

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DIGITAL INTERPOLATION AND MODULATION SYSTEM DESIGN FOR

COMMUNICATION DACS

M.Sc. THESIS

Gürer ÖZBEK

Department of Electronics and Communication Engineering

Electronics Engineering Programme

JANUARY 2013

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DIGITAL INTERPOLATION AND MODULATION SYSTEM DESIGN FOR

COMMUNICATION DACS

M.Sc. THESIS

Gürer ÖZBEK

504091264

Department of Electronics and Communication Engineering

Electronics Engineering Programme

Thesis Advisor: Asst. Prof. Dr. Türker Küyel

JANUARY 2013

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

HABERLEġME S/A DÖNÜġTÜRÜCÜLERĠ ĠÇĠN SAYISAL ARA DEĞERLEME VE

MODÜLASYON SĠSTEMĠ TASARIMI

YÜKSEK LĠSANS TEZĠ

Gürer ÖZBEK

504091264

Elektronik ve HaberleĢme Mühendisliği Anabilim Dalı

Elektronik Mühendisliği Programı

Tez DanıĢmanı: Yrd. Doç. Dr. Türker Küyel

OCAK 2013

v

Gürer Özbek, an M.Sc. student of ITU Graduate School of Science Engineering

and Technology student ID 504091264, successfully defended the thesis entitled

“Digital Interpolation and Modulation System Design for Communication

DACs”, which he prepared after fulfilling the requirements specified in the

associated legislations, before the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Dr. Türker KÜYEL

 İstanbul Technical University

Jury Members : Prof. Dr. Ali TOKER

İstanbul Technical University

Prof. Dr. Günhan DÜNDAR

Boğaziçi University

Date of Submission : 14 December 2012

Date of Defense : 22 January 2013

vi

vii

FOREWORD

I would like to thank my supervisor Assist. Prof. Türker Küyel who has guided me in

my studies.

I would like to thank Tübitak for giving me a scholarship.

Finally, I would like express my gratefulness to my family for their unconditional

support.

January 2013 Gürer ÖZBEK

 Electronics Engineer

viii

ix

TABLE OF CONTENTS

Page

FOREWORD .. vii

TABLE OF CONTENTS .. ix
ABBREVIATIONS ... xiii
LIST OF TABLES ... xv

LIST OF FIGURES ... xvii
SUMMARY ... xix
ÖZET .. xxi
1. INTRODUCTION .. 1

1.1. Ideal DAC Operation and Output .. 1

1.2. DACs in Transmitter Design ... 2
1.3. Overview of DACs with Digital Interpolation and Modulation 3
1.4. Interpolation and Modulation: ASIC or FPGA? ... 6
1.5. Implementation: System Architecture & Computer Arithmetic 7

2. THEORY OF OPERATION ... 9
2.1. Process of Digital Filtering ... 9

2.1.1. Images from sampling .. 9

2.1.2. Effect of hold .. 10

2.1.3. Effect of digital oversampling with zero filling 11
2.1.4. Effect of digital filtering after zero filling .. 12

2.1.5. Digital filtering ... 12
2.2. Interpolating Filter Design .. 13

2.2.1. Half band filters as a polyphase interpolation filter 13

2.2.1.1. Basics of polyphase interpolation filter [14] 13
2.2.1.2. Special case: half band filter (L=2) [14] .. 15

2.2.2. Advantages of half band interpolation filters ... 15

2.2.2.1. Fewer coefficients (and multipliers) .. 15
2.2.2.2. Working at half output data rate [14]... 16

2.2.2.3. Easy to transform from low-pass to high-pass [14] 17

2.3. Coarse Modulator Design .. 18

2.3.1. Standard digital modulation ... 18
2.3.2. 2

n
 Ratios of sampling frequency ... 19

2.3.3. Eliminating multipliers and coefficients... 19

2.3.4. Hilbert transformer [14].. 19
2.3.5. Limitations .. 21

2.4. Multi-Stage Interpolation with Half-Band Filters ... 21
2.4.1. Baseband ... 21
2.4.2. Whole band ... 22

3. IMPLEMENTATION OF THE ARCHITECTURE WITH 85 DB SFDR..... 25
3.1. Behavioral Modeling: MATLAB Models ... 25

3.1.1. Importance of modeling: why it is important? ... 25

3.1.2. Model description ... 25

x

3.1.2.1. Obtaining filter coefficients ... 26
3.1.2.2. Input signal generation ... 27
3.1.2.3. Filtering .. 28

3.1.3. Operation modes of the filters in 85 dB design .. 30

3.1.3.1. Baseband .. 31
3.1.3.2. FDAC/8 modulation ... 32
3.1.3.3. FDAC/4 modulation ... 32
3.1.3.4. 3FDAC/8 modulation ... 33
3.1.3.5. ±FDAC/2 modulation ... 33

3.1.3.6. -FDAC/8 modulation .. 34
3.1.3.7. -FDAC/4 modulation .. 34
3.1.3.8. -3FDAC/8 modulation .. 35

3.1.3.9. FDAC/16 modulations .. 35
3.1.4. SFDR calculations .. 37

3.1.4.1. SFDR vs. operation mode .. 37
3.1.4.2. SFDR vs. signal amplitude .. 38

3.1.4.3. SFDR vs. input frequency .. 39
3.2. HDL Coding .. 39

3.2.1. Sub-blocks .. 40
3.2.1.1. Filter-1 .. 40

3.2.1.2. Filter-2 .. 41
3.2.1.3. Filter-3 .. 42

3.2.2. Comparison with MATLAB models .. 42
3.2.2.1. Testbench: getting data from verilog to MATLAB 43

3.2.2.2. Comparison .. 43
3.3. Synthesis, PAR and final layout .. 43

3.3.1. Flow & tools ... 43
3.3.2. Synthesis with RTL compiler ... 44

3.3.2.1. Synthesis flow .. 44

3.3.2.2. Retiming / pipeline ... 44
3.3.3. PAR with encounter .. 45

3.3.3.1. Steps of PAR .. 45

3.3.3.2. Outputs: GDS-II & SDF .. 45
3.4. Post-PAR Simulations & Results with NCSim ... 46

3.4.1. Comparison of results ... 46
3.4.2. Maximum operating frequency ... 46

3.4.3. SFDR of the output ... 46

4. IMPROVEMENTS ON STANDARD ARCHITECTURE 47
4.1. Targeting Higher SFDR .. 47

4.1.1. Higher order filters ... 47
4.1.2. Larger bit coefficients ... 48

4.1.3. Obtaining filter coefficients .. 48
4.2. SFDR Calculations of Improved Filters (with MATLAB) 49

4.2.1. SFDR vs. operation mode ... 49
4.2.2. SFDR vs. signal amplitude ... 50
4.2.3. SFDR vs. input frequency... 50

4.3. New Modes and Peripherals .. 51
4.3.1. Selectable interpolation modes: 8x, 4x, 2x, no int. 51

4.3.2. New modulation modes with filters .. 52
4.4. HDL Differences ... 54

xi

4.5. Synthesis, PAR & Layout Results ... 54
4.5.1. Synthesis ... 54
4.5.2. PAR .. 55
4.5.3. Layout ... 56

4.6. Post-PAR Simulations ... 57
4.6.1. Max operating frequency .. 57
4.6.2. SFDR of output ... 58

5. DESING VERIFICATION USING AN FPGA ... 59
5.1. Test Cases .. 60

5.1.1. Read and write operations on registers ... 60
5.1.2. Fuse blowing .. 60
5.1.3. Setting filter modes ... 60

5.1.4. Applying 16-bit parallel data .. 61
5.1.5. Reading filter outputs ... 61
5.1.6. Filling and reading RAMDAC ... 61

5.2. Behavioral Tests .. 62

5.2.1. Introduction & tools ... 62
5.2.2. Read and write on registers .. 62
5.2.3. Fuse blow tests ... 63
5.2.4. Filter mode tests ... 63

5.2.5. Applying 16-bit data ... 63
5.2.6. Reading filter outputs ... 64

5.2.7. Filling and reading the RAMDAC ... 64
5.3. Testing with Logic Analyzer ... 65

5.3.1. Test setup .. 66
5.3.2. Basic comparison .. 66

5.3.3. Automatic comparison .. 67

6. CO-SIMULATION WITH AN ANALOG DAC ... 69
6.1. Presentation of the DAC Taken from a Different Work 69

6.2. Co-simulation of the Filter and the DAC .. 70
6.2.1. AMS simulator ... 70

6.2.2. Applying inputs and setting modes .. 71

6.2.3. Conversion interface: connectlib .. 71
6.3. Simulation Results ... 72

7. CONCLUSIONS AND RECOMMENDATIONS ... 73
7.1. Results and Conclusions .. 73

7.2. Recommendations and Future Work ... 74

REFERENCES ... 75
APPENDICES .. 77

APPENDIX A .. 78
APPENDIX C .. 80

APPENDIX E ... 87
APPENDIX I .. 99
APPENDIX P ... 102
APPENDIX R .. 106
APPENDIX S ... 108

APPENDIX V .. 111

CURRICULUM VITAE .. 145

xii

xiii

ABBREVIATIONS

ADC : Analog to Digital Converter

BPF : Band Pass Filter

CML : Common Mode Logic

CMOS : Complementary Metal Oxide Semiconductor

DAC : Digital to Analog Converter

DSP : Digital Signal Processing

F1 : Filter-1

F2 : Filter-2

F3 : Filter-3

FFT : Fast Fourier Transform

FIR : Finite Impulse Response

FPGA : Field Programmable Gate Array

HBF : Half Band Filter

HDL : Hardware Description Language

HPF : High Pass Filter

IF : Intermediate Frequency

LPF : Low Pass Filter

LVDS : Low Voltage Differential Signaling

NRZ : Non-Return to Zero

PA : Power Amplifier

PAR : Place and Route

PCB : Printed Circuit Board

PM : Plus-Minus

RF : Radio Frequency

RZ : Return to Zero

SDR : Software Defined Radio

SFDR : Spurious Free Dynamic Range

SPI : Serial Peripheral Interface

TNS : Total Negative Slack

WNS : Worst Negative Slack

xiv

xv

LIST OF TABLES

Page

Table 1.1 : Interpolation and modulation DACs in the market. 5

Table 2.1 : Cosine values to multiply for several frequencies. 19

Table 3.1 : SFDR differences of filters ... 27

Table 3.2 : Filter modulation modes at 8x over-sampling. 31
Table 3.3 : Coefficients in F1 .. 40
Table 3.4 : Coefficients in F2 .. 42

Table 3.5 : Coefficients in F3 .. 42

Table 4.1 : Comparison of fdatool parameters and resulting filter characteristics. .. 48
Table 4.2 : Filter characteristics used in the design. ... 49
Table 4.3 : Complete table of operation modes. ... 52

Table 4.4 : Summary of the synthesized design. ... 55
Table 4.5 : Group delays of filters. ... 57

Table 4.6 : Result of the timing analysis at PAR step. .. 57

Table 5.1 : Filter Reg 0 register .. 60

Table 6.1 : Conversion parameters for conversation interface.................................. 72

Table 7.1 : Summary of system specifications. ... 73
Table 7.2 : Comparison of the work with best products. .. 74

Table C.1 : Register map... 81
Table C.2 : Filter Reg 1 register. ... 81

Table C.3 : I/O signals. ... 82
Table C.4 : Instruction definition. ... 83
Table C.5 : Blowing a fuse routine. .. 85

xvi

xvii

LIST OF FIGURES

Page

Figure 1.1 : Ideal DAC operation. .. 1
Figure 1.2 : Ideal DAC output in time and frequency domain. fs=200MHz,

fc=25MHz. ... 2
Figure 1.3 : Ideal SDR architecture [2]. .. 2

Figure 1.4 : 4x Interpolated DAC output spectrum. ... 3
Figure 1.5 : Spectrum plots for digital modulation feature. (a): Baseband, (b):

Shifted to 100MHz, (c): Shifted to 200MHz, (d): Shifted to 300MHz,

(e): Shifted to 400MHz, (f): Shifted to 500MHz, (g): Shifted to

600MHz, (h): Shifted to 700MHz. .. 5

Figure 1.6 : Interpolation and modulation DAC architectures. 6

Figure 2.1 : Time (a) and frequency (b) plots of an analog sine wave in discrete time

domain using the fast Fourier transform (FFT). 9
Figure 2.2 : Time (a) and frequency (b) representations of an impulse train. 10

Figure 2.3 : Time (a) and frequency (b) representation of sampled signal. 10
Figure 2.4 : Time (a) and frequency (b) representation of hold signal. (c): The result

of the convolution with a step function. (d): Multiplication with a sinc

function. ... 11

Figure 2.5 : Time (a) and frequency (b) representation of 2x oversampled signal. .. 12
Figure 2.6 : Time (a) and frequency (b) representation of the filtered signal. 12
Figure 2.7 : Interpolation process. .. 13

Figure 2.8 : Another representation of filter H(z). .. 14
Figure 2.9 : Polyphase interpolation filter. ... 14

Figure 2.10 : Half Band Interpolation Filter. .. 15
Figure 2.11 : Frequency (a) and impulse (b) response of Half Band LPF. 15
Figure 2.12 : Saved multipliers in HBFs due to zero-coefficients. 16

Figure 2.13 : HBF before (a) and after (b) applying noble identity. 16
Figure 2.14 : Impulse response of Half Band HPF. .. 17

Figure 2.15 : Half Band High Pass Interpolation Filter. ... 18
Figure 2.16 : Frequency response of Hilbert Transformer.. 19

Figure 2.17 : Real(a) and imaginary(b) impulse responses of Hilbert Transformer. 20
Figure 2.18 : Hilbert Transformer. .. 20
Figure 2.19 : Three-stage interpolation with cascaded HBFs. 21
Figure 2.20 : Spectrum plots of the signal at filter inputs and outputs. 22

Figure 3.1 : Comparison of fdatool generated filters and AD977x filters. 26

Figure 3.2 : Simulation outputs of MATLAB model. FFTs of (a): Input signal, (b):

F1 output, (c): F2 output, (d): F3 output .. 28
Figure 3.3 : Input (a) and output (b) spectrum of the system in baseband mode. 31
Figure 3.4 : Output spectrum of the system in fDAC/8 modulation mode. 32
Figure 3.5 : Output spectrum of the system in fDAC/4 modulation mode. 33

Figure 3.6 : Output spectrum of the system in 3fDAC/8 modulation mode. 33

Figure 3.7 : Output spectrum of the system in ±fDAC/2 modulation mode. 34

xviii

Figure 3.8 : Output spectrum of the system in -fDAC/8 modulation mode. 34
Figure 3.9 : Output spectrum of the system in -fDAC/4 modulation mode. 35
Figure 3.10 : Output spectrum of the system in -3fDAC/8 modulation mode. 35
Figure 3.11 : Attempts to use mid-mode frequency band. Fin = (a): 100 MHz, (b):

110 MHz. ... 36
Figure 3.12 : Output Spectrums of mid-modes. (a): FDAC/16, (b): 3FDAC/16, (c):

5FDAC/16, (d): 7FDAC/16. .. 37
Figure 3.13 : SFDR values wrt. operation modes. .. 38
Figure 3.14 : SFDR values wrt. signal amplitude. .. 38

Figure 3.15 : SFDR values wrt. signal frequency. .. 39
Figure 3.16 : Plotted GDS-II File of the 85 dB filter design in 0.15u LFoundry

CMOS process ... 45

Figure 4.1 : Examples of optimum (a) and non-optimum (b) adder trees. 48
Figure 4.2 : Frequency responses of the filters. (a):Filter1, (b):Filter2, (c):Filter3. . 49
Figure 4.3 : SFDR values wrt. operation modes. .. 50
Figure 4.4 : SFDR values wrt. signal amplitude. .. 50

Figure 4.5 : SFDR values wrt. signal frequency. .. 51
Figure 4.6 : Block diagram of selectable interpolation feature. 51
Figure 4.7 : Output spectrums of first four operation modes. (a): No int., (b): 2x int.

baseband, (c): 2x int. FDAC/8, (d): 2x int. 2FDAC/8 53

Figure 4.8 : IR-drop plot of the design. ... 56
Figure 4.9 : Layout of the routed filters. ... 56

Figure 5.1 : Block diagram of the digital system. ... 59
Figure 5.2 : Hardware test setup. .. 66

Figure 5.3 : Behavioral simulation (Upper) and Logic Analyzer output (Lower)

waveforms. ... 67

Figure 5.4 : Output files of simulation (a) and Logic Analyzer (b) for comparison . 68
Figure 5.5 : Output of C program when input files are equivalent. 68
Figure 5.6 : Output of C program when input files are not equivalent. 68

Figure 6.1 : Current steering architecture used in the DAC. 69
Figure 6.2 : Output of the DAC in time (a) and frequency (b) domain. 70

Figure 6.3 : Block diagram of simulated blocks and simulation tools. 70

Figure 6.4 : Configuration file for AMS. .. 71
Figure 6.5 : Time (a) and frequency (b) plot of signal at DAC output. 72

Figure C.1 : Signal diagram for write command. ... 84
Figure C.2 : Signal diagram for read command. ... 85

Figure P.1 : Output Spectrums of Mid-Modes. (a): -FDAC/16, (b): -3FDAC/16, (c): -

5FDAC/16, (d): -7FDAC/16 ... 102
Figure P.2 : Output Spectrums of the Modes that Modulates with 2x Interpolation.

(a): 3FDAC/8, (b): 4FDAC/8, (c): -3FDAC/8, (d): -2FDAC/8, (e): -FDAC/8 . 103
Figure P.3 : Output spectrums of the modes that modulates with 4x and 8x

interpolation. (a): baseband, (b): FDAC/16, (c): 2FDAC/16, (d): 3FDAC/16,

(e): 4FDAC/16, (f): 5FDAC/16, (g): 6FDAC/16, (h): 7FDAC/16, (i):

8FDAC/16, (j): -7FDAC/16, (k): -6FDAC/16, (l): -5FDAC/16, (m): -

4FDAC/16, (n): -3FDAC/16, (o): -2FDAC/16, (p): -FDAC/16. 105

Figure S.1 : Simulink model of Filter-1. ... 108

Figure S.2 : Simulink model of Filter-2. ... 109
Figure S.3 : Simulink model of Filter-3. ... 110

xix

DIGITAL INTERPOLATION AND MODULATION SYSTEM DESIGN FOR

COMMUNICATION DACS

SUMMARY

High speed digital to analog converters (DACs) are used in applications such as

cellular base stations or digital TV broadcasting. In such systems, various digital

signal processing blocks are also needed. Interpolation, modulation and channel

equalization can be given as examples of such digital functionality.

Implementing digital signal processing blocks with the DAC on the same die has

certain advantages. On chip oversampling and digital interpolation filtering allows

receiving digital data at lower rates. Power hungry high-speed interfaces like low

voltage differential signaling (LVDS) or current mode logic (CML) are no longer

needed. Furthermore, trace count on the PCB can be reduced.

In this work, design and verification of a digital interpolation and modulation block

used in high-speed communication DACs is explained in detail.

Interpolation and modulation features of the DACs used in the industry are examined

based on their datasheet specifications.

For the design of the interpolation and modulation system, half-band finite impulse

response (FIR) filter topology is used. The number of filter coefficients can be

reduced and operational speed can be higher for the same performance level with

respect to a conventional FIR filter.

Based on specifications in existing DAC datasheets, an interpolation and modulation

system is designed with 85 dB spurious free dynamic range (SFDR) performance.

Then, the design is implemented with LFoundry 0.15 μm CMOS technology.

Functionality is tested with post-place-and-route (PAR) simulations. Such digital

systems with 85 dB SFDR are used with existing DAC designs because the DAC, not

the digital filter limits the SFDR performance. Power is traded-off with SFDR in

digital filter designs.

As market demands DACs with higher SFDR performance, interpolation and

modulation blocks with higher SFDR must support next generation DACs with better

SFDR. To support a 90 dB DAC, it is necessary for the digital filter to have 96 dB or

better SFDR.

A new interpolation and modulation block, which can support a DAC with 90 dB

SFDR is designed. Filter coefficients are calculated with MATLAB‟s fdatool. 16-bit

design is modeled in MATLAB and in Verilog. The design has a user selectable

interpolation from 2x to 8x and 41 operation modes in total, including Hilbert

transformers. With these interpolation and modulation modes, input signal can be

pushed to any band in the output spectrum without distortion. Simulations show that

the new block has 99 dB SFDR and no significant ripple or attenuation in the %80 of

xx

the Nyquist band and the signal to noise ratio (SNR) is 93.4 dB over full Nyquist

band.

New design is synthesized and PAR‟ed with TSMC 0.18 μm CMOS technology,

since the LFoundry Fab. has moved from Germany to France with uncertain future.

Area of the TSMC design is 1.2 mm x 3 mm and the clock speed is 1.2 GHz. The

design consumes 1.826 W at 1.2 GHz for two channels.

Several digital additions like a serial peripheral interface (SPI) block, a control block,

a RAMDAC and a clock divider block are included in the design. Thus, the whole

digital sub-section of a communication DAC is completed.

For verification, the system is embedded to a Virtex 5 field programmable gate array

(FPGA). Data is driven by a pattern generator and captured by a logic analyzer. A

test methodology that matches the simulation inputs to pattern generator inputs is

applied. A program written in C language then compares the outputs of the

simulation to logic analyzer capture data. The bit error rate is found to be zero.

Finally, the complete digital system is mixed mode co-simulated with a DAC taken

from a different work. Simulations are done with Cadence AMS simulator which

supports analog and digital co-simulation. It is shown that the effect of the digital

system on SFDR is insignificant with respect to the effects of the DAC, especially

with high output frequencies.

xxi

HABERLEġME S/A DÖNÜġTÜRÜCÜLERĠ ĠÇĠN SAYISAL ARA

DEĞERLEME VE MODÜLASYON SĠSTEMĠ TASARIMI

ÖZET

İşaret işlemenin sayısal ortamda yapılmasının daha avantajlı olması, işaret

zincirlerine A/S ve S/A dönüştürücüleri eklemiştir. Veri haberleşmesi ve işlenmesi

alanlarında önemli yer tutan S/A dönüştürücülerin bazı haberleşme uygulamaları için

yüksek çözünürlükte ve yüksek hızda olmaları beklenmektedir.

Yüksek hızlı S/A dönüştürücüler, baz istasyonlarından sayısal televizyon yayın

sistemlerine kadar pek çok alanda kullanılmaktadır. Bu sistemlerde kullanılan S/A

dönüştürücülerle beraber çeşitli sayısal işaret işleme işlemleri de yapılmaktadır.

Bunlara örnek olarak ara değerleme, modülasyon, kanal dengeleme gibi işlemler

verilebilir.

Sayısal işaret işleme bloklarının S/A dönüştürücü ile aynı kırmık içerisinde

üretilmesi, günümüzde endüstrinin yöneldiği bir yaklaşımdır. Ara değerleme

işleminin kırmık içerisinde yapılması, kırmık içerisine daha düşük hızlarda veri

alınmasını sağlar. Bu sayede kırmık girişlerinde LVDS ve CML gibi karmaşık ve

yüksek güç tüketimli yapılar kullanılmasına gerek kalmaz. Ayrıca gerek kırmık içi,

gerekse de PCB üzerindeki veri yolları daha esnek şekilde tasarlanabilir.

Bu çalışmada, yüksek hızlı haberleşme sistemlerindeki S/A dönüştürücü

kırmıklarında kullanılan bir sayısal ara değerleme ve modülasyon sisteminin tasarım

süreci işlenmiştir.

Çalışma kapsamında, endüstride kullanılan S/A dönüştürücü kırmıklarının sayısal ara

değerleme ve modülasyon işlevleri katalog bilgileri üzerinden incelenmiştir.

Ara değerleme ve modülasyon sisteminin tasarımında yarım bant FIR süzgeçleri

kullanılmıştır. Bu sayede, aynı seçicilik için gereken katsayı adedi yarıya düşerken

sistemin büyük bir bölümü çıkıştaki hızın yarısı ile çalıştırılabilmektedir. Bu özellik

sayesinde hem güç tüketimi azaltılmakta, hem de daha yüksek çalışma frekanslarına

sahip sistemler üretilebilmektedir.

Elde edilen bilgiler ışığında tipik bir ara değerleme ve modülasyon sistemi

tasarlanmıştır. Tasarım sürecinde ilk olarak MATLAB yardımıyla parametreler elde

edilmiştir. Sistemin oluşturulan MATLAB modelinde 3 süzgeç yer almaktadır. Bu

süzgeçlerin giriş çözünürlükleri 16-bit olarak seçilmiştir. Süzgeçler sırasıyla 15, 12

ve 13 bitlik 14, 6 ve 4 katsayı içermektedir.

Yapılan benzetimlerde süzgeçlerin 88, 88 ve 86 dB SFDR‟a sahip oldukları

görülmüştür. Süzgeçler birlikte kullanıldığında yapılan benzetimlerde ise 85 dB

SFDR elde edilmiştir. Ayrıca, gerçeklenen 16 karmaşık modülasyon durumu ile giriş

işaret bandının çıkışta farklı frekanslara ötelenmesi sağlanmıştır. Bu durumlar,

spektrumda işaretin ötelenemeyeceği bir bölge kalmayacak şekilde seçilmiştir.

Modülasyon durumlarının tamamında 8x ara değerleme yapılmaktadır.

xxii

Süzgeçlerin performansı anlaşıldıktan sonra LFoundry 0.15 μm CMOS teknolojisi

kullanılarak sentez ve PAR işlemleri yapılmıştır. PAR sonrası yapılan benzetimlerle

sistemin doğru çalıştığı kontrol edilmiştir.

SFDR performansı 85 dB olan böyle bir sistem, ancak kendisinden daha kötü

performansa sahip bir S/A dönüştürücü ile çalıştığında anlamlı olmaktadır.

Teknolojinin gelişimi ve pazarın istekleri ile birlikte daha yüksek performanslı S/A

dönüştürücülerin üretilmesi yoluna gidilmektedir. Bu da daha yüksek SFDR

performanslı ara değerleme ve modülasyon sistemlerine ihtiyaç duyulacağı anlamına

gelmektedir. SFDR‟ı 90 dB olan böyle bir S/A dönüştürücü ile çalışabilecek sayısal

sistemin performansının da en az 95 dB olması gerektiği açıktır.

Gelecekte daha yüksek SFDR performanslı sistemlere ihtiyaç duyulacağından,

çalışmanın sonraki kısımlarında 90 dB SFDR gibi daha yüksek performanslı bir S/A

dönüştürücü ile beraber çalışabilecek bir tasarım yapılmıştır. Bu tasarım için gereken

parametreler MATLAB‟in fdatool aracı ile elde edilmiştir. 16 bitlik giriş ve çıkışlara

sahip bu tasarım için MATLAB ve Verilog modelleri oluşturulmuştur. Ayrıca,

çalışma durumları zenginleştirilerek seçilebilir 41 ara değerleme ve modülasyon

durumu gerçeklenmiştir. Bu yeni durumlara örnek olarak 8x, 4x ve 2x ara değerleme,

her bir ara değerleme durumuna karşı gelen modülasyon durumları verilebilir. Bir

önceki tasarımda olduğu gibi bu tasarımda da giriş işareti, çıkışta istenen banda

ötelenebilmektedir.

Yine 3 süzgecin bulunduğu sistemde süzgeçler sırasıyla 18, 16 ve 16 bitlik 16, 6 ve 6

adet katsayı içermektedirler. Süzgeçlerin ölçülen SFDR değerleri 98.3, 99.7 ve 99.7

dB‟dir. Ayrıca ilgilenilen geçirme bandında (Nyquist bandının %80‟i) zayıflamanın

0 dB olduğu görülmüştür. Süzgeçlerin geçirme bandı dalgalılıkları da

önemsenmeyecek derecede düşük ölçülmüştür. Süzgeçlerin SNR değerleri ise

sırasıyla 95.4, 94.6 ve 94.6 dB olarak hesaplanmıştır.

Tasarımın TSMC 0.18 μm CMOS teknolojisi ile sentezi ve PAR‟ı yapılmıştır. PAR

sonrası yapılan benzetimlerde 99 dB SFDR elde edilmiştir. Bu benzetimlerde ayrıca

süzgeçlerin grup gecikmelerine de bakılmış, sırasıyla 18, 10 ve 12 saat işareti

oldukları görülmüştür. Tasarımın kapladığı alan 1.2mm x 3mm olup 1.2GHz‟lik saat

işareti ile çalışabilmektedir. Bu hızla ortalama 1.826W güç harcamaktadır.

Çalışma kapsamında ayrıca normalde tümdevre için yapılan tasarımın donanım

testleri de yapılmıştır. Bu donanım testlerinde tasarımı anlatılan sayısal ara

değerleme ve modülasyon biriminin yanısıra bir haberleşme S/A dönüştürücüsü

kırmığında bulunan sayısal arayüz, bellek döngüsü, saat işareti bölücüsü gibi

çevresel birimlerin de bulunduğu komple bir sayısal sistem kullanılmıştır. Donanım

testleri için sayısal sistem, Xilinx Virtex 5 FPGA‟sına gömülmüştür. FPGA‟nın

sürülmesi Agilent 16822A sayısal veri üreteci ile yapılmış, çıkışları da Agilent

16802A lojik analizörü ile kaydedilmiştir. Testlerin güvenilir şekilde yapılabilmesi

için benzetim ile sayısal veri üreteci girişlerinin tamamen aynı olmasını sağlayacak

bir test metodu kullanılmıştır. Ayrıca benzetim sonuçları ile donanım testleri

sonuçlarının aynılığını gösterebilmek için C diliyle yazılmış bir karşılaştırma

programı kullanılmıştır. Program, benzetim ve donanım testi çıktılarını

okuyabilmekte ve her bir andaki çıkışları tek tek karşılaştırabilmektedir. Bir farklılık

olması durumunda hangi anda ve hangi çıkışlarda hata olduğunu söylemek de yine

programın görevleri arasındandır.

xxiii

Tezde son olarak, tasarlanan sayısal sistem, tasarımı devam eden yüksek

performanslı bir S/A dönüştürücü ile beraber çalıştırılmıştır. Bunun için Cadence‟ın

AMS simülatörü kullanılmıştır. Bu simülatör; Verilog diliyle tanımlanmış sayısal bir

sistemin, analog olarak tasarlanmış bir S/A dönüştürücüyle beraber çalıştırılmasını

desteklemektedir. Benzetimde, lojik 0 ve 1 olarak verilen sayısal işaretlerin analoğa

dönüştürülmesi ve tersi işlemlerinin gerçekleştirilmesi için, üretim teknolojisi ile

uyumlu bir bağlantı kuralları dosyası kullanılmıştır. Elde edilen sonuçlarda, sayısal

sistemin, S/A dönüştürücü performansını kötüleştirici yönde etkilemediği

gözlenmiştir.

Çalışmanın bütününde işlenen süreç, yüksek hızlı S/A dönüştürücüler için sayısal

işaret işleme sistemi tasarımı konusunda kaynak olarak kullanılabilecek zenginlikte

anlatılmıştır. Çalışmanın, yüksek hızlı sayısal FIR süzgeçlerin kullanıldığı diğer

uygulamalar için de yararlı olacağı düşünülmektedir.

xxiv

1

1. INTRODUCTION

1.1. Ideal DAC Operation and Output

A Digital to Analog Converter (DAC) is an electronic device that converts a digital

data sequence to a continuous time signal. From a signal processing perspective, a

basic DAC operation can be split into two stages: a transcoding stage, where digital

input is converted into an equivalent discrete time signal, and a reconstruction stage

where analog signal is generated from discrete time signal [1]. Reconstruction stage

also contains two subsections: a sample&hold and an optional reconstruction filter.

Complete scheme of an ideal DAC is in Figure 1.1.

010 110

Transcoder Reconstructor

Sample

& Hold

Recons. Filter

(Opt.)

Figure 1.1 : Ideal DAC operation.

In the transcoder stage, bit sequences transform to corresponding discrete time

values. During the reconstruction phase, sampled discrete time values are changed to

continuous time via a sample-and-hold action and the output of the sample&hold can

then be smoothed by an optional reconstruction filter. In practice, the reconstruction

filter is implemented in analog. Output of an ideal DAC is in Figure 1.2.

Staircase behavior caused by sample&hold in Figure 1.2(a) results high frequency

components seen in (b). Moreover, power of the high frequency components fade

away like a sinc function, which is the frequency domain equivalent of the time

domain sample&hold. It also can be seen from (b) that, higher sampling frequencies

move undesired components away from the desired signal and relax the design

specifications of the reconstruction filter. That effect will be discussed in Section 1.4.

2

 (a) (b)

Figure 1.2 : Ideal DAC output in time and frequency domain. fs=200MHz,

fc=25MHz.

1.2. DACs in Transmitter Design

DACs are widely used nowadays thanks to the rapid growth of the digital electronics.

DACs are used in mp3 players, cell phones, tablet computers, digital TV broadcasts

and many other areas. However, DACs addressed in this work are mostly used in

cellular base stations, where high speed and signal processing capability are

important.

Use of DACs in transmitters of the base stations is sprout with the idea of Software

Defined Radio (SDR), which enables modifications on parameters of the

communication system, like modulation frequency, modulation type, etc. An

example of an ideal SDR system is given in Figure 1.3.

Digital Signal

Processing

DAC PA

ADC

Separator
Antenna

Figure 1.3 : Ideal SDR architecture [2].

In Figure 1.3, an ideal SDR block diagram is given with following sub-blocks: a DSP

block that manages functionality of the system, a DAC, a Power Amplifier (PA), an

ADC and a separator that separates incoming and outgoing signals and antenna.

3

In practice, ADCs and DACs do not operate fast enough to be directly connected to

antenna for modern communication systems but operates on intermediate frequency

and signal is modulated to radio frequencies with a final RF modulator. However,

those intermediate frequencies are between several hundred megahertzes to

gigahertzes and still cutting-edge DACs are used for these applications. Moreover, it

is desired to put some of the DSP functionalities into DAC chips and create system

on chips (SOCs) for cost efficiency.

1.3. Overview of DACs with Digital Interpolation and Modulation

An interpolating and modulating DAC is a DAC, which interpolates and modulates

the input data digitally before converting it to an analog signal. Interpolating and

modulating DACs offer two different improvements to the conventional DAC:

pushed away images from fundamental frequency and ability of a mixer.

When Figure 1.2 (b) and Figure 1.4 are analyzed together, the effect of digital

interpolation can be seen. For 4x interpolation, images around 200 MHz sampling

frequency are translated as images around 800 MHz sampling frequency. This

translation eases design specifications of an external reconstruction filter [3].

Figure 1.4 : 4x Interpolated DAC output spectrum.

Other improvement of interpolation and modulation DACs is the ability of a mixer.

With proper techniques, which will be discussed in later sections, it is possible to

shift the input signal anywhere within the nyquist region of the DAC output sample

rate. Example spectrum plots are in Figure 1.5 (a to h). By using on-chip digital

4

modulation, users no longer need an analog mixer to modulate the baseband signal

into an intermediate frequency (IF).

 (a) (b)

 (c) (d)

 (e) (f)

5

 (g) (h)

Figure 1.5 : Spectrum plots for digital modulation feature. (a): Baseband, (b):

Shifted to 100MHz, (c): Shifted to 200MHz, (d): Shifted to 300MHz, (e):

Shifted to 400MHz, (f): Shifted to 500MHz, (g): Shifted to 600MHz, (h):

Shifted to 700MHz.

Moreover, an interpolating and modulating DAC allows a lower input data rate,

which is easier to generate externally and less likely to generate noise within the

system [3].

After mentioning the advantages of interpolation and modulation DACs, it is useful

to list some commercial examples. Common products and specifications are listed in

Table 1.1.

Table 1.1 : Interpolation and modulation DACs in the market.

Brand Part Bit MSPS

Max.

Interpo-

lation

SFDR

[dB]

Advanced

Modulation
Output

Analog

Devices

AD9122 16 1230 8x 82 Yes Complex

AD9148 16 1000 8x 80 Yes Complex

AD9776/8/9A

12/

14/

16

1000 8x 80 Yes Complex

AD9786 16 500 8x 80 Yes Real

Texas

Instruments

DAC3482 16 1250 16x 82 No Complex

DAC5689 16 800 8x 80 No Complex

Maxim MAX5898 16 500 8x 88 No Complex

NXP DAC1408D650 14 650 8x 80 No Complex

6

It is seen from Table 1.1 that most DACs have coarse modulation capability and only

a few products offer fine modulation capability using a numerically controlled digital

oscillator. SFDR values are around 80 dB and they are mostly determined by the

output DAC (not by the interpolation filters). A particularly interesting DAC in the

market is the ADI‟s AD9786, which converts complex data to real one with internal

Hilbert transformer and outputs only real data.

1.4. Interpolation and Modulation: ASIC or FPGA?

Anti-imaging filters are a necessity for most high speed DACs. For a DAC operating

at low clock speeds, analog filtering is difficult, because the images are close to the

signal passband. In such cases, expensive high order analog filters must be used.

To avoid this problem, digital input sampling rates might be increased to push

images away from the signal passband. If sampling rate is increased using FPGA

based digital interpolation, on board data transmission speed will increase as a side

effect. Thus, both the FPGA and the DAC will require high speed IOs and this will

make reliable communication between the two ICs difficult. In such cases, Parallel

Low Voltage Differential Signaling (LVDS) or parallel Common Mode Logic

(CML) interfaces are needed and system power consumption goes up.

FPGA DAC

Data Bus

11 pole BPF

125 MS/s

FPGA DAC 2 pole LPF

1 GS/s

FPGA DAC 2 pole LPF

125 MS/s

DF

DF

125 MHz

1 GHz

1 GHz

Figure 1.6 : Interpolation and modulation DAC architectures.

7

A good option is keeping DAC input speed lower and output sampling rate higher

via on-chip digital interpolation filtering. Interpolation is done on the DAC chip

instead of the FPGA. With this method, costly analog filters are avoided and high

speed and high power digital interfaces are not needed. Figure 1.5 explains three

methods above.

1.5. Implementation: System Architecture & Computer Arithmetic

Details of the architecture of the existing high speed DACs are still not clear because

of the confidentiality. However, block diagrams given in datasheets of the products

and recent papers or patents can give clues about the architectural details.

As a starting point, all examined DAC datasheets, that contain interpolation and

modulation capability, have FIR filters in their signal path [4-13]. It can be said that

filter architecture is FIR not IIR. That also makes sense as FIR filters offer linear

phase. Other information that is given is; SFDR performance, filter coefficients,

operation modes and even delay of the digital filters in clock pulses (like 32 clocks).

With all these specifications, necessary data for a semi-custom digital design

becomes available. On the other hand, if full-custom design methodology was

assumed, some of the information would be missing. For example, in a DAC

datasheet [13], a minimum clock speed specification is provided, which may imply

that dynamic flip-flops might have been used in that design.

It is known that a typical digital interpolation system with modulation used in high-

speed DACs contains FIR filters, is designed in semi-custom fashion (which leads to

static flip-flops, standard library gates etc.) and is pipelined in order to operate as fast

as possible for that process. SFDR requirement of the filters is also known to be 5 or

10 dB larger than DAC‟s SFDR.

8

9

2. THEORY OF OPERATION

In this work, two main operations are supported within the DAC: interpolation and

modulation. In this chapter, mathematical background of these operations and

implementation methods are explained.

2.1. Process of Digital Filtering

In Figure 1.2 of the previous chapter, time and frequency domain representations of

DAC output was given. In this section, process of digital to analog conversion and its

effects to output signal will be explained step by step.

2.1.1. Images from sampling

Sampling is the first source of non-idealities, in other words, images. To show the

effect of sampling, an oversampled signal seen in Figure 2.1 can be considered as an

analog signal. This is true when fs→∞.

 (a) (b)

Figure 2.1 : Time (a) and frequency (b) plots of an analog sine wave in discrete time

domain using the fast Fourier transform (FFT).

Sampling is equivalent to multiplying with an impulse train in time domain. Impulse

train given in Figure 2.2 (a) is used for sampling the sine wave in Figure 2.1 (a).

Fourier transform of an impulse train another impulse train as seen in Figure 2.2 (b).

Multiplying with an impulse train in time domain is equivalent to convolving with

10

another impulse train in the frequency domain. The effects of multiplying with an

impulse train in time domain can be seen in Figure 2.3 (a), which generates Figure

2.3 (b) in frequency domain.

 (a) (b)

Figure 2.2 : Time (a) and frequency (b) representations of an impulse train.

 (a) (b)

Figure 2.3 : Time (a) and frequency (b) representation of sampled signal.

If Figure 2.3 is analyzed, it can be seen that in frequency domain, input signal

replicates itself at every integer multiples of the sampling frequency. Time domain

sampled signal only takes non-zero values at sampled times as expected. In

frequency domain, it can also be said that frequency domain is corrupted by

unwanted replicas of the input signal bandwidth.

2.1.2. Effect of hold

Another effect that is observed from Figure 1.2 was the effect of hold operation

which will be added to model now. Hold operation makes the sampled value

unchanged until next sampling time and creates a staircase behavior to time domain.

In Figure 2.4 (a), hold signal that convolves with the input signal in time domain is

11

shown. Its Fourier transform, which is a
sin x

x
function, is shown in Figure 2.4 (b).

As seen in Figure 2.4, hold signal is a simple step signal that Fourier transforms into

a sinc function. The results of the convolution can be seen in Figure 2.4 (c) and

Figure 2.4 (d), in time and frequency domains respectively.

 (a) (b)

 (c) (d)

Figure 2.4 : Time (a) and frequency (b) representation of hold signal. (c): The result

of the convolution with a step function. (d): Multiplication with a sinc

function.

2.1.3. Effect of digital oversampling with zero filling

In addition to the sampling issue in analog domain, digital oversampling also causes

images in the frequency domain. Plots of a 2x oversampled sine wave with zero

filling are in Figure 2.5.

That effect may look similar to effect discussed in the analog domain; however, it

actually occurs entirely in digital domain.

12

 (a) (b)

Figure 2.5 : Time (a) and frequency (b) representation of 2x oversampled signal.

2.1.4. Effect of digital filtering after zero filling

It is easier to suppress digital images with a digital filter, as implementation of the

digital filters is more robust than their analog counterparts. Thus, digital filtering

must be performed after an oversampling operation, to reduce images. Filtered data

is given in Figure 2.6.

 (a) (b)

Figure 2.6 : Time (a) and frequency (b) representation of the filtered signal.

2.1.5. Digital filtering

As explained in Section 1.3, with digital filtering, unwanted digital images at lower

frequencies are suppressed and analog images are translated to higher frequencies,

which relaxes the specifications of the analog reconstruction filter. This effect is also

shown in Figure 2.5-2.6. It is shown in Figure 2.2-2.3 that images occur at integer

multiples of sampling frequency. In order to push them away, sampling frequency

should be increased before digital to analog conversion. This is the reason that makes

oversampled digital filtering useful.

13

2.2. Interpolating Filter Design

Interpolation is the combined process of up-sampling, zero padding and inserting

newly calculated points between every two data points of the original digital input

signal. With interpolation, sampling rate of the signal increases by the factor of

interpolation rate. Interpolation operation is performed via an interpolation filter.

2.2.1. Half band filters as a polyphase interpolation filter

Half Band Filter is a special case of polyphase filters which can be used as an

interpolation filter. Using a polyphase filter has many benefits like working with

lower clock frequencies, using less multipliers and ability to perform frequency

shifting operations (modulation).

2.2.1.1. Basics of a polyphase interpolation filter [14]

Interpolation process can be shown as an up-sampler, followed by a low pass filter

(LPF), as illustrated in Figure 2.7.

Figure 2.7 : Interpolation process.

In Figure 2.7, “↑L” means up-sample by a factor of L and H(z) represents LPF that is

used for image rejection. Up-sampling increases the sampling rate by L and then,

zero-pads by L-1 zeroes.

Although the structure above is functionally correct, it is not effective due to the

large number of zeros at the filter input. At this point, polyphase interpolation

becomes helpful.

A digital LPF can be shown with (2.1).

() () n

n

H z h n z (2.1)

In (2.1), filter coefficients are h(n). That also equals to the representation in (2.2).

1
()

0

() ()
L

kL p

k p

H z h kL p z (2.2)

14

In (2.2),
n

k
L

 (round towards zero) and %p n L (n mod L). (2.2) states that,

coefficients of a single filter can be grouped by L. If a delay element is taken out of

the inner equation and the indices of summations are switched, (2.3) can be obtained.

1

0

() ()
L

kL p

p

p k

H z h k z z (2.3)

In (2.3), () ()ph k h kL p . There arrangement means that L filters can be defined

which is functionally equal to the main filter in (2.1). In the end, z-domain

representation of the final system is in (2.4) and Figure 2.8.

1

0

() ()
L

L p

p

p

H z H z z (2.4)

Figure 2.8 : Another representation of filter H(z).

In Figure 2.8, L filters are shown, which is functionally equal to the filter in Figure

2.7. At this point, up-sampler block can be put after every sub-filter without

changing the functionality of the system. This is the noble identity for interpolation

[14]. Resulting diagram is in Figure 2.9.

Figure 2.9 : Polyphase interpolation filter.

15

2.2.1.2. Special case: half band filter (L=2) [14]

The Half Band Filter is a special case of polyphase filters with L = 2. It is both

simple owing to less number of sub-filters and advantageous being a polyphase filter.

Block diagram of Half Band Interpolation Filter is in Figure 2.10.

Figure 2.10 : Half Band Interpolation Filter.

To understand the structure of H(z)s, it is important to have a look at the impulse and

frequency response of half band low pass filter given in Figure 2.11.

 (a) (b)

Figure 2.11 : Frequency (a) and impulse (b) response of Half Band LPF.

As shown in Figure 2.11, almost half of the coefficients of Half Band Filter are zero.

Moreover, zero coefficients are only even indexed coefficients which makes them

easy to eliminate. Details and other advantages of Half Band Filters are in Section

2.1.2.

2.2.2. Advantages of half band interpolation filters

Main advantages of Half Band Interpolation Filters can be grouped under three

headings: fewer coefficients, working at half output data rate and ease to transform.

2.2.2.1. Fewer coefficients (and multipliers)

According to (2.4), a Half Band Filter can be written as (2.5) below.

2 2 1

0 1() () ()H z H z H z z (2.5)

And impulse response representation is in (2.6).

16

2 (2 1)() (2) (2 1)n n

n

H z h n z h n z (2.6)

As seen from Figure 2.12, all except one even indexed coefficients of Half Band

Filter are zero. So, resulting equation is in (2.7).

(2 1)() (0) (2 1) n

n

H z h h n z (2.7)

As indicated from previous equations, zero coefficients of the Half Band Filter can

be reduced. Moreover, because implementing zero-coefficients is unnecessary,

almost half of the multipliers are also removed. That feature is illustrated in Figure

2.12.

z
-1

z
-1

z
-1

z
-1

C1 0 C3

. . .

. . .

Cn0

Figure 2.12 : Saved multipliers in HBFs due to zero-coefficients.

2.2.2.2. Working at half output data rate [14]

Input and output data rates of a conventional filter are equal as expected. On the

other hand, an interpolation filter should increase the data rate by the interpolation

factor L. At this point, architecture of the interpolation filter gains importance

because of the clock speed of the filter. It is known that interpolation filters are

mostly used in high speed DACs [4-13] which demands output data rates up to 1.25

GSPS[11]. While designing such a high speed digital circuit, it is desired to use

lower speed clocks to reduce power consumption. In short, it would be a good idea to

reduce clock speed of the filter without changing functionality and not worsen area

and power characteristics. In Figure 2.13, Half Band Filter block diagrams are given

before and after using noble identity.

H0(z
2
)

H1(z
2
)

z
-1

x(n) y(m)↑ 2

H0(z)

H1(z)

z
-1

x(n) y(m)↑ 2

↑ 2

 (a) (b)

Figure 2.13 : HBF before (a) and after (b) applying noble identity.

17

In Figure 2.13 (a), it is seen that filtering is performed after up-sampling which

means filters H1 and H2 should work at twice the data rate of input x(n) because of

oversampling. However, after applying noble identity, H1 and H2 now come before

the upsampler which makes them work at the same speed of input data rate. That

feature makes HBFs not only smaller because of less multipliers, but also more

power efficient due to being clocked at lower speeds.

2.2.2.3. Easy to transform from low-pass to high-pass [14]

In section 2.1.1.1, it is stated that for interpolation process, a LPF is required to

suppress unwanted images. But in some cases, those images are needed to be kept, as

they are modulated versions of the input signal. Although the modulation topic is

explained in section 2.2, it is important to note now that changing pass-band of the

filter may be desired. In this case, designers prefer configurable filters without a big

area cost for implementation.

HBFs are one of the filters whose pass-band can be changed without additional cost.

In Figure 2.14, high-pass version of the HBF can be seen. To make a HPF from its

LP equivalent, LP impulse response is modulated by a cosine with half sample rate

frequency. It is obvious that frequency domain equivalent of this operation pushes

spectral center where pass-band is, to half the sample rate. Transform is in (2.8).

() () *cos()HPF LPFh n h n n (2.8)

Figure 2.14 : Impulse response of Half Band HPF.

In (2.6) and (2.7), it is given that all coefficients of Half Band Filter are odd indexed

except the one in center. Besides, it can be said by looking Figure 2.10 that, even and

odd indexed coefficients are implemented in separate filters H0 and H1 respectively.

Based on these explanations, HP representation of HBF is as follows in Figure 2.15.

18

H0(z)

H1(z)

z
-1

x(n) y(m)↑ 2

↑ 2

+

-

Figure 2.15 : Half Band High Pass Interpolation Filter.

As seen from Figure 2.15, only modification in block diagram is the subtractor. LP to

HP transform is just an example of easy transformability of the HBFs. By using

similar approaches, several complex BPFs can be realized without much area and

power cost. The necessity of BPF transformation is explained in Section 2.3.4.

2.3. Coarse Modulator Design

Coarse modulation of input signal is commonly done by an analog mixer circuit after

the DAC in an RF system [4-13]. On the other hand, due to recent trend about using

less number of ICs and avoiding problems caused by analog mixers like jitter and

other non-idealities, digital modulation before or within DAC circuits gains

importance. That modulation could be a fine or a coarse modulation, depending on

mixing requirements.

In order to implement a fine modulation, a much higher frequency resolution is

required than a coarse modulation. Fine modulation is generally used to put data to a

specific frequency channel. Although fine modulation is often critical for a

communication system, the baseband digital circuits driving the DAC chip can easily

implement it. The used method is performing a fine modulation before the DAC chip

and coarse modulation within the DAC chip. For communications in multi-GHz

frequencies, an analog modulator after DAC chip is necessary.

Coarse modulation however has only a few major frequency steps to shift the input

data. Details of this operation and its implementation are explained in this section.

2.3.1. Standard digital modulation

It is well-known that modulation is simply performed by multiplying the input signal

with a cosine with desired frequency. In order to apply that, a multiplier and a cosine

generator (oscillator) circuit are required.

19

2.3.2. 2n
 Ratios of sampling frequency

In a modulation system with a multiplier and oscillator, more complex block is the

oscillator which calculates amplitude values of the cosine function. If characteristics

of a cosine function like zero crossings and symmetry are used wisely, a numerical

oscillator can be turned into a simple multiplexer with several constant values at the

input. To take those advantages, frequency values of coarse modulator is chosen as

2
n
 ratios of the sampling frequency. Several examples are in Table 2.1.

Table 2.1 : Cosine values to multiply for several frequencies.

Frequency Values

fS/2 -1 1

fS/4 -1 0 1 0

fS/8 -1 - 2 2 0 2 2 1 2 2 0 - 2 2

2.3.3. Eliminating multipliers and coefficients

At frequencies Interpolation and Modulation DACs operate, it is both area and power

consuming to use a multiplier at the end of the interpolation filter where modulation

is carried out. Thus, elimination the output multiplier is desired. In Section 2.1.2.3,

performing modulation by fs/2 is done by using a subtractor, which performs

multiplication with -1s. As this only works for fs/2 modulation, other coarse

modulation frequencies are created by cascading several interpolation and

modulation filter blocks with ascending sampling frequencies and LP, BP or HP

modes.

2.3.4. Hilbert transformer [14]

Hilbert Transformer is a complex filter which passes positive frequencies and

suppresses negative frequencies of the input signal. It is a positive shifted version of

a LP Half Band Filter. Frequency response of a Hilbert transformer is in Figure 2.16.

Figure 2.16 : Frequency response of Hilbert Transformer.

20

Operation of Hilbert Transformer is given in (2.9)

/2() () jn

HT LPFh n h n e (2.9)

If
2jne is expanded with a sine and cosine function, (2.10) is obtained.

() () cos(/ 2) sin(/ 2)HT LPFh n h n n j n (2.10)

Cosine function in (2.10) gives 1 and -1 when n is even and 0 when n is odd.

However for odd n‟s, h(n)LPF gives non-zero and for even n‟s it gives zero except

n=0 as it is a Half Band Filter. Eventually, for real part of the filter h(n)HT, only one

non-zero coefficient is present at n=0.

In the meantime, sine function gives -1 and 1 when n is odd and 0 otherwise. When

multiplied by filter coefficients, sine function makes left half of the coefficients

minus signed and right half positive signed. Resulting impulse responses are in

Figure 2.17.

 (a) (b)

Figure 2.17 : Real (a) and imaginary (b) impulse responses of Hilbert Transformer.

As seen from Figure 2.17, only signs of coefficients are changed when a LPF is

transformed into a Hilbert Transformer. That operation can easily be implemented by

using subtractors instead of adders, which come after multipliers. Unlike LP and HP

counterparts, Hilbert Transformer gives complex output (or two outputs: real and

imaginary). Final visualization of Hilbert Transformer is in Figure 2.18.

H0(z)

H1(z)

x(n) Re{y(m)}

Imag{y(m)}

↑ 2

↑ 2 z
-1

Figure 2.18 : Hilbert Transformer.

21

2.3.5. Limitations

As described in previous sections, an efficient coarse modulation can be performed

via HBFs with small modifications. But due to the nature of the operation,

modulation step size is limited to fs/2. If more than one sampling rates and filter-

interpolator couples are used, step size can be fs/2k where k is number of filter-

interpolator couples. For example for k = 3, it is possible to shift base frequency of

input data to following ratios of sampling frequency fs of the output: [-3/8 -2/8 -1/8 0

1/8 2/8 3/8 4/8].

When finer modulation is desired it is necessary to use a multiplier and oscillator

circuits at the end of the interpolation filters which brings extra cost for higher

operating frequencies.

2.4. Multi-Stage Interpolation with Half-Band Filters

So far, single-stage interpolation with HBFs, which doubles the sampling frequency

was described. If more than 2x interpolation is desired for better improvement in

image rejection or modulation with larger band is aimed, cascaded HBFs are used.

As every HBF stage doubles sampling frequency and data rate, using n-stage HBFs

gives 2nx interpolation and pushes images 2nx away.

2.4.1. Baseband

Using LP modes of the half band filters in cascade form results in suppressing all the

images and only the baseband frequencies are allowed to pass. This may be referred

as baseband interpolation. A three-stage interpolation (8x) constructed by cascaded

HBFs is represented in Figure 2.19.

H0(z)

H1(z)

z
-1

x(n) ↑ 2

↑ 2

H0(z)

H1(z)

z
-1

↑ 2

↑ 2

H0(z)

H1(z)

z
-1

y(m)↑ 2

↑ 2

Figure 2.19 : Three-stage interpolation with cascaded HBFs.

In the interpolation system given in Figure 2.19, output y(m) is the 8x interpolated

version of the input x(n). As all three HBFs work in LP mode, no modulation was

performed.

22

2.4.2. Whole band

In Sections 2.2.2.3 and 2.3.4, it is mentioned that HBFs can easily be transformed

from LP to HP and BP operation which may called as operation mode of the filter.

By doing the transformations, sampling related images can be used for modulation

purposes, as they are the modulated versions of the input data.

In order to demonstrate using different images for modulation purposes, let‟s

examine an interpolation and modulation system with three-stage HBF cascades.

Also let the operation modes of the filters be LP, HP and BP respectively. Then, the

inputs and the outputs of the filters are given in Figure 2.20.

 (a) (b)

 (c) (d)

Figure 2.20 : Spectrum plots of the signal at filter inputs and outputs.

In Figure 2.20 (a), it is seen that 16 bit sine signal with 25 MHz is applied to system

input at fS = 200 MHz. As first stage acts as a LPF, output of the first stage is similar

to input with an increase in sampling rate (Figure 2.20 (b)). At second stage, HBF

performs a HP behavior which passes frequencies around 400 MHz and suppresses

the others, still increasing the sampling rate (Figure 2.20 (c)). Finally, third stage

operates in Hilbert Transform mode, with a further increase in sampling rate. Thus,

23

third stage passes positive frequency band (0-800 MHz) and suppresses the rest (800-

1600 MHz) (Figure 2.20 (d)). In the end, both 8x interpolation and modulation to 400

MHz is performed with 3-stage HBFs.

Many other modulation steps are possible to achieve with the same approach, just by

changing modes of the HBFs. Details of every mode and outputs will be given in

Section 3.1.3.

24

25

3. IMPLEMENTATION OF THE ARCHITECTURE WITH 85 DB SFDR

This section covers the implementation of a standard architecture of Half Band

interpolation filters with modulation capability. Standard architecture refers to a non-

optimized architecture which is created by examining the datasheets of the existing

DACs with interpolation and modulation capability, and theories published in the

literature. Design process is examined under four headings: Modeling, HDL coding,

synthesis, layout and simulation results.

3.1. Behavioral Modeling: MATLAB Models

This section explains the purpose of behavioral modeling and detailed description of

the models.

3.1.1. Importance of modeling: why it is important?

Modeling is the first step of an implementation process. It gives a brief idea of what

is to be expected. During behavioral modeling, ideal blocks are used to understand

functionality and needs of the system better. Even after real blocks and physical

effects are included to system, behavioral models are still used for comparison and

detection of possible implementation errors.

Another advantage of modeling is visualizing the system and increasing

comprehensibility.

3.1.2. Model description

For behavioral modeling of the system, MATLAB is used first. Reasons of choosing

MATLAB as a behavioral modeling and simulation medium are its libraries, ease of

use, reliability and the convenience of co-simulation with Simulink.

Modeling filter functionality with Simulink models was another decision that was

made. With its drag-and-drop interface, Simulink models offer visual representation

of the system, which makes it easy to understand and convert to HDL models. It was

26

seen that HDL design workload reduced dramatically as visual models of the system

became available.

During the modeling process, MATLAB models of interpolation and modulation half

band filters were simulated and the output data is analyzed to test functionality and

performance. During code development, many MATLAB models are created, which

start from basic models that are implemented and understood easily, to more

complex models that are closer to reality. It is unnecessary to explain every model

line by line. Instead, common parts of the models are explained in this section.

3.1.2.1. Obtaining filter coefficients

The most important part of designing a filter is calculating the filter coefficients. To

make that process easier, MATLAB offers a filter design and analysis tool named

„fdatool‟. Fdatool is used to obtain Half Band Filter coefficients. Moreover, the

differences between the filters obtained from the fdatool and the filters published in

AD977x DAC datasheet are found. Frequency responses of the resulted filters are

given in Figure 3.1.

(a) (b) (c)

Figure 3.1 : Comparison of fdatool generated filters and AD977x filters.

In order to generate above filters by fdatool, data from a previous work [15] was

used. In that work, filter orders are chosen as 54, 22, and 14 respectively. Moreover,

normalized pass-band frequencies are chosen as 0.4, 0.23 and 0.195 respectively. It is

stated in the work [15] that using those numbers generated good performing filters.

As seen from Figure 3.1, there are significant differences between frequency

responses of fdatool and AD977x results. SFDR values of the obtained filters are in

Table 3.1.

27

Table 3.1 : SFDR differences of filters

Filter Source SFDR [dB] Delta [dB]

F1
fdatool 79

9

AD977x 88

F2
fdatool 71

17

AD977x 88

F3
fdatool 79

7
AD977x 86

Table 3.1, reveals that fdatool may not provide best result. We speculate that fdatool

cannot model truncation of the coefficients during calculations but it truncates the

coefficients after calculations. That may result in different performance. In order to

avoid such problems, methods like “quantization using compensating zeros”[16]

might be used. These methods take the effect of the truncated coefficients into

account and better performance is obtained with respect to the truncating after the

calculation.

During implementation, coefficients of AD977x DAC are used to get better

performance, as a starting point for our first design.

3.1.2.2. Input signal generation

First parts of the MATLAB models are input signal generation. To perform FFT

operation correctly, input signal frequencies are determined according to (3.1).

in s

FFT

x
f f

n
 (3.1)

In (3.1), fin is the input signal frequency, nFFT is number of points per FFT operation,

fs is sampling frequency and x is the FFT bin number.

If this rule is followed, resulting FFT only has the desired frequency components,

and spectral leakage is avoided. By changing nFFT and x, input signal frequency can

be changed or multi-tone signals can be given as an input to the model.

Next simulation parameter is “n_of_bins” which is a misnomer that represents the

multi-tone signal bandwidth. With that option, multi-tone signals can be generated as

the input to the filter.

28

Finally, variables “hb1_mod”, “hb2_mod” and “hb3_mod” can be assigned to set

desired filter modes. Variable “premod” is used to shift the input data by fs/2. Details

of filter modes and pre-modulation feature will be explained in Section 3.1.3.

3.1.2.3. Filtering

Filtering is one of the main operations of the system. In order to analyze filtering,

several different methods were used. Those methods can be grouped under two

headings: filtering with “filter” function and filtering using Simulink blocks.

With “filter” function

First method of filtering is MATLAB‟s “filter” function which takes data to be

filtered and filter coefficients as input and outputs the filtered data. In that type of

filtering, the method that is described below was used.

 (a) (b)

 (c) (d)

Figure 3.2 : Simulation outputs of MATLAB model. FFTs of (a): Input signal, (b):

F1 output, (c): F2 output, (d): F3 output

29

After generating input, up-sampling is performed by zero padding between successive

data points. That operation creates an image at fs-fin. Then, filtering is performed with

“filter” function. Due to the number of filters in pipeline, zero padding and filtering

might be performed again.

An example simulation outputs for MATLAB model of interpolation filter modulation

are in Figure 3.2. fs = 250MHz, fin ≈ 20MHz, nFFT = 1024, modulation = fs/8

In Figure 3.2 (a), frequency representation of the input signal takes place. After up-

sampling and filtering by the first filter F1, images and unwanted components were

suppressed. In Figure 3.2 (b), it is seen that F1 suppresses the low frequency signals

and passes high frequencies, in other words performs HP filtering. Figure 3.2 (c) and

(d) represent the outputs of second and third filters respectively. Frequencies around

250 MHz are passed and others are suppressed. As no image is shown at fs-fin, it

should be noticed that complex filtering using a Hilbert transform was performed.

With simulink model

The goal of repeating the filtering action with Simulink models is better

visualization. In order to change model to use Simulink models, several changes had

been made.

First of all, Simulink model files (.mdl) are created for each filter. As decided, three

interpolation filters with modulation feature are implemented. Building the model

begins with writing “simulink” to command line. Then, Simulink library browser

appears and necessary blocks are dragged and dropped from here to a new model file

opened from “new model” button of the browser. Commonly used blocks are as

follows.

 Integer delay: used to sample old values of the input

 Goto & from: name connection blocks to make model more readable

 From workspace: gets data from m-file

 Gain & Fix: used together to get 16 bit data

 Pulse & switch: used together as a commutator.

 Sum & product: performs the job that they are called

 Subsystem: Sub model that includes other blocks in it. Improves readability

30

 Multiport switch: Used as a multiplexer. Select input is the coefficient

which determines the operating mode of the filter

 To workspace: exports data to m-file

After Simulink model files were done, previous MATLAB models were modified to

call Simulink model files to use these files for filtering instead of the “filter” function

of MATLAB. Function named “sim” is used to call and start a Simulink model file.

Because three filters are present, “sim” function is used three times. After completion

of the Simulink model simulation, the MATLAB code continues execution. Rest of

the simulation process is the same as in former MATLAB models. Simulink models

are shown in Appendix S.

3.1.3. Operation modes of the filters in 85 dB design

This section explains operation modes of the interpolation and modulation block of

our 85 dB design. Since the 85 dB design is not our final design, all operation modes

are not listed in Table 3.2, only 8x interpolation is shown for simplicity. FDAC is the

DAC clock frequency (clock frequency at filter output), and it is assumed to be set at

2 GHz. F1, F2, and F3 represent three half -band filters, each up-sampling the input

clock frequency by a factor of 2. F_center represents the frequency shift provided by

the 8x interpolating filter. The modulation modes using 8x interpolation is shown in

Table 3.2. Similar tables exist for 2x and 4x interpolation modes.

In Table 3.2, operating modes of the sub-filters F1, F2 and F2 are also given. F1 has

4 filtering modes. Mode 0 describes low-pass basic filtering. Mode 1 describes the

first Hilbert transform mode that passes positive frequencies and suppresses the

negatives. Mode 2 describes high-pass filtering. Mode 3 describes the second Hilbert

transform mode that passes negative frequencies and suppresses the positives.

F2 and F3 have 8 modes of operation. Mode 0 describes low-pass basic filtering.

Mode 1 describes 45
o
 pass-band shift. Mode 2 describes the first Hilbert transform

mode that passes positive frequencies and suppresses the negatives. Mode 3

describes 135
o
 pass-band shift. Mode 4 describes high-pass filtering. Mode 5

describes 225
o
 pass-band shift. Mode 6 describes the second Hilbert transform mode

that passes negative frequencies and suppresses the positives. Mode 7 describes 315
o

pass-band shift.

31

Table 3.2 : Filter modulation modes at 8x over-sampling.

pre_mod F1 F2 F3 f_center f_center @ fDAC = 2GHz

0 0 0 0 0 (DC) 0 (DC)

1 1 1 0-1 fDAC/16 125

0 2 2 1 2fDAC/16 250

1 3 3 1-2 3fDAC/16 375

0 0 4 2 4fDAC/16 500

1 1 5 2-3 5fDAC/16 625

0 2 6 3 6fDAC/16 750

1 3 7 3-4 7fDAC/16 875

0 0 0 4 8fDAC/16 1000

1 1 1 4-5 9fDAC/16 1125

0 2 2 5 10fDAC/16 1250

1 3 3 5-6 11fDAC/16 1375

0 0 4 6 12fDAC/16 1500

1 1 5 6-7 13fDAC/16 1625

0 2 6 7 14fDAC/16 1750

1 3 7 7-0 15fDAC/16 1875

3.1.3.1. Baseband

This is the first and fundamental mode of the system. In this mode of operation, all

filters work at mode 0 which corresponds to no-modulation, just interpolation. To do

that, variables “hb1_mod”, “hb2_mod” and “hb3_mod” are set to 0. In the end, input

and corresponding output signal of this mode is obtained as in Figure 3.3.

 (a) (b)

Figure 3.3 : Input (a) and output (b) spectrum of the system in baseband mode.

32

As seen in Figure 3.3, output data rate is 8x faster than input data rate as 3-stage

interpolation is used. Besides, some parts of filtered images already stand in

spectrum and corrupt the output. That non-ideality shows the performance of the

interpolation filters and represented with SFDR calculations. That will be discussed

later sections.

3.1.3.2. FDAC/8 modulation

With that modulation mode, input signal both interpolated and modulated with the

frequency fDAC/8. In order to activate the mode, variables “hb1_mod”, “hb2_mod”

and “hb3_mod” are set to 2, 2 and 1 respectively. Resulting output spectrum when

the same input is applied in Baseband mode, is in Figure 3.4.

Figure 3.4 : Output spectrum of the system in fDAC/8 modulation mode.

In Figure 3.4, frequency shift to fDAC/8 which is 250 MHz for the example is shown.

When compared, it is seen that the plot is just a shifted version of the baseband mode

output spectrum.

3.1.3.3. FDAC/4 modulation

FDAC/4 Modulation mode is the third mode of operation which shifts input data

around frequency FDAC/4. It can be selected by assigning 0, 4 and 2 to variables

“hb1_mod”, “hb2_mod” and “hb3_mod” respectively. Resulting spectrum plot is in

Figure 3.5.

Again, plot in Figure 3.5 is a shifted version of the output in baseband mode.

33

Figure 3.5 : Output spectrum of the system in fDAC/4 modulation mode.

3.1.3.4. 3FDAC/8 modulation

With this modulation mode, it is possible to modulate input signal with the frequency

3FDAC/8. Output spectrum plot is given in Figure 3.6.

Figure 3.6 : Output spectrum of the system in 3fDAC/8 modulation mode.

To activate 3FDAC/8 modulation, variables “hb1_mod”, “hb2_mod” and “hb3_mod”

are set to 2, 6 and 3 in the given order.

3.1.3.5. ±FDAC/2 modulation

This modulation mode modulates the input signal with frequency fDAC/2 which also

equals to modulating with -fDAC/2. To activate, “hb1_mod”, “hb2_mod” and

“hb3_mod” are set to 0, 0 and 4 which work first two filters LP and last filter HP

mode. Resulting output spectrum is given in Figure 3.7.

In Figure 3.7, it is seen that fDAC/2 modulation is performed. From symmetry, it can

be said that if the input signal is real, output also becomes real, which means a real

modulation is performed. This modulation can be realized using a single channel.

34

Figure 3.7 : Output spectrum of the system in ±fDAC/2 modulation mode.

3.1.3.6. -FDAC/8 modulation

This is the negative version of the fDAC/8 modulation. With -fDAC/8 modulation

mode, which is activated by setting mode variables to 2, 6 and 7, input signal is

shifted to around -fDAC/8 frequency. Spectrum of the output signal is in Figure 3.8.

Figure 3.8 : Output spectrum of the system in -fDAC/8 modulation mode.

As seen in Figure 3.8, spectrum plot is the mirror image of the output in fDAC/8

Modulation mode in Figure 3.4.

3.1.3.7. -FDAC/4 modulation

Like -fDAC/8 Modulation mode, -fDAC/4 modulation mode is the negative version of

the fDAC/4. .It can be selected by assigning 0, 4 and 6 to variables “hb1_mod”,

“hb2_mod” and “hb3_mod” respectively. Resulting spectrum plot is in Figure 3.9.

Again, spectrum plot in Figure 3.9 is the mirror image of the output in fDAC/4

modulation mode in Figure 3.5.

35

Figure 3.9 : Output spectrum of the system in -fDAC/4 modulation mode.

3.1.3.8. -3FDAC/8 modulation

Within this mode of operation, it is possible to modulate input signal with the

frequency -3FDAC/8. Output spectrum plot is given in Figure 3.10.

To activate 3FDAC/8 modulation, variables “hb1_mod”, “hb2_mod” and “hb3_mod”

are set to 2, 2 and 5 in the given order.

Figure 3.10 : Output spectrum of the system in -3fDAC/8 modulation mode.

3.1.3.9. FDAC/16 modulations

Until now, all possible operation modes are explained and their results are presented.

In this section, a possible weakness of the presented system and its solution is given.

A problem: using all the Nyquist band

During early times of design, it is desired to shift the input signal wherever we like in

the output signal spectrum. Several operation modes were defined and explained to

accomplish the objective. However, input signal frequencies between two

modulation mode frequencies (ie. near FDAC/16) fall into filter transition band and

undesired levels of suppression are observed. That issue is visualized in Figure 3.11.

36

 (a) (b)

Figure 3.11 : Attempts to use mid-mode frequency band. Fin = (a): 100 MHz,

(b): 110 MHz.

In Figure 3.11, it is desired to use a real valued mid-mode frequency band, which is

chosen to be around 125 MHz. Frequency of the input signal is chosen as 100 and

110 MHz, for Figure 3.11 (a) and Figure 3.11 (b) respectively, and it is seen that

images (at 150 MHz in (a) and 130 MHz in (b)) are no longer suppressed efficiently

due to incapability of the filters.

Solution: pre-modulation & mid-modes

To solve the issue, 8 new operation modes are defined, which modulate the input

signal to mid-mode frequencies without any SFDR penalty. A pre-modulation option

is needed. When activated by setting “pre_mod” variable to 1, it modulates the input

signal at baseband and prepares it for mid-mode filtering. As filter modes for that

kind of modulations are already given in Table 3.2, only resulting spectrum plots for

these operation modes are given in Figure 3.12.

(a) (b)

37

 (c) (d)

Figure 3.12 : Output Spectrums of mid-modes. (a): FDAC/16, (b): 3FDAC/16, (c):

5FDAC/16, (d): 7FDAC/16.

Spectrum plots for mid-modes with negative frequencies are in Appendix P. It is

seen in Figure 3.12(a) that input signal can be put around frequency fDAC/16 without

any image rejection problem. By the help of mid-modes, all output bandwidth can be

used without penalty.

3.1.4. SFDR calculations

In previous sections, it is mentioned that designed interpolation and modulation

system works as desired. However, proving functionality is not enough for such a

system and giving performance metrics of the system is necessary. Therefore, SFDR

calculations were made to evaluate signal distortion. SFDR for an operation mode is

obtained from the worst SFDR value found during a full-scale frequency sweep,

using a single tone.

3.1.4.1. SFDR vs. operation mode

First analyzed metric is the change of SFDR wrt. operation mode. It is seen from the

spectrum plots that modulated versions of the baseband mode is just shifted versions

of the same pattern and no change in SFDR was expected from different modulation

modes. To calculate SFDR values for every operation mode, a modified MATLAB

model was generated which creates same input signal that covers all filter pass-band

and changes operation modes from 1 to 16 in Table 3.2. It calculates SFDR values

for every mode and in the end it plots them. Obtained graph is in Figure 3.13.

38

Figure 3.13 : SFDR values wrt. operation modes.

As seen in Figure 3.13, worst SFDR was calculated as 85.4 dB for 3
rd

, 7
th

, 11
th

 and

13
th

 modes. It is seen that characteristics of the first four modes replicate themselves

and a symmetric pattern is obtained. In the beginning, a constant value was expected

for all modes, but instead, a replicating pattern was found. The difference is subtle,

0.6 dB.

3.1.4.2. SFDR vs. signal amplitude

During simulations except this one, input signal amplitude is chosen as 0.9 times of

the maximum input signal range. It is known that output SFDR value will change if

amplitude of the input signal changes. To show that, amplitude of the input signal

changed from 0.1 times to 0.9 times and SFDR values for baseband mode. Resulting

graph is in Figure 3.14.

Figure 3.14 : SFDR values wrt. signal amplitude.

In Figure 3.13, it is seen that when signal amplitude drops under 0.3 times of its

maximum, SFDR values also drops sharply. After 0.3 times, SFDR is almost

39

constant and does not show a significant change. This is expected, since stop-band

attenuation of the filter limits the SFDR.

3.1.4.3. SFDR vs. input frequency

In Section 3.1.3.9, difficulties about image rejection caused by increase in signal

frequency was briefly mentioned. To analyze that effect more deeply, SFDR values

for input signals with different frequencies are calculated. Results are shown in

Figure 3.15.

Figure 3.15 : SFDR values wrt. signal frequency.

Figure 3.15 suggests that SFDR values are larger than 90 dB when signal frequency

is less than 50 MHz. Between 50-85 MHz, SFDR is almost constant at 86 dB. After

100 MHz, SFDR falls significantly. It is seen that for signals with lower frequency,

SFDR of the system is larger; when input frequency increases, SFDR decreases

slowly and later sharply. This is expected, as the SFDR follows the frequency

response curve of the filter.

3.2. HDL Coding

Hardware Description Language (HDL) model of the system is generated to

synthesize and finally implement the system.

Verilog HDL, which is a C-like HDL, is chosen to model the system. In following

sections, sub-blocks of the system are presented and comparisons of the results with

respect to Simulink models are given.

40

3.2.1. Sub-blocks

Interpolation and modulation system that is modeled consist three level interpolation

filters with modulation feature. Verilog Codes of the sub-blocks are in Appendix V.

3.2.1.1. Filter-1

Filter-1, in short F1, is the first interpolation filter of the system with modulation

feature. Thanks to noble identity of Half Band Filters and other techniques; F1,

which is a 55 tap filter, has only 14 different coefficients and multipliers. Those

coefficients are in Table 3.3. Because of being the first filter, F1 should have the

sharpest transition band with respect to other filters. The reason is that, the images

occur closer than other filters. Verilog model of the F1, which is derived from the

Simulink model, is now described.

Table 3.3 : Coefficients in F1

Coefficients Value

C0 -4

C1 13

C2 -34

C3 72

C4 -138

C5 245

C6 -408

C7 650

C8 -1003

C9 1521

C10 -2315

C11 3671

C12 -6642

C13 20755

C14* 32768*

*:not implemented with multiplier

First always block contains a shift register chain that takes real and imaginary data

inputs. It is 27 levels deep. Then “oys_register” comes, which is the short form of

“last register of shift register”. Normally, this is equal to associated shift register but

for some modes of operation, the value is multiplied by -1 (or just sign is changed).

After that, first adders arrive. As HBFs have symmetric coefficients, these adders

sum up associated inputs that will be multiplied by same coefficients. By doing this,

half of the multipliers are saved. For complex filtering modes, coefficients are not in

41

their original form but their signs are changed. So, when these modes are active,

subtraction is performed. After fist adders, multiplications with coefficients are done.

Thereafter, within four levels, summations of the partial products are performed.

So far, no truncation or rounding is performed and outputs become 37-bit which is

excessive. Therefore, truncation to 16-bit is done and final value is named as

“kesik”(_r for real _i for imaginary). Next block is important for complex filtering

again. That block switches real and imaginary filtered data to fulfill the operation of

Hilbert transformer.

Last two always blocks act as a commutator, which connects the filtered data or

shifted input data at “oys_register” to the output. At the end, 2x interpolation and

optional modulation is performed during F1.

3.2.1.2. Filter-2

Filter-2, comes after F1, operates much the same as F1 but with 4 more modes of

operation. Verilog model of F2 generally is similar to F1 with a few differences.

These differences are explained in this section.

First difference is the shift register length. Because of that F2 should suppress images

far from F1‟s, it designed as a 23 tap filter, which can be implemented with only 6

different coefficients given in Table 3.4. Shift register length is chosen as 11 to hold

all necessary old values of input. Moreover, because of the 4 new modes (mode 1, 3,

5 and 7) that F1 does not have, generating “oys_register” was changed. For the new

modes; “oys_register” is equal to sum (or difference) of real and imaginary

registered inputs times square root of 2. As that value becomes 32 bit long, it was

also truncated to 16-bits as usual and named as “kesik_oys”. For the new 4 modes,

this value is assigned to “oys_register”, otherwise directly the registered input value

assigned as in F1.

There are also differences in the first adders as well. For the new 4 modes, not only

the real values are added for real first adders, but also the associated imaginary

values. That is also true for the imaginary first adders. For the first 4 modes (mode 0

2, 4 and 6), operation is the same as F1 (real first adders consists of real SR‟s values

only and so as are the imaginary first adders).

42

Table 3.4 : Coefficients in F2

Coefficients Value

C0 -2

C1 17

C2 -75

C3 238

C4 -660

C5 2530

C6* 4096*

*:not implemented with multiplier

Rest of the model is just like F1: multiplication with coefficients, adder trees, output

truncation and commutator. With the modifications described above, F2 is made to

have eight modes of operation, each corresponding to a different modulation

frequency.

3.2.1.3. Filter-3

Filter-3 is the last interpolation and modulation filter of the system. F3 operates

fastest and needs to suppress images that are farthest. F3 is almost the same as F2,

but with lesser differences.

First difference is the SR length, which is 8 for F3. As F3 is the last interpolation and

modulation filter, it has the easiest suppression specifications than the others. So 8-

length SR, which corresponds to 14-tap filter, was found satisfactory for F3. Other

difference is the coefficients which are presented in Table 3.5.

Table 3.5 : Coefficients in F3

Coefficients Value

C0 -39

C1 273

C2 -1102

C3 4964

C4* 8192*

*:not implemented with multiplier

3.2.2. Comparison with MATLAB models

After building a new model, it is simulated and compared with other known models.

Therefore, Verilog models must be simulated. To do that, a verilog testbench is

created to give inputs and collect outputs from the system. Details of that test bench

and verification process are described below.

43

3.2.2.1. Testbench: getting data from verilog to MATLAB

The Testbench has four clocks in order to simulate a 3-level interpolation and

modulation system. These clocks are generated within the testbench, according to a

period parameter. That period is for the input and other clocks use half of the

previous clock‟s period. Besides, operation modes of the filters can be changed via

changing appropriate mode bits in test bench. Moreover, test bench has a LUT

including sine values for input.

When a Verilog simulation ends, an m-file is generated to write outputs of the

simulation. Later on, it will be used for MATLAB comparisons. In that m-file, values

of the output signal is written in a format which MATLAB code can read. Also for

possible „X‟ values, a precaution was taken and those values are assigned to NANs.

Verilog code of testbench and its sample output are in Appendix V.

3.2.2.2. Comparison

When the simulation is finished, an m-file including the output of the system is

generated. In order to examine and compare it with the MATLAB models, another

MATLAB code was written. That “Verilog output reader” code was created to be run

after MATLAB model was simulated. It reads the output file of the Verilog model,

and plots this data on top of the old data generated by the MATLAB model. It is seen

that these two data are exactly the same. In order to be sure, Verilog output and

MATLAB outputs are subtracted and all zeros are expected. It can be said that

Verilog models are verified with no errors.

3.3. Synthesis, PAR and final layout

It is mentioned earlier that Verilog models are created to synthesize the circuit and to

draw the layout to produce a chip. This section includes the process of generating the

layout.

3.3.1. Flow & tools

Microelectronic design flow consists of modeling (MATLAB), hardware description

(Verilog), synthesis, place and route (PAR) and generating final layout steps. From

now on; synthesis, PAR and final layout generation will be described and physical

design tools that are used will be explained.

44

For complex digital system design, using physical design tools becomes a must.

Cadence design environment was used. Tools that are used for synthesis, PAR and

final layout are: RTL compiler, Encounter and Virtuoso. Details of the design

process are presented in following sections (Cadence tool called NCSim is

previously used for verilog simulations).

3.3.2. Synthesis with RTL compiler

Synthesis is describing a behavioral HDL code with logic gates defined in standard

gate library of the chosen process. That can be done either by hand (full-custom) or

with CAD tools (semi-custom). Semi-custom design can also be divided to

subsections on the basis of using automatic mapping to gates.

In the very beginning of the work, a certain number of semi-custom designs were

generated and some of their full-custom equivalents are designed in order to

understand the limits of the process and the capability of the CAD tools. During that

time, various adder architectures [17-22] are tested. In the end, it is seen that full-

custom designs give limited benefits on performance; moreover, they seriously

lengthen the design and simulation times. In conclusion, it is decided to use a semi-

custom design flow driven by the CAD tool.

Synthesis flow on RTL Compiler may be the easiest one, as flow is almost automatic

and there are only few things to do. A tcl-script was written and run in the RTL

Compiler. All work including desired specifications, file names, operations etc. is

done by that script. But before moving to the script, opening the RTL Compiler will

be explained.

3.3.2.1. Synthesis flow

The synthesis flow contains information about using the synthesis tools, writing and

using scripts to control them. Details of the written specifications and usage of the

tools are grouped under Appendix I.

3.3.2.2. Retiming / pipeline

To increase the performance of the circuit or to make it be able to operate with

higher clock frequencies, an operation named “retiming” is performed. Retiming

means repositioning combinational logic blocks to decrease longest path delay

45

without changing functionality [23]. It can also be used as an automatic pipeliner, by

putting registers after maximum combinational delay. It is seen that without

automated retiming, user defined pipelined architectures had worse performance.

3.3.3. PAR with encounter

PAR (Place and Route) is next level of the design flow, where placement of the logic

gates and generation of routs occur. PAR tool of Cadence is Encounter, which takes

the output files of the RTL compiler as input, and generates a delay file .sdf for

simulation, and layout file .gds, for production.

3.3.3.1. Steps of PAR

During the PAR process at Encounter, commands defined in a script was used, which

is a modified version of an Austrian Microsystems‟ PAR script. Commands of that

script and PAR flow explained together in Appendix I.

3.3.3.2. Outputs: GDS-II & SDF

When PAR is done, two files are generated in order to be used for production and

simulation. These files are GDS-II and SDF files, respectively.

GDS-II file includes layer information which is used for the foundry to produce a

chip. A plotted GDS-II file is in Figure 3.16.

Figure 3.16 : Plotted GDS-II File of the 85 dB filter design in 0.15u

LFoundry CMOS process

46

SDF is the acronym for standard delay format. An SDF file contains delay

information of the final layout. When used with Verilog file that was generated,

accurate post-PAR simulations can be made.

3.4. Post-PAR Simulations & Results with NCSim

In previous section, it is mentioned that by using Verilog and the SDF file, accurate

post-PAR simulations can be performed. To do that, NCSim tool of Cadence is used

for simulation and results are examined.

3.4.1. Comparison of results

In order to make post-PAR gate level Verilog simulations, modifications were made

on Verilog test bench. First modification was including a gate library with typical

conditions. By doing that, functionalities of the process-specific gates are defined to

the simulator. Another modification was reading the SDF file that includes delays of

both gates and the interconnects. Once simulation setup was finished, the simulation

is performed. See Appendix V.

After simulation, a MATLAB m-file was generated as done before and read by

MATLAB to compare with previous results obtained by behavioral models. It is

found out that exactly the same functionality is achieved.

3.4.2. Maximum operating frequency

During simulation step, clock speed was increased to find its maximum value

without harming functionality. It is seen that maximum clock in the system can be

increased to 1.3 GHz with 2 levels of retiming for multipliers in L-Foundary 0.15 μm

process.

3.4.3. SFDR of the output

As functionality is found to match with MATLAB models, SFDR of the final design

exactly matches the MATLAB models. SFDR results are not repeated here. SFDR

plots can be found in Section 3.1.4.

47

4. IMPROVEMENTS ON STANDARD ARCHITECTURE

This section covers the design improvements made on the standard architecture

explained in Section 3. Improvements can be categorized into two headings: better

SFDR performance and increased number of filter modes. Section also includes the

new HDL representation, implementation and simulations of the new design, which

is implemented not on the LFoundry process, but on TSMC 0.18 μm CMOS process.

4.1. Targeting Higher SFDR

In a DAC chip with digital signal processing, system performance should be

determined by performance of the DAC. To satisfy that, performance of the digital

blocks should be better than DAC‟s performance, within desired operating

frequencies. Therefore, in order to be able to work with a DAC with 90 dB SFDR,

improved digital filters should have better performance than 90 dB. This

specification is chosen as 95 dB.

A digital filter‟s SFDR performance is given by two factors: filter order and

coefficient resolution. Although increasing one item may only bring small benefits, it

is necessary to increase both, if large improvements are required.

4.1.1. Higher order filters

Increasing filter order is the first issue adopted from analog filter design. However, it

is necessary to consider the digital implementation when increasing the filter order.

In a FIR filter, increasing the filter order also increases the final adder tree. Number

of leaves of the adder tree is desired to be 2
n
. If this is not satisfied, area of the filter

does not become optimum. Figure 4.1 shows an optimum and non-optimum cases for

the adder tree.

During calculation of the new coefficients, number of leaves is targeted to be made

2
n
. This value is made non-optimum, only when it is worth doing so (that is, when

SFDR performance improves significantly).

48

 (a) (b)

Figure 4.1 : Examples of optimum (a) and non-optimum (b) adder trees.

4.1.2. Larger bit coefficients

Coefficient resolution is another item affecting the SFDR directly. Using larger bit

coefficients reduces the quantization error between real numbered coefficients

calculated from solving the transfer function for given inputs and quantized

coefficients. However, using coefficients with more resolution increases the power

consumption, the hardware cost and reduces the operating frequency of the filter,

which now requires higher resolution multipliers.

4.1.3. Obtaining filter coefficients

Calculation of Filter coefficients is done with the MATLAB fdatool. In order to get

filters with higher SFDR, filter order and coefficient word length parameters are

chosen to be larger than the previous architecture. Comparison of the filter fdatool

parameters and resulting filter specifications are in Table 4.1

Table 4.1 : Comparison of fdatool parameters and resulting filter characteristics.

Filter

Name

Filter

Order

Number

of Coeff.
w pass

Word

Length

Effective

WL

SFDR

[dB]

1 old 54 14 0,4 16 15 79

1 new 62 16 0,40021 19 18 98,3

2 old 22 6 0,23 13 12 71

2 new 22 6 0,2003 17 16 99,5

3 old 14 4 0,195 14 13 79

3 new 22 6 0,225 17 16 99,7

After calculation, it is found out that Filter 2 and Filter 3 specifications are quite

similar and Filter 3 can be used twice instead of Filter 2. By doing that, a small

SFDR gain is obtained. In conclusion, Filters in Table 4.2 are used in the optimized

design.

49

Table 4.2 : Filter characteristics used in the design.

Filter

Name

Filter

Order

Number

of Coeff.

w pass Word

Length

Effective

WL

SFDR

[dB]

1 old 54 14 0,4 16 15 79

1 new 62 16 0,40021 19 18 98,3

2 old 22 6 0,23 13 12 71

2 new 22 6 0,225 17 16 99,7

3 old 14 4 0,195 14 13 79

3 new 22 6 0,225 17 16 99,7

Frequency responses of the Filters are given in Figure 4.2.

 (a) (b) (c)

Figure 4.2 : Frequency responses of the filters. (a):Filter-1, (b):Filter-2, (c):Filter-3.

As mentioned before, main performance metric of the filters for the application is

SFDR. However, in order to obtain other performance metrics of the designed filters,

MATLAB simulations are performed. As a result, pass-band ripple of the filters are

obtained as 2x10
-4

dB (taken as 0) and SNR is calculated as 95.4 dB for F1 and 94.6

dB for F2 and F3. Combined SNR is 93.4 dB. The visible ripple in the plots is a

graphics artifact. Zoomed plots show 0.0002 dB ripple.

4.2. SFDR Calculations of Improved Filters (with MATLAB)

After designing the filters, SFDR calculations with respect to the Operation mode,

Signal amplitude and Input frequency are updated for new coefficient sets.

4.2.1. SFDR vs. operation mode

As done with the previous design, optimized filters are simulated for different

operation modes and SFDR is calculated for each one. At last, Computed SFDR

values are plotted in Figure 4.3.

50

Figure 4.3 shows that worst SFDR is 99 dB and it becomes 99.5 dB at most. It is

seen that the characteristics of the first four modes replicate themselves and a

symmetric pattern is obtained like the previous design.

Figure 4.3 : SFDR values wrt. operation modes.

4.2.2. SFDR vs. signal amplitude

Simulation setup with changing signal amplitude is modified to support using the

new coefficients for filtering. SFDR values for signal amplitudes that vary from 0.1

times to 0.9 times the maximum input range, are in Figure 4.4.

Figure 4.4 : SFDR values wrt. signal amplitude.

4.2.3. SFDR vs. input frequency

In order to calculate the SFDR variation with respect to input frequency, the

frequency of the input signal swept from 0 to 110 MHz and SFDR values are

calculated for each step. In the end, results are plotted in Figure 4.5.

51

Figure 4.5 shows that, for %80 of the input signal bandwidth (up to 100 MHz in this

case), worst SFDR is 99 dB. That is an acceptable value to use with a DAC having

90 dB SFDR performance.

Figure 4.5 : SFDR values wrt. signal frequency.

4.3. New Modes and Peripherals

During design of the optimized filters, it is decided to add new modes and features to

the current system.

4.3.1. Selectable interpolation modes: 8x, 4x, 2x, no int.

In designed interpolation system, 3 filters with 2x interpolation are connected

consecutively. That provides up to 8x interpolation. In the optimized design,

interpolation feature is made selectable and new modes: 4x, 2x and no interpolation

are added. That is done by disconnecting some filters in from the line and applying

inputs to directly to output (no int.), to third filter (2x int.) or to second filter (4x int.)

instead of applying them to first filter only. Associated block diagram of selectable

interpolation cases is in Figure 4.6.

Filter 1

2x Filter 2

2x Filter 3

2x

Int.

mode

Data

In

Data

Out

Figure 4.6 : Block diagram of selectable interpolation feature.

52

4.3.2. New modulation modes with filters

Having new interpolation modes also allows new modulation modes. In other words,

modulation with using only one or two filters is now possible instead of using always

three filters. The complete table including new modulation modes associated with 2x

and 4x interpolation are given in Table 4.3

Table 4.3 : Complete table of operation modes.

Code

(10 bits)

Inter-

polation
pre-mod F1 F2 F3 f_center

F_center @

fDAC=2GHz
DAC Outputs

0-X-X-X No int. Bypass Bypass Bypass Bypass N/A N/A Independent

1-X-X-0 2x Bypass Bypass Bypass 0 0 (DC) 0 (BB) Independent

1-X-X-1 2x Bypass Bypass Bypass 1 fDAC/8 250

1-X-X-2 2x Bypass Bypass Bypass 2 2fDAC/8 500

1-X-X-3 2x Bypass Bypass Bypass 3 3fDAC/8 750

1-X-X-4 2x Bypass Bypass Bypass 4 4fDAC/8 1000 Independent

1-X-X-5 2x Bypass Bypass Bypass 5 5fDAC/8 1250

1-X-X-6 2x Bypass Bypass Bypass 6 6fDAC/8 1500

1-X-X-7 2x Bypass Bypass Bypass 7 7fDAC/8 1750

2-X-0-0 4x Bypass Bypass 0 0 0 (DC) 0 (BB) Independent

2-X-1-0/1 4x Bypass Bypass 1 0-1 fDAC/16 125

2-X-2-1 4x Bypass Bypass 2 1 2fDAC/16 250

2-X-3-1/2 4x Bypass Bypass 3 1-2 3fDAC/16 375

2-X-4-2 4x Bypass Bypass 4 2 4fDAC/16 500

2-X-5-2/3 4x Bypass Bypass 5 2-3 5fDAC/16 625

2-X-6-3 4x Bypass Bypass 6 3 6DAC/16 750

2-X-7-3/4 4x Bypass Bypass 7 3-4 7fDAC/16 875

2-X-0-4 4x Bypass Bypass 0 4 8fDAC/16 1000 Independent

2-X-1-4/5 4x Bypass Bypass 1 4-5 9fDAC/16 1125

2-X-2-5 4x Bypass Bypass 2 5 10FDAC/16 1250

2-X-3-5/6 4x Bypass Bypass 3 5-6 11fDAC/16 1375

2-X-4-6 4x Bypass Bypass 4 6 12fDAC/16 1500

2-X-5-6/7 4x Bypass Bypass 5 6-7 13fDAC/16 1625

2-X-6-7 4x Bypass Bypass 6 7 14fDAC/16 1750

2-X-7-7/0 4x Bypass Bypass 7 7-0 15fDAC/16 1875

3-0-0-0 8x 0 0 0 0 0 (DC) 0 (BB) Independent

3-1-1-0/1 8x 1 1 1 0-1 fDAC/16 125

3-2-2-1 8x 0 2 2 1 2fDAC/16 250

3-3-3-1/2 8x 1 3 3 1-2 3fDAC/16 375

3-0-4-2 8x 0 0 4 2 4fDAC/16 500

3-1-5-2/3 8x 1 1 5 2-3 5fDAC/16 625

3-2-6-3 8x 0 2 6 3 6DAC/16 750

3-3-7-3/4 8x 1 3 7 3-4 7fDAC/16 875

3-0 -0-4 8x 0 0 0 4 8fDAC/16 1000 Independent

3-1-1-4/5 8x 1 1 1 4-5 9fDAC/16 1125

3-2-2-5 8x 0 2 2 5 10FDAC/16 1250

3-3-3-5/6 8x 1 3 3 5-6 11fDAC/16 1375

3-0-4-6 8x 0 0 4 6 12DAC/16 1500

3-1-5-6/7 8x 1 1 5 6-7 13fDAC/16 1625

3-2-6-7 8x 0 2 6 7 14fDAC/16 1750

3-3-7-7/0 8x 1 3 7 7-0 15fDAC/16 1875

53

Modes of F1 (mode 0 to 3), F2 and F3 (mode 0 to 7) operate similar with the

previous design. So it is not repeated here.

First column of Table 4.3 shows the 10-bit code that is to be written to Filter Register

0 to activate associated operation mode. Second column shows the interpolation rate

of the mode. Next four columns represent modes of the filters and pre-modulation

features. Other two columns show center frequency that the baseband signal

modulated to. Last column gives the information of the DAC outputs are independent

or not. Complex modulation results in dependent outputs where non-complex

modulation results in independent outputs.

Frequency spectrum plots of the first four modes of operation are given in Figure 4.7.

Rest of the plots is in Appendix P.

 (a) (b)

 (c) (d)

Figure 4.7 : Output spectrums of first four operation modes. (a): No int., (b): 2x int.

baseband, (c): 2x int. FDAC/8, (d): 2x int. 2FDAC/8

54

4.4. HDL Differences

HDL models of the new filters are mostly like the previous filters, but with small

changes. Those changes in HDL level are increasing filter order, larger bit

calculations and peripherals to insert new modes as mentioned above.

To increase filter order, length of the first shift register, number of multiplications,

and leaves of the adder tree are increased. Increasing coefficient bit length and

calculation sensitivity is done by increasing the bit lengths of the multipliers, adders

and the registers which the results are written to. Finally, multiplexers which are

given in Figure 4.6 are added to system to maintain the new modes.

4.5. Synthesis, PAR & Layout Results

After generation of the HDL models, the new design is synthesized, placed and

routed. This section describes the implementation of the design to silicon.

4.5.1. Synthesis

Synthesis of the design is done by Cadence‟s RTL compiler tool. Artisan‟s 0.18 μm

gate library and typical condition delay library is used for timing specification.

To synthesize the design to gates, RTL compiler is programmed via a TCL script.

That script contains the addresses of the Verilog and library files read by the tool,

constraints of design and commands that perform steps of the synthesis. File names

and commands can be found from the script in Appendix R. The constraints and the

reasons for selecting such constraints are explained in this section.

First set of constraints for the synthesis are related to the clock. That is given by

“define_clock” command. Period of the slowest clock (1X) of the system is written.

For other clocks (2x, 4x, 8x), the same period value and “divide_period” option is

used. Fastest possible operating speed is desired for filters; therefore, period value is

chosen as small as possible. After some iterations, smallest period value is found to

be 5800ps, which implies 5800/8 = 725 ps for the fastest clock period.

Second group of constraints is “external_delay” which specifies delays for input

signals according to a rising edge of the driving FF‟s clock and for output signals

according to a rising edge of the load FF‟s clock. These values are chosen according

55

to clock-to-Q delays of the FFs (300ps) for the inputs and setup time required

(100ps) for the FFs for the outputs.

Next constraint group specifies the retiming process. All registers except the ones to

be retimed are marked as “dont_retime true”. By doing that, unnecessary registers

are not prepared for retiming by the tool and retiming process becomes more

efficient as computation is done with less number of registers [23].

Rest of the script contains a command that makes the tool synthesize with high

effort. That makes the tool to find a better solution for the design.

Summary of the timing and area reports of the synthesized design are in Table 4.4.

Table 4.4 : Summary of the synthesized design.

Maximum Clock

Frequency [GHz]

of Cells

Used

Area for Cells

[μm x μm]

Area for Nets

[μm x μm]

Total Area

[μm x μm]

1,38 35969 1124 x 1124 693 x 693 1321 x 1321

4.5.2. PAR

As mentioned in the previous design, the improved design is also placed and routed

with the Encounter tool of Cadence. A modified version of the former TCL script

(previously done for the Lfoundry 0.15 μm CMOS process) was used for PAR.

Moreover, new strategies and methods are used for the PAR of the improved filter

architecture designed for the TSMC 0.18 μm CMOS process.

During Place, floorplan of the design was more critical than before. As operating

frequency of the system is nearly at the limits of the process and power consumption

of the system is high, power distribution becomes the main issue. To better handle

power distribution, power hungry blocks like Filter-3 are located near VDD and

GND pins to reduce resistance of the power lines. Besides, less power hungry blocks

like Filter-1 are located farther away. In the end, floorplan of the design becomes

rectangular-shaped, with one of the long edge being directly connected to VDD and

GND pins of the chip. Other tools to cope with power distribution are increasing the

widths of VDD and GND lines between logic gates (Metal-1 layer) and adding

horizontal and vertical stripes all around the floorplan.

During the route phase, it is found that, a large number of thick stripes make routing

difficult and even impossible. So within some iteration, optimum stripe width and

56

number are found and used. At the end of routing, optimizations are performed with

“optDesign” command, which makes worst paths better and area smaller.

After PAR, power analyses were made to find VDD drop and power consumption of

the design. With 1.2GHz operation speed, total dynamic power consumption of the

system is found as 1,826W. IR-drop graph of the design is given in Figure 4.8.

Figure 4.8 : IR-drop plot of the design.

As seen from Figure 4.8, worst IR-drop reduces VDD voltage from 1.8V to 1.67V.

VDD and GND pins are connected to upper left and right corners of the layout. The

TCL script used for PAR flow is in Appendix E.

4.5.3. Layout

After PAR, layout is generated and exported as a GDS-II file. Then, GDS-II file is

read using Cadence‟s layout-XL editor and put together with other analog and digital

layouts of the chip. Layout of the filters is obtained as in Figure 4.9.

Figure 4.9 : Layout of the routed filters.

In Figure 4.8, cell area of the layout is 800 μm x 2600 μm and total area of the layout

is 1200 μm x 3000 μm.

57

4.6. Post-PAR Simulations

After implementation, post-PAR simulations were performed to check the

functionality and specifications of the routed design. Simulations are run in NCSim

simulator of Cadence.

Difference of post-PAR simulations from behavioral simulations is that, post-PAR

simulations contain a SDF file, which includes delays of the cells and interconnects

in the simulations. Thus, simulations become more realistic. Acquired SDF file is

given in Appendix E.

As mentioned before, key metrics of the system are SFDR performance and

operating frequency. In addition, group delays of the filters are calculated at post-

PAR simulations. Results are given in Table 4.5.

Table 4.5 : Group delays of filters.

Group Delay Filter-1 Filter-2 Filter-3
Total

of Filter-X clock cycles 18 10 12

of DAC clock cycles 18 x 8 = 144 10 x 4 = 40 12 x 2 = 24 208

4.6.1. Max operating frequency

During PAR step, connection delays are added to models which reduce maximum

operation frequency of the system. In order to find the new value, timing analyses are

performed after the PAR step. Result of the timing analysis is given in Table 4.6

Table 4.6 : Result of the timing analysis at PAR step.

Setup mode all Reg2reg In2reg Reg2out

WNS [ns] -0.075 -0.075 0 -0.047

TNS [ns] -3.623 -3.496 0 -0.127

Values in Table 4.6 are taken from output file of the timing analysis. Acronym WNS

stands for worst negative slack which gives maximum operating frequency of the

system. TNS is the total negative slack which is a performance parameter and not

directly effects the calculation of the operating speed. Reg2reg stands for the delay

value between registers, In2reg is delay between input to register and Reg2out is the

delay between register and output pin.

According to Table 4.5, worst delay path between the registers is increased by 75ps

and delay between a register to an output is also increased by 47ps. In this situation,

58

worst value is taken into consideration and 75ps is used for calculations. When this

value is added to 725ps, which comes from cell delays (found at synthesis step),

worst delay of the system becomes 800ps. That makes maximum operating

frequency 1,25GHz under typical conditions.

4.6.2. SFDR of output

SFDR of the output signal is expected to be equal to the one found with MATLAB

models. Reason of this expectation is that, no functional change happens during the

implementation step but only physical effects like adding delays occur. To show if

the filter operation is still as desired, a post-PAR simulation is made. Verilog

testbench is written so that, signal at the filter output is written to file in a format

readable for MATLAB. Then, file containing the post-PAR simulation data is

imported to MATLAB and compared with the MATLAB model output. At the end, it

is seen that both results exactly match. Thus, SFDR values given in Section 4.2 can

be taken as the result of the post-PAR SFDR result. No more plots will be given here

for that reason.

59

5. DESING VERIFICATION USING AN FPGA

Although only oversampling filters and modulators are being mentioned so far, the

complete digital system also contains a clock divider, two RAMDACs, two binary to

thermometer segment encoders with a circuit for DAC output mode selection (NRZ,

RZ, PM) and a control block bound to a Serial Peripheral Interface (SPI) block. The

details of all these blocks are given in Appendix C. Block diagram of the complete

digital system is given in Figure 5.1.

Clock

Divider

FILTERS

(interpolation and modulation)

Bin

To

Ther

Enc

real

RAMDAC

real

RAMDAC

 imag

SPI

Control

Block

Bin

To

Ther

Enc

imag

Trim

Register

Drivers

DAC

real

DAC

imag

Ther

Data

Ther

Data

Trim

data

Trim

data

Trim

data

Bin

Data

Bin

Data

Divided

clocks

Filter

modes

RAMDAC

enables

RAMDAC

enables

Figure 5.1 : Block diagram of the digital system.

In this section, the FPGA verification of the clock divider, digital filters and

modulators, control block, RAMDAC and SPI is presented. SPI is the interface sets

the operating modes of the filters and captures the data at filter outputs for serial

read-back.

60

5.1. Test Cases

During test case preparation, it is aimed to start with a simplest case and continue

with more complex ones. Moreover, attention is given to make the test flow as

similar as possible to the test flow of a real DAC chip.

5.1.1. Read and write operations on registers

Most basic instruction that can be given to SPI interface is reading from and writing

to a register. These operations are required to set the operating modes of the filters

and to read filter outputs from the SPI interface. Besides, trimming current cells of

the DAC and changing offset and gains of the analog blocks are possible using the

SPI interface.

5.1.2. Fuse blowing

Using the SPI, it is possible to blow fuses of the chip. It is done by writing desired

value to mask register of the fuse and then, by sending a fuse blow command. After

blowing a fuse, it is also possible to check the value written to the fuse by reading the

register that samples the fuse output via SPI.

5.1.3. Setting filter modes

Setting Filter modes is a simple write operation to a register. That register is named

as “Filter Reg 0”. That is a 16-bit register that contains filter mode data for three

interpolation filters and that sets 2x, 4x, 8x or no interpolation as interpolation

modes. Also, it contains RAMDAC w enable, RAMDAC i enable and RAMDAC r

enable registers which will be discussed in section 5.1.6. Explanative block diagram

for “Filter Reg 0” is in Table 5.1.

Table 5.1 : Filter Reg 0 register

Reserved
RAMDAC
w enable

RAMDAC
i enable

RAMDAC
r enable

Int. Mode
(1:0)

Filter 1
(1:0)

Filter 2 (2:0) Filter 3 (2:0)

 X X X 0 0 0 1 1 1 0 0 1 0 0 0 1

According to Table 5.1, the value of Int. Mode register is 3, which refers to 8x

interpolation. 2 is for 4x and 1 is for 2x modes. If this value is 0, no interpolation is

performed and the input data is directly sent to the DAC.

61

Filter modes are as they are explained in section 3.1.3. In the above example, Filter 1

is in mode 2, Filter 2 is in mode 2 also and Filter 3 is in mode 1.

After setting filter modes, parallel data to filters is applied and the input of the DAC

is observed. If the DAC input is the same as expected, setting filter mode is

successful.

5.1.4. Applying 16-bit parallel data

After setting different filter modes, 16-bit data is applied to the input and filters are

allowed to work. At the end, some or all output data is compared with MATLAB

simulations.

5.1.5. Reading filter outputs

For a real application, it is not possible to read the digital data that filters produce in

a DAC chip. In order to test filter outputs, some registers controlled by the SPI is

inserted to chip. By using these registers, data at filter outputs can be sampled and

read back using the SPI. Those registers have the same name with the filter outputs.

To read data at filter outputs, first it is necessary to stop the filter clocks to prevent

data from being changed. Then, a write command is sent to the appropriate register.

The register samples the filter output. After that, a read command is sent and the

sampled data is read with the SPI.

5.1.6. Filling and reading the RAMDAC

The term RAMDAC is used for the register matrix that is placed as a barrel shifter,

which has 16-bit parallel data width and a selectable depth (before synthesis). That

matrix is used to send very high speed data to the DAC internally. By doing this, it is

desired to test the DAC‟s analog performance at the limit of the sampling speed.

Filling the RAMDAC requires a write operation to registers “RAMDAC_in_r” and

“RAMDAC_in_i” and a shift operation which makes RAMDAC sample the input

given. But initially, “RAMDAC w enable” register should be set to enable

RAMDAC registers. Then, one or both the “RAMDAC r enable” and “RAMDAC i

enable” registers should be set to enable the real and imaginary inputs to the DAC.

After completion of the write operation, “RAMDAC w enable” should be reset, in

order not to change the value during normal operation. If reading the RAMDAC data

62

is desired, “RAMDAC_out_r” and “RAMDAC_out_i” registers can be read after

giving a successful write command to them. If a shift and another write are applied,

next data is ready to read at related RAMDAC_out register.

5.2. Behavioral Tests

5.2.1. Introduction & tools

Behavioral FPGA tests are done using the ISIM simulator of Xilinx. A testbench is

written to test the functionality. Using the testbench, inputs of the systems are driven

according to verify the test cases explained in 5.1.

Testbench has two tasks, which generate serial data that is used to drive the SPI.

Testbench uses tasks described below to apply serial data with a high level interface.

Task SPI_CB_TASK has three inputs. First input is a string which defines the

command type. That can be write, read, fuseblow or reserved. Second input has 11

bit width, which specifies the address associated with the command to be performed.

Third input is an 8-bit data associated with the command. Purpose of this task is

converting those inputs to serial and applying them to the SPI interface.

Task SPI_CB_TASK_24 has similar inputs with 24-bit data. This task is used when

writing to and reading from the shift registers (trim registers) with 24-bit width. It

calls SPI_CB_TASK 3 times with sending its data from MSB 8 bits to LSB 8 bits.

Testbench also writes states of inputs and outputs to a file in order to compare them

with Logic Analyzer outputs to check errors.

5.2.2. Read and write on registers

In order to test read and write operations in behavioral domain, SPI_CB_TASK_24

task is used. Firstly, write operation is tested by the following line in testbench.

SPI_CB_TASK_24("write", 11'h001, 24'hACABA0);

Task call given above generates serial data that includes write command to address

“1” and with 24-bit data “ACABA0”. After it is applied, the content of the shift

register with address “1” is checked and it is seen that it is written correctly.

After writing, similar command is given for read operation. Associated task call is

given below.

63

SPI_CB_TASK_24("read", 11'h001, 24'h000000);

Read task contains a command type and register address “1”. 24-bit data should also

be applied but its content is not important. After reading is completed, bits read are

examined and seen that they are correct. Moreover, content of the shift register is

checked again and seen that it is not corrupted.

5.2.3. Fuse blow tests

Fuse blow test is a four step procedure which includes writing data to mask register,

sending fuse blow command, sampling data at the output of the fuse and in the end,

reading data at the output of the fuse. Associated task calls are given below.

 SPI_CB_TASK_24("write", 11'h002, 24'h800000);

 SPI_CB_TASK("fuseblow", 11'h003, 8'h00);

 SPI_CB_TASK("write", 11'h003, 8'h00);

 SPI_CB_TASK_24("read", 11'h003, 24'h000000);

First task is just like writing to an ordinary shift register. But this time, there is a fuse

at the output. Second task is a special command that blows the fuse at a given

address. In this example, the fuse address is “3”. Third task looks like an ordinary

write command but with a difference: there is a parallel-input shift register with

address “3”. When third task is called, Register at address “3” samples its 24-bit

input data which is connected to output of the fuse. Bu doing that, the fuse data is

prepared for being sent serially. The last task is an ordinary read task, which outputs

24-bit data serially.

After simulation, it is seen that the fuse is blown according to the applied bit-stream.

5.2.4. Filter mode tests

Setting the Filter modes is performed by writing appropriate mode data to “Filter Reg

0” register resides at address “301”. As operation is so simple and will be repeated in

the following section, it is not explained here. When data is written to a register,

filter modes are set correctly according to the behavioral simulation.

5.2.5. Applying 16-bit data

Applying 16-bit data to system is done by reading a 16-bit sine data from a file

generated by MATLAB. Data read is applied to parallel data inputs of the system

64

synchronous with the clock input, clkin. At the same time, filter outputs are written

to a file which will be opened with MATLAB and its SFDR value will be checked.

After the simulation, output waveforms obtained from filter outputs are examined

and it is seen that the filter operations are accurate. Moreover, data points are loaded

to MATLAB to see if a difference is present or not. It is seen that same results with

MATLAB models are obtained.

5.2.6. Reading filter outputs

Reading filter outputs is a two phase procedure which contains a sample command

and a read command. Sample command makes shift register sample the associated

filter output and read command performs a conventional read operation. An example

commands for reading Filter-1 outputs are given below.

 SPI_CB_TASK("write", 11'd378, 8'h00);

 SPI_CB_TASK("write", 11'd379, 8'h00);

 SPI_CB_TASK_16("read", 11'd378, 16'h0000);

 SPI_CB_TASK_16("read", 11'd379, 16'h0000);

Register in address 378 samples real output of Filter-1 and register in address 379

samples imaginary output of Filter-1.

5.2.7. Filling and reading the RAMDAC

To start writing to the RAMDAC, associated enable bits in Filter Reg 0 should be

set. Following command is sent.

 SPI_CB_TASK_16("write", 11'd301, 16'h1F00);

With this command, writing to both real and imaginary RAMDACs is enabled. After

that, writing to registers is performed. Following two commands writes data to

“RAMDAC_in_r” and “RAMDAC_in_i” registers.

 SPI_CB_TASK_16("write", 11'd374, 16'h0001);

 SPI_CB_TASK_16("write", 11'd375, 16'hA000);

After that, a clock edge is given from clkin input to make RAMDAC registers shift

the given data. Associated code part is below.

65

 # 10 clkin = 0;

 # 10 clkin = 1;

 # 10 clkin = 0;

Now, the RAMDAC is ready to sample a new data. Above data writing process is

repeated 3 more times with different data to fill RAMDAC. In the end, content of

RAMDAC registers are checked and it is seen that data is written to correct

locations.

After filling is successful, reading the RAMDAC is tested. First, write enable of

RAMDAC is disabled by giving following command.

 SPI_CB_TASK_16("write", 11'd301, 16'h0F00);

Then, RAMDAC data are sampled to “RAMDAC_out_r” and “RAMDAC_out_i”

registers for reading. Finally, registers are read by applying read commands.

Mentioned commands are given below.

 SPI_CB_TASK("write", 11'd376, 8'h00);

 SPI_CB_TASK("write", 11'd377, 8'h00);

 SPI_CB_TASK_16("read", 11'd376, 16'h0000);

 SPI_CB_TASK_16("read", 11'd377, 16'h0000);

Within first read, first data that is written to RAMDAC is taken out. Therefore, it can

be said that RAMDAC has FIFO architecture. To read second data, RAMDAC data

should be shifted. This is done with the following code.

 # 10 clkin = 0;

 # 10 clkin = 1;

 # 10 clkin = 0;

To read second data and the rest; sampling, reading and shifting is repeated. During

tests, it is seen that data is read correctly and register contents are not corrupted.

5.3. Testing with Logic Analyzer

Once behavioral tests succeed, Verilog code of the whole system is implemented

using an FPGA.

66

5.3.1. Test setup

Hardware test setup contains a Logic Analyzer that also has pattern generator

functionality and an FPGA that implements the system under test. Block diagram of

the hardware test setup is in Figure 5.2.

Figure 5.2 : Hardware test setup.

For consistency, it is important to use the same input stream for both behavioral and

hardware tests. In order to do that, input stream for FPGA tests are also generated by

behavioral testbench. That is done by the following code part.

always@(por, fsync, sclk, sdin, clkin)begin

 $fwrite(file3,"%h\n",{3'h0, clkin, sdin, sclk, fsync, por});

 end

Above code writes inputs of the system to a file when one of them is changed during

behavioral tests. Then, file is read by pattern generator to generate the same inputs

for Hardware tests. By this test setup, it is possible to take same outputs from both

behavioral and hardware tests.

5.3.2. Basic comparison

For basic functionalities like writing to/reading from a register, comparing behavioral

simulation and Logic Analyzer output waveforms is a fast way of detecting

equivalency. In Figure 5.3, behavioral simulation and Logic Analyzer output

waveforms containing one write and one read command are given.

67

Figure 5.3 : Behavioral simulation (Upper) and Logic Analyzer output

(Lower) waveforms.

According to Figure 5.3, it can be said that waveforms of output signal “sdout” are

the same and the hardware and the behavioral models have the same functionality.

5.3.3. Automatic comparison

Comparing waveforms of behavioral simulation and Logic Analyzer outputs is not

difficult for short simulations with a small amount of data. However, when

complexity increases and data to be compared become huge, it is indispensible to

make the comparison process automatic. Therefore, a C program is used to compare

outputs of the behavioral simulation and the Logic Analyzer.

First step for comparison is generating the data to be compared with a proper format.

It is decided to use a format similar to Logic Analyzer export file.

68

Outputs of the Logic Analyzer are written to a file by selecting export option from

file tab. Outputs of behavioral simulation and Logic Analyzer are given in Figure

5.4.

 (a) (b)

Figure 5.4 : Output files of simulation (a) and Logic Analyzer (b) for comparison

Files in Figure 5.4 are loaded to a C program which reads, compares and determines

the equality. After every simulation, outputs are compared and C program gives the

output seen in Figure 5.5.

Figure 5.5 : Output of C program when input files are equivalent.

C program also shows non-equal lines of input files which eases debugging. An

example of C program output when the input files are not equivalent is in Figure 5.6.

Figure 5.6 : Output of C program when input files are not equivalent.

69

6. CO-SIMULATION WITH AN ANALOG DAC

The digital interpolation system with modulation feature that forms the content of

this work is designed to work with a DAC. Thus, this section is devoted to use the

digital system with a DAC (designed in a different study). The design automation

environment that supports the simulation of a digital system and an analog DAC is

also included in this section.

6.1. Presentation of the DAC Taken from a Different Work

The DAC is a high speed, 16 bit DAC with segmented (31 unary scaled MSB, 11

binary scaled LSB) current cells. It is designed to optimize the SFDR performance of

a standard architecture with a PMOS switch and double cascode current source. The

DAC draws 20 mA full scale current from a 3.3 V supply and is expected to operate

well above 1.28 GSPS. With a 12.5 Ω load to ground, this DAC generates a 500 mV

peak to peak differential signal. The current steering architecture of the DAC is given

in Figure 6.1.

MSB30

LSB0

640 μA

DA

A

LSB10 LSB9

CURRENT OUTPUTS
B

DB

...
MSB0

320 μA 80/256 μA

MSB29

...
640 μA 640 μA 160 μA

DA DB DA DB DA DB DA DB DA DB

vdd

DA DB

Second Cascode

Bias

First Cascode

Bias

Current

Source Bias

Output

Current +

Output

Current -

Figure 6.1 : Current steering architecture used in the DAC.

The unit cell of the DAC is also shown in Figure 6.1. This unit cell draws 80 uA

current from a 3.3 V supply. The unary cells include eight unit cells.

At 1.28 GHz clock speed, using 0.5V peak to peak voltage swing on a 25 Ω

differential load, the DAC SFDR is 99 dB and 78 dB at 40 MHz and 240 MHz

output frequencies respectively. 99 dB SFDR (DAC only) plot is given in Figure 6.2.

70

(a) (b)

Figure 6.2 : Output of the DAC in time (a) and frequency (b) domain.

6.2. Co-simulation of the Filter and the DAC

In order to simulate the digital system with the DAC, a simulation schematic is

generated based on the block diagram in Figure 6.3.

NCSim

(Digital)

Connectlib

(Digital to

Analog

Interface)

Spectre

(Analog)

Digital

Driver

(Testbench)

Clock

Divider

Filters

(Interpolation and Modulation)

RAMDAC

SPI

Control

Unit

Divided Clock

Signals

Filter

Modes

RAMDAC

Enable

Signals

Parallel

Data

SPI

Signals

Clock

Signal

Registers

Fast

Test Data

Parallel

Data

Filter Outputs

Data Written/Read

Read/

Write to

Registers

Paralel

Data

sdout

Clock

Signal

Clock

Signal Clock

Signal

DAC

Binary to

Thermo-

meter

Encoder

Thermometric

Data

Clock

Signal

Figure 6.3 : Block diagram of simulated blocks and simulation tools.

6.2.1. AMS simulator

This simulator can simulate a system which contains analog and digital blocks. AMS

requires a configuration file which shows calculation engines for the blocks to be

simulated. An example of an AMS configuration file is given in Figure 6.4.

As seen in Figure 6.4, “verilog” views are present for digital blocks whereas

“spectre” views are present for analog blocks. Apart from these two, “schematic”

views are the top level models for both views.

71

Figure 6.4 : Configuration file for AMS.

Setting views for blocks makes AMS to choose the appropriate simulation engine for

these views. AMS automatically selects NCSim for simulating Verilog models (of

digital blocks) and Spectre for simulating Spectre models (of analog blocks).

6.2.2. Applying inputs and setting modes

Applying digital inputs to digital blocks is done by a testbench-like driver written in

Verilog. This block generates signals like the SPI signals, the parallel data and the

clock signal. Then, these signals are applied to the digital system to be simulated.

First phase of the simulation is setting the filter modes. This is done by writing

appropriate bits to “Filter reg 0” via SPI. For this simulation, 8x interpolation with no

modulation is chosen. After that, 16-bit parallel data and clock is applied.

Outputs of the digital system are connected to the DAC. But, as outputs of the digital

system consists of logic 1s and 0s, they should be converted to analog levels. Rules

of this conversation procedure are defined in a rules file, in library “Connectlib”.

6.2.3. Conversion interface: connectlib

The interface that converts logical signals to analog signals is managed by rules in

Connectlib. For that conversion, it is necessary to define voltage levels for logic 1

72

and 0. Besides; transition time, on and off resistances of interface should be set.

Values used in this simulation are given in Table 6.1.

Table 6.1 : Conversion parameters for the interface.

Vsup Vthi Vtlo Tr Rlo Rhi Rx Rz

1.8 1.2 0.6 40p 200 200 40 10M

In Table 6.1, Vsup stands for supply voltage. It is the value equivalent to logic 1.

Vthi and Vtlo are used when analog values are converted to digital. So, they are left

at typical values given in Connectlib. Tr is rise time, chosen as 40 ps as in digital

simulations. Rlo and Rhi are resistance values when output is logic 0 and 1

respectively. These values are left unchanged. Rx and Rz are resistances when output

is logic-X or high-Z. As this simulation does not contain these values at normal

operation, these values are kept as suggested values for TSMC 0.18 μm technology.

6.3. Simulation Results

After simulation, voltage difference between two differential DAC outputs is plotted

in both time and in frequency domains. Resulting plots are in Figure 6.5.

(a) (b)

Figure 6.5 : Time (a) and frequency (b) plot of signal at DAC output.

In Figure 6.5, it is seen that 99 dB SFDR is obtained from DAC outputs. This value

is less than the SFDR value of the filter (102 dB) for this frequency (40 MHz). As a

result, it can be argued that digital filtering system does not worsen SFDR

performance of the DAC and SFDR of the output is determined by the DAC, not by

the digital system.

Details of the AMS simulations are given in Appendix A.

73

7. CONCLUSIONS AND RECOMMENDATIONS

7.1. Results and Conclusions

In this study, a digital interpolation and modulation system is designed for a two

channel high performance communications DAC. A MATLAB model of an

interpolation and modulation system is created and simulations are performed. After

desired specifications are met in MATLAB environment, a digital behavioral design

is done in Verilog language to reflect the MATLAB model. The verilog code is

synthesized using TSMC 0.18 μm standard gate library (Artisan) and place and route

(PAR) operations are performed. Delays are extracted and post-PAR simulations are

done. Extracted delay information is also used in mixed mode co-simulations with a

DAC.

Performance Summary of the digital filters is given in Table 7.1.

Table 7.1 : Summary of system specifications.

 F1 F2 F3 Total

Filter order 62 22 22 -

Number of Coefficients 16 6 6 -

Bit length of Coeff.s 18 16 16 -

Number of Modes 4 8 8 41

Pass-band Ripple [dB] 2x10
-4

 2x10
-4

 2x10
-4

 6x10
-4

Group Delay [clk] 18 (144) 10 (40) 12 (24) 208

SFDR [dB]

98.3 99.7 99.7 99

SNR [dB] 95.4 94.6 94.6 93.4

Area [mm
2
] (dual channel) - - - 1.2 x 3

Power [W] (dual channel) - - - 1.826

Speed (dual channel) - - - 1.2 GSPS

Gate Count (at synthesis) - - - 35969

Comparison of the performance of our design with existing designs can be seen in

Table 7.2.

74

Table 7.2 : Comparison of the work with best products.

Company Part name SFDR [dB]
Max. data

rate [MSPS]
Power in

datasheet

Power for

Comparison

Analog

Devices
AD9122[4]

85 (@ %80

bandwidth)
1230

1.55 W

(@1.2 GSPS)

1.55 W

(@1.2 GSPS)

MAXIM MAX5898[8]
95 (unknown

bandwidth)
500

702 mW

(@500 MSPS)

1.685 W

(@1.2 GSPS)

TI DAC5689[9]
80 (@ %80

bandwidth)
800

774 mW

(@500 MSPS)

1.858 W

(@1.2 GSPS)

This

Work

Improved

Design

99 (@ %80

bandwidth)
1200

1.826W

(@1.2 GSPS)

1.826 W

(@1.2 GSPS)

In addition to the interpolation and modulation system, digital blocks like the

decoders, the SPI, the control block, the RAMDAC and the register blocks are added

to complete the digital system. The digital system also sets the output mode (NRZ,

RZ, and PM) of the DAC. The complete system is verified in an FPGA environment.

7.2. Recommendations and Future Work

Future work can include the tape out and the testing of the interpolating and

modulating dual channel DAC chip. The power and SFDR trade-off of the digital

block can be characterized in various CMOS technologies. Scan technology can be

added and its effects on speed can be analyzed. Techniques can be explored to reduce

the power consumption and to balance the self-heating between real DAC and

imaginary DAC.

75

REFERENCES

[1] Maloberti, F. (2007). Data Converters. Dordrecht: Springer.

[2] Simić, I.S. (2007). Evolution of Mobile Base Station Architectures. Microwave

Review, vol. 13, no.1, June 2007 pp.29-34.

[3] Kester, W. (2009). Oversampling Interpolating DACs. Data retrieved:

14.09.2011 URL: http://www.analog.com/static/imported-

files/tutorials/MT-017.pdf

[4] Analog Devices. (2009). AD9122: Dual, 16-Bit, 1230 MSPS, TxDAC+ Digital-

to-Analog Converter. Product Datasheet. Norwood, MA.

[5] Analog Devices. (2010). AD9148: Quad, 16-Bit, 1 GSPS, TxDAC+ Digital-to-

Analog Converter. Product Datasheet. Norwood, MA.

[6] Analog Devices. (2007). AD9776-78-79: Dual, 12-/14-/16-Bit, 1 GSPS Digital-

to-Analog Converters. Product Datasheet. Norwood, MA.

[7] Analog Devices. (2005). AD9786: 16-Bit, 200 MSPS/500 MSPS TxDAC+ with

2x/4x/8x Interpolation and Signal Processing. Product Datasheet.

Norwood, MA.

[8] Maxim. (2010). MAX5898: 16-Bit, 500 Msps, Interpoalting and Modulating

Dual DAC with Interleaved LVDS Inputs. Product Datasheet.

Sunnyvale, CA.

[9] Texas Instruments. (2009). DAC5689: 16-Bit, 800 MSPS, 2x-8x Interpolating

Dual-Channel Digital-to-Analog Converter. Product Datasheet.

Dallas, Texas.

[10] NXP Semiconductors. (2010). DAC1408D650: Dual 14-Bit DAC; up to 650

MSPS; 2x, 4x or 8x interpolating with JESD204A interface. Product

Datasheet. URL: http://www.nxp.com/documents/data_sheet/

DAC1408D650.pdf

[11] Texas Instruments. (2011). DAC3482: Dual-Channel, 16-Bit, 1.25 GSPS,

Digital-to-Analog Converter (DAC). Product Datasheet. Dallas,

Texas.

[12] Texas Instruments. (2011). DAC5682Z: 16-Bit, 1.0 GSPS 2x-4x Interpolating

Dual-Channel Digital-to-Analog Converter (DAC). Product

Datasheet. Dallas, Texas.

[13] Analog Devices. (2009). AD9739: 16-Bit, 2.5 GSPS, RF Digital-to-Analog

Converter. Product Datasheet. Norwood, MA.

[14] Schniter, P. (n.d.). Polyphase Interpolation. Data retrieved: 17.06.2011 URL:

http://cnx.org/content/m10431/2.11/

[15] Sokullu, H. (2011). Yarım Bant Sayısal Filtre Tasarımı, BSc. Thesis, ITU,

Istanbul.

http://www.analog.com/static/imported-files/tutorials/MT-017.pdf
http://www.analog.com/static/imported-files/tutorials/MT-017.pdf
http://www.nxp.com/documents/data_sheet/%20DAC1408D650.pdf
http://www.nxp.com/documents/data_sheet/%20DAC1408D650.pdf

76

[16] Kotteri, K.A., Bell, A.E. and Carletta J.E. (2003). Quantized FIR Filter

Design Using Compensating Zeros. IEEE Signal Processing

Magazine, vol. 20, no.6, November 2003 pp.60-67.

[17] Sklansky, J. (1960). Conditional-Sum Addition Logic. IRE Transactions on

Electronic Computers. vol. EC-9, is. 2, pp.226-231.

[18] Kogge, P.M. and Stone, H.S. (1973). A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations. IEEE

Transactions on Computers. vol. C-22, is. 8, pp.786-793.

[19] Brent, R.P. and Kung, HT. (1982). A Regular Layout for Parallel Adders.

IEEE Transactions on Computers. vol. C-31, is. 3, pp.260-264.

[20] Han, T. and Carlson, D.A. (1987). Fast Area-Efficient VLSI Adders. IEEE 8
th

Symposium on Computer Arithmetic (ARITH). pp.49-56.

[21] Knowles, S. (2001). A Family of Adders. IEEE 15
th

 Symposium on Computer

Arithmetic (ARITH). pp.277-281.

[22] Roma, N., Dias, T. and Sousa, L. (2003). Fast Adder Architectures: Modeling

and Experimental Evaluation. XVII Conference on Design of Circuits

and Integrated Systems – DSIC’03. pp.367-372.

[23] Cadence. (2007). Using Encounter® RTL Compiler, Product Manual, San Jose,

CA.

77

APPENDICES

APPENDIX A: AMS Simulations

APPENDIX C: Complete Digital System

APPENDIX E: Encounter Scripts

APPENDIX I: Implementation Flow

APPENDIX P: Plot Files

APPENDIX R: RTL Compiler Scripts

APPENDIX S: Simulink Models

APPENDIX V: Verilog Codes

78

APPENDIX A

AMS simulation is like an ordinary spectre simulation in Cadence with some minor

changes. In this section, these changes and details of AMS simulations made in this

work are given.

A.1. Importing CORELIB

Post-PAR verilog file contains logic gates defined in Artisan library. For simulation,

verilog models of these gates should be defined to simulator.

A new library named CORELIB is created with Cadence‟s library manager. Then, in

icfb window import-> verilog is chosen. After that following lines are filled in the

opened window: Target Library Name: CORELIB, Verilog Files to Import:

tsmc18.v, Import Module as: schematic and functional, Verilog Cell Modules:

Import.

A new library named CORELIB is filled with gate models defined in tsmc18.v file.

A.2. Importing Verilog Model File and SDF in Library Editor

To import the post-PAR verilog file, it should be renamed first. Name should be

verilog.v. Moreover, verilog file should call SDF file with “$sdf_annotate”

command. Syntax is:

initial $sdf_annotate(“address_of_sdf_file”);

After that, a new cellview is creted with File -> new -> cellview. At last, in icfb

window, import-> verilog is chosen. After that following lines are filled in the

opened window: Target Library Name: SIM_LIB, Reference Libraries: CORELIB,

Verilog Files to Import: verilog.v, Import Module as: schematic and functional,

Verilog Cell Modules: Import.

A.3. Creating Test Schematic

After importin verilog files, a test schematic is created with file -> new ->cellview.

Test schematic contains a driver circuit. That works like a testbench in digital

simulations. Next, digital system is added and connected to driver circuit. At last,

DAC is added and connected to digital system. With DAC; bias circuit, VDD voltage

supply etc. should also be added. Logic outputs of digital system are directly

79

connected to analog inputs of the DAC in this schematic. Conversion is performed

with configuration files of AMS.

A.4. Configuration File

Configuration file is generated with File –> new -> cellview. Cellname is chosen as

same as name of test schematic, view name and type should be chosen as config.

Application should be opened with hierarchy editor.

In the newly window, Use template button is hit and AMS is selected. Then, OK is

hit. Template becomes selected now. Then, view is changed to schematic, Library

list should be SIM_LIB and CORELIB. Then, OK is hit.

In configuration window, views should be checked. It they are OK (verilog for

digitals, schematic & spectre for analogs), it is closed. Configuration file is now

ready to use.

A.5. Transient Simulation (AMS and APS)

For a transient simulation, newly created “config” view is selected and both yes‟es

are selected in the opened window. After that, ADE L is opened with simulation –>

ADE L. Outputs to be plotted, transient simulation parameters etc. are selected.

In Setup -> simulator/directory/host, “ams” is selected. Then in Setup -> high

performance options, APS is selected.

A.6. ConnectLib

Last thing to select is connection rules. As it is necessary to convert digital signals to

analog, Setup –> Connect Rules is selected. After that, Rules name is changed to

connectLib.ConnRules_18Vfull_fast. If more modifications like changing rise and

fall times is desired, copy of this file can be used and changed. It is necessary to

select the modified file in this screen for that case.

A.7. Run

When all things are set as told, run is hit in ADE L screen and simulation is begun.

80

APPENDIX C

C.1. Clock Divider

Clock divider contains shift registers that divide input clock signal by 2, 4, 8 and 16

to create clock signals to be used by the filters. Input clock is connected to clock

input of the flip-flops and clock is divided with respect to the length of the shift

register. Verilog code of the clock divider circuit is in Appendix V.

C.2. Filters

Interpolation filters with modulation capability is the main topic of this work. They

are already explained in Section 4 in detail.

C.3. Registers

In the complete design, many memory cells are used in order to write/read data

to/from internal circuits of the chip. Every memory cell has a unique address.

C.3.1. Register map

Addresses of the memory cells are put together in a register map given in Table C.1.

C.3.2. Trim registers (0-255)

Trim registers are used to trim current cells of the DACs. They are programmed by

SPI to correct mismatch errors due to process variations. Every address has a

memory cell with 24-bit length.

C.3.3. Filter registers (301-302)

Filter registers are used to set the operation mode of the chip. Description of Filter

Reg 0 was given in Section 5.1.3.

Filter Reg 1 controls the modes of the DAC output. When modulation mode bits are

set to 00 or 01, DAC outputs are non-return to zero (NZR) form. When it is 10, DAC

outputs has return-to-zero(RZ) behavior. If it is set as 11, Outputs of the DAC

becomes plus-minus (PM) of the input signal. For the last two cases, DAC clock

frequency becomes twice of the fastest clock used in Filters. Bits of the Filter Reg 1

are given in Table C.2.

81

Table C.1 : Register map.

Address Name Functionality

0
24-Bit trim word

for current cells

2x512 current cells

requires 256

registers with 6 bits

255

256 Offset adjust

Reserved for Future

Use

257 Gain Adjust

258 Iout Level Adjust

259

Clock Current

Adjust

260

Clock Offset

Adjust

261
Bandgap offset &

Drift Adjust

276

277
LVDS Receiver

current adjust

284

285
LVDS Receiver

offset adjust

300

301 Filter Reg 0 int. & filter modes

302 Filter Reg 1 mod. modes

303
Reserved

addresses

Reserved for Future

Use

373

374 RAMDAC_in_r regs to fill

RAMDAC 375 RAMDAC_in_i

376 RAMDAC_out_r regs to read

RAMDAC 377 RAMDAC_out_i

378 dout_1_r

regs to read Filter

Outputs

379 dout_1_i

380 dout_2_r

381 dout_2_i

382 dout_3_r

383 dout_3_i

Table C.2 : Filter Reg 1 register.

Reserved
Mod.

Mode

 X X X X X X X X X X X X X X 0 0

82

C.3.4. RAMDAC registers (374-377)

RAMDAC registers are used to write data to the RAMDAC and check its content. To

write data to RAMDAC, data is written to RAMDAC_in registers first. Then, a clock

signal is applied to make RAMDAC sample the data. To check the data that was

written to RAMDAC before, RAMDAC_out registers are read. All read and write

operations are done with SPI.

C.3.5. Filter output registers (378-383)

Filter output registers contains the data that is at the output of the associated filter.

For example; dout_2_i contains the output of the 2
nd

 filter‟s imaginary data. Reading

is done by SPI. These registers are added to system for accessing the internal outputs

of the filter circuits.

C.4. SPI with Control Block

SPI with control block provides accessibility to internal registers of the chip. It is

responsible for the communication between user and internal circuits. I/O signals of

the block are given in Table C.3. Verilog code of the SPI with Control Block

“SPI_CB” is in Appendix V.

Table C.3 : I/O signals.

Name Direction Width Function

por Input 1 Reset input

sclk Input 1 Clock signal

fsync Input 1 synchronization signal

sdin Input 1 Serial data input <- User

dataR Input 512 Parallel data input <- Registers

sdout output 1 Serial data output -> User

resetRegOut output 1 Reset signal -> Registers

sdoutEn output 1 Enable signal -> sdout pin

BlowFuse output 1 Blow signal -> Fuses

write output 1 Write signal -> Registers

dataW output 1 Serial data output -> Registers

CE output 512 Clock Enable -> Registers & Fuses

83

Using SPI, commands can be given to system like reading data, writing data,

blowing a fuse etc. In following sections, format of a typical SPI command and their

applications are presented.

C.4.1. Reading a command

Synchronization of the system is provided by fsync input. All operations are made

when fsync is “0”. After a successful reset from por, system waits for a serial data

which is 24-bits long. When fsync is “0”, with every rising edge of the clock, 24-bit

word is sampled from sdin input in “MSB comes first and LSB comes last” fashion.

After 24 successive clocks, no more operation is performed (even if more clock

edges come) and system starts to wait for fsync to be made “1”. When it becomes

“1” then, transmission is completed.

If fsync becomes “1” before 24 clock cycles, current operation is halted.

After a successful reading, system determines what to do. Current functionality of

the system is explained in Table C.4 below.

Table C.4 : Instruction definition.

D23 D22 D21 D20 D19 D[18:8] D[7:0] Functionn

0 0 0 0 0 X X Noop (Use for shift out)

0 0 0 0 1 X X Reset registers

0 0 0 1 0 X X Enable sdout pin

0 0 0 1 1 X X Disable sdout pin

0 0 1 0 0 ADDR DATA Write DATA to ADDR

0 0 1 0 1 ADDR DATA Read data from ADDR

0 0 1 1 0 ADDR X Blow Fuse at ADDR

0 0 1 1 1 X X Reserved

0 1 X X X X X Reserved

1 X X X X X X Reserved

As seen from Table C.4, some commands have associated DATA word either sent by

user or SPI_CB according to the command word type.

C.4.2. Command without DATA

For instructions without DATA, operation is performed instantly with 16
th

 successful

clock edge. “Reset registers” and “enable sdout” are two examples of that type. After

that type of instruction, system returns to initial condition (see reading a command).

84

C.4.3. Command with DATA

For command words with DATA, which are either read or write operation, a

different path is followed.

C.4.3.1. Write command

For write case, writing starts with 17
th

 clock edge and finishes with 24
th

. With 24
th

clock edge, 8 bit DATA is written to ADDR. After that, no more operation is

performed (even if more clock edges come) and system starts to wait for fsync to be

made “1”. When it becomes “1” then, transmission is completed.

If fsync becomes “1” before 24 clock cycles, current operation halted. Register

which was written might be corrupted and needs to be written again. Signal diagram

of a write command is given in Figure C.1.

fsync

sclk

sdin
D23 D22 D21 D20 D19 D18 D17 D16 ... D8

Command Address

...

D7 D6 D5 ... D0

Data to be Written

...

sdout
Ignore

 Figure C.1 : Signal diagram for write command.

C.4.3.2. Read command

For read case, reading starts with 17
th

 clock edge and finishes with 24
th

. With 24
th

clock edge, 8 bit DATA is read from ADDR and given from sdout. After that, no

more operation is performed (even if more clock edges come) and the system starts

to wait for fsync to be made “1”. When it becomes “1”, the transmission is complete.

If fsync becomes “1” before 24 clock cycles, current operation halted. Register

which was read might be corrupted and needs to be written again. An example signal

diagram for read operation is given in Figure C.2.

85

fsync

sclk

sdin
D23 D22 D21 D20 D19 D18 D17 D16 ... D8

Command Address

...

Ignored

Data to be Read

...

sdout
Ignore D7 D6 D5 ... D0

Figure C.2 : Signal diagram for read command.

C.4.4. Blowing a fuse

Every Fuse is located between two register lines: first for programming and second

for reading the fuse. If an address of the fuse is ADDR, address of the mask

programming register is “ADDR-1” and address of the read register is “ADDR”

which is same with Fuse.

Blowing a fuse requires a 4-step flow which includes both programming and testing.

First of all, mask programming register “ADDR-1” is programmed with appropriate

bit stream via a “Write” command. Then, “Blow Fuse” command is sent with fuse

ADDR. After blowing, a single “Write” command is sent to ADDR. Writing to a

fuse read register does not require a DATA because it samples associated fuse data.

At the end, a “Read” command is sent to ADDR and content of the read register that

sampled fuse data is read. An example is given in Table C.5.

Table C.5 : Blowing a fuse routine.

Instruction Word

(CMD,ADDR,DATA)
Functionality

{5‟b00100, 11‟h003, 8‟b10000000}
Write 1 to MSB of address 3 MSB of

fuse 4 will be blown

{5‟b00110, 11‟h004, 8‟b00000000}
Blow fuse at address 4 wrt mask at

address (4-1=3)

{5‟b00100, 11‟h004, 8‟b00000000}
“Write” command to address 4 for

sampling fused data

{5‟b00101, 11‟h004, 8‟b00000000}
“Read” comment to address 4 for

reading fused data

86

C.5. RAMDAC

RAMDAC is a memory loop which is used to apply high speed data to DACs

internally. Data is written to the RAMDAC by enabling it and changing the mode to

write. After writing is completed, RAMDAC is operated in enabled mode only.

Within every clock pulse after that, RAMDAC data is applied to DACs and data is

stored in the beginning of the RAMDAC. With that loop fashion, DACs can be

tested at high speed and without the requirement of the external data applied from

LVDS inputs of the chip. Two RAMDACs are used for the design as there are two

DACs (one for real and one for imaginary output) in the chip. Verilog code of the

RAMDAC is given in Appendix V.

C.6. Binary to Thermometer Encoder with DAC Mode Selection

As mentioned earlier, the Filters and the RAMDAC operate with 16-bit binary data.

However, the DAC accepts thermometric data as input. This conversion process is

performed with “Bin2TherWmod” block. Block takes 16-bit binary encoded data and

converts in to 11-bit binary LSB data and 31-bit thermometric MSB data.

“Bin2TherWmod” also manipulates the data according to DAC mode. DAC modes

and associated data patterns are explained in “Filter Registers” Section above.

There are two Binary to Thermometer Encoders with DAC mode selection in the

design. Verilog Code of the “Bin2TherWmod” is given in Appendix V.

87

APPENDIX E

E.1. Tcl Script for Standard Architecture

set topcellname "Suzgec_Uclu_syn"
#set dbdir "DB"

#set WorkDir [format "/PROJ/LF150CGEN/DIGITAL/gurerozbek/%s/PAR" $topcellname]

set filename "Suzgec_Uclu_syn"
set LibDir "/work/kits/lf/1.8.0/LF150C/digital/liberty"

global filename
global WorkDir

global LibDir

proc LFMakeChip {} {

 ##--- Load configuration file

 #LFDBSetup

 ##--- Set User Grid

 LFUserGrid

 ##--- make global connections

 LFGlobalConnect
}

proc LFUserGrid {} {

 ##--- Set user grids
 setPreference ConstraintUserXGrid 0.1

 setPreference ConstraintUserXOffset 0.1

 setPreference ConstraintUserYGrid 0.1
 setPreference ConstraintUserYOffset 0.1

 setPreference SnapAllCorners 1

 setPreference BlockSnapRule 2

 snapFPlanIO -usergrid

}
proc LFGlobalConnect {} {

##--- Define global Power nets - make global connections

 clearGlobalNets
 globalNetConnect VDD -type pgpin -pin VDD -inst * -module {}

 globalNetConnect VSS -type pgpin -pin VSS -inst * -module {}

 globalNetConnect VDD -type tiehi
 globalNetConnect VSS -type tielo

}

proc LFOpCond cond {

 switch $cond {

 "typ" {
 setOpCond -min typical -max typical

 }

 "minmax" {

 setOpCond -min best -max worst

 }

 "min" {

 setOpCond -min best -max best
 }

 "max" {

 setOpCond -min worst -max worst
 }

 }

}
proc LFSave postfix {

 global topcellname

 global dbdir
 set filename [format "%s.enc" $topcellname]

 saveDesign $filename

}
proc LFWrite postfix {

 global topcellname

 ##-- Save Design
 LFSave $postfix

88

 ##-- Write GDS2

 set filename [format "%s_%s.gds" $topcellname $postfix]

 set mapdir "/work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/libraries/techfiles"

 streamOut $filename -mapFile $mapdir/encounter_layer.map -libName DesignLib -structureName $topcellname \

 -attachInstanceName -attachNetName -stripes 1 -units 1000 -mode ALL

 ##-- Verilog Netlist

 set filename [format "%s_%s.v" $topcellname $postfix]

 saveNetlist $filename

 ##-- Extract detail parasitics

 setXCapThresholds -totalCThreshold 5.0 -relativeCThreshold 0.01
 extractRC

 set filename [format "%s_%s.spef" $topcellname $postfix]

 ##-- run QX extraction

 #runqx

 #set filename [format "%s_%s_qx.spef" $topcellname $postfix]

 #rcOut -spef $filename

}

proc LFWriteSDF {} {

 global topcellname

 ##-- Parasitic Extraction
 #runQX

 ##-- typical SDF
 LFOpCond typ

 set filename_t [format "%s_typ.sdf" $topcellname]

 #delayCal -sdf $filename_t
 write_sdf -version 2.1 -prec 3 -edges check_edge -average_typ_delays \

 -remashold -splitrecrem -splitsetuphold -force_calculation \

 $filename_t
 ##-- best case SDF

 LFOpCond min

 setAnalysisMode -hold
 set filename_b [format "%s_best.sdf" $topcellname]

 #delayCal -sdf $filename_b

 write_sdf -early -version 2.1 -prec 3 -edges check_edge -average_typ_delays \
 -remashold -splitrecrem -splitsetuphold -force_calculation \

 $filename_b

 ##-- worst case SDF
 LFOpCond max

 setAnalysisMode -setup

 set filename_w [format "%s_worst.sdf" $topcellname]
 #delayCal -sdf $filename_w

 write_sdf -late -version 2.1 -prec 3 -edges check_edge -average_typ_delays \

 -remashold -splitrecrem -splitsetuphold -force_calculation \
 $filename_w

 ##-- Combine all SDFs

 set filename [format "%s_all.sdf" $topcellname]
 sdfCombine -file $filename_b $filename_t $filename_w -output $filename

 print "### Combined SDF File for best/typ/worst written!!"

}

proc LFLoadCons {} {

 global filename
 ## load timing constraints

 unloadTimingCon

 set filepath [format "%s.sdc" $filename]
 if {[file exists $filepath]} {

 loadTimingCon $filepath

 } else {
 print "-E-# $filepath not found - no constraints loaded"

 }

}
proc LFFloorplan {type util iodist {ratio 1.0}} {

 ##-- Initialize floorplan

 switch $type {
 "core" {

 floorPlan -r $ratio $util $iodist $iodist $iodist $iodist

 }

 "peri" {

 floorPlan -r $ratio $util $iodist $iodist $iodist $iodist

 ##--- Load corner io file to add corner cells (if necessary)

89

loadIoFile corners.io

 ##-- Snap IO cells to user grid

 snapFPlanIO -usergrid
 }

 }

 fit
}

proc LFPowerRoute {{pownetsList {}}} {

 set offset 0.8
 # foreach power net in the specified list

 # route a ring

 foreach pownet $pownetsList {
 set name [lindex $pownet 0]

 set width [lindex $pownet 1]

 print "----$name $width $offset----"
 addRing \

 -width_left $width -spacing_left 0.8 -offset_left $offset -layer_left METAL2 \

 -width_top $width -spacing_top 0.8 -offset_top $offset -layer_top METAL1 \

 -width_right $width -spacing_right 0.8 -offset_right $offset -layer_right METAL2 \

 -width_bottom $width -spacing_bottom 0.8 -offset_bottom $offset -layer_bottom METAL1 \

 -stacked_via_top_layer METAL2 \
 -stacked_via_bottom_layer METAL1 \

 -around core \

 -jog_distance 0.7 \
 -threshold 0.7 \

 -nets $name

 set offset [expr $offset + 0.8 + $width]
 global $width

 }

 addStripe \
 -spacing 0.8 -width $width -nets {VSS VDD} -layer METAL2 \

 -xleft_offset 120 -xright_offset 120 -number_of_sets 3 \

 -block_ring_top_layer_limit METAL3 \
 -block_ring_bottom_layer_limit METAL1 \

 -padcore_ring_top_layer_limit METAL3 \

 -padcore_ring_bottom_layer_limit METAL1 \
 -stacked_via_top_layer METAL_F \

 -stacked_via_bottom_layer METAL1 \

 -max_same_layer_jog_length 1.16 \
 -merge_stripes_value 0.61

 # do followpin routing

 sroute -allowJogging true
}

proc LFPlace how {

 ##-- Placement
 switch $how {

 "ntd" {

 setPlaceMode -timingDriven false -reorderScan false -congEffort medium -doCongOpt false -modulePlan false
 placeDesign -noPrePlaceOpt

 }

 "td" {
 setPlaceMode -timingDriven true -reorderScan false -congEffort medium \

 -doCongOpt false -modulePlan false

 placeDesign -noPrePlaceOpt

 }

 "opt" {
 setPlaceMode -timingDriven true -reorderScan false -congEffort high \

 -doCongOpt true -modulePlan false

 placeDesign -inPlaceOpt -noPrePlaceOpt
 }

 }

 LFSave placed
}

proc LFSave postfix {

 global topcellname
 global dbdir

 set filename [format "%s_%s.enc" $topcellname $postfix]

 saveDesign $filename
}

proc LFCts {} {

 global topcellname

 set filename [format "Clock.ctstch"]

 ##-- Specify Clock tree

 specifyClockTree -file $filename

90

 ##-- delete existing buffers

 #deleteClockTree -clk <clockroot>

 ##-- Run CTS

 set filename1 [format "%s_cts.guide" $topcellname]

 set filename2 [format "%s_cts.ctsrpt" $topcellname]
 ckSynthesis -rguide $filename1 -report $filename2

 LFSave clkplaced
}

proc LFTa {state consList} {

 global topcellname

 foreach cons $consList {

 clearClockDomains
 setClockDomains -all

 LFLoadCons ## $cons

 set filename [format "%s_%s" $cons $state]

 switch $state {

 "prePlace" {timeDesign -prePlace -idealClock -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports }
 "preCTS" {timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports }

 "postCTS" {timeDesign -postCTS -pathReports -drvReports -slackReports -numPaths 50 \
 -prefix $filename -outDir timingReports

 clearClockDomains

 ## setClockDomains -all
 timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports

 }
 "postRoute" {timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports

 clearClockDomains
 setClockDomains -all

 timeDesign -postRoute -hold -pathReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports
 }

 "signOff" {timeDesign -signOff -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports
 clearClockDomains

 setClockDomains -all

 timeDesign -signOff -hold -pathReports -slackReports -numPaths 50 \
 -prefix $filename -outDir timingReports

 }

 }
 }

}
proc LFOpt {state what cons} {

 unloadTimingCon

 LFLoadCons
 setOptMode -yieldEffort none

 setOptMode -effort high

 setOptMode -maxDensity 0.95

 setOptMode -drcMargin 0.0

 setOptMode -holdTargetSlack 200.0 -setupTargetSlack 200.0
 setOptMode -simplifyNetlist false

 clearClockDomains

 setClockDomains -all
 setOptMode -usefulSkew false

 optDesign -$state -$what

}
proc LFFillcore {} {

 ##-- Add Core Filler cells

 addFiller -cell FILLCELL_X1 FILLCELL_X2 FILLCELL_X4 FILLCELL_X8 FILLCELL_X16 FILLCELL_X32
FILLCELL_X64 -prefix FILLER

}

proc LFRoute {{router wroute}} {
 switch $router {

 "nano" {

 ##-- Run Routing

 ##-- Nano-Route

 getNanoRouteMode -quiet

 getNanoRouteMode -quiet envSuperThreading

91

 setNanoRouteMode -quiet -drouteFixAntenna true

 setNanoRouteMode -quiet -routeInsertAntennaDiode false

 setNanoRouteMode -quiet -timingEngine CTE

 setNanoRouteMode -quiet -routeWithTimingDriven false
 setNanoRouteMode -quiet -routeWithEco false

 setNanoRouteMode -quiet -routeWithSiDriven false

 setNanoRouteMode -quiet -routeTdrEffort 2
 setNanoRouteMode -quiet -routeSiEffort normal

 setNanoRouteMode -quiet -routeWithSiPostRouteFix false

 setNanoRouteMode -quiet -drouteAutoStop true
 setNanoRouteMode -quiet -routeSelectedNetOnly false

 setNanoRouteMode -quiet -drouteStartIteration default

 setNanoRouteMode -quiet -envNumberProcessor 1
 setNanoRouteMode -quiet -drouteEndIteration default

 globalDetailRoute

 }
 "wroute" {

 ##-- WROUTE

 wroute

 }

 }

}

92

E.2. Tcl Script for Improved Architecture

set topcellname "Suzgec_Uclu_syn"

#set dbdir "DB"

#set WorkDir [format "/PROJ/TSMC150CGEN/DIGITAL/gurerozbek/%s/PAR" $topcellname]
set filename "Suzgec_Uclu_syn"

set filename_2 "Suzgec_Uclu"

set LibDir "/work/kits/tsmc/lib/180/stdcel_cl018g_2004q3v1/aci/sc/synopsys"

global filename

global WorkDir
global LibDir

proc TSMCHelp {} {
 global consList

 print "#### TSMCAuto Command Functionality"

 print "#### "

 print "---# TSMCAuto start end"

 print "---# 1 - TSMCConfig"

 print "---# 2 - TSMCMakeChip"
 print "---# 3 - TSMCFloorplan"

 print "---# 4 - TSMCLoadIOs"

 print "---# 5 - TSMCPowerRoute"
 print "---# 6 - TSMCPlace td"

 print "---# 7 - TSMCCts"

 print "---# 8 - TSMCPlace opt"
 print "---# 9 - Optimize postCTS"

 print "---# 10 - Optimize postRoute"
 print "---# 11 - editDelete -type Signal"

 print "---# 12 - TSMCRoute nano"

 print "---# 13 - Optimize postRoute"
}

proc TSMCAuto {start {end -1}} {

 if {$end == -1} { set end $start }
 for {set i $start} {$i<=$end} {incr i} {

 print "---# ---- Step $i -----"

 set step [format "s%d" $i]
 switch -exact $step {

 "s1" { TSMCConfig }

 "s2" { TSMCMakeChip }
 "s3" { TSMCFloorplan }

 "s4" { TSMCLoadIOs }

 "s5" { TSMCPowerRoute }
 "s6" { TSMCPlace td }

 "s7" { TSMCCts }

 "s8" { TSMCPlace opt }
 "s9" { TSMCOpt postCTS }

 "s10" { TSMCOpt postRoute }

 "s11" { editDelete -type Signal }
 "s12" { TSMCRoute nano }

 "s13" { TSMCOpt postRoute }

 "s14" { }
 }

 }

}
proc TSMCConfig {} {

 global filename

 global WorkDir
 ##--- Load configuration file

 loadConfig [format "%s.conf" $filename] 0

 setUIVar rda_Input ui_gndnet VSS
 setUIVar rda_Input ui_pwrnet VDD

 commitConfig

 create_generated_clock -name "clk3_out" -source clk3 -divide_by 1 [get_ports clk3_out]
 reset_output_delay -clock [get_clocks clk3] [get_ports dout_*]

 set_output_delay -clock [get_clocks clk3_out] -add_delay 0.1 [get_ports dout_*]

 fit
}

proc TSMCMakeChip {} {

 ##--- Set User Grid

 TSMCUserGrid

 ##--- make global connections
 TSMCGlobalConnect

93

 ##some commands that used in ams flow

 setClockMeshMode -propagationMode min_max

 setAnalysisMode -analysisType bcwc
}

proc TSMCUserGrid {} {

 ##--- Set user grids
 setPreference ConstraintUserXGrid 0.1

 setPreference ConstraintUserXOffset 0.1

 setPreference ConstraintUserYGrid 0.1
 setPreference ConstraintUserYOffset 0.1

 setPreference SnapAllCorners 1

 setPreference BlockSnapRule 2
 snapFPlanIO -usergrid

}

proc TSMCGlobalConnect {} {
##--- Define global Power nets - make global connections

 clearGlobalNets

 globalNetConnect VDD -type pgpin -pin VDD -inst * -module {}

 globalNetConnect VSS -type pgpin -pin VSS -inst * -module {}

 globalNetConnect VDD -type tiehi

 globalNetConnect VSS -type tielo
}

proc TSMCFloorplan {} {

 ##-- Initialize floorplan
 getIoFlowFlag

 setIoFlowFlag 1

 setFPlanRowSpacingAndType 0.56 1
 #cell alaninin: eni - boyu. bu alanin etrafinin; solu - alti - sagi - ustu

 floorPlan -site tsm3site -s 800 2600 200 200 200 200

 uiSetTool select
 getIoFlowFlag

 fit

 #module floorplan'lerinin alana yerlestirilmesi
 #S_1

 selectObject Module S_1

 #S_2
 selectObject Module S_2

 #S_3

 selectObject Module S_3
 #save

 TSMCSave Fplaned

}
proc TSMCLoadIOs {} {

 global filename_2

 loadIoFile [format "%s.io" $filename_2]
}

proc TSMCPowerRoute {} {

 set offset 0.8
 setMultiCpuUsage -numThreads max

 #left right M6

 addRing -lt 1 -spacing_bottom 0.6 -width_left 99 -width_bottom 99 -width_top 99 -top 0 -spacing_top 0.6 -
layer_bottom METAL1 -stacked_via_top_layer METAL6 -width_right 99 -around core -jog_distance 0.66 -offset_bottom 0 -

bottom 0 -layer_top METAL1 -rb 1 -threshold 0.66 -offset_left 0 -spacing_right 0.6 -lb 1 -spacing_left 0.6 -offset_right 0 -rt 1 -

offset_top 0 -layer_right METAL6 -nets {VSS VDD } -follow io -stacked_via_bottom_layer METAL1 -layer_left METAL6

 #left right M5

 addRing -lt 1 -spacing_bottom 0.6 -width_left 99 -width_bottom 99 -width_top 99 -top 0 -spacing_top 0.6 -
layer_bottom METAL1 -stacked_via_top_layer METAL6 -width_right 99 -around core -jog_distance 0.66 -offset_bottom 0 -

bottom 0 -layer_top METAL1 -rb 1 -threshold 0.66 -offset_left 0 -spacing_right 0.6 -lb 1 -spacing_left 0.6 -offset_right 0 -rt 1 -

offset_top 0 -layer_right METAL5 -nets {VSS VDD } -follow io -stacked_via_bottom_layer METAL5 -layer_left METAL5
 # do followpin routing

 sroute -allowJogging true

 #stripe yatay M5 (M4 below the ring)
 addStripe -block_ring_top_layer_limit METAL6 -max_same_layer_jog_length 0.88 -

padcore_ring_bottom_layer_limit METAL3 -set_to_set_distance 11.2 -stacked_via_top_layer METAL6 -

padcore_ring_top_layer_limit METAL6 -spacing 4.24 -ytop_offset 1.5 -switch_layer_over_obs 1 -ybottom_offset 4.64 -
merge_stripes_value 0.66 -layer METAL5 -block_ring_bottom_layer_limit METAL3 -width 1.36 -nets {VSS VDD } -

stacked_via_bottom_layer METAL1 -direction horizontal

 # M1 kalinlastirma
 addStripe -block_ring_top_layer_limit METAL1 -padcore_ring_bottom_layer_limit METAL1 -set_to_set_distance

11.2 -ybottom_offset 2.8 -area_blockage {200.676 200.451 200.676 2800.494 1000.6895 2800.494 1000.6895 200.4645

200.6765 200.4645 200.6765 200.451} -stacked_via_top_layer METAL2 -padcore_ring_top_layer_limit METAL1 -spacing 0.6

-allow_jog_padcore_ring 0 -direction horizontal -layer METAL1 -block_ring_bottom_layer_limit METAL1 -width 5 -nets

{VSS VDD } -stacked_via_bottom_layer METAL1 -allow_jog_block_ring 0

 #save

94

 TSMCSave powered

}

proc TSMCPlace how {

 ##-- Placement
 switch $how {

 "ntd" {

 setPlaceMode -timingDriven false -reorderScan false -congEffort medium \
 -doCongOpt false -modulePlan false -powerDriven true

 setMultiCpuUsage -numThreads max

 placeDesign -noPrePlaceOpt
 }

 "td" {

 setPlaceMode -timingDriven true -reorderScan false -congEffort medium \
 -doCongOpt false -modulePlan true -powerDriven true

 setMultiCpuUsage -numThreads max

 placeDesign -noPrePlaceOpt
 #save

 TSMCSave placed

 }

 "opt" {

 setPlaceMode -timingDriven true -reorderScan false -congEffort high \

 -doCongOpt true -modulePlan true -wireLenOptEffort high \
 -powerDriven true

 setMultiCpuUsage -numThreads max

 placeDesign -inPlaceOpt -noPrePlaceOpt
 #save

 TSMCSave optPlaced

 }
 }

 TSMCSave placed

}
proc TSMCCts {} {

 global topcellname

 set filename [format "Clock.ctstch"]
 ##-- Specify Clock tree

 specifyClockTree -file $filename

 ##-- delete existing buffers
 #deleteClockTree -clk <clockroot>

 ##-- Run CTS

 set filename1 [format "%s_cts.guide" $topcellname]
 set filename2 [format "%s_cts.ctsrpt" $topcellname]

 setCTSMode -powerAware true -optAddBuffer true -optLatency true -traceIoPinAsLeaf true

 setMultiCpuUsage -numThreads max
 ckSynthesis -rguide $filename1 -report $filename2

 #save

 TSMCSave clkplaced
}

proc TSMCRoute {router {effort 5}} {

 switch $router {
 "nano" {

 ##-- Run Routing

 ##-- Nano-Route
 getNanoRouteMode -quiet

 getNanoRouteMode -quiet envSuperThreading

 setNanoRouteMode -quiet -drouteFixAntenna true

 setNanoRouteMode -quiet -routeInsertAntennaDiode false

 setNanoRouteMode -quiet -timingEngine CTE
 setNanoRouteMode -quiet -routeWithTimingDriven true

 setNanoRouteMode -quiet -routeWithEco false

 setNanoRouteMode -quiet -routeWithSiDriven false
 setNanoRouteMode -quiet -routeTdrEffort $effort

 setNanoRouteMode -quiet -routeSiEffort normal

 setNanoRouteMode -quiet -routeWithSiPostRouteFix false
 setNanoRouteMode -quiet -drouteAutoStop false

 setNanoRouteMode -quiet -routeSelectedNetOnly false

 setNanoRouteMode -quiet -drouteStartIteration default
 setNanoRouteMode -quiet -envNumberProcessor 24

 setNanoRouteMode -quiet -drouteEndIteration default

 globalDetailRoute
 #save

 TSMCSave routed

 }

 "wroute" {

 ##-- WROUTE

 wroute

95

 }

 "repair" {

 ##-- REPAIR

 setNanoRouteMode -quiet -drouteStartIteration 1
 setNanoRouteMode -quiet -envNumberProcessor 24

 setNanoRouteMode -quiet -drouteEndIteration default

 globalDetailRoute
 }

 }

}
proc TSMCOpt {state} {

 setOptMode -yieldEffort none

 setOptMode -effort high
 setOptMode -maxDensity 0.95

 #setOptMode -drcMargin 0.0

 setOptMode -holdTargetSlack 0.0 -setupTargetSlack 0.0
 setOptMode -simplifyNetlist false

 setOptMode -usefulSkew false

 setOptMode -fixCap true

 setOptMode -fixTran true

 setOptMode -fixFanoutLoad false

 optDesign -$state
 optDesign -$state -hold

}

proc TSMCSave postfix {
 global filename_2

 set filename [format "%s_%s.enc" $filename_2 $postfix]

 saveDesign $filename
}

proc TSMCOpCond cond {

 switch $cond {

 "typ" {

 setOpCond -min typical -max typical
 }

 "minmax" {

 setOpCond -min best -max worst

 }

 "min" {
 setOpCond -min best -max best

 }

 "max" {
 setOpCond -min worst -max worst

 }

 }
}

proc TSMCWrite postfix {

 global topcellname
 ##-- Save Design

 TSMCSave $postfix

 ##-- Write GDS2
 set filename [format "%s_%s.gds" $topcellname $postfix]

 #set mapdir "/work/kits/lf/1.8.0/PDK_TSMC150i_V1_8_0/libraries/techfiles"

 #streamOut $filename -mapFile $mapdir/encounter_layer.map -libName DesignLib -structureName $topcellname \

 # -attachInstanceName -attachNetName -stripes 1 -units 1000 -mode ALL

 ##-- Verilog Netlist
 set filename [format "%s_%s.v" $topcellname $postfix]

 saveNetlist $filename

 ##-- Extract detail parasitics
 setXCapThresholds -totalCThreshold 5.0 -relativeCThreshold 0.01

 extractRC

 set filename [format "%s_%s.spef" $topcellname $postfix]
 ##-- run QX extraction

 #runqx

 #set filename [format "%s_%s_qx.spef" $topcellname $postfix]
 #rcOut -spef $filename

}

proc TSMCWriteSDF {} {
 global topcellname

 ##-- Parasitic Extraction

 #runQX

 ##-- typical SDF

 TSMCOpCond typ

 set filename_t [format "%s_typ.sdf" $topcellname]

96

 write_sdf -version 2.1 -prec 3 -edges check_edge -average_typ_delays \

 -remashold -splitrecrem -splitsetuphold -force_calculation \

 $filename_t

 ##-- best case SDF
 TSMCOpCond min

 setAnalysisMode -hold

 set filename_b [format "%s_best.sdf" $topcellname]
 write_sdf -early -version 2.1 -prec 3 -edges check_edge -average_typ_delays \

 -remashold -splitrecrem -splitsetuphold -force_calculation \

 $filename_b
 ##-- worst case SDF

 TSMCOpCond max

 setAnalysisMode -setup
 set filename_w [format "%s_worst.sdf" $topcellname]

 write_sdf -late -version 2.1 -prec 3 -edges check_edge -average_typ_delays \

 -remashold -splitrecrem -splitsetuphold -force_calculation \
 $filename_w

 ##-- Combine all SDFs

 set filename [format "%s_all.sdf" $topcellname]

 sdfCombine -file $filename_b $filename_t $filename_w -output $filename

 print "### Combined SDF File for best/typ/worst written!!"

}
proc TSMCTa {state consList} {

 global topcellname

 foreach cons $consList {
 clearClockDomains

 setClockDomains -all

 TSMCLoadCons ## $cons
 set filename [format "%s_%s" $cons $state]

 switch $state {

 "prePlace" {timeDesign -prePlace -idealClock -pathReports -drvReports -slackReports -numPaths 50 \
 -prefix $filename -outDir timingReports }

 "preCTS" {timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports }
 "postCTS" {timeDesign -postCTS -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports

 clearClockDomains
 ## setClockDomains -all

 timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports
 }

 "postRoute" {timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports
 clearClockDomains

 setClockDomains -all

 timeDesign -postRoute -hold -pathReports -slackReports -numPaths 50 \
 -prefix $filename -outDir timingReports

 }

 "signOff" {timeDesign -signOff -pathReports -drvReports -slackReports -numPaths 50 \
 -prefix $filename -outDir timingReports

 clearClockDomains

 setClockDomains -all
 timeDesign -signOff -hold -pathReports -slackReports -numPaths 50 \

 -prefix $filename -outDir timingReports

 }

 }

 }
}

proc TSMCFillcore {} {

 ##-- Add Core Filler cells
 addFiller -cell FILL1 FILL2 FILL4 FILL8 FILL16 FILL32 FILL64 -prefix FILL

}

proc TSMCViaFill {} {
 #power analizlerinden once bunu yapman lazÄ±m

 editPowerVia -bottom_layer METAL5 -add_vias 1 -orthogonal_only 0 -top_layer METAL6

 editPowerVia -bottom_layer METAL4 -add_vias 1 -orthogonal_only 0 -top_layer METAL5
 editPowerVia -bottom_layer METAL3 -add_vias 1 -orthogonal_only 0 -top_layer METAL4

 editPowerVia -bottom_layer METAL2 -add_vias 1 -orthogonal_only 0 -top_layer METAL3

 editPowerVia -bottom_layer METAL1 -add_vias 1 -orthogonal_only 0 -top_layer METAL2
}

proc TSMCAddEndCaps {} {

 ##-- add CAP cells

 addEndCap -preCap FILL1 -postCap FILL1 -prefix ENDCAP

}

97

E.3. SDF File for Improved Architecture

(DELAYFILE

 (SDFVERSION "2.1")

 (DESIGN "Suzgec_Uclu")
 (DATE "Mon Nov 19 13:50:15 2012")

 (VENDOR "Cadence Design Systems, Inc.")

 (PROGRAM "Encounter")
 (VERSION "v09.12-s159_1 ((32bit) 07/15/2010 13:17 (Linux 2.6))")

 (DIVIDER /)

 (VOLTAGE 1.800000:1.800000:1.800000)
 (PROCESS "1.000000:1.000000:1.000000")

 (TEMPERATURE 25.000000:25.000000:25.000000)

 (TIMESCALE 1.0 ns)

 (CELL

 (CELLTYPE "Suzgec_Uclu")
 (INSTANCE)

 (DELAY

 (ABSOLUTE
 (INTERCONNECT FE_PHC2835_din_r_15_/Y I_M/retime_s2_80_reg/D (0.003:0.003:0.003)

(0.003:0.003:0.003))

 (INTERCONNECT FE_PHC2835_din_r_15_/Y O_M/dout_r_reg\[15\]/D (0.007:0.007:0.007) (0.007:0.007:0.007))
 (INTERCONNECT FE_PHC2832_din_r_14_/Y I_M/retime_s2_84_reg/D (0.001:0.001:0.001)

(0.001:0.001:0.001))

 (INTERCONNECT FE_PHC2832_din_r_14_/Y O_M/dout_r_reg\[14\]/D (0.006:0.006:0.006) (0.006:0.006:0.006))
 (INTERCONNECT FE_PHC2831_din_r_8_/Y I_M/retime_s2_81_reg/D (0.002:0.002:0.002) (0.002:0.002:0.002))

 (INTERCONNECT FE_PHC2831_din_r_8_/Y O_M/dout_r_reg\[8\]/D (0.010:0.010:0.010) (0.010:0.010:0.010))
 (INTERCONNECT FE_PHC2830_din_i_11_/Y I_M/retime_s2_99_reg/D (0.001:0.001:0.001) (0.001:0.001:0.001))

 (INTERCONNECT FE_PHC2830_din_i_11_/Y O_M/dout_i_reg\[11\]/D (0.003:0.003:0.003) (0.003:0.003:0.003))

 (INTERCONNECT FE_PHC2829_din_r_12_/Y I_M/retime_s2_53_reg/D (0.007:0.007:0.007)
(0.007:0.007:0.007))

 (INTERCONNECT FE_PHC2829_din_r_12_/Y O_M/dout_r_reg\[12\]/D (0.007:0.007:0.007) (0.007:0.007:0.007))

 (INTERCONNECT FE_PHC2828_din_r_9_/Y I_M/retime_s2_82_reg/D (0.001:0.001:0.001) (0.001:0.001:0.001))

 (INTERCONNECT FE_PHC2828_din_r_9_/Y O_M/dout_r_reg\[9\]/D (0.012:0.012:0.012) (0.012:0.012:0.012))

 (INTERCONNECT FE_PHC2827_din_i_10_/Y I_M/g3671/A (0.003:0.003:0.003) (0.003:0.003:0.003))

 …
(INTERCONNECT din_i[2] S_1/FE_PHC2759_din_i_2_/A (0.308:0.308:0.308) (0.308:0.308:0.308))

 (INTERCONNECT din_i[1] FE_PHC2747_din_i_1_/A (0.035:0.035:0.035) (0.035:0.035:0.035))

 (INTERCONNECT din_i[0] FE_PHC2744_din_i_0_/A (0.042:0.042:0.042) (0.042:0.042:0.042))
)

)

)

 (CELL

 (CELLTYPE "CLKBUFX2")
 (INSTANCE FE_PHC2835_din_r_15_)

 (DELAY

 (ABSOLUTE
 (IOPATH A Y (0.308:0.308:0.308) (0.364:0.364:0.364))

)

)

)

 (CELL
 (CELLTYPE "BUFX1")

 (INSTANCE FE_PHC2832_din_r_14_)

 (DELAY
 (ABSOLUTE

 (IOPATH A Y (0.434:0.434:0.434) (0.324:0.324:0.324))

)
)

)

…

 (CELL

 (CELLTYPE "DFFRHQXL")

 (INSTANCE retime_s1_34_reg)

 (DELAY

 (ABSOLUTE

 (IOPATH RN Q () (0.406:0.406:0.406))

98

 (IOPATH CK Q (0.753:0.753:0.753) (0.482:0.482:0.482))

)

)

 (TIMINGCHECK
 (WIDTH (negedge RN) (0.255:0.255:0.255))

 (WIDTH (posedge CK) (0.124:0.124:0.124))

 (WIDTH (negedge CK) (0.177:0.177:0.177))
 (HOLD (posedge D) (posedge CK) (-0.033:-0.033:-0.034))

 (HOLD (negedge D) (posedge CK) (0.000:0.000:-0.002))

 (SETUP (posedge D) (posedge CK) (0.079:0.079:0.080))
 (SETUP (negedge D) (posedge CK) (0.175:0.175:0.177))

 (HOLD (posedge RN) (posedge CK) (-0.034:-0.034:-0.034))

 (RECOVERY (posedge RN) (posedge CK) (0.101:0.101:0.101))
)

)

 (CELL

 (CELLTYPE "DFFRHQXL")

 (INSTANCE retime_s1_10_reg)

 (DELAY

 (ABSOLUTE

 (IOPATH RN Q () (0.394:0.394:0.394))
 (IOPATH CK Q (0.720:0.720:0.720) (0.472:0.472:0.472))

)

)
 (TIMINGCHECK

 (WIDTH (negedge RN) (0.255:0.255:0.255))

 (WIDTH (posedge CK) (0.124:0.124:0.124))
 (WIDTH (negedge CK) (0.177:0.177:0.177))

 (HOLD (posedge D) (posedge CK) (-0.034:-0.034:-0.034))

 (HOLD (negedge D) (posedge CK) (0.001:0.001:-0.003))
 (SETUP (posedge D) (posedge CK) (0.079:0.079:0.079))

 (SETUP (negedge D) (posedge CK) (0.175:0.175:0.180))

 (HOLD (posedge RN) (posedge CK) (-0.033:-0.033:-0.033))
 (RECOVERY (posedge RN) (posedge CK) (0.099:0.099:0.099))

)

)

 (CELL

 (CELLTYPE "DFFRHQXL")
 (INSTANCE retime_s1_3_reg)

 (DELAY

 (ABSOLUTE
 (IOPATH RN Q () (0.404:0.404:0.404))

 (IOPATH CK Q (0.748:0.748:0.748) (0.479:0.479:0.479))

)
)

 (TIMINGCHECK

 (WIDTH (negedge RN) (0.255:0.255:0.255))
 (WIDTH (posedge CK) (0.124:0.124:0.124))

 (WIDTH (negedge CK) (0.177:0.177:0.177))

 (HOLD (posedge D) (posedge CK) (-0.034:-0.034:-0.034))
 (HOLD (negedge D) (posedge CK) (0.001:0.001:-0.001))

 (SETUP (posedge D) (posedge CK) (0.079:0.079:0.079))

 (SETUP (negedge D) (posedge CK) (0.175:0.175:0.178))

 (HOLD (posedge RN) (posedge CK) (-0.033:-0.033:-0.033))

 (RECOVERY (posedge RN) (posedge CK) (0.099:0.099:0.099))
)

)

 (CELL

 (CELLTYPE "CLKINVX8")

 (INSTANCE g73)
 (DELAY

 (ABSOLUTE

 (IOPATH A Y (0.149:0.149:0.149) (0.126:0.126:0.126))
)

)

)
)

99

APPENDIX I

I.1. Synthesis

I.1.1. Getting started

First thing to do is creating a new folder to work and copying all Verilog model files

and the script file in it. Then “rc –gui” command is entered to open RTL Compiler in

gui mode. After that, the only thing to do is writing “source script.tcl” in command

window of RTL Compiler. The script will be run and outputs will collected then.

I.1.2. Specs & script

Tcl script consists of some parts including reading input files, setting synthesis

specifications and writing output files.

Synthesis operation requires model files to be read. First files to be read are library

files having gate models. After that, reading of Verilog model files takes place.

Verilog models are read with “read_hdl” command. Last thing to do is elaborating

design with a name.

Second part starts with defining clock signals. That operation is done with

“define_clock” command and parameters like period, name of clock and for some

cases, clock division ratio are given. After that, clock skews are given with

“set_attribute” command and external delays with “external_delay” command.

Moreover, retiming specifications can be set with “set_attribute” command at that

point. Then retime can be performed with “retime –min_delay” command. At last,

synthesis operation is performed with “synthesize –to_mapped” command.

In the end, outputs of synthesis are written to files to be an input to later tools. At this

point, “write_encounter” command creates all files that are required for both

simulation and PAR. By doing that, .v, .mode, .conf and .sdc files are generated.

Also, timing and area reports can be generated to check the performance of the

synthesis.

Example tcl-script, timing and area report files are in Appendix R (RTL Compiler).

100

I.2. PAR

I.2.1. Importing data from RTL compiler

First step of PAR started with creating a folder and copy .v, .mode, .conf and .sdc

files and generated by RTL Compiler and a script file in it. Then, a modification is

needed to be done in .sdc file. Some lines started with “set_input_delay” command

define a delay between clock signals which are not desired. These lines (four lines

total) should be removed in order to work properly. After that, if retiming was

performed in synthesis, “uniquifyNetlist” command should be run at unix terminal.

That modifies synthesized complex Verilog model and simplifies it. By using

“velocity” command, Encounter is run.

When Encounter gui was opened, “source script.tcl” is written to command line and

run. By doing that, predefined commands in script are loaded to Encounter and can

be called with single name commands. Script also made Encounter read input files

except .conf file. To read it, Design -> Import Design -> Load -> .conf -> Open is

selected in gui and at advanced tab, Power -> VDD VSS -> OK should be selected.

I.2.2. Steps of PAR

First, the command that is used is “LFMakeChip”, which prepares the tool for PAR

flow. Then, “LFFloorplan core 0.7 50 1” is entered. That command states that;

design is a subchip (not entire), %70 of the area is left for cells, left 50 μm for power

routings and made floorplan as square shaped. After that, power routings are done

with “LFPowerRoute {{VDD 24} {VSS 24}}” command. It makes 2 power signals

VDD and VSS with 24 μm width around the floorplan. Designing floorplan finishes

here, so saving with Design -> Save -> FloorPlan is recommended.

Next step starts with pin placement by selecting Edit -> Pin Editor. In the pin editor,

appropriate pins‟ shapes, size, place and metal types are selected and saved with

Design -> Save -> IO file. After that, placement of the cells happens with “LFPlace

td” command. That makes cell placement with minimized delays possible. After that,

“LFCts” command is entered to synthesize a clocks tree. With a clock tree

implemented, a placement optimization with “LFPlace opt” command is

recommended at this time. Another optimization is done by selecting Timing ->

Optimize -> Setup time from gui. That improves setup time for registers. After

101

optimizations were performed, “LFFillcore” command is entered to fill empty areas

with capacitances that help supply voltages to not change so much. At this time,

Placement is done and it is a good idea to save it with Design -> Save -> Place.

Last step of the design is routing with command “LFRoute nano”. That starts nano

router which has a better performance that conventional router of Encounter. When

seeing “zero violations” at the command line, design is finished. It can be saved by

Design -> Save -> Route.

I.2.3. Outputs: GDS-II & SDF

GDS-II file is generated with “LFWrite final” command. It also generates a Verilog

model for simulation. SDF file is generated with “LFWriteSDF” command.

102

APPENDIX P

P.1. Negative Frequency Plots of Section 3.1.3.9.2

Spectrum plots associated with the negative modulation frequencies are given in this

section. See Figure P.1.

(a) (b)

(c) (d)

Figure P.1 : Output Spectrums of Mid-Modes. (a): -FDAC/16, (b): -3FDAC/16, (c):

-5FDAC/16, (d): -7FDAC/16

P.2. Other Plots of Section 4.3.2

Spectrum plots of the filter modes. Modulations with 2x interpolation are in Figure

P.2:

(a) (b)

103

 (c) (d) (e)

Figure P.2 : Output Spectrums of the Modes that Modulates with 2x Interpolation.

(a): 3FDAC/8, (b): 4FDAC/8, (c): -3FDAC/8, (d): -2FDAC/8, (e): -FDAC/8

Spectrum plots of the filter modes. Plots for modulations with 4x and 8x

interpolation are the same, so only one of the plots is given. See Figure P.3.

(a) (b)

(c) (d)

104

(e) (f)

(g) (h)

(i) (j)

(k) (l)

105

(m) (n)

(o) (p)

Figure P.3 : Output spectrums of the modes that modulates with 4x and 8x

interpolation. (a): baseband, (b): FDAC/16, (c): 2FDAC/16, (d):

3FDAC/16, (e): 4FDAC/16, (f): 5FDAC/16, (g): 6FDAC/16, (h):

7FDAC/16, (i): 8FDAC/16, (j): -7FDAC/16, (k): -6FDAC/16, (l): -5FDAC/16,

(m): -4FDAC/16, (n): -3FDAC/16, (o): -2FDAC/16, (p): -FDAC/16.

106

APPENDIX R

R.1. Tcl Script for Standard Architecture

Cadence Encounter(r) RTL Compiler

Special thanks to: Gurer Ozbek

#kutuphane adresi:

set_attribute lib_search_path /work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/digital/liberty

#kutuphanenin adi:

set_attribute library {LF150DI_HS_F_V1_5_typical_conditional.lib}

#LEF kutuphanesi adresi

set_attribute lib_search_path /work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/digital/lef

#LEF kutuphanesi adi

set_attribute lef_library {LF150DI_HS_F_V1_5.lef}

#okunacak dosyalar:

read_hdl -v2001 Suzgec_1.v

read_hdl -v2001 Suzgec_2.v

read_hdl -v2001 Suzgec_3.v

read_hdl -v2001 Suzgec_Uclu.v

elaborate Suzgec_Uclu

report datapath > datapath.txt

#saat isareti tanimlamalari

define_clock -period 7200 -name clk0 /designs/Suzgec_Uclu/ports_in/clk0

define_clock -period 7200 -name clk1 -divide_period 2 /designs/Suzgec_Uclu/ports_in/clk1

define_clock -period 7200 -name clk2 -divide_period 4 /designs/Suzgec_Uclu/ports_in/clk2

define_clock -period 7200 -name clk3 -divide_period 8 /designs/Suzgec_Uclu/ports_in/clk3

set_attribute slew {40 40 80 80} [find -clock clk0]

set_attribute slew {40 40 80 80} [find -clock clk1]

set_attribute slew {40 40 80 80} [find -clock clk2]

set_attribute slew {40 40 80 80} [find -clock clk3]

external_delay -input 500 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/*

external_delay -output 100 -clock [find -clock clk3] -edge_rise /designs/Suzgec_Uclu/ports_out/*

#synthesize -to_mapped -effort high

#retime islemleri

set_attribute dont_retime false [all::all_seqs -clock clk1]

set_attribute dont_retime true [all::all_seqs -clock clk2]

retime -min_delay

synthesize -to_mapped -effort high

write_encounter design -basename Suzgec_Uclu_syn

report_timing > timing_report.txt

report area > area_report.txt

107

R.2. Tcl Script for Improved Architecture

Cadence Encounter(r) RTL Compiler

Special thanks to: Gurer Ozbek

#kutuphane adresi:

set_attribute lib_search_path /work/kits/tsmc/lib/180/stdcel_cl018g_2004q3v1/aci/sc/synopsys

#kutuphanenin adi:

set_attribute library {typical.lib}

#LEF kutuphanesi adresi

set_attribute lib_search_path /work/kits/tsmc/lib/180/stdcel_cl018g_2004q3v1/aci/sc/lef

#LEF kutuphanesi adi

set_attribute lef_library {tsmc18_6lm.lef}

#okunacak dosyalar:

read_hdl -v2001 Input_Muxes.v

read_hdl -v2001 Suzgec_1.v

read_hdl -v2001 Suzgec_2.v

read_hdl -v2001 Suzgec_3_pipe.v

read_hdl -v2001 Output_Muxes.v

read_hdl -v2001 FILTER_END.v

read_hdl -v2001 FILTEROUT_BANK.v

read_hdl -v2001 Suzgec_Uclu.v

elaborate Suzgec_Uclu

#saat isareti tanimlamalari

define_clock -period 1000000 -name sclk -domain domain_1 /designs/Suzgec_Uclu/ports_in/clk0

define_clock -period 5800 -name clk0 -domain domain_2 /designs/Suzgec_Uclu/ports_in/clk0

define_clock -period 5800 -name clk1 -domain domain_2 -divide_period 2 /designs/Suzgec_Uclu/ports_in/clk1

define_clock -period 5800 -name clk2 -domain domain_2 -divide_period 4 /designs/Suzgec_Uclu/ports_in/clk2

define_clock -period 5800 -name clk3 -domain domain_2 -divide_period 8 /designs/Suzgec_Uclu/ports_in/clk3

set_attribute slew {100 100 200 200} [find -clock sclk]

set_attribute slew {50 50 100 100} [find -clock clk0]

set_attribute slew {50 50 100 100} [find -clock clk1]

set_attribute slew {50 50 100 100} [find -clock clk2]

set_attribute slew {50 50 100 100} [find -clock clk3]

external_delay -input 500 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_in/resetRegOut

external_delay -input 500 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_in/write

external_delay -input 500 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_in/CE*

external_delay -output 1000 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_out/dataR*

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/int_mode*

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/hb*

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/clk*

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/reset

external_delay -input 300 -clock [find -clock clk3] -edge_rise /designs/Suzgec_Uclu/ports_in/din_*

external_delay -output 100 -clock [find -clock clk3] -edge_rise /designs/Suzgec_Uclu/ports_out/dout_*

#retime islemleri

set_attribute dont_retime true [all::all_seqs -clock sclk]

set_attribute dont_retime true [all::all_seqs -clock clk0]

set_attribute dont_retime true [all::all_seqs -clock clk1]

set_attribute dont_retime true [find / -instance ent_out_*]

set_attribute dont_retime true [find / -instance FF_oys_*]

set_attribute dont_retime true [all::all_seqs -clock clk3]

retime -prepare

retime -min_delay -effort high

synthesize -to_mapped -effort high

#cikislari yaz

write_encounter design -basename Suzgec_Uclu_syn

report_timing > timing_report.txt

report area > area_report.txt

108

APPENDIX S

Figure S.1 : Simulink model of Filter-1.

109

Figure S.2 : Simulink model of Filter-2.

110

Figure S.3 : Simulink model of Filter-3.

111

APPENDIX V

V.1. Verilog Code of Fillter-1

`timescale 1ns / 1ps
module Suzgec_1(clk250, clk500, reset, hb1_mod, din_r, din_i, dout_r, dout_i

);

input clk250, clk500, reset;
input[1:0] hb1_mod;

input signed[15:0] din_r, din_i;

output reg signed[15:0] dout_r, dout_i;

reg signed[15:0] FF_r [0:27];

reg signed[15:0] FF_i [0:27];
reg signed[15:0] FF_oys_r, FF_oys_i;

reg signed[16:0] ilk_toplam_r [0:13];

reg signed[16:0] ilk_toplam_i [0:13];
wire signed[15:0] h [0:13];

assign h[0] = -4;
assign h[1] = 13;

assign h[2] = -34;

assign h[3] = 72;
assign h[4] = -138;

assign h[5] = 245;

assign h[6] = -408;
assign h[7] = 650;

assign h[8] = -1003;

assign h[9] = 1521;
assign h[10] = -2315;

assign h[11] = 3671;

assign h[12] = -6642;
assign h[13] = 20755;

reg signed[32:0] carpim_r [0:13];
reg signed[32:0] carpim_i [0:13];

reg signed[33:0] agac_sev_1_r [0:6];

reg signed[33:0] agac_sev_1_i [0:6];
reg signed[34:0] agac_sev_2_r [0:3];

reg signed[34:0] agac_sev_2_i [0:3];

reg signed[35:0] agac_sev_3_r [0:1];
reg signed[35:0] agac_sev_3_i [0:1];

reg signed[36:0] agac_sev_4_r, agac_sev_4_i;

reg signed[15:0] kesik_r, kesik_i;
reg signed[15:0] ent_out_r, ent_out_i;

reg bir_say;

integer i;

//ötelemeli yazıcı

always@(posedge clk250, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=27; i=i+1)begin
 FF_r[i] <= 0;

 FF_i[i] <= 0;

 end
 end

 else begin

 FF_r[0] <= din_r;
 FF_i[0] <= din_i;

 for(i=0; i<=26; i=i+1)begin

 FF_r[i+1] <= FF_r[i];
 FF_i[i+1] <= FF_i[i];

 end

 end
end

//oys registeri //otelemeli yazici sonu

always@(posedge clk250, posedge reset)begin
 if(reset == 1)begin

 FF_oys_r <= 0;

 FF_oys_i <= 0;
 end

 else begin

112

 case(hb1_mod)

 0 : begin

 FF_oys_r <= FF_r[19];

 FF_oys_i <= FF_i[19];
 end

 1 : begin

 FF_oys_r <= -FF_r[19];
 FF_oys_i <= -FF_i[19];

 end

 2 : begin
 FF_oys_r <= -FF_r[19];

 FF_oys_i <= -FF_i[19];

 end
 3 : begin

 FF_oys_r <= FF_r[19];

 FF_oys_i <= FF_i[19];
 end

 endcase

 end

end

//toplayıcılar

always@(posedge clk250, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=13; i=i+1)begin

 ilk_toplam_r[i] <= 0;
 ilk_toplam_i[i] <= 0;

 end

 end
 else begin

 case(hb1_mod)

 0 : begin
 for(i=0; i<=13; i=i+1)begin

 ilk_toplam_r[i] <= FF_r[i] + FF_r [27-i];

 ilk_toplam_i[i] <= FF_i[i] + FF_i [27-i];
 end

 end

 1 : begin
 for(i=0; i<=12; i=i+2)begin

 ilk_toplam_r[i] <= -FF_r[i] + FF_r [27-i];

 ilk_toplam_i[i] <= -FF_i[i] + FF_i [27-i];
 end

 for(i=1; i<=13; i=i+2)begin

 ilk_toplam_r[i] <= FF_r[i] - FF_r [27-i];
 ilk_toplam_i[i] <= FF_i[i] - FF_i [27-i];

 end

 end
 2 : begin

 for(i=0; i<=13; i=i+1)begin

 ilk_toplam_r[i] <= FF_r[i] + FF_r [27-i];
 ilk_toplam_i[i] <= FF_i[i] + FF_i [27-i];

 end

 end
 3 : begin

 for(i=0; i<=12; i=i+2)begin

 ilk_toplam_r[i] <= -FF_r[i] + FF_r [27-i];

 ilk_toplam_i[i] <= -FF_i[i] + FF_i [27-i];

 end
 for(i=1; i<=13; i=i+2)begin

 ilk_toplam_r[i] <= FF_r[i] - FF_r [27-i];

 ilk_toplam_i[i] <= FF_i[i] - FF_i [27-i];
 end

 end

 endcase
 end

end

//carpicilar
always@(posedge clk250, posedge reset)begin

 if(reset == 1)begin

 for(i=0; i<=13; i=i+1)begin
 carpim_r[i] <= 0;

 carpim_i[i] <= 0;

 end

 end

 else begin

 for(i=0; i<=13; i=i+1)begin

113

 carpim_r[i] <= ilk_toplam_r[i] * h[i];

 carpim_i[i] <= ilk_toplam_i[i] * h[i];

 end

 end
end

//toplayici agaci seviye 1

always@(posedge clk250, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=6; i=i+1)begin

 agac_sev_1_r[i] <= 0;
 agac_sev_1_i[i] <= 0;

 end

 end
 else begin

 for(i=0; i<=6; i=i+1)begin

 agac_sev_1_r[i] <= carpim_r[2*i] + carpim_r[2*i+1];
 agac_sev_1_i[i] <= carpim_i[2*i] + carpim_i[2*i+1];

 end

 end

end

//toplayici agaci seviye 2

always@(posedge clk250, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=3; i=i+1)begin

 agac_sev_2_r[i] <= 0;
 agac_sev_2_i[i] <= 0;

 end

 end
 else begin

 agac_sev_2_r[3] <= agac_sev_1_r[6];

 agac_sev_2_i[3] <= agac_sev_1_i[6];
 for(i=0; i<=2; i=i+1)begin

 agac_sev_2_r[i] <= agac_sev_1_r[2*i] + agac_sev_1_r[2*i+1];

 agac_sev_2_i[i] <= agac_sev_1_i[2*i] + agac_sev_1_i[2*i+1];
 end

 end

end
//toplayici agaci seviye 3

always@(posedge clk250, posedge reset)begin

 if(reset == 1)begin
 agac_sev_3_r[0] <= 0;

 agac_sev_3_r[1] <= 0;

 agac_sev_3_i[0] <= 0;
 agac_sev_3_i[1] <= 0;

 end

 else begin
 agac_sev_3_r[0] <= agac_sev_2_r[0] + agac_sev_2_r[1];

 agac_sev_3_r[1] <= agac_sev_2_r[2] + agac_sev_2_r[3];

 //
 agac_sev_3_i[0] <= agac_sev_2_i[0] + agac_sev_2_i[1];

 agac_sev_3_i[1] <= agac_sev_2_i[2] + agac_sev_2_i[3];

 end
end

//toplayici agaci seviye 4

always@(posedge clk250, posedge reset)begin

 if(reset == 1)begin

 agac_sev_4_r <= 0;
 agac_sev_4_i <= 0;

 end

 else begin
 agac_sev_4_r <= agac_sev_3_r[0] + agac_sev_3_r[1];

 agac_sev_4_i <= agac_sev_3_i[0] + agac_sev_3_i[1];

 end
end

//37bit - 16 bit donusturucu (cikis kesicisi)

always@(*)begin
 if(agac_sev_4_r[30] == 1)begin //sayi negatif ise

 if(|agac_sev_4_r[14:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_r <= agac_sev_4_r[30:15] + 1;
 end

 else begin

 kesik_r <= agac_sev_4_r[30:15];

 end

 end

 else begin

114

 kesik_r <= agac_sev_4_r[30:15];

 end

 //

 if(agac_sev_4_i[30] == 1)begin //sayi negatif ise
 if(|agac_sev_4_i[14:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_i <= agac_sev_4_i[30:15] + 1;

 end
 else begin

 kesik_i <= agac_sev_4_i[30:15];

 end
 end

 else begin

 kesik_i <= agac_sev_4_i[30:15];
 end

end

//enterpolasyon sonrasi cikis
always@(posedge clk250, posedge reset)begin

 if(reset == 1)begin

 ent_out_r <= 0;

 ent_out_i <= 0;

 end

 else begin
 case(hb1_mod)

 1 : begin
 ent_out_r <= kesik_i;

 ent_out_i <= kesik_r;

 end

 3 : begin

 ent_out_r <= kesik_i;
 ent_out_i <= kesik_r;

 end

 default : begin

 ent_out_r <= kesik_r;

 ent_out_i <= kesik_i;
 end

 endcase
 end

end

//cikis secicisi
always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin

 dout_r <= 0;
 dout_i <= 0;

 end

 else begin
 if(bir_say == 1)begin

 dout_r <= ent_out_r;

 dout_i <= ent_out_i;
 end

 else begin

 dout_r <= FF_oys_r;

 dout_i <= FF_oys_i;

 end
 end

end

//bire kadar sayan sayici
always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin

 bir_say <= 0;
 end

 else begin

 bir_say <= ~bir_say;
 end

end

endmodule

115

V.2. Verilog Code of Fillter-2

`timescale 1ns / 1ps

module Suzgec_2(clk500, clk1, reset, hb2_mod, din_r, din_i, dout_r, dout_i

);
input clk500, clk1, reset;

input[2:0] hb2_mod;

input signed[15:0] din_r, din_i;
output reg signed[15:0] dout_r, dout_i;

reg signed[15:0] FF_r [0:11];
reg signed[15:0] FF_i [0:11];

reg signed[15:0] FF_oys_r, FF_oys_i;

reg signed[16:0] toplam_oys_r, toplam_oys_i;
wire signed[16:0] sqrt2;

assign sqrt2 = 17'b01011010100000101; //16'd46341

wire signed[33:0] carpim_oys_r, carpim_oys_i;

reg signed[15:0] kesik_oys_r, kesik_oys_i;
reg signed[16:0] ilk_toplam_r [0:5];

reg signed[16:0] ilk_toplam_i [0:5];

wire signed[12:0] h [0:5];

assign h[0] = -2;

assign h[1] = 17;
assign h[2] = -75;

assign h[3] = 238;
assign h[4] = -660;

assign h[5] = 2530;

reg signed[29:0] carpim_r [0:5];

reg signed[29:0] carpim_i [0:5];

reg signed[30:0] agac_sev_1_r [0:2];
reg signed[30:0] agac_sev_1_i [0:2];

reg signed[31:0] agac_sev_2_r [0:1];

reg signed[31:0] agac_sev_2_i [0:1];
reg signed[32:0] agac_sev_3_r, agac_sev_3_i;

reg signed[15:0] kesik_r, kesik_i;

reg signed[15:0] ent_out_r, ent_out_i;
reg bir_say;

integer i;

//ötelemeli yazıcı

always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin
 for(i=0; i<=11; i=i+1)begin

 FF_r[i] <= 0;

 FF_i[i] <= 0;
 end

 end

 else begin
 FF_r[0] <= din_r;

 FF_i[0] <= din_i;

 //FF[1] <= FF[0];
 //...

 //FF[11] <= FF[10];

 for(i=0; i<=10; i=i+1)begin
 FF_r[i+1] <= FF_r[i];

 FF_i[i+1] <= FF_i[i];

 end
 end

end

//ötelemeli yazici sonu (oys) toplayici

always@(*)begin

 case(hb2_mod)
 1 : begin

 toplam_oys_r = FF_r[10] - FF_i[10];

 toplam_oys_i = FF_i[10] + FF_r[10];

 end

 3 : begin

 toplam_oys_r = FF_r[10] + FF_i[10];
 toplam_oys_i = FF_i[10] - FF_r[10];

116

 end

 5 : begin

 toplam_oys_r = FF_r[10] - FF_i[10];

 toplam_oys_i = FF_i[10] + FF_r[10];
 end

 7 : begin

 toplam_oys_r = FF_r[10] + FF_i[10];
 toplam_oys_i = FF_i[10] - FF_r[10];

 end

 default : begin
 toplam_oys_r = FF_r[10] + FF_i[10];

 toplam_oys_i = FF_i[10] + FF_r[10];

 end
 endcase

end

//ötelemeli yazici sonu carpici (kök 2 ile çarpım)

assign carpim_oys_r = toplam_oys_r * sqrt2;

assign carpim_oys_i = toplam_oys_i * sqrt2;

//oys kesicisi (2'ye bolme) (ya da 4e denebilir belki)

always@(*)begin
 if(carpim_oys_r[31] == 1)begin //sayi negatif ise

 if(|carpim_oys_r[15:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_oys_r <= carpim_oys_r[31:16] + 1;
 end

 else begin

 kesik_oys_r <= carpim_oys_r[31:16];
 end

 end

 else begin
 kesik_oys_r <= carpim_oys_r[31:16];

 end

 if(carpim_oys_i[31] == 1)begin //sayi negatif ise
 if(|carpim_oys_i[15:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_oys_i <= carpim_oys_i[31:16] + 1;

 end
 else begin

 kesik_oys_i <= carpim_oys_i[31:16];

 end
 end

 else begin

 kesik_oys_i <= carpim_oys_i[31:16];
 end

end
//oys registeri

always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin
 FF_oys_r <= 0;

 FF_oys_i <= 0;

 end
 else begin

 case(hb2_mod)

 0 : begin

 FF_oys_r <= FF_r[10];

 FF_oys_i <= FF_i[10];
 end

 1 : begin

 FF_oys_r <= -kesik_oys_r;
 FF_oys_i <= -kesik_oys_i;

 end

 2 : begin
 FF_oys_r <= -FF_r[10];

 FF_oys_i <= -FF_i[10];

 end
 3 : begin

 FF_oys_r <= kesik_oys_r;

 FF_oys_i <= kesik_oys_i;
 end

 4 : begin

 FF_oys_r <= -FF_r[10];

 FF_oys_i <= -FF_i[10];

 end

 5 : begin

117

 FF_oys_r <= kesik_oys_r;

 FF_oys_i <= kesik_oys_i;

 end

 6 : begin
 FF_oys_r <= FF_r[10];

 FF_oys_i <= FF_i[10];

 end
 7 : begin

 FF_oys_r <= -kesik_oys_r;

 FF_oys_i <= -kesik_oys_i;
 end

 default : begin

 FF_oys_r <= FF_r[10];
 FF_oys_i <= FF_i[10];

 end

 endcase
 end

end

//toplayıcılar

always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin
 for(i=0; i<=5; i=i+1)begin

 ilk_toplam_r[i] <= 0;

 ilk_toplam_i[i] <= 0;
 end

 end

 else begin

 case(hb2_mod)

 0 : begin
 ilk_toplam_r[0] <= FF_r[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= FF_r[1] + FF_r[10]; //add2

 ilk_toplam_r[2] <= FF_r[2] + FF_r[9]; //add3
 ilk_toplam_r[3] <= FF_r[3] + FF_r[8]; //add4

 ilk_toplam_r[4] <= FF_r[4] + FF_r[7]; //add5

 ilk_toplam_r[5] <= FF_r[5] + FF_r[6]; //add6
 //imags

 ilk_toplam_i[0] <= FF_i[0] + FF_i[11]; //add1

 ilk_toplam_i[1] <= FF_i[1] + FF_i[10]; //add2
 ilk_toplam_i[2] <= FF_i[2] + FF_i[9]; //add3

 ilk_toplam_i[3] <= FF_i[3] + FF_i[8]; //add4

 ilk_toplam_i[4] <= FF_i[4] + FF_i[7]; //add5
 ilk_toplam_i[5] <= FF_i[5] + FF_i[6]; //add6

 end

 1 : begin
 ilk_toplam_r[0] <= -FF_i[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= -FF_r[1] + FF_i[10]; //add2

 ilk_toplam_r[2] <= FF_i[2] - FF_r[9]; //add3
 ilk_toplam_r[3] <= FF_r[3] - FF_i[8]; //add4

 ilk_toplam_r[4] <= -FF_i[4] + FF_r[7]; //add5

 ilk_toplam_r[5] <= -FF_r[5] + FF_i[6]; //add6
 //imags

 ilk_toplam_i[0] <= FF_r[0] + FF_i[11]; //add1

 ilk_toplam_i[1] <= -FF_i[1] - FF_r[10]; //add2

 ilk_toplam_i[2] <= -FF_r[2] - FF_i[9]; //add3

 ilk_toplam_i[3] <= FF_i[3] + FF_r[8]; //add4
 ilk_toplam_i[4] <= FF_r[4] + FF_i[7]; //add5

 ilk_toplam_i[5] <= -FF_i[5] - FF_r[6]; //add6

 end
 2 : begin

 ilk_toplam_r[0] <= -FF_r[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= FF_r[1] - FF_r[10]; //add2
 ilk_toplam_r[2] <= -FF_r[2] + FF_r[9]; //add3

 ilk_toplam_r[3] <= FF_r[3] - FF_r[8]; //add4

 ilk_toplam_r[4] <= -FF_r[4] + FF_r[7]; //add5
 ilk_toplam_r[5] <= FF_r[5] - FF_r[6]; //add6

 //imags

 ilk_toplam_i[0] <= FF_i[0] - FF_i[11]; //add1
 ilk_toplam_i[1] <= -FF_i[1] + FF_i[10]; //add2

 ilk_toplam_i[2] <= FF_i[2] - FF_i[9]; //add3

 ilk_toplam_i[3] <= -FF_i[3] + FF_i[8]; //add4

 ilk_toplam_i[4] <= FF_i[4] - FF_i[7]; //add5

 ilk_toplam_i[5] <= -FF_i[5] + FF_i[6]; //add6

 end

118

 3 : begin

 ilk_toplam_r[0] <= FF_i[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= -FF_r[1] - FF_i[10]; //add2

 ilk_toplam_r[2] <= -FF_i[2] - FF_r[9]; //add3
 ilk_toplam_r[3] <= FF_r[3] + FF_i[8]; //add4

 ilk_toplam_r[4] <= FF_i[4] + FF_r[7]; //add5

 ilk_toplam_r[5] <= -FF_r[5] - FF_i[6]; //add6
 //imags

 ilk_toplam_i[0] <= -FF_r[0] + FF_i[11]; //add1

 ilk_toplam_i[1] <= -FF_i[1] + FF_r[10]; //add2
 ilk_toplam_i[2] <= FF_r[2] - FF_i[9]; //add3

 ilk_toplam_i[3] <= FF_i[3] - FF_r[8]; //add4

 ilk_toplam_i[4] <= -FF_r[4] + FF_i[7]; //add5
 ilk_toplam_i[5] <= -FF_i[5] + FF_r[6]; //add6

 end

 4 : begin
 ilk_toplam_r[0] <= FF_r[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= FF_r[1] + FF_r[10]; //add2

 ilk_toplam_r[2] <= FF_r[2] + FF_r[9]; //add3

 ilk_toplam_r[3] <= FF_r[3] + FF_r[8]; //add4

 ilk_toplam_r[4] <= FF_r[4] + FF_r[7]; //add5

 ilk_toplam_r[5] <= FF_r[5] + FF_r[6]; //add6
 //imags

 ilk_toplam_i[0] <= FF_i[0] + FF_i[11]; //add1

 ilk_toplam_i[1] <= FF_i[1] + FF_i[10]; //add2
 ilk_toplam_i[2] <= FF_i[2] + FF_i[9]; //add3

 ilk_toplam_i[3] <= FF_i[3] + FF_i[8]; //add4

 ilk_toplam_i[4] <= FF_i[4] + FF_i[7]; //add5
 ilk_toplam_i[5] <= FF_i[5] + FF_i[6]; //add6

 end

 5 : begin
 ilk_toplam_r[0] <= -FF_i[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= -FF_r[1] + FF_i[10]; //add2

 ilk_toplam_r[2] <= FF_i[2] - FF_r[9]; //add3
 ilk_toplam_r[3] <= FF_r[3] - FF_i[8]; //add4

 ilk_toplam_r[4] <= -FF_i[4] + FF_r[7]; //add5

 ilk_toplam_r[5] <= -FF_r[5] + FF_i[6]; //add6
 //imags

 ilk_toplam_i[0] <= FF_r[0] + FF_i[11]; //add1

 ilk_toplam_i[1] <= -FF_i[1] - FF_r[10]; //add2
 ilk_toplam_i[2] <= -FF_r[2] - FF_i[9]; //add3

 ilk_toplam_i[3] <= FF_i[3] + FF_r[8]; //add4

 ilk_toplam_i[4] <= FF_r[4] + FF_i[7]; //add5
 ilk_toplam_i[5] <= -FF_i[5] - FF_r[6]; //add6

 end
 6 : begin

 ilk_toplam_r[0] <= -FF_r[0] + FF_r[11]; //add1

 ilk_toplam_r[1] <= FF_r[1] - FF_r[10]; //add2
 ilk_toplam_r[2] <= -FF_r[2] + FF_r[9]; //add3

 ilk_toplam_r[3] <= FF_r[3] - FF_r[8]; //add4

 ilk_toplam_r[4] <= -FF_r[4] + FF_r[7]; //add5
 ilk_toplam_r[5] <= FF_r[5] - FF_r[6]; //add6

 //imags

 ilk_toplam_i[0] <= FF_i[0] - FF_i[11]; //add1

 ilk_toplam_i[1] <= -FF_i[1] + FF_i[10]; //add2

 ilk_toplam_i[2] <= FF_i[2] - FF_i[9]; //add3
 ilk_toplam_i[3] <= -FF_i[3] + FF_i[8]; //add4

 ilk_toplam_i[4] <= FF_i[4] - FF_i[7]; //add5

 ilk_toplam_i[5] <= -FF_i[5] + FF_i[6]; //add6
 end

 7 : begin

 ilk_toplam_r[0] <= FF_i[0] + FF_r[11]; //add1
 ilk_toplam_r[1] <= -FF_r[1] - FF_i[10]; //add2

 ilk_toplam_r[2] <= -FF_i[2] - FF_r[9]; //add3

 ilk_toplam_r[3] <= FF_r[3] + FF_i[8]; //add4
 ilk_toplam_r[4] <= FF_i[4] + FF_r[7]; //add5

 ilk_toplam_r[5] <= -FF_r[5] - FF_i[6]; //add6

 //imags
 ilk_toplam_i[0] <= -FF_r[0] + FF_i[11]; //add1

 ilk_toplam_i[1] <= -FF_i[1] + FF_r[10]; //add2

 ilk_toplam_i[2] <= FF_r[2] - FF_i[9]; //add3

 ilk_toplam_i[3] <= FF_i[3] - FF_r[8]; //add4

 ilk_toplam_i[4] <= -FF_r[4] + FF_i[7]; //add5

 ilk_toplam_i[5] <= -FF_i[5] + FF_r[6]; //add6

119

 end

 endcase

 end

end

//carpicilar

always@(posedge clk500, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=5; i=i+1)begin

 carpim_r[i] <= 0;
 carpim_i[i] <= 0;

 end

 end
 else begin

 for(i=0; i<=5; i=i+1)begin

 carpim_r[i] <= ilk_toplam_r[i] * h[i];
 carpim_i[i] <= ilk_toplam_i[i] * h[i];

 end

 end

end

//toplayici agaci seviye 1
always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin

 for(i=0; i<=2; i=i+1)begin
 agac_sev_1_r[i] <= 0;

 agac_sev_1_i[i] <= 0;

 end
 end

 else begin

 for(i=0; i<=2; i=i+1)begin
 agac_sev_1_r[i] <= carpim_r[2*i] + carpim_r[2*i+1];

 agac_sev_1_i[i] <= carpim_i[2*i] + carpim_i[2*i+1];

 end
 end

end

//toplayici agaci seviye 2

always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin
 for(i=0; i<=1; i=i+1)begin

 agac_sev_2_r[i] <= 0;

 agac_sev_2_i[i] <= 0;
 end

 end

 else begin
 agac_sev_2_r[0] <= agac_sev_1_r[0] + agac_sev_1_r[1];

 agac_sev_2_r[1] <= agac_sev_1_r[2];

 //
 agac_sev_2_i[0] <= agac_sev_1_i[0] + agac_sev_1_i[1];

 agac_sev_2_i[1] <= agac_sev_1_i[2];

 end
end

//toplayici agaci seviye 3

always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin
 agac_sev_3_r <= 0;

 agac_sev_3_i <= 0;

 end
 else begin

 agac_sev_3_r <= agac_sev_2_r[0] + agac_sev_2_r[1];

 agac_sev_3_i <= agac_sev_2_i[0] + agac_sev_2_i[1];
 end

end

//36bit - 16 bit donusturucu (cikis kesicisi)

always@(*)begin

 if(agac_sev_3_r[27] == 1)begin //sayi negatif ise
 if(|agac_sev_3_r[11:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_r <= agac_sev_3_r[27:12] + 1;

 end

 else begin

 kesik_r <= agac_sev_3_r[27:12];

 end

120

 end

 else begin

 kesik_r <= agac_sev_3_r[27:12];

 end
 //

 if(agac_sev_3_i[27] == 1)begin //sayi negatif ise

 if(|agac_sev_3_i[11:0] == 1)begin //sayi, tamsayisinden küçükse
 kesik_i <= agac_sev_3_i[27:12] + 1;

 end

 else begin
 kesik_i <= agac_sev_3_i[27:12];

 end

 end
 else begin

 kesik_i <= agac_sev_3_i[27:12];

 end
end

//enterpolasyon sonrasi cikis

always@(posedge clk500, posedge reset)begin

 if(reset == 1)begin

 ent_out_r <= 0;
 ent_out_i <= 0;

 end

 else begin
 case(hb2_mod)

 2 : begin

 ent_out_r <= kesik_i;
 ent_out_i <= kesik_r;

 end

 6 : begin
 ent_out_r <= kesik_i;

 ent_out_i <= kesik_r;

 end
 default : begin

 ent_out_r <= kesik_r;

 ent_out_i <= kesik_i;
 end

 endcase

 end
end

//cikis secicisi
always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin

 dout_r <= 0;
 dout_i <= 0;

 end

 else begin
 if(bir_say == 0)begin

 dout_r <= ent_out_r;

 dout_i <= ent_out_i;
 end

 else begin

 dout_r <= FF_oys_r;

 dout_i <= FF_oys_i;

 end
 end

end

//bire kadar sayan sayici

always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin
 bir_say <= 0;

 end

 else begin
 bir_say <= ~bir_say;

 end

end

endmodule

121

V.3. Verilog Code of Fillter-3

`timescale 1ns / 1ps

module Suzgec_3(clk1, clk2, reset, hb3_mod, din_r, din_i, dout_r, dout_i

);
input clk1, clk2, reset;

input[2:0] hb3_mod;

input signed[15:0] din_r, din_i;
output reg signed[15:0] dout_r, dout_i;

reg signed[15:0] FF_r [0:8]; // bu FF'lardan 8.si sadece gecikme için kullanılıyor, çıkışı toplanıp çarpılmıyor
reg signed[15:0] FF_i [0:8];

reg signed[16:0] toplam_oys_r, toplam_oys_i;

wire signed[16:0] sqrt2;

assign sqrt2 = 17'sb01011010100000101; //16'd46341

wire signed[33:0] carpim_oys_r, carpim_oys_i;

reg signed[15:0] kesik_oys_r, kesik_oys_i;

reg signed[16:0] ilk_toplam_r [0:3];
reg signed[16:0] ilk_toplam_i [0:3];

reg signed[30:0] carpim_r [0:3];

reg signed[30:0] carpim_i [0:3];
wire signed[13:0] h [0:3];

assign h[0] = -39;
assign h[1] = 273;

assign h[2] = -1102;
assign h[3] = 4964;

reg signed[31:0] agac_sev_1_r [0:1];

reg signed[31:0] agac_sev_1_i [0:1];
reg signed[32:0] agac_sev_2_r, agac_sev_2_i;

reg signed[15:0] kesik_r, kesik_i;

reg signed[15:0] ent_out_r, ent_out_i;

reg bir_say;

integer i;

//ötelemeli yazıcı

always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin
 for(i=0; i<=7; i=i+1)begin

 FF_r[i] <= 0;

 FF_i[i] <= 0;
 end

 end

 else begin
 FF_r[0] <= din_r;

 FF_i[0] <= din_i;

 for(i=0; i<=6; i=i+1)begin
 FF_r[i+1] <= FF_r[i];

 FF_i[i+1] <= FF_i[i];

 end

 end

end

//ötelemeli yazici sonu (oys) toplayici
always@(*)begin

 case(hb3_mod)

 1 : begin
 toplam_oys_r = FF_r[7] - FF_i[7];

 toplam_oys_i = FF_i[7] + FF_r[7];

 end
 3 : begin

 toplam_oys_r = FF_r[7] + FF_i[7];

 toplam_oys_i = FF_i[7] - FF_r[7];
 end

 5 : begin

 toplam_oys_r = FF_r[7] - FF_i[7];
 toplam_oys_i = FF_i[7] + FF_r[7];

 end

 7 : begin

 toplam_oys_r = FF_r[7] + FF_i[7];

 toplam_oys_i = FF_i[7] - FF_r[7];

 end

122

 default : begin

 toplam_oys_r = FF_r[7] + FF_i[7];

 toplam_oys_i = FF_i[7] + FF_r[7];

 end
 endcase

end

//ötelemeli yazici sonu carpici (kök 2 ile çarpım)
assign carpim_oys_r = toplam_oys_r * sqrt2;

assign carpim_oys_i = toplam_oys_i * sqrt2;

//oys kesicisi (2'ye bolme) (ya da 4e denebilir belki)
always@(*)begin

 if(carpim_oys_r[31] == 1)begin //sayi negatif ise

 if(|carpim_oys_r[15:0] == 1)begin //sayi, tamsayisinden küçükse
 kesik_oys_r <= carpim_oys_r[31:16] + 1;

 end

 else begin
 kesik_oys_r <= carpim_oys_r[31:16];

 end

 end

 else begin

 kesik_oys_r <= carpim_oys_r[31:16];

 end
 if(carpim_oys_i[31] == 1)begin //sayi negatif ise

 if(|carpim_oys_i[15:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_oys_i <= carpim_oys_i[31:16] + 1;
 end

 else begin

 kesik_oys_i <= carpim_oys_i[31:16];
 end

 end

 else begin
 kesik_oys_i <= carpim_oys_i[31:16];

 end

end
//oys registeri

always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin
 FF_r[8] <= 0;

 FF_i[8] <= 0;

 end
 else begin

 case(hb3_mod)

 0 : begin
 FF_r[8] <= FF_r[7];

 FF_i[8] <= FF_i[7];

 end
 1 : begin

 FF_r[8] <= kesik_oys_r;

 FF_i[8] <= kesik_oys_i;
 end

 2 : begin

 FF_r[8] <= -FF_r[7];
 FF_i[8] <= -FF_i[7];

 end

 3 : begin

 FF_r[8] <= -kesik_oys_r;

 FF_i[8] <= -kesik_oys_i;
 end

 4 : begin

 FF_r[8] <= -FF_r[7];
 FF_i[8] <= -FF_i[7];

 end

 5 : begin
 FF_r[8] <= -kesik_oys_r;

 FF_i[8] <= -kesik_oys_i;

 end
 6 : begin

 FF_r[8] <= FF_r[7];

 FF_i[8] <= FF_i[7];
 end

 7 : begin

 FF_r[8] <= kesik_oys_r;

 FF_i[8] <= kesik_oys_i;

 end

 default : begin

123

 FF_r[8] <= FF_r[7];

 FF_i[8] <= FF_i[7];

 end

 endcase
 end

end

//toplayıcılar
always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin

 for(i=0; i<=3; i=i+1)begin
 ilk_toplam_r[i] <= 0;

 ilk_toplam_i[i] <= 0;

 end
 end

 else begin

 case(hb3_mod)
 0 : begin

 ilk_toplam_r[0] <= FF_r[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= FF_r[1] + FF_r[6]; //add2

 ilk_toplam_r[2] <= FF_r[2] + FF_r[5]; //add3

 ilk_toplam_r[3] <= FF_r[3] + FF_r[4]; //add4

 //imags
 ilk_toplam_i[0] <= FF_i[0] + FF_i[7]; //add1

 ilk_toplam_i[1] <= FF_i[1] + FF_i[6]; //add2

 ilk_toplam_i[2] <= FF_i[2] + FF_i[5]; //add3
 ilk_toplam_i[3] <= FF_i[3] + FF_i[4]; //add4

 end

 1 : begin
 ilk_toplam_r[0] <= -FF_i[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= -FF_r[1] + FF_i[6]; //add2

 ilk_toplam_r[2] <= FF_i[2] - FF_r[5]; //add3
 ilk_toplam_r[3] <= FF_r[3] - FF_i[4]; //add4

 //imags

 ilk_toplam_i[0] <= FF_r[0] + FF_i[7]; //add1
 ilk_toplam_i[1] <= -FF_i[1] - FF_r[6]; //add2

 ilk_toplam_i[2] <= -FF_r[2] - FF_i[5]; //add3

 ilk_toplam_i[3] <= FF_i[3] + FF_r[4]; //add4
 end

 2 : begin

 ilk_toplam_r[0] <= -FF_r[0] + FF_r[7]; //add1
 ilk_toplam_r[1] <= FF_r[1] - FF_r[6]; //add2

 ilk_toplam_r[2] <= -FF_r[2] + FF_r[5]; //add3

 ilk_toplam_r[3] <= FF_r[3] - FF_r[4]; //add4
 //imags

 ilk_toplam_i[0] <= FF_i[0] - FF_i[7]; //add1

 ilk_toplam_i[1] <= -FF_i[1] + FF_i[6]; //add2
 ilk_toplam_i[2] <= FF_i[2] - FF_i[5]; //add3

 ilk_toplam_i[3] <= -FF_i[3] + FF_i[4]; //add4

 end
 3 : begin

 ilk_toplam_r[0] <= FF_i[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= -FF_r[1] - FF_i[6]; //add2
 ilk_toplam_r[2] <= -FF_i[2] - FF_r[5]; //add3

 ilk_toplam_r[3] <= FF_r[3] + FF_i[4]; //add4

 //imags

 ilk_toplam_i[0] <= -FF_r[0] + FF_i[7]; //add1

 ilk_toplam_i[1] <= -FF_i[1] + FF_r[6]; //add2
 ilk_toplam_i[2] <= FF_r[2] - FF_i[5]; //add3

 ilk_toplam_i[3] <= FF_i[3] - FF_r[4]; //add4

 end
 4 : begin

 ilk_toplam_r[0] <= FF_r[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= FF_r[1] + FF_r[6]; //add2
 ilk_toplam_r[2] <= FF_r[2] + FF_r[5]; //add3

 ilk_toplam_r[3] <= FF_r[3] + FF_r[4]; //add4

 //imags
 ilk_toplam_i[0] <= FF_i[0] + FF_i[7]; //add1

 ilk_toplam_i[1] <= FF_i[1] + FF_i[6]; //add2

 ilk_toplam_i[2] <= FF_i[2] + FF_i[5]; //add3
 ilk_toplam_i[3] <= FF_i[3] + FF_i[4]; //add4

 end

 5 : begin

 ilk_toplam_r[0] <= -FF_i[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= -FF_r[1] + FF_i[6]; //add2

 ilk_toplam_r[2] <= FF_i[2] - FF_r[5]; //add3

124

 ilk_toplam_r[3] <= FF_r[3] - FF_i[4]; //add4

 //imags

 ilk_toplam_i[0] <= FF_r[0] + FF_i[7]; //add1

 ilk_toplam_i[1] <= -FF_i[1] - FF_r[6]; //add2
 ilk_toplam_i[2] <= -FF_r[2] - FF_i[5]; //add3

 ilk_toplam_i[3] <= FF_i[3] + FF_r[4]; //add4

 end
 6 : begin

 ilk_toplam_r[0] <= -FF_r[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= FF_r[1] - FF_r[6]; //add2
 ilk_toplam_r[2] <= -FF_r[2] + FF_r[5]; //add3

 ilk_toplam_r[3] <= FF_r[3] - FF_r[4]; //add4

 //imags
 ilk_toplam_i[0] <= FF_i[0] - FF_i[7]; //add1

 ilk_toplam_i[1] <= -FF_i[1] + FF_i[6]; //add2

 ilk_toplam_i[2] <= FF_i[2] - FF_i[5]; //add3
 ilk_toplam_i[3] <= -FF_i[3] + FF_i[4]; //add4

 end

 7 : begin

 ilk_toplam_r[0] <= FF_i[0] + FF_r[7]; //add1

 ilk_toplam_r[1] <= -FF_r[1] - FF_i[6]; //add2

 ilk_toplam_r[2] <= -FF_i[2] - FF_r[5]; //add3
 ilk_toplam_r[3] <= FF_r[3] + FF_i[4]; //add4

 //imags

 ilk_toplam_i[0] <= -FF_r[0] + FF_i[7]; //add1
 ilk_toplam_i[1] <= -FF_i[1] + FF_r[6]; //add2

 ilk_toplam_i[2] <= FF_r[2] - FF_i[5]; //add3

 ilk_toplam_i[3] <= FF_i[3] - FF_r[4]; //add4
 end

 endcase

 end
end

//carpicilar

always@(posedge clk1, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=3; i=i+1)begin

 carpim_r[i] <= 0;
 carpim_i[i] <= 0;

 end

 end
 else begin

 for(i=0; i<=3; i=i+1)begin

 carpim_r[i] <= ilk_toplam_r[i] * h[i];
 carpim_i[i] <= ilk_toplam_i[i] * h[i];

 end

 end
end

//toplayici agaci seviye 1

always@(posedge clk1, posedge reset)begin
 if(reset == 1)begin

 for(i=0; i<=1; i=i+1)begin

 agac_sev_1_r[i] <= 0;
 agac_sev_1_i[i] <= 0;

 end

 end

 else begin

 agac_sev_1_r[0] <= carpim_r[0] + carpim_r[1];
 agac_sev_1_r[1] <= carpim_r[2] + carpim_r[3];

 //

 agac_sev_1_i[0] <= carpim_i[0] + carpim_i[1];
 agac_sev_1_i[1] <= carpim_i[2] + carpim_i[3];

 end

end
//toplayici agaci seviye 2

always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin
 agac_sev_2_r <= 0;

 agac_sev_2_i <= 0;

 end
 else begin

 agac_sev_2_r <= agac_sev_1_r[0] + agac_sev_1_r[1];

 agac_sev_2_i <= agac_sev_1_i[0] + agac_sev_1_i[1];

 end

end

//33bit - 16 bit donusturucu (cikis kesicisi)

125

always@(*)begin

 if(agac_sev_2_r[28] == 1)begin //sayi negatif ise

 if(|agac_sev_2_r[12:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_r <= agac_sev_2_r[28:13] + 1;
 end

 else begin

 kesik_r <= agac_sev_2_r[28:13];
 end

 end

 else begin
 kesik_r <= agac_sev_2_r[28:13];

 end

 //
 if(agac_sev_2_i[28] == 1)begin //sayi negatif ise

 if(|agac_sev_2_i[12:0] == 1)begin //sayi, tamsayisinden küçükse

 kesik_i <= agac_sev_2_i[28:13] + 1;
 end

 else begin

 kesik_i <= agac_sev_2_i[28:13];

 end

 end

 else begin
 kesik_i <= agac_sev_2_i[28:13];

 end

end
//enterpolasyon sonrasi cikis

always@(posedge clk1, posedge reset)begin

 if(reset == 1)begin
 ent_out_r <= 0;

 ent_out_i <= 0;

 end
 else begin

 case(hb3_mod)

 2 : begin
 ent_out_r <= kesik_i;

 ent_out_i <= kesik_r;

 end
 6 : begin

 ent_out_r <= kesik_i;

 ent_out_i <= kesik_r;
 end

 default : begin

 ent_out_r <= kesik_r;
 ent_out_i <= kesik_i;

 end

 endcase
 end

end

//cikis secicisi
always@(posedge clk2, posedge reset)begin

 if(reset == 1)begin

 dout_r <= 0;
 dout_i <= 0;

 end

 else begin

 if(bir_say == 0)begin

 dout_r <= ent_out_r;
 dout_i <= ent_out_i;

 end

 else begin
 dout_r <= FF_r[8];

 dout_i <= FF_i[8];

 end
 end

end

//bire kadar sayan sayici
always@(posedge clk2, posedge reset)begin

 if(reset == 1)begin

 bir_say <= 0;
 end

 else begin

 bir_say <= ~bir_say;

 end

end

endmodule

126

V.4. Verilog Code of TestBench (85 dB Design)

`timescale 1ns / 1ps

//`include "/work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/digital/verilog/LF150DI_HS_F_V1_5_typical_conditional.v"

module Test_Suzgec_Uclu;
 // Inputs

 reg clk250;

 reg clk500;
 reg clk1;

 reg clk2;

 reg reset;
 reg [1:0] hb1_mod;

 reg [2:0] hb2_mod;

 reg [2:0] hb3_mod;
 reg signed [15:0] din_r, din_i;

 // Outputs

 wire signed[15:0] dout_1_r;
 wire signed[15:0] dout_1_i;

 wire signed[15:0] dout_2_r;

 wire signed[15:0] dout_2_i;
 wire signed[15:0] dout_3_r;

 wire signed[15:0] dout_3_i;

 // Sampled Outputs
 reg signed[15:0] dout_1_s;

 reg signed[15:0] dout_2_s;

 reg signed[15:0] dout_3_s;
 // parameters

 parameter period = 8.000; //4.000 : 250MHz freakansli clock giriyor
 // file

 integer file;

 // SDF
// initial $sdf_annotate("Suzgec_Uclu_syn_typ.sdf",uut);

 // Instantiate the Unit Under Test (UUT)

 Suzgec_Uclu uut (

 .clk250(clk250),

 .clk500(clk500),

 .clk1(clk1),
 .clk2(clk2),

 .reset(reset),

 .hb1_mod(hb1_mod),
 .hb2_mod(hb2_mod),

 .hb3_mod(hb3_mod),

 .din_r(din_r),
 .din_i(din_i),

 .dout_1_r(dout_1_r),

 .dout_1_i(dout_1_i),
 .dout_2_r(dout_2_r),

 .dout_2_i(dout_2_i),

 .dout_3_r(dout_3_r),
 .dout_3_i(dout_3_i)

);

 initial begin

 //open file (fire)

 file = $fopen("sim_sonuc.m","w");

 $fwrite(file,"x = NaN;\n");
 $fwrite(file,"X = NaN;\n");

 $fwrite(file,"dout_3=[\n");

 // Initialize Inputs

 clk250 = 1;

 clk500 = 1;
 clk1 = 1;

 clk2 = 1;

 reset = 0;
 hb1_mod = 3;

 hb2_mod = 1;

 hb3_mod = 1;
 din_r = 0;

 din_i = 0;

 //reset

 #period reset = 1;

 //reset

 #(9*period/16) reset = 0;

127

 #period din_r = 0 ;

 #period din_r = 7341 ;

 #period din_r = 14220 ;

 #period din_r = 20204 ;
 #period din_r = 24916 ;

 #period din_r = 28059 ;

 #period din_r = 29436 ;
 #period din_r = 28959 ;

 #period din_r = 26660 ;

 #period din_r = 22682 ;
 #period din_r = 17276 ;

 #period din_r = 10782 ;

 #period din_r = 3610 ;
 #period din_r = -3790 ;

 #period din_r = -10951 ;

 #period din_r = -17422 ;
 … … …

 #period din_r = -22566 ;

 #period din_r = -26582 ;

 #period din_r = -28925 ;

 #period din_r = -29446 ;

 #period din_r = -28114 ;
 #period din_r = -25012 ;

 #period din_r = -20335 ;

 #period din_r = -14378 ;
 #period din_r = -7516 ;

 #period din_r = -181 ;

 #period din_r = 7166 ;
 #period din_r = 14061 ;

 #period din_r = 20072 ;

 #period din_r = 24818 ;
 #period din_r = 28003 ;

 #period din_r = 29424 ;

 #period din_r = 28993 ;
 #period din_r = 26737 ;

 #period din_r = 22797 ;

 #period din_r = 17422 ;
 #period din_r = 10951 ;

 #period din_r = 3790 ;

 #period din_r = -3610 ;
 #period din_r = -10782 ;

 #period din_r = -17276 ;

 #period din_r = -22682 ;
 #period din_r = -26660 ;

 #period din_r = -28959 ;

 #period din_r = -29436 ;
 #period din_r = -28059 ;

 #period din_r = -24916 ;

 #period din_r = -20204 ;
 #period din_r = -14220 ;

 #period din_r = -7341 ;

 #100 $fwrite(file,"]';");

 $fclose(file);

 $stop;

 end

 always begin #(period/2) clk250 = ~clk250; end

 always begin #(period/4) clk500 = ~clk500; end

 always begin #(period/8) clk1 = ~clk1; end
 always begin #(period/16) clk2 = ~clk2; end

 always @ (negedge clk500) begin

 #(period/8)
 dout_1_s <= dout_1_r;

 end

 always @ (negedge clk1) begin
 #(period/16)

 dout_2_s <= dout_2_r;

 end
 always @ (negedge clk2) begin

 #(period/32)

 dout_3_s <= dout_3_r;

 $fwrite(file,"%d %d\n",dout_3_r, dout_3_i);

 end

endmodule

128

V.5. Output file generated by Verilog TestBench

x = NaN;

X = NaN;

dout_3=[

 x x

 x x

 x x

 x x

 x x

 x x

 x x

 x x

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

… …

 9628 -23351

 18568 -18568

 20701 -8509

 14705 0

 3791 1716

 -5095 -5095

 -6766 -16035

 0 -24816

 10604 -25625

 18441 -18441

 18164 -7427

 9865 0

 -1732 -566

 -9403 -9403

 -8686 -20719

 0 -28002

 10915 -26288

 17153 -17153

 14483 -5876

 4402 0

 -7149 -2814

-13119 -13119

-10058 -24098]';

129

V.6. Verilog Code of Testbench (Complete Digital System with 99 dB Design)

`timescale 1ns / 1ps

module TEST_CHIP_TOP;

 // SPI Inputs
 reg sclk;

 reg por;

 reg fsync;
 reg sdin;

 //SPI inputs from TRIMs

 reg [0:255] dataR_from_TRIM;
 reg [0:255] A_out_2;

 // SPI Outputs

 wire sdout;
 //SPI outputs to TRIMs

 wire [0:255] A_in;

 wire [0:255] A_clk;

 // parallel data Inputs

 reg clkin;

 reg signed [15:0] din_r, din_i;
 // data to DAC

 wire clkout_r;

 wire clkout_i;
 wire [30:0] MSBout_r;

 wire [30:0] MSBout_i;

 wire [10:0] LSBout_r;
 wire [10:0] LSBout_i;

 //Test Registers
 reg [4:0]Test_MSBbin;

 reg [15:0]TESTout;

 //parallel data Sampled Outputs
 //reg signed[15:0] dout_3_s;

 // parameters

 parameter period = 8000; //4.000 : 250MHz freakansli clock giriyor
 //starting signal

 reg start_clock;

 // integer & file
 integer i = 0, j = 0, k = 0;

 integer file_sim_input;

 integer file_sim_sonuc;
 integer file_LA_csv;

 // SPI_CB WORD

 reg [23:0]WORD;
 // SPI_CB WORD definition

 reg [(12*8)-1:0] comment = "INITIAL";

 // TESTBENCH state
 reg [(12*8)-1:0] comment_tb = "INITIAL";

 // SPI_CB parallel read data

 reg [7:0] data_read;
 // Instantiate the Unit Under Test 1

 CHIP_TOP uut (

 .sclk (sclk),
 .por (por),

 .fsync (fsync),

 .sdin (sdin),
 .dataR_from_TRIM (dataR_from_TRIM),

 .A_out_2 (A_out_2),

 .clkin (clkin),
 .din_r (din_r),

 .din_i (din_i),

 .sdout (sdout),
 .A_in (A_in),

 .A_clk (A_clk),

 .clkout_r (clkout_r),
 .clkout_i (clkout_i),

 .MSBout_r (MSBout_r),

 .MSBout_i(MSBout_i),
 .LSBout_r (LSBout_r),

 .LSBout_i (LSBout_i)

);

 //SPI signals

 initial begin

 // Initialize Inputs
 sclk = 0;

130

 por = 1;

 fsync = 0;

 sdin = 0;

 dataR_from_TRIM = 0;
 A_out_2 = 0;

 clkin = 0;

 din_r = 0;
 din_i = 0;

 start_clock = 0;

 WORD = 0;
 data_read = 0;

 //open file (fire)

 file_LA_csv = $fopen("test_input.csv","w");
 //header

 $fwrite(file_LA_csv,"\"My Bus 1\"\n");

 $fwrite(file_LA_csv,"\"Pod 6[7:0]\"\n");
 $fwrite(file_LA_csv,"*Init Start\n");

 $fwrite(file_LA_csv,"*Init End\n");

 $fwrite(file_LA_csv,"*Main Start\n");

 $fwrite(file_LA_csv,"FF\n");

 // Wait 100 ns for global reset to finish

 #100;
 por = 0;

 #100;

 por = 1;
 #100;

 fsync = 1;

 #100;
 fsync = 0;

 #100;

 //TRIM testi
 comment_tb = "TRIM TEST";

 //yazilacak CMD

 SPI_CB_TASK_24("write", 11'h001, 24'hACABA0);
 //okunacak CMD

 SPI_CB_TASK_24("read", 11'h001, 24'h000000);

 //Fuse blow testi
 comment_tb = "FuseBlow TEST";

 //yazilacak CMD part 1

 SPI_CB_TASK_24("write", 11'h002, 24'h800000);
 //Fuse blow command

 SPI_CB_TASK("fuseblow", 11'h003, 8'h00);

 //yazilacak CMD
 SPI_CB_TASK("write", 11'h003, 8'h00);

 //okunacak CMD

 SPI_CB_TASK_24("read", 11'h003, 24'h000000);

 // RAMDAC yazma testi

 comment_tb = "RAMDAC TEST";
 //enabling RAMDAC

 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd301, 16'h1F00);
 //writing input 1

 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd374, 16'h0001);

 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd375, 16'hA000);
 # 10 clkin = 0;

 # 10 clkin = 1;

 # 10 clkin = 0;
 //writing input 2

 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd374, 16'h0002);
 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd375, 16'hB000);

 # 10 clkin = 0;
 # 10 clkin = 1;

 # 10 clkin = 0;

 //writing input 3
 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd374, 16'h0003);

 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd375, 16'hC000);

 # 10 clkin = 0;

 # 10 clkin = 1;

131

 # 10 clkin = 0;

 //writing input 4

 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd374, 16'h0004);
 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd375, 16'hD000);

 # 10 clkin = 0;
 # 10 clkin = 1;

 # 10 clkin = 0;

 //disabling writing RAMDAC
 //yazilacak CMD

 SPI_CB_TASK_16("write", 11'd301, 16'h0F00);

 //sampling RAMDAC
 //yazilacak CMD

 SPI_CB_TASK("write", 11'd376, 8'h00);

 //yazilacak CMD
 SPI_CB_TASK("write", 11'd377, 8'h00);

 //reading RAMDAC data 1

 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd376, 16'h0000);

 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd377, 16'h0000);
 # 10 clkin = 0;

 # 10 clkin = 1;

 # 10 clkin = 0;
 //sampling RAMDAC

 //yazilacak CMD

 SPI_CB_TASK("write", 11'd376, 8'h00);
 //yazilacak CMD

 SPI_CB_TASK("write", 11'd377, 8'h00);

 //reading RAMDAC data 2
 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd376, 16'h0000);

 //okunacak CMD
 SPI_CB_TASK_16("read", 11'd377, 16'h0000);

 # 10 clkin = 0;

 # 10 clkin = 1;
 # 10 clkin = 0;

 //sampling RAMDAC

 //yazilacak CMD
 SPI_CB_TASK("write", 11'd376, 8'h00);

 //yazilacak CMD

 SPI_CB_TASK("write", 11'd377, 8'h00);
 //reading RAMDAC data 3

 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd376, 16'h0000);
 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd377, 16'h0000);

 # 10 clkin = 0;
 # 10 clkin = 1;

 # 10 clkin = 0;

 //sampling RAMDAC
 //yazilacak CMD

 SPI_CB_TASK("write", 11'd376, 8'h00);

 //yazilacak CMD

 SPI_CB_TASK("write", 11'd377, 8'h00);

 //reading RAMDAC data 4
 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd376, 16'h0000);

 //okunacak CMD
 SPI_CB_TASK_16("read", 11'd377, 16'h0000);

 # 10 clkin = 0;

 # 10 clkin = 1;
 # 10 clkin = 0;

 //bekliyoruz

 #1000
 //open file (fire)

 file_sim_input = $fopen("sim_input.txt","r");

 file_sim_sonuc = $fopen("sim_sonuc.m","w");
 $fwrite(file_sim_sonuc,"x = NaN;\n");

 $fwrite(file_sim_sonuc,"X = NaN;\n");

 $fwrite(file_sim_sonuc,"TESTout=[\n");

 #100;

 //por before filter operation (for clock equalization)

 #100;

132

 por = 0;

 #100;

 por = 1;

 #100;
 //end of por

 // mode yazma testi

 comment_tb = "Mode TEST";
 SPI_CB_TASK_16("write", 11'd301, 16'h0300); //0300: 8x 0000: no int.

 //Suzgec Testi

 comment_tb = "Filter TEST";
 start_clock = 1;

 for(j=0;j<256;j=j+1)begin

 i = $fscanf(file_sim_input,"%d\n",din_r);

 #(period); // no.int: period/8 2x: period/4
 4x: period/2 8x: period

 end

 #100 $fwrite(file_sim_sonuc,"]';");

 $fclose(file_sim_input);

 $fclose(file_sim_sonuc);
 $stop;

 //reading Filter outputs

 comment_tb = "FilterOut TEST";
 //sampling Filter 1 outputs

 //yazilacak CMD

 SPI_CB_TASK("write", 11'd378, 8'h00);
 //yazilacak CMD

 SPI_CB_TASK("write", 11'd379, 8'h00);

 //reading Filter 1 outputs
 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd378, 16'h0000);

 //okunacak CMD
 SPI_CB_TASK_16("read", 11'd379, 16'h0000);

 //sampling Filter 2 outputs

 //yazilacak CMD
 SPI_CB_TASK("write", 11'd380, 8'h00);

 //yazilacak CMD

 SPI_CB_TASK("write", 11'd381, 8'h00);
 //reading Filter 2 outputs

 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd380, 16'h0000);
 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd381, 16'h0000);

 //sampling Filter 3 outputs
 //yazilacak CMD

 SPI_CB_TASK("write", 11'd382, 8'h00);

 //yazilacak CMD
 SPI_CB_TASK("write", 11'd383, 8'h00);

 //reading Filter 3 outputs

 //okunacak CMD
 SPI_CB_TASK_16("read", 11'd382, 16'h0000);

 //okunacak CMD

 SPI_CB_TASK_16("read", 11'd383, 16'h0000);

 $fwrite(file_LA_csv,"*Main End\n");

 $fclose(file_LA_csv);
 $stop;

 end

 initial begin
 @(posedge start_clock)

 repeat(512*16)begin

 #(period/16) clkin = ~clkin;
 end

 end

 initial begin
 Test_MSBbin = 0;

 TESTout = 0;

 end
 //Ther2bin converter

 always @ (negedge clkin) begin

 #(period/8)

 Test_MSBbin = 0;

 for(k=0;k<=30;k=k+1)begin

 Test_MSBbin = Test_MSBbin + MSBout_r[k];

133

 end

 TESTout = {Test_MSBbin, LSBout_r};

 //ekledik

 $fwrite(file_sim_sonuc,"%d\n",TESTout);
 //ekledik

 end

 task SPI_CB_TASK_16;
 input [(12*8)-1:0] command_string;

 input [10:0] addr;

 input [15:0] data;
 begin

 //MSB part

 SPI_CB_TASK(command_string, addr, data[15:8]);
 //LSB part

 SPI_CB_TASK(command_string, addr, data[7:0]);

 end
 endtask

 task SPI_CB_TASK_24;

 input [(12*8)-1:0] command_string;

 input [10:0] addr;

 input [23:0] data;

 begin
 //MSB part

 SPI_CB_TASK(command_string, addr, data[23:16]);

 //MID part
 SPI_CB_TASK(command_string, addr, data[15:8]);

 //LSB part

 SPI_CB_TASK(command_string, addr, data[7:0]);
 end

 endtask

 task SPI_CB_TASK;
 input [(12*8)-1:0] command_string;

 input [10:0] addr;

 input [7:0] data;
 begin

 case(command_string)

 "write" : begin
 comment = "write";

 WORD[23:19] = 5'b00100;

 end
 "read" : begin

 comment = "read";

 WORD[23:19] = 5'b00101;
 end

 "fuseblow" : begin

 comment = "fuseblow";
 WORD[23:19] = 5'b00110;

 end

 "reserved" : begin
 comment = "reserved";

 WORD[23:19] = 5'b00000;

 end
 endcase

 WORD[18:8] = addr;

 WORD[7:0] = data;

 for (i=0; i<24; i = i+1)begin

 sdin = WORD[23-i];
 #100;

 sclk = 1;

 #100;
 sclk = 0;

 if((i >= 16) && (command_string == "read")) data_read[23-i] = sdout;

 end

 #100;

 fsync = 1;
 #100;

 fsync = 0;

 #100;
 comment = "done";

 end

 endtask

endmodule

134

V.7. Verilog Code of Clock Divider

`timescale 1ns/1ps

module ClkDiv4Suzgec(clk_in,

 por,
 mod_mode,

 int_mode,

 clk4,
 clk3,

 clk2,

 clk1,
 clk0

);

 input clk_in;
 input por;

 input mod_mode;

 input [1:0]int_mode;

 output clk4;

 output reg clk3;

 output reg clk2;
 output reg clk1;

 output reg clk0;

 reg pre_clk3;

 reg pre_clk2;

 reg pre_clk1;
 reg pre_clk0;

 reg FF3;
 reg FF21;

 reg FF22;

 reg FF11;
 reg FF12;

 reg FF13;

 reg FF14;
 reg FF01;

 reg FF02;

 reg FF03;
 reg FF04;

 reg FF05;

 reg FF06;
 reg FF07;

 reg FF08;

 assign clk4 = clk_in;

 //output muxes without reg
 always@(*)begin

 if(mod_mode == 0)begin //normal mode

 clk3 = clk_in;
 end

 else begin //PM or RT mode

 clk3 = pre_clk3;
 end

 end

 //output muxes with reg (mod_mode)
 always@(posedge clk_in or negedge por)begin

 if(por == 0)begin

 pre_clk3 <= 0;
 pre_clk2 <= 0;

 pre_clk1 <= 0;

 pre_clk0 <= 0;
 end

 else begin

 pre_clk3 <= FF3;
 if(mod_mode == 0)begin //normal mode

 pre_clk2 <= FF3;

 pre_clk1 <= FF22;
 pre_clk0 <= FF14;

 end

 else begin //PM or RT mode

 pre_clk2 <= ~FF21;

 pre_clk1 <= ~FF13;

 pre_clk0 <= ~FF07;
 end

135

 end

 end

 //output muxes with reg (int_mode)

 always@(posedge clk_in or negedge por)begin
 if(por == 0)begin

 clk2 <= 0;

 clk1 <= 0;
 clk0 <= 0;

 end

 else begin
 case(int_mode)

 0 : begin //no int

 clk2 <= 0;
 clk1 <= 0;

 clk0 <= 0;

 end
 1 : begin //2x int

 clk2 <= pre_clk2;

 clk1 <= 0;

 clk0 <= 0;

 end

 2 : begin //2x int
 clk2 <= pre_clk2;

 clk1 <= pre_clk1;

 clk0 <= 0;
 end

 3 : begin //2x int

 clk2 <= pre_clk2;
 clk1 <= pre_clk1;

 clk0 <= pre_clk0;

 end
 endcase

 end

 end
 // clk/2 generation

 always@(posedge clk_in or negedge por)begin

 if(por == 0)begin
 FF3 <= 0;

 end

 else begin
 FF3 <= ~FF3;

 end

 end
 // clk/4 generation

 always@(posedge clk_in or negedge por)begin

 if(por == 0)begin
 FF21 <= 0;

 FF22 <= 0;

 end
 else begin

 FF21 <= FF22;

 FF22 <= ~FF21;
 end

 end

 // clk/8 generation

 always@(posedge clk_in or negedge por)begin

 if(por == 0)begin
 FF11 <= 0;

 FF12 <= 0;

 FF13 <= 0;
 FF14 <= 0;

 end

 else begin
 FF11 <= FF14;

 FF12 <= FF11;

 FF13 <= FF12;
 FF14 <= ~FF13;

 end

 end
 // clk/16 generation

 always@(posedge clk_in or negedge por)begin

 if(por == 0)begin

 FF01 <= 0;

 FF02 <= 0;

 FF03 <= 0;

136

 FF04 <= 0;

 FF05 <= 0;

 FF06 <= 0;

 FF07 <= 0;
 FF08 <= 0;

 end

 else begin
 FF01 <= FF08;

 FF02 <= FF01;

 FF03 <= FF02;
 FF04 <= FF03;

 FF05 <= FF04;

 FF06 <= FF05;
 FF07 <= FF06;

 FF08 <= ~FF07;

 end
 end

endmodule

137

V.8. Verilog Code of SPI_CB

`timescale 1ns / 1ps

module SPI_CB(

 //inputs
 sclk,

 por,

 fsync,
 sdin,

 dataR,

 //outputs

 sdout,

 resetRegOut,
 sdoutEn,

 write,

 dataW,

 CE,

 BlowFuse);

parameter L_ARRAY = 512; // 512Adres * 16 bit = 1024 adres * 8 bit

parameter L_ADDR = 9; //equation must be satisfied: 2**L_ADDR = L_ARRAY

parameter L_DATA = 8; //data length comes after command & address
integer i;

input sclk; //saat işareti girişi.
input por; //power on reset.

input fsync; //fsync kontrol işareti girişi.
input sdin; //seri data girişi (user'dan)

input [0:L_ARRAY-1] dataR; //adrese ozel okunan data (cip icinden)

output sdout; //seri data çıkışı (user'a)
output resetRegOut;

output reg sdoutEn;

output reg write; //ortak yazma istegi
output dataW; //ortak seri data cikisi (cip icine)

output reg [0:L_ARRAY-1] CE; //adrese ozel enable

output reg BlowFuse;

wire reset; //reset işareti

reg [5:0] counter; //counter.
reg [4:0] Command;

reg [L_ADDR-1:0] Addr;

reg resetReg; //Reset Registers commandi geldiginde iner (0 enable)
reg pre_CE;

assign reset = por & (~fsync);
assign dataW = sdin;

assign sdout = dataR[Addr];

assign resetRegOut = por & resetReg;

//command'e gore yapilacak islem

always @ (posedge sclk or negedge por) begin
 if(por == 0) begin

 resetReg <= 1;

 sdoutEn <= 1;
 BlowFuse <= 0;

 write <= 0;

 end
 else begin

 if(counter == 15)begin

 //if(Command == 5'b00000)
 //Noop

 if(Command == 5'b00001) resetReg <= 0; else resetReg <= 1;

 //Reset DAC registers
 if(Command == 5'b00010) sdoutEn <= 1;

 //Enable sdout

 if(Command == 5'b00011) sdoutEn <= 0;
 //Hi-Z sdout

 //if(Command == 5'b00111)

 //Reserved for now

 end

 if(Command == 5'b00100) write <= 1; else write <= 0;

 //write data from serial input or parallel fuse data to registers

138

 if(Command == 5'b00110) BlowFuse <= 1; else BlowFuse <= 0;

 //Blow Fuse

 end

end

//fsync 0 iken 24 clk boyunca sdin'den data alinip SR'a yazilir.

always @ (posedge sclk or negedge por) begin
 if(por == 0) begin

 Command <= 0;

 Addr <= 0;
 end

 else begin

 if (counter < 5) begin //ilk 5 clk command
 Command <= {Command[3:0], sdin};

 end

 else if(counter < 16)begin //sonraki 11 clk adres
 Addr <= {Addr[L_ADDR-2:0], sdin};

 end

 end

end

//
always @ (posedge sclk or negedge reset) begin

 if(reset == 0) begin

 pre_CE <= 0;
 end

 else begin

 if(counter == 15)begin
 //command'in son clk'unda

 if((Command == 5'b00100) || (Command == 5'b00101) || (Command == 5'b00110))begin

 // yaz, oku ya da yak demisse
 pre_CE <= 1;

 end

 else begin
 pre_CE <= 0;

 end

 end
 else if(counter == (15 + L_DATA))begin

 //son clk'ta //data bit sayisi artsa bunu da arttiricaz

 pre_CE <= 0;
 end

 end

end

//CE demux

always@(*)begin
 for(i=0; i<L_ARRAY; i=i+1)begin

 if(i == Addr)begin

 CE[i] = pre_CE; // data bekleniyor
 end

 else begin

 CE[i] = 0;
 end

 end

end

//fsync 0 iken her clk'ta counter 1 arttirilir
always @ (posedge sclk or negedge reset) begin //reset olmasinin sebebi fsync 1 oldugunda clk olmadan

sifirlamak istememiz

 if(reset == 0) begin
 counter <= 0;

 end

 else begin
 if(counter < (16 + L_DATA))begin //data bit sayisi artarsa bunu da arttiricaz

 counter <= counter + 1;

 end
 end

end

endmodule

139

V.9. Verilog Code of RAMDAC

`timescale 1ns / 1ps

module RAMDAC_BANK(sclk,

 SRclk_r,
 resetRegOut,

 dataW,

 write,
 RAMDAC_w_enable,

 CE_374,

 CE_376,
 dataR_374,

 dataR_376,

 dout_r, //data to
 clk_out

);

input sclk;

input SRclk_r;

input resetRegOut;
input dataW;

input write;

input RAMDAC_w_enable;
input CE_374;

input CE_376;

output dataR_374;
output dataR_376;

output [15:0]dout_r;
output clk_out;

wire [15:0] din_r, din_i;
assign clk_out = SRclk_r;

FILTER_REG reg374(
.sclk (sclk),

.por (resetRegOut),

.dataW (dataW),

.write (write),

.CE (CE_374),

.dataR (dataR_374),

.pardout (din_r)

);

RAMDAC_SR ramdac_sr(
.clk_r (SRclk_r),

.resetRegOut (resetRegOut),

.din_r (din_r),

.RAMDAC_w_enable (RAMDAC_w_enable),

.dout_r (dout_r)

);
FILTER_END reg376(

.sclk (sclk),

.por (resetRegOut),

.doutF (dout_r),

.write (write),

.CE (CE_376),

.dataR (dataR_376)

);

endmodule

`timescale 1ns / 1ps

module RAMDAC_SR(

 clk_r,

 resetRegOut,
 din_r,

 RAMDAC_w_enable,

 dout_r
);

input clk_r;

input resetRegOut;

input [15:0]din_r;

input RAMDAC_w_enable;
output [15:0] dout_r;

140

integer i;

parameter L_RAMDAC = 128; //default can be 4 or 128

reg [15:0]RAMDAC_r[0:L_RAMDAC-1];
assign dout_r = RAMDAC_r[L_RAMDAC-1];

//real part
always@(posedge clk_r, negedge resetRegOut)

begin

 if(resetRegOut == 0)begin
 for(i=0; i<=L_RAMDAC-1; i=i+1)begin

 RAMDAC_r[i] <= 0;

 end
 end

 else begin

 if(RAMDAC_w_enable == 1)begin
 RAMDAC_r[0] <= din_r;

 end

 else begin

 RAMDAC_r[0] <= RAMDAC_r[L_RAMDAC-1];

 end

 for(i=1; i<=L_RAMDAC-1; i=i+1)begin
 RAMDAC_r[i] <= RAMDAC_r[i-1];

 end

 end
end

endmodule

141

V.10. Verilog Code of Binary to Thermometer Encode with Modulation

`timescale 1ns / 1ps

module Bin2TherWmod (clk_RAMDAC, // RAMDAC

 clk_suzgec, // suzgec
 clk4,

 por,

 mode,
 RAMDAC_enable,

 data_from_RAMDAC,

 data_from_suzgec,
 MSBout,

 LSBout,

 clk_out
);

 input clk_RAMDAC;

 input clk_suzgec;

 input clk4;

 input por;

 input [1:0] mode; //00: normal 01: normal 10: RZ 11: mod
 input RAMDAC_enable;

 input [15:0] data_from_RAMDAC;

 input [15:0] data_from_suzgec;
 output [30:0] MSBout;

 output [10:0] LSBout;

 output clk_out;

 wire clk3;
 reg [15:0] int_data_RAMDAC;

 reg [15:0] int_data_suzgec;

 reg [4:0] int_MSBin;
 reg [30:0] Ther;

 reg [30:0] PMTher;

 reg [30:0] RZTher;
 reg [30:0] mux_1_out;

 reg [30:0] mux_2_out;

 reg [10:0] int_LSBin;
 reg [10:0] LSB_sev_1;

 reg [10:0] PMLSB;

 reg [10:0] RZLSB;
 reg [10:0] mux_1_LSBout;

 reg [10:0] mux_2_LSBout;

 reg bir_say;
 reg bir_say_2;

 reg bir_say_3;

 integer i;

 assign clk_out = clk4;
 assign MSBout = mux_2_out;

 assign LSBout = mux_2_LSBout;

 assign clk3 = RAMDAC_enable ? clk_RAMDAC : clk_suzgec;

 //giris orneklenemsi

 always@(posedge clk3 or negedge por)begin
 if(por == 0)begin

 int_data_RAMDAC <= 0;

 int_data_suzgec <= 0;
 end

 else begin

 int_data_RAMDAC <= data_from_RAMDAC;
 int_data_suzgec <= data_from_suzgec;

 end

 end
 //input muxes

 always@(posedge clk3 or negedge por)begin

 if(por == 0)begin
 int_MSBin <= 0;

 int_LSBin <= 0;

 end

 else begin

 if(RAMDAC_enable == 1)begin

 //RAMDAC_r_enable
 int_MSBin <= {~int_data_RAMDAC[15], int_data_RAMDAC[14:11]};

142

 int_LSBin <= int_data_RAMDAC[10:0];

 end

 else begin

 int_MSBin <= {~int_data_suzgec[15], int_data_suzgec[14:11]};
 int_LSBin <= int_data_suzgec[10:0];

 end

 end
 end

 //Thermometer converter MSB

 always@(posedge clk3 or negedge por)begin
 if(por == 0)begin

 Ther <= 0;

 end
 else begin

 for(i=0;i<=30;i=i+1)begin

 if(i < int_MSBin)begin
 Ther[i] <= 1;

 end

 else begin

 Ther[i] <= 0;

 end

 end
 end

 end

 //plus minus thermometer MSB
 always@(posedge clk4 or negedge por)begin

 if(por == 0)begin

 PMTher <= 0;
 end

 else begin

 if(bir_say == 0)begin
 PMTher <= Ther;

 end

 else begin
 PMTher <= ~Ther;

 end

 end
 end

 //RTZ MSB

 always@(posedge clk4 or negedge por)begin
 if(por == 0)begin

 RZTher <= 0;

 end
 else begin

 if(bir_say_2 == 0)begin

 RZTher <= Ther;
 end

 else begin

 RZTher <= {16'hFFFF, 15'h0000};
 end

 end

 end
 //Mux 1 MSB

 always@(posedge clk4, negedge por)begin

 if(por == 0)begin

 mux_1_out <= 0;

 end
 else begin

 if(mode[0] == 0)begin

 mux_1_out <= RZTher; //zero mode
 end

 else begin

 mux_1_out <= PMTher; //mod mode
 end

 end

 end
 //Mux 2 MSB

 always@(posedge clk4, negedge por)begin

 if(por == 0)begin
 mux_2_out <= 0;

 end

 else begin

 if(mode[1] == 0)begin //normal mode

 mux_2_out <= Ther;

 end

143

 else begin //zero or mod mode

 mux_2_out <= mux_1_out;

 end

 end
 end

 //Delay LSB 1

 always@(posedge clk3 or negedge por)begin
 if(por == 0)begin

 LSB_sev_1 <= 0;

 end
 else begin

 LSB_sev_1 <= int_LSBin;

 end
 end

 //plus minus LSB

 always@(posedge clk4 or negedge por)begin
 if(por == 0)begin

 PMLSB <= 0;

 end

 else begin

 if(bir_say_3 == 0)begin

 PMLSB <= LSB_sev_1;
 end

 else begin

 PMLSB <= ~LSB_sev_1;
 end

 end

 end
 //RTZ LSB

 always@(posedge clk4 or negedge por)begin

 if(por == 0)begin
 RZLSB <= 0;

 end

 else begin
 if(bir_say_3 == 0)begin

 RZLSB <= LSB_sev_1;

 end
 else begin

 RZLSB <= 0;

 end
 end

 end

 //Mux 1 LSB
 always@(posedge clk4, negedge por)begin

 if(por == 0)begin

 mux_1_LSBout <= 0;
 end

 else begin

 if(mode[0] == 0)begin
 mux_1_LSBout <= RZLSB; //zero mode

 end

 else begin
 mux_1_LSBout <= PMLSB; //mod mode

 end

 end

 end

 //Mux 2 LSB
 always@(posedge clk4, negedge por)begin

 if(por == 0)begin

 mux_2_LSBout <= 0;
 end

 else begin

 if(mode[1] == 0)begin //normal mode
 mux_2_LSBout <= LSB_sev_1;

 end

 else begin //zero or mod mode
 mux_2_LSBout <= mux_1_LSBout;

 end

 end
 end

 //bire kadar sayan sayici

 always@(posedge clk4, negedge por)begin

 if(por == 0)begin

 bir_say <= 0;

 end

144

 else begin

 bir_say <= ~bir_say;

 end

 end
 //bire kadar sayan sayici 2

 always@(posedge clk4, negedge por)begin

 if(por == 0)begin
 bir_say_2 <= 0;

 end

 else begin
 bir_say_2 <= ~bir_say_2;

 end

 end
 //bire kadar sayan sayici 3

 always@(posedge clk4, negedge por)begin

 if(por == 0)begin
 bir_say_3 <= 0;

 end

 else begin

 bir_say_3 <= ~bir_say_3;

 end

 end
endmodule

145

CURRICULUM VITAE

Name Surname: Gürer Özbek

Place and Date of Birth: Istanbul, 19.09.1987

Address: Kültür district, Sevgi street, A5/5, Ulus, Istanbul

E-Mail: ozbekgu@itu.edu.tr

B.Sc. 1: FPGA Controlled Logistics Robot (ITU, 2009)

B.Sc. 2: Direction of Arrival Estimation of Acoustic Signals (ITU, 2010)

Professional Experience and Rewards:

 R.A. and T.A. – ITU Faculty of Electrical and Electronics Eng. (11/2010-…)

 Junior Designer – ITU VLSI LABs. (06/2009-09/2010)

 Intern – Aselsan REHİS System Engineering (08/2008-09/2008)

 Intern – ST Microelectronics Istanbul Office (06/2008 – 08/2008)

 Intern – ITU DSP LAB (06/2007-07/2007)

 1
st
 Prize Award from ITU Faculty of Electrical and Electronics Eng.

List of Publications:

 Aksin D., Ozbek G. and Maloberti F.: Multi-Rate Segmented Time-

Interleaved Current Steering DAC with Unity-Elements Sharing. IEEE

International Symposium on Circuits and Systems, ISCAS 2010, Paris, May

30-June 2 2010, pp. 3353-3356.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

 Ozbek G., Karaali Ö.K. and Küyel T.: Verification of an Interpolation and

Modulation System Used at Digital to Analog Converters. Symposium on

Embedded Systems and Applications, GÖMSİS 2012, November 29-30, 2012

Istanbul, Turkey

