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INVESTIGATION OF RESIDUAL STRAINS ON ARTERIAL WALL BY 
OPTICAL METHODS 

SUMMARY 

Cardiovascular diseases are one of the most important threat to human life in 
civilized world. Therefore nowadays researchers are mainly concentrated on 
investigating healthy and pathological cases of cardiovascular system. While a part 
of reasearch proceed on biological and medical studies, simultaneously another part 
proceeds on the ever-growing mathematics, mechanics and information technologies. 
Developing and investigating mechanical and mathematical formulations entreating 
vasculature, became easier with the help of progression on computational and 
experimental systems.  

The aim of this study to focus on residual strains which is agreed to be one of the 
main indicator of growth in arterial wall, which is a biological tissue, and compare 
and evaluate experimental result obtained by advanced optical measurement systems 
to the result of theoretical assumptions 

In the scope of this study initially the basic anatomical and histological information 
about arteries is given. 

This section is followed by the section on the mechanics of arterial wall. Kinematics 
are introduced and mathematical formulations are given for forward deformation. In 
addition to that reverse deformation formulations are also derived.  

In the next chapter named experimental studies, firstly studies conducted on 
investigation of accuracy of optical correlation systems. Error values of each 
verification test are evaluated. Then, radial cuts are introduced to arterial wall 
segments and strains are measured on exterior surfaces. 

In the last section the implications of the study is evaluated. Ways of developing-
contributing this study in future studies are indicated. 

At the end of the study a significant difference between theoretical and experimental 
results revealed. This results and implications of the study will surely trigger and 
contribute future studies on the subject. 
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DAMAR DUVARINDAKİ ÖN BİRİM ŞEKİL DEĞİŞTİRMELERİN OPTİK 
YÖNTEMLER KULLANILARAK İNCELENMESİ 

ÖZET 

Özellikle gelişmiş toplumlarda kalp ve damar hastalıkları insan hayatını tehdit eden 
en önemli unsurlardan biridir. Bu sebeple günümüzde araştırmacılar dolaşım 
sisteminin sağlıklı ve patalojik vaka durumları üzerine araştırmalarını arttırarak 
sürdürmektedirler. Araştırmaların bir kısmı biyoloji ve tıp disiplinleri konularında 
ilerlerken aynı zamanda matematik, mekanik ve bilgi teknolojileri alanlarında da 
çalışmalar devamlı gelişme göstermektedir. Hesaplama ve ölçüm imkanlarının çok 
hızlı gelişmesiyle beraber dolaşım sistemini konu alan matematik ve mekanik 
denklemlerin oluşturulması ve incelenmesi kolaylaşmıştır.  

Bu çalışmanın amacı, damarın kendini yeniden modellemesi ve gelişim sürecinin bir 
göstergesi olduğu belirtilen ön birim şekil değiştirmelerin üzerinde durularak 
literatürde bulunan teorik ön birim şekil değiştirme kabulünün doğrudan gelişmiş 
optik ölçümler ile ortaya çıkan sonuçlar karşılaştırılması ve sonuçların 
değerlendirilmesidir. 

Çalışma kapsamında öncelikle damar duvarının anatomik yapısı hakkında temel 
bilgiler verilmiştir.  

Bu bölümü damar duvar mekaniğinin incelenmesi bölümü takip etmiştir. Damar 
kinematiğine girilmiş ve ileri yöndeki şekil değiştirmeler için matematik ifadeler 
verilmiştir. Bu ifadelere ek olarak tersine denklemler de elde edilmiştir.  

Bir sonraki bölüm olan deneysel çalışmalar bölümünde ise öncelikle optik şekil 
değişimi ölçüm sistemlerinin doğrulukları üzerine çalışmalar yapılmıştır. Her bir 
testin hata miktarları değerlendirilmiştir. Damar duvarının ön birim şekil 
değiştirmelerinin ölçülebilmesi için bir deney düzeneği oluşturulmuş ve deneyler 
gerçekleştirilmiştir.  

Son bölümde çalışmanın değerlendirilerek sonuç çıkarımları yapılmış, ilerleyen 
dönemlerde çalışmanın nasıl geliştirilebileceğine dair yorumlara yer verilmiştir. 

Deneyler sonucunda doğrudan ölçüm sonuçlarıyla teorik sonuçlar arasında belirgin 
bir fark ortaya çıkmıştır. Ortaya konular bu fark ve çalışmanın çıktıları gelecekteki 
çalışmaları tetikleyecek ve katkı sağlayacak unsurlar olarak önem taşıyacaktır.  
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1 INTRODUCTION 

Cardiovascular diseases are one of the most important threat to human life in 
civilized world. Therefore nowaday’s researchers are mainly concetrated on 
investigating healty and pathological cases of cardiovascular system. While a part of 
reasearch proceed on biological and medical studies, simultaneously another part of 
research on this subject proceeds on the ever-groving mathematics, mechanics and 
information technologies. Developing and investigating mechanical and 
mathematical formulations became easier with the help of progression on 
computational and measurement systems.  

Residual stresses are the internal stresses supported by a body in an unloaded 
equilibrium configuration. Because residual stresses can significantly affect the 
mechanical behaviour of a component, the measurement of these stresses and the 
prediction of their effect on mechanical behaviour are important objectives in many 
engineering problems. 

The presence of a residual stress field can have a major impact on a body’s effective 
mechanical properties. Residual stress in biological tissues develops through growth, 
and is important to the mechanical function of the tissues [35]. 

The aim of this study to focus on residual strains which is agreed to be one of the 
main indicator of growth in arterial wall and also compare and evaulate experimental 
results obtained by advanced optical measurement systems to the result of theoretical 
assumptions 

It has been known for at least 50 years that when a ring segment is cut from an artery 
and a radial cut is made in the ring, it uncoils like a watch spring. In 1983 Vaishnav 
and Vossoughi and Chuong and Fung noted that this implied the existence of 
circumferential residual strains and therefore stresses, which remained in the vessel 
even when it was free of all external loads and were revealed only when it was cut 
radially [56,57,58]. 

By stepwise removal of the inner or outer layers of the porcine carotid artery by 
matching frozen specimens, Greenwald et al. showed that the true stress-free state 
can only bereached by partial destruction of the vessel wall and that different layers 
of the wall may each have different zero-stress states. It was also found that 
enzymatic digestion of elastin reduces residual strains; whereas removal of collagen 
or destruction of vascular smooth muscle cells had little effect, and it was speculated 
that the relationship between opening angle, position and elastin content might be 
associated with nonhomogeneity in the structure and/or composition of the vessel 
wall [59]. 
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Recently, Stergiopulos et al. have studied the elastic properties of porcine aortic 
media and found a significant difference in the opening angles between the inner and 
outer halves of the media, having separated them by lathing frozen specimens. The 
strains required to reassemble the layers, assuming that each is in a state of zero-
stress, depend not only on the mismatch of the opening angles but also on the 
difference between the arc lengths that are in contact before the layers were separated 
[60]. 

In the scope of this study initially the basic anatomical and histological information 
about arteries is given. 

This section is followed by the section on the mechanics of arterial wall. Kinematics 
are introduced and mathematical formulations are given for forward deformation. In 
addition to that reverse deformation formulations are also derived.  

In the next chapter named experimental studies, firstly studies conducted on 
investigation of accuracy of optical correlation systems. Error values of each 
verification test are evaluated. Then, radial cuts are introduced to arterial wall 
segments and strains are measured ob exterior surfaces. 

In the last section the implications of the study is evaluated. Ways of developing-
contributing this study in future studies are indicated. 
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2 BASIC ARTERIAL ANATOMY AND HISTOLOGY  

2.1 Overview of the Arterial System 

The vasculature consists of a complex system of blood vessels which carry blood to 

and from various organs of the body. This complex system, which compromise 

arteries, arterioles, capillaries, venules and veins, may be classified by their sizes, 

function and proximity to the heart. In addition to histological changes in the arterial 

walls, the arterial blood pressure and speed of flow decrease and become more 

steady as the distance from the heart increases. This decrease correspond to the 

reduction in the number of elastic fibers and the increase in the number of smooth 

muscle cells in the arteries. The graph illustrates the gradual changes in the structure 

of vessels and their biophysical properties [1]. 

 

Figure 2.1 : Graph showing the relationship between the characteristics of blood 
circulation and the structure of the blood vessels. Adopted from [2]. 
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Figure 2.2 : Vessels of the blood circulatory system. Adopted from [3]. 

2.2 Arterial Histology 

Commonly, arteries can be categorized according to two general types: elastic and 

muscular arteries. Elastic arteries tend to be larger- diameter vessels located close to 

the heart (for instance, the aorta, main pulmonary artery, common carotids and 

common iliacs), whereas muscular arteries smaller-diameter vessels located at the 

periphery (for instance, coronaries, cerebrals, femorals and renals). Nonetheless, 

transitional arteries exhibit morphological structures of both types. Approximate 

values for geometries of arteries can be found in Table 2.2 [4]. 

 



  
23

Table 2.1: Percentage composition of the media and adventitia of several arteries at 
in vivo blood pressure. Adapted from [5]. 

 Pulmonary artery Thoracic aorta Plantar artery 
Media    

Smooth muscle 46.4 ± 7.7 33.5 ± 10.4 60.5 ± 6.5 
Ground substance 17.2 ± 8.6 5.6 ± 6.7 26.4 ± 6.4 

Elastin 9.0 ± 3.2 24.3 ± 7.7 1.3 ±1.1 
Collagen 27.4 ± 13.2 36.8 ±10.2 11.9 ± 8.4 

Adventitia    
Collagen 63.0 ± 8.0 77.7 ± 14.1 63.9 ± 9.7 

Ground substance 25.1 ± 8.3 10.6 ± 10.4 24.7 ± 9.3 
Fibroblasts 10.4 ± 6.1 9.4 ± 11.0 11.4 ± 2.6 

Elastin 1.5 ± 1.5 2.4 ± 3.2 0  
(Mean ± S.D.) 

 

Regardless of type, all arterial walls are composed of three distinct layers, the intima 

(tunica intima), the media (tunica media) and the adventitia (tunica externa). The 

proportions of these three layers vary according to the size, location and function of 

the vessel. For example in large arteries number of lamellar layer increases with wall 

thickness and in smaller arteries the relative wall thickness is increased, elastin is less 

prominent in the media. In capillaries only the endothelium remains. Figure 2.2 shows 

vessels of the blood circulatory system which also includes a model of elastic artery. 

Rest of the wall tissue, except layers listed above, consists of approximately 70% of 

water. There are four major components existing in layers: (also see Table 2.1) 

2.2.1 Components of arterial layers 

2.2.1.1 Smooth muscles 

Smooth muscle cells, which are a living component of the walls of all vessels larger 

than capillaries, are arranged helically in layers. Each muscle cell is enclosed by an 

external lamina and by various amounts of other extracellular material, all of which 

these cells produce. under the neural control they actively contract and expand thus 

changing the geometry and elastic modulus of the tissue. Amount of muscles per unit 

volume in the wall increases as we move away from the heart and the small diameter 

arteries which are located close to the arterioles in which the muscles prevail are 

called muscular [3, 6]. 
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2.2.1.2 Collagen fibers 

Collagen are found throughout the wall: in the subendothelial layer, between muscle 

layers, and in the outer layers, is also a protein synthesized by smooth muscle cells 

and it has the appearance of nylon. Collagen fibers which are linked to each other give 

the tissue the required strength and integrity and prevent excess deformation. 

Collagen is inelastic, its modulus increases with increasing strain and is about 10 MPa 

to several hundred MPa [7]. Usually collagen is considered the factor which is 

responsible for the nonlinear elastic behavior of the tissue but the exact mechanisms 

of the Young modulus increase is not fully understood yet [6]. 

The ratio of elastin to collagen decreases as moved away of the heart, which is the 

reason why the arteries which are closer to the heart are called elastic ones in contrary 

to muscular arteries which are remote from the heart [3]. 

2.2.1.3 Elastin 

Elastic material elastin, is a rubber-like protein, provides the flexibility for the 

vascular wall expanded under pressure. Elastin dominates in large arteries where it 

forms parallel lamellae regularly distributed between the muscle layers. Elastin is 

linear elastic with low elastic modulus (of order MPa, see [7]) and can sustain large 

stresses and strains (fibers may be stretched to 2.5 of their initial length) [3,6]. 

2.2.1.4 Ground substance 

Scleroproteins and muscles are embedded in the Ground substance which forms a 

heterogeneous gel-like highly hydrated matrix in the extracellular spaces of the wall. 

It affects permeability and diffusion of substances through the wall. It consists of 

proteoglycans and is viscous, so it is usually considered not to contribute to elastic 

properties of the wall [3,6]. 

2.2.2 Layers 

In the histological structure of the walls one can distinguish three layers called 

tunicae: Intima, media and adventitia. 
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2.2.2.1 Tunica intima 

The intima is the innermost layer of the artery. It consists of thin monolayer of 

endothelial cells lining the arterial wall and underlying a thin basal lamina which is 

composed of a mesh like structure type IV collagen and the adhesion molecules 

fibronectin and laminin. There is also a subendothelial layer whose thickness varies 

with topography, age and disease. In healthy young muscular arteries, however, the 

subendothelial layer is almost nonexistent. In healthy young individuals the intima is 

very thin and makes an insignificant contribution to the solid mechanical properties of 

the arterial wall [4, 8,9]. 

In addition to being a nonthrombogenic layer between the blood and the contents of 

the vascular wall, the endothelium is very active biologically. It is known that 

pathological changes of the intimal components may be associated with 

atherosclerosis, the most common disease of arterial walls. It involves deposition of 

fatty substances, calcium, collagen fibers, cellular waste products and fibrin (a 

clotting material in the blood). The resulting build-up is called atherosclerotic plaque. 

It may be very complex in geometry and biochemical composition. In later stages the 

media is also affected. These pathological changes are associated with significant 

alterations in the mechanical properties of the arterial wall. Hence, the mechanical 

behavior of atherosclerotic arteries are significantly different from healthy arteries 

[6,8]. 

2.2.2.2 Tunica media 

The media is the middle and the thickest layer of the artery and consists of a complex 

three-dimensional network of smooth muscle cells, and elastin and various types of 

collagen fibrils. In general, an artery contains proportionately more elastin the closer 

it is to the heart and more smooth muscle the farther away it is from the heart [9]. 

According to [10] the fenestrated elastic lamina separates the media into a varying 

number of well-defined concentrically fiber-reinforced medial layers. The number of 

elastic lamina decreases toward the periphery (as the size of the vessels decreases) so 

that elastic lamina is hardly present in muscular arteries. 
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Figure 2.3 : Diagrammatic model of the major components of a healthy elastic 
artery: intima, media and adventitia. Adapted from [8]. 

 

The media is separated from the intima and adventitia by the so-called internal elastic 

lamina and external elastic lamina (absent in cerebral blood vessels), respectively. In 

muscular arteries these lamina appear as prominent structures, whereas in elastic 

arteries they are hardly distinguishable from the regular elastic lamina. The 

orientation of and close interconnection between the elastic and collagen fibrils, 

elastic lamina, and smooth muscle cells together constitute a continuous fibrous helix 

[11, 12]. 

The helix has a small pitch so that the fibrils in the media are almost circumferentially 

oriented. This structured arrangement gives the media high strength, flexibility and 

the ability to resist loads in both the longitudinal and circumferential directions. 

Smooth muscle hypertrophy, hyperplasia, apoptosis, and migration play essential 

roles in diseases such as atherosclerosis. Removal of matrix proteins, particularly of 

elastin, similarly plays a key role in aging and the progression of some diseases (e.g., 

abdominal aortic aneurysms) whereas an increased deposition of collagen plays a role 
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in diseases ranging from hypertension to atherosclerosis. From the mechanical 

perspective, the media is the most significant layer in a healthy artery [8,9]. 

2.2.2.3 Tunica adventitia 

The adventitia is the outermost layer of the artery and consists mainly of fibroblasts 

and fibrocytes (cells that produce collagen and elastin), histological ground substance 

and thick bundles of collagen fibrils forming a fibrous tissue. The adventitia, which is 

thought to serve, in part, as a protective sheath that prevents acute overdistension of 

the media, is surrounded continuously by loose connective tissue. The thickness of the 

adventitia depends strongly on the type (elastic or muscular) and the physiological 

function of the blood vessel and its topographical site. For example, in cerebral blood 

vessels there is virtually no adventitia. The wavy collagen fibrils are arranged in 

helical structures and serve to reinforce the wall. Some investigators [13] consider its 

contribution to mechanical properties due to collagen fibres which stiffen and 

reinforce the wall as they straighten which prevents the whole artery from 

overextension and rupture. The elastic modulus of adventitia is commonly considered 

to be lower than that of media and consequently contribution of adventitia to the 

behavior of the wall is less than the middle layer [8,9]. 
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Table 2.2: Arterial system geometry [4] 

Blood vessel 
type 

(Systemic) 
typical number 

Internal diameter 
range 

Length 
Range 

Wall 
thickness 

Aorta 1 1.0–3.0 cm 30–65 cm 2–3 mm 
Pulmonary 
artery 

- 2.5–3.1 cm 6–9 cm 2–3 mm 

Wall morphology (WM): Complete tunica adventitia, external elastic lamina, tunica media, 
internal elastic lamina, tunica intima, subendothelium, endothelium, and vasa vasorum vascular 
supply 

Main branches 32 5 mm–2.25 cm 3.3–6 cm ≈ 2 mm 
Large arteries 288 4.0–5.0 mm 1.4–2.8 cm ≈ 1 mm 
WM: A well-developed tunica adventitia and vasa vasorum, although wall layers are gradually 
thinning 

Medium arteries 1152 2.5–4.0 mm 1.0–2.2 cm ≈ 0.75 mm 
Small arteries 3456 1.0–2.5 mm 0.6–1.7 cm ≈ 0.50 mm 
Tributaries  20736 0.5–1.0 mm 0.3–1.3 cm ≈ 0.25 mm 
WM: Well-developed tunica media and external elastic lamina, but tunica adventitia virtually 
nonexistent 

Small rami 82944 250–500 μm 0.2–0.8 cm ≈ 125 μm 
Terminal 
branches 

497664 100–250 μm 1.0–6.0 mm ≈ 60 μm 

WM: A well-developed endothelium, subendothelium, and internal elastic lamina, plus about two 
to three 15-μm-thick concentric layers forming just a very thin tunica media; no external elastic 
lamina 

Arterioles 18579456 25–100 μm 0.2–3.8 mm ≈ 20–30 μm 
WM: More than one smooth muscle layer (with nerve association in the outermost muscle layer), a 
well-developed internal elastic lamina; gradually thinning in 25- to 50-μm vessels to a single layer 
of smooth muscle tissue, connective tissue, and scant supporting tissue 

Metarterioles 238878720 10–25 μm 0.1–1.8 mm ≈ 5–15 μm 
WM: Well-developed subendothelium; discontinuous contractile muscle elements; one layer of 
connective tissue 

Capillaries 16124431360 3.5–10 μm 0.5–1.1 mm ≈ 0.5–1 μm 
WM: Simple endothelial tubes devoid of smooth muscle tissue; one-cell-layer-thick walls 
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3 ARTERIAL WALL MECHANICS 

3.1 Basic Algebra of Vectors and Tensors 

3.1.1 Direct notation 

 

A vector is a mathematical quantity which possess characteristics of magnitude and 

direction. For this reason, vectors are often represented by arrows, the length of which 

denotes the magnitude [14]. In other words, a vector designated by u, v, w is a 

directed line element in space. It is a model for physical quantities having both 

direction and length, for instance, force, velocity or acceleration. The two vectors that 

have the same direction and length are said to be equal [15]. 

The sum of vectors yields a new vector, based on the parallelogram law of addition. 

The following properties, 

uvvu  , (3.1)

   wvuwvu  , (3.2)

u0u  , (3.3)

0u)(u  , (3.4)

Hold, where “0” denotes the unique zero vector with unspecified direction and zero 

length [15]. 

Besides addition and subtraction, which can be accomplished using the parallelogram 

law with the arrow representation, three “vector operations” of utmost importance are 

the scalar (or, dot) product, 

a u v  where a Cos  u v . (3.5)

The vector (or, cross) product, 
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wvu   where Sin  w u v e  (3.6) 

and the tensor (or, dyadic) product, 

Tvu   (3.7) 

herein,   is the angle between vectors u  and v , ... denotes the magnitude of a 

vector, e  is a unit vector (i.e., 1e ) perpendicular to the plane containing  u  and v , 

T  is a second-order tensor. The magnitude of the vector w  is found by 

 
1

2 w w w , and a unit vector e  in the direction of w  can be found via 
w

w
e  . 

Two vectors, u  and v  are aid to be orthogonal if  u v 0 . 

Collectively these equations above reveal that two vectors can “operate” on one 

another to yield a scalar, a new vector, or a second order tensor. Higher order tensors, 

as, for example, the third order tensor wvu  , can also be obtained [14]. 

Recall that the dot product commutes, that is 

  u v v u  (3.8) 

In contrast, 

uvvu   (3.9) 

and in general, 

uvvu   (3.10) 

Also note that 

    a    w u v w u v w  (3.11) 

    b    w u v w u v v  (3.12) 

which shows, for example, that a “dot product” between a second-order tensor uw   

and a vector v , yields a vector in the direction of w that has a different magnitude. 

Moreover, the “.” operation takes priority over the “ ”; thus the parenthesis can be 
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deleted. The last two equations reveal, therefore, that a second order tensor transforms 

a vector in to a new vector, that  is why tensors are called linear transformations.  

Many of the basic operations for second order tensors, say S and T, are similar to 

those for vectors. For instance, the basic associative and distributive laws for vectors 

are recalled, 

     a a a    u v u v u v  (3.13)

      u v w u w v w  (3.14)

These laws are similar for second order tensors, thus 

     a a a    S v S v S v  (3.15)

and, 

      S T v S v T v  (3.16)

Satisfaction of these two equations ensures that the set of all second order tensors 

form a vector space. Which yields,  

     a b a b     u v w u w v w  (3.17)

Additional operations important for second order tensors include the transpose  T... , 

trace tr(…) and determinant det(…). In particular, 

   uvvu  T  (3.18)

which is to say that the transpose interchanges the order of the vectors that constitute 

the dyad, and  

  vuvu .tr  (3.19)

Which implies that the trace of a tensor yields the scalar product of the vectors 

constituting the dyad. Additionally;  

]det[det TT   (3.20)
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where […] denotes a matrix representation of T. The determinant of a tensor thereby 

yields a scalar, one that equals the determinant of the matrix of components of the 

tensor. Another scalar measure of a second order tensor is its magnitude, given as  

 Ttr TTT .  (3.21) 

A second order tensor, say uw  , can also act on another second order tensor, 

say xv  , to yield a second order tensor, viz.; 

   . . a     w u v x u v w x w x  (3.22) 

or either of two scalars, 

  xuvwxvuw ..:   (3.23) 

or 

       w u v x w x u v  (3.24) 

Note the order of these two operations, each of which is called a double-dot (or scalar) 

product. [14] 

Other important relations involving the transpose are  

  TTT TSTS   (3.25) 

 .
T T T S T T S  (3.26) 

 TT S S , (3.27) 

and likewise for the trace, 

  ( ) ( )tr a b atr btr  S T S T  (3.28) 

  ).(. STTS trtr   (3.29) 
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)()( SS trtr T   (3.30)

and for the determinant, 

)det()det( 3 SS aa   (3.31)

)det()det().det( TSTS   (3.32)

 SS det)det( T  (3.33)

Here, it should be noted that a tensor is said to be symmetric or skew-symmetric if, 

respectively, 

TUU  , TWW  . (3.34)

Every skew-symmetric tensor W  has an associated axial vector w  such that 

vwvW .  for all vectors v  [14]. 

Moreover, every second order tensor T  can be written as the sum of a symmetric 

tensor U  and skew-symmetric tensor W , that is, 

WUT  , where  TTTU 
2

1
,   )(

2

1 TTTW  .    (3.35)

which yields; 

0)( Wtr ,   0)det( W . (3.36)

The square, cube, etc. of a tensor are given by 

2  S S S ,   3 2 S S S  (3.37)

There are two special second order tensors of importance, namely the zero tensor  O  

and the identity tensor  I , where  

 O v o ,    I v v . (3.38)

That is, the zero tensor transforms all vectors in to the zero vectors and the identity 

tensor transforms all vectors into themselves. Likewise, 
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 O S O ,    I S S . (3.39) 

The trace and the determinant of the identity tensor arise often. They are given as 

  3Itr ,     1det I  (3.40) 

The inverse of a tensor (…)-1 is defined by 

 1S S I ,     1S S I . (3.41) 

Important relations for the inverse are 

  1 11
a

a
  S S  (3.42) 

  1 1 1    S T T S  (3.43) 

Moreover, the transpose and determinant of the inverse of a tensor are given by 

    11   TT
SS ,    

S
S

det

1
det 1  . (3.44) 

Note, too, that  T1S  is often denoted by TS . 

Finally, a second order tensor Q  is called orthogonal if 

T T   Q Q Q Q I  (3.45) 

That is, if its inverse equals its transpose. Also, the equations 3-32, 3-33 and 3-40 

reveal that  

  1det Q  (3.46) 

An orthogonal tensor is said to be proper if   1det Q  [14]. 

3.1.2 Index notation 

So far algebra has been presented in symbolic notation exclusively employing bold 

face letters. It represents a very convenient and concise tool to manipulate most of the 

relations used in continuum mechanics. However, particularly in computational 
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mechanics, it is essential to refer vector (and tensor) quantities to a basis. 

Additionally, to gain more insight in some quantities and to carry out mathematical 

operations among tensors more readily it is often helpful to refer to components [15]. 

In order to present coordinate expressions relative to a right-handed and orthonormal 

system, a fixed set of three basis vectors 321 ,, eee , (sometimes introduced as i, j, k) 

called a (Cartesian) basis, with properties is introduced. 

1 2 1 3 2 3 0     e e e e e e ,   1 1 2 2 3 3 1     e e e e e e  (3.47)

These vectors of unit length which are mutually orthogonal form a so-called 

orthonormal system. Then any vector u in the three-dimensional Euclidean space is 

represented uniquely by a linear combination of the basis vectors 321 ,, eee , i.e. 

332211 eeeu uuu   (3.48)

where the three real numbers 321 ,, uuu  are the uniquely determined Cartesian 

components of vector u  along the given directions 321 ,, eee , respectively. 

Using index notation the vector u can be written as 



3

1i
iiu eu  or in an abbreviated 

form by leaving out the summation symbol, simply as 

iiu eu   ,  (sum over i=1,2,3) . (3.49)

 

 

Figure 3.1 : Vector u with its Cartesian components 321 ,, uuu . 

u 
u3 

u1 
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The summation convention says that whenever an index is repeated (only once) in the 

same term, then, a summation over the range of this index is implied unless otherwise 

indicated [15]. 

The index i that is summed over is said to be a dummy index, since a replacement by 

any other symbol does not affect the value of the sum. An index that is not summed 

over in a given term is called a free index. Note that in the same equation an index is 

either dummy or free. Thus, these relations can be written in a more convenient form 

as 

1,   if  i j

0, if  i ji j ij


    
e e  (3.50) 

which defines the Kronecker delta ij . The useful properties are 

3ii ,  jiij uu  ,  ikjkij   . (3.51) 

Taking the basis  ie  and the equations above, the component expression for the dot 

product gives, 

. i i j j i j i j i j ij i iu v u v u v u v     u v e e e e  (3.52) 

1 1 2 2 3 3u v u v u v   u v  (3.53) 

In an analogous manner, the component expression for the square of the length of u, 

is 

2
3

2
2

2
1

2
uuu u  (3.54) 

The cross product of u and v, denoted by vu   produces a new vector. In order to 

express the cross product in terms of components the permutation symbol is 

introduced as, 










index    repeated a is  thereif      0,

k)j,(i, of nspermutatio oddfor      , 1-

k)j,(i, of nspermutatioeven for      ,  1

ijk  (3.55) 
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Consider the right-handed and orthonormal basis ie , then 

321 eee  ,     132 eee  ,     213 eee  , (3.56)

312 eee  ,     123 eee  ,     231 eee   (3.57)

0eeeeee  332211  (3.58)

or in more convenient short-hand notation 

kijkji eee   (3.59)

Then the cross product of u and v yields, 

  kkkjiijkjijijjii wvuvuvu eeeeeevuw    (3.60)

Recall the components of the resultant vector u relative to the coordinate axes. That is, 

332211321 eeeu uuuuuu   (3.61)

This equation also reveals that any vector can be represented in terms of linearly 

independent vectors. Likewise, any-second order tensor can be represented in terms of 

linearly independent dyads, as, for example,  2111 , eeee  … in Cartesian 

components. Hence, for the second-order tensor T we can write 

333323321331

322322221221

311321121111

      

      

eeeeee

eeeeee

eeeeeeT






TTT

TTT

TTT

 (3.62)

where 11T , 12T , etc. are said to be components of T relative to Cartesian axes. The 

equation 3.62 can be written in the more compact Einstein summation convention as 

jiijT eeT   (3.63)
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where the subscripts i and j are both repeated, that is "dummy." Note, too, the nine 

components of T with respect to a Cartesian coordinate system, say mnT , can easily be 

determined, viz., 

( )mn m ij i j nT T   e e e e  (3.64) 

 ( )mn ij m i j nT T  e e e e  (3.65) 

jnmiijmn TT   (3.66) 

wherein the scalar components ijT  are considered before performing the dot products 

(on vectors); the replacement property of the Kronecker delta is thus revealed again. 

Because a second-order tensor has nine components, they can also be written in the 

form of a 3 x 3 matrix as 


















333231

232221

131211

][

TTT

TTT

TTT

Tij T  (3.67) 

A familiar example of matrix representation is the identity tensor I, which has 

components 


















100

010

001

][I  (3.68) 

Relative to Cartesian coordinate axes. Thus, recalling the definition of Kronecker 

delta, we see the Kronecker delta simply represents the components of I relative to 

Cartesian coordinate system. That is, we can write 

jiij eeI   (3.69) 

Cartesian component representations for vectors and tensors reveal that the 

transformation of a vector into another vector via a second-order tensor simply 

involves a scalar product between appropriate bases: 
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     ij i j k k ij k i j kT v T v   e e e e e e  (3.70)

     ij i j k k ij k i jkT v T v   e e e e  (3.71)

   ij i j k k ij k iT v T v  e e e e  (3.72)

   ij i j k k i iT v u  e e e e  (3.73)

Wherein we again used the replacement property of the Kronecker delta and let iu  

represent the term(s) 332211 vTvTvT iii  .  

A special vector called the del operator, which relative to Cartesian coordinates is 

defined by 

i
i x


 e  (3.74)

and by using equation 3.74, , the gradient of a scalar a, 

  i
ii

i x

a
a

x
a ee








  (3.75)

The divergence and gradient of a vector u, that is, 

   j j j i
i j j i j j i j

i i i i i

u u u
u u

x x x x x

    
               

e
u e e e e e e , (3.76)

and 

  j
i j j i j

i i

u
u

x x


    

 
u e e e e  (3.77)

or the divergence tensor T, 

 k ij i j
k

T
x


    


T e e e  (3.78)
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 ij ij
k i j j

k i

T T

x x

 
    

 
T e e e e  (3.79) 

Hence, u  yields a scalar, a  and T.  yield vectors, and u  yields a tensor [14]. 

Another convention arises naturally when one takes a derivative with respect to a 

vector.  

i
i

aa
e

xx 






 (3.80) 

and 

   i i i i i
j i j

j j

u u u  
    

   
e eu

e e e
x x x x

 (3.81) 

Derivatives with respect to a second-order tensor follow a similar convention: 

ji
ijT

aa
ee

T









 (3.82) 

The scalar products between two second-order tensors are 

   nmmnjiij ST eeeeST  ::  (3.83) 

  : ij mn i m j nT S  T S e e e e  (3.84) 

jnimmnij ST ST :  (3.85) 

ijij STST :  (3.86) 

For which an alternative representation is 

   STSTST  TT trtr:  (3.87) 

3.1.3 Coordinate transformations 

It is worthwhile to mention that vectors and tensors themselves remain invariant upon 

a change of basis they are said to be independent of any coordinate system. However, 
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their respective components do depend upon the coordinate system introduced, which 

is arbitrary. The components change their magnitudes by a rotation of the basis 

vectors, but are independent of any translation [15]. 

If the transformation laws for various components of vectors and tensors under a 

change of basis is arranged; 

ii Qee ~    and   i
T

i eQe ~ ,   3,2,1i , (3.88)

where Q denotes the orthogonal tensor, with components ijQ  which are the same in 

either basis. The components describe the orientation of the two sets of basis vectors 

relative to each other. In particular, Q rotates the basis vectors ie  in to ie~ , while TQ  

rotates ie~  back to ie . Using equations 3-63, 3-12 and 3-51 we find that  

i ji jQQe e    and   jiji
T Q eeQ ~~   (3.89)

By comparing the equations above the orthogonality condition of the cosines may be 

extracted, characterized by IQQQQ  TT . Equivalently, expressed in index or 

matrix notation 

jkkijiikij QQQQ  ,        T T       Q Q Q Q I  (3.90)

Where [Q] contains the collection of the components ijQ . It is an orthogonal matrix 

which is referred to as the transformation matrix. Note that [Q]T = [QT]. In order to 

maintain the right-handedness of the basis vectors only rotations of the basis vectors 

has been admitted, consequently 1]det[ Q . 

3.1.4 Vectorial transformation law 

When any vector u resolved along the two sets  ie  and  ie  of basis vectors is 

considered, i.e. 

i iu  u e    in    ie~  (3.91)

i iu  u e    in    ie  (3.92)
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Thus vectorial transformation law for the Cartesian components of the vector u can be 

obtained, i.e. 

  jjijjiii uQQu  eueu .~.~    or (3.93) 

][][]~[ uQu T  (3.94) 

in analogous manner 

i ji ju Q u      or   [ ] [ ][ ]u Q u  (3.95) 

These equations determine the relationship between the components of a vector 

associated with the (old) basis  ie  and the components of the same vector associated 

with another (new) basis ie  [15]. 

3.1.5 Tensorial transformation law 

To determine the transformation laws for the Cartesian components of any second-

order tensor A, its components along the sets  ie  and  ie  of basis vectors are 

described, i.e.  

ij i jA A e e      in    ie  (3.96) 

ij i jA A e e    in    ie  (3.97) 

Combining the equations above with 3-96 and 3-88, then the components ijA , ijA
~

 are 

related via the so-called tensorial transformation law [15]. 

 ( )ij i j ki k mj mA Q Q   e Ae e A e    (3.98) 

 ij ki mj k mA Q Q e Ae  (3.99) 

kmmjkiij AQQA 
~

   or   ]][[][]
~

[ QAQA T  (3.100) 

Transformation ]][[][]
~

[ QAQA T  relates different matrices ]
~

[A  and ][A , which have 

the components of the same tensor A. Similarly, one can derive; 
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kmjmkiij AQQA
~

    or   ]][
~

[][][ QAQA T  (3.101)

3.1.6 Principal values 

The scalars i  characterize eigenvalues (principal values) of a tensor A if there exist 

corresponding nonzero normalized eigenvectors in̂  of A, so that  

iii nnA ˆˆ   ,      (i = 1, 2, 3; no summation)     (3.102)

To identify the eigenvectors of a tensor, subsequently a hat on the vector quantity 

concerned, is used, for example n̂ .  

Thus, a set of homogeneous algebraic equations for the unknown eigenvalues i , i = 

1, 2, 3, and the unknown eigenvectors in̂ , i = 1, 2, 3 is 

  0ˆ  ii nIA   , (i = 1, 2, 3; no summation)    (3.103)

Eigenvalues characterize the physical nature of a tensor. They do not depend on 

coordinates. For a positive definite symmetric tensor A, all eigenvalues i  are (real 

and) positive since, using 3-102, we have 0ˆ.ˆ  iii nAn , i = 1, 2, 3. Moreover, the 

set of eigenvectors of a symmetric tensor A form a mutually orthogonal basis in̂  

[15]. 

3.1.7 Principal scalar invariants  

For the system 3-103 to have solutions 0ˆ in  the determinant of the system must 

vanish. Thus, 

  0det  IA i  (3.104)

where, 

  32
2

1
3det III iiii   IA  (3.105)

This requires that; a cubic equation in  is solved, usually written as 
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032
2

1
3  III iii   (3.106) 

called the characteristic polynomial (or equation) for A, the solutions of which are the 

eigenvalues i , 3,2,1i . 

Here,  AiI  i = 1, 2, 3, are the so-called principal scalar invariants of A. In terms of A 

and its principal values i , i = 1, 2, 3, these are given by 

  3211   AA trAI ii  (3.107) 

    AAAAA det)]()[(
2

1

2

1 122
2

 trtrtrAAAAI ijjijjii  (3.108) 

  3213213 det   AA kjiijk AAAI  (3.109) 

A repeated application of tensor A to equation 3-102 yields iii nnA ˆˆ   , i = 1, 2, 3, 

for any positive integer . Using this relation and 3-106 multiplied by ˆ
in , the well-

known Cayley-Hamilton equation can be obtained; 

0IAAA  32
2

1
3 III  (3.110) 

It states that every (second-order) tensor A satisfies its own characteristic equation 

[15]. 

3.1.8 Further results in tensor calculus 

Because vectors and tensor are defined on linear vector spaces, rules for 

differentiation are similar to those from elementary calculus. For example, if scalar, 

vector and tensor fields – say, Ra  and Vvu, , and LinTS,  - depend only on 

the variable Rt  , then 

 
dt

dv
a

dt

da
a

dt

d
 vv  (3.111) 

 d d d

dt dt dt
    

u v
u v v u  (3.112) 
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 d d d

dt dt dt
    

T v
T v v T  (3.113)

 d d d

dt dt dt
    

T S
T S S T  (3.114)

Similarly, it is useful to record the following identities [14]: 

 ( )     u v u v u v  (3.115)

             S u S u S : u  (3.116)

3.2 Kinematics 

Kinematics is defined as the study of motion. However, motion not only includes the 

current movement of a body, but also how the position of a particle within a particular 

configuration of a body has changed relative to its position in reference configuration. 

Here, a body to be a collection of material particles and configuration of the body to 

be the specification of the positions of each of the particles in the body at a particular 

time t is defined. Motion can be defined, therefore, as a sequence of configurations 

parameterized by time [14]. 

It will prove useful to locate a generic particle in a reference configuration 0 , at time 

t = 0, via a position vector X, and likewise the position of the same particle in a 

current configuration t , at time t, via a position vector x. Although the reference 

configuration is often taken to be a stress-free, undeformed configuration, it doesn’t 

need to be. It is also useful to refer X and x to different coordinate systems (that are 

related by a known translation and rotation): for Cartesian components, we refer X 

and x to the coordinate systems {O; AE } and {o; ie ), respectively. Hence, the position 

vectors have representations AAX EX   and iix ex  , where summation is implied 

over dummy indices A = 1, 2, 3 and i = 1, 2, 3 in E3. Without a loss of generality, 

however, origins O and o coincide as seen in Figure 3.2. The displacement vector u 

for each material particle is thus given by Xxu  . With the exception of a rigid 

body motion, each particle constituting a body can experience a different 

displacement.  
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The position of a material particle, relative to a common origin, is given by X and x 

in these two configurations, respectively. The displacement Xxu   and AE  and 

ie  are orthonormal bases.  

There are four basic approaches to describe the kinematics of a continuum: the 

material, referential, spatial and relative approaches.  

In the material approach, motion is described via the particles themselves and time; 

this approach is not particularly useful in solid mechanics [14]. 

 

 

Figure 3.2 : Reference and deformed configurations of a body [16]. 

The Lagrangian (referential) description is a characterization of the motion with 

respect to the material coordinates ( 321 ,, XXX ) and time t. In material description 

attention is paid to a particle, what happens to the particle as it moves is observed. 

Traditionally, the material description is often referred to as the Lagrangian 

description. Note that at t=0 we have the consistency condition xX   and aA xX  .  

The Eulerian (spatial) description is a characterization of the motion with respect to 

the spatial coordinates ( 321 ,, xxx ) and time t. In spatial description attention is paid to 

a point in space, and what happens at the point as the time changes is studied.  

In fluid mechanics, the Eulerian description in which all relevant quantities referred to 

the position in space at time t is quite oftenly used. It is not useful to refer the 

quantities to the material coordinates AX , A = 1, 2, 3, at t=0, which are, in general, 

not known in fluid mechanics. However, in solid mechanics both types of description 

O,o 

0  

t
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is used. Due to the fact that the constitutive behavior of solids is often given in terms 

of material coordinates the Lagrangian description preferred oftenly.  

Finally, in the relative approach one uses independent variables ( ,x ) where   is a 

measure of time often related to an intermediate configuration; this approach is useful 

in viscoelasticity [14, 15]. 

Let the positions of material particles at time t depend on their original positions, viz., 

 t,Xxx  , VXx,  Rt   (3.117)

Hence the associated displacement field is given by, 

  XXXu  txt ,),(  (3.118)

When primarily in the motion of individual material particles is interested, it is useful 

to consider what happens to generic differential line segments as a body passes from 

one configuration to another. Hence, let dx be an oriented differential line segment in 

t  that was originally dX in 0 . A fundamental question then is how do we relate 

these two differential position vectors? Recall that a second order tensor transforms a 

vector in to a new vector. Hence in direct and Cartesian component notations, at each 

time t, let  

XFx dd  ,     AiAi dXFdx   (3.119)

Where F is a second order tensor that accomplishes the desired transformation. The 

quantify F is crucial in nonlinear continuum mechanics and is primary measure of 

deformation, called the deformation gradient. In general F has nine components for all 

t, and characterizes the behavior of motion in the neighborhood of a point.  

Expression 3-119 clearly defines a linear transformation which generates a vector dx 

by the action of the second order tensor F on the vector dX. Hence, equation 3-119 

serves as transformation rule and F is said to be a two point tensor involving points in 

two distinct configurations. One index describes spatial coordinates, ax  and the other 

material coordinates, AX . In summary: material tangent vectors map (i.e. transform) 

in to spatial tangent vectors via the deformation gradient [15]. 

Because x is a function of X, at each fixed time t, the chain rule requires 
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dX
X

x
dx 




  ,    A
A

i
i dX

X

x
d 




x  (3.120) 

Moreover, comparing equations above reveals that  

AiiAF Ee
X

x
F 




 ,   where  
A

i
iA X

x
F




  (3.121) 

This provides a method for computing the components F given a referential 

description of the motion relative to a Cartesian coordinate system [14]. 

Assuming equation 3-117 is invertible, that is X can be written as a function of x at a 

fixed time t, we can alternatively consider 

dx
x

X
dX 




 ,     i
i

A
A dx

x

X
dX




  (3.122) 

With 

iAAiF eE
x

X
F 




  11  , where   
i

A
Ai x

X
F




1  (3.123) 

 

 

Figure 3.3 : Schematic representation of the polar decomposition of deformation 
gradient. Material element is first stretched by U and then rotated by 
R, or first rotated by R and then stretched by V [17]. 

It is important to observe that position vectors dx can be mapped from dX via a rigid 

body motion (i.e., a translation and/or rotation), a "deformation" (i. e., extension and 
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shear), or a combination of both. Indeed, it can be shown that F can be decomposed 

via 

RVURF   (3.124)

Where OrthR  (i.e., TRR 1 and 1det R ) represents the rigid body motion, 

PsymU  (i.e., UU T and is positive definite) is defined in the reference 

configuration 0 , and PsymV  is defined in the current configuration t . Referred 

to Cartesian coordinates, 

iAAiAiiA RR eEEeR   ,   BAABU EEU  ,   jiijV eeV   (3.125)

Hence, R is a two-point tensor, whereas U and V are one-point tensors. U and V 

represent the complete deformation (extension and shear), but are called right and left 

"stretch" tensors, respectively, because their principal values are the principal 

stretches (e.g., current divided by reference lengths) experienced by the body at a 

point. Equation 3-124 can be interpreted, therefore, as "stretch" followed by a "rigid 

rotation" ( UR  ) or a "rigid rotation" followed by "stretch" ( RV  ); it is called the 

polar decomposition theorem. 

At first, the right Cauchy-Green tensor C defined by 

FFC T  (3.126)

C is symmetric and positive definite and, therefore, holds 

  TTTT CFFFFC   (3.127)

Further, we will define 

 2 2det det J 0  C F  (3.128)

with J as the determinant of F called the volume ratio. 

A commonly used strain measurement is the Green-Lagrange strain tensor E defined 

by 
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   ICIFFE 
2

1T  (3.129) 

which is based on the observation of the change of squared lengths of line elements. 

Since C and I are symmetric E is also symmetric. C and E are defined on the 

undeformed reference configuration and are, therefore, referred to as material strain 

tensors.  

An important strain measure in terms of spatial coordinates is the left Cauchy-Green 

(so called Piola deformation tensor) tensor B defined by 

TB FF  (3.130) 

The second order tensor B is as C symmetric and positive definite 

 TT T T  B FF FF B  (3.131) 

B can be also defined by the the inverse of rigth Cauchy-Green deformation tensor C, 

i.e., 1B C    , with     11 1T T   C F F F F . 

It can be shown that; 

 2 2det det 0J  B F  (3.132) 

holds. 

An observation of the change of squared lengths of line elements defined in the 

current configuration leads to the spatial counterpart of E, namely the Euler-Almansi 

strain tensor e defined by 

 1 11 1
( )

2 2
T     e I F F I B  (3.133) 

It can be shown that the right Cauchy-Green tensor C and left Cauchy-Green tensor B 

may be expressed as 

2URURUFFC  TTT  (3.134) 
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2T T T  B FF VRR V V  (3.135)

C and B are both one-point, symmetric tensors that are independent of rigid body 

motion, C being defined in the reference configuration 0  and B in the current 

configuration t . When referred to Cartesian coordinates, 

BAABC EEC   , where   
B

i

A

i
AB X

x

X

x
C







  , (3.136)

ij i j B B e e  ,   where   ji
ij

A A

xx
B

X X



 

  (3.137)

The stretch (extension) ratios related to the principal strain components iiC and 

iiE are defined as [50]: 

i
ii

i

x
=F =  

Xi



   ,   2
iiC i  and  2

ii

1
E 1

2 i     1,2,3i   (3.138)

3.3 Basic Mechanics of General Soft Tissues 

Biological tissues are roughly divided into: hard tissues like bone and tooth, and soft 

tissues such as skin, muscle, blood vessel, and lung. Hard tissues contain mineral, 

while soft tissues do not. As a result, soft tissues have very different mechanical 

properties. One of the major differences in mechanical properties is that soft tissues 

are much more deformable than hard tissues. Therefore, infinitesimal deformation 

theories that are applied to metals and hard plastics cannot be used for soft tissues; 

instead, finite (large) deformation theories that are useful for rubber elasticity are 

often used to describe the mechanical behavior of soft tissuesdue to their range of 

deformation [7]. 

3.3.1 Inhomogeneous structure 

Biological soft tissues are composed mainly of cells and intercellular substances, the 

latter consisting of connective tissues such as collagen and elastin, and ground 

substance (hydrophilic gel). These components have different physical and chemical 

properties, and their contents differ from tissue to tissue and even from location to 
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location within a tissue. Thus, the mechanical properties depend both on tissue and 

on location as mentioned in Section 2.  

In figure 3.4, stress-strain relations for the canine nuchal ligament, sole tendon, and 

intestinal smooth musc1e, which are rich in collagen, elastin, and smooth musc1e 

(cell), respectively are shown. The elastin-rich nuchal ligament has much less 

strength and much more flexibility than the collagen-rich sole tendon. The intestinal 

smooth muscle is much softer than the other two tissues, and its stress-strain curve 

has a wide hysteresis loop, which indicates that the tissue is viscoelastic. The elastic 

moduli calculated from the se relations are approximately 0.4, 350, and 0.03 MPa in 

the nuchal ligament, sole tendon, and intestinal smooth muscle, respectively [7]. 

 

Figure 3.4 : Tensile properties of elastine-rich canine nuchal ligament, collagen-rich sole 
tendon and intestinal smooth muscle [24]. 

3.3.2 Nonlinear behavior 

The main property of soft tissues may be outlined as being their nonlinear behaviour. 

Kwan described the phenomenon as follows: "Under uniaxial tension, parallel-fibered 

collagenous tissues exhibit a non-linear stress-strain relationship characterized by an 

initial low modulus region, an intermediate region of gradually increasing modulus, a 

region of maximum modulus which remains relatively constant, and a final region of 

decreasing modulus before complete tissue rupture occurs. The low modulus region is 

attributed to the removal of the undulations of collagen fibrils that normally exist in a 

relaxed tissue [51]. As the fibrils start to resist the tensile load, the modulus of the 

tissue increases. When all the fibrils become taut and loaded, the tissue modulus 

reaches a maximum value, and thereafter, the tensile stress increases linearly with 
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increasing strain. With further loading, groups of fibrils begin to fail, causing the 

decrease in modulus until complete tissue rupture occurs." A typical tensile test curve 

is shown in Fig. 3.5a. From a functional point of view, the first parts of the curve are 

more useful since they correspond to the physiological range in which the tissue 

normally functions [18]. 

Also, Holzapfel emphasizes the intermolecular cross links of collagen gives the 

connective tissues the strength which varies with age, pathology, etc. Table 3.1 shows 

the correlation between the collagen content in the tissue, % dry weight, and its 

ultimate tensile strength [22]. 

Table 3.1: Mechanical properties [19], [5], [20] and associated biochemical data [21] 
of some representative organs mainly consisting of soft connective tissues 

Material 
Ultimate Tensile 
Strength [MPa] 

Ultimate Tensile 
Strain [MPa] 

Collagen (% 
dry weigth) 

Elastin (% 
dry weigth) 

Tendon 50-100 10-15 75-85 < 3 

Ligament 50-100 10-15 70-80 10-15 

Aorta 0.3-0.8 50-100 25-35 40-50 

Skin 1-20 30-70 60-80 5-10 

Articular 
Cartilage 

9-40 60-120 40-70 - 

3.3.3 Viscoelasticity 

The experimental results shown in Figure 3.5a reveals the relationship between stress 

and strain in the static case. However, when the equilibrium is not reached, a history-

dependent component exists in the mechanical behavior of living tissues. When 

measured in dynamic extension, the stress values appear higher than those at 

equilibrium, for the same strain. The resulting tensile curve appears steeper than the 

one at equilibrium (Fig. 3.5a). When a tissue is suddenly extended and maintained at 

its new length, the stress gradually decreases slowly against time. This phenomenon is 

called stress relaxation (Fig 3.6a). When the tissue is suddenly submitted to a constant 

tension, its lengthening velocity decreases against time until equilibrium. This 

phenomenon is called creep (Fig. 3.6b). Under cyclic loading, the stress-strain curve 

shows two distinct paths corresponding to the loading and unloading trajectories. This 

phenomenon is named hysteresis (Fig. 3.6c). As a global statement, the stress at any 
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instant of time depends not only on the strain at that time, but also on the history of 

the deformation. These mechanical properties, observed for all living tissues, are 

common features of viscoelasticity [5]. 

 
(a)  

(b) 

Figure 3.5 : Load-extension curve of a tendon (a), Influence of the strain rate [45, 46]. 

 

 
(a) (b) 

 
(c) 

Figure 3.6 : Viscoelastic behavior: a) stress relaxation , b) creep, c) hysteresis [46, 47]. 

3.3.4 Anisotropy 

Since collagen and elastin are long-chained high polymers, they are intrinsically 

anisotropic. Moreover, not only their fibers but also cells are oriented in tissues and 

organs in order that they function most effectively. Inevitably, almost all biological 

tissues are mechanically anisotropic. For example, skin has very different properties 

in two orthogonal directions; see Figure 3.7 [25] and [26]; it cannot deform much in 

the direction of Langer's line [27], but can deform much more in the perpendicular 

direction. Collagen fibers in the articular cartilage are preferentially oriented to the 
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split line and, therefore, this tissue also shows anisotropic behavior; see Figure 3.8 

[28]. 

 

Figure 3.7 : Tension-extansion ratio relations of rabbit skin [49]. 

 

 

Figure 3.8 : Tensile properties of articular cartilage.  

3.3.5 Strain rate insensitivity 

Because of the viscoelastic characteristics of soft materials, they show different 

properties under different strain rates (test speed). In fact, higher strain rates give 

higher stresses; see Figure 3.9 [30]. However, such a strain rate effect is not very 

large in biological soft tissues; there are not very large differences in the stress-

extension ratio curves across three orders of magnitude of the tensile speed (CT in 

Figure 3.9). In addition, the area of the hysteresis loop (H in Figure 3.9) does not 
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depend upon strain rate. Generally speaking, therefore, biological soft tissues are 

mechanically not very sensitive to strain rate [7]. 

 

Figure 3.9 : Tensile properties of lung parenchyma at different strain rates [48]. 

3.3.6 Incompressibility 

Most biological soft tissues have a water content of more than 70%. Therefore, they 

hardly change their volume (isovolumic) even if load is applied, and they are almost 

incompressible. The incompressibility assumption is applicable to most biological 

soft tissues; it has been confirmed experimentally in arterial wall [31] and [29]. 

However, it is not the case in the articular cartilage, because the tissue is micro-

porous and, therefore, water can enter and leave pores depending upon load [28]. The 

incompressibility assumption is very important in the formulation of constitutive 

laws for soft tissues because the sum of all principal (logarithmic) strains is always 

zero [7]. 

3.4 Mechanical Behaviour of Arterial Wall 

Each constitutive framework and its associated set of material parameters require 

detailed studies of the particular material of interest. Its reliability is strongly related 

to the quality and completeness of available experimental data, which may come from 

appropriate in vivo tests or from in vitro tests that mimic real loading conditions in a 

physiological environment. In vivo tests seem to be preferable because the vessel is 

observed under real life conditions. However, in vivo tests have major limitations 

because of, for example, the influence of hormones and neural control. Moreover, 

data sets from the complex material response of arterial walls subject to simultaneous 
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cyclic inflation, axial extension and twist can only be measured in an in vitro 

experiment. Only with such data sets can the anisotropic mechanical behavior of 

arterial walls be described completely. In addition, in in vitro experiments the 

contraction state (active or passive) of the muscular media has to be determined.  

The presence of a residual stress field can have a major impact on a body’s effective 

mechanical properties [35]. Evidence of the existence of residual stresses in the 

arterial wall at the unloaded state is given in Fung [61]. With a longitudinal cut along 

the vessel wall the unloaded specimen springs open and its cross section becomes a 

sector. The opening angle of the vessel wall is time-dependent after the sudden relief 

of the initial residual stress. It shows that the artery is not stress-free at the unloaded 

state [54, 57]. 

The most commonly used method for describing residual stress in artery wall was 

proposed by Chuong and Fung [62]. The method builds on the experimental 

observation that an artery ring opens up to a cylindrical sector, which is 

approximately stress free, after a radial cut is applied to the wall. If the open sector 

geometry and the constitutive equation for the material are known, the residual stress 

in the intact (i.e., closed and unloaded) configuration can be determined from the 

boundary value problem (BVP) that governs the closing motion. 

Zhou states the cut experiment remains perhaps the most reliable method for studying 

residual stress. If one assumes that both the intact configuration and the open sector 

are perfectly cylindrical, and that the closing motion involves pure bending, the 

residual strains in the intact state can be derived as a function of the open sector 

geometry (the opening angle and radii) [54]. 

In the scope of this study mechanical behaviour consideration is only limited to 

residual strains on arterial wall. 

3.4.1 Residual strains and stresses  

Residual strains and stresses are those that exist in a body when all external loads are 

removed. Because residual stresses can significantly affect the mechanical behaviour 

of a component the measurement of these stresses is and the prediction of their effect 

on mechanical behaviour are important objectives in many engineering problems like 

constitutive formulations and stress anaylsis [33, 35, 36]. 
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Residual stresses are present in a variety of biological tissues and organs, and can 

have a significant impact on mechanical response to external loading (see [34] for 

example) Some of the earliest work on residual stresses in soft biological tissues 

were studies of arteries.  

Recent reports also suggest that residual stress and strains might even be the key to 

understanding stress-modulated remodeling of the artery under disease conditions 

like atherosclerosis and hypertension [14, 38]. Given their relative significance in 

vascular mechanics, it is important to ensure that the experiments performed to 

determine residual strains and the assumptions made during the analysis are 

appropriate [37]. 

3.4.1.1 Opening angle 

                    

Figure 3.10 : Schematic of the opening angle experiment which is used for assessing the 
residual strain in biological organs with approximately cylindrical 
geometry. [39] 

 

The opening angle experiment is performed by making a radial cut in a ring of tissue 

and then measuring the resulting opening angle  . A schematic representation of this 

experiment is shown in Figure 3.10. In this study, the configuration of the ring after 

it has been excised from the organ is referred, but before the radial cut, as the closed 

configuration. The configuration taken by the ring after the radial cut has been made 

will be referred to as the open configuration.  

It is typically assumed that the geometry of the closed configuration and the 

constitutive equation for the stress-free material are given. The geometry of the 

closed configuration is specified by the inner and outer radii, iR and oR , 

respectively. The material composing the ring is assumed to be incompressible and 
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hyperelastic. Generally, the material is taken to be uniform, even if this condition is 

not essential. Motivated by the cylindrical symmetry of the geometry, it is assumed 

to be a function of the radial position only, and to have no shear components [39]. 

3.4.1.2 Kinematics of the stress-relieving cut  

Consider a material particle located at  ZR ,, , in the central region of a radially cut 

arterial segment, that is mapped to  , ,    in the central region of an associated 

unloaded intact configuration according to [14]; 

 

Figure 3.11 : Kinematics of the arterial wall relative various configurations  

Nearly stress-free reference configuration ( 0 ), the excised, unloaded configuration 

( 1 ), and the in vivo loaded configurations ( 2 ) having coordinates  , ,R Z , 

 , ,   ,  , ,r z , is showed respectively [52]. 

 R       
0

  


    Z        (3.139)

Where 0  is one of the aforementioned angles and     is an axial stretch ratio 

associated with the residual stress. Therefore, in the absence of the residual stress 

0  and 1 .  

According to these values, the physical components of deformation gradient tensor in 

cylindrical coordinates associated with the mapping in equation 3.139 are  

 , ,r z   , ,   , ,R Z

FF
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FF  (3.140) 

Applying the incompressibility constraint det 1FF , yields 

0

1
r

R R

  
    

, 0R

R






 

 (3.141) 

and integrating this relation with respect to R to yield, 

 2 2 2 20
i  ,      R [R , ]i i oR R R 




   


 (3.142) 

Where the “i” and “o” are subscriptions which denote the inside and outside surfaces. 

This relation allows determining the location of every point in the wall in either 

configuration given the corresponding location in other configuration and knowledge 

of either the inner or outer radius.  

Then, the physical components of the various measures of deformation can be easily 

determined. The right Cauchy-Green tensor; 
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[ ] [ ] [ ] 0 0
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 

        
 

 
  

F F FC F F  (3.143) 

and the Green strain tensor,  
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The residual stress related to the deformation gradient FF  contains only diagonal 

terms; thus, components of the associated right stretch tensor FU  are numerically 

same as those of FF  which means FF  does not contain rigid body motion. 

(  F RU VR ).  

Residual strain in a typical cylindrical specimen that is not subjected to any inflation, 

extansion or torsion is derived.  

In following section residual strain formulations of a cylindirical specimen for reverse 

deformation will be derived without subjecting any inflation, torsion or extension.. 

This time, a material particle located at  , ,   , in the central region of an associated 

unloaded intact configuration, that is mapped to  ZR ,,  in the central region of a 

radially cut arterial segment is considered.  

3.4.1.3 Reverse formulation  

Mapping for reverse formulation of the opening angle method may be stated as 

follows; [59] Subscript “R” stands for reverse formulation and correspond to the 

deformation 2F shown in figure 3.14.  

 , ,      ( , , )R Z  (3.145)

 R R  ,   0( ) 



  ,   Z





  (3.146)

In figure 3.14 three different configurations are shown: In vivo configuration, t , 

which is taken as a reference 0  for the kinematics, a traction-free excised 

configuration, 1 , and a radially-cut, nearly stress-free configuration 2 . The 
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deformation gradients are denoted by Fi and 0 is the opening angle in 2 .Adopted 

from [40]. 

 

Figure 3.12 : Schema of the different configurations 

Hence deformation gradient for this motion is, 0 ; 
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RF  (3.147) 

The right Cauchy-Green tensor can be derived as;  
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when Lagrangian strain tensor is calculated using right Cauchy-Green tensor derived 

above; 

FR
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And strain components can be rearranged by using 3.149; 
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(3.150)

Finally the stretches will be for reverse formulation: 
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 (3.151)

As Humprey stated; one can think of these reverse deformation gradients as the 

inverses of the usual tensors referred to stress-free configuration [14]. 
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4 EXPERIMENTAL STUDIES 

4.1 Digital Image Correlation 

Data extraction by image analysis is one of the most dynamic areas in non-contacting 

measurement system development. Digital image correlation (DIC), which is a 

specific area in this field, has seen impressive growth in the past two decades. In 

recent years, the digital image correlation method has been modified and extended to 

encompass a breathtaking number of novel measurement systems. Nowadays, the 

technology is being used for measuring  

 3-D surface shape and deformations using a variety of illumination sources for 

a wide range of material systems, with size scales ranging from tens of meters 

to the microns,  

 2-D surface deformations at the scale of nanometres by using atomic force 

microscopy and scanning electron microscopy , 

 Interior deformation measurements through volumetric imaging of biological 

and porous materials using technology such as computer aided tomography, 

and magnetic resonance imaging, 

 Dynamic/impact behaviour of materials using high-speed camera systems. 

4.1.1 Background of DIC 

The term “digital image correlation” refer to the class of non-contacting measurement 

methods which includes acquire images of an object, store images digitally and then 

perform image analysis to get full-field shape, deformation and/or motion 

measurements. Digital image registration (i.e. matching) has been performed with 

many types of object-based patterns, including lines, grids, dots and random arrays. 

Commonly used approaches employ random patterns and comparing sub-regions 

throughout the image to obtain a full-field of measurements [41].  
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Figure 4.1 : Random pattern in an image [42]. 

4.1.1.1 Two dimensional (2D) DIC 

One of the earliest work to propose the use of computer-based image acquisition and 

deformation measurements in material systems was by Peters and Ranson in 1981 

[43]. Peters and Ranson used the fact that changes in images can be described by the 

same continuum concepts that govern the deformation of small areas on a surface, an 

approach was proposed to relate measurable image deformations to object 

deformations. These original concepts have been refined and incorporated into 

numerical algorithms to extract object deformations from an image sequence for use 

in the field of experimental mechanics. The resulting algorithms and software have 

been used successfully to obtain surface deformations in a various applications. 

For image-correlation-based measurement purposes, modern scientific-grade digital 

cameras are generally used to  

- obtain high-quality images on the sensor plane,  

- execute onboard digitization of the intensity at each sensor location, 

- transfer the digital data to a storage location. 

Sutton states that image analysis software can be used to get surface deformations 

with an accuracy of ±0.01 pixels or better for in-plane displacement components and 

point-to-point accuracy of ±100  for the in-plane surface strains xx , yy , and xy  

which is tested by many experiments [44]. 
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4.1.1.2 Three dimensional (3D) DIC 

Stereo-vision principles developed for robotics, photogrammetry, and other shape and 

motion measurement applications were modified and successfully implemented to 

develop and apply a two-camera stereo vision system to accurately measure the full 

three-dimensional shape and deformation of a curved or planar object, even when the 

object is subjected to large out-of-plane rotation and displacement. Image analysis 

software for stereo vision can be used to  

(a) calibrate the camera system,  

(b) perform experiments and simultaneously acquire stereo image pairs, and  

(c) analyze several sets of stereo image pairs to obtain surface deformations.  

Sutton suggests that results from various experiments indicate an accuracy of ±0.015 

pixels or better for cross camera image correlation to identify the same image point 

and point-to-point accuracy of ±100  for the in-plane surface strains xx , yy , and 

xy . This accuracy is achievable even when the object is subjected to large rigid-body 

rotations and arbitrary amounts of rigid-body translations since these motions do not 

prevent the strain measurements [44]. 

4.1.2 Essential concepts 

Two key assumptions are generally used to convert images into experimental 

measurements of object shape, displacements, and strains.  

Firstly, it is assumed that there is a direct correspondence between the motions of 

points in the image and motions of points on the object. Since an object is generally 

approximated as a continuous medium, the correspondence between image and object 

points ensures that continuum concepts are applicable to describe the relationship 

between points in an image subset as the object deforms.  

Secondly, it is assumed that each subregion has adequate contrast (spatial variation in 

light intensity) so that accurate matching can be performed to define local image 

motions. Together with the first assumption, accurate matching can be improved by 

allowing each image subregion to deform using an appropriate functional form (e.g., 

affine, quadratic) and hence increase accuracy in the measured motions. The required 

variation in contrast can be obtained by applying a high-contrast random pattern (e.g., 
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painting, adhering, surface machining) as well as it may occur due to the natural 

surface properties of the material. 

4.1.3 Intensity interpolation 

To obtain surface deformations from digital images, subregions of digital images are 

compared. Defining one of the images to be the reference image (i. e., the image of 

the object when it is considered to be in the undeformed or initial configuration), 

general deformations of the object will introduce noninteger displacements of the 

corresponding positions in the reference image. Thus, accurate subpixel estimates for 

local object motions require that intensity values at integer positions in the reference 

image are registered with intensity values in the deformed images at noninteger 

positions. To obtain noninteger estimates for intensity values, the discrete intensity 

pattern recorded for each deformed image is converted into a continuous functional 

representation.  

 

Figure 4.2 : Image in memory and image on screen respectively at initial time. 

 

 

Figure 4.3 : Image in memory and image on screen respectively after motion. 
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4.1.4 Subset based image displacements and pattern development 

Image-plane deformations are extracted through image comparison, where it is 

common to select an image of the object and designate it to be the reference image. 

All additional images are specified as deformed images. Image correlation is 

performed by comparing small subsets from the digitized textured pattern in the 

reference image to subsets from each of the deformed images. 

 

Figure 4.4 : Mapping of sensor positions P and Q in reference subset to p and q in 
deformed subset [44]. 

To achieve a usable random pattern of the required size, several approaches have 

been developed. In each case, the surface must be properly prepared so that the 

pattern will deform/move with the material system being studied. This process may 

include degreasing, etching, polishing, and coating of the specimen surface. 

4.1.5 3D Digital image correlation 

Single-camera 2-D DIC systems are limited to planar specimens that experience little 

or no out-of-plane motion. Both of these limitations can be overcome by the use of 

two (or more) cameras observing the surface from different directions. Figure 4.5 (b) 

shows schematically a two-camera stereo-vision arrangement. The remainder of the 

developments for stereo-vision systems will focus on a generic two-camera system, 

though the concepts can be generalized readily to multicamera systems. Three-

dimensional image correlation is based on a simple binocular vision principle. Once 

the cameras are calibrated, the sensor plane locations in the two views for the same 

object point can be used to determine an accurate estimate for the three-dimensional 

position of the object location. 
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(a) (b) 
Figure 4.5 : Single camera system (a) vs. two camera system (b) for recovering third 

dimension. 

4.2 3D DIC System Verification Tests 

As stated at the beginning, the aim of this study is the direct measurement of strains 

in and out of arterial wall by using optical correlation methods. Indirect stretches and 

strains, based on bending assumption, will be also calculated and afterwards results 

will be compared and evaulated. 

Before starting tests on ovine and porcine arterial walls, some experiments are 

carried on to verify the accuracy of digital image correlation systems on different 

experimental conditions. 

4.2.1 Verification test on mirrored-vision 

To measure the strain values in and out of the arterial walls, a test setup which 

basically involves two quasi-static cameras for gathering 3D displacement - 

deformation field and a plane mirror will be used. Placing the specimen, speckled on 

the both sides, in front of the mirror, not only the front side but also the backside will 

be analyzed by digital image correlation by using the reflection of backside on the 

mirror. (Figure 4.6)  

Specimen used in this experiment is a rubber band speckled on both sides. After 

stereo calibration, specimen is subjected to pure axial loading.  

It is expected to have a successful correlation on both sides and obtaining the same 

strain values on both sides of the band. 
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Figure 4.6 : Setup for verification test on mirrored-vision. 

On Figure 4.7 (a,b,c,d) shots from process flow of DIC is given by using Vic-3D 

(Correlated Solutions, USA). Respectively; (a) is the raw image captured by one of 

the cameras, (b) area of interest is selected to measure deformation and displacement 

field, (c) a shot from correlation results (Z – displacement [mm] ), (d) graphical 

representation of extracted values ( xxE ) 

 
 (a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.7 : Shots from Vic-3D workspace while mirror correlation test 
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After calculating displacements and strains for area of interest on both sides of the 

rubber band, these values are extracted to be compared. Strain equality on both sides 

is predicted. In the below figures this equality, which comply with the expectations, 

for strain components, (a) xxE  results, (b) yyE results, can be seen. Mean xxE  error 

on this experiment is appromately 0.1% and mean yyE error is 1% for this 

experiment.  
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Figure 4.8 : Strain results for verification test on mirrored-vision.  

With respect to obtained error values, concept of using a mirror and analyzing on the 

reflection of specimen is seen to have enough accuracy based on the purpose it is 

interest to use. 

4.2.2 Silicone bar and mechanical extensometer test 

Experiencing the needed accuracy on both camera side and the mirror side of the 

specimen as discussed in Section 4.2.1, as a second step optical results are compared 

with mechanical measurement devices. 
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On this sub-experiment, in addition to t previous experiment, the aim is to obtain the 

accuracy of optical measurement systems and compare the results with conventional 

measurement systems. In this test a silicon bar specimen with a rectangular cross-

section is used. Silicone bar specimen is speckled on both sides and a mechanical 

extansometer (MTS Model No: 634.31F-25) is attached to the specimen to measure 

the elongation and strain. Elongation and strain is also followed via the displacement 

transducer of the head of the universal test machine (MTS 858 Mini Bionix II, Eden 

Prairie, MN USA).  

Test scenario for this test is set to be applying cyclic loading between 0-10mm under 

displacement control at a rate of 1mm/sec and the same scenario is applied on several 

specimens. 

 
(a) 

 
(b) 

Figure 4.9 : Setup for silicone bar and extansometer test; (a) General view for 
experimental setup. (b) Close view on specimen, mirror and 
mechanical extansometer. 

On Figure 4.10 (a) displacement results for the head of the universal testing machine, 

(b) strain results for mechanical measurement systems and (c) strain results for both 

sides of the silicon bar is given. Since mechanical systems in this setup can only 

measure displacements in one direction, only yyE  component of strain is compared.  

Error values for between different comparison groups has been figured out as follows 

in Table 4.1:  
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Table 4.1: Error values for silicone bar and mechanical extansometer test. 

Error between Error % 
MTS Head and MTS Extansometer 0.7 
Frontside and backside of silicone bar 0.7 
Mean optical values to mean MTS values 2 

 

Displacement results for the head of test machine (a), strain results ( yyE ) for 

mechanical measurement systems (b) and strain results ( yyE ) for both sides of the 

silicon bar (c) is shown in Figure 4.10. When optical correlation systems are 

compared to conventional mechanical measurement systems depending of the error 

values above ,, optical measurement systems are seen to have enough accuracy. 
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Figure 4.10 : Test results for the silicone bar and mechanical extansometer test 
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4.2.3 Underwater correlation accuracy tests 

Even if verification experiments, previously held, is enough to prove the accuracy of 

digital image correlation systems, since arterial wall tests will be held in saline 

solution (0.9% NaCl), in addition to open-atmosphere tests some extra tests should 

be done to see the effect of diffraction of saline solution and wall thickness and/or 

flatness of the glass. Aquarium is filled with saline solution to disregard frictions 

between the arterial wall and base surface. In saline solution arterial wall have almost 

compansated buoyancy. Experimental setup for underwater experiment is shown in 

Figure 4.12. 

   

Figure 4.11 : Steel plates fixed to the jaws of the caliper and speckles in detail. 

In this experiment two stainless steel plates are fixed to the fixed and sliding jaws of 

the digital caliper. After fixation, speckled stickers are glued to each plate and 

covered with polymer film to ensure waterproofness. Sliding jaw is smoothly moved 

and and value on the digital display of the caliper is recorded for each shot taken on 

the cameras manually. 

   

Figure 4.12 : Underwater image correlation test setup. 
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Assuming that flatness of the glass is high, obtaining high accuracy on displacement 

results between digital image correlation and caliper values and also calculating zero 

(or negligible) strain components on each speckled plate since there is lo load which 

will result in any deformation is expected. 

Example views from experiment can be seen below in Figure 4.13. 

 (a)   (b) 

Figure 4.13 : Setup for underwater optical correlation test. (a) Initial view of  
..speckled steel plates, (b) Speckled plates after sliding motion. 

In the following figures the results of digital image correlation in water are shown. In 

Figure 4.14 displacement values obtained by using caliper display and optical 

correlation in compared. In Figure 4.15a-b xxE and yyE values for steel plates 

connected to fixed jaw (a) and sliding jaw (b) of the caliper respectively are shown. 

The strain result in (a) and (b) are digital noise and they were expected to be zero. 

Thus, the noise of the optical measurement system for underwater measurement 

setup is around 0.2%. As a result, these results shows that optical correlation systems 

can be used for also in underwater measurement with acceptable accuracy. 
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Figure 4.14 : Displacement results of underwater correlation accuracy tests. 
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(b) 

Figure 4.15 : Strain results of underwater correlation accuracy tests. 

4.2.4 Opening angle – test on engineering silicone 

Up to this point all previous  test were mainly focused on the optical correlation 

method. Depending on the result of these tests digital image correlation systems can 

give highly accurate results when compared to conventional measurement systems. 

The artery is considered as a cylindrical tube whose wall material is homogeneous 

and cylindrically orthotropic [53]. Under this hypothesis, at the removal of residual 

stress from the unloaded state, the vessel wall should become a sector of constant 

curvature and thickness. If one assumes that both the intact configuration and the 

open sector are perfectly cylindrical, and that the closing motion involves pure 

bending, the residual strains in the intact state can be derived as a function of the 

open sector geometry (the opening angle and radii) [54].  
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In this experiment same silicon bar in mechanical extensometer test will be used to 

check the accuracy of theoretical assumptions towards determining residual strains 

on arterial wall as a beam bending (closing and opening) problem. As explained in 

pure bending assumption above, silicon bar is bend and tips are attached to each 

other to represent arterial ring segment. After forming silicone bar as a ring, which is 

determined as closed-reference configuration, tips will be seperated similar to radial 

cut which was introduced to arterial walls. 

 
(a) 

 
(b) 

Figure 4.16 : Shots from silicon bar bending tests. 

Figures above (a) and (b) showing the bend bar at initial time and after the “cut” in 

order.  

Results are expected to be at same absolute values of strain at inside and outside of 

the bar, with opposite signs, with respect to assumtion of silicon bar’s isotropic 

structure. These strain results extracted from digital image correlation system and 

then the pure bending theory will be compared to experimental results. 

 
 

 (a) 

 (b) 

Figure 4.17 : Bended silicon bar, (a) close configuration and (b) open 
configuration. 

ro

ri 

Ri
Φ
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On the contrary theoretical result involves a manual data processsing procedure. 

Specimen is photographed from top on a grided paper before and after the cut. ir and 

or  values ,which are the inner and outer diameters respectively, are measured from 

the photo before the cut (4.17a). From the photo, which is taken after the cut (4.17b), 

iR and Φ values are obtained. Scaling is an important issue for obtaining precise 

results and each photo is individually scaled to measure precisely by using the grided 

paper. 

By using reverse formulation method in Section 3.4 strain and stretch values are 

calculated and compared. 

First figure on the following shows the strain result derived from Vic-3D. Horizontal 

axis shows the file number and vertical axis show Lagrangian strain on exterior 

surfaces of the bar. On file number 0 and 1specimen is in closed (reference) 

configuration which can be understood from strain values. On file number 2and 3 

silicone bar is in open (current) configuration. As estimated the absolute values of 

strain results for exterior surfaces are appoximately the same.  
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Figure 4.18 : Strain results for the inner and outer surfaces of silicone bar. 

Table 4.1 shows the theoretical and experimental result for bending of a silicon bar. 

Error values between inside and outside of specimen obtained by experiments is 0.8 

%. Error values between experimental and theoretical stretch ratio results are 0.3% for 

inside and 1.5% for outside. Considering the error values, experimental and 

theoretical result shows that the theory classical way of calculating strains give 

acceptable results as long as the specimen obeys the assumptions made. 
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Table 4.2: Stretch ratio results for silicon bar, depending on both theoratical results 
and camera data. 

t=0 min t=1 min 
THEO 

(t=5min) 
CAM (t=5min)Specimen 

Code 
ri [mm] ro [mm] Ri1 [mm] Φ1 [deg]

r(Ri) 
[mm]

r(Ro) 
[mm] 

Λ_IN Λ_OUT Λ_IN Λ_OUT
Silicon 01 80 90 252 120 80 90.074 1.05 0.97 1.046 0.954 

4.2.5 Underwater arterial wall tests 

All of the previous tests’s outcomes have partial and/or full importance on accuracy 

of this final experiment. To sum up; with the experiments which were held out of 

water helped us to estimate the accuracy range of digital image corelation systems 

when they are compared to mechanical measurement systems. Then an underwater 

test is done to see the effect of refraction caused by glass’s wall thickness and saline 

solution. That test also result in acceptable range of accuracy. The last test was the 

pure bending of a silicon bar and this test proved the validity of theory as “closing of 

a cylindirical sector” problem. 

Consequently strains derived from digital image correlation system has been seen to 

have adequate accuracy for performing underwater tests.  

 
(a) 

 
(b) 

Figure 4.19 : Example shots from stress relieving radial cut tests. 

In these test ovine and porcine arteries will be used as specimens. A ring shaped 

artery (Heigth:5mm±1mm, diameter as harvested) will be cut in radial direction. 

Each specimen is speckeld carefully and placed in aquarium filled with saline 

solution(0.9% NaCl). Regarding the observations of Rachev et. all the effect of 

temperature is disregarded [55]. Since it has no significant effect, test were 

conducted in room temperature. To prevent rolling of the arterial wall in open 

configuration, arteries are placed between steel rods, freely. Cameras will shoot from 

the initial contidion (t=0min) to thirty minutes of time (t=30min). Photos, from front 
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and top, are taked at t=0min, t=5min, t=10min, t= 15 min and t=30 min respectively. 

Same data processing procedure is carried out as in engineering silicone bending 

experiment.  

Even if arterial wall has a multi-layered structure in this study it will be assumed as a 

single layered structure; since we only consider compariosn of the strains on exterior 

surfaces. 

In the previous figure an arterial ring segment at initial time (4.20a) and after radial 

cut (4.21b) can be seen. 

 

 
(a)  

(b) 

 
(c) 

 
(d) 

Figure 4.20 : Shots from Vic-3D workspace during arterial wall correlation test. 
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t=0 min (ri=6.675mm, ro=10.65mm) (a) t=5 min (Ri1=27mm, Φ1=130 deg) (b) 

t=10 min (Ri2=30.4mm, Φ2=134 deg) (c) t=15 min (Ri3=30.75mm, Φ3=138 deg) (d) 
 

 
t=30 min (Ri4=32.75mm, Φ4=140 deg) (e) 

Ovine Specimen #08 

Figure 4.21 : Example photos from the top of an ovine arterial wall spercimen at 
..different times. 

 

In tables 4.3, 4.4 and 4.5 the results of underwater arterial wall tests are presented. In 

these tables, 
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 Inner and outer diameter values in close configuration, 

  Inner diameter and opening angle values in open configuration at every time 

step,which were measured and 

 Stretch ratio results for arterial wall bar, depending on both theoratical results 

and experimental results 

 Strain results for arterial wall bar, depending on both theoratical results and 

experimental results at every time step,which were calculated and 

In addition to data presented above, mean error charts are given at the end of this 

section. 

In specimen column O stands for “Ovine - Lamb”, and P stands for “Porcine - Pig”  

To comment on the results and the error values, there is a significant difference 

between experimental results and theoretical assumption results.  

This difference may cause from: 

- Assuming arterial wall as a one layered model. With this asumption partial 

effects of individual layers are disregarded. 

- Optical correlation of a soft tissue underwater is an advanced problem in 

optical correlation from speckle generation to diffractions. 

Result of this study can be intepreted not only as the lacking of the theory, but also 

inspite of the high error order, which is approximately 50%, for the exterior sufaces 

of arterial wall may also be intepreted as satisfactory due to order or deformations. 
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Table 4.3: Initial diameter values and diameter and opening angle values at each 
..time step 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

t=0 min t=5 min t=10 min t=15 min t=30 min 
Specimen 

ri 
[mm] 

ro 
[mm] 

Ri1 
[mm] 

Φ1 
[deg] 

Ri2 
[mm] 

Φ2 
[deg] 

Ri3 
[mm]

Φ3 
[deg] 

Ri4 
[mm]

Φ4 
[deg] 

O8 6.675 10.65 27 130 30.4 134 30.75 138 32.75 140 
O9 6.36 9.275 15.375 102 15.95 104 16.79 106 18.45 111 

O10 5.75 8.5 13.26 92 13.5 98 13.77 102 14.5 104 
O11 7.315 10.725 12.95 65 13.735 75 14.025 78 15.115 85 
O12 7 10.15 22.5 118 23.635 120 25.5 125 28.8 130 
O13 7.35 10.255 13.875 83 14.91 85 15.275 87 16.2 88 
O14 7.2 9.5 15.6 95 16.33 97 17.22 101 18.6 107 
P1 6.09 8.775 12 75 12.65 79 12.365 82 13.2 83 
P3 6.695 9.79 38.12 140 39.6 145 40 143 46.62 150 
P6 6.335 9.225 24.28 122 25.14 126 26.6 130 28.355 133 
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Table 4.4: Stretch ratio results for arterial wall, depending on both theoratical results and experimental results. 
THEO 

(t=5min) 
CAM (t=5min)

THEO 
(t=10min) 

CAM 
(t=10min) 

THEO 
(t=15min) 

CAM 
(t=15min) 

THEO 
(t=30min) 

CAM 
(t=30min) Specime

n 
r(Ri) r(Ro)

Λ_IN Λ_OUT Λ_IN Λ_OUT

r(Ri) r(Ro)

Λ_IN Λ_OUT Λ_IN Λ_OUT

r(Ri) r(Ro) 

Λ_IN Λ_OUT Λ_IN Λ_OUT

r(Ri) r(Ro)

Λ_IN Λ_OUT Λ_IN Λ_OUT 

O8 6.675 10.420 1.124 0.826 1.036 0.950 6.675 10.505 1.164 0.836 1.038 0.938 6.675 10.261 1.075 0.790 1.041 0.935 6.675 10.292 1.090 0.793 1.042 0.941 

O9 6.360 9.109 1.048 0.870 1.024 0.960 6.360 9.127 1.059 0.873 1.026 0.956 6.360 9.175 1.085 0.883 1.030 0.955 6.360 9.216 1.112 0.889 1.033 0.957 

O10 5.750 8.510 1.127 0.920 1.015 0.966 5.750 8.386 1.070 0.883 1.027 0.963 5.750 8.316 1.038 0.861 1.027 0.958 5.750 8.362 1.065 0.871 1.025 0.951 

O11 7.315 10.833 1.131 0.965 1.017 0.958 7.315 10.721 1.095 0.933 1.018 0.958 7.315 10.691 1.086 0.924 1.018 0.959 7.315 10.680 1.091 0.915 1.019 0.953 

O12 7.000 10.062 1.107 0.878 1.054 0.943 7.000 10.097 1.125 0.884 1.050 0.941 7.000 10.056 1.113 0.871 1.049 0.944 7.000 10.107 1.143 0.878 1.047 0.939 

O13 7.350 10.100 1.017 0.895 1.047 0.956 7.350 10.208 1.071 0.921 1.053 0.952 7.350 10.210 1.074 0.920 1.052 0.950 7.350 10.317 1.127 0.946 1.054 0.947 

O14 7.200 9.393 1.023 0.900 1.053 0.948 7.200 9.430 1.046 0.911 1.055 0.951 7.200 9.430 1.050 0.908 1.057 0.951 7.200 9.417 1.048 0.900 1.051 0.936 

P1 6.090 8.882 1.149 0.964 1.016 0.937 6.090 8.902 1.166 0.967 1.014 0.945 6.090 8.784 1.105 0.933 1.015 0.942 6.090 8.898 1.168 0.962 1.022 0.939 

P3 6.695 9.969 1.265 0.919 1.045 0.947 6.695 9.713 1.150 0.855 1.058 0.932 6.695 9.884 1.228 0.896 1.046 0.929 6.695 9.722 1.161 0.852 1.067 0.928 

P6 6.335 9.383 1.235 0.933 1.091 0.940 6.335 9.286 1.191 0.906 1.100 0.937 6.335 9.228 1.166 0.888 1.111 0.933 6.335 9.225 1.169 0.884 1.119 0.930 

 
Table 4.5: Strain results for arterial wall, depending on both theoratical results and experimental results. 

THEO 
(t=5min) 

CAM 
(t=5min) 

THEO 
(t=10min) 

CAM 
(t=10min) 

THEO 
(t=15min) 

CAM 
(t=15min) 

THEO 
(t=30min) 

CAM 
(t=30min) Specimen r(Ri) r(Ro)

E_IN E_OUT E_IN E_OUT

r(Ri) r(Ro)

E_IN E_OUT E_IN E_OUT

r(Ri) r(Ro) 

E_IN E_OUT E_IN E_OUT

r(Ri) r(Ro)

E_IN E_OUT E_IN E_OUT 

O8 6.675 10.420 0.124 -0.174 0.036 -0.050 6.675 10.505 0.164 -0.164 0.038 -0.062 6.675 10.261 0.075 -0.210 0.041 -0.065 6.675 10.292 0.090 -0.207 0.042 -0.059 

O9 6.360 9.109 0.048 -0.130 0.024 -0.040 6.360 9.127 0.059 -0.127 0.026 -0.044 6.360 9.175 0.085 -0.117 0.030 -0.045 6.360 9.216 0.112 -0.111 0.033 -0.043 

O10 5.750 6.374 0.127 -0.080 0.015 -0.034 5.750 8.386 0.070 -0.117 0.027 -0.037 5.750 8.316 0.038 -0.139 0.027 -0.042 5.750 8.362 0.065 -0.129 0.025 -0.049 

O11 7.315 10.833 0.131 -0.035 0.017 -0.042 7.315 10.721 0.095 -0.067 0.018 -0.042 7.315 10.691 0.086 -0.076 0.018 -0.041 7.315 10.680 0.091 -0.085 0.019 -0.047 

O12 7.000 10.062 0.107 -0.122 0.054 -0.057 7.000 10.097 0.125 -0.116 0.050 -0.059 7.000 10.056 0.113 -0.129 0.049 -0.056 7.000 10.107 0.143 -0.122 0.047 -0.061 

O13 7.350 10.100 0.017 -0.105 0.047 -0.044 7.350 10.208 0.071 -0.079 0.053 -0.048 7.350 10.210 0.074 -0.080 0.052 -0.050 7.350 10.317 0.127 -0.054 0.054 -0.053 

O14 7.200 9.393 0.023 -0.100 0.053 -0.052 7.200 9.430 0.046 -0.089 0.055 -0.049 7.200 7.558 0.050 -0.092 0.057 -0.049 7.200 9.417 0.048 -0.100 0.051 -0.064 

P1 6.090 8.882 0.149 -0.036 0.016 -0.063 6.090 8.902 0.166 -0.033 0.014 -0.055 6.090 8.784 0.105 -0.067 0.015 -0.058 6.090 8.898 0.168 -0.038 0.022 -0.061 

P3 6.694 7.374 0.265 -0.081 0.045 -0.053 6.694 9.711 0.150 -0.145 0.058 -0.068 6.69 9.88 0.228 -0.104 0.046 -0.071 6.694 9.720 0.161 -0.148 0.067 -0.072 

P6 6.334 6.962 0.235 -0.067 0.091 -0.060 6.334 6.962 0.191 -0.094 0.100 -0.063 6.334 9.229 0.166 -0.112 0.111 -0.067 6.334 9.226 0.169 -0.116 0.119 -0.070 
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Figure 4.22 : Mean Error – Time graph for inside of arterial wall 
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Figure 4.23 : Mean Error – Time graph for outside of arterial wall 
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5 CONCLUSION AND REMARKS 

The major purpose of this research was to measure the resual strains inner and outer  

layers of arterial vessel and then compare it to common theoretical assumptions on 

this problem. One of the advanced non-contacting measurement method, optical 

correlation system is used to measure the deformation field on arterial specimens. 

Various verification test is conducted to check the error order of optical correlation 

systems for this study.  

A novel experimental setup has been established for measurement of residual strains 

on an arterial wall at room temperature. 

As it is previously noted; mechanical behaviour of arterial walls varies from site to 

site in same body. Specimen selection should be carried out with respect to this to get 

a higher reliability of the experiment. 

The difference between experimental and theoretical results may cause from: 

- Assuming arterial wall as if it is one layered. With this asumption partial 

effects of individual layers are disregarded. 

- Optical correlation of a soft tissue underwater is an advanced problem in 

optical correlation from speckle generation to diffractions. 

When the results are considered, a significant difference between theoretical and 

experimental results revealed. This will surely trigger future studies on the subject. 

In future studies some points may be included to the scope 

 Effect of compressibility 

 Measurement of residual strains through thickness 

 Separation of layers and layer specific strain measurements 

 Implication of these results to constitutive models in literature 
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