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DESIGN EXAMPLES FOR SECOND GENERATION CURRENT 

CONTROLLED CURRENT CONVEYORS AND THEIR APPLICATIONS IN 

28nm PROCESS 

SUMMARY 

Intensified and complex communication needs of the society and the need for 

connectivity in every moment causes increasing interest in encrypted and cognitive 

communication techniques. Since the circuits used in encrypted and cognitive 

communication systems have some advantages over standard circuits such as, agility 

and configurability, it is aimed in this study to provide circuits with lower power 

consumption and higher bandwidths to be used in encrypted, cognitive and multi-

standard communication systems. For this purpose and also with respect to their 

well-known current-mode operation advantages it is decided to use CCCII structure 

to build candidate applications for multi-protocol supporting topologies. 

STMicroelectronics` 28nm CMOS process is used in this study to increase the 

effectiveness of current mode implementations with a high end process. Applications 

to be implemented in this study are selected as a universal filter application and a 

frequency agile, configurable filter application for global positioning systems. 

In this project, the initial period was started with feasibility phase to define needs of 

available communication standards and available circuit solutions currently in use. 

For this reason, literature search mainly focused on multi-protocol systems, cognitive 

and encrypted communications and so on. After a wise literature search main goals 

for the design activities and specification like constraints defined for the sake of the 

design process. 

Following the literature search phase, previously provided CCCII structures and their 

behaviors were investigated deeply and available CCCII topologies checked for the 

consistency for possible multi standard application. After this research phase, two 

main topologies decided to be implemented with respect to performance and also 

design kit related constraints. Translinear CCCII topology and the balanced 

differential pair based CCCII structure were the selected design structures to be 

implemented. 

Design of CCCII structures started with the mathematical definitions of behaviors 

expected from the designs. Firstly, translinear CCCII circuit designed with the 

mentioned process design kit and all main characteristics obtained accordingly and 

appropriately matching with the theoretical expressions. After that, corner 

simulations ran for the designed circuit to check its behaviors under various 

conditions of temperature and scattering of bias voltages and currents. Following the 

design of translinear CCCII circuit, balanced differential pair based CCCII structure 

designed and it`s also checked for consistency and behavior correctness. Corner 

simulations ran for balanced differential pair based CCCII and the results observed 

clearly for all corner cases. 
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As the next phase, applications of the designed CCCII circuits realized and 

exercised. An universal filter application with different filter frequency responses 

selected for translinear CCCII circuit and realized. All frequency responses observed 

with simulations and expressions detailed. A frequency agile configurable filter 

application is selected for the balanced differential pair based CCCII circuit. Possible 

era to implement this filter is selected as an industrial GPS filter structure and 

specifications for the filter are defined with respect to this. Realization of the filter 

done and behaviors checked for the designed frequency agile configurable filter 

structure. 

As an important step in this thesis, layout and post-layout simulation phases also 

done for the designed CCCII structures. All steps were done according to the steps 

provided by the design kit provider and all mandatory recommended rule sets were 

satisfied for the processes. Post layout simulations and characteristics were obtained 

for the extracted netlists of the designed circuits and comments given for the 

behaviors. 

In the last part of the study, recommendations and points to be kept in mind for this 

thesis reported and possible future implementations listed. 
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28nm PROSESİNDE ÖRNEK İKİNCİ KUŞAK AKIM KONTROLLÜ AKIM 

TAŞIYICI YAPILARI TASARIMI VE UYGULAMALARI 

ÖZET 

Çoklu içerik ve format yapısına dayanan, yoğunlaşan ve karmaşıklaşan haberleşme 

ihtiyacı günümüzde yeni haberleşme standartlarına ve uygulamalarına olan ilgiyi 

arttırmaktadır. Şifrelenmiş ve bilişsel haberleşme teknikleri sunmuş oldukları hızlı 

frekans cevabı ve kurgulanabilirlik gibi kilit rol oynayan özellikleri nedeniyle 

standart yapılara göre avantajları bulunan ve bu özelliklerin gelişimine ihtiyaç duyan 

yapılardır. Bu çalışmada, düşük güç tüketimi ve yüksek frekanslarda çalışma gibi 

günümüz için önem arzeden hedeflere ulaşılabilmesi amacıyla akım modlu 

devrelerden yararlanılarak şifrelenmiş ve bilişsel haberleşme sistemlerinde 

kullanılabilecek kurgulanabilir, çoklu frekans desteği olan ve hızlı frekans cevabı 

olan devre yapılarının önerilmesi amaçlanmıştır.  Bu amaçla devre tasarımları ve 

benzetimleri sırasında tasarım kütüphanesi olarak STMicroelectronics 28nm 

prosesinden yararlanılmıştır. Yapılan tüm bu çalışma 28nm prosesinde gerçeklenmiş 

olması ve endüstriyel uygulamaları hedef alan yapısı nedeniyle önemlidir. Ayrıca, 

kullanılan prosese ait farklı özelliklerdeki elemanların farklı devre yapılarında 

kullanılması ile bu prosese ait davranışların anlaşılması ve bilinen devre 

yapılarındaki davranışlarının gözlenmesi sağlanmıştır. 

Yapılan bu çalışmada öncelikle bilişsel ve şifreli haberleşme standartlarının 

detayları, gereksinimleri ve uygulanmış ve uygulanmakta olan devre çözümleri 

belirlenmiş olup yapılacak çalışmada dikkat edilecek hususlar ve hedefler büyük bir 

titizlikle belirlenmiştir. Yapılan inceleme ve literatür taramaları esnasında da 

tasarlanılacak devre yapıları için uygun uygulama alanları araştırmanın önemli 

noktalarından biri olmuştur. Bilişsel ve şifreli haberleşme sistemleri günümüzde 

özellikle askeri alanlarda önem arzeden haberleşme biçimlerini kapsamaktadır. Bu 

durumdaki temel unsur bu tarz yapıların sunduğu yüksek güvenilirlik ve performans 

ile açıklanabilir. Toplum ve bireylerin kullanmakta olduğu uygulamalar açısından 

düşünüldüğünde ise, uygulamalarını yavaş yavaş görmeye başladığımız bu 

haberleşme biçimleri taşınan içeriğin önem arzettiği durumlarda ve sistem 

performansının vazgeçilemez olduğu uygulamalarda dikkat çekmektedir. 

Günümüzde gittikçe artan bilgiye erişime bağlı kalma isteğiyle beraber kişinin 

güncel hayatında da bu tarz uygulamaların önemi ve görülme sıklığı artmaktadır. 

Burada ortaya çıkan önemli unsur, standartların belirlenmesinde olduğu kadar bu 

standartları destekleyebilen devre yapılarının tasarımıdır. Günümüzde kullanımda 

olan yapılarda çoklu standart desteği ve benzeri başlıklar ayrık devre tasarım ve 

modelleriyle giderilmekte olup kullanılan devrelerin yapısal büyüklük ve 

karmaşıklığını arttırmaktadır. Bu açıdan akademik ve endüstriyel olarak gittikçe 

önem arzeden ve hedeflenen konu, çoklu standart desteğini çok geniş frekans 

aralıklarında destekleyebilen haberleşme devrelerinin tasarlanmasıdır. 
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Endüstri ve akademik çevrelerin ihtiyaç duyduğu çoklu haberleşme standardı desteği 

ve geniş çalışma bantları için devre tasarımı bu çalışmanın temel çıkış noktasını 

oluşturmaktadır. Tasarlanması planlanan yapı, endüstriyel olarak problem arz eden 

haberleşme standardlarına örnek çözüm önerme amacıyla kurgulanmıştır. 

Çoklu standart desteği ve yüksek çalışma frekans aralığının sağlanabilmesi açısından 

akım modlu devrelere duyulan ihtiyaç açıktır. Akım modlu devrelerin seçiminde, bu 

devrelerin gerilim modlu eşlenik devrelere göre kolay tasarımı, yüksek çalışma bandı 

aralıkları, geniş doğrusal çalışma bölgeleri gibi özellikleri sahip olması önemli seçim 

parametrelerini oluşturmuştur. Bu açıdan bu çalışmada akım modlu devre 

yapılarından olan ikinci kuşak akım kontrollü akım taşıyıcı yapılarından 

yararlanılması planlanmıştır. 

İkinci kuşak akım kontrollü akım taşıyıcı yapılarının incelenmesine bu yapıların 

ortak olarak sağladığı temel karakteristiklerin incelenmesiyle başlanmıştır. Devrelere 

ait matematiksel ifadeler ve devre davranışları teorik olarak incelenmiştir. Bu 

yapıların devre tasarımının temel noktası olarak seçilmesindeki ana unsurlardan biri 

de bu devrelerin sağlamış olduğu terminal direnç davranışları ile tamamiyle aktif 

ayarlanabilir devre yapılarına olanak sağlamasıdır. İncelemenin ardından, örnek 

olarak alınan yapılardan öncelikle translineer ikinci kuşak akım kontrollü akım 

taşıyıcı yapısının kendine özgü davranışı incelenmiş ve tamamen CMOS yapılarla 

gerçeklenecek bir yapının sergileyeceği davranışlar matematiksel olarak 

incelenmiştir. Yapılan incelemenin ardından gerek kullanılan tasarım kütüphanesinin 

getirdiği kısıtlar nedeniyle gerekse performans incelemesi nedeniyle dengelenmiş 

ihtiyaç duyulacağı göz önüne alınarak farksal giriş devresi tabanlı tamamen CMOS 

CCCII yapısının incelemesine yer verilmiştir. Bu yapının da ortak CCCII 

davranışlarının üzerine sahip olduğu devreye özgü davranışlara ait ifadeler dikkatle 

incelenmiş ve hedeflenen davranış hakkında bilgi sahibi olunmuştur. 

Tasarlanması planlanan yapıların incelemesinin tamamlanmasının ardından 

devrelerin 28nm CMOS kütüphanesi ile tasarımına geçilmiştir. Öncelikle translineer 

CCCII devresinin tasarımı yüksek geçit kalınlığına sahip yüksek eşik gerilimli 

transistörler kullanılarak yapılmış ve temel karakteristikleri yapılan benzetimler 

yardımıyla gözlenmiştir. Elde edilen karakteristiklerin incelenen devreye ait 

matematiksel ifadelerle eşlendiği gözlenmiş ve tasarımın başarısı gözlenmiştir. 

Yapılan bu benzetimlerin ardında endüstriyel uygulamalarda çok önemli bir yer arz 

eden farklı durum senaryoları (corner) kullanılan tasarım kütüphanesinin belirlediği 

ölçülerde incelenmiştir. Bu durumda incelemede farklı sıcaklık, besleme gerilimi ve 

kutuplama akım sapmalarının devre üzerinde göstereceği etkiler kütüphane 

değişkenlerinin sapmalarına bağlı olarak devre davranışları üzerinde incelenmiştir. 

Translineer devrenin tasarımının ardından dengelenmiş farksal giriş tabanlı CCCII 

yapısının tasarımı proses tarafından öncelikli olarak sağlanan transistör yapıları ile 

gerçeklenmiş ve temel karakteristikleri yapılan benzetimler yardımıyla incelenmiştir. 

Elde edilen davranışların incelenen devreye ait matematiksel ifadelerle bağdaştığı bu 

devre için de gözlendikten sonra devreye ait farklı durum senaryolarına ait 

benzetimler gerçekleştirilmiştir. Yapılan bu benzetimlere ait inceleme ve sonuçlara 

çalışma içerisinde detaylı biçimde yer verilmiştir. 

Kullanılacak olan devre yapılarının tasarımlarının ardından devrelere ait 

uygulamaların seçilmesine ve gerçeklenmesine geçilmiştir. Uygulamaların seçilmesi 

esnasında belirtildiği gibi endüstriyel uygulamalarda konuyla ilgili karşılaşılan 

problemler esas alınmış ve çözüm önerisi sağlanması amaçlanmıştır. Translineer 
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CCCII yapının uygulaması olarak çoklu frekans cevabı destekleyen genel süzgeç 

yapısı seçilmiştir. Tasarlanan süzgeç yapısının davranışları ve çıkışlarında farklı 

süzgeç davranışlarına ait band geçiren, alçak geçiren, yüksek geçiren süzgeç 

karakteristileri gözlenmiştir. Elde edilen davranışların incelemesi sonucunda yapılan 

süzgeç devresine ait matematiksel ifadelerle karakteristiklerin örtüştüğü 

gözlenmiştir. 

Tasarımı yapılan dengelenmiş farksal giriş devresi tabanlı CCCII yapısının 

uygulaması olarak literatürde önerilen kurgulanabilir, frekans atik süzgeç yapısı 

seçilmiştir. Tasarlanacak uygulamanın özellikle endüstriyel uygulamalarda öneminin 

yüksek olmasından dolayı tasarım sürecinde devrenin global yer belirleme 

sistemlerinin farklı protokollerini destekleyen bir yapıya çözüm olarak sunulması 

hedeflenmiştir. Bu hedefle devre tasarımı endüstriyel spesifikasyonlara uygun 

frekans aralıklarını destekleyecek şekilde tasarlanmış, yapının oluşturulmasından 

önce yapının dayandığı temel mantık ve ilkelerden bahsedilmiştir. Daha sonra 

tasarımı yapılan devreye ait benzetimler gerçekleştirilmiş ve devrenin belirlenen 

hedef standart protokollere uygun çalışıp çalışmadığı gözlenmiştir. Yapılan bu 

tasarım uygulaması sonucunda da bilişsel sistemlere olan benzerliğiyle önem arz 

eden küresel yer belirleme sistemlerine dair yeni çözüm hedefleyen yapının çalışması 

sınanmıştır. 

Endüstriyel uygulamalarda tasarımın gerçeklenmesi açısından serim çiziminin önemi 

çok büyüktür. Serim çizimi devrenin kırmık üzerine gerçekleneceği materyallerin 

belirlendiği önemli bir adımdır. Bu açıdan, serim ve serim sonrası benzetimler 

devrenin fikir ve tasarımının gerçek dünyaya uyarlanması için en kilit adım olarak 

düşünülebilir. Tüm bu nedenler göz önünde bulundurularak, gerek endüstriyel önemi 

gerekse kullanılan 28nm kütüphanesine ait gerekli bilgi birikimin elde edilmesi 

amacıyla tasarlanan CCCII yapılarına ait serim çizimleri ve serim sonrası 

benzetimleri bu çalışma içerisinde yapılmıştır. Serim çizimlerinin yapılması sırasında 

kullanılan tasarım kütüphanesinin yeni ve endüstriyel anlamda yerleşikliğinin az 

olması nedeniyle bazı problemlerle karşılaşılmış olsa da sorunlar çözülerek serim ve 

serim sonrası adımların gerçeklenmesi tamamlanmıştır.  

Serim sırasında ve serim sonrası benzetimlerde tasarım kütüphanesi tarafından 

önerilen tüm testler ve benzetim setleri uygulanmıştır. Profesyonel bir endüstriyel 

uygulamada gerçekleştirilen tüm adımlar aynı titizlik ve sırayla gerçeklenmiş ve 

gözlenmiştir. Bu çalışmalara ek olarak, serim çizimi yapılan CCCII yapılarına ait 

davranışların serim öncesi ve serim sonrası karşılaştırmaları özenle yapılmış ve elde 

edilen sonuçlar bu çalışmanın içerisinde yorumlanmıştır. 

Çalışma içerisinde yer alan tüm adımlarda tasarımı yapılan devrelere ait devre 

çizimleri, elde edilen sonuçların grafiksel gösterimleri gibi önemli unsurlar büyük bir 

titizlikle verilmiş, bu şekilde yürütülen çalışmanın adım ve sonuçlarının grafikler 

yardımıyla ön plana çıkarılması ve doğruluğunun gösterilmesi amaçlanmıştır. 

Çalışmanın son kısmında yapılan tüm araştırmalar ve devre tasarımı, serim çizimleri 

ve benzetimlerle ilgili sonuçlar özet şeklinde incelenmiş ve ilerleyen aşamalarda 

devre üzerinde ne gibi iyileştirmelerin yapılabileceği ve ne gibi uygulama alanlarının 

seçilebileceği gibi öngörülerde bulunulmuştur. Yapılmış olan bu çalışma özellikle 

kullanılmış olan tasarım kütüphanesinde yapılan ilk literatür çalışması olması ve 

endüstriyel uygulamalara alternatif devre çözümü sunması nedeniyle önemlidir. 

 

 



xxiv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

1.  INTRODUCTION 

Intensified and complex communication needs cause increasing interest in encrypted 

and cognitive communication techniques [1]. As there is a growing interest in 

implementing multi-standard structures, it is well known that the ease of realization 

and flexibility are not compatible for the designs supporting such communication 

techniques. Circuits used in encrypted and cognitive communication systems have 

some advantages over standard circuits such as, agility and configurability [1]. In 

addition to this, current mode circuits are commonly known with their larger signal 

bandwidth, greater linearity, wider dynamic range, simple circuitry and low power 

consumption [2]. The objective of this thesis is to provide circuits, with lower power 

consumption and higher bandwidth with the aid of current mode circuits, to be used 

in encrypted and cognitive communication systems. 

1.1 Background 

Over the past decades, the continuous and fast growing use of digital 

communication, mobile, computer and network systems has aroused communication 

data security issue concerns where some type of data cryptography is required. 

Furthermore, telecommunications have become an important part of society in this 

period, in economics as well in terms of technological advances. The convergences 

of various communication technologies increase the necessity for more powerful, 

multi-channel and multi-functional terminals. This led to several new technologies 

such as software radio and cognitive radio [3].  

Encouraged by developments in technological part, the explosion of applications in 

areas such as voice, data transmission and multimedia has therefore contributed to 

different corresponding standards [4]. The handling of various standards was firstly 

achieved by specific structures dependent on the standard, which increased the 

number of circuits in the systems supporting multi-functional interfaces. In that 

period, the trend was to handle unique transmission standards with dedicated device 

structures. This trend has now changed due to increased complexity and number of 
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communication standards. Communication devices and circuits should currently be 

able to support multi standards at the same time. These constraints led to 

investigation of circuits supporting multi-standards with quick frequency response, 

wide bandwidth operation, low power consumption and configurability easiness.  

In recent years, the emphasis on current mode circuits has been increased due to the 

advantages of improvements of semiconductor technologies and supremacy of 

current mode circuits over voltage mode circuits such as higher operation frequencies 

and low power consumption. In parallel to this, a three terminal device named 

“second-generation current-conveyor” (CCII) becomes one of the most preferred 

devices in realizing current-mode circuits mainly because it is the counterpart of an 

operational amplifier in current-mode circuits [5]; besides, it has high slew-rate, wide 

bandwidth and large dynamic-range. Afterwards, the next generation circuitry named 

current-controlled current-conveyor (CCCII) fulfills the weaknesses of CCII on 

configurability and tunability which makes current-mode circuits one step further 

than voltage-mode devices in circuit designs.   

With the widespread advances in communication standards and increasing 

complexity, multi-standard supporting agile and configurable circuit structures 

becomes a hot point to be investigated in both academic and industrial eras [6 – 9]. 

Through various pioneering designs, many frequency agile filters supporting multi-

standards have shown up in both literature and in industrial applications. Design of a 

frequency agile, multi-standard supporting, fully active structures to be used in 

system on chips will be the main topic of this project. 

1.2 Previous Work 

The importance of circuits for multi-standards has resulted in lots of literature on the 

subject. Researches on the topic both describe the most important design constraints 

to support multi-standards and multi-functionality. Main stream followed by the most 

of the researches depend on a dedicated circuit design with parameters and values. 

As it can easily be considered, it`s not the optimistic solution for the issue. 

Despite the numerous published documents in the area, there is lack of information 

on configurable design applications to support this kind of multi communication 

standards simultaneously. 



3 

To achieve a fully active solution for multi standard circuit implementations, multi 

standard definitions and constraints in the literature investigated deeply [10 - 13]. It 

is decided to provide a global positioning system application in fully active 

configuration and a universal filter implementation as it was studied in many 

researches [14, 15]. As a fully active analog component CCCII structures 

investigated to have optimum topology for this project [16 -21]. Balanced differential 

pair based CCCII structure and translinear CCCII structures are selected for 

implementations due to constraints and limitations encountered during the use of 

design kit [17, 22, and 23].  

A valuable research done by Fabre and Lakys provides how the problem of multi 

standard support will be solved with the help of current mode, fully active circuit 

topologies. Basically, a feedback loop realized by active element CCCII is used to 

meet functional requirements. By implementing more feedback paths on the circuit, 

it is shown that the frequency agile configurability is possible for more operation 

frequencies. 

Another valuable research done by Liu and Xi provides how the universal filter 

implementation will be done more efficiently with the help of available current 

mode, fully active circuit topologies [24]. By implementing such a universal filter, it 

is shown that the multi type filter responses will be obtained easily with current 

mode topologies as previously presented in the literature [25]. 

1.3 Motivation 

With advances in communication technologies, it becomes a bottleneck to support 

multi functionality without sacrificing any power or area in mobile electronics. 

Improvements in semiconductor process nodes have shown a great support to meet 

such limitations until now. It is fully observable that an extra effort needs to be put 

on design side to balance the pressure on process side. 

Current problems and limitations will be addressed regarding the improvements on 

both design and process sides. The process used in this work is STMicroelectronics` 

28nm CMOS process which is a cutting edge technology has not been commonly 

used in industrial products yet. This process will provide area and power 

improvements to this project easily when compared to other implemented circuits. 
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In this project, it is aimed to use Fabre`s frequency agile, configurable structure with 

this process node by making necessary changes to improve behavior of the circuit. 

Application is chosen as global positioning systems since they are a bunch of 

different standards provided and supported by different nations or associations with 

names: GLONASS, GPS, GALILEO and BEIDOU. 

It is also aimed to use Liu`s universal filter structure as an alternative solution to 

currently available industrial universal filter topologies with the advantages of 28nm 

design process. 

1.4 Outline of Thesis 

This thesis presents design of a balanced differential pair based CCCII design and 

translinear CCCII design at 28nm process node and their possible applications in a 

system on chip current mode, fully active, frequency agile and configurable filter 

design for global positioning systems and in a universal filter implementation. 

Chapter 1 gives the background and main motivation behind the design and reviews 

the related literature. Chapter 2 discusses the encrypted and cognitive communication 

standards and possible application constraints. Chapter 3 presents CCCII circuit 

characteristics and design of translinear CCCII circuit and balanced differential pair 

based CCCII circuit with simulations of the designs. Chapter 4 gives the details for 

the design of universal filter with translinear CCCII circuit. Design of frequency 

agile, configurable filter is discussed and definitions of important parameters are 

given in Chapter 5. Layout and post-layout simulations are detailed in Chapter 6. 

Chapter 7 concludes the thesis and provides future directions to this work. 
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2.  ENCRYPTED AND COGNITIVE COMMUNICATIONS 

2.1 Software Defined Radio 

Software defined radio, or SDR, is a transmission-reception system whose 

characteristics (frequency, bandwidth, modulation, etc.) are controlled and can be 

chosen using computer tools [6, 7].  A software radio is a multi-band radio capable of 

supporting multiple air interfaces and protocols through the use of wideband 

antennas, RF conversion, analog to digital converters (ADCs) and DACs [8].  

Software defined radio consists of hardware parts for execution of communication 

over air interface and the software part to sense, control and model the 

communication standard in an abstract level. Our focus will be more on the hardware 

part for multi-band communication in this project.  

Such a circuit to receive or transmit data in software defined radio structure needs to 

support controllable structure depending on the communication protocol models in 

software part.  This kind of circuit topology is called reconfigurable. 

An effective software radio, both in hardware and in software, thus must make it 

possible to cover common communication frequency range (800MHz – 6 GHz) in a 

continuous way and with a same performance as those required by the already 

existing standards [9]. 

Various approaches are currently used to realize software defined radio functionality. 

According to Mitola [10], the best way is digitizing the totality of the spectrum 

received by the antenna. After then, the signal will be processed. Indeed, such 

structure to overcome the complexity of processing is not feasible with the current 

state of the art structures. So, this approach is not the optimal solution to be 

considered. Alternatively, the receiver part will include parallel structures dedicated 

to different protocols of air interfaces and various standards. In this way, this solution 

results in high number of elements so size, cost and power consumption will 

increase. The most widespread approach currently used for software defined radio is 
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using reconfigurable elements. This approach makes it possible to adapt to any 

standard of radio communication [9]. 

2.1.1 Cognitive radio 

Cognitive radio refers to wireless architectures in which a communication system 

does not operate in a fixed assigned band, but rather searches and finds an 

appropriate band in which to operate [11]. It will be considered as the most elaborate 

level of software radio. The cognitive radio, built on software defined radio, is 

defined as an intelligent wireless communication system that is aware of its 

environment and uses the methodology of understanding-by-building to learn from 

the environment and adapt to statistical variations in the input stimuli, with two 

primary objectives in mind; highly reliable communication whenever and wherever 

needed, efficient utilization of the radio spectrum [12]. 

Cognitive radio needs to adapt its behavior according to the external environments 

situation at the communication period according to the needs of the user. Decision 

parts responsibility is fully on software part and software part will drive the hardware 

part to be configured accordingly. 

An example for the dynamic use of the spectrum shown in Figure 2.1 consists of 

transmitting and receiving in the areas of spectrum which are not used at one given 

time by other users [9]. 

  

Figure 2.1 : Dynamic access to the spectrum of telecommunications [9].  
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2.2 Frequency Hopping Spread Spectrum 

Encryption is the process of transforming information by using an algorithm to make 

it unreadable to anyone except those possessing special knowledge, named as key. 

Encrypted communications have long been used by militaries and governments to 

facilitate secret communication. Encrypted communications are safe communications 

for which various techniques of encodings are applied with the basic aim of 

preventing unauthorized signal reception or making it incomprehensible to 

undesirable receivers. Various encryption techniques are used to make this 

communications not exploitable by an unauthorized receiver [9]. 

The frequency hopping spread spectrum technique (FHSS) spreads data over wider 

bandwidth than the necessary one. Signal broadcasting done over seemingly random 

series of frequencies and receiver hops between frequencies in synchronous with the 

transmitter [13]. This technique was first introduced with an aim of making military 

communications safe [9]. When FHSS used for broadcasting signals, eavesdroppers 

hear unintelligible blips only and jamming on one frequency affects only a few bits. 

An example for the frequency hopping spread spectrum shown in Figure 2.2 gives 

diagrams for channel configuration and channel use during transmission. 

 

Figure 2.2 : Frequency hopping spread spectrum example [13]. 

2.3 Global Positioning as an Example Communication System 

Since the Global Position System (GPS) was first launched by U.S. government and 

widely used in civilian applications, many countries have engaged in developing 
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their own Global Navigation Satellite Systems (GNSS). Currently, in addition to 

GPS, three others exist including GLONASS from Russia, Galileo from Europe and 

Compass/Beidou from China. Possible increase in satellite amounts in coming years 

will bring the opportunities for interoperation between different constellations of 

global positioning systems. So, a receiver structure compatible with all constellation 

signals is favorable, especially for the next generation GNSS applications [14]. 

For the biggest possible versatility of future global navigation systems, including 

GPS, GLONASS, Beidou and Galileo, the modular RF architecture and software 

defined radio concept will be chosen [15]. This is also an important research topic 

currently under investigation by many academic and industrial partners. 

As the software defined radio concept is far further, the design of the RF front end 

part becomes a key technology for such receivers which handle different 

constellations. 

2.4 Common Problems for Realizing Encrypted and Cognitive Communication 

Circuits 

Through the evolution of wireless receivers, the direction continued from inflexible 

but easily realizable architectures to entirely flexible but not easily realizable 

architectures for multichannel communications. Under these circumstances, ease of 

realization always depends on the availability of reconfigurable structures to be used 

in receiver systems. Such architectures require reconfigurable analog elements: LNA, 

local oscillators, mixers and filters [9]. It is not a big deal to find reconfigurable LNA 

and local oscillator structures but, implementation of integrated and easily 

reconfigurable RF filters on a wide frequency range is a more delicate task [9]. 

As we search the software defined radio and cognitive radio part, the software part 

comprises functions that allow an optimal reconfiguration. It is easy to handle 

different communication protocols simultaneously with the aid of a multifunctional 

software structure. On the other hand, if we look at the RF front-end part of the 

software defined radio and cognitive radio structures, it is visible that we need to 

perform analog functionality with reconfigurable components to handle multi 

protocol communications. By the way, realization of integrated and reconfigurable 

RF filters is not an easy thing to do. 
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All in all, when we check the current implementations and possible future topologies 

for the multi-functional, multi-protocol communications, it is obvious that the design 

of the integrated and reconfigurable RF filters is the most critical part to be 

investigated. 
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3.  DESIGN OF CCCII 

Nowadays, current mode circuits have been receiving significant attention in analog 

circuit design. A useful function block for high frequency current mode applications 

is a current conveyor. The current conveyor is a three terminal device performing 

many useful analog signal processing functions when the device is connected with 

other electronic elements in specific circuit configurations.  

The first generation current conveyor (CCI) was proposed by Smith and Sedra in 

1968 [16] and the more versatile second generation current conveyor (CCII) was 

introduced by the same two authors in 1970 [17], as an evolved version of their first 

generation conveyor. In 1996 were introduced current controlled conveyors that are 

an evolution of previous CCII [18, 19]. The introduction of the second-generation 

current controlled current conveyor (CCCII) responded the main drawback in lacking 

of electronically tunable feature of CCII by utilizing the parasitic floating intrinsic 

terminal resistance at port X [18, 19], which can be tuned electronically by adjusting 

the bias current. 

3.1 The Principle of CCCII 

Classically, the core of CCCII is simply the mixed translinear-loop, which is 

implemented originally in BJT and later in MOSFET. Translinear structure will be 

satisfied with different circuit topologies. So, our aim in this section is to give the 

principle of CCCII. 

The operation of CCCII± can be described by the following equation [19]: 
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(3.1) 

The current output at port Z(iz) that is conveyed from the input current at port X(ix) is 



12 

expressed as [19]: 
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(3.2) 

As it can be easily derived from the formulas, the CCCII based applications can be 

realized resistor-free and tunable by utilizing terminal resistance Rx as the adjustable 

circuit’s parameters. 

The ideal equivalent circuit of CCCII is displayed in Figure 3.1 for better 

understanding.  

 

Figure 3.1 : Ideal equivalent circuit of CCCII [20]. 

The practical equivalent circuit of CCCII due to transistor non-idealities is given in 

Figure 3.2. 

 

Figure 3.2 : Approximate practical equivalent circuit of CCCII [20]. 
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The approximated practical equivalent CCCII due to imperfect transistor behavior 

and non-idealities will be formulated with formula 3.3 [21] where parasitic 

admittances at port Y and Z are Yy(s) and Yz(s), current and voltage gain are α(s) and 

β(s), frequency dependent terminal resistance is Zx(s). 
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3.2 CCCII Topography Used in Fabre’s Circuit 

The schematic implementation of the second generation controlled conveyor which 

is used by Fabre and his team is shown in Figure 3.4. It uses the mixed translinear 

loop of Figure 3.3. Two current mirror implementations allow the mixed loop to be 

dc biased by the bias current I0. The general matrix relationship written for the 

second generation current conveyor will also be valid for the circuit topology used by 

the team. 

A negative current transferring version of the current conveyor will be obtained 

easily, by only adding two cross coupled current mirrors in order to reverse the sign 

of the current iz(t) [19]. 

 

Figure 3.3 : Schematic from of the mixed translinear loop [19]. 
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Figure 3.4 : Schematic implementation of CCCII used by Fabre [19]. 

The mixed translinear loop, shown in Figure 3.3 and placed in CCCII circuit in 

Figure 3.4 contains two PNP`s and two NPN`s transistors. The behavior is 

characterized by the translinear relationship between the collector currents of the 

transistors and this relationship shows that the output small signal resistance of the 

equivalent voltage follower, is equal to [19]: 

02/ IVR Tx   (3.4) 

Briefly, the resistance will be able to be controllable by adjusting on the bias current 

of the loop. As a basic modes of operation of the circuit, when the port Y of the non 

inverting CCCII is grounded and the port X constitutes the input port of the circuit, 

the output current is then given by [19]: 
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It is clear from the given formula that the value of output current is controllable by 

the bias current. 

3.3 Design of Fully CMOS Translinear  CCCII Circuit 

The translinear CCCII circuit is implemented with the bulk CMOS process in the 

initial feasibility period and the implementation did not satisfy operation conditions 

due to low supply voltages supported by regular process transistors. Afterwards, the 

circuit is designed with STMicroelectronics 28nm 28A GO2 CMOS process which 

supports ±0.90V supply voltages. This process has specific gate oxide materials and 

thickness to support higher supply voltages for different operations. This 1.8V supply 

voltage is the upper limit allowed for the operation in this CMOS process provided 

by STMicroelectronics. 

The designed mixed translinear fully CMOS CCCII structure is displayed in Figure 

3.5. 

 

Figure 3.5 : Fully CMOS translinear CCCII circuit. 
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MOSFETs W/L ratios are listed in Table 3.1 based on common channel length 

600nm. This length is chosen because minimum allowed channel length for GO2 

process is 150nm. 

Table 3.1 : Transistor ratios of translinear CCCII. 

Transistor W/L Ratio 

Mp1-Mp4 

Mp5-Mp6 

15 

30 

Mn1-Mn2 10 

Mn3-Mn7 5 

 

3.3.1 Main characteristics of designed CCCII circuit 

In order to verify the translinear CMOS CCCII architecture that is explored in 

previous section, Spectre simulator is used. It is a part of the Cadence package. 

Design kit of the STMicroelectronics 28nm GO2 process was used. Different 

simulation setups were used for different behavior analysis. 

The translinear CCCII circuit`s characteristic of Rx relating to 10µA bias-current is 

presented in Fig. 3.6. Its frequency-dependence can be clearly seen from the 

following figure. 

 

Figure 3.6 : Rx based on I0=10µA. 

Observing Figure 3.6, the resistance value seen on port x remains flat up to 1.37GHz 

frequency values. This operating frequency will be efficient for many application 

areas. 
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Figure 3.7 : Rx vs bias current. 

Figure 3.7 emphasizes the bias current and resistance value at port x relationship 

with respect to different bias current values. The behavior is clear that when bias 

current increases, resistance value at port x decreases. This behavior is also 

compatible with the given equations. 

 

Figure 3.8 : The voltage transfer and voltage-current characteristics of translinear 

CCCII. 

In Figure 3.8, the voltage transfer characteristics of the translinear CCCII structure 

are plotted. Additionally, the V-I characteristic of the input voltage versus the input 
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current at port X is given in the same figure. This behavior verifies the current-

voltage and voltage-voltage following behaviors given by the equations. 

 

Figure 3.9 : The small-signal characteristic of the current transfer gain. 

The small-signal current transfer gain characteristic of the designed translinear 

CCCII circuit is plotted in Figure 3.9. The 3-dB bandwidth of current gain for 10µA 

bias-current can be approximately read as 375 MHz. 

At given bias current conditions, the frequency characteristics of the designed circuit 

in operation can be assumed to be dominated by terminal resistance bandwidth. This 

can be also referred as open loop bandwidth of the circuit. 

 

Figure 3.10 : Transient current transfer characteristic between ports X and Z. 
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The transient current follow between port Z and X is shown in Figure 3.10 for 

100MHz, 10µA amplitude signal input. 

In parallel to all characteristics, power consumption of the circuit is observed as 

17.54µW. 

Briefly, after observing main large and small signal behaviors of the designed 

translinear CCCII circuit, it is very visible that the designed structure is suitable for 

high frequency applications with the advantages of high end process node of 28nm. 

3.3.2 Corner simulation characteristics of designed translinear CCCII circuit 

In modern circuit design, as it was before, investigation of the circuit behavior with 

respect to design itself and additional variables is very important to prevent 

unwanted behaviors before mass production. For the sake of design behavior, 

parasitic variables of the process and additionally defined variables such as, working 

temperature, voltage and current changes are tested over the circuit and their effects 

on the performance observed during verification period. 

Corner simulation for the designed translinear CCCII circuit is executed to see circuit 

behavior under industrial working case specifications. These cases are commonly 

used scattering examinations of supply voltage, bias signals and environmental 

variations in addition to process related changes. In the simulations, in addition to the 

default process variables scattering, temperature max-min variables defined as -40˚C 

and 110˚C, bias current scattering factor is defined as %25, which leads to 7.5µA and 

12.5µA for a 10µA bias current and finally supply voltage scattering factor is defined 

as ±0.85V and ±0.95V for a ±0.9V supply voltage. 

As an important point to mention, the rule sets defined for the corner case 

simulations will be improved with additional parameters and restrictions of the 

standards.  

Figure 3.11 shows the resistance behavior seen at port x over frequency with respect 

to all defined corner cases. The resistance value seen on port x takes the maximum 

value 10.02kΩ that remains flat up to 3.10GHz for 7.5µA bias current, ±0.85V 

supply voltage, 110˚C temperature and 3.94kΩ that remains flat up to 7.53GHz for 

12.5µA bias current, ±0.95V supply voltage, -40˚C temperature. 
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Figure 3.11 : Rx of translinear CCCII based on 72 different corners. 

The large signal characteristics of the designed translinear CCCII structure are 

simulated again for 72 different corners to observe and review the behavior of the 

circuit. In Figure 3.12, the voltage transfer characteristics are plotted. 

As it is seen in Figure 3.12, maximum dynamic range linearity is observed for 

12.5µA bias current, ±0.95V supply voltage, 110˚C temperature and minimum 

dynamic range linearity is observed for 7.5µA bias current, ±0.85V supply voltage, -

40˚C temperature. 

 

Figure 3.12 : The voltage transfer characteristics of translinear CCCII for corner 

analysis. 

Observing Figure 3.12, maximum offset voltage seen at port x for zero input voltage 

is 28.43mV for operating conditions 7.5µA bias current, ±0.95V supply voltage, 
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110˚C temperature and minimum offset voltage seen at port x for zero input voltage 

is 11.2mV for 7.5µA bias current, ±0.85V supply voltage, -40˚C temperature. 

The characteristic of the input voltage versus the input current at port X is shown in 

Figure 3.13 for the mentioned corner cases. Maximum offset current flowing through 

port x is observed as 5.14µA for operating conditions at 12.5µA bias current, ±0.95V 

supply voltage, 110˚C temperature. Minimum offset current flowing through port x is 

observed as 1.54uA for operating conditions at 7.5µA bias current, ±0.85V supply 

voltage, -40˚C temperature. 

As an additional investigation, operating condition that allows maximum current 

flow at port x will be observed as 12.5µA bias current, ±0.95V supply voltage, -40˚C 

temperature. At this operating condition maximum current observed at positive 

supply is 26.24µA and at negative supply 14.82µA. In the meantime, operating 

condition that allows minimum current flow at port x will be observed as 7.5µA bias 

current, ±0.85V supply voltage, -40˚C temperature. At this operating condition 

maximum current observed at positive supply is 12.46µA and at negative supply 

7.70µA. 

 

Figure 3.13 : The voltage current (Vy-Ix) characteristics of translinear CCCII for 

corner analysis. 

The small-signal current transfer gain characteristic of the designed translinear 

CCCII circuit is plotted in Figure 3.14 for the mentioned corner cases. As it can 

easily be seen from the graph, low frequency operation is less affected by the corner 

cases and high frequency operation or bandwidth is affected more. 
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Figure 3.14 : The frequency current (Iz/Ix) characteristics of CCCII for corner 

analysis. 

Maximum value observed for current transfer ratio is -346mdB for 7.5µA bias 

current, ±0.95V supply voltage, -40˚C temperature and minimum value observed for 

current transfer ratio is -598mdB for 7.5µA bias current, ±0.85V supply voltage, 

110˚C temperature. Moreover, the 3-dB bandwidth of current gain for different cases 

can be approximately read as maximum 5.34GHz for 12.5µA bias current, ±0.95V 

supply voltage, -40˚C temperature and it is read as minimum 2.15GHz for 7.5µA 

bias current, ±0.85V supply voltage, 110˚C temperature. 

3.4 Balanced Differential Pair Based CCCII Circuit 

During the initial feasibility phase of the design, different circuit topologies are 

investigated in details. In the implementation phase, it is seen that the supply 

voltages of 28nm process will limit the maximum number of elements to be placed 

rail-to-rail. Especially, default transistors` saturation voltage level scaling is not at 

the expected level when compared to supply voltage scaling. According to this, 

common topologies suffer from unsatisfied operation conditions and that leads us to 

find and use a topology which satisfies our limitations. 

The balanced differential pair based CCCII circuit is the improved version of 

unbalanced modified differential pair CCCII circuit [22]. The asymmetric dynamic 

range property of the previous circuit is reduced with this balanced structure by 

adding a dedicated Y-Branch for producing output as the structure in Figure 3.15, 

which is also operated as CCCII+ [22]. 
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Figure 3.15 : Balanced differential-pair CMOS CCCII+ [22]. 

The current-relationship between port X and Z of the balanced differential-pair 

CCCII can be expressed as [22]: 

znpnpx iiiiii  3442  (3.6) 

The output resistance of any Z-port of the balanced differential-pair  CCCII is simply 

characterized based on the attached MOSFETs as [22]: 

)/(1 NMOS

ds

PMOS

dso ggr   (3.7) 

The terminal resistance (rx) is still dependent on the transconductance of NMOS 

differential-pair (gmd), which can be expressed as [22, 23]: 

o

n

n

oxnmdxyxx I
L

W
CgivvR /1/1/)(   (3.8) 

Lastly, in the balanced differential-pair structure, as Vx>>Vy, Mn1 and Mn2 are 

virtually off, while nearly conduct whole bias-current when Vx<<Vy. Therefore max

XI  

and min

XI can be approximated to equation 3.9 [22]: 
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2

0minmax I
II xx   (3.9) 

Therefore, the estimation of symmetrical dynamic-range of the balanced structure is 

[22]: 

)/(
L

W
CIV oxnoXY   (3.10) 

From the given equations of the circuit, it seems feasible for the implementation. 

3.5 Design of Balanced Differential Pair Based CCCII 

The balanced differential-pair CCCII structure is realized as stated in literature [22], 

with two Z+ output ports to provide design flexibility in frequency agile filter 

implementation. It is also possible to add inverted outputs or more non-inverting 

outputs under some constraints [22].  

The circuit is designed with STMicroelectronics 28nm CMOS process default 

transistors, ±0.5V supply voltages and simulations are held by Spectre. Minimum 

length of the transistors used in the design is selected as 120nm, which is 4 times of 

the minimum allowed value 30nm, to increase finite output resistance values.  

The designed balanced differential-pair MOSFET CCCII structure is displayed in 

Figure 3.16. As it was previously mentioned, structure consists of the transistors M1, 

M4, M11 and M12 is added to obtain second Z output from the basic structure. The 

mentioned transistors are also configured with the related aspect ratios to prevent any 

inconsistency between two Z output ports. 

MOSFETs W/L ratios are listed in Table 3.2 based on common channel length 

120nm. 

Table 3.2 : Transistor ratios of balanced differential pair based CCCII. 

Transistor W/L Ratio 

M1-M6 20 

M7-M10 30 

M11-M16 50 
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Figure 3.16 : Designed balanced differential-pair CCCII structure with two Z ports. 

3.5.1 Main characteristics of designed CCCII circuit 

In a general CCCII structure, many specifications are considered when describing its 

overall performance. Since the thesis is mainly concerned with the frequency agile 

filter implementation of the balanced differential pair CCCII structure, important 

properties will be covered. 

In order to verify the balanced differential pair based CCCII architecture that is 

explored in previous section, Spectre simulator is used. It is a part of the Cadence 

package. Design kit of the STMicroelectronics 28nm process was used with default 

defined GO1 transistors. Every simulation characteristic is observed with the 

dedicated simulation setups of the designed circuit. 

The characteristic of Rx relating to 10µA bias-current is presented in Fig. 3.17. Its 

frequency-dependence can be easily approximated by a model having one real zero 

and a pair of complex poles. 

Observing Figure 3.17, the resistance value seen on port x remains flat up to 

1.45GHz frequency values, which is very efficient for our application range. 
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Figure 3.17 : Rx based on I0=10µA. 

The large signal characteristics are simulated again at 10µA bias-current to prove the 

compatibility of the used balanced differential pair based structure and the CCCII 

theorem. 

 

Figure 3.18 : The voltage transfer and voltage-current characteristics of CCCII. 

In Figure 3.18, the voltage transfer characteristics are plotted, which is showing the 

exact voltage following performance of Y and X. Additionally, the V-I characteristic 

of the input voltage versus the input current at port X is revealed in the same figure. 
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This behavior verifies the approximated balanced dynamic range and very low offset 

voltage. 

The small-signal current transfer gain characteristic of the designed CCCII circuit is 

plotted in Figure 3.19. The 3-dB bandwidth of current gain for 10µA bias-current can 

be approximately read as 1.85GHz. 

 

Figure 3.19 : The small-signal characteristic of the current transfer gain. 

At corresponding bias current, the frequency characteristics of the designed circuit in 

operation can be assumed to be dominated by terminal resistance bandwidth. This 

can be also referred as open loop bandwidth of the circuit. 

The transient current follow between port Z and X is shown in Figure 3.20 for 

500MHz signal input. 

As it can be observed easily, current transfer behavior of the circuit is satisfactory up 

to high frequency values. 

In parallel to all characteristics, power consumption of the circuit is observed as 

34.08µW. 

All in all, after observing main large and small signal behaviors of the designed 

CCCII circuit, it is very clear that it is suitable for high frequency applications with 

the advantages of high end process node of 28nm. 
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Figure 3.20 : Transient current transfer characteristic between ports X and Z. 

3.5.2 Corner simulation characteristics of designed CCCII circuit 

Corner simulation for the designed CCCII circuit is also executed to see circuit 

behavior under industrial standards. To do this, in addition the default process 

variables scattering, temperature max-min variables defined as -40˚C and 110˚C, bias 

current scattering factor is defined as %25, which leads to 7.5µA and 12.5µA for a 

10µA bias current and finally supply voltage scattering factor is defined as %10, 

which leads to ±0.45V and ±0.55V for a ±0.5V supply voltage.  

In order to verify the balanced differential pair based CCCII architecture that is 

explored in previous sections, 72 different corners are obtained with the 8 different 

corners defined over temperature, supply voltage and bias current. Other 9 variables 

are related to rcmax and rcmin scatterings with respect to process variables. 

The characteristics of Rx relating to corner analysis results are presented in Fig. 3.21. 

Observing Figure 3.21, the resistance value seen on port x takes the maximum value 

13.14kΩ that remains flat up to 2.10GHz for 7.5µA bias current, ±0.45V supply 

voltage, 110˚C temperature and 5.35kΩ that remains flat up to 5.10GHz for 12.5µA 

bias current, ±0.55V supply voltage, -40˚C temperature. 
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Figure 3.21 : Rx based on 72 different corners. 

The large signal characteristics of the designed balanced differential based CCCII 

structure are simulated again for 72 different corners to observe and review the 

behavior of the circuit. 

In Figure 3.22, the voltage transfer characteristics are plotted, which is showing the 

exact voltage following performance of Y and X for corners. 

 

Figure 3.22 : The voltage transfer characteristics of CCCII for corner analysis. 

This figure verifies the approximated balanced dynamic range and very low offset 

voltage for different cases.  
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Maximum dynamic range linearity is observed for 12.5µA bias current, ±0.55V 

supply voltage, 110˚C temperature and minimum dynamic range linearity is observed 

for 7.5µA bias current, ±0.45V supply voltage, -40˚C temperature. 

Observing Figure 3.22, maximum offset voltage seen at port x for zero input voltage 

is 13.6mV for operating conditions 7.5µA bias current, ±0.55V supply voltage, 

110˚C temperature and minimum offset voltage seen at port x for zero input voltage 

is 177µV for 12.5µA bias current, ±0.45V supply voltage, -40˚C temperature. 

The characteristic of the input voltage versus the input current at port X is revealed in 

Figure 3.23 for the emphasized corner cases. Maximum offset current flowing 

through port x is observed as 1.8µA for operating conditions at 12.5µA bias current, 

±0.55V supply voltage, 110˚C temperature. Minimum offset current flowing through 

port x is observed as 24nA for operating conditions at 12.5µA bias current, ±0.45V 

supply voltage, -40˚C temperature. 

 

Figure 3.23 : The voltage current (Vy-Ix) characteristics of CCCII for corner 

analysis. 

As an additional investigation, operating condition that allows maximum current 

flow at port x will be observed as 12.5µA bias current, ±0.55V supply voltage, 110˚C 

temperature. At this operating condition maximum current observed at positive 

supply is 17.46µA and at negative supply 13.42µA. In the meantime, operating 

condition that allows minimum current flow at port x will be observed as 7.5µA bias 
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current, ±0.45V supply voltage, -40˚C temperature. At this operating condition 

maximum current observed at positive supply is 6.79µA and at negative supply 

4.89µA. 

The small-signal current transfer gain characteristic of the designed CCCII circuit is 

plotted in Figure 3.24 for the mentioned corner cases. Maximum value observed for 

current transfer ratio is -368mdB for 7.5µA bias current, ±0.55V supply voltage, -

40˚C temperature and minimum value observed for current transfer ratio is -668mdB 

for 7.5µA bias current, ±0.45V supply voltage, 110˚C temperature. Additionally, the 

3-dB bandwidth of current gain for different cases can be approximately read as 

maximum 3.75GHz for 12.5µA bias current, ±0.55V supply voltage, -40˚C 

temperature and it is read as minimum 1.51GHz for 7.5µA bias current, ±0.45V 

supply voltage, 110˚C temperature. 

 

Figure 3.24 : The frequency current (Iz/Ix) characteristics of CCCII for corner 

analysis. 
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4.  UNIVERSAL FILTER APPLICATION 

In this section, the design and implementation of a universal filter with translinear 

dual output CCCII will be discussed in details. This application is selected for the 

designed CCCII structure to demonstrate current mode operation of the circuit 

effectively. In addition to this, the designed second order universal filter will be 

suitable in a wide range of IC technologies because of the absence of external 

resistors, its electronically adjustable behaviors and smaller number of active and 

passive elements used in the design. 

The designed filter will provide compactness for different types of filters in a single 

structure, that makes the circuit a great alternative to currently used bigger, passive 

and multi element designs. 

4.1 Design of Filter 

In this study, it is targeted to provide a universal filter implementation for multi type 

filtering responses to be used as a compact alternative to available passive filter 

structures. In this part of the study, implementation of the universal filter will be 

discussed in details. 

The universal filter used in this study is based on the proposed structure by Xi and 

the team [24]. The concept and the theory of the designed circuit will be shortly 

described in th following paragraphs to obtain mentioned universal filter. 

The schematic representation of the implemented new universal filter with single-

input, triple-output emloying only four elements is presented in Figure 4.1 [24]. 

 

Figure 4.1 : Current-mode universal filter [24]. 
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As it can be easily derived from the given figure, the filter contains only two 

capacitances as passive elements and does not require any additional any passive 

resistance. 

Node equations are the starting points to extract characteristic of the designed filter. 

This structure can be characterized by the following expressions [24]:  
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From the given expressions, bandpass, lowpass and highpass filter response 

functions of this circuit will be given as follows [24]: 
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The designed universal filter structure also produces band reject and all pass filter 

responses simultaneously with the other responses as given in the following 

equations [24]: 
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For the designed universal filter topology, the natural frequency and the quality 

factor equations can be given as [24]: 
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The implemented design will satisfy and provide the functionality of the given 

expressions 4.1 to 4.7. It is aimed in this thesis to provide an example application 

case for translinear CCCII usage. 

4.1.1 Second order universal filter design 

In this part of the thesis, second order universal filter design steps will be covered 

and detailed. Since the structure needs dual output CCCII structures as shown in 

Figure 4.1, an adapted version of the CCCII with dual outputs is designed as shown 

in Figure 4.2.  

 

Figure 4.2 : Dual output CMOS CCCII structure. 
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In the designed structure, aspect ratios of the MOSFETs used in the additional part 

are same as the ratios of the mirrored transistors.  

As it is investigated in previous section, implemented filter produces bandpass, 

lowpass, highpass, band reject and all pass responses simultaneously with respect to 

given expressions. 

The main important advantage of the filter is that it provides universal filter behavior 

with triple output by employing only four elements and not any additional passive 

resistance. 

4.1.1.1 Main characteristics 

The universal filter structure in Figure 4.1 is implemented in the 28 nm CMOS GO2 

technology from STMicroelectronics same as the translinear CCCII and dual output 

CCCII circuit. The CCCII structure shown in Figure 4.2 was used and the filter 

circuit is biased under ±0.9V which is the original supply voltage supported by GO2 

process. Common bias current for two dual output translinear CCCII circuits is 

chosen as 10µA. 

The validity of the designed universal filter is verified using Spectre environment. 

For these simulations, capacitance values are selected to have square shaped 

capacitances for matching issues, as 3.96pF. Figures given in the following 

paragraphs show different filter responses observed simultaneously at different ports 

of the filter. 

 

Figure 4.3 : Lowpass frequency response of second order universal filter. 
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From the given figure, it is clear that the frequency response of the filter is lowpass 

and its gain in pass band is nearly 0.93. Observed behavior is not perfect but will be 

used efficiently for filtering purposes with adjustments. 

 

Figure 4.4 : Bandpass frequency response of second order universal filter. 

Figure given above demonstrates a bandpass behavior which is obtained 

simultaneously from the implemented filter output. Its pass band gain is nearly 1.07 

and filtering bands are appropriate for second order filtering. 

As an other investigation, implemented filter also provides highpass frequency 

response which is shown in the following figure. Again, passband gain of the filter is 

efficient enough to be used for dedicated purposes. 

 

Figure 4.5 : Highpass frequency response of second order universal filter. 
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As it is stated in the definition section for the universal filter, it is important to notice 

that, filter provides simultaneous compact frequency responses for different types of 

filters. Three main filter responses shown and allpass and notch filter responses will 

also be obtained from the node operation combinations of the mentioned main 

responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

5.  FREQUENCY AGILE FILTER APPLICATION 

In this part of the thesis, the design and implementation of the frequency agile filter 

will be discussed in details. Before focusing on the design, some specific properties` 

definitions will be given to prevent any misunderstanding of these advantageous 

behaviors. 

The range of adjustment of the center frequency 0f  of the filters is defined in several 

ways by various researchers and authors. Among all, one definition is very clear and 

easy to use as a step for further declarations [9]. By supposing that the center 

frequency 0f  is adjustable between two values noted min0f  and max0f , we will call n 

the ratio [25]: 

n
f

f


min0

max0  (5.1) 

The convention “n:1” is also often used to denote expression (5.1). In order to 

express the range of adjustment of frequency 0f  appropriately, it is also necessary to 

provide the frequency value of min0f  and max0f  [9]. For instance, two adjustable 

filters that have a range n:1 are not equivalent if the values of min0f  are different 

(100MHz and 1GHz, for example). 

5.1 Tunability, Reconfigurability and Agility 

The concepts of tunability and reconfigurability, especially in filter design, are very 

often used interchangeably in the literature [9]. With respect to this, it is very 

necessary to build a definition for the concept of reconfigurability and tunability. A 

tunable filter can be defined as a filter whose tuning of 0f  is carried out only very 

close to 0f  and its prior aim is to compensate drifts related to thermal, technological 

and etc parameters. On the other hand, in a reconfigurable filter, the tuning of the 0f  
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frequency is expected to be carried out over a very wide range of frequency when 

compared to a tunable filter [3]. 

To overcome the problem of using definitions interchangeably, a stable definition is 

provided by Fabre and his team. According to this definition, a tunable filter is a 

filter for which the tuning range is lower than 2:1; i.e. min0max0 2 ff   and a 

reconfigurable filter is a filter for which the tuning range is higher than 2:1, which 

leads to min0max0 2 ff   [3]. It’s also important to note down that to be completely 

reconfigurable, a filter must have an adjustable quality factor [3]. 

Apart from the definitions of reconfigurable and tunable, it is also necessary to 

define agility concept. Agility will be defined as the property of hopping between 

two consecutive frequencies 1f  and 2f  very quickly during the transmission of the 

signal, without any prevention on the signal processing [3]. According to this, a 

frequency agile filter will be a reconfigurable filter with the property of agility. Such 

a filter is perfect candidate to be used in cognitive radio and encrypted 

communication systems.  

5.2 Design of Filter 

It’s aimed in this thesis to provide a new application solution for multi band 

communication systems, especially global positioning. To realize the possibility, a 

frequency agile structure is extremely needed to quickly reply to the needs of five 

bands containing global positioning systems, GPS, Glonass, Galileo, Beidou, GNSS. 

In this part of the thesis, frequency agile filter implementation will be discussed in 

details. 

The implementation of the frequency agile filter is based on the proposed structure 

by Fabre and the team [4]. In the following paragraphs, the theory making use of 

voltage mode circuits and current mode circuits will be briefly given to obtain the 

agile filters. 

The structure is mainly based on a classical second order filter structure with two 

different outputs at least: band-pass and low-pass [3]. Figure 5.1 shows the classical 

voltage mode second order filter circuit with two outputs. This cell is called as class 
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0 filter which is the basic element for the implementation of a frequency agile filter 

[9]. 

 

Figure 5.1 : Basic second order filter including two different outputs [4]. 

The input voltage of the filter is inV , its band pass and low pass outputs are BPV  and

LPV . Transfer functions for the two outputs are [4]: 
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The values of the constants a, b, a` and d` allow us to determine the characteristic 

parameters of the filter. In these equations, a and b are real positive constants to 

ensure stability of the filter and we also suppose that a` and d` are real positive 

constants [4]. 

Table 5.1 summarizes the characteristics of the starting filter shown in Figure 5.1.  

Table 5.1 : Characteristic parameters of the filter in figure 5.1. 

 Basic Circuit 

Center frequency 
b

f
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BP: -3dB Bandwidth 
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As a reminder for the equations given for the basic filter, generally the gains of the 

two outputs will be greater than or equal to unity, i.e. a`≥a and d`≥1. 

Figure 5.2 shows the new second order frequency agile filter circuit obtained from 

the basic cell given by Figure 5.1. It is called by the team as class 1 frequency agile 

filter [9]. The main difference of this implementation with respect to the basic design 

is the amplification of the low pass output with an adjustable gain A and its addition 

to the input voltage of the previous filter structure. 

 

Figure 5.2 : Frequency agile filter made from the basic cell [9]. 

The new input voltage of the filter is then EV  and the circuit includes the same two 

outputs: BPV  and LPV . 

Figure 5.3 shows the necessary modifications of the (n-1) class agile filter block. 

 

Figure 5.3 : Necessary modifications of the (n-1)
th

 class agile block [9]. 
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The input signal of the new circuit is now given by the formula .LPINE AVVV   Its 

corresponding tranfer function for the band pass output is then: 
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Table 5.2 summarizes the characteristics of the agile filter shown in Figure 5.2 and 

5.3. 

Transfer functions of the agile filter indicates that the new circuit will be stable 

provided that (1-Ad`) remains positive according to the Routh-Hurwitz criterion. 

Table 5.2 : Characteristic parameters of the frequency agile filter. 
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b
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5.2.1 Class 2 frequency agile filter design 

In this study, an agile filter at the class 2 for negative values of A is chosen for 

implementation. Since the gain of the amplifier is negative, 01'1  AAd , the 
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center frequency Anf0  of the circuit shown in Figure 5.4 is greater than the center 

frequency 0f  of the starting filter.  

 

Figure 5.4 : Class 2 frequency agile filter with A<0 [4]. 

The different feedbacks will be possibly achieved by single or multi current 

conveyors(CR) at feedback line. Figure 5.5 shows the corresponding agile filter at 

the class 2 with multiple feedback current conveyors. 

 

Figure 5.5 : Class 2 frequency agile filter with A<0 and multiple feedback CR. 
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Note that no more passive elements added to have agile filter for different center 

frequencies. The band pass output remains the same and the center frequency for any 

feedback will be: 

00 )1( fAf An   (5.6) 

One important advantage of the filter is, the output current is obtained at high 

impedance so, various elementary cells of Figure 5.5 can be connected in cascade 

without any need for any additional stage. 

5.2.1.1 Main characteristics 

The frequency agile filter structure in Figure 5.5 is implemented in the 28 nm CMOS 

technology from STMicroelectronics same as the CCCII circuit.  

The CCCII structure investigated in section 3 was used and the filter circuit is biased 

under ±0.5V. Adjustment current QI is used to adjust center frequency gain of the 

circuit at 0dB. Common bias current for all implemented CCCII circuits is chosen as 

10µA. 

Frequency agile filter is exercised with different feedback values and Figure 5.6 to 

Figure 5.11 show different frequency responses obtained for the filter varying the 

position of the switches K1 to K3. 

From the given figures, it is clear that the behavior is band pass and obtained 

response is the main frequency characteristic to be adjusted by the feedback paths. 

 

Figure 5.6 : Frequency response of class 2 filter without feedback. 
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Figure 5.7 : A closer look to frequency response of class 2 filter without feedback. 

Figure 5.8 and Figure 5.9 show feedback applied class 2 frequency agile filter 

frequency response. Feedbacks are applied with same currents in this case which 

made the feedback paths three times the same feedback. 

 

Figure 5.8 : Frequency response of class 2 filter with three times the same feedback. 

 

Figure 5.9 : A closer look to frequency response of class 2 filter with three times the 

same feedback. 
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Figure 5.10 and Figure 5.11 show feedback applied class 2 frequency agile filter 

frequency response with dedicated current feedbacks. Feedbacks are applied with 

different currents in this case which made the feedback paths dedicated. 

 

Figure 5.10 : Frequency response of class 2 filter with dedicated current feedbacks. 

 

Figure 5.11 : A closer look to frequency response of class 2 filter with dedicated 

current feedbacks. 

From the given figures, it is clear that the class 2 frequency agile filter response is 

obtained successfully for four different center frequencies. The best approach in this 

implementation is the structure obtained with dedicated current feedback paths. This 

is the more realistic structure to be implemented in an integrated circuit.  

From the given investigations and the results obtained, it is clear that the structure is 

easily to implement and configure according to the needs of standard specifications. 
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5.2.2 Fourth order class 2 frequency agile filter design 

In this study, a 4
th

 order agile filter at the class 2 for negative values of A is chosen 

for implementation. This implementation is selected to provide an alternative 

solution to an industrial global positioning system filter which fully passive and 

currently in use. 

The theoretical implementation in Figure 5.4 and practical implementation in Figure 

5.5 is the main element of the designed filter. Cascaded connected class 2 filter 

topology is used for having a more compact and configurable structure which is also 

easy to adapt for various orders of filters. Implemented structure in block schema is 

shown in Figure 5.12. Each block in the figure represents the main block which is 

investigated deeply in previous section. 

 

Figure 5.12 : Block schema of 4
th

 order class 2 frequency agile filter. 

Note that the filter consist of 4 cascaded main elements and all given formulas for the 

main structure are still valid, only order of filter increased with the given 

implementation. Moreover, no more passive elements added to have agile filter for 

different center frequencies again. The band pass output remains the same and the 

center frequency for any feedback will be as given in formula 5.6. 

5.2.2.1 Main characteristics 

The 4
th

 order class 2 frequency agile filter structure in Figure 5.12 is implemented in 

the 28 nm CMOS technology from STMicroelectronics same as the CCCII circuit. 

The balanced differential pair based CCCII structure investigated in section 3 was 

used and the filter circuit is biased under ±0.5V. Adjustment current QI is used to 

adjust center frequency gain of the circuit at 0dB. Common bias current for all 

implemented CCCII circuits is chosen as 10µA. 

4
th

 order class 2 frequency agile filter is exercised with different feedback values and 

Figure 5.13 shows 4
th

 order frequency responses obtained for the filter varying the 

position of the switches K1 to K3 with different feedback current values. 
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Figure 5.13 : A closer look to frequency response of 4
th

 order class 2 filter with 

dedicated current feedbacks. 

In the designed filter structure, four different band pass filter behaviors obtained for 

dedicated center frequencies as; 6.17MHz for feedback line off, 8.60MHz for 10µA 

feedback, 10.9MHz for 30µA feedback and 12.8MHz for 60µA feedback applied. 

For these cases, gain adjustment current is found as; 13.5µA, 14.4µA, 15.7µA and 

17.3µA in order. It is clear that with the implemented circuit, frequency values 

between these values are easily achievable and it is also possible to support very high 

frequency responses by choosing feedback current value greater. 

From the given figure, it is clear that the 4
th

 order class 2 frequency agile filter 

response is obtained successfully for four different center frequencies. Implemented 

circuit structure is the more realistic implementation for integrated circuit design 

with dedicated current feedback paths.  
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6.  LAYOUT AND POST-LAYOUT SIMULATIONS 

The last and the most important step for any design activity is the layout drawing of 

the designed circuit in industrial processes. In this study, since the used one is an 

industrially available design kit library, it is also planned to implement layout 

drawing and post-layout simulations within the flow. From expressions to reality, all 

steps executed with respect to rule sets provided by the design kit provider company. 

As the first step after schematic design, layouts of the designed circuits` are draw by 

Layout XL tool. It`s important to note some points since this design kit is not a well-

known or experienced one. During layout drawing, automatic poly layer routing 

needs to be disabled for the used transistors. Additionally, pin labeling should be 

done with labeling layers which is very new to other design kit users. Lastly, since 

it`s an encountered problem, automatic gate distance should be disabled since layout 

extraction will provide non-matching transistor gate layers in the layout. After layout 

drawing step, design rule checking done on the layout with Calibre DRC tool with 

full recommended rule sets. Next step through the flow is layout versus schematic 

(LVS) comparison. LVS comparison ran again with Calibre tool to see if there is any 

problem or mismatch between the schematic design and layout. The last step of the 

flow is extraction of the layout. Extraction of the circuit layout is executed with 

Mentor Graphics` toolset with name Calibre PEX, PVE. Extraction executed with 

full resistor and capacitance extraction and with respect to rule sets provided. 

Extracted view is the last view of the design which is close to real implementation 

with different layers. For the sake of the circuit implementations, all recommended 

rule sets checked by the tools during each step. 

6.1 Layout of The Translinear CCCII 

Layout of the translinear CCCII structure is drew with respect to all mentioned items 

in previous sections. The transistors used in this design are bulk CMOS process 

transistors with specially doped gate oxide layer properties. These transistors are 

collected under the name of GO2 by the provider STMicroelectronics.  
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Figure 6.1 : Layout of the tranlinear CCCII(1). 

From the given layout Figures 6.1 and 6.2 of the design, it is clear to demonstrate 

that the metal 2 layer is the upper layer in this circuit. Most of the connections and 

nets realized with metal 1 layer in the layout. Total area of the designed circuit is 

13.12µm x 14.50µm. 

6.1.1 Post-Layout simulations  

After extraction of the translinear CCCII circuit, to test the realized structure 

behavior, post-layout simulations executed with the aid of Spectre tool. In these 

verification test runs calibre views of the extracted layouts are used. 

The translinear CCCII circuit is biased with ±90V bias voltages and 10µA bias 

current is used same as the schematic verification tests to compare the extraction 

results. 
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Figure 6.2 : Layout of the translinear CCCII(2). 

The translinear CCCII circuit`s characteristic of Rx resistance related to the given 

bias current is shown in Figure 6.3. It`s frequency dependence is easy to obtain. 

 

Figure 6.3 : Rx based on I0=10µA. 
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It`s clear from the given figure and the behavior obtained by schematic verification 

that resistance value drop from 3.222kΩ to 3.161kΩ which is negligible and the 

frequency range increased 70MHz. 

Figure 6.4 demonstrates the voltage transfer characteristics of the translinear CCCII 

structure. Moreover, the V-I characteristic of the input voltage versus the input 

current at port X is given in the same figure. When compared with the pre-layout 

version, voltage follow range decreased and current relationship is very slightly 

affected. 

 

Figure 6.4 : The voltage transfer and current-voltage characteristics of translinear 

CCCII. 

 

Figure 6.5 : The small-signal characteristic of the current transfer gain.  
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The small signal current transfer gain characteristic of the designed translinear 

CCCII circuit is plotted in Figure 6.5. The 3-dB bandwidth of current gain for 10µA 

bias current can be approximately read as 327MHz which is 50MHz lower than the 

schematic version. 

Shortly, after checking the post layout behaviors of the translinear CCCII structure, it 

is still suitable for high frequency applications with the advantages of its high end 

process.  

6.2 Layout of The Balanced Differential Pair Based CCCII 

Layout of the balanced differential pair based CCCII structure is drew with respect to 

all mentioned items in previous section. The transistors used in this design are bulk 

CMOS process transistors with low threshold properties. Although, various transistor 

types are provided with the design kit with super low threshold voltage values, they 

are not realizable and not allowed to be used for production. These transistors are 

collected under the name of GO1 by the provider STMicroelectronics.  

 

Figure 6.6 : Layout of the balanced differential pair based CCCII(1). 

Different snapshots for the layout of the design given with Figures 6.6 and 6.7. From 

the given layout figures of the design, it is clear to state that the metal 2 layer is again 

the upper layer in this circuit.  

It is visible from the given figures that metal layer 2 is the upper layer used in this 

design. Since the design kit library provides eight more metal layers, it enables the 

design of complex circuits. Total area of the designed circuit is 4.9µm x 11.75 µm, 

which is very small in dimensions. 
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Figure 6.7 : Layout of the balanced differential pair based CCCII(2). 
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6.2.1 Post-Layout simulations 

Following the extraction of the balanced differential pair based CCCII circuit, to test 

the realized structure behavior, post-layout simulations executed with the aid of 

Spectre tool. In these verification test runs Calibre views of the extracted layouts are 

used. 

The balanced differential pair based CCCII circuit is biased with ±50V bias voltages 

and 10µA bias current is used same as the schematic verification tests to compare the 

extraction results. 

The characteristic of Rx relating to 10µA bias current is presented in Figure 6.8. 

Observing the figure, the resistance value decreases very little and frequency range 

decreases 30MHz when compared with the pre layout simulations. 

 

Figure 6.8 : Rx based on I0=10µA. 

In Figure 6.9, the voltage transfer characteristics are plotted. The figure again shows 

an efficient voltage following performance of ports X and Y. In addition to this, the 

voltage current characteristic of the input voltage versus input current at port X is 

revealed in the same figure as previously.  

The given behavior in Figure 6.9 is again efficient and very little effected after the 

layout extraction steps. This behavior also proves that the layout steps for the 

designed structure are executed well and effectively. 
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Figure 6.9 : The voltage transfer and voltage-current characteristics of CCCII. 

At corresponding bias current, as stated before, the frequency characteristic of the 

designed circuit operation can be assumed to be dominated by the terminal resistance 

bandwidth. This can be called as open loop bandwidth of the circuit. 

 

Figure 6.10 : The small-signal characteristic of the current transfer gain. 

The small-signal characteristic of the current transfer gain of the designed CCCII is 

plotted in Figure 6.10. The 3-dB bandwidth of current gain for 10µA bias current can 

be approximately read as 1.85GHz which is very close to pre-layout version. Gain 

value decreases very little when compared to previous simulation. This post-layout 

simulation also shows that the layout steps for the designed structure is held carefully 

and effectively. 



59 

To sum up, after observing all characteristics same as the pre-layout version of the 

simulations, it is very clear that the extracted version is suitable for the application in 

high frequency ranges. 

 

 

 

 

 

 



60 

 



61 

7.  CONCLUSIONS AND RECOMMENDATIONS  

In this thesis two design examples of current controlled current conveyors and their 

applications in 28nm STMicroelectronics design kit were presented.  

The idea of providing fully active, configurable alternative solutions to current 

complex communication standards was the main goal of this project. In parallel to 

increasing complexity of communication standards and related circuit design creates 

the need for compact solutions. To overcome this problem, wiser and easy adapting 

environments and circuits need to be provided. 

In this study, the investigation started with defining the common needs of encrypted 

and cognitive communication standards. Following to this, available solutions and 

possible implementations were checked for feasibility of the work to be done. Later 

on, two example CCCII structures were investigated with their theoretical 

expressions and their design implementations done in 28nm design kit. The design 

simulations held with the Cadence environment and behaviors of the designed 

circuits tested with respect to theory. Corner simulations were also checked to see 

circuit behaviors under different environment variables which were defined by the 

industrial standards. Observed behaviors emphasize that the designed CCCII 

structures were effective candidates to our application cases. 

In the application phase, a frequency agile configurable filter application was 

realized for the balanced differential pair based CCCII circuit and a universal filter 

implementation was designed for the translinear CCCII structure. The designed filter 

behaviors were also checked with simulations and the matching between theory and 

implementation was exercised.  

Layout realization and extraction was the last step of making our idea to real CMOS 

implementation. Layout drawing and extractions done with respect to design kit 

standards for GO1 and GO2 processes and the extracted netlists were created for 

post-layout simulations. 



62 

In the last part of the study, extracted netlists for both current controlled current 

conveyors were tested with post-layout simulations and behaviors were investigated 

for both schematic implementation and our constraints for the design at the 

beginning. 

All in all, the design of the circuits, simulations and layout, post-layout steps were 

done in line with the industrial standards. All obtained data and results provide that 

the design of both CCCII circuits and their applications provide great performance in 

28nm process and this show that the designs done in this thesis are high end 

alternatives to currently used structures. Our frequency agile filter application is a 

great alternative to industrially in use multi standard, complex GPS filters. The 

designed universal filter is also an effective candidate for wide application areas. 

7.1 Future Work 

One possible subject for the future work is to optimize the circuits and applications 

with respect to design specifications currently used in available products since every 

product has its own behavioral implementations. 

Another possible subject is to implement all these work in FDSOI process since its 

getting an increasing attention for the future of industry. This kind of implementation 

will bring the advantages of FDSOI over bulk process such as power consumption 

and etc.  

The implemented circuits and topologies can also be improved for specific cases and 

application areas.  
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