feedback. In some controllers, 

proportional gain “Kc” is expressed as a pure number; in others, it is set as 100/P, 

where P is the proportional band in percent. The output bias b of the controller is also 

known as manual reset. The proportional controller is not a good regulator, because 

any change in output to a change in load results in a corresponding change in the 

controlled variable. To minimize the resulting offset, the bias should be set at the best 

estimate of the load and the proportional band set as low as possible. Processes 

requiring a proportional band of more than a few percent will control with 

unacceptable values of offset. Proportional control is most often used for liquid level 

where variations in the controlled variable carry no economic penalty, and where 

other control modes can easily destabilize the loop. It is actually recommended for 

controlling the level in a surge tank when manipulating the flow of feed to a critical 

downstream process. By setting the proportional band just under 100 percent, the 

level is allowed to vary over the full range of the tank capacity as inflow fluctuates, 

thereby minimizing the resulting rate of change of manipulated outflow. This 

technique is called averaging level control [12]. 
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3.3 Proportional-plus-Integral (PI) and Proportional-plus-Derivative (PD) 

Control  

Integral action eliminates the offset described above by moving the controller 

output at a rate proportional to the deviation from set point. Although available 

alone in an integral controller, it is most often combined with proportional action in 

a PI controller [12]: 

 

                                      (3.2) 

 

Above, τI is the integral time constant in minutes; in some controllers, it is 

introduced as integral gain or reset rate 1/τ I in repeats per minute. The last term in 

the equation is the constant of integration, the value the controller output has when 

integration begins. The PI controller is by far the most commonly used controller in 

the process industries [12].  

On the other hand, PD controller couples proportional control with derivative action 

rather than integral action. In controller equation of PD, derivative term replaces 

integral term. Derivative action provides the controller with fast response but on the 

other hand, it can not deal with constant noise, as it gives excess response to high 

frequency set point changes. 

3.4 Proportional - Derivative - Integral (PID) Control   

The derivative mode moves the controller output as a function of the rate-of-change 

of the controlled variable, which adds phase lead to the controller, increasing its 

speed of response. It is normally combined with proportional and integral modes. 

The non-interacting form of the PID controller appears functionally as:  

 

                                             (3.3) 

 

Above, τD is the derivative time constant. Note that derivative action is applied to 

the controlled variable rather than to the deviation, as it should not be applied to the  
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set point; the selection of the sign for the derivative term must be consistent with the 

action of the controller [13].  

In some analog PID controllers, the integral and derivative terms are combined 

serially rather than in parallel as done in the last equation. This results interaction 

between these modes, such that the effective values of the controller parameters differ 

from their set values as follows: 

                                               

                                                (3.4) 

                         (3.5) 

 

                                                (3.6) 

                            

The performance of the interacting controller is almost as good as the non-interacting 

controller on most processes, but the tuning rules differ because of the above 

relationships. With digital PID controllers, the non-interacting version is commonly 

used.  

Noise on the controlled variable is amplified by derivative action, preventing its use 

in controlling flow and liquid level. Derivative action is recommended for control of 

temperature and composition, reducing the integrated error (IE) by a factor of two 

over PI control with no loss in robustness [13]. Figure 3.2 compares typical loop 

responses for P, PI, and PID controllers, along with the uncontrolled case [14] 

 

Figure 3.2: Comparison of typical responses to a step change with P, PI and PID 

controls and with no control situation [14]. 
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3.5 Ziegler – Nichols Method for Tuning PID Controllers 

 First, note whether the required proportional control gain is positive or 

negative. To do so, step the input u up (increased) a little, under manual control, to 

see if the resulting steady state value of the process output has also moved up 

(increased). If so, then the steady-state process gain is positive and the required 

Proportional control gain, Kc, has to be positive as well.  

 Turn the controller to P-only mode, i.e. turn both the Integral and Derivative 

modes off.  

 Turn the controller gain, Kc, up slowly (more positive if Kc was decided to be 

so in step 1, otherwise more negative if Kc was found to be negative in step 1) and 

observe the output response. Note that this requires changing Kc in step increments 

and waiting for a steady state in the output, before another change in Kc is 

implemented.  

 When a value of Kc results in a sustained periodic oscillation in the output (or 

close to it), mark this critical value of Kc as Ku, the ultimate gain. Also, measure the 

period of oscillation, Pu, referred to as the ultimate period.  

 Using the values of the ultimate gain, Ku, and the ultimate period, Pu, Ziegler 

and Nichols prescribes the values given in Table 3.1 for Kc, tI and tD, depending on 

which type of controller is desired [15]. 

Graphical expression of tuning procedure with Ziegler Nichols method is given in 

Figure 3.3. 

 

Figure 3.3: Graphical demonstration for Ziegler Nichols tuning steps [16]. 
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Table 3.1: Ziegler - Nichols Chart for Defining Controller Parameters from System 

Data [15] 

  Kc τI τD 

P 
control Ku/2     

PI 

control Ku/2.2 Pu/1.2   

PID 
control Ku/1.7 Pu/2 Pu/8 

 

3.6 Internal Model Control (IMC) Strategy 

3.6.1 General information about IMC 

Internal Model Control bases on the Internal Model Principle, which states that, 

control can only be achieved if the controller somehow includes some representation 

of the process to be controlled. In fact, perfect control is treated to be possible if and 

only if the perfect model of a process is known in every detail. This situation would 

lead to the perfect control scheme given in Figure 3.4 [17].  

 

Figure 3.4: Open loop control scheme [17]. 

With the technical explanation, if; Gc = 1/ Ğp condition is satisfied, perfect control 

could be achieved.  

However, Ğp process model doesn’t generally match actual process Gp. This situation 

forms the basis for IMC control strategy, which has a potential to achieve perfect 

control. A typical IMC scheme is given in Figure 3.5.  
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Figure 3.5: Typical IMC scheme [17]. 

In the scheme, d(s) is unknown disturbance. Manipulated input U(s) is fed to both 

the process and the model. The process output Y(s) is compared with model output 

and resulting ^d(s) signal is fed back [17]. 

3.6.2  Practical design of IMC 

Given a model of the process, first step is factoring Ğp in to invertible and non-

invertible parts.     

                                          Ğp(s)= Ğp
+(s) * Ğp

-(s)                                                 (3.7) 

The non-invertible part Ğp
- contains terms such as positive zeros or time delays, 

which will lead to instability or realisability problems if inverted.  

Next step is setting Gc = Gp+(s)-1 and GIMC(s)= Gc(s) * Gf(s) where Gf is a filter 

transfer function of appropriate order. 

As Figure 3.5 is modified to Figure 3.6 first, and then simplified to Figure 3.7, 

following equations leads to the appropriate transfer function for PID controller  

[17]. 

                                     GPID(s)= GIMC(s) / (1- GIMC(s)* Ğp(s))                                             (3.8) 

                         GPID(s)=  [Ğp
+(s)-1*Gf(s)] / [1- Ğp

-(s)*Gf(s)]                                (3.9) 
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These equations generally lead to a PID controller transfer function as following, 

where A,B,C and D are constant numerical coefficients: 

     GPID(s) = [ A* S2 + B * S + 1] / [C* S2 + D *S]                                     (3.10)    

This transfer function can be placed into control loop as PID controller block. On the 

other hand, with further mathematical identification of above transfer function, one 

can determine gain (Kc) and proportional, integral, derivative time constants of PID 

controller.  

For instance; for a first order process transfer function and using a first order filter 

transfer function, PID parameters can be calculated according to following relations 

[18]: 

  

                                                                        (3.11)                                        

     

 

  (3.12) 

 

 

 

Figure 3.6: Modified configuration of IMC scheme [17]. 
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Figure 3.7: Simplification of IMC scheme. Process model Ğp terms and Gc 

controller terms are integrated by a single GPID block [17]. 

3.7  Fuzzy Logic and Fuzzy PID Control 

3.7.1  Introduction and what fuzzy logic control is 

Traditionally, computers make rigid “yes” or “no” decisions, by means of decision 

rules based on two valued logic: true /false, yes/no or 1 / 0. An example is an air 

conditioner with thermostat control that recognizes just two states: above the desired 

temperature or below the desired temperature. On the other hand, fuzzy logic allows 

a graduation from “true” to “false”. A fuzzy air conditioner may recognize “warm” 

and “cold” room temperatures. The rules behind this are less precise [19]. For 

example; 

“If the room temperature is warm and slightly increasing, then increase the cooling.”   

Many classes or sets have fuzzy rather than sharp boundaries, and this is the 

mathematical basis of fuzzy logic. The set of “warm” temperature measurements is 

one example of a fuzzy set. 

The core of a fuzzy controller is a collection of “verbal” or “linguistic” rules of the 

“if – then” form. The rules can bring the reasoning used by computers closer to that 

of human beings. 

In the example of the fuzzy air conditioner, the controller works on the basis of a 

temperature measurement. The room temperature is just a number, and more 

information is necessary to decide whether the room is warm. Therefore; the 

designer must incorporate a human’s perception of warm room temperatures. 

Straight forward implementation is to evaluate beforehand all possible temperature 

measurements. For example; on a scale from “0 to 1”, “warm” corresponds to “1” 

and “not warm” corresponds to “0” [19].   
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For a temperature interval from 15 to 27 ºC; 

Measurements (ºC)      15 17 19 21 23 25 27 

                  Grade                        0   0.1   0.3   0.5  0.7  0.9    1 

3.7.2  Fuzzy sets 

Fuzzy logic and fuzzy control begins with the concept of a fuzzy set. A fuzzy set is a 

set without a crisp, clearly defined boundary. It can contain elements with only a 

partial degree of membership.  

To understand what a fuzzy set is, the example about the days of the week and their 

contribution to the set of “weekdays” could be given. 

According to the thinking based on classical sets, one can say that, the days which 

can be called as weekdays are Monday, Tuesday, Wednesday, Thursday and Friday 

while Saturday and Sunday should be named as weekend days. On the other hand, 

getting fuzzy sets as the basis for classifying these days, one can say that, Friday is a 

little more likely to be a weekend day compared to Tuesday or Wednesday. So its 

membership grade to the set of weekend days is some value between 0 and 1 where 

the grades for Saturday and Sunday are 1. Figure 3.8 shows this difference between 

the philosophies of classical sets and fuzzy sets [20].    

 

 

Figure 3.8: Membership grades of the days for the set of “weekend days” according 

to classical set and fuzzy set theories [20]. 

3.7.3  Fuzzy rules and rule bases 

Fuzzy rules are the statements that receive the inputs of the controllers, generate the 

appropriate decision according to them and define the control action to be performed. 

The most common definition of this process could be demonstrated by giving a rule 

base table as an example. A rule base that simply takes the measurement error and  
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the rate of change of error as input and decides for the control action is shown in 

Table 3.2.  The translations for shortcuts could be done as; NB means Negative Big, 

or PS means Positive Small and ZE means Zero and so on for the other ones.   

For example, according to this table; if the error from the set point is very large 

positive and it is still increasing rapidly; the rule base takes it as: error is PB and 

change of error is PB. So, the decision that follows this realization will be PB. In 

other words for example, if the temperature of the reactor is much smaller than the 

desired value and it is still decreasing rapidly, then the heating vapor stream rate 

should be very high.  The fuzzy rules work on if then statements such as the prior 

example.  

If error is NS and change of error is PS then control output is ZE. 

It means that; if the temperature is a little higher than the set point and it is slightly 

decreasing then there is no need to perform any spectacular control action.  

Table 3.2: A rule base table for an error-change of error type fuzzy control strategy 
[21] 

 

3.7.4  Fuzzy membership functions  

A membership function is a curve that defines how each point in the input space is 

mapped to a membership value between 0 and 1. The input space is sometimes 

referred to as the universe of discourse [20]. 

The simplest membership functions are formed using straight lines. Of these, the 

simplest is the triangular membership function. It is simply defined by three points. 

Another common type of membership functions is trapezoidal shape membership 

functions. This type has a flat top that smoothes the membership recognition for the  
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data defined near to the center of the shape. Figure 3.9 shows triangular and 

trapezoidal type membership function curves. 

The work held by membership functions is to classify the input data by partially 

introducing it to the several definitions. For example, there exists a temperature 

interval from 150ºC to 250ºC.  The input signal is received such that, the measured 

temperature is 200ºC. The membership of this temperature value for the set of 

moderate is 1 over 1. On the other hand it also has partial membership in cold and hot 

temperature sets, for example 0.4 (Some value between 0 and 1). 

Another example could be given for set point control cases. For example if the 

temperature of a reactor is desired to be kept constant at 170ºC and the reference 

temperature for the controller is set as 170ºC. During operation, the temperature is 

measured as 175ºC. The error will be +5ºC. This corresponds to positive error. It also 

has some membership values for PB, PM, PS, ZE, NS, NM, NB sets. The 

membership of +5ºC error for PM is 0.8 while its membership for PB is 0.1, for PS 

0.3, for ZE 0.1 while for NS, NM and NB it is 0. This means that controller accepts 

this error as positive medium as a general definition but it also doesn’t ignore its 

contribution to the other relevant neighbor fuzzy sets. On the other hand, for the same 

controller -45ºC error would be accepted as totally NB error and coupled with 1 over 

1 membership grade for that set while its membership for other sets would be defined 

as 0. 

 

Figure 3.9: Triangular and trapezoidal membership function curves [20] 

3.7.5  Fuzzy inference 

Inference mechanism is one of the key steps for the decision making process of a 

fuzzy controller. Inference is the conjunction maintained by the controller between 

input signals and the generated output. An inference mechanism contains membership 

functions and fuzzy rules in order to produce an output by means of manipulating 

inputs that may be more than one. The operation of inference mechanism can be 

divided in to three steps [21]: 
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 Fuzzification 

 Fuzzy processing of the inputs and output generation 

 Defuzzification 

These steps are shown graphically in Figure 3.10. The first step fuzzification involves 

processing of the crisp input values. Crisp input is generally a numerical value that 

can not be defined by linguistic terms. For example; “error=0.3” is a scaled crisp 

input. Fuzzification block receives crisp input and makes it fuzzy according to its 

input membership functions. For example; if input membership functions for input 

“error” being small medium and big as shown in Figure 3.11. 

When the crisp input 0.3 is recognized, the membership grade of this value for  

fuzzy sets “small”, “medium” and “big” are determined by fuzzification block. In 

this example, that are 0.25, 0.5 and 0, respectively. As a result of fuzzification, input 

“0.3” is processed both as a small input and a medium input in appropriate biases.    

 

 

Figure 3.10: Operation of a fuzzy inference mechanism [21] 
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Figure 3.11: Neighboring membership functions 

The second step fuzzy processing involves the use of fuzzy rules that are mentioned 

earlier in this study. The fuzzified inputs are processed according to their membership 

grades defined by fuzzification block. For example; if we consider a rule base that is 

in the following shape; 

Rule 1: If input 1 is small and input 2 is small then output is small large 

Rule 2: If input 1 is small and input 2 is medium then output is small medium 

Rule 3: If input 1 is small and input 2 is big then output is medium 

Rule 4: If input 1 is big and input 2 is big then output is big large  

and so on. 

This rule base will take the membership grades for each classification such as input 1 

is small, input 1 is medium or input 1 is big and will place it in the corresponding 

rule. It will then process all inputs (only two in this example) together with the 

selected “and / activation operation” mechanism which is generally a mathematical 

multiplication operation or the logical minimum operator.  For example, for rule 1; 

the membership of input 1 is 0.25 and the membership of another input is 0.8. 

Inference “and” operation will multiply these grades in order to produce a rule output 

that only defines the action performed by that specific rule. The output of the rule in 

this example according to the minimum operator will be: min (0.25, 0.8)=0.25. This 

rule output is then introduced to the output scaling factor corresponding to the rule. In 

this example, the output membership function for rule 1 is small large. The grade for 

which the output satisfies this membership function is calculated in same manner that 

is used in input fuzzification.  



 

 29 

After the activation mechanism, the next part of the inference comes which is called 

accumulation operation. The accumulation operation involves gathering of all the 

rule outputs that are received from each individual rule. The outputs of all rules are 

processed according to the selected accumulation operator which is generally 

selected as mathematical summation or logical maximum operators. For each of the 

possible output values ranged from 0 to 1, the maximum of the rule output 

membership results are collected. In our example, the satisfaction of small large, 

small medium, medium and big large memberships that correspond to rules 1, 2, 3 

and 4 respectively are defined for the whole output range and the maximum value 

for each point is evaluated. 

The last step defuzzification involves creation of a crisp output from the graphical 

fuzzy output definition that is achieved by accumulation operation. There are 

several methods for defuzzification in literature the most common of which are 

center of gravity, mean of maxima and bisector of area methods. The graphical 

representation of inference mechanism for an example from help page of MATLAB 

software program is given in Figure 3.12.  

3.7.6  Input and output scaling 

Input and output scaling is a very important feature for fuzzy controller mechanism 

since it determines the quality of input feed to the inference mechanism and correct 

reading of the output. Input and output scaling factors of a fuzzy controller could be 

demonstrated as gain blocks placed before and after the inference core of the fuzzy 

controller. Figure 3.13 shows the general placement of the scaling blocks in a 

control scheme that determines the output control signal by means of evaluating 

“error” and “change of error input” signals. 
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Figure 3.12: Graphical representation of a fuzzy inference mechanism [20] 

 

 

Figure 3.13: Placement of scaling factors in fuzzy control scheme: a simple fuzzy 

PID control scheme 

In the control scheme in Figure 3.13, a three term fuzzy controller is used. Three 

term fuzzy controller means for a fuzzy controller to include proportional, derivative 

and integral actions of a conventional controller. For example, a fuzzy PI or fuzzy 

PD controller could also be named as two-term fuzzy controllers. In this scheme, 

“Ke” is proportional error input scaling factor the output of which is e*Ke=E, where 

E is the scaled error input. Kde is change of error scaling factor. Since its output is 

fed to a differential block element, it could easily be recognized as the derivative 

gain such as the one observed in conventional controllers. The integral action of the  
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fuzzy controllers in literature examples are generally placed after the inference 

mechanism. Placing it on to output control signal, the integration of all observed 

control signals can be evaluated. So; “beta” gain factor here is becoming the integral 

gain element the output of which is directly fed to integrator. Finally, “alfa” is the 

regular proportional output scaling factor. Fuzzy controller gain parameters for 

specific control systems are generally determined by means of first defining the 

parameters of a conventional controller which successfully manages the desired 

control action for the same system. Once the parameter of the conventional controller 

is determined, stochastic assignment of fuzzy controller scaling (gain) factors can be 

done by using heuristic tables. 

3.7.7  Literature survey about fuzzy control 

Moreover to the basic information above about Fuzzy Logic Control and Fuzzy PID 

control schemes, further knowledge about fuzzy control theories can be achieved 

from the literature. Since Fuzzy logic control has been one of the recent most popular 

areas in control engineering field, there outstanding numbers of studies conducted on 

improving the performances gained from fuzzy controllers. Some of these studies 

will be mentioned in this part only to provide deeper guidance in to the subject. 

Erenoğlu et. Al. [22] studied on an intelligent hybrid fuzzy PID controller which is 

practically a hybrid combination of a conventional PID and a fuzzy PID controller. 

With selection of appropriate gain factors, hybrid controller achieved improved 

results in transient and steady state responses. 

Woo et al. [23] studied on a Fuzzy controller scheme with self tuning scaling factors. 

Using a function tuner method which tunes derivative and integral gain coefficients 

with two different functions depending on error value, they achieved shorter settling 

time and restrained system behavior with much less oscillations.  

Güzelkaya, Eksin and Yeşil [24] studied on self tuning of Fuzzy PID controller 

coefficients via relative rate observer. Relative rate observer scheme provides control 

loop with the ability of making decision based on two inputs: error and system 

response speed. Working according to second time derivative of the error, relative 

rate observer regulates integral and derivative gain coefficients.  

Karasakal et. al. [25] studied on implementation of relative rate observer based self 

tuning fuzzy PID controller on PLC.    
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Mudi and Pal [26] proposed a robust self tuning scheme for PI and PD type fuzzy 

controllers. Proposed scheme manipulates integral and derivative gain coefficients of 

the controller according to the error value. It is main idea bases on the fact that; in 

transient response, gains should be tuned to speed up the system response and in 

steady state response, gains have to be tuned to provide robustness.  

Li and Tso [27] proposed a mathematical analysis for designing and tuning of Fuzzy 

PID control, in order to achieve a simpler design procedure. 

Duan, Li and Deng [1] proposed an Internal Model Control (IMC) based tuning 

method for definition of appropriate scaling factors for Fuzzy PID controllers. Their 

studies on this scheme provided basis for this study. The method proposed by their 

study will be explained in detail during following parts of this study.  

Furthermore, this study bases on aim of improving the performance of proposed 

scheme proposed in [1] and providing a generalized algorithm for defining most 

appropriate scaling factors of Fuzzy IMC PID controllers implemented on a variety of 

processes.  
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4. MODELING AND CONTROLLER DESIGN 

4.1   Modeling  

On the first step of studies, some calculations has been made in order to find several 

models that will be suitable for the process  response curve of which had been under 

investigation. Concerned process curve was given in Figure 2.7.  

Modeling studies began with generation and testing of a first order model with time 

delay and comparison of responses that belong to the model and the real process. On 

this path, the studies are firstly conducted by taking the vapor phase curve as the 

basis. The time where the system response reached 63% of its largest value is noted. 

The magnitude of the response at this time is also imported from the graph. These 

values are 26.25 minutes and 89.67°C, respectively. After that, these two values are 

substituted in to Equation 4.1 in order to calculate time constant that represents the 

system. In this equation, t is time, s(t) is response, K is ultimate output gain (133.33 

°C), T is time constant and L is the system delay time which was formerly 

determined to be 2 minutes. 

  s(t)= K( 1 – e - ( t- L) /T )                                                       (4.1) 

As the result of calculations, first order time constant of the process has been found 

to be 21.72 minutes. With the given gain (K) of 0.187 °C.minute/ kcal, which was 

previously found in recent studies, the first order transfer function with dead time 

(FOPDT) is created as shown in Equation 4.2.  

                                       P(S) = 0.187 * e-2S / (21.72S + 1)                                    (4.2) 

Step response of FOPDT model is shown with in Figure 4.1. Comparison between 

the model and process responses yield that, first order model doesn’t actually 

represent this system. Its response is by too far from the actual curve. 
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Figure 4.1: Response curves of FOPDT model and process 

After FOPDT model, the next model to be generated and investigated was three term 

second order with dead time process model. The time period to be selected as basis 

for calculating time constant are selected properly in order to represent the system 

curve at its most critical points. In other words, classical 63% of response rule has not 

been used in this particular study. On this way, system response at t=43 minutes is 

imported from graph and it was 90.67°C. These two values are substituted in to 

Equation 4.3.   

                                     s(t) = K*{1-[1+ ((t-L)/T)] * [e-(t-L)/T] }                                (4.3) 

From Equation 4.3, the time constant of second order transfer function is determined 

to be 17.46 minutes. Transfer function of three-term second order model with dead 

time is given in Equation 4.4. 

                         P(S) = 0.187 * e-2S / (17.46S + 1)2                                     (4.4) 

Step response of three term second order model is given with graph in Figure 4.2. 

Figure 4.3 also gives the comparative view of two model curves and process curve. It 

is obvious that, second order model gives better result and represents the system 

curve much more realistic compared to the first order model. 

The third step of modeling studies was creating a four parameter second order model 

for the process and investigating its representation abilities. In order to determine two 

different time constants for the second order transfer function, the times where the 

step response of the process reaches 33% and 67% of its maximum  
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value are noted. The magnitudes of the response at these times are also read from 

the graphic. These are; t1=23 min., t2=85 min., s(t1)=74.67 °C, s(t2)=106.67 °C, 

respectively. These values are substituted in to Equation 4.5 in appropriate order.  

 

 

Figure 4.2: Process curve and three term SOPD model curve 

In Equation 4.5, s(t1) is solved for t1 and s(t2) is for t2. T1 and T2 values that prove 

both equations true are determined to be the time constants of four parameter model. 

Approximate results of the calculations show that time constants of the model could 

be selected as: T1=6 and T2=21.  Transfer function of four parameter second order 

model is given in Equation 4.6. 

           s(t)= K* {1 + [ T2*e-(t-L)/T2  - T1*e-(t-L)/T1 ) / ( T1 – T2 ) ]}                           (4.5) 

                         P(S) = 0.187 * e-2S / [(6S+1)*(21S+1)]                                        (4.6) 

Step response of four parameter model is examined. Its performance is observed to 

be better than FOPDT model but not as successful as three parameter second order 

model. The comparative graphics concerning this model are given in Figure 4.4 and 

Figure 4.5. 

 



 

 36 

 

Figure 4.3: Responses of FOPDT and 3-term SOPDT models vs. system curve 

 

Figure 4.4: Process curve vs. four parameter second order model response 

 

Figure 4.5: Comparative graphic of three different model curves with respect to 

representation success 
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4.2  Controller Design 

The second step of the studies was designing various types of controllers in order to 

compare the performances of some specific alternatives.  

4.2.1  IMC PID controller design 

A PID type classical controller is designed with internal model control technique. 

Design calculations are conducted based on the first order model of the process in 

order to examine the resulting control performances at presence of a modeling error.  

The delay term is approximated according to First Order Pade Approximation and 

the transfer function turned in to the form given in Equation 4.7. 

           P(S) = 0.187 * [(1-S)/(1+S)] / (21.72S + 1)                                                (4.7)   

Filter transfer function is determined to be f(S) and given in Equation 4.8. 

  f(S)=1/ (tfS + 1)                                                               (4.8) 

where tf  is filter time constant equal to 10.86 minutes that is half of process time 

constant. 

By using Equations 4.9 to 4.13, transfer function of PID controller is determined as 

given in Equation 4.14. 

                                               P(S) = P+(S) * P-(S)                                                 (4.9) 

                                                P+(S) = (1-S)/(1+S)                                              (4.10) 

                                            P-(S) = 0.187 / (21.72S + 1)                                     (4.11) 

                                                 C(S) = f(S) / P-(S)                                               (4.12) 

                                       CIMC(S) = C(S) / [1- C(S)*P(S)]                                   (4.13) 

                     CIMC(S) = [21.72 S2 + 22.72S + 1] / [2.03S2 + 2.40S]                   (4.14) 

The simulation of control environment is done by using MATLAB / Simulink 

program. The control loop that is created for this control study is given in Figure 

4.6. The process block is characterized based on three parameter second order model 

of the real process equation of which was given previously in Equation 4.4.  
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0.187/ [17.46S + 1]
Time Delay

2 min.

PID Controller Process

+

-

 

Figure 4.6: Closed loop control scheme with IMC PID controller 

4.2.2  IMC fuzzy PID controller design 

During these study, all non-self regulating and self regulating fuzzy IMC PID 

controllers are designed according to the first order models of relating second order 

processes. So, as it is seen above, “T” time constant values that are used in  controller 

designs and self tuning rule preparation should always be understood as time constant 

of first order models rather than the ones of second order processes. This information 

is also valid for following sections of this study unless any other directive is 

introduced.   

In Table 4.1, various second order transfer function time constants are given together 

with the first order model time constants representing themselves. Detailed 

information about studies conducted to provide these first order models can be 

obtained from Appendix - B. 

Table 4.1:  First order model time constants representing some second order transfer 
function time constants. 

Second order process time 
constant 

       First order model time 
constant 

25 38 

5 8 

2 3 

30 49 

3 5 

10 16 

15 24 

4 7 

17 21 
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Designing Fuzzy PID controllers by internal model control technique is a recently 

proposed idea [1]. According to this, input and output gain scales of Fuzzy 

controller are determined according to various equations major of which is 

composed of process parameters. These equations are given in Equations 4.15 to 

4.20. In these equations; T: first order model time constant, L: delay time, tc: filter 

time constant, K: process gain. In Figure 4.7, Fuzzy PID controller scheme and 

location of concerning scaling gains are shown. 

 

 

Figure 4.7: Fuzzy PID controller scheme [1]. 

  

                                                                Ke = 1                                                    (4.15) 

                                                           Kd = Ke* α                                                  (4.16) 

                              K0 = (A/B) * {1 / [K*Ke*(tc + (L/2))]}                                  (4.17) 

                                                           K1 = K0 * β                                                (4.18) 

                                                         α = min(L/2, T)                                           (4.19) 

                                                         β = max(L/2,T)                                            (4.20) 

IMC Fuzzy PID controller design study for present process is made according to 

these proposed equations [1]. Again, the first order model is used as basis of 

controller design, since it is necessary to make performance comparison between 

fuzzy and classical IMC PID controllers. Related closed loop control scheme is 

given in Figure 4.8.  
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Fuzzy Controller

Rule Base

Ke =1

Kd=1
Derivator

(du/dt)

+

K0=0.451

K1=9.8

Integrator

Process
+

+

 

Ke =1 

α = min(1 , 21.72) = 1 

β= max(1 , 21.72) = 21.72 

Kd = Ke * α = 1 

K0 = 0.451 

K1 = K0 * β = 9.8 

 

Figure 4.8: IMC Fuzzy PID control loop designed according to proposed internal 

model control technique. 

The way to decouple α and β is mainly based on the desired control characteristics. 

As α gets smaller, the system response gets faster but this may end up with increasing 

overshoot. On the other hand, as α gets larger, system response becomes more 

sluggish but this can provide control action with a more certain settling performance 

[1].  

To make a fair comparison between these two decoupling choices, one more 

controller with maximum α and minimum β is also investigated in this section. Figure 

4.9 shows the closed loop created for this alternative controller. 

 



 

 41 

Fuzzy Controller

Rule Base

Ke =1

Kd=21.72
Derivator

(du/dt)

+

-

K0=0.451

0.451

Integrator

Process
+

+

 

 

Ke = 1 

α = max(1 , 21.72) = 21.72 

β = min(1, 21.72) = 1 

Kd = Ke * α = 21.72 

K0 = 0.451 

K1 = K0 * β = 0.451 

Figure 4.9: Closed loop scheme for IMC Fuzzy PID controller with alternatively 

decoupled α – β. 

The controllers that are designed in this study are integrated with same process in 

order to investigate their performances and make proper comparison. The diagram 

that includes all three control schemes is given in Figure 4.10.  

Step response of each system is observed. The proposed IMC Fuzzy PID controller 

and classical IMC PID controller resulted in very similar performances while the 

fuzzy controller with larger α and smaller β maintained larger rise time but smaller 

overshoot and settling time. Step responses and controller efforts concerning all 

three loops are shown in Figure 4.11 and 4.12, respectively. 
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Fuzzy PID Controller

minimum α – maximum β

decoupling 

Fuzzy PID Controller

maximum α – minimum β

decoupling 

Classical PID Controller

Process

0.187 / (17.46S+1) 

Process

0.187 / (17.46S+1) 

Process

0.187 / (17.46S+1) 

Time delay: 2 min.

Time delay: 2 min.

Time delay: 2 min.

-

-

-

 

Figure 4.10: Proposed Fuzzy IMC PID, classical IMC PID, and alternative Fuzzy 
IMC PID controllers integrated with identical processes. 

 

Figure 4.11: Comparative step response graphics of mentioned systems. 

 

Figure 4.12: Effort diagrams of designed controllers (heating power in terms of kW). 
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5. SIMULATION: STRATEGIES FOR SELF TUNING FUZZY IMC PID 

CONTROLLER 

5.1  Searching For Alternative Scaling Factors  

As it is seen in previous section, smaller α and larger β selection makes the system 

response faster but causes some overshoot while larger α and smaller β provides 

more sluggish response but smaller settling time with much less overshoot. Starting 

off from this situation, one may think that it may be possible to find an intermediate 

answer which may include characteristics of both above.  In order to achieve the 

best possible result, a serious of trials all of that concerns to different α-β 

combinations are conducted for the process under investigation. The step responses 

for all the variations that are examined are given in Figures 5.1 to 5.8. 

 

 

Figure 5.1: Step responses for cases alpha=1, 5, 10; beta=21.72 
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Figure 5.2: Step responses for case alpha= 15, 18, 21.72; beta=21.72 

 

 

Figure 5.3: Step responses for cases alpha= 1, 5, 10; beta= 10 

 

 

Figure 5.4: Step responses for cases alpha= 15, 18, 21.72; beta= 10 
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Figure 5.5: Step responses for cases alpha= 1, 5, 10; beta= 1 

 

 

Figure 5.6: Step responses for cases alpha=15, 18, 21.72; beta=1 

 

 

Figure 5.7: Step responses for cases alpha=10; beta=1, 5, 10 
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Figure 5.8: Step responses for cases alpha= 10; beta=15, 18, 21.72 

According to step response graphics, when the alpha (α) is increased gradually and 

beta (β) is kept constant, system response is getting slower at the beginning but it 

shows less overshoot and a better settling. The same alpha values are coupled with 

different beta values in Figures 5.1 to 5.6 and it is observed that, the same behavior is 

kept with slightly increasing overshoot tendency with decreasing beta values. The 

overshoot is witnessed to reach its maximum for alpha = beta = 1.   

On the other hand, when β is increased gradually and α is kept constant, the results 

are observed to be like the ones in Figures 5.7 and 5.8. In the increasing beta cases, 

the constancy of alpha value keeps transient part of the response in unity. For 6 

different beta values, the first response behaviors are very close to each other but after 

the response reaches to the set point for the first time (after rise time) the systems 

with smaller beta values show much larger overshoots.  

It is important here to mention that, while the increments or decreasing of alpha value 

affects the rise time in great proportions and slightly affects the overshoot behavior, 

the changes in beta causes nearly zero effect for rise time though it very strongly 

manipulates overshoot amplitudes.  

To make a proper selection between all these alternatively coupled α – β sets, it is 

important to watch the responses with partial priorities. For the transient part of 

response, the faster rise time is the most important aspect to be satisfied. So the 

configuration with α=1 and β=21.72 seems to be the best choice since it shows the 

smallest rise time among all others.  On the other hand, for the steady state part of the 

response, best settling and smallest overshoot is vital. So the configuration with α=10  
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and β=21.72 that shows best settling performance with no overshoot could be named 

as the best candidate for concerning situation. 

On the other hand, error indexes show that, the configuration with α=5 and β=21.72 

gives the most appropriate results according to ISE and ISTE and ITAE 

calculations. Although α=15, β=10 configuration gives smallest ITAE result, overall 

examination of all three index results mention the success of α=5 - β=21.72 

configuration. Error index results are given in Table 5.1. 

Table 5.1: Error index results for control systems with various α - β combinations. 

Alpha 

(α) 

Beta 

(β) 

ISE 

(10 5̂) 

ISTE 

(10 6̂) 

ITAE 

(10 4̂) 

1,00 21,72 1,423 1,726 9,460 

5,00 21,72 1,418 1,501 8,809 

10,00 21,72 1,496 1,675 10,360 

15,00 21,72 1,595 2,028 12,650 

18,00 21,72 1,684 2,347 13,720 

21,72 21,72 1,822 2,884 15,570 

1,00 10,00 2,208 5,894 28,650 

5,00 10,00 1,942 3,414 17,060 

10,00 10,00 1,900 2,722 14,060 

15,00 10,00 1,918 2,551 6,708 

18,00 10,00 1,961 2,710 9,617 

21,72 10,00 2,048 3,037 8,913 

 

In the previous section, transient and steady state responses of various combinations 

were compared and the most appropriate configurations were chosen. In this section,  
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the configurations with best performances are desired to be combined by a self tuning 

strategy in order to achieve the best possible overall system response. With the other 

words, the transient performance of α=1 – β=21.72 system and steady state 

performance of α=10 or 5 - β=21.72 system is planned to be combined to make 

system response rise fast and also settle well.  

5.2  Double Step Adjustment Of Alpha (α)   

In order to create global rules that will be true for various processes with different 

parameters such as time constant and delay time, the selection of boundaries between 

different control equations and parameters of these equations must be generalized 

based on system parameters.  

In this section, the value of alpha (α) will become partially independent of specific 

functions and totally become dependent only on process parameters. The strategy for 

this section is defined with following rules: 

If                  (error/input)  =  u > 0.37,         then                  α= min (T, L/2)  

Else if                                      u>0.01,         then                  α= 0.5 * max(T,L/2)  

Else                                                               then                  α= max(T,L/2) 

As it is seen from above equations, the limiting error values 0.37 and 0.01 are still 

arbitrary but selection of α values are based on system parameters. While some parts 

of this selection could be treated as global, the boundary values defining function 

ranges and “0.5 of the max” rule can not be accepted global since they could be 

changed independent of system properties. In the following part, two different 

comparative control schemes with two different process parameters will be examined 

to show effectiveness of mentioned control strategy. 

First comparison is conducted for primary process with given transfer function: 

                  P(S)= [0.187 / (17.46S + 1)2 ] * e-2s                                   (from Eq. 4.4) 

Block diagram of whole simulation is given in Figure 5.9. 
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Figure 5.9: Block diagram showing classical Fuzzy IMC PID and double step self 

tuning schemes. 

The step responses are given in Figure 5.10.   

 

Figure 5.10: Step responses of non self tuning and double step self tuning systems. 

Second comparison study is conducted for an alternative process with following 

transfer function: 

                           P(S)= 0.0708/ (120S + 1)2 * e-18S                                                 (5.1) 
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Step responses for this study are given in Figure 5.11. 

 

Figure 5.11: Step responses of two control schemes for alternative process model. 

The performance comparison is made by calculating Integrated Time Weighted 

Square of Error index and results are given in Table 5.2. 

Table 5.2: ITSE error indexes of non-self tuning and self tuning control schemes for 
primary and alternative process models. 

ISTE Scheme 1 non self 

tuning 

Scheme 2 self 

tuning 

Primary process 

model 

1.726 * 106 1.208 * 106 

Alternative process 

model 

8377 6844 

 

As it is obviously seen from step responses and error tables, double step self tuning 

Fuzzy IMC PID controller scheme gives better results compared to its non-self tuning 

type for time constant dominant second order systems. 

On the other hand, these results yet can not be generalized for all kinds of processes 

since characteristic reactions of delay dominant processes or higher or lower order 

process can not be foreseen yet. 
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5.3 Overshoot Ratio Based Self Tuning Fuzzy IMC PID Controller 

The control strategy that will be explained in this section is different from the one 

mentioned in Section 5.2 with its property of being far more independent of 

arbitrary constants and boundary values. 

In this strategy; control action can be divided in to 2 steps: 

On the first step, process to be controlled is connected to non-self regulating 

controller and system is run for once. The step response of this scheme is examined 

and the first overshoot peak value is sampled. This value is divided with input signal 

value and OSR ratio is obtained: 

OSR= overshoot / input 

 

On the second step, OSR ratio is used in order to produce self tuning rules and 

boundaries as follows: 

 

If                  error / input (u) > √OSR       then       α= min (L/2, T) 

Else if                                u   >   (OSR)2   then       α= √OSR * max (L/2,T) 

Else                                                           then    α= max (L/2, T) 

 

 

The idea behind this configuration is to define the boundary value of u at which α 

will be increased from a minimum level to a higher one according to the response of 

non self tuning system. According to this, systems with higher response times and 

larger overshoots will be introduced with an earlier adjustment of α while the 

systems that give smaller overshoot, which corresponds to a faster response, will be 

controlled by a later adjustment of α. In other words, for faster responding systems, 

tuning action will be fired in ranges respectively closer to the set point compared to 

those defined for slower ones.    

Simulation studies are made in order to examine the effectiveness of this strategy. 

Among these, the processes with different time constant values and time delay  
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properties are used to understand the operation limits of the control rules associated 

with this strategy.  

 Simulation 5.1:  P(S) =  [0.187 / (17.46S + 1)2] * e-2S  (Primary process model) 

Step response of non self tuning controller for this process was given in Figure 4.11. 

It is seen from that graph that, OSR for this loop can be calculated as: 

OSR= (118-95) / 95 

OSR=0.242 

√OSR=0.492 

(OSR)2 =0.0586 

 

The step response graphic of proposed self tuning controller is given in Figure 5.12.   
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Figure 5.12: Step response of primary process model with overshoot based double 

step self tuning controller. 

Figure 5.13 shows block diagram of overshoot based double step self regulating 

control scheme for primary process model.   
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Fuzzy Controller

Rule Base

Ke =1

Kd=1
Derivator

(du/dt)

+

-

K0=0.451

0.451

Integrator

0.187 / [17.46S + 1] * e^ -2S
+

+

If u > 0.492

Else If u > 0.0586

Else
division

product

u

Figure 5.13: Double step self tuning scheme for primary process model. 

The comparative results of step tests conducted on various processes are shown in 

Figures 5.14 - 5.23. 

 

 Simulation 5.2:  P(S) = [3 / (2S + 1)2] * e-0.1S 

 

Figure 5.14: Step responses for process in simulation 5.2. 
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 Simulation 5.3:  P(S) = [0.0708 / (120S + 1)2] * e-18S 

 

Figure 5.15: Step responses for process in simulation 5.3. 

 Simulation 5.4:  P(S) = [3 / (5S + 1)2] * e-2S 

 

Figure 5.16: Step responses for process in simulation 5.4. 

 Simulation 5.5:  P(S) = [1 / (25S + 1)2] * e-14S 

 

Figure 5.17: Step responses for process in simulation 5.5. 
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  Simulation 5.6:  P(S) = [1 / (25S + 1)2] * e-19S 

 

Figure 5.18: Step responses for process in simulation 5.6. 

As it could be seen from the graphic results in Figures 5.14 – 5.21, proposed self 

tuning rules are successful for a specific range of process parameters. On the other 

hand, especially the results in Figures 5.22 and 5.23 show that, for some processes 

the proposed strategy shows negative effect on control performance.  

The limiting case, beyond which the proposed OSR based double step self tuning 

control scheme can not perform well is then defined as follows: 

OSR based double step self tuning control scheme performs well and enhances 

control performance if: 

                                        R=[L/(L+T)] < 0.33                                                       (5.2) 

 

 

  Simulation 5.7:  P(S) = [0.4 / (15S + 1)2] * e-14S 

 

Figure 5.19: Step responses for process in simulation 5.7. 
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 Simulation 5.8:  P(S) = [1 / (25S + 1)2] * e-20S 

 

Figure 5.20: Step responses for process in simulation 5.8. 

 Simulation 5.9:  P(S) = [1 / (25S + 1)2] * e-25S 

 

Figure 5.21: Step responses for process in simulation 5.9. 

 Simulation 5.10:  P(S) = [5 / (10S + 1)2] * e-20S 

 

Figure 5.22: Step responses for process in simulation 5.10. 
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 Simulation 5.11:  P(S) = [3 / (5S + 1)2] * e-6S 

 

Figure 5.23: Step responses for process in simulation 5.11. 

Where; L is time delay of process and T is first order model time constant 

representing second order process. (For detail, investigate on Table 4.1.) 

If ratio “R” goes beyond the mentioned boundary 0.33, then the advantage 

introduced by OSR based self tuning controller gets weaker gradually and and as R 

goes beyond 0.5~0.6, self tuning controller begins to show very unacceptable effect 

and corrupts overall system performance as it is seen in Figures 5.22 and 5.23.  

 

 

 

 

 

 

 

 

 



 

 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 59 

 

6. MULTI-REGION SELF TUNING FUZZY IMC PID CONTROLLERS 

6.1 Six Region Self Tuning Fuzzy IMC PID Control Based On “R” Data 

The control strategy proposed in Section 5.3 takes the overshoot data of non-self 

tuning controller as basis and conducts calculations and decision makings according 

to the ratio of overshoot to input value. With its property of being totally 

independent of arbitrary coefficients and boundary values, it could be regarded as a 

kind of improvement over other previous control strategies.  

On the other hand, since this technique requires reading of non-self regulating 

controller data, it is somehow dependent to another control scheme from its very 

foundation. This naturally makes this strategy be regarded as a half-manual / half 

automatic one because it still needs the observation and decision making of control 

operator.  

In order to maintain some more improvement, it will be necessary to make the 

whole procedure independent of any other control scheme operation and resulting 

data. Thus, another strategy will be proposed in this section. This strategy is about 

reading directly the parameters of the process that will be controlled rather than 

overshoot data of non-self regulating control data.  

The basic idea under this technique is reading time constant (T) and delay time (L) 

values associated with relevant process and calculating the characteristic ratio of 

“R=L/(L+T)”. After this step, procedure includes deciding in to which range the 

value of R corresponds to and use specific functions that are already set up for each 

individual range. The important point here is; all of these functions have a common 

property of having “R=L/(L+T)” data as the only independent variable. The 

procedure of this control strategy is more briefly given at the following list.  

 Read process data. 

 Learn about numerical values of T: time constant and L: delay time. 
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 Calculate the ratio R=L/(L+T). 

 Learn the range to which the “R” corresponds. 

 Use matching functions and decision boundaries for self tuning of alpha (α). 

Table 6.1: Scaling ranges and concerning control rules for six region self tuning 
Fuzzy IMC PID control 

 

 

The idea based on which the algorithms of this strategy developed is same with that 

of the previous one that works based on overshoot data. Since “R” value gets bigger 

gradually by dominance of time delay over time constant, it is fair to mention that, as 

the time constant “T” loses its effectiveness over system, “R” gets larger. So, the 

tuning action of alpha (α) should be fired in rather closer ranges to the set point as the 

value of “R” gets larger because it points to another relational phenomenon that  

system time constant becomes less effective over the general behavior and system 

response grows faster. So, tuning alpha in closer ranges to the set point will be more 

reasonable since it will avoid over damping without causing overshoot also. Besides  



 

 61 

that, all this theory is applicable for the opposing cases in which the time constant 

gets more effective and “R” gets smaller.     

The list of ranges and corresponding functions, boundaries together with relating 

control rules are given in Table 6.1. 

For each individual range for R value, numerous simulation studies are made with 

processes having different T, L and R parameters. Comparative graphical step testing 

results of each of these studies are given in Figures 6.1 – 6.18. 

 Simulation 6.1 (Primary Process Model):  P(S) = [0.187 / (17.46S + 1)2 ] * e-2s 

      T=21.72, R=0.0843 

 

Figure 6.1: Step responses for process in simulation 6.1. 

 Simulation 6.2:  P(S) = [3 / (2S + 1)2 ] * e-0.1s 

 T=3, R=0.0323 

 

Figure 6.2: Step responses for process in simulation 6.2. 
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 Simulation 6.3:  P(S) = [0.0708 / (120S + 1)2 ] * e-18s 

         T=180, R=0.091 

 

Figure 6.3: Step responses for process in simulation 6.3. 

 Simulation 6.4:  P(S) = [3 / (5S + 1)2 ] * e-2s 

        T=8, R=0.2 

 

Figure 6.4: Step responses for process in simulation 6.4. 

 Simulation 6.5:  P(S) = [1 / (25S + 1)2 ] * e-14s 

        T=38, R=0.269 

 

Figure 6.5: Step responses for process in simulation 6.5. 
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As it is seen from the graphical results in Figures 6.1 – 6.18; proposed self tuning 

control scheme improves control performance for processes that show overshoot with 

non-self regulating controller and make them approach to ideal step responses. On the 

other hand, it settles down the systems that show continuous oscillatory response.  

Proposed Multi Region Self Tuning Fuzzy IMC PID control scheme introduces 

improvement in control of processes, T - L domination bias of which show variety in 

a wide range.  

 Simulation 6.6:  P(S) = [1 / (25S + 1)2 ] * e-19s 

        T=38, R=0.333 

 

Figure 6.6: Step responses for process in simulation 6.6. 

 Simulation 6.7:  P(S) = [0.4 / (15S + 1)2 ] * e-14s 

         T=24, R=0.368 

 

Figure 6.7: Step responses for process in simulation 6.7. 

The behaviors of processes that are classified in each section vary in very different 

styles from each other. While the processes included by a, b and c sections are well 

controlled by starting from minimum and gradually increasing alpha values as the 

response goes to set point, the processes with higher “R” ratios demanded a 

different strategy. So, for section d, a different strategy is generated which provides  
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very high alpha scale at response zones far from steady state, and diminishes alpha 

sharply as error approaches to zero because section d processes show oscillatory 

response to the controllers with large alpha values around steady state. There are also 

some correction constants in Table 6.1. These are k, t and p. These correction 

constants are introduced in order to provide consistency to the rules in between the 

upper and lower boundaries of sections. Their absence was causing impossibility for 

the rules, which were directly based on “R” ratio, in defining a whole section.     

 

 Simulation 6.8:  P(S) = [1 / (25S + 1)2 ] * e-20s 

         T=38, R=0.345 

 

Figure 6.8: Step responses for process in simulation 6.8. 

 Simulation 6.9:  P(S) = [1 / (25S + 1)2 ] * e-25s 

         T=38, R=0.397 

 

Figure 6.9: Step responses for process in simulation 6.9. 
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 Simulation 6.10:  P(S) = [3 / (30S + 1)2 ] * e-26s 

         T=49.4, R=0.345 

 

Figure 6.10: Step responses for process in simulation 6.10. 

 Simulation 6.11:  P(S) = [5 / (10S + 1)2 ] * e-20s 

         T=16, R=0.556 

 

Figure 6.11: Step responses for process in simulation 6.11. 

 Simulation 6.12:  P(S) = [5 / (10S + 1)2 ] * e-25s 

         T=16, R=0.61 

 

Figure 6.12: Step responses for process in simulation 6.12. 
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 Simulation 6.13:  P(S) = [6 / (15S + 1)2 ] * e-44s 

         T=24, R=0.65 

 

Figure 6.13: Step responses for process in simulation 6.13. 

 Simulation 6.14:  P(S) = [3 / (5S + 1)2 ] * e-7s 

         T=8, R=0.467 

 

Figure 6.14: Step responses for process in simulation 6.14. 

 Simulation 6.15:  P(S) = [3 / (5S + 1)2 ] * e-6s 

           T=8, R=0.429 

 

Figure 6.15: Step responses for process in simulation 6.15. 
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For instance, block diagram concerning to one these comparative analyses is given 

in Figure 6.19. This block diagram is the one set up for Simulation 5.8, results of 

which was given in Figure 5.20.  

The idea behind the rules mentioned in Table 6.1 are derived from numerous 

simulation studies, overall analysis of which gave the opportunity to make some 

generalizations along the whole 0-1 range of “R” ratio. It is important to note that, 

these are empirical rules that are generated according to personal experience gained 

from hundreds of simulation studies. 

 

 Simulation 6.16:  P(S) = [3 / (2S + 1)2 ] * e-6s 

 T=3, R=0.667 

 

Figure 6.16: Step responses for process in simulation 6.16. 

 Simulation 6.17:  P(S) = [3 / (3S + 1)2 ] * e-10s 

 T=5, R=0.667 

 

Figure 6.17: Step responses for process in simulation 6.17. 
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 Simulation 6.18:  P(S) = [5 / (10S + 1)2 ] * e-32s 

         T=16, R=0.667 

 

Figure 6.18: Step responses for process in simulation 6.18. 

 

Fuzzy Controller

Rule Base

Ke =1

Kd=1
Derivator

(du/dt)

+

-

K0=0.0345

K1=1.311

Integrator

1 / [25S + 1] * e^ -20S
+

+

If u > 0.447

Else If u > 0.04

Else
division

product

u

Fuzzy Controller

Rule Base

Ke =1

Kd=10
Derivator

(du/dt)

+

-

K0=0.0345

K1=1.311

Integrator

1 / [25S + 1] * e^ -20S
+

+

 

Figure 6.19: Block diagram concerning to comparative control analysis for process 

block investigated in Simulation 5.8. 
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6.2 Three Hybridized Region Self Tuning Fuzzy IMC PID Control 

The method which was introduced in previous section (Sec. 6.1) provides exact 

control rules and self tuning boundaries for very specific ranges of “R” ratio. On the 

other hand, since the boundaries of six sections that are mentioned briefly on table 

given in Section 6.1 are very unevenly distributed, their simplicity and applicability 

may cause question marks in operators mind.  

So, in order to prevent those effects caused by the strategy mentioned in previous 

section, the next aim of the studies were defined as trying to simplify scaling ranges 

and dividing the whole 0-1 range in to three equal parts. Getting this done, the same 

process models with other sections are used in order to maintain a successful 

comparison between controller performances. As result for the conducted 

simulation studies, another table has been prepared in which 0-1 range for “R” ratio 

is divided in to three equal sections and rules are re generated in order to have 

generalized algorithms for enhanced ranges.  

Procedure for the strategy is almost same with the previous one since the general 

idea behind these two are nearly identical. So, general path that should be followed 

in order to use these self tuning algorithms properly is given below one more time 

in order to maintain familiarity.  

 Read process data. 

 Learn about numerical values of T: time constant and L: delay time. 

 Calculate the ratio R=L/(L+T). 

 Learn the range to which the “R” corresponds. 

 Use matching functions and decision boundaries for self tuning of alpha (α).  

Besides providing a simplified range for “R” range, the studies conducted for this 

part also created solution to another problem associated with the whole history and 

base of this study. As it could easily be seen from the simulation results given in all 

previous parts, as the “R” ratio goes up to higher values, the ability of control 

techniques are becoming inadequate. Because, the increasing “R” means increasing 

effectiveness of time delay “L” over time constant “T”. These kinds of systems are  
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called delay dominant systems and their successful control is much more difficult 

compared to the time dominant systems that introduce relatively small “R” ratios.  

In order to solve the control problem for delay dominant systems, in this part, 

diminishing of integral gain coefficient of fuzzy logic controller is suggested. While 

the simulation results for non-self regulating Fuzzy IMC PID controller on these 

systems show constantly oscillating behavior, the newly proposed method in this 

section maintains reasonable system responses. The simplified sectioning of “R” and 

proposed rules for newly formed sections including the ones for highly delay 

dominant systems (R>0.67) are given in Table 6.2.  

In addition to providing a much simpler sectioning for range of  “R” and suggesting 

solution to controlling highly delay dominant systems, this study also contains fuzzy 

(hybridized) rule base changing property. This property is based on the problem that, 

rule bases are changing very sharply at the section boundaries which are at R=0.33 

and R=0.67. For example; control of a process with R=0.32 is conducted with “case 

x” rules totally, while a process with R=0.34 is controlled by “case y” rules. So in 

order to prevent this unreasonable sharp rule base change, in this section, control 

schemes are redesigned and provided with hybridization devices. Which take 0.23-

0.43 and 0.56-0.76 ranges as hybridization bands around sharp section boundaries and 

control the processes that fall in to these bands with hybridized rules biased between 

two concerning rule bases. For example, a process with R= 0.72 is controlled by a 

hybridized controller that is biased fairly between “case y” and “case z” rules. Such 

that, this kind of a controller for this example process takes 20% of total response 

from controller working according to case y rules and 80% of it from the controller 

working according to case z rules and sums these two. So, according to the place of 

“R” in between two band boundaries 0.56 and 0.76, a hybrid response is created. 

Detailed demonstration of hybridization device and a typical hybrid control scheme 

block diagram are given in Figures 6.20 to 6.22.   
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Table 6.2:  Scaling ranges and concerning control rules for three hybridized region 

self tuning Fuzzy IMC PID control 

 

 

 

Figure 6.20: Hybridization devices designed for bands around rigid 0.33 and 0.67 

section boundaries. 
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Figure 6.21: Decision mechanisms of hybridization devices. When input R is smaller 

than 0.23, than pure result “1” is produced, If input is between 0.23 and 
0.43, than hybridized output is produced. If input R is larger than 0.43, 

than pure 0 output is produced 

 

Figure 6.22: Integration of hybridization device in to control scheme. The main 

output of the device is multiplied by the control action of first 

controller while the secondary controller action is multiplied by output 
subtracted from 1. 

Step testing results of some control study simulations are given in Figures 6.23 to 

6.26. 

 Simulation 6.19: P(S) = [1 / (25S + 1)2 ] * e-14s 

         T=38, R=0.269 

 

Figure 6.23: Comparative step testing results for simulation 6.19. 
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 Simulation 6.20: P(S) = [1 / (25S + 1)2 ] * e-25s 

      T=38, R=0.397 

 

Figure 6.24: Comparative step testing results for simulation 6.20. 

 Simulation 6.21: P(S) = [6 / (15S + 1)2 ] * e-44s 

         T=24, R=0.65 

 

Figure 6.25: Comparative step testing results for simulation 6.21. 

 Simulation 6.22: P(S) = [5 / (3S + 1)2 ] * e-75s 

         T=5, R=0.938 

 

Figure 6.26: Comparative step testing results for simulation 6.22. 

The results that are given in Figures 6.23 to 6.26 are from only few of very numerous 

studies all of which proves that, hybridized self tuning strategy based on given self 

tuning rules and hybridization idea enhances performance of non-self tuning Fuzzy 

IMC PID controller in great proportions.  



 

 74 

According to the Figures 6.23 – 6.26; it could easily be said that, step responses of 

control scheme concerning to recently proposed multi region self tuning strategy is 

much more successful than those of the non-self tuning controller. 

The idea behind the rules in sections x and y are very simple in fact. Although these 

rules may seem very confusing at first sight, all of them refer to reasonable 

explanations.  

First, “case x” rules are designed according to the following idea: When the system 

response is far from steady state, the controller action speed should be kept very fast. 

So value of alpha coefficient should be at minimum in order to prevent sluggish 

response. As the response approaches to steady state gradually, value of alpha is 

increased to an intermediate value and kept there until response gets very close to 

steady state. Finally, when error gets very small and response almost reaches the 

steady state, alpha is increased to its possible maximum. 

Second, “case y” rules are first designed in same way with “case x” rules. However, 

processes that are represented by “section y” did not respond well to this strategy. 

Following studies showed that, “case y” processes needed to be controlled with much 

larger alpha values far from the steady state and alpha should be decreased rapidly as 

system response approaches t o set point. So alpha is first kept at values higher than 

the maximum of range limited by min-max of (L/2,T) by dividing the max(L/2,T) by 

√(1-R). Then the second rule that deals with steady state is defined to produce a much 

smaller alpha value because processes in “section y” (0.67R>0.33) gave very 

oscillatory responses to control attempts with high alpha values near steady state. So, 

the overall rule base for section y is defined according to these concerns. 

On the other hand, the step response of the process given in Figure 6.26 points to a 

much more important issue. The Fuzzy IMC PID controller that is designed according 

to the standard calculations, that are mentioned in Fuzzy IMC PID controller design 

section, performs very poor for the processes with very high “R” ratios. Those 

processes behavior of which is majorly dominated by “time delay L” parameter need 

some special concern in order to be controlled properly. So, as it was mentioned 

before in Table 6.2, calculation of “integral scaling gain K0” according to the 

Equation 4.17 is corrected by replacing “variable L” with “ “L*1.67” and calculating 

K0 according to 67% excess of original time delay L value. This correction maintains 

achieving a rather smaller K0 value which also leads to a smaller K1 gain with β  
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factor held constant. So as a result, diminishing integral scaling gains enforces the 

controller performance for processes with very large time delay. On the other hand, 

same strategy does not work for processes with smaller time delays because those 

systems already show a reasonably damped response. Decreasing integral coefficient 

causes those systems to show over damped responses. 

6.3  Three Region Fuzzy Rule Based Self Tuning Fuzzy IMC PID Control 

In previous few sections, the main purpose of the studies have generally been self 

tuning of alpha scaling factor of Fuzzy IMC PID controllers by empirical rules that 

included specific equations and boundaries. The very first studies concerned on 

adjusting alpha according to value of error that gradually approaches to zero by 

using simple functions. Following studies examined the effectiveness of multi stage 

self tuning strategies. The further ones inspected features of conducting self tuning 

by using only process properties such as time delay, time constant and overshoot 

data. Finally last sections concluded with a simple sectioning of R range and 

providing control actions by concerning simple experimental rules and hybridized 

rule base selections. 

At this stage of the study, the main concern of this section is providing the current 

control strategy with a level further fuzziness. In fact, by being based on a fuzzy 

logic controller that is self tuned by if-then rules according to error value and in 

addition, determining the necessary rules by fuzzy (hybrid) transitions between rule 

bases, current level of control scheme is already contains a few layers of fuzziness. 

Next layer of fuzziness that is thought to be added to these is about fuzzifying if-

then rules that determine the value of alpha.  

Although the rules that were finally mentioned in previous section gave a simple 

overview of process behaviors and provided improvement in control performances 

of Fuzzy IMC PID controller, their boundaries such as “if u>0.63 clause” may go 

under further simplification in order to give possibility to much easier design of 

controllers. 

In fuzzifying the concerning rules and replacing strict rule bases by fuzzy decision 

making mechanisms, there are some important key issues which can be described 

briefly like following: 
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 Take three section partitioning of R range as basis and divide in same manner 

as sections x, y and z. 

 Since all these rules are based on minimum and maximum values of (L/2,T) 

couple, they are process based and change with the process. So calculate the 

concerning minimum and maximum limits and store them for rules base 

design. 

 For each section (x, y, z), create a fuzzy rule base that work on one input and 

one output variable.  

 Each of the fuzzy input and output ranges shall contain five membership 

functions that shall be named as: very small, small, medium, large and very 

large. Five membership functions provide required distinction of minimum 

and maximum values in fuzzy understanding scheme.   

 Input ranges shall be set between 0 and 1 since the minimum and maximum 

values of input u=error/input are 0 and 1 respectively. 

 Output ranges shall be carefully set according to minimum and maximum 

values of alpha that could be inferred by coupling the process data and rules 

given in previous x, y, z section based algorithm.  

 Once all steps mentioned above are satisfied, self tuning mechanisms based on 

strict if-then rules can now be replaced by relational fuzzy logic tuners.  

For each three section, a separate characteristic fuzzy rule base is defined and these 

rule bases are given in following: 

o Section x - Rule Base  

(u=error / input) 

 If u is very large, then alpha is very small. 

 If u is large, then alpha is very small. 

 If u is medium, then alpha is very small. 

 If u is small, then alpha is small. 

 If u is very small, then alpha is very large. 
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These rules can be better understood if one observes the numerical rules that were 

generated for section x in previous section. According to both for section x, when 

the system response is very far from the set point, alpha scaling factor is kept at 

minimum level in order to provide fast response. This manner is kept constant until 

the system response penetrates in to a range close to steady state. When error gets 

small enough, alpha is slightly increased to degree “small” and when response 

reaches set point, output alpha is set to very large immediately in order to provide 

robustness around set point and avoid overshoot. 

 Section y – Rule Base 

 If u is very large, then alpha is very large. 

 If u is large, then alpha is very large. 

 If u is medium, then alpha is very small. 

 If u is small, then alpha is very small. 

 If u is very small, then alpha is very small. 

Taking in to account the behavior of processes that are classified in section y, rule 

base for this section is inevitably different from that for section x. The successful 

control of these processes could be made by setting alpha to high values for large 

error zones and decreasing it immediately as response approaches set point. 

Experimental step response studies showed that, processes of this class returned 

undamped oscillatory behavior for large alpha values near steady state. Minimum 

and maximum boundaries of output membership functions for this section are out of 

boundaries determined by min (L/2,T) – max (L/2,T) range which was the base for 

section x rules.  Detailed understanding of these boundaries can be obtained from the 

rules given in previous part about simple three section self tuning of alpha with a 

hybridization device.    

 Section z – Rule Base 

 If u is very large, then alpha is very small. 

 If u is large, then alpha is very small. 

 If u is medium, then alpha is very small. 

 If u is small, then alpha is very small. 
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 If u is very small, then alpha is very small. 

Rule base for this section is simply based on keeping alpha at its minimum level 

independent of any variable. As a result, output action is kept constant at “very small” 

degree in each case. 

Besides alpha, beta (β) scaling factor, which conducts the relationship between K0 

and K1 gain factors, is also kept at min (L/2, T) value only for this section. In sections 

x and y, beta factor is always set to be equal to max (L/2, T) as default.  

Calculation of K1 gain is also made by taking 67% excess of time delay (L) as basis 

for it was also made the same way for section z in previous three section based study. 

In order to provide familiarity with the studies conducted for this part, the detailed 

structure of fuzzy logic tuners performed by Matlab software program including rule 

bases and membership functions are given in Figures 6.27 – 6.29.  

 

 

Figure 6.27: Matlab window demonstrating membership functions for typical input 

(u=error/system input) variable. 
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Figure 6.28: Matlab window demonstrating membership functions for typical 
output alpha (α) variable. Note that, lower and upper limits of whole 

range is determined by min(L/2, T) and max (L/2, T) parameters of 

process model. 

 

Figure 6.29: Matlab window showing a typical rule base connecting input u with 

output alpha. Note that, this rule base is the specific one prepared 

for section y as name “rulesy” refers to the section name. Rule 
bases for section x and section z surely have different rule 

structures. 
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Integration of a fuzzy tuner in to a typical Fuzzy IMC PID control scheme is also 

given in Figure 6.30. The concerning control scheme is the one designed to control 

the primary process model derived from the reboiler of distillation column which was 

the main interest of studies in very first parts. Figure 6.31 shows comparative 

graphical representation of step responses generated by both the non-self tuning and 

the fuzzy tuned, “R data” based self tuning Fuzzy IMC PID controllers.  

 

 

Figure 6.30: Integration of fuzzy tuner into non-self tuning scheme. Simultaneously 

working non-self tuning and self tuning schemes compared by means of 

ISTE (integrated time weighted square of error) index.   
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Figure 6.31: Comparative graphical representation of step responses generated by 

both the non-self tuning and three region fuzzy rule based self tuning 

Fuzzy IMC PID controllers. 

As it can obviously be inferred from graphics above, fuzzy tuned self tuning fuzzy 

controller strategy improves control performance for primary process model derived 

from the concerning reboiler by minimizing overshoot while also keeping pace high 

at transient zone. This provides the system with a much shorter settling time and 

taking energy input into account which is the case in real systems, proposed scheme 

promises much cheaper operating conditions. 

In following part, some other graphical expressions are given that have the same 

purpose with the previous one. For a variety of processes that have different “R” 

ratios, performance of fuzzy tuned self tuning controller is observed. For each of 

nearly 20 different processes biased equally among whole 0-1 range, self tuning 

strategy proposed in this part showed enhanced performance over its non self tuning 

counterpart. For demonstration, few of those results are given in Figures 6.32 – 6.35. 
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 Simulation 6.23: P(S) = [3 / (2S + 1)2 ] * e-0.1s 

          T=3, R=0.0323 

 

Figure 6.32: Comparative step testing results for simulation 6.23. 

 Simulation 6.24: P(S) = [1 / (25S + 1)2 ] * e-14s 

           T=38, R=0.269 

 

Figure 6.33: Comparative step testing results for simulation 6.24. 

 Simulation 6.25: P(S) = [5 / (10S + 1)2 ] * e-20s 

            T=16, R=0.556 

 

Figure 6.34: Comparative step testing results for simulation 6.25. 
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 Simulation 6.26: P(S) = [5 / (3S + 1)2 ] * e-75s 

                        T=5, R=0.938 

 

 

Figure 6.35: Comparative step testing results for simulation 6.26. 

The results given in last four figures clearly prove the success of proposed control 

strategy. According to graphics in Figures 6.31 and 6.32, three region fuzzy rule 

based self tuning Fuzzy IMC PID controller shows better performance in avoiding 

overshoot for section x processes whose “R” ratios vary between 0 and 0.33.   

According to Figure 6.33, fuzzy self tuning provides the non self tuning controller 

with a better management ability of reducing overshoots and maintaining shorter 

settling time.  

Figure 6.34 barely shows the difference between performances of classical non-self 

tuning “minimum alpha - maximum beta” based Fuzzy IMC PID and proposed self 

tuning Fuzzy IMC PID. The latter introduces necessary damping to the system, while 

the former causes a chaotic oscillatory behavior.  

In Table 6.3, comparative rise time and maximum overshoot ratio results and in 

Table 6.4, comparative settling time and ITSE (integrated time weighted square of 

error) results of both the non-self tuning and proposed Multi-Region Self Tuning 

Fuzzy IMC PID controllers are given for a variety of simulations, whose graphical 

step response results were presented earlier in this chapter .    
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Table 6.3: Comparative rise time and maximum overshoot results of non-self tuning 
and multi-region self tuning Fuzzy IMC PID controllers for various 

processes. 

 

Simulation No. / Process 
TF 

Rise time (unit time period) Maximum peak (OS) 

non-self 
tuning 

multi-reg. sf. 
tun. 

non-self 
tuning 

multi-reg. sf. 
tun. 

6.20  
 [1/(25S+1)

2
]*(e 

-25S
) 

 
78,2 

 
113,0 

 
23,0 % 

 
1,5 % 

6.21   
[6/(15S+1)

2
]*(e 

-44S
) 

 
88,6 

 
95,6 

 
48,0 % 

 
25,0 % 

6.24   
[1/(25S+1)

2
]*(e 

-14S
) 

 
64,0 

 
65,7 

 
19,0 % 

 
9,5 % 

6.25  
 [5/(10S+1)

2
]*(e 

-20S
) 

 
45,1 

 
45,4 

 
40,0 % 

 
19,7 % 

6.26   
[5/(3S+1)

2
]*(e 

- 75S
) 

 
89 

 
148.5 

 
141,5 % 

 
47,6 % 

 

 

Table 6.4: Comparative settling time and ITSE results of non-self tuning and multi-

region self tuning Fuzzy IMC PID controllers for various processes. 

 

Simulation No. / Process 
TF 

Settling time (unit time per.) 
ITSE (integrated time 

weighted square of error) 

non-self 
tuning 

multi-reg. sf. 
tun. 

non-self 
tuning 

multi-reg. sf. 
tun. 

6.20  
 [1/(25S+1)

2
]*(e 

-25S
) 

 
325 

 
234 

 
1514 

 
1251 

6.21   
[6/(15S+1)

2
]*(e 

-44S
) 

 
1934 

 
471 

 
39670 

 
3091 

6.24   
[1/(25S+1)

2
]*(e 

-14S
) 

 
256 

 
184 

 
784 

 
680 

6.25  
 [5/(10S+1)

2
]*(e 

-20S
) 

 
337 

 
269 

 
1126 

 
681 

6.26   
[5/(3S+1)

2
]*(e 

-75S
) 

 
no settling 

 
860 

 
9,8 * 10

5 
 

1,2 * 10
4
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7. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK  

 

In this study; firstly, a number of process models were examined in order to 

investigate their representation performance for the concerning reboiler process 

reaction curve. Models are generated by using the collected graphical data in 

specific equations that differ for each kind of model structure. According to 

comparative results given in related section, it was obvious that 3 term second order 

plus dead time process model was the best option to define the reboiler reaction 

curve among all alternatives. After modeling studies were completed, next step was 

to design a classical IMC PID controller and a Fuzzy IMC PID controller for any 

given process. Reboiler process transfer function and controller design calculations 

made for this process were demonstrated as primary model example. Performances 

of classical and Fuzzy IMC PID controllers were then compared for the primary 

reboiler process model and also for a few different processes with varying transfer 

functions. Results have demonstrated the advantage of Fuzzy IMC PID controller 

over the classical controllers for certain cases. On the other hand, Fuzzy IMC PID 

controllers exhibited certain drawbacks for highly delay dominant processes.  

Next, numerous self tuning strategies were developed for Fuzzy IMC PID 

controller. The object of developing these strategies was to provide Fuzzy IMC PID 

controller with a variety of algorithms and rules for controlling all kinds of 

processes whose time constant and time delay parameters vary in a very large range. 

On the way going to the resulting rules, first step was examining the necessary self 

tuning behavior for Fuzzy IMC PID controller to control the primary reboiler 

process properly with small rise time and minimum overshoot. The next step was to 

question if the obtained self tuning strategies were general enough to be applied for 

any given arbitrary process model. This leaded the path of the study in to some 

series of comparative simulation studies.  
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The process transfer functions were classified according to the relation between their 

time constant and delay parameter (R=L/(L+T))  and for all class of processes, 

different rule bases were developed since each class of process needed different 

approach in order to obtain a system response with small rise time and minimum 

overshoot. Details were presented accordingly in relevant chapter. The first self 

tuning rule base table has been obtained by partitioning above mentioned 

controllability time constant R in to six portions. Later, we have done some 

simplification on partitioning which led to a new table including only three simple 

and equal portions which means 0.33 for each in partitioning of 0-1 range. After that, 

rules in each three sections were replaced with fuzzy “if – then” rules in order to 

soften the transient zone behaviors along rule boundaries and also along partitioned 

portion boundaries. 

Without exception, the final results showed that proposed multi region self tuning 

rules improved step response performance of Fuzzy IMC PID controller by providing 

it with the proper self tuning strategies for each kind of process behavior. According 

to graphical results and error index performance criteria calculations, self tuning 

Fuzzy IMC PID controller maintained almost zero overshoot responses for processes 

with small controllability time constant and provided remarkably improved responses 

even for processes with very large controllability time constant while non-self tuning 

Fuzzy IMC PID controller showed chaotic oscillatory response in control of those 

latter kinds of processes. 

As a final conclusion, it can be clearly stated that, Multi Region Self Tuning  Fuzzy 

IMC PID Controller strategies and rule bases that are proposed in this study, 

enhanced the control ability of Fuzzy IMC PID controllers in great proportions for a 

variety of processes, whose time constant and time delay parameters vary along a 

wide range. 

For future work, the first step should be the examination of regulatory responses of 

concerning control loops. Since all simulations conducted in this study deal with 

servo (step) response performances, detailed investigation is still needed for 

disturbance effects and responses. Besides that, control simulations for highly non-

linear processes have to be conducted in order to amplify the ranges of the concerning 

self tuning strategies and rule bases. 
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APPENDIX – A 

 

Further Information and Technical Detail About Reactive Distillation 

The development of the chemical industry over the last two centuries has provided 

modern civilization with a whole host of products that improve the well-being of the 

human race. The result has been a better quality of life, longer life expectancy, more 
leisure time, rapid transportation to anywhere in the world (and outer space), 

healthier food, more comfortable homes, better clothing and so forth [2]. 

A major factor in this development has been inexpensive energy and inexpensive 

raw materials. Coal was the major energy source in the 19th century. Petroleum and 

natural gas were the major sources in the 20th century. Crude oil offers definite 

advantages over coal in terms of ease of production and transportation from its 
origins to the points of consumption. Natural gas also has an inherent advantage 

over coal because of the hydrogen to carbon ratio. Natural gas is mostly methane 

(CH4) with an H/C ratio of 4, but coal’s H/C ratio is approximately 1. This means 

that coal produces much more carbon dioxide when these fuels are burned. 
Therefore, as an energy source, coal contributes more to greenhouse gases and 

global warming problems. In addition, coal contains sulfur compounds that require 

expensive stack-gas cleanup facilities [2].  

However, the era of inexpensive energy is definitely over because of the rapid 

growth in demand in developing countries and the increasing difficulty and expense 

of finding and producing new supplies. It is clear that, our modern society must 
undergo dramatic and perhaps painful changes in lifestyle that will sharply reduce 

per capita energy consumption in order to achieve a sustainable supply of energy 

[2]. 

The end of the era of cheap energy has had a major impact in the chemical industry. 

Significant modifications of the processes to produce chemicals have been made to 

reduce energy consumption. New and innovative processing methods have been  

developed and commercialized. Extensive use of heat integration has cut energy 

consumption in some processes by factors of 2 or 3 [2]. 

Economic and environmental considerations have encouraged industry to focus on 

technologies based on process “intensification”. This is an area of growing interest 
that is defined as any chemical engineering development that leads to smaller 

inventories of chemical materials and higher energy efficiency. Reactive distillation 

is an excellent example of process intensification. It can provide an economically 

and environmentally attractive alternative to conventional multiunit flowsheets in 
some systems [2]. 
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In the chemical process industries, chemical reaction and purification of the desired 
products by distillation are usually carried out sequentially. In many cases, the 

performance of this classic chemical process structure can be significantly improved 

by integration of reaction and distillation in a single multifunctional process unit. This 

integration concept is called “reactive distillation” (RD); when heterogeneous 
catalysts are applied the term “catalytic distillation” is often used [3]. The process 

diagrams for both the conventional configuration and reactive distillation are given in 

Figure A.1 [4]. 

 

Figure A.1:  Processing alternatives for a typical A + B  C + D reaction. a) 

Conventional reactor followed by a separator configuration b) Reactive 

distillation scheme [4] 

As advantages of this integration, chemical equilibrium limitations can be overcome, 

higher selectivities can be achieved, the heat of reaction can be used in situ for 

distillation, auxiliary solvents can be avoided and azeotropic or closely boiling 

mixtures can be more easily separated than in non-RD. Increased process efficiency 
and reduction of investment and operational costs are the direct results of this 

approach. Some of these advantages are realized by using reaction to improve 

separation; others are realized by using separation to improve reaction [3]. 

Due to the interaction of reaction and distillation in one single apparatus, the steady-

state and dynamic operational behavior of RD can be very complex. Therefore, 

suitable process control strategies have to be developed and applied, ensuring optimal 
and safe operation. This is another very important area of current and future research 

and development [3].  

Today, RD is discussed as one part of the broader area of reactive separation, which 

comprises any combination of chemical reaction with separation such as distillation, 

stripping, absorption, extraction, adsorption, crystallization and membrane separation. 

In the next decade, unifying approaches to reactive separators should be developed 
allowing the rigorous selection of the most suitable type of separation to be integrated 

into a chemical reactor [3]. 
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Despite the fact that the basic idea of combining reaction and distillation is old, 
there has been an enormously growing interest in the design and operation of RD 

processes in recent years. Figure A.2 shows the number of journal papers that have 

appeared on the subject during the last 30 years. It is worth noting that the total 

number of publications including the papers in conference proceedings and so on is 
a multiple of the number of publications in scientific journals. In an analogous 

manner, the industrial interest in applying this attractive process technology has 

increased continuously. This is reflected by the steadily growing number of patents 

applied since 1970 [3].  

The first patents date back to the 1920s (Backhaus, 1921, 1922, 1923 a,b). Early 

journal articles are by Keyes (1932), Leyes and Othmer (1945a,b), Schniep, 
Dunning and Lathrop (1945), Berman, Melnychuk & Othmer (1948b) and Berman 

et al. (1948a). The first publications deal mainly with homogeneous self-catalysed 

reactions such as esterifications, trans-esterifications, and hydrolysis. 

Heterogeneous catalysis in RD is a more recent development and was first 
described by Spes (1966)  

[4]. The concept of combining these two important functions for enhancement of 
overall performance is not new to the chemical engineering world. The recovery of 

ammonia in the classic Solvay process for soda ash of the 1860s may be cited as 

probably the first commercial application of RD, as shown in Figure A.3. Many old 

processes have made use of this concept. The production of propylene oxide, 
ethylene dichloride, sodium methoxide and various esters of carboxylic acids are 

some examples of processes in which RD has found a place in some form or the 

other, without attracting attention as a different class of operation. It was not until 

the 1980s, thanks to the enormous demand for MTBE (methyl tert-butyl ether), that 
the process gained separate status as a promising multifunctional reactor and 

separator [2]. Figure A.4 shows reactive distillation schemes for MTBE production 

from methanol and iso-butene and some other processes in which reactive 

distillation can be used [4].  

 

 

Figure A.2: Journal publications on reactive and catalytic distillation over last three 
decades according to the Science Citation Index and patents in these 

fields according to the Deutcshes Patent und Markenamt [3] 
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Figure A.3: Ammonia recovery in Solvay process [3] 

 

      

Figure A.4: a) Production of MTBE from MeOH and isobutene b) Production of 
ethylene glycol by hydration of ethylene oxide c)Cumene production 

from benzene and propene d)Production of propylene oxide from 

propylene chlorohydrin and lime [4] 
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The commercial success of RD for the production of MTBE was immediately 
followed by another remarkable achievement with the Eastman Kodak process that 

condensed the whole chemical plant for methyl acetate in a single RD unit that 

accepts reactants and delivers pure products [3]. The concerning reactive distillation 

unit is given in Figure A.5 and both the conventional process diagram and reactive 
distillation diagram for production of methyl acetate are given in Figure A.6.  

Since this demonstration of its ability to render cost-effectiveness and compactness 
to the chemical plant, RD has been explored as a potentially important process for 

several other chemicals and reactions. Along with esterifications and etherification, 

other reactions such as acetalization, hydrogenation, alkylation and hydration have 

been explored. The objectives of existing and potential applications of RD are to: 
surpass equilibrium limitation, achieve high selectivity towards a desired product, 

achieve energy integration, and perform difficult separations and so on. One or 

more of these benefits are offered by the processes in which RD is used [3]. 

 

 

Figure A.5: The Eastman methyl acetate reactive distillation column [2] 

Nowadays, many research and development activities are under way to introduce 

RD into other chemical processes. But despite the convincing success of RD in 

esterification and etherification applications, it is important to note that RD is not 
always advantageous. In some cases, it is not even feasible. Therefore, the 

development of reliable tools for the conceptual design of RD processes is one of 

the most important fields of current research activities [3].  
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Figure A.6: a) Flow diagram for conventional methyl acetate production process b) 
Reactive distillation unit proposed to replace the conventional process 

[4]. 

 

Reactive distillation is attractive in those systems where certain chemical and phase 
equilibrium conditions exist. Because there are many types of reactions, there are 

many types of reactive distillation columns. Examination of the ideal classical 

situation can be appropriate to easily outline the basics.  

Consider the system in which the chemical reaction involves two reactants producing 

two products. The reaction takes place in the liquid phase and is revers ible [2]. 

A + B  C + D 

 

For reactive distillation to work, we should be able to remove the products from the 

reactants by distillation. This implies that the products should be lighter and/or 

heavier than the reactants. In terms of the relative volatilities of the four components, 

an ideal case is when one product is the lightest and the other product is the heaviest, 
with the reactants being the intermediate boiling components [2]. 

αC >αA >αB > αD 

 

Flowsheet of the concerning ideal reactive distillation column is given in Figure A.7. 

In this situation, the lighter reactant A is fed into the lower section of the column but 

not at the very bottom. The heavier reactant B is fed into the upper section of the 
column but not at the very top. The middle of the column is the reactive section and 

contains NRX trays. Figure A.8 shows a single reactive tray on which the net reaction 

rate of the reversible  
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reaction depends on the forward and backward specific reaction rates (kF and kB) 
and the liquid holdup (or amount of catalyst) on the tray (Mn). The vapor flowrates 

through the reaction section change from tray to tray because of the heat of the 

reaction [2].  

 

 

Figure A.7: Ideal reactive distillation column [2] 

 

 

 

Figure A.8: One reactive tray in detail [2]        
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As component A flows up the column, it reacts with descending B. Very light product 

C is quickly removed in the vapor phase from the reaction zone and flows up the 
column. Likewise, very heavy product D is quickly removed in the liquid phase and 

flows down the column [2]. 

The section of the column above where the fresh feed of B is introduced (the 

rectifying section with NR trays) separates light product C from all of the heavier 

components, so a distillate is produced that is fairly pure product C. The section of 

the column below where the fresh feed of A is introduced (the stripping section with 
NS trays) separates heavy product D from all of the lighter components, so a bottom is 

produced that is fairly pure product D. The reflux flowrate and the reboiler heat input 

can be manipulated to maintain these products purities. Figure A.9 gives typical 

composition profiles for this ideal case. The specific numerical case has 30 total trays, 
consisting of 10 stripping trays, 10 reactive trays and 10 rectifying trays. Trays are 

numbered from the bottom. Note that the concentrations of the reactants A and B 

peak at their respective feed trays 11 and 20, respectively. The purities of the two 

products are both 95 mol%, with B the major impurity in the bottoms and A the major 
impurity in the distillate [2].  

 

 

Figure A.9 Base case composition profiles (95% purities) [2] 

 

The benefits of RD can be summarized as follows [4]: 

(a) Simplification or elimination of the separation system can lead to significant 

capital savings. 

(b) Improved conversion of reactant approaching 100%. This increase in conversion 

gives a benefit in reduced recycle costs. 
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(c) Improved selectivity. Removing one of the products from the reaction mixture 
or maintaining a low concentration of one of the reagents can lead to reduction of 

the rates of side reactions and hence improved selectivity for the desired products. 

(d) Significantly reduced catalyst requirement for the same degree of conversion. 

(e) Avoidance of azeotropes. RD is particularly advantageous when the reactor 
product is a mixture of species that can form several azeotropes with each other. RD 

conditions can allow the azeotropes to be reacted away in a single vessel. 

(f) Reduced by-product formation. 

(g) Heat integration benefits. If the reaction is exothermic, the heat of reaction can 
be used to provide the heat of vaporization and reduce the reboiler duty. 

(h) Avoidance of hot spots and runaways using liquid vaporization as thermal fly 
wheel [4]. 

 

Against the above-mentioned advantages of RD, there are several constraints and 

foreseen difficulties [3]: 

(a) Volatility constraints. The reagents and products must have suitable volatility to 

maintain high concentrations of reactants and low concentrations of products in the 
reaction zone. 

(b) Residence time requirement. If the residence time for the reaction is long, a large 
column size and large tray hold-ups will be needed and it may be more economic to 

use a reactor-separator arrangement.  

(c) Scale up to large flows. It is difficult to design RD processes for very large flow 

rates because of liquid distribution problems in packed RD columns. 

(d) Process conditions mismatch. In some processes the optimum conditions of 

temperature and pressure for distillation may be far from optimal for reaction and 

vice versa [4]. 

 

The design and operation issues for RD systems are considerably more complex 

than those involved for either conventional reactors or conventional distillation 

columns. The introduction of an in situ separation function within the reaction zone 

leads to complex interactions between vapor - liquid equilibrium, vapor - liquid 
mass transfer, intra-catalyst diffusion (for heterogeneously catalyzed processes) and 

chemical kinetics. Successful commercialization of RD technology requires careful 

attention to the modeling aspects, including column dynamics, even at the 

conceptual design stage. Many of the reactor and distillation paradigms do not 
translate easily to RD. The potential advantages of RD could be nullified by 

improper choice of feed stage, reflux, amount of catalyst, boil up rate, etc. Thus, it is 

possible to decrease conversion by increasing the amount of catalyst under certain 

circumstances. Increased separation capability could decrease process performance 
[4]. 

One of the most important design parameters for reactive distillation is column 
pressure. Pressure effects are much more pronounced in reactive distillation than in 

conventional distillation. In normal distillation, the column pressure is selected so 

that the separation is made easier by means of higher relative volatilities. In most  
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systems this corresponds to low pressure. However, low pressure implies a low reflux 
drum temperature and low-temperature coolant. The typical column pressure is set to 

give a reflux-drum temperature high enough (49°C, 120°F) to be able to use 

inexpensive cooling water in the condenser and not require the use of much more 

expensive refrigeration [2]. 

In reactive distillation, the temperatures in the column affect both the phase 

equilibrium and chemical kinetics. A low temperature that gives high relative 
volatilities may give small specific reaction rates that would require very large liquid 

holdups or amounts of catalyst to achieve the required conversion. In contrast, a high 

temperature may give a very small chemical equilibrium constant for exothermic 

reversible reactions, which makes it more difficult to drive the reaction to produce 
products. High temperatures may also promote undesirable side reactions. Thus, 

selecting the optimum pressure in a reactive distillation column is very important [2].  

Another design aspect of reactive distillation that is different from conventional is 

tray holdup. Holdup has no effect on the steady-state design of a conventional 

column. It certainly affects dynamics but not steady-state design. Column diameter is 

determined from maximum vapor loading correlations after vapor rates that achieve 
the desired separation have been determined. Typical design specifications are the 

concentration of the heavy key component in the distillate and the concentration of 

the light key component in the bottoms. However, holdup is very important in 

reactive distillation because reaction rates directly depend on holdup or the amount of 
catalyst on each tray. This means that the holdup must be known before the column 

can be designed and before the column diameter is known. As a result, the design 

procedure for reactive distillation is iterative. A tray holdup is assumed an the column 

is designed to achieve the desired conversion and product purities. The diameter of 
the column is calculated from maximum vapor loading correlations. Then the 

required height of liquid on the reactive trays to give the assumed tray holdup is 

calculated. Liquid heights greater than 10-15 cm (4-6 in.) are undesirable because of 

hydraulic pressure drop limitations. Thus, if the calculated liquid height is too large, a 
new and smaller tray holdup is assumed and the design calculations repeated. An 

alternative, which may be more expensive in terms of capital cost, is to make the 

column diameter larger than that required by vapor loading [2]. 
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APPENDIX – B 

Studies for Providing First Order Models Representing Second Order 

Processes  

 

Table 4.1 (for recall): First order model time constants representing some second 
order transfer function time constants. 

       Second order process time constant            First order model time constant 

                         25,0                           38,0 

                         5,0                           8,0 

                         2,0                           3,0 

                         30,0                           49,4 

                         3,0                           5,0 

                         10,0                           16,0 

                         15,0                           24,0 

                         4,0                           7,0 

                         17.5                           21.7 

 

Graphical results that demonstrate the success of first order models in representing 

second order processes are given below together with Simulink Block Diagrams 

made up for each different investigation.  
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Figure B.1: Block scheme and graphical results for model search B.1. 

 

 

 

 

Figure B.2: Block scheme and graphical results for model search B.2. 
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Figure B.3: Block scheme and graphical results for model search B.3. 

 

 

 

 

 

Figure B.4: Block scheme and graphical results for model search B.4. 
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Figure B.5: Block scheme and graphical results for model search B.5. 

 

 

 

 

Figure B.6: Block scheme and graphical results for model search B.6. 
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Figure B.7: Block scheme and graphical results for model search B.7. 

 

 

 

 

Figure B.8: Block scheme and graphical results for model search B.8. 
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APPENDIX – C  

MATLAB – SIMULINK Studies 

 Comparative Simulation Schemes & Calculation of ISTE Error Indexes 

 

Figure C.1 shows the subsystem constructed to calculate integrated time weighted 
square of error (ISTE) indexes of control schemes that are subject to comparison 

during this study.  

 

 

Figure C.1: Block scheme of subsystem made up for calculating integrated time 

weighted square of error (ISTE) indexes. 

 

This SIMIULINK subsystem receives error data from process control scheme, 
squares it, biases it with time value and integrates the result in order to obtain an 

integrated time weighted square of error data. 

With the help of proposed subsystem, during this study, comparison calculations 

have been made with high precision and spending little time and effort. 

Following block diagrams in Figure C.2 and Figure C.3 show some examples of 

comparison studies, results of which were used to examine performances of 
proposed control schemes during whole study. 
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Figure C.2: This scheme is used for comparison of non self tuning Fuzzy PID 
controller designed for primary reboiler process and its self tuning 

counterpart. On the rightmost of the scheme, error index calculation 

subsystems are shown with their numerical displays. The bottom of the 

scheme contains Fuzzy self tuning system which tunes the alpha 
coefficient of second control scheme. 
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Figure C.3: This scheme is used for comparison study between again a non self 

tuning Fuzzy IMC PID controller and a self tuning Fuzzy IMC PID 
controller designed according to the proposed methods in this study. 

The difference of this self tuning controller is the different self tuning 

subsystem that it relies on. As it seen on the bottom part of the control 
scheme, the self tuning device set is not a fuzzy block. It is rather a 

complex if then action subsystem which has strict decision 

boundaries. Detailed information about these strategies are given 

relevant chapters. 
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 Self Tuning Mechanisms 

 

 Non-fuzzy (Strict Rules) Self Tuning Mechanism 

 

 

Figure C.4: Non-fuzzy self tuning device set; calculating u=error/input ratio and 
making appropriate decisions according to changing value of “u” ratio.  

 

In following, insight of action subsystems for if, else if and else cases are given. 

 

 

Figure C.5: Insight of action subsystems for if, else if and else cases. 
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 Fuzzy Self Tuning Mechanism 

 

 

 

 

Figure C.6: Fuzzy self tuning device set; calculating u=error/input ratio and firing 

appropriate rules according to changing value of “u” ratio. In following, 
several rule bases, according to which these fuzzy tuners work, are 

given schematically.  

 

 

 

 

 

Figure C.7: Rule base editor window for “section x” control systems. 
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Figure C.8: Rule base editor window for “section y” control systems. 

 

 

Figure C.9: Rule base editor window for “section z” control systems. 
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 Fuzzy Inference System for Fuzzy Controller Used in Entire Study 

 

 Fuzzy Inference System 

 

 

Figure C.10:  Fuzzy Inference System editor window for fuzzy controller used in 

entire study.  

 

 Fuzzy Rule Base 

 

 

Figure C.11: Rule base editor window for fuzzy controller used in entire study. 

(nl:negative large, nm:negative medium, ns:negative small, zr: 
approximately zero, ps:positive small, pm:positive medium, 

pl:positive large) 
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 Fuzzy Membership Functions 

 

 

Figure C.12: Membership function editor window for fuzzy controller used in entire 
study.  

 

The graphical expressions above are snapshots taken from simulation studies 

conducted using “Fuzzy Logic Toolbox of MATLAB Software Program”. Mentioned 
membership functions and fuzzy rule base structure were used unchanged as 

standardized parameters during entire study. 
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