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DIGITAL INTERPOLATION AND MODULATION SYSTEM DESIGN FOR 

COMMUNICATION DACS 

SUMMARY 

High speed digital to analog converters (DACs) are used in applications such as 

cellular base stations or digital TV broadcasting. In such systems, various digital 

signal processing blocks are also needed. Interpolation, modulation and channel 

equalization can be given as examples of such digital functionality. 

Implementing digital signal processing blocks with the DAC on the same die has 

certain advantages. On chip oversampling and digital interpolation filtering allows 

receiving digital data at lower rates. Power hungry high-speed interfaces like low 

voltage differential signaling (LVDS) or current mode logic (CML) are no longer 

needed. Furthermore, trace count on the PCB can be reduced. 

In this work, design and verification of a digital interpolation and modulation block 

used in high-speed communication DACs is explained in detail. 

Interpolation and modulation features of the DACs used in the industry are examined 

based on their datasheet specifications.  

For the design of the interpolation and modulation system, half-band finite impulse 

response (FIR) filter topology is used. The number of filter coefficients can be 

reduced and operational speed can be higher for the same performance level with 

respect to a conventional FIR filter. 

Based on specifications in existing DAC datasheets, an interpolation and modulation 

system is designed with 85 dB spurious free dynamic range (SFDR) performance. 

Then, the design is implemented with LFoundry 0.15 μm CMOS technology. 

Functionality is tested with post-place-and-route (PAR) simulations. Such digital 

systems with 85 dB SFDR are used with existing DAC designs because the DAC, not 

the digital filter limits the SFDR performance. Power is traded-off with SFDR in 

digital filter designs. 

As market demands DACs with higher SFDR performance, interpolation and 

modulation blocks with higher SFDR must support next generation DACs with better 

SFDR. To support a 90 dB DAC, it is necessary for the digital filter to have 96 dB or 

better SFDR. 

A new interpolation and modulation block, which can support a DAC with 90 dB 

SFDR is designed. Filter coefficients are calculated with MATLAB‟s fdatool. 16-bit 

design is modeled in MATLAB and in Verilog. The design has a user selectable 

interpolation from 2x to 8x and 41 operation modes in total, including Hilbert 

transformers. With these interpolation and modulation modes, input signal can be 

pushed to any band in the output spectrum without distortion. Simulations show that 

the new block has 99 dB SFDR and no significant ripple or attenuation in the %80 of 



xx 

 

the Nyquist band and the signal to noise ratio (SNR) is 93.4 dB over full Nyquist 

band.  

New design is synthesized and PAR‟ed with TSMC 0.18 μm CMOS technology, 

since the LFoundry Fab. has moved from Germany to France with uncertain future. 

Area of the TSMC design is 1.2 mm x 3 mm and the clock speed is 1.2 GHz. The 

design consumes 1.826 W at 1.2 GHz for two channels.  

Several digital additions like a serial peripheral interface (SPI) block, a control block, 

a RAMDAC and a clock divider block are included in the design. Thus, the whole 

digital sub-section of a communication DAC is completed.  

For verification, the system is embedded to a Virtex 5 field programmable gate array 

(FPGA). Data is driven by a pattern generator and captured by a logic analyzer. A 

test methodology that matches the simulation inputs to pattern generator inputs is 

applied.  A program written in C language then compares the outputs of the 

simulation to logic analyzer capture data. The bit error rate is found to be zero. 

Finally, the complete digital system is mixed mode co-simulated with a DAC taken 

from a different work. Simulations are done with Cadence AMS simulator which 

supports analog and digital co-simulation. It is shown that the effect of the digital 

system on SFDR is insignificant with respect to the effects of the DAC, especially 

with high output frequencies.  
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HABERLEġME S/A DÖNÜġTÜRÜCÜLERĠ ĠÇĠN SAYISAL ARA 

DEĞERLEME VE MODÜLASYON SĠSTEMĠ TASARIMI 

ÖZET 

İşaret işlemenin sayısal ortamda yapılmasının daha avantajlı olması, işaret 

zincirlerine A/S ve S/A dönüştürücüleri eklemiştir. Veri haberleşmesi ve işlenmesi 

alanlarında önemli yer tutan S/A dönüştürücülerin bazı haberleşme uygulamaları için 

yüksek çözünürlükte ve yüksek hızda olmaları beklenmektedir.  

Yüksek hızlı S/A dönüştürücüler, baz istasyonlarından sayısal televizyon yayın 

sistemlerine kadar pek çok alanda kullanılmaktadır. Bu sistemlerde kullanılan S/A 

dönüştürücülerle beraber çeşitli sayısal işaret işleme işlemleri de yapılmaktadır. 

Bunlara örnek olarak ara değerleme, modülasyon, kanal dengeleme gibi işlemler 

verilebilir.  

Sayısal işaret işleme bloklarının S/A dönüştürücü ile aynı kırmık içerisinde 

üretilmesi, günümüzde endüstrinin yöneldiği bir yaklaşımdır. Ara değerleme 

işleminin kırmık içerisinde yapılması, kırmık içerisine daha düşük hızlarda veri 

alınmasını sağlar. Bu sayede kırmık girişlerinde LVDS ve CML gibi karmaşık ve 

yüksek güç tüketimli yapılar kullanılmasına gerek kalmaz. Ayrıca gerek kırmık içi, 

gerekse de PCB üzerindeki veri yolları daha esnek şekilde tasarlanabilir. 

Bu çalışmada, yüksek hızlı haberleşme sistemlerindeki S/A dönüştürücü 

kırmıklarında kullanılan bir sayısal ara değerleme ve modülasyon sisteminin tasarım 

süreci işlenmiştir.  

Çalışma kapsamında, endüstride kullanılan S/A dönüştürücü kırmıklarının sayısal ara 

değerleme ve modülasyon işlevleri katalog bilgileri üzerinden incelenmiştir.  

Ara değerleme ve modülasyon sisteminin tasarımında yarım bant FIR süzgeçleri 

kullanılmıştır. Bu sayede, aynı seçicilik için gereken katsayı adedi yarıya düşerken 

sistemin büyük bir bölümü çıkıştaki hızın yarısı ile çalıştırılabilmektedir. Bu özellik 

sayesinde hem güç tüketimi azaltılmakta, hem de daha yüksek çalışma frekanslarına 

sahip sistemler üretilebilmektedir.  

Elde edilen bilgiler ışığında tipik bir ara değerleme ve modülasyon sistemi 

tasarlanmıştır. Tasarım sürecinde ilk olarak MATLAB yardımıyla parametreler elde 

edilmiştir. Sistemin oluşturulan MATLAB modelinde 3 süzgeç yer almaktadır. Bu 

süzgeçlerin giriş çözünürlükleri 16-bit olarak seçilmiştir. Süzgeçler sırasıyla 15, 12 

ve 13 bitlik 14, 6 ve 4 katsayı içermektedir.  

Yapılan benzetimlerde süzgeçlerin 88, 88 ve 86 dB SFDR‟a sahip oldukları 

görülmüştür. Süzgeçler birlikte kullanıldığında yapılan benzetimlerde ise 85 dB 

SFDR elde edilmiştir. Ayrıca, gerçeklenen 16 karmaşık modülasyon durumu ile giriş 

işaret bandının çıkışta farklı frekanslara ötelenmesi sağlanmıştır. Bu durumlar, 

spektrumda işaretin ötelenemeyeceği bir bölge kalmayacak şekilde seçilmiştir. 

Modülasyon durumlarının tamamında 8x ara değerleme yapılmaktadır. 
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Süzgeçlerin performansı anlaşıldıktan sonra LFoundry 0.15 μm CMOS teknolojisi 

kullanılarak sentez ve PAR işlemleri yapılmıştır. PAR sonrası yapılan benzetimlerle 

sistemin doğru çalıştığı kontrol edilmiştir.   

SFDR performansı 85 dB olan böyle bir sistem, ancak kendisinden daha kötü 

performansa sahip bir S/A dönüştürücü ile çalıştığında anlamlı olmaktadır. 

Teknolojinin gelişimi ve pazarın istekleri ile birlikte daha yüksek performanslı S/A 

dönüştürücülerin üretilmesi yoluna gidilmektedir. Bu da daha yüksek SFDR 

performanslı ara değerleme ve modülasyon sistemlerine ihtiyaç duyulacağı anlamına 

gelmektedir. SFDR‟ı 90 dB olan böyle bir S/A dönüştürücü ile çalışabilecek sayısal 

sistemin performansının da en az 95 dB olması gerektiği açıktır.  

Gelecekte daha yüksek SFDR performanslı sistemlere ihtiyaç duyulacağından, 

çalışmanın sonraki kısımlarında 90 dB SFDR gibi daha yüksek performanslı bir S/A 

dönüştürücü ile beraber çalışabilecek bir tasarım yapılmıştır. Bu tasarım için gereken 

parametreler MATLAB‟in fdatool aracı ile elde edilmiştir. 16 bitlik giriş ve çıkışlara 

sahip bu tasarım için MATLAB ve Verilog modelleri oluşturulmuştur. Ayrıca, 

çalışma durumları zenginleştirilerek seçilebilir 41 ara değerleme ve modülasyon 

durumu gerçeklenmiştir. Bu yeni durumlara örnek olarak 8x, 4x ve 2x ara değerleme, 

her bir ara değerleme durumuna karşı gelen modülasyon durumları verilebilir. Bir 

önceki tasarımda olduğu gibi bu tasarımda da giriş işareti, çıkışta istenen banda 

ötelenebilmektedir. 

Yine 3 süzgecin bulunduğu sistemde süzgeçler sırasıyla 18, 16 ve 16 bitlik 16, 6 ve 6 

adet katsayı içermektedirler. Süzgeçlerin ölçülen SFDR değerleri 98.3, 99.7 ve 99.7 

dB‟dir. Ayrıca ilgilenilen geçirme bandında (Nyquist bandının %80‟i) zayıflamanın 

0 dB olduğu görülmüştür. Süzgeçlerin geçirme bandı dalgalılıkları da 

önemsenmeyecek derecede düşük ölçülmüştür. Süzgeçlerin SNR değerleri ise 

sırasıyla 95.4, 94.6 ve 94.6 dB olarak hesaplanmıştır. 

Tasarımın TSMC 0.18 μm CMOS teknolojisi ile sentezi ve PAR‟ı yapılmıştır. PAR 

sonrası yapılan benzetimlerde 99 dB SFDR elde edilmiştir. Bu benzetimlerde ayrıca 

süzgeçlerin grup gecikmelerine de bakılmış, sırasıyla 18, 10 ve 12 saat işareti 

oldukları görülmüştür. Tasarımın kapladığı alan 1.2mm x 3mm olup 1.2GHz‟lik saat 

işareti ile çalışabilmektedir. Bu hızla ortalama 1.826W güç harcamaktadır.  

Çalışma kapsamında ayrıca normalde tümdevre için yapılan tasarımın donanım 

testleri de yapılmıştır. Bu donanım testlerinde tasarımı anlatılan sayısal ara 

değerleme ve modülasyon biriminin yanısıra bir haberleşme S/A dönüştürücüsü 

kırmığında bulunan sayısal arayüz, bellek döngüsü, saat işareti bölücüsü gibi 

çevresel birimlerin de bulunduğu komple bir sayısal sistem kullanılmıştır. Donanım 

testleri için sayısal sistem, Xilinx Virtex 5 FPGA‟sına gömülmüştür. FPGA‟nın 

sürülmesi Agilent 16822A sayısal veri üreteci ile yapılmış, çıkışları da Agilent 

16802A lojik analizörü ile kaydedilmiştir. Testlerin güvenilir şekilde yapılabilmesi 

için benzetim ile sayısal veri üreteci girişlerinin tamamen aynı olmasını sağlayacak 

bir test metodu kullanılmıştır. Ayrıca benzetim sonuçları ile donanım testleri 

sonuçlarının aynılığını gösterebilmek için C diliyle yazılmış bir karşılaştırma 

programı kullanılmıştır. Program, benzetim ve donanım testi çıktılarını 

okuyabilmekte ve her bir andaki çıkışları tek tek karşılaştırabilmektedir. Bir farklılık 

olması durumunda hangi anda ve hangi çıkışlarda hata olduğunu söylemek de yine 

programın görevleri arasındandır.  
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Tezde son olarak, tasarlanan sayısal sistem, tasarımı devam eden yüksek 

performanslı bir S/A dönüştürücü ile beraber çalıştırılmıştır. Bunun için Cadence‟ın 

AMS simülatörü kullanılmıştır. Bu simülatör; Verilog diliyle tanımlanmış sayısal bir 

sistemin, analog olarak tasarlanmış bir S/A dönüştürücüyle beraber çalıştırılmasını 

desteklemektedir. Benzetimde, lojik 0 ve 1 olarak verilen sayısal işaretlerin analoğa 

dönüştürülmesi ve tersi işlemlerinin gerçekleştirilmesi için, üretim teknolojisi ile 

uyumlu bir bağlantı kuralları dosyası kullanılmıştır. Elde edilen sonuçlarda, sayısal 

sistemin, S/A dönüştürücü performansını kötüleştirici yönde etkilemediği 

gözlenmiştir. 

Çalışmanın bütününde işlenen süreç, yüksek hızlı S/A dönüştürücüler için sayısal 

işaret işleme sistemi tasarımı konusunda kaynak olarak kullanılabilecek zenginlikte 

anlatılmıştır. Çalışmanın, yüksek hızlı sayısal FIR süzgeçlerin kullanıldığı diğer 

uygulamalar için de yararlı olacağı düşünülmektedir.  
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1. INTRODUCTION 

1.1. Ideal DAC Operation and Output  

A Digital to Analog Converter (DAC) is an electronic device that converts a digital 

data sequence to a continuous time signal. From a signal processing perspective, a 

basic DAC operation can be split into two stages: a transcoding stage, where digital 

input is converted into an equivalent discrete time signal, and a reconstruction stage 

where analog signal is generated from discrete time signal [1]. Reconstruction stage 

also contains two subsections: a sample&hold and an optional reconstruction filter. 

Complete scheme of an ideal DAC is in Figure 1.1. 

010 110

Transcoder Reconstructor

Sample

& Hold

Recons. Filter

(Opt.)

 

Figure 1.1 : Ideal DAC operation. 

In the transcoder stage, bit sequences transform to corresponding discrete time 

values. During the reconstruction phase, sampled discrete time values are changed to 

continuous time via a sample-and-hold action and the output of the sample&hold can 

then be smoothed by an optional reconstruction filter. In practice, the reconstruction 

filter is implemented in analog. Output of an ideal DAC is in Figure 1.2. 

Staircase behavior caused by sample&hold in Figure 1.2(a) results high frequency 

components seen in (b). Moreover, power of the high frequency components fade 

away like a sinc function, which is the frequency domain equivalent of the time 

domain sample&hold. It also can be seen from (b) that, higher sampling frequencies 

move undesired components away from the desired signal and relax the design 

specifications of the reconstruction filter. That effect will be discussed in Section 1.4. 
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          (a)            (b) 

Figure 1.2 : Ideal DAC output in time and frequency domain. fs=200MHz, 

fc=25MHz. 

1.2. DACs in Transmitter Design 

DACs are widely used nowadays thanks to the rapid growth of the digital electronics. 

DACs are used in mp3 players, cell phones, tablet computers, digital TV broadcasts 

and many other areas. However, DACs addressed in this work are mostly used in 

cellular base stations, where high speed and signal processing capability are 

important. 

Use of DACs in transmitters of the base stations is sprout with the idea of Software 

Defined Radio (SDR), which enables modifications on parameters of the 

communication system, like modulation frequency, modulation type, etc. An 

example of an ideal SDR system is given in Figure 1.3. 

Digital Signal 

Processing

DAC PA

ADC

Separator
Antenna

 

Figure 1.3 : Ideal SDR architecture [2]. 

In Figure 1.3, an ideal SDR block diagram is given with following sub-blocks: a DSP 

block that manages functionality of the system, a DAC, a Power Amplifier (PA), an 

ADC and a separator that separates incoming and outgoing signals and antenna.  
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In practice, ADCs and DACs do not operate fast enough to be directly connected to 

antenna for modern communication systems but operates on intermediate frequency 

and signal is modulated to radio frequencies with a final RF modulator. However, 

those intermediate frequencies are between several hundred megahertzes to 

gigahertzes and still cutting-edge DACs are used for these applications. Moreover, it 

is desired to put some of the DSP functionalities into DAC chips and create system 

on chips (SOCs) for cost efficiency.   

1.3. Overview of DACs with Digital Interpolation and Modulation 

An interpolating and modulating DAC is a DAC, which interpolates and modulates 

the input data digitally before converting it to an analog signal. Interpolating and 

modulating DACs offer two different improvements to the conventional DAC: 

pushed away images from fundamental frequency and ability of a mixer. 

When Figure 1.2 (b) and Figure 1.4 are analyzed together, the effect of digital 

interpolation can be seen. For 4x interpolation, images around 200 MHz sampling 

frequency are translated as images around 800 MHz sampling frequency. This 

translation eases design specifications of an external reconstruction filter [3]. 

 

Figure 1.4 : 4x Interpolated DAC output spectrum. 

Other improvement of interpolation and modulation DACs is the ability of a mixer. 

With proper techniques, which will be discussed in later sections, it is possible to 

shift the input signal anywhere within the nyquist region of the DAC output sample 

rate. Example spectrum plots are in Figure 1.5 (a to h). By using on-chip digital 
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modulation, users no longer need an analog mixer to modulate the baseband signal 

into an intermediate frequency (IF). 

 

          (a)            (b) 

 

            (c)           (d) 

 

            (e)            (f) 
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            (g)            (h) 

Figure 1.5 : Spectrum plots for digital modulation feature. (a): Baseband, (b): 

Shifted to 100MHz, (c): Shifted to 200MHz, (d): Shifted to 300MHz, (e): 

Shifted to 400MHz, (f): Shifted to 500MHz, (g): Shifted to 600MHz, (h): 

Shifted to 700MHz. 

Moreover, an interpolating and modulating DAC allows a lower input data rate, 

which is easier to generate externally and less likely to generate noise within the 

system [3].  

After mentioning the advantages of interpolation and modulation DACs, it is useful 

to list some commercial examples. Common products and specifications are listed in 

Table 1.1. 

Table 1.1 : Interpolation and modulation DACs in the market. 

Brand Part Bit MSPS 

Max. 

Interpo-

lation 

SFDR 

[dB] 

Advanced 

Modulation  
Output 

Analog 

Devices 

AD9122 16 1230 8x 82 Yes Complex 

AD9148 16 1000 8x 80 Yes Complex 

AD9776/8/9A 

12/

14/

16 

1000 8x 80 Yes Complex 

AD9786 16 500 8x 80 Yes Real 

Texas 

Instruments 

DAC3482 16 1250 16x 82 No Complex 

DAC5689 16 800 8x 80 No Complex 

Maxim MAX5898 16 500 8x 88 No Complex 

NXP DAC1408D650 14 650 8x 80 No Complex 
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It is seen from Table 1.1 that most DACs have coarse modulation capability and only 

a few products offer fine modulation capability using a numerically controlled digital 

oscillator. SFDR values are around 80 dB and they are mostly determined by the 

output DAC (not by the interpolation filters). A particularly interesting DAC in the 

market is the ADI‟s AD9786, which converts complex data to real one with internal 

Hilbert transformer and outputs only real data.  

1.4. Interpolation and Modulation: ASIC or FPGA? 

Anti-imaging filters are a necessity for most high speed DACs. For a DAC operating 

at low clock speeds, analog filtering is difficult, because the images are close to the 

signal passband. In such cases, expensive high order analog filters must be used. 

To avoid this problem, digital input sampling rates might be increased to push 

images away from the signal passband. If sampling rate is increased using FPGA 

based digital interpolation, on board data transmission speed will increase as a side 

effect. Thus, both the FPGA and the DAC will require high speed IOs and this will 

make reliable communication between the two ICs difficult. In such cases, Parallel 

Low Voltage Differential Signaling (LVDS) or parallel Common Mode Logic 

(CML) interfaces are needed and system power consumption goes up. 

FPGA        DAC

Data Bus

11 pole BPF

125 MS/s

FPGA        DAC 2 pole LPF

1 GS/s

FPGA        DAC 2 pole LPF

125 MS/s

DF

DF

125 MHz

1 GHz

1 GHz
 

Figure 1.6 : Interpolation and modulation DAC architectures. 
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A good option is keeping DAC input speed lower and output sampling rate higher 

via on-chip digital interpolation filtering. Interpolation is done on the DAC chip 

instead of the FPGA. With this method, costly analog filters are avoided and high 

speed and high power digital interfaces are not needed. Figure 1.5 explains three 

methods above. 

1.5. Implementation: System Architecture & Computer Arithmetic 

Details of the architecture of the existing high speed DACs are still not clear because 

of the confidentiality. However, block diagrams given in datasheets of the products 

and recent papers or patents can give clues about the architectural details.  

As a starting point, all examined DAC datasheets, that contain interpolation and 

modulation capability, have FIR filters in their signal path [4-13]. It can be said that 

filter architecture is FIR not IIR. That also makes sense as FIR filters offer linear 

phase. Other information that is given is; SFDR performance, filter coefficients, 

operation modes and even delay of the digital filters in clock pulses (like 32 clocks). 

With all these specifications, necessary data for a semi-custom digital design 

becomes available. On the other hand, if full-custom design methodology was 

assumed, some of the information would be missing. For example, in a DAC 

datasheet [13], a minimum clock speed specification is provided, which may imply 

that dynamic flip-flops might have been used in that design.  

It is known that a typical digital interpolation system with modulation used in high-

speed DACs contains FIR filters, is designed in semi-custom fashion (which leads to 

static flip-flops, standard library gates etc.) and is pipelined in order to operate as fast 

as possible for that process. SFDR requirement of the filters is also known to be 5 or 

10 dB larger than DAC‟s SFDR.  
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2. THEORY OF OPERATION 

In this work, two main operations are supported within the DAC: interpolation and 

modulation. In this chapter, mathematical background of these operations and 

implementation methods are explained.  

2.1. Process of Digital Filtering 

In Figure 1.2 of the previous chapter, time and frequency domain representations of 

DAC output was given. In this section, process of digital to analog conversion and its 

effects to output signal will be explained step by step. 

2.1.1. Images from sampling 

Sampling is the first source of non-idealities, in other words, images. To show the 

effect of sampling, an oversampled signal seen in Figure 2.1 can be considered as an 

analog signal. This is true when fs→∞.  

 

             (a)             (b) 

Figure 2.1 : Time (a) and frequency (b) plots of an analog sine wave in discrete time 

domain using the fast Fourier transform (FFT). 

Sampling is equivalent to multiplying with an impulse train in time domain. Impulse 

train given in Figure 2.2 (a) is used for sampling the sine wave in Figure 2.1 (a). 

Fourier transform of an impulse train another impulse train as seen in Figure 2.2 (b). 

Multiplying with an impulse train in time domain is equivalent to convolving with 
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another impulse train in the frequency domain. The effects of multiplying with an 

impulse train in time domain can be seen in Figure 2.3 (a), which generates Figure 

2.3 (b) in frequency domain.  

 

   (a)            (b) 

Figure 2.2 : Time (a) and frequency (b) representations of an impulse train. 

 

   (a)            (b) 

Figure 2.3 : Time (a) and frequency (b) representation of sampled signal. 

If Figure 2.3 is analyzed, it can be seen that in frequency domain, input signal 

replicates itself at every integer multiples of the sampling frequency. Time domain 

sampled signal only takes non-zero values at sampled times as expected. In 

frequency domain, it can also be said that frequency domain is corrupted by 

unwanted replicas of the input signal bandwidth. 

2.1.2. Effect of hold 

Another effect that is observed from Figure 1.2 was the effect of hold operation 

which will be added to model now. Hold operation makes the sampled value 

unchanged until next sampling time and creates a staircase behavior to time domain. 

In Figure 2.4 (a), hold signal that convolves with the input signal in time domain is 
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shown. Its Fourier transform, which is a 
sin x

x
function, is shown in Figure 2.4 (b). 

As seen in Figure 2.4, hold signal is a simple step signal that Fourier transforms into 

a sinc function. The results of the convolution can be seen in Figure 2.4 (c) and 

Figure 2.4 (d), in time and frequency domains respectively. 

 

            (a)             (b) 

 

            (c)            (d) 

Figure 2.4 : Time (a) and frequency (b) representation of hold signal. (c): The result 

of the convolution with a step function. (d): Multiplication with a sinc 

function. 

2.1.3. Effect of digital oversampling with zero filling 

In addition to the sampling issue in analog domain, digital oversampling also causes 

images in the frequency domain. Plots of a 2x oversampled sine wave with zero 

filling are in Figure 2.5. 

That effect may look similar to effect discussed in the analog domain; however, it 

actually occurs entirely in digital domain.  
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   (a)             (b) 

Figure 2.5 : Time (a) and frequency (b) representation of 2x oversampled signal. 

2.1.4. Effect of digital filtering after zero filling 

It is easier to suppress digital images with a digital filter, as implementation of the 

digital filters is more robust than their analog counterparts. Thus, digital filtering 

must be performed after an oversampling operation, to reduce images. Filtered data 

is given in Figure 2.6. 

 

   (a)      (b) 

Figure 2.6 : Time (a) and frequency (b) representation of the filtered signal. 

2.1.5. Digital filtering 

As explained in Section 1.3, with digital filtering, unwanted digital images at lower 

frequencies are suppressed and analog images are translated to higher frequencies, 

which relaxes the specifications of the analog reconstruction filter. This effect is also 

shown in Figure 2.5-2.6. It is shown in Figure 2.2-2.3 that images occur at integer 

multiples of sampling frequency. In order to push them away, sampling frequency 

should be increased before digital to analog conversion. This is the reason that makes 

oversampled digital filtering useful. 
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2.2. Interpolating Filter Design 

Interpolation is the combined process of up-sampling, zero padding and inserting 

newly calculated points between every two data points of the original digital input 

signal. With interpolation, sampling rate of the signal increases by the factor of 

interpolation rate. Interpolation operation is performed via an interpolation filter.  

2.2.1. Half band filters as a polyphase interpolation filter 

Half Band Filter is a special case of polyphase filters which can be used as an 

interpolation filter. Using a polyphase filter has many benefits like working with 

lower clock frequencies, using less multipliers and ability to perform frequency 

shifting operations (modulation). 

2.2.1.1. Basics of a polyphase interpolation filter [14] 

Interpolation process can be shown as an up-sampler, followed by a low pass filter 

(LPF), as illustrated in Figure 2.7. 

 

Figure 2.7 : Interpolation process. 

In Figure 2.7, “↑L” means up-sample by a factor of L and H(z) represents LPF that is 

used for image rejection. Up-sampling increases the sampling rate by L and then, 

zero-pads by L-1 zeroes.  

Although the structure above is functionally correct, it is not effective due to the 

large number of zeros at the filter input. At this point, polyphase interpolation 

becomes helpful.  

A digital LPF can be shown with (2.1). 

( ) ( ) n

n

H z h n z                (2.1) 

In (2.1), filter coefficients are h(n). That also equals to the representation in (2.2). 

1
( )

0

( ) ( )
L

kL p

k p

H z h kL p z     (2.2) 
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In (2.2), 
n

k
L

 (round towards zero) and %p n L  (n mod L). (2.2) states that, 

coefficients of a single filter can be grouped by L. If a delay element is taken out of 

the inner equation and the indices of summations are switched, (2.3) can be obtained. 

1

0

( ) ( )
L

kL p

p

p k

H z h k z z     (2.3) 

In (2.3), ( ) ( )ph k h kL p . There arrangement means that L filters can be defined 

which is functionally equal to the main filter in (2.1). In the end, z-domain 

representation of the final system is in (2.4) and Figure 2.8. 

1

0

( ) ( )
L

L p

p

p

H z H z z     (2.4) 

 

Figure 2.8 : Another representation of filter H(z). 

In Figure 2.8, L filters are shown, which is functionally equal to the filter in Figure 

2.7. At this point, up-sampler block can be put after every sub-filter without 

changing the functionality of the system. This is the noble identity for interpolation 

[14]. Resulting diagram is in Figure 2.9. 

 

Figure 2.9 : Polyphase interpolation filter. 
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2.2.1.2. Special case: half band filter (L=2) [14] 

The Half Band Filter is a special case of polyphase filters with L = 2. It is both 

simple owing to less number of sub-filters and advantageous being a polyphase filter. 

Block diagram of Half Band Interpolation Filter is in Figure 2.10. 

 

Figure 2.10 : Half Band Interpolation Filter. 

To understand the structure of H(z)s, it is important to have a look at the impulse and 

frequency response of half band low pass filter given in Figure 2.11. 

     

      (a)            (b) 

Figure 2.11 : Frequency (a) and impulse (b) response of Half Band LPF. 

As shown in Figure 2.11, almost half of the coefficients of Half Band Filter are zero. 

Moreover, zero coefficients are only even indexed coefficients which makes them 

easy to eliminate. Details and other advantages of Half Band Filters are in Section 

2.1.2. 

2.2.2. Advantages of half band interpolation filters 

Main advantages of Half Band Interpolation Filters can be grouped under three 

headings: fewer coefficients, working at half output data rate and ease to transform.   

2.2.2.1. Fewer coefficients (and multipliers) 

According to (2.4), a Half Band Filter can be written as (2.5) below. 

2 2 1

0 1( ) ( ) ( )H z H z H z z     (2.5) 

And impulse response representation is in (2.6). 
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2 (2 1)( ) (2 ) (2 1)n n

n

H z h n z h n z   (2.6) 

As seen from Figure 2.12, all except one even indexed coefficients of Half Band 

Filter are zero. So, resulting equation is in (2.7). 

(2 1)( ) (0) (2 1) n

n

H z h h n z    (2.7) 

As indicated from previous equations, zero coefficients of the Half Band Filter can 

be reduced. Moreover, because implementing zero-coefficients is unnecessary, 

almost half of the multipliers are also removed. That feature is illustrated in Figure 

2.12. 

z
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z
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z
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.  .  .
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Figure 2.12 : Saved multipliers in HBFs due to zero-coefficients. 

2.2.2.2. Working at half output data rate [14] 

Input and output data rates of a conventional filter are equal as expected. On the 

other hand, an interpolation filter should increase the data rate by the interpolation 

factor L. At this point, architecture of the interpolation filter gains importance 

because of the clock speed of the filter. It is known that interpolation filters are 

mostly used in high speed DACs [4-13] which demands output data rates up to 1.25 

GSPS[11]. While designing such a high speed digital circuit, it is desired to use 

lower speed clocks to reduce power consumption. In short, it would be a good idea to 

reduce clock speed of the filter without changing functionality and not worsen area 

and power characteristics. In Figure 2.13, Half Band Filter block diagrams are given 

before and after using noble identity. 

H0(z
2
)

H1(z
2
)

z
-1

x(n) y(m)↑ 2

 

H0(z)

H1(z)

z
-1

x(n) y(m)↑ 2

↑ 2
 

   (a)             (b) 

Figure 2.13 : HBF before (a) and after (b) applying noble identity. 
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In Figure 2.13 (a), it is seen that filtering is performed after up-sampling which 

means filters H1 and H2 should work at twice the data rate of input x(n) because of 

oversampling. However, after applying noble identity, H1 and H2 now come before 

the upsampler which makes them work at the same speed of input data rate. That 

feature makes HBFs not only smaller because of less multipliers, but also more 

power efficient due to being clocked at lower speeds.  

2.2.2.3. Easy to transform from low-pass to high-pass [14] 

In section 2.1.1.1, it is stated that for interpolation process, a LPF is required to 

suppress unwanted images. But in some cases, those images are needed to be kept, as 

they are modulated versions of the input signal. Although the modulation topic is 

explained in section 2.2, it is important to note now that changing pass-band of the 

filter may be desired. In this case, designers prefer configurable filters without a big 

area cost for implementation.  

HBFs are one of the filters whose pass-band can be changed without additional cost. 

In Figure 2.14, high-pass version of the HBF can be seen. To make a HPF from its 

LP equivalent, LP impulse response is modulated by a cosine with half sample rate 

frequency. It is obvious that frequency domain equivalent of this operation pushes 

spectral center where pass-band is, to half the sample rate. Transform is in (2.8). 

( ) ( ) *cos( )HPF LPFh n h n n     (2.8) 

 

Figure 2.14 : Impulse response of Half Band HPF. 

In (2.6) and (2.7), it is given that all coefficients of Half Band Filter are odd indexed 

except the one in center. Besides, it can be said by looking Figure 2.10 that, even and 

odd indexed coefficients are implemented in separate filters H0 and H1 respectively. 

Based on these explanations, HP representation of HBF is as follows in Figure 2.15.  
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Figure 2.15 : Half Band High Pass Interpolation Filter. 

As seen from Figure 2.15, only modification in block diagram is the subtractor. LP to 

HP transform is just an example of easy transformability of the HBFs. By using 

similar approaches, several complex BPFs can be realized without much area and 

power cost. The necessity of BPF transformation is explained in Section 2.3.4.  

2.3. Coarse Modulator Design 

Coarse modulation of input signal is commonly done by an analog mixer circuit after 

the DAC in an RF system [4-13]. On the other hand, due to recent trend about using 

less number of ICs and avoiding problems caused by analog mixers like jitter and 

other non-idealities, digital modulation before or within DAC circuits gains 

importance. That modulation could be a fine or a coarse modulation, depending on 

mixing requirements.  

In order to implement a fine modulation, a much higher frequency resolution is 

required than a coarse modulation. Fine modulation is generally used to put data to a 

specific frequency channel. Although fine modulation is often critical for a 

communication system, the baseband digital circuits driving the DAC chip can easily 

implement it. The used method is performing a fine modulation before the DAC chip 

and coarse modulation within the DAC chip. For communications in multi-GHz 

frequencies, an analog modulator after DAC chip is necessary. 

Coarse modulation however has only a few major frequency steps to shift the input 

data. Details of this operation and its implementation are explained in this section. 

2.3.1. Standard digital modulation  

It is well-known that modulation is simply performed by multiplying the input signal 

with a cosine with desired frequency. In order to apply that, a multiplier and a cosine 

generator (oscillator) circuit are required. 
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2.3.2. 2n
 Ratios of sampling frequency 

In a modulation system with a multiplier and oscillator, more complex block is the 

oscillator which calculates amplitude values of the cosine function. If characteristics 

of a cosine function like zero crossings and symmetry are used wisely, a numerical 

oscillator can be turned into a simple multiplexer with several constant values at the 

input. To take those advantages, frequency values of coarse modulator is chosen as 

2
n
 ratios of the sampling frequency. Several examples are in Table 2.1. 

Table 2.1 : Cosine values to multiply for several frequencies. 

Frequency Values 

fS/2 -1 1            

fS/4 -1 0 1 0 

fS/8 -1 - 2 2  0 2 2  1 2 2  0 - 2 2  

2.3.3. Eliminating multipliers and coefficients 

At frequencies Interpolation and Modulation DACs operate, it is both area and power 

consuming to use a multiplier at the end of the interpolation filter where modulation 

is carried out. Thus, elimination the output multiplier is desired. In Section 2.1.2.3, 

performing modulation by fs/2 is done by using a subtractor, which performs 

multiplication with -1s. As this only works for fs/2 modulation, other coarse 

modulation frequencies are created by cascading several interpolation and 

modulation filter blocks with ascending sampling frequencies and LP, BP or HP 

modes.  

2.3.4. Hilbert transformer [14] 

Hilbert Transformer is a complex filter which passes positive frequencies and 

suppresses negative frequencies of the input signal. It is a positive shifted version of 

a LP Half Band Filter. Frequency response of a Hilbert transformer is in Figure 2.16. 

 

Figure 2.16 : Frequency response of Hilbert Transformer. 
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Operation of Hilbert Transformer is given in (2.9) 

/2( ) ( ) jn

HT LPFh n h n e     (2.9) 

If 
2jne  is expanded with a sine and cosine function, (2.10) is obtained.     

( ) ( ) cos( / 2) sin( / 2)HT LPFh n h n n j n   (2.10) 

Cosine function in (2.10) gives 1 and -1 when n is even and 0 when n is odd. 

However for odd n‟s, h(n)LPF gives non-zero and for even n‟s it gives zero except 

n=0 as it is a Half Band Filter. Eventually, for real part of the filter h(n)HT, only one 

non-zero coefficient is present at n=0. 

In the meantime, sine function gives -1 and 1 when n is odd and 0 otherwise. When 

multiplied by filter coefficients, sine function makes left half of the coefficients 

minus signed and right half positive signed. Resulting impulse responses are in 

Figure 2.17. 

 
          (a)               (b) 

Figure 2.17 : Real (a) and imaginary (b) impulse responses of Hilbert Transformer. 

As seen from Figure 2.17, only signs of coefficients are changed when a LPF is 

transformed into a Hilbert Transformer. That operation can easily be implemented by 

using subtractors instead of adders, which come after multipliers. Unlike LP and HP 

counterparts, Hilbert Transformer gives complex output (or two outputs: real and 

imaginary). Final visualization of Hilbert Transformer is in Figure 2.18. 

H0(z)

H1(z)

x(n) Re{y(m)}

Imag{y(m)}

↑ 2

↑ 2 z
-1

 

Figure 2.18 : Hilbert Transformer. 
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2.3.5. Limitations 

As described in previous sections, an efficient coarse modulation can be performed 

via HBFs with small modifications. But due to the nature of the operation, 

modulation step size is limited to fs/2. If more than one sampling rates and filter-

interpolator couples are used, step size can be fs/2k where k is number of filter-

interpolator couples. For example for k = 3, it is possible to shift base frequency of 

input data to following ratios of sampling frequency fs of the output: [-3/8 -2/8 -1/8 0 

1/8 2/8 3/8 4/8].  

When finer modulation is desired it is necessary to use a multiplier and oscillator 

circuits at the end of the interpolation filters which brings extra cost for higher 

operating frequencies. 

2.4. Multi-Stage Interpolation with Half-Band Filters 

So far, single-stage interpolation with HBFs, which doubles the sampling frequency 

was described. If more than 2x interpolation is desired for better improvement in 

image rejection or modulation with larger band is aimed, cascaded HBFs are used.  

As every HBF stage doubles sampling frequency and data rate, using n-stage HBFs 

gives 2nx interpolation and pushes images 2nx away.  

2.4.1. Baseband 

Using LP modes of the half band filters in cascade form results in suppressing all the 

images and only the baseband frequencies are allowed to pass. This may be referred 

as baseband interpolation. A three-stage interpolation (8x) constructed by cascaded 

HBFs is represented in Figure 2.19. 

H0(z)

H1(z)

z
-1

x(n) ↑ 2

↑ 2

H0(z)

H1(z)

z
-1

↑ 2

↑ 2

H0(z)

H1(z)

z
-1

y(m)↑ 2

↑ 2
  

Figure 2.19 : Three-stage interpolation with cascaded HBFs. 

In the interpolation system given in Figure 2.19, output y(m) is the 8x interpolated 

version of the input x(n). As all three HBFs work in LP mode, no modulation was 

performed.   
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2.4.2. Whole band 

In Sections 2.2.2.3 and 2.3.4, it is mentioned that HBFs can easily be transformed 

from LP to HP and BP operation which may called as operation mode of the filter. 

By doing the transformations, sampling related images can be used for modulation 

purposes, as they are the modulated versions of the input data. 

In order to demonstrate using different images for modulation purposes, let‟s 

examine an interpolation and modulation system with three-stage HBF cascades. 

Also let the operation modes of the filters be LP, HP and BP respectively. Then, the 

inputs and the outputs of the filters are given in Figure 2.20. 

 

            (a)            (b) 

 
          (c)            (d) 

Figure 2.20 : Spectrum plots of the signal at filter inputs and outputs. 

In Figure 2.20 (a), it is seen that 16 bit sine signal with 25 MHz is applied to system 

input at fS = 200 MHz. As first stage acts as a LPF, output of the first stage is similar 

to input with an increase in sampling rate (Figure 2.20 (b)). At second stage, HBF 

performs a HP behavior which passes frequencies around 400 MHz and suppresses 

the others, still increasing the sampling rate (Figure 2.20 (c)). Finally, third stage 

operates in Hilbert Transform mode, with a further increase in sampling rate. Thus, 
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third stage passes positive frequency band (0-800 MHz) and suppresses the rest (800-

1600 MHz) (Figure 2.20 (d)). In the end, both 8x interpolation and modulation to 400 

MHz is performed with 3-stage HBFs.  

Many other modulation steps are possible to achieve with the same approach, just by 

changing modes of the HBFs. Details of every mode and outputs will be given in 

Section 3.1.3. 
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3. IMPLEMENTATION OF THE ARCHITECTURE WITH 85 DB SFDR 

This section covers the implementation of a standard architecture of Half Band 

interpolation filters with modulation capability. Standard architecture refers to a non-

optimized architecture which is created by examining the datasheets of the existing 

DACs with interpolation and modulation capability, and theories published in the 

literature. Design process is examined under four headings: Modeling, HDL coding, 

synthesis, layout and simulation results.  

3.1. Behavioral Modeling: MATLAB Models 

This section explains the purpose of behavioral modeling and detailed description of 

the models.  

3.1.1. Importance of modeling: why it is important? 

Modeling is the first step of an implementation process. It gives a brief idea of what 

is to be expected. During behavioral modeling, ideal blocks are used to understand 

functionality and needs of the system better. Even after real blocks and physical 

effects are included to system, behavioral models are still used for comparison and 

detection of possible implementation errors.  

Another advantage of modeling is visualizing the system and increasing 

comprehensibility.  

3.1.2. Model description 

For behavioral modeling of the system, MATLAB is used first. Reasons of choosing 

MATLAB as a behavioral modeling and simulation medium are its libraries, ease of 

use, reliability and the convenience of co-simulation with Simulink.  

Modeling filter functionality with Simulink models was another decision that was 

made. With its drag-and-drop interface, Simulink models offer visual representation 

of the system, which makes it easy to understand and convert to HDL models. It was 
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seen that HDL design workload reduced dramatically as visual models of the system 

became available. 

During the modeling process, MATLAB models of interpolation and modulation half 

band filters were simulated and the output data is analyzed to test functionality and 

performance. During code development, many MATLAB models are created, which 

start from basic models that are implemented and understood easily, to more 

complex models that are closer to reality. It is unnecessary to explain every model 

line by line. Instead, common parts of the models are explained in this section. 

3.1.2.1. Obtaining filter coefficients  

The most important part of designing a filter is calculating the filter coefficients. To 

make that process easier, MATLAB offers a filter design and analysis tool named 

„fdatool‟. Fdatool is used to obtain Half Band Filter coefficients. Moreover, the 

differences between the filters obtained from the fdatool and the filters published in 

AD977x DAC datasheet are found. Frequency responses of the resulted filters are 

given in Figure 3.1.  

 

(a)     (b)            (c) 

Figure 3.1 : Comparison of fdatool generated filters and AD977x filters. 

In order to generate above filters by fdatool, data from a previous work [15] was 

used. In that work, filter orders are chosen as 54, 22, and 14 respectively. Moreover, 

normalized pass-band frequencies are chosen as 0.4, 0.23 and 0.195 respectively. It is 

stated in the work [15] that using those numbers generated good performing filters.  

As seen from Figure 3.1, there are significant differences between frequency 

responses of fdatool and AD977x results. SFDR values of the obtained filters are in 

Table 3.1. 
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Table 3.1 : SFDR differences of filters 

Filter Source SFDR [dB] Delta [dB] 

F1 
fdatool 79 

9 

AD977x 88 

F2 
fdatool 71 

17 

AD977x 88 

F3 
fdatool 79 

7 
AD977x 86 

Table 3.1, reveals that fdatool may not provide best result. We speculate that fdatool 

cannot model truncation of the coefficients during calculations but it truncates the 

coefficients after calculations. That may result in different performance. In order to 

avoid such problems, methods like “quantization using compensating zeros”[16] 

might be used. These methods take the effect of the truncated coefficients into 

account and better performance is obtained with respect to the truncating after the 

calculation.  

During implementation, coefficients of AD977x DAC are used to get better 

performance, as a starting point for our first design.  

3.1.2.2. Input signal generation 

First parts of the MATLAB models are input signal generation. To perform FFT 

operation correctly, input signal frequencies are determined according to (3.1). 

in s

FFT

x
f f

n
     (3.1) 

In (3.1), fin is the input signal frequency, nFFT is number of points per FFT operation, 

fs is sampling frequency and x is the FFT bin number. 

If this rule is followed, resulting FFT only has the desired frequency components, 

and spectral leakage is avoided. By changing nFFT and x, input signal frequency can 

be changed or multi-tone signals can be given as an input to the model.  

Next simulation parameter is “n_of_bins” which is a misnomer that represents the 

multi-tone signal bandwidth. With that option, multi-tone signals can be generated as 

the input to the filter. 
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Finally, variables “hb1_mod”, “hb2_mod” and “hb3_mod” can be assigned to set 

desired filter modes. Variable “premod” is used to shift the input data by fs/2. Details 

of filter modes and pre-modulation feature will be explained in Section 3.1.3.  

3.1.2.3. Filtering 

Filtering is one of the main operations of the system. In order to analyze filtering, 

several different methods were used. Those methods can be grouped under two 

headings: filtering with “filter” function and filtering using Simulink blocks.  

With “filter” function 

First method of filtering is MATLAB‟s “filter” function which takes data to be 

filtered and filter coefficients as input and outputs the filtered data. In that type of 

filtering, the method that is described below was used. 

 

   (a)                    (b) 

  

   (c)              (d)  

Figure 3.2 : Simulation outputs of MATLAB model. FFTs of (a): Input signal, (b): 

F1 output, (c): F2 output, (d): F3 output 
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After generating input, up-sampling is performed by zero padding between successive 

data points. That operation creates an image at fs-fin. Then, filtering is performed with 

“filter” function. Due to the number of filters in pipeline, zero padding and filtering 

might be performed again.  

An example simulation outputs for MATLAB model of interpolation filter modulation 

are in Figure 3.2. fs = 250MHz, fin ≈ 20MHz, nFFT = 1024, modulation = fs/8 

In Figure 3.2 (a), frequency representation of the input signal takes place. After up-

sampling and filtering by the first filter F1, images and unwanted components were 

suppressed. In Figure 3.2 (b), it is seen that F1 suppresses the low frequency signals 

and passes high frequencies, in other words performs HP filtering. Figure 3.2 (c) and 

(d) represent the outputs of second and third filters respectively. Frequencies around 

250 MHz are passed and others are suppressed. As no image is shown at fs-fin, it 

should be noticed that complex filtering using a Hilbert transform was performed. 

With simulink model  

The goal of repeating the filtering action with Simulink models is better 

visualization. In order to change model to use Simulink models, several changes had 

been made.  

First of all, Simulink model files (.mdl) are created for each filter. As decided, three 

interpolation filters with modulation feature are implemented. Building the model 

begins with writing “simulink” to command line. Then, Simulink library browser 

appears and necessary blocks are dragged and dropped from here to a new model file 

opened from “new model” button of the browser. Commonly used blocks are as 

follows. 

 Integer delay: used to sample old values of the input 

 Goto & from: name connection blocks to make model more readable 

 From workspace: gets data from m-file 

 Gain & Fix: used together to get 16 bit data 

 Pulse & switch: used together as a commutator.   

 Sum & product: performs the job that they are called 

 Subsystem: Sub model that includes other blocks in it. Improves readability 
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 Multiport switch: Used as a multiplexer. Select input is the coefficient 

which determines the operating mode of the filter 

 To workspace: exports data to m-file 

After Simulink model files were done, previous MATLAB models were modified to 

call Simulink model files to use these files for filtering instead of the “filter” function 

of MATLAB. Function named “sim” is used to call and start a Simulink model file. 

Because three filters are present, “sim” function is used three times. After completion 

of the Simulink model simulation, the MATLAB code continues execution. Rest of 

the simulation process is the same as in former MATLAB models. Simulink models 

are shown in Appendix S.  

3.1.3. Operation modes of the filters in 85 dB design 

This section explains operation modes of the interpolation and modulation block of 

our 85 dB design. Since the 85 dB design is not our final design, all operation modes 

are not listed in Table 3.2, only 8x interpolation is shown for simplicity. FDAC is the 

DAC clock frequency (clock frequency at filter output), and it is assumed to be set at 

2 GHz. F1, F2, and F3 represent three half -band filters, each up-sampling the input 

clock frequency by a factor of 2. F_center represents the frequency shift provided by 

the 8x interpolating filter. The modulation modes using 8x interpolation is shown in 

Table 3.2. Similar tables exist for 2x and 4x interpolation modes. 

In Table 3.2, operating modes of the sub-filters F1, F2 and F2 are also given. F1 has 

4 filtering modes. Mode 0 describes low-pass basic filtering. Mode 1 describes the 

first Hilbert transform mode that passes positive frequencies and suppresses the 

negatives. Mode 2 describes high-pass filtering. Mode 3 describes the second Hilbert 

transform mode that passes negative frequencies and suppresses the positives.  

F2 and F3 have 8 modes of operation. Mode 0 describes low-pass basic filtering.  

Mode 1 describes 45
o
 pass-band shift. Mode 2 describes the first Hilbert transform 

mode that passes positive frequencies and suppresses the negatives. Mode 3 

describes 135
o
 pass-band shift. Mode 4 describes high-pass filtering. Mode 5 

describes 225
o
 pass-band shift. Mode 6 describes the second Hilbert transform mode 

that passes negative frequencies and suppresses the positives. Mode 7 describes 315
o
 

pass-band shift. 
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Table 3.2 : Filter modulation modes at 8x over-sampling. 

pre_mod F1 F2 F3 f_center f_center @ fDAC = 2GHz 

0 0 0 0 0 (DC) 0 (DC) 

1 1 1 0-1 fDAC/16 125 

0 2 2 1 2fDAC/16 250 

1 3 3 1-2 3fDAC/16 375 

0 0 4 2   4fDAC/16 500 

1 1 5 2-3 5fDAC/16 625 

0 2 6 3 6fDAC/16 750 

1 3 7 3-4 7fDAC/16 875 

0 0 0 4   8fDAC/16 1000 

1 1 1 4-5 9fDAC/16 1125 

0 2 2 5 10fDAC/16 1250 

1 3 3 5-6 11fDAC/16 1375 

0 0 4 6 12fDAC/16 1500 

1 1 5 6-7 13fDAC/16 1625 

0 2 6 7 14fDAC/16 1750 

1 3 7 7-0 15fDAC/16 1875 

3.1.3.1. Baseband  

This is the first and fundamental mode of the system. In this mode of operation, all 

filters work at mode 0 which corresponds to no-modulation, just interpolation. To do 

that, variables “hb1_mod”, “hb2_mod” and “hb3_mod” are set to 0. In the end, input 

and corresponding output signal of this mode is obtained as in Figure 3.3. 

  

            (a)            (b) 

Figure 3.3 : Input (a) and output (b) spectrum of the system in baseband mode. 
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As seen in Figure 3.3, output data rate is 8x faster than input data rate as 3-stage 

interpolation is used. Besides, some parts of filtered images already stand in 

spectrum and corrupt the output. That non-ideality shows the performance of the 

interpolation filters and represented with SFDR calculations. That will be discussed 

later sections.  

3.1.3.2. FDAC/8 modulation  

With that modulation mode, input signal both interpolated and modulated with the 

frequency fDAC/8. In order to activate the mode, variables “hb1_mod”, “hb2_mod” 

and “hb3_mod” are set to 2, 2 and 1 respectively. Resulting output spectrum when 

the same input is applied in Baseband mode, is in Figure 3.4. 

 

Figure 3.4 : Output spectrum of the system in fDAC/8 modulation mode. 

In Figure 3.4, frequency shift to fDAC/8 which is 250 MHz for the example is shown. 

When compared, it is seen that the plot is just a shifted version of the baseband mode 

output spectrum.  

3.1.3.3. FDAC/4 modulation  

FDAC/4 Modulation mode is the third mode of operation which shifts input data 

around frequency FDAC/4. It can be selected by assigning 0, 4 and 2 to variables 

“hb1_mod”, “hb2_mod” and “hb3_mod” respectively. Resulting spectrum plot is in 

Figure 3.5. 

Again, plot in Figure 3.5 is a shifted version of the output in baseband mode.  
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Figure 3.5 : Output spectrum of the system in fDAC/4 modulation mode. 

3.1.3.4. 3FDAC/8 modulation  

With this modulation mode, it is possible to modulate input signal with the frequency 

3FDAC/8. Output spectrum plot is given in Figure 3.6.  

 

Figure 3.6 : Output spectrum of the system in 3fDAC/8 modulation mode. 

To activate 3FDAC/8 modulation, variables “hb1_mod”, “hb2_mod” and “hb3_mod” 

are set to 2, 6 and 3 in the given order.  

3.1.3.5. ±FDAC/2 modulation  

This modulation mode modulates the input signal with frequency fDAC/2 which also 

equals to modulating with -fDAC/2. To activate, “hb1_mod”, “hb2_mod” and 

“hb3_mod” are set to 0, 0 and 4 which work first two filters LP and last filter HP 

mode. Resulting output spectrum is given in Figure 3.7. 

In Figure 3.7, it is seen that fDAC/2 modulation is performed. From symmetry, it can 

be said that if the input signal is real, output also becomes real, which means a real 

modulation is performed. This modulation can be realized using a single channel.  
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Figure 3.7 : Output spectrum of the system in ±fDAC/2 modulation mode. 

3.1.3.6. -FDAC/8 modulation 

This is the negative version of the fDAC/8 modulation. With -fDAC/8 modulation 

mode, which is activated by setting mode variables to 2, 6 and 7, input signal is 

shifted to around -fDAC/8 frequency. Spectrum of the output signal is in Figure 3.8. 

 

Figure 3.8 : Output spectrum of the system in -fDAC/8 modulation mode. 

As seen in Figure 3.8, spectrum plot is the mirror image of the output in fDAC/8 

Modulation mode in Figure 3.4. 

3.1.3.7. -FDAC/4 modulation  

Like -fDAC/8 Modulation mode, -fDAC/4 modulation mode is the negative version of 

the fDAC/4. .It can be selected by assigning 0, 4 and 6 to variables “hb1_mod”, 

“hb2_mod” and “hb3_mod” respectively. Resulting spectrum plot is in Figure 3.9. 

Again, spectrum plot in Figure 3.9 is the mirror image of the output in fDAC/4 

modulation mode in Figure 3.5. 
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Figure 3.9 : Output spectrum of the system in -fDAC/4 modulation mode. 

3.1.3.8. -3FDAC/8 modulation  

Within this mode of operation, it is possible to modulate input signal with the 

frequency -3FDAC/8. Output spectrum plot is given in Figure 3.10.  

To activate 3FDAC/8 modulation, variables “hb1_mod”, “hb2_mod” and “hb3_mod” 

are set to 2, 2 and 5 in the given order.  

 

Figure 3.10 : Output spectrum of the system in -3fDAC/8 modulation mode. 

3.1.3.9. FDAC/16 modulations 

Until now, all possible operation modes are explained and their results are presented. 

In this section, a possible weakness of the presented system and its solution is given. 

A problem: using all the Nyquist band 

During early times of design, it is desired to shift the input signal wherever we like in 

the output signal spectrum. Several operation modes were defined and explained to 

accomplish the objective. However, input signal frequencies between two 

modulation mode frequencies (ie. near FDAC/16) fall into filter transition band and 

undesired levels of suppression are observed. That issue is visualized in Figure 3.11. 
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          (a)      (b) 

Figure 3.11 : Attempts to use mid-mode frequency band. Fin = (a): 100 MHz, 

(b): 110 MHz. 

In Figure 3.11, it is desired to use a real valued mid-mode frequency band, which is 

chosen to be around 125 MHz. Frequency of the input signal is chosen as 100 and 

110 MHz, for Figure 3.11 (a) and Figure 3.11 (b) respectively, and it is seen that 

images (at 150 MHz in (a) and 130 MHz in (b)) are no longer suppressed efficiently 

due to incapability of the filters.  

Solution: pre-modulation & mid-modes 

To solve the issue, 8 new operation modes are defined, which modulate the input 

signal to mid-mode frequencies without any SFDR penalty. A pre-modulation option 

is needed. When activated by setting “pre_mod” variable to 1, it modulates the input 

signal at baseband and prepares it for mid-mode filtering. As filter modes for that 

kind of modulations are already given in Table 3.2, only resulting spectrum plots for 

these operation modes are given in Figure 3.12.  

  

(a)            (b) 
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          (c)            (d) 

Figure 3.12 : Output Spectrums of mid-modes. (a): FDAC/16, (b): 3FDAC/16, (c): 

5FDAC/16, (d): 7FDAC/16. 

Spectrum plots for mid-modes with negative frequencies are in Appendix P. It is 

seen in Figure 3.12(a) that input signal can be put around frequency fDAC/16 without 

any image rejection problem. By the help of mid-modes, all output bandwidth can be 

used without penalty.  

3.1.4. SFDR calculations 

In previous sections, it is mentioned that designed interpolation and modulation 

system works as desired. However, proving functionality is not enough for such a 

system and giving performance metrics of the system is necessary. Therefore, SFDR 

calculations were made to evaluate signal distortion. SFDR for an operation mode is 

obtained from the worst SFDR value found during a full-scale frequency sweep, 

using a single tone. 

3.1.4.1. SFDR vs. operation mode 

First analyzed metric is the change of SFDR wrt. operation mode. It is seen from the 

spectrum plots that modulated versions of the baseband mode is just shifted versions 

of the same pattern and no change in SFDR was expected from different modulation 

modes. To calculate SFDR values for every operation mode, a modified MATLAB 

model was generated which creates same input signal that covers all filter pass-band 

and changes operation modes from 1 to 16 in Table 3.2. It calculates SFDR values 

for every mode and in the end it plots them. Obtained graph is in Figure 3.13. 
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Figure 3.13 : SFDR values wrt. operation modes. 

As seen in Figure 3.13, worst SFDR was calculated as 85.4 dB for 3
rd

, 7
th

, 11
th

 and 

13
th

 modes. It is seen that characteristics of the first four modes replicate themselves 

and a symmetric pattern is obtained. In the beginning, a constant value was expected 

for all modes, but instead, a replicating pattern was found. The difference is subtle, 

0.6 dB. 

3.1.4.2. SFDR vs. signal amplitude  

During simulations except this one, input signal amplitude is chosen as 0.9 times of 

the maximum input signal range. It is known that output SFDR value will change if 

amplitude of the input signal changes. To show that, amplitude of the input signal 

changed from 0.1 times to 0.9 times and SFDR values for baseband mode. Resulting 

graph is in Figure 3.14. 

 

Figure 3.14 : SFDR values wrt. signal amplitude. 

In Figure 3.13, it is seen that when signal amplitude drops under 0.3 times of its 

maximum, SFDR values also drops sharply. After 0.3 times, SFDR is almost 
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constant and does not show a significant change. This is expected, since stop-band 

attenuation of the filter limits the SFDR. 

3.1.4.3. SFDR vs. input frequency 

In Section 3.1.3.9, difficulties about image rejection caused by increase in signal 

frequency was briefly mentioned. To analyze that effect more deeply, SFDR values 

for input signals with different frequencies are calculated. Results are shown in 

Figure 3.15. 

 

Figure 3.15 : SFDR values wrt. signal frequency. 

Figure 3.15 suggests that SFDR values are larger than 90 dB when signal frequency 

is less than 50 MHz. Between 50-85 MHz, SFDR is almost constant at 86 dB. After 

100 MHz, SFDR falls significantly. It is seen that for signals with lower frequency, 

SFDR of the system is larger; when input frequency increases, SFDR decreases 

slowly and later sharply. This is expected, as the SFDR follows the frequency 

response curve of the filter. 

3.2. HDL Coding 

Hardware Description Language (HDL) model of the system is generated to 

synthesize and finally implement the system.  

Verilog HDL, which is a C-like HDL, is chosen to model the system. In following 

sections, sub-blocks of the system are presented and comparisons of the results with 

respect to Simulink models are given. 
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3.2.1. Sub-blocks 

Interpolation and modulation system that is modeled consist three level interpolation 

filters with modulation feature. Verilog Codes of the sub-blocks are in Appendix V. 

3.2.1.1. Filter-1 

Filter-1, in short F1, is the first interpolation filter of the system with modulation 

feature. Thanks to noble identity of Half Band Filters and other techniques; F1, 

which is a 55 tap filter, has only 14 different coefficients and multipliers. Those 

coefficients are in Table 3.3. Because of being the first filter, F1 should have the 

sharpest transition band with respect to other filters. The reason is that, the images 

occur closer than other filters. Verilog model of the F1, which is derived from the 

Simulink model, is now described.  

Table 3.3 : Coefficients in F1 

Coefficients Value 

C0 -4 

C1 13 

C2 -34 

C3 72 

C4 -138 

C5 245 

C6 -408 

C7 650 

C8 -1003 

C9 1521 

C10 -2315 

C11 3671 

C12 -6642 

C13 20755 

C14* 32768* 

*:not implemented with multiplier 

First always block contains a shift register chain that takes real and imaginary data 

inputs. It is 27 levels deep. Then “oys_register” comes, which is the short form of 

“last register of shift register”. Normally, this is equal to associated shift register but 

for some modes of operation, the value is multiplied by -1 (or just sign is changed). 

After that, first adders arrive. As HBFs have symmetric coefficients, these adders 

sum up associated inputs that will be multiplied by same coefficients. By doing this, 

half of the multipliers are saved. For complex filtering modes, coefficients are not in 
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their original form but their signs are changed. So, when these modes are active, 

subtraction is performed. After fist adders, multiplications with coefficients are done. 

Thereafter, within four levels, summations of the partial products are performed. 

So far, no truncation or rounding is performed and outputs become 37-bit which is 

excessive. Therefore, truncation to 16-bit is done and final value is named as 

“kesik”(_r for real _i for imaginary). Next block is important for complex filtering 

again. That block switches real and imaginary filtered data to fulfill the operation of 

Hilbert transformer.  

Last two always blocks act as a commutator, which connects the filtered data or 

shifted input data at “oys_register” to the output. At the end, 2x interpolation and 

optional modulation is performed during F1.  

3.2.1.2. Filter-2  

Filter-2, comes after F1, operates much the same as F1 but with 4 more modes of 

operation. Verilog model of F2 generally is similar to F1 with a few differences. 

These differences are explained in this section. 

First difference is the shift register length. Because of that F2 should suppress images 

far from F1‟s, it designed as a 23 tap filter, which can be implemented with only 6 

different coefficients given in Table 3.4. Shift register length is chosen as 11 to hold 

all necessary old values of input. Moreover, because of the 4 new modes (mode 1, 3, 

5 and 7) that F1 does not have, generating “oys_register” was changed. For the new 

modes; “oys_register” is equal to sum (or difference) of real and imaginary 

registered inputs times square root of 2. As that value becomes 32 bit long, it was 

also truncated to 16-bits as usual and named as “kesik_oys”. For the new 4 modes, 

this value is assigned to “oys_register”, otherwise directly the registered input value 

assigned as in F1. 

There are also differences in the first adders as well. For the new 4 modes, not only 

the real values are added for real first adders, but also the associated imaginary 

values. That is also true for the imaginary first adders. For the first 4 modes (mode 0 

2, 4 and 6), operation is the same as F1 (real first adders consists of real SR‟s values 

only and so as are the imaginary first adders). 
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Table 3.4 : Coefficients in F2 

Coefficients Value 

C0 -2 

C1 17 

C2 -75 

C3 238 

C4 -660 

C5 2530 

C6* 4096* 

*:not implemented with multiplier 

Rest of the model is just like F1: multiplication with coefficients, adder trees, output 

truncation and commutator. With the modifications described above, F2 is made to 

have eight modes of operation, each corresponding to a different modulation 

frequency.  

3.2.1.3. Filter-3 

Filter-3 is the last interpolation and modulation filter of the system. F3 operates 

fastest and needs to suppress images that are farthest. F3 is almost the same as F2, 

but with lesser differences.  

First difference is the SR length, which is 8 for F3. As F3 is the last interpolation and 

modulation filter, it has the easiest suppression specifications than the others. So 8-

length SR, which corresponds to 14-tap filter, was found satisfactory for F3. Other 

difference is the coefficients which are presented in Table 3.5.  

Table 3.5 : Coefficients in F3 

Coefficients Value 

C0 -39 

C1 273 

C2 -1102 

C3 4964 

C4* 8192* 

*:not implemented with multiplier 

3.2.2. Comparison with MATLAB models 

After building a new model, it is simulated and compared with other known models. 

Therefore, Verilog models must be simulated. To do that, a verilog testbench is 

created to give inputs and collect outputs from the system. Details of that test bench 

and verification process are described below. 
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3.2.2.1. Testbench: getting data from verilog to MATLAB  

The Testbench has four clocks in order to simulate a 3-level interpolation and 

modulation system. These clocks are generated within the testbench, according to a 

period parameter. That period is for the input and other clocks use half of the 

previous clock‟s period. Besides, operation modes of the filters can be changed via 

changing appropriate mode bits in test bench. Moreover, test bench has a LUT 

including sine values for input.  

When a Verilog simulation ends, an m-file is generated to write outputs of the 

simulation. Later on, it will be used for MATLAB comparisons. In that m-file, values 

of the output signal is written in a format which MATLAB code can read. Also for 

possible „X‟ values, a precaution was taken and those values are assigned to NANs. 

Verilog code of testbench and its sample output are in Appendix V.  

3.2.2.2. Comparison 

When the simulation is finished, an m-file including the output of the system is 

generated. In order to examine and compare it with the MATLAB models, another 

MATLAB code was written. That “Verilog output reader” code was created to be run 

after MATLAB model was simulated. It reads the output file of the Verilog model, 

and plots this data on top of the old data generated by the MATLAB model. It is seen 

that these two data are exactly the same. In order to be sure, Verilog output and 

MATLAB outputs are subtracted and all zeros are expected. It can be said that 

Verilog models are verified with no errors.  

3.3. Synthesis, PAR and final layout 

It is mentioned earlier that Verilog models are created to synthesize the circuit and to 

draw the layout to produce a chip. This section includes the process of generating the 

layout.  

3.3.1. Flow & tools 

Microelectronic design flow consists of modeling (MATLAB), hardware description 

(Verilog), synthesis, place and route (PAR) and generating final layout steps. From 

now on; synthesis, PAR and final layout generation will be described and physical 

design tools that are used will be explained.  
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For complex digital system design, using physical design tools becomes a must. 

Cadence design environment was used. Tools that are used for synthesis, PAR and 

final layout are: RTL compiler, Encounter and Virtuoso. Details of the design 

process are presented in following sections (Cadence tool called NCSim is 

previously used for verilog simulations). 

3.3.2. Synthesis with RTL compiler 

Synthesis is describing a behavioral HDL code with logic gates defined in standard 

gate library of the chosen process. That can be done either by hand (full-custom) or 

with CAD tools (semi-custom). Semi-custom design can also be divided to 

subsections on the basis of using automatic mapping to gates.  

In the very beginning of the work, a certain number of semi-custom designs were 

generated and some of their full-custom equivalents are designed in order to 

understand the limits of the process and the capability of the CAD tools. During that 

time, various adder architectures [17-22] are tested. In the end, it is seen that full-

custom designs give limited benefits on performance; moreover, they seriously 

lengthen the design and simulation times. In conclusion, it is decided to use a semi-

custom design flow driven by the CAD tool.  

Synthesis flow on RTL Compiler may be the easiest one, as flow is almost automatic 

and there are only few things to do. A tcl-script was written and run in the RTL 

Compiler. All work including desired specifications, file names, operations etc. is 

done by that script. But before moving to the script, opening the RTL Compiler will 

be explained. 

3.3.2.1. Synthesis flow 

The synthesis flow contains information about using the synthesis tools, writing and 

using scripts to control them. Details of the written specifications and usage of the 

tools are grouped under Appendix I.  

3.3.2.2. Retiming / pipeline 

To increase the performance of the circuit or to make it be able to operate with 

higher clock frequencies, an operation named “retiming” is performed. Retiming 

means repositioning combinational logic blocks to decrease longest path delay 
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without changing functionality [23]. It can also be used as an automatic pipeliner, by 

putting registers after maximum combinational delay. It is seen that without 

automated retiming, user defined pipelined architectures had worse performance.  

3.3.3. PAR with encounter 

PAR (Place and Route) is next level of the design flow, where placement of the logic 

gates and generation of routs occur. PAR tool of Cadence is Encounter, which takes 

the output files of the RTL compiler as input, and generates a delay file .sdf for 

simulation, and layout file .gds, for production.  

3.3.3.1. Steps of PAR 

During the PAR process at Encounter, commands defined in a script was used, which 

is a modified version of an Austrian Microsystems‟ PAR script. Commands of that 

script and PAR flow explained together in Appendix I.  

3.3.3.2. Outputs: GDS-II & SDF 

When PAR is done, two files are generated in order to be used for production and 

simulation. These files are GDS-II and SDF files, respectively.  

GDS-II file includes layer information which is used for the foundry to produce a 

chip. A plotted GDS-II file is in Figure 3.16.  

 

Figure 3.16 : Plotted GDS-II File of the 85 dB filter design in 0.15u 

LFoundry CMOS process 
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SDF is the acronym for standard delay format. An SDF file contains delay 

information of the final layout. When used with Verilog file that was generated, 

accurate post-PAR simulations can be made.  

3.4. Post-PAR Simulations & Results with NCSim 

In previous section, it is mentioned that by using Verilog and the SDF file, accurate 

post-PAR simulations can be performed. To do that, NCSim tool of Cadence is used 

for simulation and results are examined.  

3.4.1. Comparison of results 

In order to make post-PAR gate level Verilog simulations, modifications were made 

on Verilog test bench. First modification was including a gate library with typical 

conditions. By doing that, functionalities of the process-specific gates are defined to 

the simulator. Another modification was reading the SDF file that includes delays of 

both gates and the interconnects. Once simulation setup was finished, the simulation 

is performed. See Appendix V. 

After simulation, a MATLAB m-file was generated as done before and read by 

MATLAB to compare with previous results obtained by behavioral models. It is 

found out that exactly the same functionality is achieved.  

3.4.2. Maximum operating frequency 

During simulation step, clock speed was increased to find its maximum value 

without harming functionality. It is seen that maximum clock in the system can be 

increased to 1.3 GHz with 2 levels of retiming for multipliers in L-Foundary 0.15 μm 

process.  

3.4.3. SFDR of the output 

As functionality is found to match with MATLAB models, SFDR of the final design 

exactly matches the MATLAB models. SFDR results are not repeated here. SFDR 

plots can be found in Section 3.1.4.  
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4. IMPROVEMENTS ON STANDARD ARCHITECTURE 

This section covers the design improvements made on the standard architecture 

explained in Section 3. Improvements can be categorized into two headings: better 

SFDR performance and increased number of filter modes. Section also includes the 

new HDL representation, implementation and simulations of the new design, which 

is implemented not on the LFoundry process, but on TSMC 0.18 μm CMOS process.   

4.1. Targeting Higher SFDR 

In a DAC chip with digital signal processing, system performance should be 

determined by performance of the DAC. To satisfy that, performance of the digital 

blocks should be better than DAC‟s performance, within desired operating 

frequencies. Therefore, in order to be able to work with a DAC with 90 dB SFDR, 

improved digital filters should have better performance than 90 dB. This 

specification is chosen as 95 dB.  

A digital filter‟s SFDR performance is given by two factors: filter order and 

coefficient resolution. Although increasing one item may only bring small benefits, it 

is necessary to increase both, if large improvements are required.  

4.1.1. Higher order filters 

Increasing filter order is the first issue adopted from analog filter design. However, it 

is necessary to consider the digital implementation when increasing the filter order. 

In a FIR filter, increasing the filter order also increases the final adder tree. Number 

of leaves of the adder tree is desired to be 2
n
. If this is not satisfied, area of the filter 

does not become optimum. Figure 4.1 shows an optimum and non-optimum cases for 

the adder tree.  

During calculation of the new coefficients, number of leaves is targeted to be made 

2
n
. This value is made non-optimum, only when it is worth doing so (that is, when 

SFDR performance improves significantly).  
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   (a)            (b) 

Figure 4.1 : Examples of optimum (a) and non-optimum (b) adder trees. 

4.1.2. Larger bit coefficients 

Coefficient resolution is another item affecting the SFDR directly. Using larger bit 

coefficients reduces the quantization error between real numbered coefficients 

calculated from solving the transfer function for given inputs and quantized 

coefficients. However, using coefficients with more resolution increases the power 

consumption, the hardware cost and reduces the operating frequency of the filter, 

which now requires higher resolution multipliers.   

4.1.3. Obtaining filter coefficients 

Calculation of Filter coefficients is done with the MATLAB fdatool. In order to get 

filters with higher SFDR, filter order and coefficient word length parameters are 

chosen to be larger than the previous architecture. Comparison of the filter fdatool 

parameters and resulting filter specifications are in Table 4.1 

Table 4.1 : Comparison of fdatool parameters and resulting filter characteristics. 

Filter 

Name 

Filter 

Order 

Number 

of Coeff. 
w pass 

Word 

Length 

Effective 

WL 

SFDR 

[dB] 

1 old 54 14 0,4 16 15 79 

1 new 62 16 0,40021 19 18 98,3 

2 old 22 6 0,23 13 12 71 

2 new  22 6 0,2003 17 16 99,5 

3 old  14 4 0,195 14 13 79 

3 new 22 6 0,225 17 16 99,7 

After calculation, it is found out that Filter 2 and Filter 3 specifications are quite 

similar and Filter 3 can be used twice instead of Filter 2. By doing that, a small 

SFDR gain is obtained. In conclusion, Filters in Table 4.2 are used in the optimized 

design.  
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Table 4.2 : Filter characteristics used in the design. 

Filter 

Name 

Filter 

Order 

Number 

of Coeff. 

w pass Word 

Length 

Effective 

WL 

SFDR 

[dB] 

1 old 54 14 0,4 16 15 79 

1 new 62 16 0,40021 19 18 98,3 

2 old 22 6 0,23 13 12 71 

2 new  22 6 0,225 17 16 99,7 

3 old  14 4 0,195 14 13 79 

3 new 22 6 0,225 17 16 99,7 

Frequency responses of the Filters are given in Figure 4.2. 

  

           (a)            (b)          (c) 

Figure 4.2 : Frequency responses of the filters. (a):Filter-1, (b):Filter-2, (c):Filter-3. 

As mentioned before, main performance metric of the filters for the application is 

SFDR. However, in order to obtain other performance metrics of the designed filters, 

MATLAB simulations are performed. As a result, pass-band ripple of the filters are 

obtained as 2x10
-4 

dB (taken as 0) and SNR is calculated as 95.4 dB for F1 and 94.6 

dB for F2 and F3. Combined SNR is 93.4 dB. The visible ripple in the plots is a 

graphics artifact. Zoomed plots show 0.0002 dB ripple.  

4.2. SFDR Calculations of Improved Filters (with MATLAB) 

After designing the filters, SFDR calculations with respect to the Operation mode, 

Signal amplitude and Input frequency are updated for new coefficient sets.  

4.2.1. SFDR vs. operation mode 

As done with the previous design, optimized filters are simulated for different 

operation modes and SFDR is calculated for each one. At last, Computed SFDR 

values are plotted in Figure 4.3.  
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Figure 4.3 shows that worst SFDR is 99 dB and it becomes 99.5 dB at most. It is 

seen that the characteristics of the first four modes replicate themselves and a 

symmetric pattern is obtained like the previous design.  

 

Figure 4.3 : SFDR values wrt. operation modes. 

4.2.2. SFDR vs. signal amplitude 

Simulation setup with changing signal amplitude is modified to support using the 

new coefficients for filtering. SFDR values for signal amplitudes that vary from 0.1 

times to 0.9 times the maximum input range, are in Figure 4.4. 

 

Figure 4.4 : SFDR values wrt. signal amplitude. 

4.2.3. SFDR vs. input frequency 

In order to calculate the SFDR variation with respect to input frequency, the 

frequency of the input signal swept from 0 to 110 MHz and SFDR values are 

calculated for each step. In the end, results are plotted in Figure 4.5.  
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Figure 4.5 shows that, for %80 of the input signal bandwidth (up to 100 MHz in this 

case), worst SFDR is 99 dB. That is an acceptable value to use with a DAC having 

90 dB SFDR performance.  

 

Figure 4.5 : SFDR values wrt. signal frequency. 

4.3. New Modes and Peripherals 

During design of the optimized filters, it is decided to add new modes and features to 

the current system.  

4.3.1. Selectable interpolation modes: 8x, 4x, 2x, no int. 

In designed interpolation system, 3 filters with 2x interpolation are connected 

consecutively. That provides up to 8x interpolation. In the optimized design, 

interpolation feature is made selectable and new modes: 4x, 2x and no interpolation 

are added. That is done by disconnecting some filters in from the line and applying 

inputs to directly to output (no int.), to third filter (2x int.) or to second filter (4x int.) 

instead of applying them to first filter only. Associated block diagram of selectable 

interpolation cases is in Figure 4.6. 

Filter 1

2x Filter 2

2x Filter 3 

2x

Int. 

mode

Data 

In

Data 

Out

  

Figure 4.6 : Block diagram of selectable interpolation feature. 
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4.3.2. New modulation modes with filters 

Having new interpolation modes also allows new modulation modes. In other words, 

modulation with using only one or two filters is now possible instead of using always 

three filters. The complete table including new modulation modes associated with 2x 

and 4x interpolation are given in Table 4.3 

Table 4.3 : Complete table of operation modes. 

Code 

(10 bits) 

Inter- 

polation 
pre-mod F1 F2 F3 f_center 

F_center @ 

fDAC=2GHz 
DAC Outputs 

0-X-X-X No int. Bypass Bypass Bypass Bypass N/A N/A Independent 

1-X-X-0 2x Bypass Bypass Bypass 0 0 (DC) 0 (BB) Independent 

1-X-X-1 2x Bypass Bypass Bypass 1 fDAC/8 250 
 

1-X-X-2 2x Bypass Bypass Bypass 2 2fDAC/8 500 
 

1-X-X-3 2x Bypass Bypass Bypass 3 3fDAC/8 750 
 

1-X-X-4 2x Bypass Bypass Bypass 4 4fDAC/8 1000 Independent 

1-X-X-5 2x Bypass Bypass Bypass 5 5fDAC/8 1250 
 

1-X-X-6 2x Bypass Bypass Bypass 6 6fDAC/8 1500 
 

1-X-X-7 2x Bypass Bypass Bypass 7 7fDAC/8 1750 
 

2-X-0-0 4x Bypass Bypass 0 0 0 (DC) 0 (BB) Independent 

2-X-1-0/1 4x Bypass Bypass 1 0-1 fDAC/16 125 
 

2-X-2-1 4x Bypass Bypass 2 1 2fDAC/16 250 
 

2-X-3-1/2 4x Bypass Bypass 3 1-2 3fDAC/16 375 
 

2-X-4-2 4x Bypass Bypass 4 2 4fDAC/16 500 
 

2-X-5-2/3 4x Bypass Bypass 5 2-3 5fDAC/16 625 
 

2-X-6-3 4x Bypass Bypass 6 3 6DAC/16 750 
 

2-X-7-3/4 4x Bypass Bypass 7 3-4 7fDAC/16 875 
 

2-X-0-4 4x Bypass Bypass 0 4 8fDAC/16 1000 Independent 

2-X-1-4/5 4x Bypass Bypass 1 4-5 9fDAC/16 1125 
 

2-X-2-5 4x Bypass Bypass 2 5 10FDAC/16 1250 
 

2-X-3-5/6 4x Bypass Bypass 3 5-6 11fDAC/16 1375 
 

2-X-4-6 4x Bypass Bypass 4 6 12fDAC/16 1500 
 

2-X-5-6/7 4x Bypass Bypass 5 6-7 13fDAC/16 1625 
 

2-X-6-7 4x Bypass Bypass 6 7 14fDAC/16 1750 
 

2-X-7-7/0 4x Bypass Bypass 7 7-0 15fDAC/16 1875 
 

3-0-0-0 8x 0 0 0 0 0 (DC) 0 (BB) Independent 

3-1-1-0/1 8x 1 1 1 0-1 fDAC/16 125 
 

3-2-2-1 8x 0 2 2 1 2fDAC/16 250 
 

3-3-3-1/2 8x 1 3 3 1-2 3fDAC/16 375 
 

3-0-4-2 8x 0 0 4 2 4fDAC/16 500 
 

3-1-5-2/3 8x 1 1 5 2-3 5fDAC/16 625 
 

3-2-6-3 8x 0 2 6 3 6DAC/16 750 
 

3-3-7-3/4 8x 1 3 7 3-4 7fDAC/16 875 
 

3-0 -0-4 8x 0 0 0 4 8fDAC/16 1000 Independent 

3-1-1-4/5 8x 1 1 1 4-5 9fDAC/16 1125 
 

3-2-2-5 8x 0 2 2 5 10FDAC/16 1250 
 

3-3-3-5/6 8x 1 3 3 5-6 11fDAC/16 1375 
 

3-0-4-6 8x 0 0 4 6 12DAC/16 1500 
 

3-1-5-6/7 8x 1 1 5 6-7 13fDAC/16 1625 
 

3-2-6-7 8x 0 2 6 7 14fDAC/16 1750 
 

3-3-7-7/0 8x 1 3 7 7-0 15fDAC/16 1875 
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Modes of F1 (mode 0 to 3), F2 and F3 (mode 0 to 7) operate similar with the 

previous design. So it is not repeated here.  

First column of Table 4.3 shows the 10-bit code that is to be written to Filter Register 

0 to activate associated operation mode. Second column shows the interpolation rate 

of the mode. Next four columns represent modes of the filters and pre-modulation 

features. Other two columns show center frequency that the baseband signal 

modulated to. Last column gives the information of the DAC outputs are independent 

or not. Complex modulation results in dependent outputs where non-complex 

modulation results in independent outputs.  

Frequency spectrum plots of the first four modes of operation are given in Figure 4.7. 

Rest of the plots is in Appendix P.  

  

            (a)            (b) 

  

          (c)           (d) 

Figure 4.7 : Output spectrums of first four operation modes. (a): No int., (b): 2x int. 

baseband, (c): 2x int. FDAC/8, (d): 2x int. 2FDAC/8 
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4.4. HDL Differences 

HDL models of the new filters are mostly like the previous filters, but with small 

changes. Those changes in HDL level are increasing filter order, larger bit 

calculations and peripherals to insert new modes as mentioned above. 

To increase filter order, length of the first shift register, number of multiplications, 

and leaves of the adder tree are increased. Increasing coefficient bit length and 

calculation sensitivity is done by increasing the bit lengths of the multipliers, adders 

and the registers which the results are written to. Finally, multiplexers which are 

given in Figure 4.6 are added to system to maintain the new modes. 

4.5. Synthesis, PAR & Layout Results 

After generation of the HDL models, the new design is synthesized, placed and 

routed. This section describes the implementation of the design to silicon.   

4.5.1. Synthesis 

Synthesis of the design is done by Cadence‟s RTL compiler tool. Artisan‟s 0.18 μm 

gate library and typical condition delay library is used for timing specification. 

To synthesize the design to gates, RTL compiler is programmed via a TCL script. 

That script contains the addresses of the Verilog and library files read by the tool, 

constraints of design and commands that perform steps of the synthesis. File names 

and commands can be found from the script in Appendix R. The constraints and the 

reasons for selecting such constraints are explained in this section.  

First set of constraints for the synthesis are related to the clock. That is given by 

“define_clock” command. Period of the slowest clock (1X) of the system is written. 

For other clocks (2x, 4x, 8x), the same period value and “divide_period” option is 

used. Fastest possible operating speed is desired for filters; therefore, period value is 

chosen as small as possible. After some iterations, smallest period value is found to 

be 5800ps, which implies 5800/8 = 725 ps for the fastest clock period. 

Second group of constraints is “external_delay” which specifies delays for input 

signals according to a rising edge of the driving FF‟s clock and for output signals 

according to a rising edge of the load FF‟s clock. These values are chosen according 
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to clock-to-Q delays of the FFs (300ps) for the inputs and setup time required 

(100ps) for the FFs for the outputs.  

Next constraint group specifies the retiming process. All registers except the ones to 

be retimed are marked as “dont_retime true”. By doing that, unnecessary registers 

are not prepared for retiming by the tool and retiming process becomes more 

efficient as computation is done with less number of registers [23]. 

Rest of the script contains a command that makes the tool synthesize with high 

effort. That makes the tool to find a better solution for the design.  

Summary of the timing and area reports of the synthesized design are in Table 4.4. 

Table 4.4 : Summary of the synthesized design. 

Maximum Clock 

Frequency [GHz] 

# of Cells 

Used 

Area for Cells 

[μm x μm] 

Area for Nets 

[μm x μm] 

Total Area 

[μm x μm]  

1,38 35969 1124 x 1124 693 x 693 1321 x 1321 

4.5.2. PAR 

As mentioned in the previous design, the improved design is also placed and routed 

with the Encounter tool of Cadence. A modified version of the former TCL script 

(previously done for the Lfoundry 0.15 μm CMOS process) was used for PAR. 

Moreover, new strategies and methods are used for the PAR of the improved filter 

architecture designed for the TSMC 0.18 μm CMOS process.  

During Place, floorplan of the design was more critical than before. As operating 

frequency of the system is nearly at the limits of the process and power consumption 

of the system is high, power distribution becomes the main issue. To better handle 

power distribution, power hungry blocks like Filter-3 are located near VDD and 

GND pins to reduce resistance of the power lines. Besides, less power hungry blocks 

like Filter-1 are located farther away. In the end, floorplan of the design becomes 

rectangular-shaped, with one of the long edge being directly connected to VDD and 

GND pins of the chip. Other tools to cope with power distribution are increasing the 

widths of VDD and GND lines between logic gates (Metal-1 layer) and adding 

horizontal and vertical stripes all around the floorplan.  

During the route phase, it is found that, a large number of thick stripes make routing 

difficult and even impossible. So within some iteration, optimum stripe width and 
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number are found and used. At the end of routing, optimizations are performed with 

“optDesign” command, which makes worst paths better and area smaller. 

After PAR, power analyses were made to find VDD drop and power consumption of 

the design. With 1.2GHz operation speed, total dynamic power consumption of the 

system is found as 1,826W. IR-drop graph of the design is given in Figure 4.8.   

  

Figure 4.8 : IR-drop plot of the design. 

As seen from Figure 4.8, worst IR-drop reduces VDD voltage from 1.8V to 1.67V. 

VDD and GND pins are connected to upper left and right corners of the layout. The 

TCL script used for PAR flow is in Appendix E. 

4.5.3. Layout 

After PAR, layout is generated and exported as a GDS-II file. Then, GDS-II file is 

read using Cadence‟s layout-XL editor and put together with other analog and digital 

layouts of the chip. Layout of the filters is obtained as in Figure 4.9. 

 

Figure 4.9 : Layout of the routed filters. 

In Figure 4.8, cell area of the layout is 800 μm x 2600 μm and total area of the layout 

is 1200 μm x 3000 μm.  
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4.6. Post-PAR Simulations 

After implementation, post-PAR simulations were performed to check the 

functionality and specifications of the routed design. Simulations are run in NCSim 

simulator of Cadence. 

Difference of post-PAR simulations from behavioral simulations is that, post-PAR 

simulations contain a SDF file, which includes delays of the cells and interconnects 

in the simulations. Thus, simulations become more realistic. Acquired SDF file is 

given in Appendix E. 

As mentioned before, key metrics of the system are SFDR performance and 

operating frequency. In addition, group delays of the filters are calculated at post-

PAR simulations. Results are given in Table 4.5. 

Table 4.5 : Group delays of filters. 

Group Delay Filter-1 Filter-2 Filter-3 
Total 

# of Filter-X clock cycles 18 10 12 

# of DAC clock cycles 18 x 8 = 144 10 x 4 = 40 12 x 2 = 24 208 

4.6.1. Max operating frequency 

During PAR step, connection delays are added to models which reduce maximum 

operation frequency of the system. In order to find the new value, timing analyses are 

performed after the PAR step. Result of the timing analysis is given in Table 4.6 

Table 4.6 : Result of the timing analysis at PAR step. 

Setup mode all Reg2reg In2reg Reg2out 

WNS [ns] -0.075 -0.075 0 -0.047 

TNS [ns] -3.623 -3.496 0 -0.127 

Values in Table 4.6 are taken from output file of the timing analysis. Acronym WNS 

stands for worst negative slack which gives maximum operating frequency of the 

system. TNS is the total negative slack which is a performance parameter and not 

directly effects the calculation of the operating speed. Reg2reg stands for the delay 

value between registers, In2reg is delay between input to register and Reg2out is the 

delay between register and output pin.    

According to Table 4.5, worst delay path between the registers is increased by 75ps 

and delay between a register to an output is also increased by 47ps. In this situation, 
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worst value is taken into consideration and 75ps is used for calculations. When this 

value is added to 725ps, which comes from cell delays (found at synthesis step), 

worst delay of the system becomes 800ps. That makes maximum operating 

frequency 1,25GHz under typical conditions.  

4.6.2. SFDR of output 

SFDR of the output signal is expected to be equal to the one found with MATLAB 

models. Reason of this expectation is that, no functional change happens during the 

implementation step but only physical effects like adding delays occur. To show if 

the filter operation is still as desired, a post-PAR simulation is made. Verilog 

testbench is written so that, signal at the filter output is written to file in a format 

readable for MATLAB. Then, file containing the post-PAR simulation data is 

imported to MATLAB and compared with the MATLAB model output. At the end, it 

is seen that both results exactly match. Thus, SFDR values given in Section 4.2 can 

be taken as the result of the post-PAR SFDR result. No more plots will be given here 

for that reason.  
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5. DESING VERIFICATION USING AN FPGA 

Although only oversampling filters and modulators are being mentioned so far, the 

complete digital system also contains a clock divider, two RAMDACs, two binary to 

thermometer segment encoders with a circuit for DAC output mode selection (NRZ, 

RZ, PM) and a control block bound to a Serial Peripheral Interface (SPI) block. The 

details of all these blocks are given in Appendix C. Block diagram of the complete 

digital system is given in Figure 5.1.  
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Figure 5.1 : Block diagram of the digital system. 

In this section, the FPGA verification of the clock divider, digital filters and 

modulators, control block, RAMDAC and SPI is presented. SPI is the interface sets 

the operating modes of the filters and captures the data at filter outputs for serial 

read-back.  
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5.1. Test Cases 

During test case preparation, it is aimed to start with a simplest case and continue 

with more complex ones. Moreover, attention is given to make the test flow as 

similar as possible to the test flow of a real DAC chip. 

5.1.1. Read and write operations on registers 

Most basic instruction that can be given to SPI interface is reading from and writing 

to a register. These operations are required to set the operating modes of the filters 

and to read filter outputs from the SPI interface. Besides, trimming current cells of 

the DAC and changing offset and gains of the analog blocks are possible using the 

SPI interface.  

5.1.2. Fuse blowing 

Using the SPI, it is possible to blow fuses of the chip. It is done by writing desired 

value to mask register of the fuse and then, by sending a fuse blow command. After 

blowing a fuse, it is also possible to check the value written to the fuse by reading the 

register that samples the fuse output via SPI.  

5.1.3. Setting filter modes  

Setting Filter modes is a simple write operation to a register. That register is named 

as “Filter Reg 0”. That is a 16-bit register that contains filter mode data for three 

interpolation filters and that sets 2x, 4x, 8x or no interpolation as interpolation 

modes. Also, it contains RAMDAC w enable, RAMDAC i enable and RAMDAC r 

enable registers which will be discussed in section 5.1.6. Explanative block diagram 

for “Filter Reg 0” is in Table 5.1. 

Table 5.1 : Filter Reg 0 register 

Reserved 
RAMDAC 
w enable 

RAMDAC 
i enable  

RAMDAC 
r enable 

Int. Mode 
(1:0) 

Filter 1 
(1:0) 

Filter 2 (2:0) Filter 3 (2:0) 
 

 X X X 0 0 0 1 1 1 0 0 1 0 0 0 1 

According to Table 5.1, the value of Int. Mode register is 3, which refers to 8x 

interpolation. 2 is for 4x and 1 is for 2x modes. If this value is 0, no interpolation is 

performed and the input data is directly sent to the DAC. 
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Filter modes are as they are explained in section 3.1.3. In the above example, Filter 1 

is in mode 2, Filter 2 is in mode 2 also and Filter 3 is in mode 1.  

After setting filter modes, parallel data to filters is applied and the input of the DAC 

is observed. If the DAC input is the same as expected, setting filter mode is 

successful. 

5.1.4. Applying 16-bit parallel data 

After setting different filter modes, 16-bit data is applied to the input and filters are 

allowed to work. At the end, some or all output data is compared with MATLAB 

simulations.  

5.1.5. Reading filter outputs 

For a real application, it is not possible to read the digital data that filters produce in 

a DAC chip. In order to test filter outputs, some registers controlled by the SPI is 

inserted to chip. By using these registers, data at filter outputs can be sampled and 

read back using the SPI. Those registers have the same name with the filter outputs.  

To read data at filter outputs, first it is necessary to stop the filter clocks to prevent 

data from being changed. Then, a write command is sent to the appropriate register. 

The register samples the filter output. After that, a read command is sent and the 

sampled data is read with the SPI. 

5.1.6. Filling and reading the RAMDAC 

The term RAMDAC is used for the register matrix that is placed as a barrel shifter, 

which has 16-bit parallel data width and a selectable depth (before synthesis). That 

matrix is used to send very high speed data to the DAC internally. By doing this, it is 

desired to test the DAC‟s analog performance at the limit of the sampling speed.  

Filling the RAMDAC requires a write operation to registers “RAMDAC_in_r” and 

“RAMDAC_in_i” and a shift operation which makes RAMDAC sample the input 

given. But initially, “RAMDAC w enable” register should be set to enable 

RAMDAC registers. Then, one or both the “RAMDAC r enable” and “RAMDAC i 

enable” registers should be set to enable the real and imaginary inputs to the DAC.  

After completion of the write operation, “RAMDAC w enable” should be reset, in 

order not to change the value during normal operation. If reading the RAMDAC data 



62 

 

is desired, “RAMDAC_out_r” and “RAMDAC_out_i” registers can be read after 

giving a successful write command to them. If a shift and another write are applied, 

next data is ready to read at related RAMDAC_out register.  

5.2. Behavioral Tests 

5.2.1. Introduction & tools 

Behavioral FPGA tests are done using the ISIM simulator of Xilinx. A testbench is 

written to test the functionality. Using the testbench, inputs of the systems are driven 

according to verify the test cases explained in 5.1.  

Testbench has two tasks, which generate serial data that is used to drive the SPI. 

Testbench uses tasks described below to apply serial data with a high level interface.  

Task SPI_CB_TASK has three inputs. First input is a string which defines the 

command type. That can be write, read, fuseblow or reserved. Second input has 11 

bit width, which specifies the address associated with the command to be performed. 

Third input is an 8-bit data associated with the command. Purpose of this task is 

converting those inputs to serial and applying them to the SPI interface.  

Task SPI_CB_TASK_24 has similar inputs with 24-bit data. This task is used when 

writing to and reading from the shift registers (trim registers) with 24-bit width. It 

calls SPI_CB_TASK 3 times with sending its data from MSB 8 bits to LSB 8 bits.  

Testbench also writes states of inputs and outputs to a file in order to compare them 

with Logic Analyzer outputs to check errors. 

5.2.2. Read and write on registers 

In order to test read and write operations in behavioral domain, SPI_CB_TASK_24 

task is used. Firstly, write operation is tested by the following line in testbench.  

SPI_CB_TASK_24("write", 11'h001, 24'hACABA0); 

Task call given above generates serial data that includes write command to address 

“1” and with 24-bit data “ACABA0”. After it is applied, the content of the shift 

register with address “1” is checked and it is seen that it is written correctly. 

After writing, similar command is given for read operation. Associated task call is 

given below. 
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SPI_CB_TASK_24("read", 11'h001, 24'h000000); 

Read task contains a command type and register address “1”. 24-bit data should also 

be applied but its content is not important. After reading is completed, bits read are 

examined and seen that they are correct. Moreover, content of the shift register is 

checked again and seen that it is not corrupted.  

5.2.3. Fuse blow tests 

Fuse blow test is a four step procedure which includes writing data to mask register, 

sending fuse blow command, sampling data at the output of the fuse and in the end, 

reading data at the output of the fuse. Associated task calls are given below. 

  SPI_CB_TASK_24("write", 11'h002, 24'h800000); 

  SPI_CB_TASK("fuseblow", 11'h003, 8'h00); 

  SPI_CB_TASK("write", 11'h003, 8'h00); 

  SPI_CB_TASK_24("read", 11'h003, 24'h000000); 

First task is just like writing to an ordinary shift register. But this time, there is a fuse 

at the output. Second task is a special command that blows the fuse at a given 

address. In this example, the fuse address is “3”. Third task looks like an ordinary 

write command but with a difference: there is a parallel-input shift register with 

address “3”. When third task is called, Register at address “3” samples its 24-bit 

input data which is connected to output of the fuse. Bu doing that, the fuse data is 

prepared for being sent serially. The last task is an ordinary read task, which outputs 

24-bit data serially.  

After simulation, it is seen that the fuse is blown according to the applied bit-stream. 

5.2.4. Filter mode tests  

Setting the Filter modes is performed by writing appropriate mode data to “Filter Reg 

0” register resides at address “301”. As operation is so simple and will be repeated in 

the following section, it is not explained here. When data is written to a register, 

filter modes are set correctly according to the behavioral simulation. 

5.2.5. Applying 16-bit data 

Applying 16-bit data to system is done by reading a 16-bit sine data from a file 

generated by MATLAB. Data read is applied to parallel data inputs of the system 
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synchronous with the clock input, clkin. At the same time, filter outputs are written 

to a file which will be opened with MATLAB and its SFDR value will be checked.  

After the simulation, output waveforms obtained from filter outputs are examined 

and it is seen that the filter operations are accurate. Moreover, data points are loaded 

to MATLAB to see if a difference is present or not. It is seen that same results with 

MATLAB models are obtained.  

5.2.6. Reading filter outputs 

Reading filter outputs is a two phase procedure which contains a sample command 

and a read command. Sample command makes shift register sample the associated 

filter output and read command performs a conventional read operation. An example 

commands for reading Filter-1 outputs are given below. 

  SPI_CB_TASK("write", 11'd378, 8'h00); 

  SPI_CB_TASK("write", 11'd379, 8'h00); 

  SPI_CB_TASK_16("read", 11'd378, 16'h0000); 

  SPI_CB_TASK_16("read", 11'd379, 16'h0000); 

Register in address 378 samples real output of Filter-1 and register in address 379 

samples imaginary output of Filter-1.  

5.2.7. Filling and reading the RAMDAC 

To start writing to the RAMDAC, associated enable bits in Filter Reg 0 should be 

set. Following command is sent. 

  SPI_CB_TASK_16("write", 11'd301, 16'h1F00); 

With this command, writing to both real and imaginary RAMDACs is enabled. After 

that, writing to registers is performed. Following two commands writes data to 

“RAMDAC_in_r” and “RAMDAC_in_i” registers.  

  SPI_CB_TASK_16("write", 11'd374, 16'h0001); 

  SPI_CB_TASK_16("write", 11'd375, 16'hA000); 

After that, a clock edge is given from clkin input to make RAMDAC registers shift 

the given data. Associated code part is below. 
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  # 10 clkin = 0; 

  # 10 clkin = 1; 

  # 10 clkin = 0; 

Now, the RAMDAC is ready to sample a new data. Above data writing process is 

repeated 3 more times with different data to fill RAMDAC. In the end, content of 

RAMDAC registers are checked and it is seen that data is written to correct 

locations.  

After filling is successful, reading the RAMDAC is tested. First, write enable of 

RAMDAC is disabled by giving following command.  

   SPI_CB_TASK_16("write", 11'd301, 16'h0F00); 

Then, RAMDAC data are sampled to “RAMDAC_out_r” and “RAMDAC_out_i” 

registers for reading. Finally, registers are read by applying read commands. 

Mentioned commands are given below.  

  SPI_CB_TASK("write", 11'd376, 8'h00); 

  SPI_CB_TASK("write", 11'd377, 8'h00); 

  SPI_CB_TASK_16("read", 11'd376, 16'h0000); 

  SPI_CB_TASK_16("read", 11'd377, 16'h0000); 

Within first read, first data that is written to RAMDAC is taken out. Therefore, it can 

be said that RAMDAC has FIFO architecture. To read second data, RAMDAC data 

should be shifted. This is done with the following code.  

  # 10 clkin = 0; 

  # 10 clkin = 1; 

  # 10 clkin = 0; 

To read second data and the rest; sampling, reading and shifting is repeated. During 

tests, it is seen that data is read correctly and register contents are not corrupted.  

5.3. Testing with Logic Analyzer 

Once behavioral tests succeed, Verilog code of the whole system is implemented 

using an FPGA.  
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5.3.1. Test setup 

Hardware test setup contains a Logic Analyzer that also has pattern generator 

functionality and an FPGA that implements the system under test. Block diagram of 

the hardware test setup is in Figure 5.2. 

 

Figure 5.2 : Hardware test setup. 

For consistency, it is important to use the same input stream for both behavioral and 

hardware tests. In order to do that, input stream for FPGA tests are also generated by 

behavioral testbench. That is done by the following code part. 

always@(por, fsync, sclk, sdin, clkin)begin 

  $fwrite(file3,"%h\n",{3'h0, clkin, sdin, sclk, fsync, por}); 

 end 

Above code writes inputs of the system to a file when one of them is changed during 

behavioral tests. Then, file is read by pattern generator to generate the same inputs 

for Hardware tests. By this test setup, it is possible to take same outputs from both 

behavioral and hardware tests.  

5.3.2. Basic comparison 

For basic functionalities like writing to/reading from a register, comparing behavioral 

simulation and Logic Analyzer output waveforms is a fast way of detecting 

equivalency. In Figure 5.3, behavioral simulation and Logic Analyzer output 

waveforms containing one write and one read command are given.  



67 

 

 

Figure 5.3 : Behavioral simulation (Upper) and Logic Analyzer output 

(Lower) waveforms. 

According to Figure 5.3, it can be said that waveforms of output signal “sdout” are 

the same and the hardware and the behavioral models have the same functionality. 

5.3.3. Automatic comparison 

Comparing waveforms of behavioral simulation and Logic Analyzer outputs is not 

difficult for short simulations with a small amount of data. However, when 

complexity increases and data to be compared become huge, it is indispensible to 

make the comparison process automatic. Therefore, a C program is used to compare 

outputs of the behavioral simulation and the Logic Analyzer.  

First step for comparison is generating the data to be compared with a proper format. 

It is decided to use a format similar to Logic Analyzer export file.  
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Outputs of the Logic Analyzer are written to a file by selecting export option from 

file tab. Outputs of behavioral simulation and Logic Analyzer are given in Figure 

5.4. 

 

  (a)              (b) 

Figure 5.4 : Output files of simulation (a) and Logic Analyzer (b) for comparison 

Files in Figure 5.4 are loaded to a C program which reads, compares and determines 

the equality. After every simulation, outputs are compared and C program gives the 

output seen in Figure 5.5. 

 

Figure 5.5 : Output of C program when input files are equivalent. 

C program also shows non-equal lines of input files which eases debugging. An 

example of C program output when the input files are not equivalent is in Figure 5.6.  

 

Figure 5.6 : Output of C program when input files are not equivalent. 
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6. CO-SIMULATION WITH AN ANALOG DAC 

The digital interpolation system with modulation feature that forms the content of 

this work is designed to work with a DAC. Thus, this section is devoted to use the 

digital system with a DAC (designed in a different study). The design automation 

environment that supports the simulation of a digital system and an analog DAC is 

also included in this section. 

6.1. Presentation of the DAC Taken from a Different Work 

The DAC is a high speed, 16 bit DAC with segmented (31 unary scaled MSB, 11 

binary scaled LSB) current cells. It is designed to optimize the SFDR performance of 

a standard architecture with a PMOS switch and double cascode current source. The 

DAC draws 20 mA full scale current from a 3.3 V supply and is expected to operate 

well above 1.28 GSPS. With a 12.5 Ω load to ground, this DAC generates a 500 mV 

peak to peak differential signal. The current steering architecture of the DAC is given 

in Figure 6.1. 
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Figure 6.1 : Current steering architecture used in the DAC. 

The unit cell of the DAC is also shown in Figure 6.1. This unit cell draws 80 uA 

current from a 3.3 V supply. The unary cells include eight unit cells. 

At 1.28 GHz clock speed, using 0.5V peak to peak voltage swing on a 25 Ω 

differential load, the DAC SFDR is 99 dB and 78 dB at 40 MHz and 240 MHz 

output frequencies respectively. 99 dB SFDR (DAC only) plot is given in Figure 6.2. 
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(a)           (b) 

Figure 6.2 : Output of the DAC in time (a) and frequency (b) domain. 

6.2. Co-simulation of the Filter and the DAC 

In order to simulate the digital system with the DAC, a simulation schematic is 

generated based on the block diagram in Figure 6.3. 
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Figure 6.3 : Block diagram of simulated blocks and simulation tools. 

6.2.1. AMS simulator 

This simulator can simulate a system which contains analog and digital blocks. AMS 

requires a configuration file which shows calculation engines for the blocks to be 

simulated. An example of an AMS configuration file is given in Figure 6.4. 

As seen in Figure 6.4, “verilog” views are present for digital blocks whereas 

“spectre” views are present for analog blocks. Apart from these two, “schematic” 

views are the top level models for both views.  
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Figure 6.4 : Configuration file for AMS. 

Setting views for blocks makes AMS to choose the appropriate simulation engine for 

these views. AMS automatically selects NCSim for simulating Verilog models (of 

digital blocks) and Spectre for simulating Spectre models (of analog blocks). 

6.2.2. Applying inputs and setting modes 

Applying digital inputs to digital blocks is done by a testbench-like driver written in 

Verilog. This block generates signals like the SPI signals, the parallel data and the 

clock signal. Then, these signals are applied to the digital system to be simulated.  

First phase of the simulation is setting the filter modes. This is done by writing 

appropriate bits to “Filter reg 0” via SPI. For this simulation, 8x interpolation with no 

modulation is chosen. After that, 16-bit parallel data and clock is applied.  

Outputs of the digital system are connected to the DAC. But, as outputs of the digital 

system consists of logic 1s and 0s, they should be converted to analog levels. Rules 

of this conversation procedure are defined in a rules file, in library “Connectlib”. 

6.2.3. Conversion interface: connectlib 

The interface that converts logical signals to analog signals is managed by rules in 

Connectlib. For that conversion, it is necessary to define voltage levels for logic 1 
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and 0. Besides; transition time, on and off resistances of interface should be set. 

Values used in this simulation are given in Table 6.1. 

Table 6.1 : Conversion parameters for the interface. 

Vsup Vthi Vtlo Tr Rlo Rhi Rx Rz 

1.8 1.2 0.6 40p 200 200 40 10M 

In Table 6.1, Vsup stands for supply voltage. It is the value equivalent to logic 1. 

Vthi and Vtlo are used when analog values are converted to digital. So, they are left 

at typical values given in Connectlib. Tr is rise time, chosen as 40 ps as in digital 

simulations. Rlo and Rhi are resistance values when output is logic 0 and 1 

respectively. These values are left unchanged. Rx and Rz are resistances when output 

is logic-X or high-Z. As this simulation does not contain these values at normal 

operation, these values are kept as suggested values for TSMC 0.18 μm technology.  

6.3. Simulation Results 

After simulation, voltage difference between two differential DAC outputs is plotted 

in both time and in frequency domains. Resulting plots are in Figure 6.5. 

  

(a)           (b) 

Figure 6.5 : Time (a) and frequency (b) plot of signal at DAC output. 

In Figure 6.5, it is seen that 99 dB SFDR is obtained from DAC outputs. This value 

is less than the SFDR value of the filter (102 dB) for this frequency (40 MHz). As a 

result, it can be argued that digital filtering system does not worsen SFDR 

performance of the DAC and SFDR of the output is determined by the DAC, not by 

the digital system.  

Details of the AMS simulations are given in Appendix A. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Results and Conclusions 

In this study, a digital interpolation and modulation system is designed for a two 

channel high performance communications DAC. A MATLAB model of an 

interpolation and modulation system is created and simulations are performed. After 

desired specifications are met in MATLAB environment, a digital behavioral design 

is done in Verilog language to reflect the MATLAB model. The verilog code is 

synthesized using TSMC 0.18 μm standard gate library (Artisan) and place and route 

(PAR) operations are performed. Delays are extracted and post-PAR simulations are 

done. Extracted delay information is also used in mixed mode co-simulations with a 

DAC.  

Performance Summary of the digital filters is given in Table 7.1. 

Table 7.1 : Summary of system specifications. 

 F1 F2 F3 Total 

Filter order 62 22 22 - 

Number of Coefficients 16 6 6 - 

Bit length of Coeff.s 18 16 16 - 

Number of Modes 4 8 8 41 

Pass-band Ripple [dB] 2x10
-4

 2x10
-4

 2x10
-4

 6x10
-4

 

Group Delay [clk] 18 (144) 10 (40) 12 (24) 208 

SFDR [dB]  

 
98.3 99.7 99.7 99 

SNR [dB] 95.4 94.6 94.6 93.4 

Area [mm
2
] (dual channel) - - - 1.2 x 3 

Power [W] (dual channel) - - - 1.826 

Speed (dual channel) - - - 1.2 GSPS 

Gate Count (at synthesis) - - - 35969 

Comparison of the performance of our design with existing designs can be seen in 

Table 7.2. 
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Table 7.2 : Comparison of the work with best products. 

Company Part name SFDR [dB] 
Max. data 

rate [MSPS] 
Power in 

datasheet 

Power for 

Comparison 

Analog 

Devices 
AD9122[4] 

85 (@ %80 

bandwidth) 
1230 

1.55 W  

(@1.2 GSPS) 

1.55 W  

(@1.2 GSPS) 

MAXIM MAX5898[8] 
95 (unknown 

bandwidth) 
500 

702 mW 

(@500 MSPS) 

1.685 W 

(@1.2 GSPS) 

TI DAC5689[9] 
80 (@ %80 

bandwidth) 
800 

774 mW 

(@500 MSPS) 

1.858 W 

(@1.2 GSPS) 

This 

Work 

Improved 

Design 

99 (@ %80 

bandwidth) 
1200 

1.826W  

(@1.2 GSPS) 

1.826 W 

(@1.2 GSPS) 

In addition to the interpolation and modulation system, digital blocks like the 

decoders, the SPI, the control block, the RAMDAC and the register blocks are added 

to complete the digital system. The digital system also sets the output mode (NRZ, 

RZ, and PM) of the DAC. The complete system is verified in an FPGA environment. 

7.2. Recommendations and Future Work 

Future work can include the tape out and the testing of the interpolating and 

modulating dual channel DAC chip. The power and SFDR trade-off of the digital 

block can be characterized in various CMOS technologies. Scan technology can be 

added and its effects on speed can be analyzed. Techniques can be explored to reduce 

the power consumption and to balance the self-heating between real DAC and 

imaginary DAC. 
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APPENDIX A 

AMS simulation is like an ordinary spectre simulation in Cadence with some minor 

changes. In this section, these changes and details of AMS simulations made in this 

work are given. 

A.1. Importing CORELIB 

Post-PAR verilog file contains logic gates defined in Artisan library. For simulation, 

verilog models of these gates should be defined to simulator. 

A new library named CORELIB is created with Cadence‟s library manager. Then, in 

icfb window import-> verilog is chosen. After that following lines are filled in the 

opened window: Target Library Name: CORELIB, Verilog Files to Import: 

tsmc18.v, Import Module as: schematic and functional, Verilog Cell Modules: 

Import. 

A new library named CORELIB is filled with gate models defined in tsmc18.v file.   

A.2. Importing Verilog Model File and SDF in Library Editor 

To import the post-PAR verilog file, it should be renamed first. Name should be 

verilog.v. Moreover, verilog file should call SDF file with “$sdf_annotate” 

command. Syntax is:  

initial $sdf_annotate(“address_of_sdf_file”); 

After that, a new cellview is creted with File -> new -> cellview. At last, in icfb 

window, import-> verilog is chosen. After that following lines are filled in the 

opened window: Target Library Name: SIM_LIB, Reference Libraries: CORELIB, 

Verilog Files to Import: verilog.v, Import Module as: schematic and functional, 

Verilog Cell Modules: Import. 

A.3. Creating Test Schematic 

After importin verilog files, a test schematic is created with file -> new ->cellview. 

Test schematic contains a driver circuit. That works like a testbench in digital 

simulations. Next, digital system is added and connected to driver circuit. At last, 

DAC is added and connected to digital system. With DAC; bias circuit, VDD voltage 

supply etc. should also be added. Logic outputs of digital system are directly 
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connected to analog inputs of the DAC in this schematic. Conversion is performed 

with configuration files of AMS. 

A.4. Configuration File 

Configuration file is generated with File –> new -> cellview. Cellname is chosen as 

same as name of test schematic, view name and type should be chosen as config. 

Application should be opened with hierarchy editor. 

In the newly window, Use template button is hit and AMS is selected. Then, OK is 

hit. Template becomes selected now. Then, view is changed to schematic, Library 

list should be SIM_LIB and CORELIB. Then, OK is hit. 

In configuration window, views should be checked. It they are OK (verilog for 

digitals, schematic & spectre for analogs), it is closed. Configuration file is now 

ready to use. 

A.5. Transient Simulation (AMS and APS) 

For a transient simulation, newly created “config” view is selected and both yes‟es 

are selected in the opened window. After that, ADE L is opened with simulation –> 

ADE L. Outputs to be plotted, transient simulation parameters etc. are selected. 

In Setup -> simulator/directory/host, “ams” is selected. Then in Setup -> high 

performance options, APS is selected.  

A.6. ConnectLib 

Last thing to select is connection rules. As it is necessary to convert digital signals to 

analog, Setup –> Connect Rules is selected. After that, Rules name is changed to 

connectLib.ConnRules_18Vfull_fast. If more modifications like changing rise and 

fall times is desired, copy of this file can be used and changed. It is necessary to 

select the modified file in this screen for that case.  

A.7. Run 

When all things are set as told, run is hit in ADE L screen and simulation is begun. 
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APPENDIX C  

C.1. Clock Divider 

Clock divider contains shift registers that divide input clock signal by 2, 4, 8 and 16 

to create clock signals to be used by the filters. Input clock is connected to clock 

input of the flip-flops and clock is divided with respect to the length of the shift 

register. Verilog code of the clock divider circuit is in Appendix V.  

C.2. Filters 

Interpolation filters with modulation capability is the main topic of this work. They 

are already explained in Section 4 in detail.  

C.3. Registers 

In the complete design, many memory cells are used in order to write/read data 

to/from internal circuits of the chip. Every memory cell has a unique address.    

C.3.1. Register map 

Addresses of the memory cells are put together in a register map given in Table C.1. 

C.3.2. Trim registers (0-255) 

Trim registers are used to trim current cells of the DACs. They are programmed by 

SPI to correct mismatch errors due to process variations. Every address has a 

memory cell with 24-bit length. 

C.3.3. Filter registers (301-302) 

Filter registers are used to set the operation mode of the chip. Description of Filter 

Reg 0 was given in Section 5.1.3.  

Filter Reg 1 controls the modes of the DAC output. When modulation mode bits are 

set to 00 or 01, DAC outputs are non-return to zero (NZR) form. When it is 10, DAC 

outputs has return-to-zero(RZ) behavior. If it is set as 11, Outputs of the DAC 

becomes plus-minus (PM) of the input signal. For the last two cases, DAC clock 

frequency becomes twice of the fastest clock used in Filters. Bits of the Filter Reg 1 

are given in Table C.2. 
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Table C.1 : Register map. 

Address Name Functionality 

0 
24-Bit trim word 

for current cells 

2x512 current cells 

requires 256 

registers with 6 bits 

  

255 

256 Offset adjust 

Reserved for Future 

Use 

257 Gain Adjust 

258 Iout Level Adjust 

259 

Clock Current 

Adjust 

260 

Clock Offset 

Adjust 

261 
Bandgap offset & 

Drift Adjust 
  

276 

277 
LVDS Receiver 

current adjust 
  

284 

285 
LVDS Receiver 

offset adjust 
  

300 

301 Filter Reg 0 int. & filter modes 

302 Filter Reg 1 mod. modes 

303 
Reserved 

addresses 

Reserved for Future 

Use 
  

373 

374 RAMDAC_in_r regs to fill 

RAMDAC 375 RAMDAC_in_i 

376 RAMDAC_out_r regs to read 

RAMDAC 377 RAMDAC_out_i 

378 dout_1_r 

regs to read Filter 

Outputs 

379 dout_1_i 

380 dout_2_r 

381 dout_2_i 

382 dout_3_r 

383 dout_3_i 

Table C.2 : Filter Reg 1 register. 

Reserved 
Mod. 

Mode  

 X X X X X X X X X X X X X X 0 0 
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C.3.4. RAMDAC registers (374-377) 

RAMDAC registers are used to write data to the RAMDAC and check its content. To 

write data to RAMDAC, data is written to RAMDAC_in registers first. Then, a clock 

signal is applied to make RAMDAC sample the data. To check the data that was 

written to RAMDAC before, RAMDAC_out registers are read. All read and write 

operations are done with SPI.  

C.3.5. Filter output registers (378-383) 

Filter output registers contains the data that is at the output of the associated filter. 

For example; dout_2_i contains the output of the 2
nd

 filter‟s imaginary data. Reading 

is done by SPI. These registers are added to system for accessing the internal outputs 

of the filter circuits. 

C.4. SPI with Control Block 

SPI with control block provides accessibility to internal registers of the chip. It is 

responsible for the communication between user and internal circuits. I/O signals of 

the block are given in Table C.3. Verilog code of the SPI with Control Block 

“SPI_CB” is in Appendix V. 

Table C.3 : I/O signals. 

Name Direction Width Function 

por Input 1 Reset input 

sclk Input 1 Clock signal 

fsync Input  1 synchronization signal 

sdin Input 1 Serial data input <- User 

dataR Input 512 Parallel data input <- Registers 

sdout output 1 Serial data output -> User 

resetRegOut output 1 Reset signal -> Registers 

sdoutEn output 1 Enable signal -> sdout pin 

BlowFuse output 1 Blow signal -> Fuses 

write output 1 Write signal -> Registers 

dataW output 1 Serial data output -> Registers 

CE output 512 Clock Enable -> Registers & Fuses 
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Using SPI, commands can be given to system like reading data, writing data, 

blowing a fuse etc. In following sections, format of a typical SPI command and their 

applications are presented. 

C.4.1. Reading a command 

Synchronization of the system is provided by fsync input. All operations are made 

when fsync is “0”. After a successful reset from por, system waits for a serial data 

which is 24-bits long. When fsync is “0”, with every rising edge of the clock, 24-bit 

word is sampled from sdin input in “MSB comes first and LSB comes last” fashion. 

After 24 successive clocks, no more operation is performed (even if more clock 

edges come) and system starts to wait for fsync to be made “1”. When it becomes 

“1” then, transmission is completed.   

If fsync becomes “1” before 24 clock cycles, current operation is halted. 

After a successful reading, system determines what to do. Current functionality of 

the system is explained in Table C.4 below.  

Table C.4 : Instruction definition. 

D23 D22 D21 D20 D19 D[18:8] D[7:0] Functionn 

0 0 0 0 0 X X Noop (Use for shift out) 

0 0 0 0 1 X X Reset registers 

0 0 0 1 0 X X Enable sdout pin 

0 0 0 1 1 X X Disable sdout pin 

0 0 1 0 0 ADDR DATA Write DATA to ADDR 

0 0 1 0 1 ADDR DATA Read data from ADDR 

0 0 1 1 0 ADDR X Blow Fuse at ADDR 

0 0 1 1 1 X X Reserved 

0 1 X X X X X Reserved 

1 X X X X X X Reserved 

As seen from Table C.4, some commands have associated DATA word either sent by 

user or SPI_CB according to the command word type.  

C.4.2. Command without DATA 

For instructions without DATA, operation is performed instantly with 16
th

 successful 

clock edge. “Reset registers” and “enable sdout” are two examples of that type. After 

that type of instruction, system returns to initial condition (see reading a command).  
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C.4.3. Command with DATA 

For command words with DATA, which are either read or write operation, a 

different path is followed.  

C.4.3.1. Write command 

For write case, writing starts with 17
th

 clock edge and finishes with 24
th

. With 24
th

 

clock edge, 8 bit DATA is written to ADDR. After that, no more operation is 

performed (even if more clock edges come) and system starts to wait for fsync to be 

made “1”. When it becomes “1” then, transmission is completed.   

If fsync becomes “1” before 24 clock cycles, current operation halted. Register 

which was written might be corrupted and needs to be written again. Signal diagram 

of a write command is given in Figure C.1. 

fsync

sclk

sdin
D23 D22 D21 D20 D19 D18 D17 D16 ... D8

Command Address

...

D7 D6 D5 ... D0

Data to be Written

...

sdout
Ignore

 

 Figure C.1 : Signal diagram for write command. 

C.4.3.2. Read command 

For read case, reading starts with 17
th

 clock edge and finishes with 24
th

. With 24
th

 

clock edge, 8 bit DATA is read from ADDR and given from sdout. After that, no 

more operation is performed (even if more clock edges come) and the system starts 

to wait for fsync to be made “1”. When it becomes “1”, the transmission is complete.   

If fsync becomes “1” before 24 clock cycles, current operation halted. Register 

which was read might be corrupted and needs to be written again. An example signal 

diagram for read operation is given in Figure C.2. 
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fsync

sclk

sdin
D23 D22 D21 D20 D19 D18 D17 D16 ... D8

Command Address

...

Ignored

Data to be Read

...

sdout
Ignore D7 D6 D5 ... D0

  

Figure C.2 : Signal diagram for read command. 

C.4.4. Blowing a fuse 

Every Fuse is located between two register lines: first for programming and second 

for reading the fuse. If an address of the fuse is ADDR, address of the mask 

programming register is “ADDR-1” and address of the read register is “ADDR” 

which is same with Fuse.  

Blowing a fuse requires a 4-step flow which includes both programming and testing. 

First of all, mask programming register “ADDR-1” is programmed with appropriate 

bit stream via a “Write” command. Then, “Blow Fuse” command is sent with fuse 

ADDR. After blowing, a single “Write” command is sent to ADDR. Writing to a 

fuse read register does not require a DATA because it samples associated fuse data. 

At the end, a “Read” command is sent to ADDR and content of the read register that 

sampled fuse data is read. An example is given in Table C.5. 

Table C.5 : Blowing a fuse routine. 

Instruction Word 

(CMD,ADDR,DATA) 
Functionality 

{5‟b00100, 11‟h003, 8‟b10000000} 
Write 1 to MSB of address 3 MSB of 

fuse 4 will be blown 

{5‟b00110, 11‟h004, 8‟b00000000} 
Blow fuse at address 4 wrt mask at 

address (4-1=3) 

{5‟b00100, 11‟h004, 8‟b00000000} 
“Write” command to address 4 for 

sampling fused data 

{5‟b00101, 11‟h004, 8‟b00000000} 
“Read” comment to address 4 for 

reading fused data 
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C.5. RAMDAC 

RAMDAC is a memory loop which is used to apply high speed data to DACs 

internally. Data is written to the RAMDAC by enabling it and changing the mode to 

write. After writing is completed, RAMDAC is operated in enabled mode only. 

Within every clock pulse after that, RAMDAC data is applied to DACs and data is 

stored in the beginning of the RAMDAC. With that loop fashion, DACs can be 

tested at high speed and without the requirement of the external data applied from 

LVDS inputs of the chip. Two RAMDACs are used for the design as there are two 

DACs (one for real and one for imaginary output) in the chip. Verilog code of the 

RAMDAC is given in Appendix V. 

C.6. Binary to Thermometer Encoder with DAC Mode Selection 

As mentioned earlier, the Filters and the RAMDAC operate with 16-bit binary data. 

However, the DAC accepts thermometric data as input. This conversion process is 

performed with “Bin2TherWmod” block. Block takes 16-bit binary encoded data and 

converts in to 11-bit binary LSB data and 31-bit thermometric MSB data. 

“Bin2TherWmod” also manipulates the data according to DAC mode. DAC modes 

and associated data patterns are explained in “Filter Registers” Section above. 

There are two Binary to Thermometer Encoders with DAC mode selection in the 

design. Verilog Code of the “Bin2TherWmod” is given in Appendix V. 
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APPENDIX E  

E.1. Tcl Script for Standard Architecture 

set topcellname "Suzgec_Uclu_syn" 
#set dbdir "DB" 

#set WorkDir [format "/PROJ/LF150CGEN/DIGITAL/gurerozbek/%s/PAR" $topcellname] 

set filename "Suzgec_Uclu_syn" 
set LibDir "/work/kits/lf/1.8.0/LF150C/digital/liberty" 

 

global filename 
global WorkDir 

global LibDir 

 
proc LFMakeChip {} { 

   ##--- Load configuration file 

   #LFDBSetup 
 

   ##--- Set User Grid 

   LFUserGrid 
 

   ##--- make global connections 

   LFGlobalConnect 
} 

proc LFUserGrid {} { 

   ##--- Set user grids 
   setPreference ConstraintUserXGrid 0.1 

   setPreference ConstraintUserXOffset 0.1 

   setPreference ConstraintUserYGrid 0.1 
   setPreference ConstraintUserYOffset 0.1 

   setPreference SnapAllCorners 1 

   setPreference BlockSnapRule 2 
 

   snapFPlanIO -usergrid 

} 
proc LFGlobalConnect {} { 

##--- Define global Power nets - make global connections 

 clearGlobalNets 
 globalNetConnect VDD -type pgpin -pin VDD -inst * -module {} 

 globalNetConnect VSS -type pgpin -pin VSS  -inst * -module {} 

 globalNetConnect VDD -type tiehi 
 globalNetConnect VSS -type tielo 

} 

proc LFOpCond cond { 
 

    switch $cond { 

      "typ" { 
      setOpCond -min typical -max typical 

          }  

      "minmax" { 

      setOpCond -min best -max worst 

 
      } 

      "min" { 

      setOpCond -min best -max best 
      } 

      "max" { 

      setOpCond -min worst -max worst 
      } 

   }  

} 
proc LFSave postfix { 

   global topcellname 

   global dbdir 
   set filename [format "%s.enc" $topcellname] 

   saveDesign $filename 

} 
proc LFWrite postfix { 

   global topcellname 

   ##-- Save Design 
   LFSave $postfix 
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   ##-- Write GDS2 

   set filename [format "%s_%s.gds" $topcellname $postfix] 

   set mapdir "/work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/libraries/techfiles" 

    
   streamOut $filename -mapFile $mapdir/encounter_layer.map -libName DesignLib -structureName $topcellname \ 

         -attachInstanceName -attachNetName -stripes 1 -units 1000 -mode ALL 

 
   ##-- Verilog Netlist 

   set filename [format "%s_%s.v" $topcellname $postfix] 

   saveNetlist $filename 
 

   ##-- Extract detail parasitics 

   setXCapThresholds -totalCThreshold 5.0 -relativeCThreshold 0.01 
   extractRC 

   set filename [format "%s_%s.spef" $topcellname $postfix] 

    
   ##-- run QX extraction 

   #runqx 

   #set filename [format "%s_%s_qx.spef" $topcellname $postfix] 

   #rcOut -spef $filename 

} 

 
proc LFWriteSDF {} { 

   global topcellname 

   ##-- Parasitic Extraction 
   #runQX 

 

   ##-- typical SDF 
   LFOpCond typ 

   set filename_t [format "%s_typ.sdf" $topcellname] 

   #delayCal -sdf $filename_t 
   write_sdf -version 2.1 -prec 3 -edges check_edge -average_typ_delays  \ 

      -remashold -splitrecrem -splitsetuphold -force_calculation \ 

      $filename_t 
   ##-- best case SDF 

   LFOpCond min 

   setAnalysisMode -hold 
   set filename_b [format "%s_best.sdf" $topcellname] 

   #delayCal -sdf $filename_b 

   write_sdf -early -version 2.1 -prec 3 -edges check_edge -average_typ_delays  \ 
      -remashold -splitrecrem -splitsetuphold -force_calculation \ 

      $filename_b 

   ##-- worst case SDF 
   LFOpCond max 

   setAnalysisMode -setup 

   set filename_w [format "%s_worst.sdf" $topcellname] 
   #delayCal -sdf $filename_w 

   write_sdf -late -version 2.1 -prec 3 -edges check_edge -average_typ_delays  \ 

      -remashold -splitrecrem -splitsetuphold -force_calculation \ 
      $filename_w 

   ##-- Combine all SDFs 

   set filename [format "%s_all.sdf" $topcellname] 
   sdfCombine -file $filename_b $filename_t $filename_w -output $filename 

   print "### Combined SDF File for best/typ/worst written!!" 

} 

proc LFLoadCons {} { 

   global filename 
   ## load timing constraints 

   unloadTimingCon 

   set filepath [format "%s.sdc" $filename] 
   if {[file exists $filepath]} { 

        loadTimingCon $filepath 

   } else { 
      print "-E-# $filepath not found - no constraints loaded" 

   } 

} 
proc LFFloorplan {type util iodist {ratio 1.0}} { 

  ##-- Initialize floorplan 

  switch $type { 
     "core" { 

              floorPlan -r $ratio $util $iodist $iodist $iodist $iodist 

            } 

     "peri" { 

              floorPlan -r $ratio $util $iodist $iodist $iodist $iodist 

              ##--- Load corner io file to add corner cells (if necessary) 
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#     loadIoFile corners.io 

 

              ##-- Snap IO cells to user grid 

              snapFPlanIO -usergrid 
            } 

  } 

    fit 
} 

proc LFPowerRoute {{pownetsList {}}} { 

   set offset 0.8 
   # foreach power net in the specified list 

   # route a ring 

   foreach pownet $pownetsList { 
      set name [lindex $pownet 0] 

      set width [lindex $pownet 1] 

      print "----$name $width $offset----" 
      addRing \ 

           -width_left   $width -spacing_left   0.8 -offset_left   $offset -layer_left   METAL2 \ 

           -width_top    $width -spacing_top    0.8 -offset_top    $offset -layer_top    METAL1 \ 

           -width_right  $width -spacing_right  0.8 -offset_right  $offset -layer_right  METAL2 \ 

           -width_bottom $width -spacing_bottom 0.8 -offset_bottom $offset -layer_bottom METAL1 \ 

           -stacked_via_top_layer METAL2 \ 
           -stacked_via_bottom_layer METAL1 \ 

           -around core \ 

           -jog_distance 0.7 \ 
           -threshold 0.7 \ 

           -nets $name 

      set offset [ expr $offset + 0.8 + $width] 
   global $width 

   } 

   addStripe \ 
     -spacing 0.8 -width $width -nets {VSS VDD} -layer METAL2 \ 

     -xleft_offset 120 -xright_offset 120 -number_of_sets 3 \ 

     -block_ring_top_layer_limit METAL3 \ 
     -block_ring_bottom_layer_limit METAL1 \ 

     -padcore_ring_top_layer_limit METAL3 \ 

     -padcore_ring_bottom_layer_limit METAL1 \ 
     -stacked_via_top_layer METAL_F \ 

     -stacked_via_bottom_layer METAL1 \ 

     -max_same_layer_jog_length 1.16 \ 
     -merge_stripes_value 0.61 

   # do followpin routing 

   sroute  -allowJogging true  
} 

proc LFPlace how { 

   ##-- Placement 
   switch $how { 

      "ntd" {  

                 setPlaceMode -timingDriven false -reorderScan false -congEffort medium -doCongOpt false -modulePlan false 
                 placeDesign -noPrePlaceOpt 

              } 

      "td" {  
                 setPlaceMode -timingDriven true -reorderScan false -congEffort medium \ 

                              -doCongOpt false -modulePlan false 

                 placeDesign -noPrePlaceOpt 

              } 

      "opt"   { 
                 setPlaceMode -timingDriven true -reorderScan false -congEffort high \ 

                              -doCongOpt true -modulePlan false 

                 placeDesign -inPlaceOpt -noPrePlaceOpt 
              } 

   } 

   LFSave placed 
} 

proc LFSave postfix { 

   global topcellname 
   global dbdir 

   set filename [format "%s_%s.enc" $topcellname $postfix] 

   saveDesign $filename 
} 

proc LFCts {} { 

   global topcellname 

   set filename [format "Clock.ctstch"] 

   ##-- Specify Clock tree 

   specifyClockTree -file $filename 
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   ##-- delete existing buffers 

   #deleteClockTree -clk  <clockroot> 

 
   ##-- Run CTS 

   set filename1 [format "%s_cts.guide" $topcellname] 

   set filename2 [format "%s_cts.ctsrpt" $topcellname] 
   ckSynthesis -rguide $filename1 -report $filename2 

 

   LFSave clkplaced 
} 

proc LFTa {state consList} { 

 
    global topcellname 

    foreach cons $consList { 

       clearClockDomains 
       setClockDomains -all 

       LFLoadCons ## $cons  

       set filename [format "%s_%s" $cons $state] 

       switch $state { 

         "prePlace" {timeDesign -prePlace -idealClock -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports } 
         "preCTS" {timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports } 

         "postCTS" {timeDesign -postCTS -pathReports -drvReports -slackReports -numPaths 50 \ 
                              -prefix $filename -outDir timingReports 

                    clearClockDomains 

                    ## setClockDomains -all 
                    timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 

                   } 
         "postRoute" {timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 

                    clearClockDomains 
                    setClockDomains -all 

                    timeDesign -postRoute -hold -pathReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 
                   } 

         "signOff" {timeDesign -signOff -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 
                    clearClockDomains 

                    setClockDomains -all 

                    timeDesign -signOff -hold -pathReports -slackReports -numPaths 50 \ 
                              -prefix $filename -outDir timingReports 

                   } 

       } 
   } 

 

} 
proc LFOpt {state what cons} { 

   unloadTimingCon 

   LFLoadCons  
   setOptMode -yieldEffort none 

   setOptMode -effort high 

   setOptMode -maxDensity 0.95 

   setOptMode -drcMargin 0.0 

   setOptMode -holdTargetSlack 200.0 -setupTargetSlack 200.0 
   setOptMode -simplifyNetlist false 

   clearClockDomains 

   setClockDomains -all 
   setOptMode -usefulSkew false 

   optDesign -$state -$what 

} 
proc LFFillcore {} { 

   ##-- Add Core Filler cells 

 addFiller -cell FILLCELL_X1 FILLCELL_X2 FILLCELL_X4 FILLCELL_X8 FILLCELL_X16 FILLCELL_X32 
FILLCELL_X64 -prefix FILLER 

} 

proc LFRoute {{router wroute}} { 
    switch $router { 

      "nano" {  

               ##-- Run Routing 

               ##-- Nano-Route 

               getNanoRouteMode -quiet 

               getNanoRouteMode -quiet envSuperThreading 
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               setNanoRouteMode -quiet -drouteFixAntenna true 

               setNanoRouteMode -quiet -routeInsertAntennaDiode false 

               setNanoRouteMode -quiet -timingEngine CTE 

               setNanoRouteMode -quiet -routeWithTimingDriven false 
               setNanoRouteMode -quiet -routeWithEco false 

               setNanoRouteMode -quiet -routeWithSiDriven false 

               setNanoRouteMode -quiet -routeTdrEffort 2 
               setNanoRouteMode -quiet -routeSiEffort normal 

               setNanoRouteMode -quiet -routeWithSiPostRouteFix false 

               setNanoRouteMode -quiet -drouteAutoStop true 
               setNanoRouteMode -quiet -routeSelectedNetOnly false 

               setNanoRouteMode -quiet -drouteStartIteration default 

               setNanoRouteMode -quiet -envNumberProcessor 1 
               setNanoRouteMode -quiet -drouteEndIteration default 

               globalDetailRoute 

             } 
    "wroute" { 

               ##-- WROUTE 

             wroute 

             } 

     } 

} 
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E.2. Tcl Script for Improved Architecture 

set topcellname "Suzgec_Uclu_syn" 

#set dbdir "DB" 

#set WorkDir [format "/PROJ/TSMC150CGEN/DIGITAL/gurerozbek/%s/PAR" $topcellname] 
set filename "Suzgec_Uclu_syn" 

set filename_2 "Suzgec_Uclu" 

set LibDir "/work/kits/tsmc/lib/180/stdcel_cl018g_2004q3v1/aci/sc/synopsys" 
 

global filename 

global WorkDir 
global LibDir 

 

proc TSMCHelp {} { 
    global consList 

    print "#### TSMCAuto Command Functionality"  

    print "#### "  

    print "---# TSMCAuto start end" 

    print "---#    1 - TSMCConfig" 

    print "---#    2 - TSMCMakeChip" 
    print "---#    3 - TSMCFloorplan" 

    print "---#    4 - TSMCLoadIOs" 

    print "---#    5 - TSMCPowerRoute" 
    print "---#    6 - TSMCPlace td" 

    print "---#    7 - TSMCCts" 

    print "---#    8 - TSMCPlace opt" 
    print "---#    9 - Optimize postCTS" 

    print "---#    10 - Optimize postRoute" 
    print "---#    11 - editDelete -type Signal" 

    print "---#    12 - TSMCRoute nano" 

    print "---#    13 - Optimize postRoute" 
} 

proc TSMCAuto {start {end -1}} { 

 if {$end == -1} { set end $start } 
 for {set i $start} {$i<=$end} {incr i} { 

   print "---# ---- Step $i -----" 

   set step [format "s%d" $i] 
   switch -exact $step { 

      "s1"  { TSMCConfig }             

      "s2"  { TSMCMakeChip }            
      "s3"  { TSMCFloorplan }  

      "s4"  { TSMCLoadIOs }       

      "s5"  { TSMCPowerRoute }   
      "s6"  { TSMCPlace td }             

      "s7"  { TSMCCts }            

      "s8"  { TSMCPlace opt }  
      "s9"  { TSMCOpt postCTS }       

      "s10"  { TSMCOpt postRoute }       

      "s11"  { editDelete -type Signal }            
      "s12"  { TSMCRoute nano }  

      "s13"  { TSMCOpt postRoute }       

      "s14"  {  }    
     }  

  } 

} 
proc TSMCConfig {} { 

 global filename 

 global WorkDir 
 ##--- Load configuration file 

    loadConfig [format "%s.conf" $filename] 0 

 setUIVar rda_Input ui_gndnet VSS 
 setUIVar rda_Input ui_pwrnet VDD 

 commitConfig 

 create_generated_clock -name "clk3_out" -source clk3 -divide_by 1 [get_ports clk3_out] 
 reset_output_delay -clock [get_clocks clk3] [get_ports dout_*] 

 set_output_delay -clock [get_clocks clk3_out] -add_delay 0.1 [get_ports dout_*] 

 fit 
} 

proc TSMCMakeChip {} { 

 ##--- Set User Grid 

 TSMCUserGrid 

 

 ##--- make global connections 
 TSMCGlobalConnect 
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 ##some commands that used in ams flow 

 setClockMeshMode -propagationMode min_max 

 setAnalysisMode -analysisType bcwc 
} 

proc TSMCUserGrid {} { 

   ##--- Set user grids 
   setPreference ConstraintUserXGrid 0.1 

   setPreference ConstraintUserXOffset 0.1 

   setPreference ConstraintUserYGrid 0.1 
   setPreference ConstraintUserYOffset 0.1 

   setPreference SnapAllCorners 1 

   setPreference BlockSnapRule 2 
   snapFPlanIO -usergrid 

} 

proc TSMCGlobalConnect {} { 
##--- Define global Power nets - make global connections 

 clearGlobalNets 

 globalNetConnect VDD -type pgpin -pin VDD -inst * -module {} 

 globalNetConnect VSS -type pgpin -pin VSS  -inst * -module {} 

 globalNetConnect VDD -type tiehi 

 globalNetConnect VSS -type tielo 
} 

proc TSMCFloorplan {} { 

  ##-- Initialize floorplan 
 getIoFlowFlag 

 setIoFlowFlag 1 

 setFPlanRowSpacingAndType 0.56 1 
 #cell alaninin: eni - boyu. bu alanin etrafinin; solu - alti - sagi - ustu 

 floorPlan -site tsm3site -s 800 2600 200 200 200 200 

 uiSetTool select 
 getIoFlowFlag 

 fit 

 #module floorplan'lerinin alana yerlestirilmesi 
 #S_1 

 selectObject Module S_1  

 #S_2 
 selectObject Module S_2  

 #S_3 

 selectObject Module S_3  
 #save 

 TSMCSave Fplaned 

} 
proc TSMCLoadIOs {} { 

 global filename_2 

 loadIoFile [format "%s.io" $filename_2] 
} 

proc TSMCPowerRoute {} { 

   set offset 0.8 
 setMultiCpuUsage -numThreads max 

 #left right M6 

 addRing -lt 1 -spacing_bottom 0.6 -width_left 99 -width_bottom 99 -width_top 99 -top 0 -spacing_top 0.6 -
layer_bottom METAL1 -stacked_via_top_layer METAL6 -width_right 99 -around core -jog_distance 0.66 -offset_bottom 0 -

bottom 0 -layer_top METAL1 -rb 1 -threshold 0.66 -offset_left 0 -spacing_right 0.6 -lb 1 -spacing_left 0.6 -offset_right 0 -rt 1 -

offset_top 0 -layer_right METAL6 -nets {VSS VDD } -follow io -stacked_via_bottom_layer METAL1 -layer_left METAL6 

 #left right M5 

 addRing -lt 1 -spacing_bottom 0.6 -width_left 99 -width_bottom 99 -width_top 99 -top 0 -spacing_top 0.6 -
layer_bottom METAL1 -stacked_via_top_layer METAL6 -width_right 99 -around core -jog_distance 0.66 -offset_bottom 0 -

bottom 0 -layer_top METAL1 -rb 1 -threshold 0.66 -offset_left 0 -spacing_right 0.6 -lb 1 -spacing_left 0.6 -offset_right 0 -rt 1 -

offset_top 0 -layer_right METAL5 -nets {VSS VDD } -follow io -stacked_via_bottom_layer METAL5 -layer_left METAL5 
 # do followpin routing 

    sroute  -allowJogging true  

 #stripe yatay M5 (M4 below the ring) 
 addStripe -block_ring_top_layer_limit METAL6 -max_same_layer_jog_length 0.88 -

padcore_ring_bottom_layer_limit METAL3 -set_to_set_distance 11.2 -stacked_via_top_layer METAL6 -

padcore_ring_top_layer_limit METAL6 -spacing 4.24 -ytop_offset 1.5 -switch_layer_over_obs 1 -ybottom_offset 4.64 -
merge_stripes_value 0.66 -layer METAL5 -block_ring_bottom_layer_limit METAL3 -width 1.36 -nets {VSS VDD } -

stacked_via_bottom_layer METAL1 -direction horizontal 

 # M1 kalinlastirma 
 addStripe -block_ring_top_layer_limit METAL1 -padcore_ring_bottom_layer_limit METAL1 -set_to_set_distance 

11.2 -ybottom_offset 2.8 -area_blockage {200.676 200.451 200.676 2800.494 1000.6895 2800.494 1000.6895 200.4645 

200.6765 200.4645 200.6765 200.451} -stacked_via_top_layer METAL2 -padcore_ring_top_layer_limit METAL1 -spacing 0.6 

-allow_jog_padcore_ring 0 -direction horizontal -layer METAL1 -block_ring_bottom_layer_limit METAL1 -width 5 -nets 

{VSS VDD } -stacked_via_bottom_layer METAL1 -allow_jog_block_ring 0 

 #save 
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 TSMCSave powered 

} 

proc TSMCPlace how { 

   ##-- Placement 
   switch $how { 

      "ntd" {  

                setPlaceMode -timingDriven false -reorderScan false -congEffort medium \ 
    -doCongOpt false -modulePlan false -powerDriven true 

  setMultiCpuUsage -numThreads max 

                placeDesign -noPrePlaceOpt 
              } 

      "td" {  

                setPlaceMode -timingDriven true -reorderScan false -congEffort medium \ 
                               -doCongOpt false -modulePlan true -powerDriven true 

  setMultiCpuUsage -numThreads max 

                placeDesign -noPrePlaceOpt 
  #save 

  TSMCSave placed 

              } 

      "opt"   { 

                setPlaceMode -timingDriven true -reorderScan false -congEffort high \ 

                               -doCongOpt true -modulePlan true -wireLenOptEffort high \ 
    -powerDriven true 

  setMultiCpuUsage -numThreads max 

                placeDesign -inPlaceOpt -noPrePlaceOpt 
  #save 

  TSMCSave optPlaced 

              } 
   } 

   TSMCSave placed 

} 
proc TSMCCts {} { 

   global topcellname 

   set filename [format "Clock.ctstch"] 
   ##-- Specify Clock tree 

   specifyClockTree -file $filename 

   ##-- delete existing buffers 
   #deleteClockTree -clk  <clockroot> 

   ##-- Run CTS 

   set filename1 [format "%s_cts.guide" $topcellname] 
   set filename2 [format "%s_cts.ctsrpt" $topcellname] 

   setCTSMode -powerAware true -optAddBuffer true -optLatency true -traceIoPinAsLeaf true 

   setMultiCpuUsage -numThreads max 
   ckSynthesis -rguide $filename1 -report $filename2 

   #save 

   TSMCSave clkplaced 
} 

proc TSMCRoute {router {effort 5}} { 

    switch $router { 
      "nano" {  

  ##-- Run Routing 

  ##-- Nano-Route 
  getNanoRouteMode -quiet 

  getNanoRouteMode -quiet envSuperThreading 

  setNanoRouteMode -quiet -drouteFixAntenna true 

  setNanoRouteMode -quiet -routeInsertAntennaDiode false 

  setNanoRouteMode -quiet -timingEngine CTE 
  setNanoRouteMode -quiet -routeWithTimingDriven true 

  setNanoRouteMode -quiet -routeWithEco false 

  setNanoRouteMode -quiet -routeWithSiDriven false 
  setNanoRouteMode -quiet -routeTdrEffort $effort 

  setNanoRouteMode -quiet -routeSiEffort normal 

  setNanoRouteMode -quiet -routeWithSiPostRouteFix false 
  setNanoRouteMode -quiet -drouteAutoStop false 

  setNanoRouteMode -quiet -routeSelectedNetOnly false 

  setNanoRouteMode -quiet -drouteStartIteration default 
  setNanoRouteMode -quiet -envNumberProcessor 24 

  setNanoRouteMode -quiet -drouteEndIteration default 

  globalDetailRoute 
  #save 

  TSMCSave routed 

             } 

    "wroute" { 

               ##-- WROUTE 

               wroute 
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             } 

    "repair" { 

               ##-- REPAIR 

               setNanoRouteMode -quiet -drouteStartIteration 1 
               setNanoRouteMode -quiet -envNumberProcessor 24 

               setNanoRouteMode -quiet -drouteEndIteration default 

               globalDetailRoute 
             } 

     } 

} 
proc TSMCOpt {state} { 

   setOptMode -yieldEffort none 

   setOptMode -effort high 
   setOptMode -maxDensity 0.95 

   #setOptMode -drcMargin 0.0 

   setOptMode -holdTargetSlack 0.0 -setupTargetSlack 0.0 
   setOptMode -simplifyNetlist false 

   setOptMode -usefulSkew false 

   setOptMode -fixCap true  

   setOptMode -fixTran true  

   setOptMode -fixFanoutLoad false 

   optDesign -$state 
   optDesign -$state -hold 

} 

proc TSMCSave postfix { 
   global filename_2 

   set filename [format "%s_%s.enc" $filename_2 $postfix] 

   saveDesign $filename 
} 

proc TSMCOpCond cond { 

 
    switch $cond { 

      "typ" { 

      setOpCond -min typical -max typical 
          }  

      "minmax" { 

      setOpCond -min best -max worst 
 

      } 

      "min" { 
      setOpCond -min best -max best 

      } 

      "max" { 
      setOpCond -min worst -max worst 

      } 

   }  
} 

proc TSMCWrite postfix { 

   global topcellname 
   ##-- Save Design 

   TSMCSave $postfix 

   ##-- Write GDS2 
   set filename [format "%s_%s.gds" $topcellname $postfix] 

   #set mapdir "/work/kits/lf/1.8.0/PDK_TSMC150i_V1_8_0/libraries/techfiles" 

   #streamOut $filename -mapFile $mapdir/encounter_layer.map -libName DesignLib -structureName $topcellname \ 

   #      -attachInstanceName -attachNetName -stripes 1 -units 1000 -mode ALL 

   ##-- Verilog Netlist 
   set filename [format "%s_%s.v" $topcellname $postfix] 

   saveNetlist $filename 

   ##-- Extract detail parasitics 
   setXCapThresholds -totalCThreshold 5.0 -relativeCThreshold 0.01 

   extractRC 

   set filename [format "%s_%s.spef" $topcellname $postfix] 
   ##-- run QX extraction 

   #runqx 

   #set filename [format "%s_%s_qx.spef" $topcellname $postfix] 
   #rcOut -spef $filename 

} 

proc TSMCWriteSDF {} { 
   global topcellname 

   ##-- Parasitic Extraction 

   #runQX 

   ##-- typical SDF 

   TSMCOpCond typ 

   set filename_t [format "%s_typ.sdf" $topcellname] 



96 

 

   write_sdf -version 2.1 -prec 3 -edges check_edge -average_typ_delays  \ 

      -remashold -splitrecrem -splitsetuphold -force_calculation \ 

      $filename_t 

   ##-- best case SDF 
   TSMCOpCond min 

   setAnalysisMode -hold 

   set filename_b [format "%s_best.sdf" $topcellname] 
   write_sdf -early -version 2.1 -prec 3 -edges check_edge -average_typ_delays  \ 

      -remashold -splitrecrem -splitsetuphold -force_calculation \ 

      $filename_b 
   ##-- worst case SDF 

   TSMCOpCond max 

   setAnalysisMode -setup 
   set filename_w [format "%s_worst.sdf" $topcellname] 

   write_sdf -late -version 2.1 -prec 3 -edges check_edge -average_typ_delays  \ 

      -remashold -splitrecrem -splitsetuphold -force_calculation \ 
      $filename_w 

   ##-- Combine all SDFs 

   set filename [format "%s_all.sdf" $topcellname] 

   sdfCombine -file $filename_b $filename_t $filename_w -output $filename 

   print "### Combined SDF File for best/typ/worst written!!" 

} 
proc TSMCTa {state consList} { 

    global topcellname 

    foreach cons $consList { 
       clearClockDomains 

       setClockDomains -all 

       TSMCLoadCons ## $cons  
       set filename [format "%s_%s" $cons $state] 

       switch $state { 

         "prePlace" {timeDesign -prePlace -idealClock -pathReports -drvReports -slackReports -numPaths 50 \ 
                              -prefix $filename -outDir timingReports } 

         "preCTS" {timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports } 
         "postCTS" {timeDesign -postCTS -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 

                    clearClockDomains 
                    ## setClockDomains -all 

                    timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 
                   } 

         "postRoute" {timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 
                    clearClockDomains 

                    setClockDomains -all 

                    timeDesign -postRoute -hold -pathReports -slackReports -numPaths 50 \ 
                              -prefix $filename -outDir timingReports 

                   } 

         "signOff" {timeDesign -signOff -pathReports -drvReports -slackReports -numPaths 50 \ 
                              -prefix $filename -outDir timingReports 

                    clearClockDomains 

                    setClockDomains -all 
                    timeDesign -signOff -hold -pathReports -slackReports -numPaths 50 \ 

                              -prefix $filename -outDir timingReports 

                   } 

       } 

   } 
} 

proc TSMCFillcore {} { 

   ##-- Add Core Filler cells 
 addFiller -cell FILL1 FILL2 FILL4 FILL8 FILL16 FILL32 FILL64 -prefix FILL 

} 

proc TSMCViaFill {} { 
 #power analizlerinden once bunu yapman lazÄ±m 

 editPowerVia -bottom_layer METAL5 -add_vias 1 -orthogonal_only 0 -top_layer METAL6 

 editPowerVia -bottom_layer METAL4 -add_vias 1 -orthogonal_only 0 -top_layer METAL5 
 editPowerVia -bottom_layer METAL3 -add_vias 1 -orthogonal_only 0 -top_layer METAL4 

 editPowerVia -bottom_layer METAL2 -add_vias 1 -orthogonal_only 0 -top_layer METAL3 

 editPowerVia -bottom_layer METAL1 -add_vias 1 -orthogonal_only 0 -top_layer METAL2 
} 

proc TSMCAddEndCaps {} { 

   ##-- add CAP cells 

   addEndCap -preCap FILL1 -postCap FILL1 -prefix ENDCAP 

} 
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E.3. SDF File for Improved Architecture 

(DELAYFILE 

  (SDFVERSION "2.1") 

  (DESIGN "Suzgec_Uclu") 
  (DATE "Mon Nov 19 13:50:15 2012") 

  (VENDOR "Cadence Design Systems, Inc.") 

  (PROGRAM "Encounter") 
  (VERSION "v09.12-s159_1 ((32bit) 07/15/2010 13:17 (Linux 2.6))") 

  (DIVIDER /) 

  (VOLTAGE 1.800000:1.800000:1.800000) 
  (PROCESS "1.000000:1.000000:1.000000") 

  (TEMPERATURE 25.000000:25.000000:25.000000) 

  (TIMESCALE 1.0 ns) 
 

  (CELL 

    (CELLTYPE  "Suzgec_Uclu") 
    (INSTANCE) 

      (DELAY 

 (ABSOLUTE 
 (INTERCONNECT FE_PHC2835_din_r_15_/Y I_M/retime_s2_80_reg/D  (0.003:0.003:0.003) 

(0.003:0.003:0.003)) 

 (INTERCONNECT FE_PHC2835_din_r_15_/Y O_M/dout_r_reg\[15\]/D  (0.007:0.007:0.007) (0.007:0.007:0.007)) 
 (INTERCONNECT FE_PHC2832_din_r_14_/Y I_M/retime_s2_84_reg/D  (0.001:0.001:0.001) 

(0.001:0.001:0.001)) 

 (INTERCONNECT FE_PHC2832_din_r_14_/Y O_M/dout_r_reg\[14\]/D  (0.006:0.006:0.006) (0.006:0.006:0.006)) 
 (INTERCONNECT FE_PHC2831_din_r_8_/Y I_M/retime_s2_81_reg/D  (0.002:0.002:0.002) (0.002:0.002:0.002)) 

 (INTERCONNECT FE_PHC2831_din_r_8_/Y O_M/dout_r_reg\[8\]/D  (0.010:0.010:0.010) (0.010:0.010:0.010)) 
 (INTERCONNECT FE_PHC2830_din_i_11_/Y I_M/retime_s2_99_reg/D  (0.001:0.001:0.001) (0.001:0.001:0.001)) 

 (INTERCONNECT FE_PHC2830_din_i_11_/Y O_M/dout_i_reg\[11\]/D  (0.003:0.003:0.003) (0.003:0.003:0.003)) 

 (INTERCONNECT FE_PHC2829_din_r_12_/Y I_M/retime_s2_53_reg/D  (0.007:0.007:0.007) 
(0.007:0.007:0.007)) 

 (INTERCONNECT FE_PHC2829_din_r_12_/Y O_M/dout_r_reg\[12\]/D  (0.007:0.007:0.007) (0.007:0.007:0.007)) 

 (INTERCONNECT FE_PHC2828_din_r_9_/Y I_M/retime_s2_82_reg/D  (0.001:0.001:0.001) (0.001:0.001:0.001)) 

 (INTERCONNECT FE_PHC2828_din_r_9_/Y O_M/dout_r_reg\[9\]/D  (0.012:0.012:0.012) (0.012:0.012:0.012)) 

 (INTERCONNECT FE_PHC2827_din_i_10_/Y I_M/g3671/A  (0.003:0.003:0.003) (0.003:0.003:0.003)) 

 … 
(INTERCONNECT din_i[2] S_1/FE_PHC2759_din_i_2_/A  (0.308:0.308:0.308) (0.308:0.308:0.308)) 

 (INTERCONNECT din_i[1] FE_PHC2747_din_i_1_/A  (0.035:0.035:0.035) (0.035:0.035:0.035)) 

 (INTERCONNECT din_i[0] FE_PHC2744_din_i_0_/A  (0.042:0.042:0.042) (0.042:0.042:0.042)) 
 ) 

      ) 

  ) 
 

  (CELL 

    (CELLTYPE  "CLKBUFX2") 
    (INSTANCE  FE_PHC2835_din_r_15_) 

      (DELAY 

 (ABSOLUTE 
 (IOPATH A Y  (0.308:0.308:0.308) (0.364:0.364:0.364)) 

 ) 

      ) 

  ) 

 

  (CELL 
    (CELLTYPE  "BUFX1") 

    (INSTANCE  FE_PHC2832_din_r_14_) 

      (DELAY 
 (ABSOLUTE 

 (IOPATH A Y  (0.434:0.434:0.434) (0.324:0.324:0.324)) 

 ) 
      ) 

  ) 

 

… 

 

 
  (CELL 

    (CELLTYPE  "DFFRHQXL") 

    (INSTANCE  retime_s1_34_reg) 

      (DELAY 

 (ABSOLUTE 

 (IOPATH RN Q  () (0.406:0.406:0.406)) 
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 (IOPATH CK Q  (0.753:0.753:0.753) (0.482:0.482:0.482)) 

 ) 

      ) 

      (TIMINGCHECK 
 (WIDTH (negedge RN) (0.255:0.255:0.255)) 

 (WIDTH (posedge CK) (0.124:0.124:0.124)) 

 (WIDTH (negedge CK) (0.177:0.177:0.177)) 
 (HOLD (posedge D) (posedge CK) (-0.033:-0.033:-0.034)) 

 (HOLD (negedge D) (posedge CK) (0.000:0.000:-0.002)) 

 (SETUP (posedge D) (posedge CK) (0.079:0.079:0.080)) 
 (SETUP (negedge D) (posedge CK) (0.175:0.175:0.177)) 

 (HOLD (posedge RN) (posedge CK) (-0.034:-0.034:-0.034)) 

 (RECOVERY (posedge RN) (posedge CK) (0.101:0.101:0.101)) 
      ) 

  ) 

 

  (CELL 

    (CELLTYPE  "DFFRHQXL") 

    (INSTANCE  retime_s1_10_reg) 

      (DELAY 

 (ABSOLUTE 

 (IOPATH RN Q  () (0.394:0.394:0.394)) 
 (IOPATH CK Q  (0.720:0.720:0.720) (0.472:0.472:0.472)) 

 ) 

      ) 
      (TIMINGCHECK 

 (WIDTH (negedge RN) (0.255:0.255:0.255)) 

 (WIDTH (posedge CK) (0.124:0.124:0.124)) 
 (WIDTH (negedge CK) (0.177:0.177:0.177)) 

 (HOLD (posedge D) (posedge CK) (-0.034:-0.034:-0.034)) 

 (HOLD (negedge D) (posedge CK) (0.001:0.001:-0.003)) 
 (SETUP (posedge D) (posedge CK) (0.079:0.079:0.079)) 

 (SETUP (negedge D) (posedge CK) (0.175:0.175:0.180)) 

 (HOLD (posedge RN) (posedge CK) (-0.033:-0.033:-0.033)) 
 (RECOVERY (posedge RN) (posedge CK) (0.099:0.099:0.099)) 

      ) 

  ) 
 

  (CELL 

    (CELLTYPE  "DFFRHQXL") 
    (INSTANCE  retime_s1_3_reg) 

      (DELAY 

 (ABSOLUTE 
 (IOPATH RN Q  () (0.404:0.404:0.404)) 

 (IOPATH CK Q  (0.748:0.748:0.748) (0.479:0.479:0.479)) 

 ) 
      ) 

      (TIMINGCHECK 

 (WIDTH (negedge RN) (0.255:0.255:0.255)) 
 (WIDTH (posedge CK) (0.124:0.124:0.124)) 

 (WIDTH (negedge CK) (0.177:0.177:0.177)) 

 (HOLD (posedge D) (posedge CK) (-0.034:-0.034:-0.034)) 
 (HOLD (negedge D) (posedge CK) (0.001:0.001:-0.001)) 

 (SETUP (posedge D) (posedge CK) (0.079:0.079:0.079)) 

 (SETUP (negedge D) (posedge CK) (0.175:0.175:0.178)) 

 (HOLD (posedge RN) (posedge CK) (-0.033:-0.033:-0.033)) 

 (RECOVERY (posedge RN) (posedge CK) (0.099:0.099:0.099)) 
      ) 

  ) 

 
  (CELL 

    (CELLTYPE  "CLKINVX8") 

    (INSTANCE  g73) 
      (DELAY 

 (ABSOLUTE 

 (IOPATH A Y  (0.149:0.149:0.149) (0.126:0.126:0.126)) 
 ) 

      ) 

  ) 
) 
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APPENDIX I  

I.1. Synthesis 

I.1.1. Getting started 

First thing to do is creating a new folder to work and copying all Verilog model files 

and the script file in it. Then “rc –gui” command is entered to open RTL Compiler in 

gui mode. After that, the only thing to do is writing “source script.tcl” in command 

window of RTL Compiler. The script will be run and outputs will collected then.  

I.1.2. Specs & script 

Tcl script consists of some parts including reading input files, setting synthesis 

specifications and writing output files.  

Synthesis operation requires model files to be read. First files to be read are library 

files having gate models. After that, reading of Verilog model files takes place. 

Verilog models are read with “read_hdl” command. Last thing to do is elaborating 

design with a name.  

Second part starts with defining clock signals. That operation is done with 

“define_clock” command and parameters like period, name of clock and for some 

cases, clock division ratio are given. After that, clock skews are given with 

“set_attribute” command and external delays with “external_delay” command. 

Moreover, retiming specifications can be set with “set_attribute” command at that 

point. Then retime can be performed with “retime –min_delay” command. At last, 

synthesis operation is performed with “synthesize –to_mapped” command.  

In the end, outputs of synthesis are written to files to be an input to later tools. At this 

point, “write_encounter” command creates all files that are required for both 

simulation and PAR. By doing that, .v, .mode, .conf and .sdc files are generated. 

Also, timing and area reports can be generated to check the performance of the 

synthesis.  

Example tcl-script, timing and area report files are in Appendix R (RTL Compiler).  
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I.2. PAR 

I.2.1. Importing data from RTL compiler 

First step of PAR started with creating a folder and copy .v, .mode, .conf and .sdc 

files and generated by RTL Compiler and a script file in it. Then, a modification is 

needed to be done in .sdc file. Some lines started with “set_input_delay” command 

define a delay between clock signals which are not desired. These lines (four lines 

total) should be removed in order to work properly. After that, if retiming was 

performed in synthesis, “uniquifyNetlist” command should be run at unix terminal. 

That modifies synthesized complex Verilog model and simplifies it. By using 

“velocity” command, Encounter is run.  

When Encounter gui was opened, “source script.tcl” is written to command line and 

run. By doing that, predefined commands in script are loaded to Encounter and can 

be called with single name commands. Script also made Encounter read input files 

except .conf file. To read it, Design -> Import Design -> Load -> .conf -> Open is 

selected in gui and at advanced tab, Power -> VDD VSS -> OK should be selected.  

I.2.2. Steps of PAR 

First, the command that is used is “LFMakeChip”, which prepares the tool for PAR 

flow. Then, “LFFloorplan core 0.7 50 1” is entered. That command states that; 

design is a subchip (not entire), %70 of the area is left for cells, left 50 μm for power 

routings and made floorplan as square shaped. After that, power routings are done 

with “LFPowerRoute {{VDD 24} {VSS 24}}” command. It makes 2 power signals 

VDD and VSS with 24 μm width around the floorplan. Designing floorplan finishes 

here, so saving with Design -> Save -> FloorPlan is recommended. 

Next step starts with pin placement by selecting Edit -> Pin Editor. In the pin editor, 

appropriate pins‟ shapes, size, place and metal types are selected and saved with 

Design -> Save -> IO file. After that, placement of the cells happens with “LFPlace 

td” command. That makes cell placement with minimized delays possible. After that, 

“LFCts” command is entered to synthesize a clocks tree. With a clock tree 

implemented, a placement optimization with “LFPlace opt” command is 

recommended at this time. Another optimization is done by selecting Timing -> 

Optimize -> Setup time from gui. That improves setup time for registers. After 
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optimizations were performed, “LFFillcore” command is entered to fill empty areas 

with capacitances that help supply voltages to not change so much. At this time, 

Placement is done and it is a good idea to save it with Design -> Save -> Place. 

Last step of the design is routing with command “LFRoute nano”. That starts nano 

router which has a better performance that conventional router of Encounter. When 

seeing “zero violations” at the command line, design is finished. It can be saved by 

Design -> Save -> Route. 

I.2.3. Outputs: GDS-II & SDF 

GDS-II file is generated with “LFWrite final” command. It also generates a Verilog 

model for simulation. SDF file is generated with “LFWriteSDF” command.  
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APPENDIX P  

P.1. Negative Frequency Plots of Section 3.1.3.9.2 

Spectrum plots associated with the negative modulation frequencies are given in this 

section. See Figure P.1. 

 
(a)                    (b) 

 

(c)          (d) 

Figure P.1 : Output Spectrums of Mid-Modes. (a): -FDAC/16, (b): -3FDAC/16, (c): 

-5FDAC/16, (d): -7FDAC/16 

P.2. Other Plots of Section 4.3.2 

Spectrum plots of the filter modes. Modulations with 2x interpolation are in Figure 

P.2: 

 

(a)          (b) 
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           (c)           (d)          (e) 

Figure P.2 : Output Spectrums of the Modes that Modulates with 2x Interpolation.              

(a): 3FDAC/8, (b): 4FDAC/8, (c): -3FDAC/8, (d): -2FDAC/8, (e): -FDAC/8 

Spectrum plots of the filter modes. Plots for modulations with 4x and 8x 

interpolation are the same, so only one of the plots is given. See Figure P.3. 

 

(a)      (b) 

 

(c)           (d) 
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(e)            (f) 

 
(g)            (h) 

 

(i)             (j) 

 

(k)             (l) 
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(m)            (n) 

 

(o)             (p) 

Figure P.3 : Output spectrums of the modes that modulates with 4x and 8x 

interpolation.   (a): baseband, (b): FDAC/16, (c): 2FDAC/16, (d): 

3FDAC/16, (e): 4FDAC/16, (f): 5FDAC/16,        (g): 6FDAC/16, (h): 

7FDAC/16, (i): 8FDAC/16, (j): -7FDAC/16, (k): -6FDAC/16, (l): -5FDAC/16,   

(m): -4FDAC/16, (n): -3FDAC/16, (o): -2FDAC/16, (p): -FDAC/16. 
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APPENDIX R  

R.1. Tcl Script for Standard Architecture 

# Cadence Encounter(r) RTL Compiler 

#     Special thanks to: Gurer Ozbek  

#kutuphane adresi: 

set_attribute lib_search_path /work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/digital/liberty 

#kutuphanenin adi: 

set_attribute library {LF150DI_HS_F_V1_5_typical_conditional.lib} 

#LEF kutuphanesi adresi 

set_attribute lib_search_path /work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/digital/lef 

#LEF kutuphanesi adi 

set_attribute lef_library {LF150DI_HS_F_V1_5.lef} 

 

#okunacak dosyalar: 

read_hdl -v2001 Suzgec_1.v 

read_hdl -v2001 Suzgec_2.v 

read_hdl -v2001 Suzgec_3.v 

read_hdl -v2001 Suzgec_Uclu.v 

elaborate Suzgec_Uclu 

 

report datapath > datapath.txt 

 

#saat isareti tanimlamalari 

define_clock -period 7200 -name clk0 /designs/Suzgec_Uclu/ports_in/clk0 

define_clock -period 7200 -name clk1 -divide_period 2 /designs/Suzgec_Uclu/ports_in/clk1 

define_clock -period 7200 -name clk2 -divide_period 4 /designs/Suzgec_Uclu/ports_in/clk2 

define_clock -period 7200 -name clk3 -divide_period 8 /designs/Suzgec_Uclu/ports_in/clk3 

 

set_attribute slew {40 40 80 80} [find -clock clk0] 

set_attribute slew {40 40 80 80} [find -clock clk1] 

set_attribute slew {40 40 80 80} [find -clock clk2] 

set_attribute slew {40 40 80 80} [find -clock clk3] 

 

external_delay -input 500 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/* 

 

external_delay -output 100 -clock [find -clock clk3] -edge_rise /designs/Suzgec_Uclu/ports_out/* 

 

#synthesize -to_mapped -effort high 

 

#retime islemleri  

set_attribute dont_retime false [all::all_seqs -clock clk1] 

set_attribute dont_retime true [all::all_seqs -clock clk2] 

retime -min_delay 

 

synthesize -to_mapped -effort high 

 

write_encounter design -basename Suzgec_Uclu_syn 

report_timing > timing_report.txt 

report area > area_report.txt 
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R.2. Tcl Script for Improved Architecture 

# Cadence Encounter(r) RTL Compiler 

#     Special thanks to: Gurer Ozbek  

#kutuphane adresi: 

set_attribute lib_search_path /work/kits/tsmc/lib/180/stdcel_cl018g_2004q3v1/aci/sc/synopsys 

#kutuphanenin adi: 

set_attribute library {typical.lib} 

#LEF kutuphanesi adresi 

set_attribute lib_search_path /work/kits/tsmc/lib/180/stdcel_cl018g_2004q3v1/aci/sc/lef 

#LEF kutuphanesi adi 

set_attribute lef_library {tsmc18_6lm.lef} 

#okunacak dosyalar: 

read_hdl -v2001 Input_Muxes.v 

read_hdl -v2001 Suzgec_1.v 

read_hdl -v2001 Suzgec_2.v 

read_hdl -v2001 Suzgec_3_pipe.v 

read_hdl -v2001 Output_Muxes.v 

read_hdl -v2001 FILTER_END.v 

read_hdl -v2001 FILTEROUT_BANK.v 

read_hdl -v2001 Suzgec_Uclu.v 

elaborate Suzgec_Uclu 

 

#saat isareti tanimlamalari 

define_clock -period 1000000 -name sclk -domain domain_1 /designs/Suzgec_Uclu/ports_in/clk0 

define_clock -period 5800 -name clk0 -domain domain_2 /designs/Suzgec_Uclu/ports_in/clk0 

define_clock -period 5800 -name clk1 -domain domain_2 -divide_period 2 /designs/Suzgec_Uclu/ports_in/clk1 

define_clock -period 5800 -name clk2 -domain domain_2 -divide_period 4 /designs/Suzgec_Uclu/ports_in/clk2 

define_clock -period 5800 -name clk3 -domain domain_2 -divide_period 8 /designs/Suzgec_Uclu/ports_in/clk3 

set_attribute slew {100 100 200 200} [find -clock sclk] 

set_attribute slew {50 50 100 100} [find -clock clk0] 

set_attribute slew {50 50 100 100} [find -clock clk1] 

set_attribute slew {50 50 100 100} [find -clock clk2] 

set_attribute slew {50 50 100 100} [find -clock clk3] 

 

external_delay -input 500 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_in/resetRegOut 

external_delay -input 500 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_in/write 

external_delay -input 500 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_in/CE* 

external_delay -output 1000 -clock [find -clock sclk] -edge_rise /designs/Suzgec_Uclu/ports_out/dataR* 

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/int_mode* 

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/hb* 

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/clk* 

external_delay -input 0 -clock [find -clock clk0] -edge_rise /designs/Suzgec_Uclu/ports_in/reset 

external_delay -input 300 -clock [find -clock clk3] -edge_rise /designs/Suzgec_Uclu/ports_in/din_* 

external_delay -output 100 -clock [find -clock clk3] -edge_rise /designs/Suzgec_Uclu/ports_out/dout_* 

 

#retime islemleri  

set_attribute dont_retime true [all::all_seqs -clock sclk] 

set_attribute dont_retime true [all::all_seqs -clock clk0] 

set_attribute dont_retime true [all::all_seqs -clock clk1] 

set_attribute dont_retime true [find / -instance ent_out_*]  

set_attribute dont_retime true [find / -instance FF_oys_*] 

set_attribute dont_retime true [all::all_seqs -clock clk3] 

retime -prepare 

retime -min_delay -effort high 

 

synthesize -to_mapped -effort high 

 

#cikislari yaz 

write_encounter design -basename Suzgec_Uclu_syn 

report_timing > timing_report.txt 

report area > area_report.txt 
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APPENDIX S  

 

Figure S.1 : Simulink model of Filter-1. 
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Figure S.2 : Simulink model of Filter-2. 
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Figure S.3 : Simulink model of Filter-3. 
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APPENDIX V  

V.1. Verilog Code of Fillter-1 

`timescale 1ns / 1ps 
module Suzgec_1(clk250, clk500, reset, hb1_mod, din_r, din_i, dout_r, dout_i 

);  

input clk250, clk500, reset; 
input[1:0] hb1_mod; 

input signed[15:0] din_r, din_i; 

output reg signed[15:0] dout_r, dout_i; 
 

reg signed[15:0] FF_r [0:27]; 

reg signed[15:0] FF_i [0:27]; 
reg signed[15:0] FF_oys_r, FF_oys_i; 

reg signed[16:0] ilk_toplam_r [0:13]; 

reg signed[16:0] ilk_toplam_i [0:13]; 
wire signed[15:0] h [0:13]; 

 

assign h[0] = -4; 
assign h[1] = 13; 

assign h[2] = -34; 

assign h[3] = 72; 
assign h[4] = -138; 

assign h[5] = 245; 

assign h[6] = -408; 
assign h[7] = 650; 

assign h[8] = -1003; 

assign h[9] = 1521; 
assign h[10] = -2315; 

assign h[11] = 3671; 

assign h[12] = -6642; 
assign h[13] = 20755; 

 

reg signed[32:0] carpim_r [0:13]; 
reg signed[32:0] carpim_i [0:13]; 

reg signed[33:0] agac_sev_1_r [0:6]; 

reg signed[33:0] agac_sev_1_i [0:6]; 
reg signed[34:0] agac_sev_2_r [0:3]; 

reg signed[34:0] agac_sev_2_i [0:3]; 

reg signed[35:0] agac_sev_3_r [0:1]; 
reg signed[35:0] agac_sev_3_i [0:1]; 

reg signed[36:0] agac_sev_4_r, agac_sev_4_i; 

reg signed[15:0] kesik_r, kesik_i; 
reg signed[15:0] ent_out_r, ent_out_i; 

reg bir_say; 

integer i; 
 

//ötelemeli yazıcı 

always@(posedge clk250, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=27; i=i+1 )begin 
   FF_r[i] <= 0; 

   FF_i[i] <= 0; 

  end 
 end 

 else begin 

  FF_r[0] <= din_r; 
  FF_i[0] <= din_i; 

  for( i=0; i<=26; i=i+1 )begin 

   FF_r[i+1] <= FF_r[i]; 
   FF_i[i+1] <= FF_i[i]; 

  end 

 end 
end 

//oys registeri //otelemeli yazici sonu 

always@(posedge clk250, posedge reset)begin 
 if(reset == 1)begin   

  FF_oys_r <= 0; 

  FF_oys_i <= 0; 
 end 

 else begin 



112 

 

  case(hb1_mod) 

   0 : begin 

    FF_oys_r <= FF_r[19]; 

    FF_oys_i <= FF_i[19]; 
   end 

   1 : begin 

    FF_oys_r <= -FF_r[19]; 
    FF_oys_i <= -FF_i[19]; 

   end 

   2 : begin 
    FF_oys_r <= -FF_r[19]; 

    FF_oys_i <= -FF_i[19]; 

   end 
   3 : begin 

    FF_oys_r <= FF_r[19]; 

    FF_oys_i <= FF_i[19]; 
   end 

  endcase  

 end 

end 

//toplayıcılar 

always@(posedge clk250, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=13; i=i+1 )begin 

   ilk_toplam_r[i] <= 0; 
   ilk_toplam_i[i] <= 0; 

  end 

 end 
 else begin 

  case(hb1_mod) 

   0 : begin 
    for( i=0; i<=13; i=i+1 )begin 

     ilk_toplam_r[i] <= FF_r[i] + FF_r [27-i]; 

     ilk_toplam_i[i] <= FF_i[i] + FF_i [27-i]; 
    end 

   end 

   1 : begin 
    for( i=0; i<=12; i=i+2 )begin 

     ilk_toplam_r[i] <= -FF_r[i] + FF_r [27-i]; 

     ilk_toplam_i[i] <= -FF_i[i] + FF_i [27-i]; 
    end 

    for( i=1; i<=13; i=i+2 )begin 

     ilk_toplam_r[i] <= FF_r[i] - FF_r [27-i]; 
     ilk_toplam_i[i] <= FF_i[i] - FF_i [27-i]; 

    end 

   end 
   2 : begin 

    for( i=0; i<=13; i=i+1 )begin 

     ilk_toplam_r[i] <= FF_r[i] + FF_r [27-i]; 
     ilk_toplam_i[i] <= FF_i[i] + FF_i [27-i]; 

    end 

   end 
   3 : begin 

    for( i=0; i<=12; i=i+2 )begin 

     ilk_toplam_r[i] <= -FF_r[i] + FF_r [27-i]; 

     ilk_toplam_i[i] <= -FF_i[i] + FF_i [27-i]; 

    end 
    for( i=1; i<=13; i=i+2 )begin 

     ilk_toplam_r[i] <= FF_r[i] - FF_r [27-i]; 

     ilk_toplam_i[i] <= FF_i[i] - FF_i [27-i]; 
    end 

   end 

  endcase 
 end 

end 

//carpicilar 
always@(posedge clk250, posedge reset)begin 

 if(reset == 1)begin 

  for( i=0; i<=13; i=i+1 )begin 
   carpim_r[i] <= 0; 

   carpim_i[i] <= 0; 

  end 

 end 

 else begin 

  for( i=0; i<=13; i=i+1 )begin 
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   carpim_r[i] <= ilk_toplam_r[i] * h[i]; 

   carpim_i[i] <= ilk_toplam_i[i] * h[i]; 

  end    

 end 
end 

//toplayici agaci seviye 1 

always@(posedge clk250, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=6; i=i+1 )begin 

   agac_sev_1_r[i] <= 0; 
   agac_sev_1_i[i] <= 0; 

  end 

 end 
 else begin 

  for( i=0; i<=6; i=i+1 )begin 

   agac_sev_1_r[i] <= carpim_r[2*i] + carpim_r[2*i+1]; 
   agac_sev_1_i[i] <= carpim_i[2*i] + carpim_i[2*i+1]; 

  end    

 end 

end 

//toplayici agaci seviye 2 

always@(posedge clk250, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=3; i=i+1 )begin 

   agac_sev_2_r[i] <= 0; 
   agac_sev_2_i[i] <= 0; 

  end 

 end 
 else begin 

  agac_sev_2_r[3] <= agac_sev_1_r[6]; 

  agac_sev_2_i[3] <= agac_sev_1_i[6]; 
  for( i=0; i<=2; i=i+1 )begin 

   agac_sev_2_r[i] <= agac_sev_1_r[2*i] + agac_sev_1_r[2*i+1]; 

   agac_sev_2_i[i] <= agac_sev_1_i[2*i] + agac_sev_1_i[2*i+1]; 
  end    

 end 

end 
//toplayici agaci seviye 3 

always@(posedge clk250, posedge reset)begin 

 if(reset == 1)begin 
  agac_sev_3_r[0] <= 0; 

  agac_sev_3_r[1] <= 0; 

  agac_sev_3_i[0] <= 0; 
  agac_sev_3_i[1] <= 0; 

 end 

 else begin 
  agac_sev_3_r[0] <= agac_sev_2_r[0] + agac_sev_2_r[1]; 

  agac_sev_3_r[1] <= agac_sev_2_r[2] + agac_sev_2_r[3]; 

  // 
  agac_sev_3_i[0] <= agac_sev_2_i[0] + agac_sev_2_i[1]; 

  agac_sev_3_i[1] <= agac_sev_2_i[2] + agac_sev_2_i[3]; 

 end 
end 

//toplayici agaci seviye 4 

always@(posedge clk250, posedge reset)begin 

 if(reset == 1)begin 

  agac_sev_4_r <= 0; 
  agac_sev_4_i <= 0; 

 end 

 else begin 
  agac_sev_4_r <= agac_sev_3_r[0] + agac_sev_3_r[1]; 

  agac_sev_4_i <= agac_sev_3_i[0] + agac_sev_3_i[1]; 

 end 
end 

//37bit - 16 bit donusturucu (cikis kesicisi) 

always@(*)begin  
 if(agac_sev_4_r[30] == 1)begin  //sayi negatif ise 

  if( |agac_sev_4_r[14:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_r <= agac_sev_4_r[30:15] + 1; 
  end 

  else begin 

   kesik_r <= agac_sev_4_r[30:15]; 

  end 

 end 

 else begin 
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  kesik_r <= agac_sev_4_r[30:15]; 

 end 

 // 

 if(agac_sev_4_i[30] == 1)begin  //sayi negatif ise 
  if( |agac_sev_4_i[14:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_i <= agac_sev_4_i[30:15] + 1; 

  end 
  else begin 

   kesik_i <= agac_sev_4_i[30:15]; 

  end 
 end 

 else begin 

  kesik_i <= agac_sev_4_i[30:15]; 
 end 

end 

//enterpolasyon sonrasi cikis 
always@(posedge clk250, posedge reset)begin 

 if(reset == 1)begin   

  ent_out_r <= 0; 

  ent_out_i <= 0; 

 end 

 else begin 
  case(hb1_mod) 

    

   1 : begin 
    ent_out_r <= kesik_i; 

    ent_out_i <= kesik_r; 

   end 
    

   3 : begin 

    ent_out_r <= kesik_i; 
    ent_out_i <= kesik_r; 

   end 

    
   default : begin 

    ent_out_r <= kesik_r; 

    ent_out_i <= kesik_i; 
   end 

    

  endcase  
 end 

end 

//cikis secicisi 
always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 

  dout_r <= 0; 
  dout_i <= 0; 

 end 

 else begin 
  if(bir_say == 1)begin 

   dout_r <= ent_out_r; 

   dout_i <= ent_out_i; 
  end 

  else begin 

   dout_r <= FF_oys_r; 

   dout_i <= FF_oys_i; 

  end 
 end 

end 

//bire kadar sayan sayici 
always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 

  bir_say <= 0; 
 end 

 else begin 

  bir_say <= ~bir_say; 
 end 

end 

endmodule 
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V.2. Verilog Code of Fillter-2 

`timescale 1ns / 1ps 

module Suzgec_2(clk500, clk1, reset, hb2_mod, din_r, din_i, dout_r, dout_i 

); 
input clk500, clk1, reset; 

input[2:0] hb2_mod; 

input signed[15:0] din_r, din_i; 
output reg signed[15:0] dout_r, dout_i; 

 

reg signed[15:0] FF_r [0:11]; 
reg signed[15:0] FF_i [0:11]; 

reg signed[15:0] FF_oys_r, FF_oys_i; 

reg signed[16:0] toplam_oys_r, toplam_oys_i; 
wire signed[16:0] sqrt2; 

 

assign sqrt2 = 17'b01011010100000101;  //16'd46341 

 

wire signed[33:0] carpim_oys_r, carpim_oys_i; 

reg signed[15:0] kesik_oys_r, kesik_oys_i; 
reg signed[16:0] ilk_toplam_r [0:5]; 

reg signed[16:0] ilk_toplam_i [0:5]; 

wire signed[12:0] h [0:5]; 
 

assign h[0] = -2; 

assign h[1] = 17; 
assign h[2] = -75; 

assign h[3] = 238; 
assign h[4] = -660; 

assign h[5] = 2530; 

 
reg signed[29:0] carpim_r [0:5]; 

reg signed[29:0] carpim_i [0:5]; 

reg signed[30:0] agac_sev_1_r [0:2]; 
reg signed[30:0] agac_sev_1_i [0:2]; 

reg signed[31:0] agac_sev_2_r [0:1]; 

reg signed[31:0] agac_sev_2_i [0:1]; 
reg signed[32:0] agac_sev_3_r, agac_sev_3_i; 

reg signed[15:0] kesik_r, kesik_i; 

reg signed[15:0] ent_out_r, ent_out_i; 
reg bir_say; 

integer i; 

 
//ötelemeli yazıcı 

always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 
  for( i=0; i<=11; i=i+1 )begin 

   FF_r[i] <= 0; 

   FF_i[i] <= 0; 
  end 

 end 

 else begin 
  FF_r[0] <= din_r; 

  FF_i[0] <= din_i; 

  //FF[1] <= FF[0]; 
  //... 

  //FF[11] <= FF[10]; 

  for( i=0; i<=10; i=i+1 )begin 
   FF_r[i+1] <= FF_r[i]; 

   FF_i[i+1] <= FF_i[i]; 

  end 
 end 

end 

 
//ötelemeli yazici sonu (oys) toplayici  

always@(*)begin 

 case(hb2_mod) 
  1 : begin 

   toplam_oys_r = FF_r[10] - FF_i[10]; 

   toplam_oys_i = FF_i[10] + FF_r[10]; 

  end 

  3 : begin 

   toplam_oys_r = FF_r[10] + FF_i[10]; 
   toplam_oys_i = FF_i[10] - FF_r[10]; 
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  end 

  5 : begin 

   toplam_oys_r = FF_r[10] - FF_i[10]; 

   toplam_oys_i = FF_i[10] + FF_r[10]; 
  end 

  7 : begin 

   toplam_oys_r = FF_r[10] + FF_i[10]; 
   toplam_oys_i = FF_i[10] - FF_r[10]; 

  end 

  default : begin 
   toplam_oys_r = FF_r[10] + FF_i[10]; 

   toplam_oys_i = FF_i[10] + FF_r[10]; 

  end 
 endcase 

end 

 
//ötelemeli yazici sonu carpici (kök 2 ile çarpım) 

assign carpim_oys_r = toplam_oys_r * sqrt2; 

assign carpim_oys_i = toplam_oys_i * sqrt2; 

 

//oys kesicisi (2'ye bolme) (ya da 4e denebilir belki) 

always@(*)begin 
 if(carpim_oys_r[31] == 1)begin  //sayi negatif ise 

  if( |carpim_oys_r[15:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_oys_r <= carpim_oys_r[31:16] + 1; 
  end 

  else begin 

   kesik_oys_r <= carpim_oys_r[31:16]; 
  end 

 end 

 else begin 
  kesik_oys_r <= carpim_oys_r[31:16]; 

 end 

 if(carpim_oys_i[31] == 1)begin  //sayi negatif ise 
  if( |carpim_oys_i[15:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_oys_i <= carpim_oys_i[31:16] + 1; 

  end 
  else begin 

   kesik_oys_i <= carpim_oys_i[31:16]; 

  end 
 end 

 else begin 

  kesik_oys_i <= carpim_oys_i[31:16]; 
 end 

 

end 
//oys registeri 

always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin   
  FF_oys_r <= 0; 

  FF_oys_i <= 0; 

 end 
 else begin 

  case(hb2_mod) 

   0 : begin 

    FF_oys_r <= FF_r[10]; 

    FF_oys_i <= FF_i[10]; 
   end 

   1 : begin 

    FF_oys_r <= -kesik_oys_r; 
    FF_oys_i <= -kesik_oys_i; 

   end 

   2 : begin 
    FF_oys_r <= -FF_r[10]; 

    FF_oys_i <= -FF_i[10]; 

   end 
   3 : begin 

    FF_oys_r <= kesik_oys_r; 

    FF_oys_i <= kesik_oys_i; 
   end 

   4 : begin 

    FF_oys_r <= -FF_r[10]; 

    FF_oys_i <= -FF_i[10]; 

   end 

   5 : begin 



117 

 

    FF_oys_r <= kesik_oys_r; 

    FF_oys_i <= kesik_oys_i; 

   end 

   6 : begin 
    FF_oys_r <= FF_r[10]; 

    FF_oys_i <= FF_i[10]; 

   end 
   7 : begin 

    FF_oys_r <= -kesik_oys_r; 

    FF_oys_i <= -kesik_oys_i; 
   end 

   default : begin 

    FF_oys_r <= FF_r[10]; 
    FF_oys_i <= FF_i[10]; 

   end 

  endcase  
 end 

end 

 

//toplayıcılar 

always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 
  for( i=0; i<=5; i=i+1 )begin 

   ilk_toplam_r[i] <= 0; 

   ilk_toplam_i[i] <= 0; 
  end 

 end 

 else begin 
  

  case(hb2_mod) 

   0 : begin 
    ilk_toplam_r[0] <= FF_r[0] + FF_r[11];  //add1 

    ilk_toplam_r[1] <= FF_r[1] + FF_r[10];  //add2 

    ilk_toplam_r[2] <= FF_r[2] + FF_r[9];  //add3 
    ilk_toplam_r[3] <= FF_r[3] + FF_r[8];  //add4 

    ilk_toplam_r[4] <= FF_r[4] + FF_r[7];  //add5 

    ilk_toplam_r[5] <= FF_r[5] + FF_r[6];  //add6 
    //imags 

    ilk_toplam_i[0] <= FF_i[0] + FF_i[11];  //add1 

    ilk_toplam_i[1] <= FF_i[1] + FF_i[10];  //add2 
    ilk_toplam_i[2] <= FF_i[2] + FF_i[9];  //add3 

    ilk_toplam_i[3] <= FF_i[3] + FF_i[8];  //add4 

    ilk_toplam_i[4] <= FF_i[4] + FF_i[7];  //add5 
    ilk_toplam_i[5] <= FF_i[5] + FF_i[6];  //add6 

   end 

   1 : begin 
    ilk_toplam_r[0] <= -FF_i[0] + FF_r[11]; //add1 

    ilk_toplam_r[1] <= -FF_r[1] + FF_i[10]; //add2 

    ilk_toplam_r[2] <= FF_i[2] - FF_r[9];  //add3 
    ilk_toplam_r[3] <= FF_r[3] - FF_i[8];  //add4 

    ilk_toplam_r[4] <= -FF_i[4] + FF_r[7];  //add5 

    ilk_toplam_r[5] <= -FF_r[5] + FF_i[6];  //add6 
    //imags 

    ilk_toplam_i[0] <= FF_r[0] + FF_i[11];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] - FF_r[10]; //add2 

    ilk_toplam_i[2] <= -FF_r[2] - FF_i[9];  //add3 

    ilk_toplam_i[3] <= FF_i[3] + FF_r[8];  //add4 
    ilk_toplam_i[4] <= FF_r[4] + FF_i[7];  //add5 

    ilk_toplam_i[5] <= -FF_i[5] - FF_r[6];  //add6 

   end 
   2 : begin 

    ilk_toplam_r[0] <= -FF_r[0] + FF_r[11]; //add1 

    ilk_toplam_r[1] <= FF_r[1] - FF_r[10];  //add2 
    ilk_toplam_r[2] <= -FF_r[2] + FF_r[9];  //add3 

    ilk_toplam_r[3] <= FF_r[3] - FF_r[8];  //add4 

    ilk_toplam_r[4] <= -FF_r[4] + FF_r[7];  //add5 
    ilk_toplam_r[5] <= FF_r[5] - FF_r[6];  //add6 

    //imags 

    ilk_toplam_i[0] <= FF_i[0] - FF_i[11];  //add1 
    ilk_toplam_i[1] <= -FF_i[1] + FF_i[10]; //add2 

    ilk_toplam_i[2] <= FF_i[2] - FF_i[9];  //add3 

    ilk_toplam_i[3] <= -FF_i[3] + FF_i[8];  //add4 

    ilk_toplam_i[4] <= FF_i[4] - FF_i[7];  //add5 

    ilk_toplam_i[5] <= -FF_i[5] + FF_i[6];  //add6 

   end 
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   3 : begin 

    ilk_toplam_r[0] <= FF_i[0] + FF_r[11];  //add1 

    ilk_toplam_r[1] <= -FF_r[1] - FF_i[10]; //add2 

    ilk_toplam_r[2] <= -FF_i[2] - FF_r[9];  //add3 
    ilk_toplam_r[3] <= FF_r[3] + FF_i[8];  //add4 

    ilk_toplam_r[4] <= FF_i[4] + FF_r[7];  //add5 

    ilk_toplam_r[5] <= -FF_r[5] - FF_i[6];  //add6 
    //imags 

    ilk_toplam_i[0] <= -FF_r[0] + FF_i[11]; //add1 

    ilk_toplam_i[1] <= -FF_i[1] + FF_r[10]; //add2 
    ilk_toplam_i[2] <= FF_r[2] - FF_i[9];  //add3 

    ilk_toplam_i[3] <= FF_i[3] - FF_r[8];  //add4 

    ilk_toplam_i[4] <= -FF_r[4] + FF_i[7];  //add5 
    ilk_toplam_i[5] <= -FF_i[5] + FF_r[6];  //add6 

   end 

   4 : begin 
    ilk_toplam_r[0] <= FF_r[0] + FF_r[11];  //add1 

    ilk_toplam_r[1] <= FF_r[1] + FF_r[10];  //add2 

    ilk_toplam_r[2] <= FF_r[2] + FF_r[9];  //add3 

    ilk_toplam_r[3] <= FF_r[3] + FF_r[8];  //add4 

    ilk_toplam_r[4] <= FF_r[4] + FF_r[7];  //add5 

    ilk_toplam_r[5] <= FF_r[5] + FF_r[6];  //add6 
    //imags 

    ilk_toplam_i[0] <= FF_i[0] + FF_i[11];  //add1 

    ilk_toplam_i[1] <= FF_i[1] + FF_i[10];  //add2 
    ilk_toplam_i[2] <= FF_i[2] + FF_i[9];  //add3 

    ilk_toplam_i[3] <= FF_i[3] + FF_i[8];  //add4 

    ilk_toplam_i[4] <= FF_i[4] + FF_i[7];  //add5 
    ilk_toplam_i[5] <= FF_i[5] + FF_i[6];  //add6 

   end 

   5 : begin 
    ilk_toplam_r[0] <= -FF_i[0] + FF_r[11]; //add1 

    ilk_toplam_r[1] <= -FF_r[1] + FF_i[10]; //add2 

    ilk_toplam_r[2] <= FF_i[2] - FF_r[9];  //add3 
    ilk_toplam_r[3] <= FF_r[3] - FF_i[8];  //add4 

    ilk_toplam_r[4] <= -FF_i[4] + FF_r[7];  //add5 

    ilk_toplam_r[5] <= -FF_r[5] + FF_i[6];  //add6 
    //imags 

    ilk_toplam_i[0] <= FF_r[0] + FF_i[11];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] - FF_r[10]; //add2 
    ilk_toplam_i[2] <= -FF_r[2] - FF_i[9];  //add3 

    ilk_toplam_i[3] <= FF_i[3] + FF_r[8];  //add4 

    ilk_toplam_i[4] <= FF_r[4] + FF_i[7];  //add5 
    ilk_toplam_i[5] <= -FF_i[5] - FF_r[6];  //add6 

 

   end 
   6 : begin 

    ilk_toplam_r[0] <= -FF_r[0] + FF_r[11]; //add1 

    ilk_toplam_r[1] <= FF_r[1] - FF_r[10];  //add2 
    ilk_toplam_r[2] <= -FF_r[2] + FF_r[9];  //add3 

    ilk_toplam_r[3] <= FF_r[3] - FF_r[8];  //add4 

    ilk_toplam_r[4] <= -FF_r[4] + FF_r[7];  //add5 
    ilk_toplam_r[5] <= FF_r[5] - FF_r[6];  //add6 

    //imags 

    ilk_toplam_i[0] <= FF_i[0] - FF_i[11];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] + FF_i[10]; //add2 

    ilk_toplam_i[2] <= FF_i[2] - FF_i[9];  //add3 
    ilk_toplam_i[3] <= -FF_i[3] + FF_i[8];  //add4 

    ilk_toplam_i[4] <= FF_i[4] - FF_i[7];  //add5 

    ilk_toplam_i[5] <= -FF_i[5] + FF_i[6];  //add6 
   end 

   7 : begin 

    ilk_toplam_r[0] <= FF_i[0] + FF_r[11];  //add1 
    ilk_toplam_r[1] <= -FF_r[1] - FF_i[10]; //add2 

    ilk_toplam_r[2] <= -FF_i[2] - FF_r[9];  //add3 

    ilk_toplam_r[3] <= FF_r[3] + FF_i[8];  //add4 
    ilk_toplam_r[4] <= FF_i[4] + FF_r[7];  //add5 

    ilk_toplam_r[5] <= -FF_r[5] - FF_i[6];  //add6 

    //imags 
    ilk_toplam_i[0] <= -FF_r[0] + FF_i[11]; //add1 

    ilk_toplam_i[1] <= -FF_i[1] + FF_r[10]; //add2 

    ilk_toplam_i[2] <= FF_r[2] - FF_i[9];  //add3 

    ilk_toplam_i[3] <= FF_i[3] - FF_r[8];  //add4 

    ilk_toplam_i[4] <= -FF_r[4] + FF_i[7];  //add5 

    ilk_toplam_i[5] <= -FF_i[5] + FF_r[6];  //add6 
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   end 

  endcase 

 end 

end 
 

//carpicilar 

always@(posedge clk500, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=5; i=i+1 )begin 

   carpim_r[i] <= 0; 
   carpim_i[i] <= 0; 

  end 

 end 
 else begin 

  for( i=0; i<=5; i=i+1 )begin 

   carpim_r[i] <= ilk_toplam_r[i] * h[i]; 
   carpim_i[i] <= ilk_toplam_i[i] * h[i]; 

  end    

 end 

end 

 

//toplayici agaci seviye 1 
always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 

  for( i=0; i<=2; i=i+1 )begin 
   agac_sev_1_r[i] <= 0; 

   agac_sev_1_i[i] <= 0; 

  end 
 end 

 else begin 

  for( i=0; i<=2; i=i+1 )begin 
   agac_sev_1_r[i] <= carpim_r[2*i] + carpim_r[2*i+1]; 

   agac_sev_1_i[i] <= carpim_i[2*i] + carpim_i[2*i+1]; 

  end    
 end 

end 

 
//toplayici agaci seviye 2 

always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 
  for( i=0; i<=1; i=i+1 )begin 

   agac_sev_2_r[i] <= 0; 

   agac_sev_2_i[i] <= 0; 
  end 

 end 

 else begin 
  agac_sev_2_r[0] <= agac_sev_1_r[0] + agac_sev_1_r[1]; 

  agac_sev_2_r[1] <= agac_sev_1_r[2]; 

  // 
  agac_sev_2_i[0] <= agac_sev_1_i[0] + agac_sev_1_i[1]; 

  agac_sev_2_i[1] <= agac_sev_1_i[2]; 

 end 
end 

 

//toplayici agaci seviye 3 

always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin 
  agac_sev_3_r <= 0; 

  agac_sev_3_i <= 0; 

 end 
 else begin 

  agac_sev_3_r <= agac_sev_2_r[0] + agac_sev_2_r[1]; 

  agac_sev_3_i <= agac_sev_2_i[0] + agac_sev_2_i[1]; 
 end 

end 

 
//36bit - 16 bit donusturucu (cikis kesicisi) 

always@(*)begin  

 if(agac_sev_3_r[27] == 1)begin  //sayi negatif ise 
  if( |agac_sev_3_r[11:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_r <= agac_sev_3_r[27:12] + 1; 

  end 

  else begin 

   kesik_r <= agac_sev_3_r[27:12]; 

  end 
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 end 

 else begin 

  kesik_r <= agac_sev_3_r[27:12]; 

 end 
 // 

 if(agac_sev_3_i[27] == 1)begin  //sayi negatif ise 

  if( |agac_sev_3_i[11:0] == 1 )begin  //sayi, tamsayisinden küçükse 
   kesik_i <= agac_sev_3_i[27:12] + 1; 

  end 

  else begin 
   kesik_i <= agac_sev_3_i[27:12]; 

  end 

 end 
 else begin 

  kesik_i <= agac_sev_3_i[27:12]; 

 end 
end 

 

//enterpolasyon sonrasi cikis 

always@(posedge clk500, posedge reset)begin 

 if(reset == 1)begin   

  ent_out_r <= 0; 
  ent_out_i <= 0; 

 end 

 else begin 
  case(hb2_mod) 

   2 : begin 

    ent_out_r <= kesik_i; 
    ent_out_i <= kesik_r; 

   end 

   6 : begin 
    ent_out_r <= kesik_i; 

    ent_out_i <= kesik_r; 

   end 
   default : begin 

    ent_out_r <= kesik_r; 

    ent_out_i <= kesik_i; 
   end  

  endcase  

 end 
end 

 

//cikis secicisi 
always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin 

  dout_r <= 0; 
  dout_i <= 0; 

 end 

 else begin 
  if(bir_say == 0)begin 

   dout_r <= ent_out_r; 

   dout_i <= ent_out_i; 
  end 

  else begin 

   dout_r <= FF_oys_r; 

   dout_i <= FF_oys_i; 

  end 
 end 

end 

 
//bire kadar sayan sayici 

always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin 
  bir_say <= 0; 

 end 

 else begin 
  bir_say <= ~bir_say; 

 end 

end 
 

endmodule 
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V.3. Verilog Code of Fillter-3 

`timescale 1ns / 1ps 

module Suzgec_3(clk1, clk2, reset, hb3_mod, din_r, din_i, dout_r, dout_i 

);  
input clk1, clk2, reset; 

input[2:0] hb3_mod; 

input signed[15:0] din_r, din_i; 
output reg signed[15:0] dout_r, dout_i; 

 

reg signed[15:0] FF_r [0:8];  // bu FF'lardan 8.si sadece gecikme için kullanılıyor, çıkışı toplanıp çarpılmıyor 
reg signed[15:0] FF_i [0:8]; 

reg signed[16:0] toplam_oys_r, toplam_oys_i; 

wire signed[16:0] sqrt2; 
 

assign sqrt2 = 17'sb01011010100000101;  //16'd46341 

 
wire signed[33:0] carpim_oys_r, carpim_oys_i; 

reg signed[15:0] kesik_oys_r, kesik_oys_i; 

reg signed[16:0] ilk_toplam_r [0:3]; 
reg signed[16:0] ilk_toplam_i [0:3]; 

reg signed[30:0] carpim_r [0:3]; 

reg signed[30:0] carpim_i [0:3]; 
wire signed[13:0] h [0:3]; 

 

assign h[0] = -39; 
assign h[1] = 273; 

assign h[2] = -1102; 
assign h[3] = 4964; 

reg signed[31:0] agac_sev_1_r [0:1]; 

reg signed[31:0] agac_sev_1_i [0:1]; 
reg signed[32:0] agac_sev_2_r, agac_sev_2_i; 

reg signed[15:0] kesik_r, kesik_i; 

reg signed[15:0] ent_out_r, ent_out_i; 

reg bir_say; 

integer i; 

 
//ötelemeli yazıcı 

always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin 
  for( i=0; i<=7; i=i+1 )begin 

   FF_r[i] <= 0; 

   FF_i[i] <= 0; 
  end 

 end 

 else begin 
  FF_r[0] <= din_r; 

  FF_i[0] <= din_i; 

  for( i=0; i<=6; i=i+1 )begin 
   FF_r[i+1] <= FF_r[i]; 

   FF_i[i+1] <= FF_i[i]; 

  end 

 end 

end 

//ötelemeli yazici sonu (oys) toplayici  
always@(*)begin 

 case(hb3_mod) 

  1 : begin 
   toplam_oys_r = FF_r[7] - FF_i[7]; 

   toplam_oys_i = FF_i[7] + FF_r[7]; 

  end 
  3 : begin 

   toplam_oys_r = FF_r[7] + FF_i[7]; 

   toplam_oys_i = FF_i[7] - FF_r[7]; 
  end 

  5 : begin 

   toplam_oys_r = FF_r[7] - FF_i[7]; 
   toplam_oys_i = FF_i[7] + FF_r[7]; 

  end 

  7 : begin 

   toplam_oys_r = FF_r[7] + FF_i[7]; 

   toplam_oys_i = FF_i[7] - FF_r[7]; 

  end 
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  default : begin 

   toplam_oys_r = FF_r[7] + FF_i[7]; 

   toplam_oys_i = FF_i[7] + FF_r[7]; 

  end 
 endcase 

end 

//ötelemeli yazici sonu carpici (kök 2 ile çarpım) 
assign carpim_oys_r = toplam_oys_r * sqrt2; 

assign carpim_oys_i = toplam_oys_i * sqrt2; 

//oys kesicisi (2'ye bolme) (ya da 4e denebilir belki) 
always@(*)begin 

 if(carpim_oys_r[31] == 1)begin  //sayi negatif ise 

  if( |carpim_oys_r[15:0] == 1 )begin  //sayi, tamsayisinden küçükse 
   kesik_oys_r <= carpim_oys_r[31:16] + 1; 

  end 

  else begin 
   kesik_oys_r <= carpim_oys_r[31:16]; 

  end 

 end 

 else begin 

  kesik_oys_r <= carpim_oys_r[31:16]; 

 end 
 if(carpim_oys_i[31] == 1)begin  //sayi negatif ise 

  if( |carpim_oys_i[15:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_oys_i <= carpim_oys_i[31:16] + 1; 
  end 

  else begin 

   kesik_oys_i <= carpim_oys_i[31:16]; 
  end 

 end 

 else begin 
  kesik_oys_i <= carpim_oys_i[31:16]; 

 end 

end 
//oys registeri 

always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin   
  FF_r[8] <= 0; 

  FF_i[8] <= 0; 

 end 
 else begin 

  case(hb3_mod) 

   0 : begin 
    FF_r[8] <= FF_r[7]; 

    FF_i[8] <= FF_i[7]; 

   end 
   1 : begin 

    FF_r[8] <= kesik_oys_r; 

    FF_i[8] <= kesik_oys_i; 
   end 

   2 : begin 

    FF_r[8] <= -FF_r[7]; 
    FF_i[8] <= -FF_i[7]; 

   end 

   3 : begin 

    FF_r[8] <= -kesik_oys_r; 

    FF_i[8] <= -kesik_oys_i; 
   end 

   4 : begin 

    FF_r[8] <= -FF_r[7]; 
    FF_i[8] <= -FF_i[7]; 

   end 

   5 : begin 
    FF_r[8] <= -kesik_oys_r; 

    FF_i[8] <= -kesik_oys_i; 

   end 
   6 : begin 

    FF_r[8] <= FF_r[7]; 

    FF_i[8] <= FF_i[7]; 
   end 

   7 : begin 

    FF_r[8] <= kesik_oys_r; 

    FF_i[8] <= kesik_oys_i; 

   end 

   default : begin 
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    FF_r[8] <= FF_r[7]; 

    FF_i[8] <= FF_i[7]; 

   end 

  endcase 
 end 

end 

//toplayıcılar 
always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin 

  for( i=0; i<=3; i=i+1 )begin 
   ilk_toplam_r[i] <= 0; 

   ilk_toplam_i[i] <= 0; 

  end 
 end 

 else begin 

  case(hb3_mod) 
   0 : begin 

    ilk_toplam_r[0] <= FF_r[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= FF_r[1] + FF_r[6];  //add2 

    ilk_toplam_r[2] <= FF_r[2] + FF_r[5];  //add3 

    ilk_toplam_r[3] <= FF_r[3] + FF_r[4];  //add4 

    //imags 
    ilk_toplam_i[0] <= FF_i[0] + FF_i[7];  //add1 

    ilk_toplam_i[1] <= FF_i[1] + FF_i[6];  //add2 

    ilk_toplam_i[2] <= FF_i[2] + FF_i[5];  //add3 
    ilk_toplam_i[3] <= FF_i[3] + FF_i[4];  //add4 

   end 

   1 : begin 
    ilk_toplam_r[0] <= -FF_i[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= -FF_r[1] + FF_i[6];  //add2 

    ilk_toplam_r[2] <= FF_i[2] - FF_r[5];  //add3 
    ilk_toplam_r[3] <= FF_r[3] - FF_i[4];  //add4 

    //imags 

    ilk_toplam_i[0] <= FF_r[0] + FF_i[7];  //add1 
    ilk_toplam_i[1] <= -FF_i[1] - FF_r[6];  //add2 

    ilk_toplam_i[2] <= -FF_r[2] - FF_i[5];  //add3 

    ilk_toplam_i[3] <= FF_i[3] + FF_r[4];  //add4 
   end 

   2 : begin 

    ilk_toplam_r[0] <= -FF_r[0] + FF_r[7];  //add1 
    ilk_toplam_r[1] <= FF_r[1] - FF_r[6];  //add2 

    ilk_toplam_r[2] <= -FF_r[2] + FF_r[5];  //add3 

    ilk_toplam_r[3] <= FF_r[3] - FF_r[4];  //add4 
    //imags 

    ilk_toplam_i[0] <= FF_i[0] - FF_i[7];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] + FF_i[6];  //add2 
    ilk_toplam_i[2] <= FF_i[2] - FF_i[5];  //add3 

    ilk_toplam_i[3] <= -FF_i[3] + FF_i[4];  //add4 

   end 
   3 : begin 

    ilk_toplam_r[0] <= FF_i[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= -FF_r[1] - FF_i[6];  //add2 
    ilk_toplam_r[2] <= -FF_i[2] - FF_r[5];  //add3 

    ilk_toplam_r[3] <= FF_r[3] + FF_i[4];  //add4 

    //imags 

    ilk_toplam_i[0] <= -FF_r[0] + FF_i[7];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] + FF_r[6];  //add2 
    ilk_toplam_i[2] <= FF_r[2] - FF_i[5];  //add3 

    ilk_toplam_i[3] <= FF_i[3] - FF_r[4];  //add4 

   end 
   4 : begin 

    ilk_toplam_r[0] <= FF_r[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= FF_r[1] + FF_r[6];  //add2 
    ilk_toplam_r[2] <= FF_r[2] + FF_r[5];  //add3 

    ilk_toplam_r[3] <= FF_r[3] + FF_r[4];  //add4 

    //imags 
    ilk_toplam_i[0] <= FF_i[0] + FF_i[7];  //add1 

    ilk_toplam_i[1] <= FF_i[1] + FF_i[6];  //add2 

    ilk_toplam_i[2] <= FF_i[2] + FF_i[5];  //add3 
    ilk_toplam_i[3] <= FF_i[3] + FF_i[4];  //add4 

   end 

   5 : begin 

    ilk_toplam_r[0] <= -FF_i[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= -FF_r[1] + FF_i[6];  //add2 

    ilk_toplam_r[2] <= FF_i[2] - FF_r[5];  //add3 
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    ilk_toplam_r[3] <= FF_r[3] - FF_i[4];  //add4 

    //imags 

    ilk_toplam_i[0] <= FF_r[0] + FF_i[7];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] - FF_r[6];  //add2 
    ilk_toplam_i[2] <= -FF_r[2] - FF_i[5];  //add3 

    ilk_toplam_i[3] <= FF_i[3] + FF_r[4];  //add4 

   end 
   6 : begin 

    ilk_toplam_r[0] <= -FF_r[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= FF_r[1] - FF_r[6];  //add2 
    ilk_toplam_r[2] <= -FF_r[2] + FF_r[5];  //add3 

    ilk_toplam_r[3] <= FF_r[3] - FF_r[4];  //add4 

    //imags 
    ilk_toplam_i[0] <= FF_i[0] - FF_i[7];  //add1 

    ilk_toplam_i[1] <= -FF_i[1] + FF_i[6];  //add2 

    ilk_toplam_i[2] <= FF_i[2] - FF_i[5];  //add3 
    ilk_toplam_i[3] <= -FF_i[3] + FF_i[4];  //add4 

   end 

   7 : begin 

    ilk_toplam_r[0] <= FF_i[0] + FF_r[7];  //add1 

    ilk_toplam_r[1] <= -FF_r[1] - FF_i[6];  //add2 

    ilk_toplam_r[2] <= -FF_i[2] - FF_r[5];  //add3 
    ilk_toplam_r[3] <= FF_r[3] + FF_i[4];  //add4 

    //imags 

    ilk_toplam_i[0] <= -FF_r[0] + FF_i[7];  //add1 
    ilk_toplam_i[1] <= -FF_i[1] + FF_r[6];  //add2 

    ilk_toplam_i[2] <= FF_r[2] - FF_i[5];  //add3 

    ilk_toplam_i[3] <= FF_i[3] - FF_r[4];  //add4 
   end 

  endcase 

 end 
end 

//carpicilar 

always@(posedge clk1, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=3; i=i+1 )begin 

   carpim_r[i] <= 0; 
   carpim_i[i] <= 0; 

  end 

 end 
 else begin 

  for( i=0; i<=3; i=i+1 )begin 

   carpim_r[i] <= ilk_toplam_r[i] * h[i]; 
   carpim_i[i] <= ilk_toplam_i[i] * h[i]; 

  end    

 end 
end 

//toplayici agaci seviye 1 

always@(posedge clk1, posedge reset)begin 
 if(reset == 1)begin 

  for( i=0; i<=1; i=i+1 )begin 

   agac_sev_1_r[i] <= 0; 
   agac_sev_1_i[i] <= 0; 

  end 

 end 

 else begin 

  agac_sev_1_r[0] <= carpim_r[0] + carpim_r[1]; 
  agac_sev_1_r[1] <= carpim_r[2] + carpim_r[3]; 

  //   

  agac_sev_1_i[0] <= carpim_i[0] + carpim_i[1]; 
  agac_sev_1_i[1] <= carpim_i[2] + carpim_i[3]; 

 end 

end 
//toplayici agaci seviye 2 

always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin 
  agac_sev_2_r <= 0; 

  agac_sev_2_i <= 0; 

 end 
 else begin 

  agac_sev_2_r <= agac_sev_1_r[0] + agac_sev_1_r[1]; 

  agac_sev_2_i <= agac_sev_1_i[0] + agac_sev_1_i[1]; 

 end 

end 

//33bit - 16 bit donusturucu (cikis kesicisi) 
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always@(*)begin 

 if(agac_sev_2_r[28] == 1)begin  //sayi negatif ise 

  if( |agac_sev_2_r[12:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_r <= agac_sev_2_r[28:13] + 1; 
  end 

  else begin 

   kesik_r <= agac_sev_2_r[28:13]; 
  end 

 end 

 else begin 
  kesik_r <= agac_sev_2_r[28:13]; 

 end 

 // 
 if(agac_sev_2_i[28] == 1)begin  //sayi negatif ise 

  if( |agac_sev_2_i[12:0] == 1 )begin  //sayi, tamsayisinden küçükse 

   kesik_i <= agac_sev_2_i[28:13] + 1; 
  end 

  else begin 

   kesik_i <= agac_sev_2_i[28:13]; 

  end 

 end 

 else begin 
  kesik_i <= agac_sev_2_i[28:13]; 

 end 

end 
//enterpolasyon sonrasi cikis 

always@(posedge clk1, posedge reset)begin 

 if(reset == 1)begin   
  ent_out_r <= 0; 

  ent_out_i <= 0; 

 end 
 else begin 

  case(hb3_mod) 

   2 : begin 
    ent_out_r <= kesik_i; 

    ent_out_i <= kesik_r; 

   end 
   6 : begin 

    ent_out_r <= kesik_i; 

    ent_out_i <= kesik_r; 
   end 

   default : begin 

    ent_out_r <= kesik_r; 
    ent_out_i <= kesik_i; 

   end 

  endcase 
 end 

end 

//cikis secicisi 
always@(posedge clk2, posedge reset)begin 

 if(reset == 1)begin 

  dout_r <= 0; 
  dout_i <= 0; 

 end 

 else begin 

  if(bir_say == 0)begin 

   dout_r <= ent_out_r; 
   dout_i <= ent_out_i; 

  end 

  else begin 
   dout_r <= FF_r[8]; 

   dout_i <= FF_i[8]; 

  end 
 end 

end 

//bire kadar sayan sayici 
always@(posedge clk2, posedge reset)begin 

 if(reset == 1)begin 

  bir_say <= 0; 
 end 

 else begin 

  bir_say <= ~bir_say; 

 end 

end 

endmodule 
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V.4. Verilog Code of TestBench (85 dB Design) 

`timescale 1ns / 1ps 

//`include "/work/kits/lf/1.8.0/PDK_LF150i_V1_8_0/digital/verilog/LF150DI_HS_F_V1_5_typical_conditional.v" 

module Test_Suzgec_Uclu; 
 // Inputs 

 reg clk250; 

 reg clk500; 
 reg clk1; 

 reg clk2; 

 reg reset; 
 reg [1:0] hb1_mod; 

 reg [2:0] hb2_mod; 

 reg [2:0] hb3_mod; 
 reg signed [15:0] din_r, din_i; 

 // Outputs 

 wire signed[15:0] dout_1_r; 
 wire signed[15:0] dout_1_i; 

 wire signed[15:0] dout_2_r; 

 wire signed[15:0] dout_2_i; 
 wire signed[15:0] dout_3_r; 

 wire signed[15:0] dout_3_i; 

 // Sampled Outputs 
 reg signed[15:0] dout_1_s; 

 reg signed[15:0] dout_2_s; 

 reg signed[15:0] dout_3_s; 
 // parameters 

 parameter period = 8.000; //4.000 : 250MHz freakansli clock giriyor 
 // file  

 integer file; 

 // SDF 
// initial $sdf_annotate("Suzgec_Uclu_syn_typ.sdf",uut); 

 // Instantiate the Unit Under Test (UUT) 

 Suzgec_Uclu uut ( 

  .clk250(clk250),  

  .clk500(clk500),  

  .clk1(clk1),  
  .clk2(clk2), 

  .reset(reset),  

  .hb1_mod(hb1_mod), 
  .hb2_mod(hb2_mod), 

  .hb3_mod(hb3_mod), 

  .din_r(din_r), 
  .din_i(din_i), 

  .dout_1_r(dout_1_r), 

  .dout_1_i(dout_1_i), 
  .dout_2_r(dout_2_r), 

  .dout_2_i(dout_2_i), 

  .dout_3_r(dout_3_r), 
  .dout_3_i(dout_3_i) 

 ); 

 initial begin 

  //open file (fire) 

  file = $fopen("sim_sonuc.m","w"); 

  $fwrite(file,"x = NaN;\n"); 
  $fwrite(file,"X = NaN;\n"); 

  $fwrite(file,"dout_3=[\n"); 

  
  // Initialize Inputs 

  clk250 = 1; 

  clk500 = 1; 
  clk1 = 1; 

  clk2 = 1; 

  reset = 0; 
  hb1_mod = 3; 

  hb2_mod = 1; 

  hb3_mod = 1; 
  din_r = 0; 

  din_i = 0; 

  //reset 

  #period reset = 1; 

  //reset 

  #(9*period/16) reset = 0; 
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  #period din_r = 0 ; 

  #period din_r = 7341 ; 

  #period din_r = 14220 ; 

  #period din_r = 20204 ; 
  #period din_r = 24916 ; 

  #period din_r = 28059 ; 

  #period din_r = 29436 ; 
  #period din_r = 28959 ; 

  #period din_r = 26660 ; 

  #period din_r = 22682 ; 
  #period din_r = 17276 ; 

  #period din_r = 10782 ; 

  #period din_r = 3610 ; 
  #period din_r = -3790 ; 

  #period din_r = -10951 ; 

  #period din_r = -17422 ; 
  …  …  … 

  #period din_r = -22566 ; 

  #period din_r = -26582 ; 

  #period din_r = -28925 ; 

  #period din_r = -29446 ; 

  #period din_r = -28114 ; 
  #period din_r = -25012 ; 

  #period din_r = -20335 ; 

  #period din_r = -14378 ; 
  #period din_r = -7516 ; 

  #period din_r = -181 ; 

  #period din_r = 7166 ; 
  #period din_r = 14061 ; 

  #period din_r = 20072 ; 

  #period din_r = 24818 ; 
  #period din_r = 28003 ; 

  #period din_r = 29424 ; 

  #period din_r = 28993 ; 
  #period din_r = 26737 ; 

  #period din_r = 22797 ; 

  #period din_r = 17422 ; 
  #period din_r = 10951 ; 

  #period din_r = 3790 ; 

  #period din_r = -3610 ; 
  #period din_r = -10782 ; 

  #period din_r = -17276 ; 

  #period din_r = -22682 ; 
  #period din_r = -26660 ; 

  #period din_r = -28959 ; 

  #period din_r = -29436 ; 
  #period din_r = -28059 ; 

  #period din_r = -24916 ; 

  #period din_r = -20204 ; 
  #period din_r = -14220 ; 

  #period din_r = -7341 ; 

 
  #100 $fwrite(file,"]';"); 

    $fclose(file); 

    $stop; 

 end 

  
 always begin #(period/2)  clk250 = ~clk250; end 

 always begin #(period/4)  clk500 = ~clk500; end 

 always begin #(period/8)  clk1 = ~clk1;   end 
 always begin #(period/16)  clk2 = ~clk2;   end 

 always @ (negedge clk500) begin 

  #(period/8) 
  dout_1_s <= dout_1_r; 

 end 

 always @ (negedge clk1) begin 
  #(period/16) 

  dout_2_s <= dout_2_r; 

 end  
 always @ (negedge clk2) begin 

  #(period/32) 

  dout_3_s <= dout_3_r; 

  $fwrite(file,"%d %d\n",dout_3_r, dout_3_i); 

 end 

endmodule 
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V.5. Output file generated by Verilog TestBench  

x = NaN; 

X = NaN; 

dout_3=[ 

     x      x 

     x      x 

     x      x 

     x      x 

     x      x 

     x      x 

     x      x 

     x      x 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

… … 

  9628 -23351 

 18568 -18568 

 20701  -8509 

 14705      0 

  3791   1716 

 -5095  -5095 

 -6766 -16035 

     0 -24816 

 10604 -25625 

 18441 -18441 

 18164  -7427 

  9865      0 

 -1732   -566 

 -9403  -9403 

 -8686 -20719 

     0 -28002 

 10915 -26288 

 17153 -17153 

 14483  -5876 

  4402      0 

 -7149  -2814 

-13119 -13119 

-10058 -24098]'; 
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V.6. Verilog Code of Testbench (Complete Digital System with 99 dB Design) 

`timescale 1ns / 1ps 

module TEST_CHIP_TOP; 

 // SPI Inputs 
 reg sclk; 

 reg por; 

 reg fsync; 
 reg sdin; 

 //SPI inputs from TRIMs 

 reg [0:255] dataR_from_TRIM; 
 reg [0:255] A_out_2; 

 // SPI Outputs 

 wire sdout; 
 //SPI outputs to TRIMs 

 wire [0:255] A_in; 

 wire [0:255] A_clk; 

 // parallel data Inputs 

 reg clkin; 

 reg signed [15:0] din_r, din_i; 
 // data to DAC 

 wire clkout_r; 

 wire clkout_i; 
 wire [30:0] MSBout_r; 

 wire [30:0] MSBout_i; 

 wire [10:0] LSBout_r; 
 wire [10:0] LSBout_i; 

 //Test Registers 
 reg [4:0]Test_MSBbin; 

 reg [15:0]TESTout; 

 //parallel data Sampled Outputs 
 //reg signed[15:0] dout_3_s; 

 // parameters 

 parameter period = 8000; //4.000 : 250MHz freakansli clock giriyor 
 //starting signal 

 reg start_clock; 

 // integer & file  
 integer i = 0, j = 0, k = 0; 

 integer file_sim_input; 

 integer file_sim_sonuc; 
 integer file_LA_csv; 

 // SPI_CB WORD 

 reg [23:0]WORD; 
 // SPI_CB WORD definition 

 reg [(12*8)-1:0] comment = "INITIAL"; 

 // TESTBENCH state 
 reg [(12*8)-1:0] comment_tb = "INITIAL"; 

 // SPI_CB parallel read data 

 reg [7:0] data_read; 
 // Instantiate the Unit Under Test 1 

 CHIP_TOP uut ( 

 .sclk (sclk), 
 .por (por), 

 .fsync (fsync), 

 .sdin (sdin), 
 .dataR_from_TRIM (dataR_from_TRIM), 

 .A_out_2 (A_out_2), 

 .clkin  (clkin), 
 .din_r  (din_r), 

 .din_i  (din_i), 

 .sdout  (sdout), 
 .A_in  (A_in), 

 .A_clk  (A_clk), 

 .clkout_r (clkout_r), 
 .clkout_i (clkout_i), 

 .MSBout_r (MSBout_r),     

 .MSBout_i(MSBout_i), 
 .LSBout_r (LSBout_r),     

 .LSBout_i (LSBout_i)    

 ); 

 //SPI signals 

 initial begin 

  // Initialize Inputs 
  sclk = 0; 
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  por = 1; 

  fsync = 0; 

  sdin = 0; 

  dataR_from_TRIM = 0; 
  A_out_2 = 0; 

  clkin = 0; 

  din_r = 0; 
  din_i = 0; 

  start_clock = 0; 

  WORD = 0; 
  data_read = 0; 

  //open file (fire) 

  file_LA_csv = $fopen("test_input.csv","w"); 
  //header 

  $fwrite(file_LA_csv,"\"My Bus 1\"\n"); 

  $fwrite(file_LA_csv,"\"Pod 6[7:0]\"\n"); 
  $fwrite(file_LA_csv,"*Init Start\n"); 

  $fwrite(file_LA_csv,"*Init End\n"); 

  $fwrite(file_LA_csv,"*Main Start\n"); 

  $fwrite(file_LA_csv,"FF\n"); 

  // Wait 100 ns for global reset to finish 

  #100; 
  por = 0; 

  #100; 

  por = 1; 
  #100; 

  fsync = 1; 

  #100; 
  fsync = 0; 

  #100; 

  //TRIM testi 
  comment_tb = "TRIM TEST"; 

  //yazilacak CMD 

  SPI_CB_TASK_24("write", 11'h001, 24'hACABA0); 
  //okunacak CMD 

  SPI_CB_TASK_24("read", 11'h001, 24'h000000); 

  //Fuse blow testi 
  comment_tb = "FuseBlow TEST"; 

  //yazilacak CMD part 1 

  SPI_CB_TASK_24("write", 11'h002, 24'h800000); 
  //Fuse blow command 

  SPI_CB_TASK("fuseblow", 11'h003, 8'h00); 

  //yazilacak CMD 
  SPI_CB_TASK("write", 11'h003, 8'h00); 

  //okunacak CMD 

  SPI_CB_TASK_24("read", 11'h003, 24'h000000); 
   

  // RAMDAC yazma testi 

  comment_tb = "RAMDAC TEST"; 
  //enabling RAMDAC 

  //yazilacak CMD   

  SPI_CB_TASK_16("write", 11'd301, 16'h1F00); 
  //writing input 1 

  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd374, 16'h0001); 

  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd375, 16'hA000); 
  # 10 clkin = 0; 

  # 10 clkin = 1; 

  # 10 clkin = 0; 
  //writing input 2 

  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd374, 16'h0002); 
  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd375, 16'hB000); 

  # 10 clkin = 0; 
  # 10 clkin = 1; 

  # 10 clkin = 0; 

  //writing input 3 
  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd374, 16'h0003); 

  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd375, 16'hC000); 

  # 10 clkin = 0; 

  # 10 clkin = 1; 
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  # 10 clkin = 0; 

  //writing input 4 

  //yazilacak CMD  

  SPI_CB_TASK_16("write", 11'd374, 16'h0004); 
  //yazilacak CMD 

  SPI_CB_TASK_16("write", 11'd375, 16'hD000); 

  # 10 clkin = 0; 
  # 10 clkin = 1; 

  # 10 clkin = 0; 

  //disabling writing RAMDAC  
  //yazilacak CMD  

  SPI_CB_TASK_16("write", 11'd301, 16'h0F00); 

  //sampling RAMDAC 
  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd376, 8'h00); 

  //yazilacak CMD 
  SPI_CB_TASK("write", 11'd377, 8'h00); 

  //reading RAMDAC data 1 

  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd376, 16'h0000); 

  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd377, 16'h0000); 
  # 10 clkin = 0; 

  # 10 clkin = 1; 

  # 10 clkin = 0; 
  //sampling RAMDAC 

  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd376, 8'h00); 
  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd377, 8'h00); 

  //reading RAMDAC data 2 
  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd376, 16'h0000); 

  //okunacak CMD 
  SPI_CB_TASK_16("read", 11'd377, 16'h0000); 

  # 10 clkin = 0; 

  # 10 clkin = 1; 
  # 10 clkin = 0; 

  //sampling RAMDAC 

  //yazilacak CMD 
  SPI_CB_TASK("write", 11'd376, 8'h00); 

  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd377, 8'h00); 
  //reading RAMDAC data 3 

  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd376, 16'h0000); 
  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd377, 16'h0000); 

  # 10 clkin = 0; 
  # 10 clkin = 1; 

  # 10 clkin = 0; 

  //sampling RAMDAC 
  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd376, 8'h00); 

  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd377, 8'h00); 

  //reading RAMDAC data 4 
  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd376, 16'h0000); 

  //okunacak CMD 
  SPI_CB_TASK_16("read", 11'd377, 16'h0000); 

  # 10 clkin = 0; 

  # 10 clkin = 1; 
  # 10 clkin = 0; 

  //bekliyoruz 

  #1000 
  //open file (fire) 

  file_sim_input = $fopen("sim_input.txt","r"); 

  file_sim_sonuc = $fopen("sim_sonuc.m","w"); 
  $fwrite(file_sim_sonuc,"x = NaN;\n"); 

  $fwrite(file_sim_sonuc,"X = NaN;\n"); 

  $fwrite(file_sim_sonuc,"TESTout=[\n"); 

  #100; 

  //por before filter operation (for clock equalization) 

  #100; 
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  por = 0; 

  #100; 

  por = 1; 

  #100; 
  //end of por 

  // mode yazma testi 

  comment_tb = "Mode TEST"; 
  SPI_CB_TASK_16("write", 11'd301, 16'h0300);  //0300: 8x 0000: no int. 

  //Suzgec Testi 

  comment_tb = "Filter TEST"; 
  start_clock = 1; 

  for(j=0;j<256;j=j+1)begin 

   
   i = $fscanf(file_sim_input,"%d\n",din_r); 

    

   #(period);   // no.int: period/8  2x: period/4 
 4x: period/2 8x: period  

    

  end 

  #100 $fwrite(file_sim_sonuc,"]';"); 

    $fclose(file_sim_input); 

    $fclose(file_sim_sonuc); 
    $stop;  

  //reading Filter outputs 

  comment_tb = "FilterOut TEST"; 
  //sampling Filter 1 outputs 

  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd378, 8'h00); 
  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd379, 8'h00); 

  //reading Filter 1 outputs 
  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd378, 16'h0000); 

  //okunacak CMD 
  SPI_CB_TASK_16("read", 11'd379, 16'h0000); 

  //sampling Filter 2 outputs 

  //yazilacak CMD 
  SPI_CB_TASK("write", 11'd380, 8'h00); 

  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd381, 8'h00); 
  //reading Filter 2 outputs 

  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd380, 16'h0000); 
  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd381, 16'h0000); 

  //sampling Filter 3 outputs 
  //yazilacak CMD 

  SPI_CB_TASK("write", 11'd382, 8'h00); 

  //yazilacak CMD 
  SPI_CB_TASK("write", 11'd383, 8'h00); 

  //reading Filter 3 outputs 

  //okunacak CMD 
  SPI_CB_TASK_16("read", 11'd382, 16'h0000); 

  //okunacak CMD 

  SPI_CB_TASK_16("read", 11'd383, 16'h0000); 

  $fwrite(file_LA_csv,"*Main End\n"); 

  $fclose(file_LA_csv); 
  $stop;   

 end 

 initial begin 
  @(posedge start_clock) 

   repeat(512*16)begin 

    #(period/16)  clkin = ~clkin; 
   end 

 end    

 initial begin 
  Test_MSBbin = 0; 

  TESTout = 0; 

 end 
 //Ther2bin converter 

 always @ (negedge clkin) begin 

  #(period/8) 

  Test_MSBbin = 0; 

  for(k=0;k<=30;k=k+1)begin 

   Test_MSBbin = Test_MSBbin + MSBout_r[k]; 
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  end 

  TESTout = {Test_MSBbin,  LSBout_r}; 

  //ekledik  

  $fwrite(file_sim_sonuc,"%d\n",TESTout); 
  //ekledik 

 end 

 task SPI_CB_TASK_16; 
  input [(12*8)-1:0] command_string; 

  input [10:0] addr; 

  input [15:0] data; 
  begin 

   //MSB part 

   SPI_CB_TASK(command_string, addr, data[15:8]); 
   //LSB part 

   SPI_CB_TASK(command_string, addr, data[7:0]); 

  end   
 endtask 

 task SPI_CB_TASK_24; 

  input [(12*8)-1:0] command_string; 

  input [10:0] addr; 

  input [23:0] data; 

  begin 
   //MSB part 

   SPI_CB_TASK(command_string, addr, data[23:16]); 

   //MID part 
   SPI_CB_TASK(command_string, addr, data[15:8]); 

   //LSB part 

   SPI_CB_TASK(command_string, addr, data[7:0]); 
  end    

 endtask 

 task SPI_CB_TASK; 
  input [(12*8)-1:0] command_string; 

  input [10:0] addr; 

  input [7:0] data; 
  begin 

   case(command_string) 

    "write" : begin 
     comment = "write"; 

     WORD[23:19] = 5'b00100; 

    end 
    "read" : begin 

     comment = "read"; 

     WORD[23:19] = 5'b00101; 
    end 

    "fuseblow" : begin 

     comment = "fuseblow"; 
     WORD[23:19] = 5'b00110; 

    end 

    "reserved" : begin 
     comment = "reserved"; 

     WORD[23:19] = 5'b00000; 

    end 
   endcase 

   WORD[18:8] = addr; 

   WORD[7:0] = data;   

   for (i=0; i<24; i = i+1)begin 

    sdin = WORD[23-i]; 
    #100; 

    sclk = 1; 

    #100; 
    sclk = 0; 

    if( (i >= 16) && (command_string == "read") ) data_read[23-i] = sdout;

     
   end 

   #100; 

   fsync = 1; 
   #100; 

   fsync = 0; 

   #100; 
   comment = "done"; 

  end    

 endtask 

endmodule 
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V.7. Verilog Code of Clock Divider 

`timescale 1ns/1ps 

module ClkDiv4Suzgec( clk_in, 

   por, 
   mod_mode, 

   int_mode, 

   clk4, 
   clk3, 

   clk2, 

   clk1, 
   clk0 

   ); 

 input clk_in; 
 input por; 

 input mod_mode; 

 input [1:0]int_mode; 

 output clk4; 

 output reg clk3; 

 output reg clk2; 
 output reg clk1; 

 output reg clk0; 

 
 reg pre_clk3; 

 reg pre_clk2; 

 reg pre_clk1; 
 reg pre_clk0; 

 reg FF3; 
 reg FF21; 

 reg FF22; 

 reg FF11; 
 reg FF12; 

 reg FF13; 

 reg FF14; 
 reg FF01; 

 reg FF02; 

 reg FF03; 
 reg FF04; 

 reg FF05; 

 reg FF06; 
 reg FF07; 

 reg FF08; 

 
 assign clk4 = clk_in; 

 

 //output muxes without reg 
 always@(*)begin 

  if(mod_mode == 0)begin  //normal mode 

   clk3 = clk_in; 
  end 

  else begin      //PM or RT mode 

   clk3 = pre_clk3; 
  end 

 end  

 //output muxes with reg (mod_mode) 
 always@(posedge clk_in or negedge por)begin 

  if(por == 0)begin 

   pre_clk3 <= 0; 
   pre_clk2 <= 0; 

   pre_clk1 <= 0; 

   pre_clk0 <= 0; 
  end 

  else begin 

   pre_clk3 <= FF3; 
   if(mod_mode == 0)begin  //normal mode 

    pre_clk2 <= FF3; 

    pre_clk1 <= FF22; 
    pre_clk0 <= FF14; 

   end 

   else begin      //PM or RT mode 

    pre_clk2 <= ~FF21; 

    pre_clk1 <= ~FF13; 

    pre_clk0 <= ~FF07; 
   end 
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  end 

 end 

 //output muxes with reg (int_mode) 

 always@(posedge clk_in or negedge por)begin 
  if(por == 0)begin 

   clk2 <= 0; 

   clk1 <= 0; 
   clk0 <= 0; 

  end 

  else begin 
   case(int_mode) 

    0 : begin  //no int 

     clk2 <= 0; 
     clk1 <= 0; 

     clk0 <= 0; 

    end   
    1 : begin  //2x int 

     clk2 <= pre_clk2; 

     clk1 <= 0; 

     clk0 <= 0; 

    end 

    2 : begin  //2x int 
     clk2 <= pre_clk2; 

     clk1 <= pre_clk1; 

     clk0 <= 0; 
    end 

    3 : begin  //2x int 

     clk2 <= pre_clk2; 
     clk1 <= pre_clk1; 

     clk0 <= pre_clk0; 

    end 
   endcase  

  end 

 end 
 // clk/2 generation 

 always@(posedge clk_in or negedge por)begin 

  if(por == 0)begin 
   FF3 <= 0; 

  end 

  else begin 
   FF3 <= ~FF3; 

  end 

 end 
 // clk/4 generation 

 always@(posedge clk_in or negedge por)begin 

  if(por == 0)begin 
   FF21 <= 0; 

   FF22 <= 0; 

  end 
  else begin 

   FF21 <= FF22; 

   FF22 <= ~FF21; 
  end 

 end  

 // clk/8 generation 

 always@(posedge clk_in or negedge por)begin 

  if(por == 0)begin 
   FF11 <= 0; 

   FF12 <= 0; 

   FF13 <= 0; 
   FF14 <= 0; 

  end 

  else begin 
   FF11 <= FF14; 

   FF12 <= FF11; 

   FF13 <= FF12; 
   FF14 <= ~FF13; 

  end 

 end  
 // clk/16 generation 

 always@(posedge clk_in or negedge por)begin 

  if(por == 0)begin 

   FF01 <= 0; 

   FF02 <= 0; 

   FF03 <= 0; 
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   FF04 <= 0; 

   FF05 <= 0; 

   FF06 <= 0; 

   FF07 <= 0; 
   FF08 <= 0; 

  end 

  else begin 
   FF01 <= FF08; 

   FF02 <= FF01; 

   FF03 <= FF02; 
   FF04 <= FF03; 

   FF05 <= FF04; 

   FF06 <= FF05; 
   FF07 <= FF06; 

   FF08 <= ~FF07; 

  end 
 end  

 

 

endmodule 
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V.8. Verilog Code of SPI_CB 

`timescale 1ns / 1ps 

module SPI_CB(  

  //inputs 
  sclk, 

  por, 

  fsync, 
  sdin, 

  dataR, 

   
  //outputs 

  sdout, 

  resetRegOut, 
  sdoutEn, 

  write, 

  dataW, 

  CE, 

  BlowFuse); 

   
parameter L_ARRAY = 512; // 512Adres * 16 bit = 1024 adres * 8 bit 

parameter L_ADDR = 9;   //equation must be satisfied: 2**L_ADDR = L_ARRAY 

parameter L_DATA = 8;   //data length comes after command & address 
integer i; 

    

input sclk;   //saat işareti girişi. 
input por;   //power on reset. 

input fsync;   //fsync kontrol işareti girişi. 
input sdin;   //seri data girişi (user'dan) 

input [0:L_ARRAY-1] dataR;    //adrese ozel okunan data (cip icinden) 

output sdout;   //seri data çıkışı (user'a) 
output resetRegOut; 

output reg sdoutEn; 

output reg write;     //ortak yazma istegi 
output dataW;    //ortak seri data cikisi (cip icine) 

output reg [0:L_ARRAY-1] CE;    //adrese ozel enable 

output reg BlowFuse; 
 

wire reset;  //reset işareti 

reg [5:0] counter;   //counter. 
reg [4:0] Command;  

reg [L_ADDR-1:0] Addr;  

reg resetReg;  //Reset Registers commandi geldiginde iner (0 enable) 
reg pre_CE; 

 

assign reset = por & (~fsync);  
assign dataW = sdin; 

assign sdout = dataR[Addr]; 

assign resetRegOut = por & resetReg; 
 

//command'e gore yapilacak islem 

always @ (posedge sclk or negedge por) begin 
 if(por == 0) begin  

  resetReg <= 1; 

  sdoutEn <= 1; 
  BlowFuse <= 0; 

  write <= 0; 

 end 
 else begin  

  if(counter == 15)begin 

   //if(Command == 5'b00000)      
         //Noop 

   if(Command == 5'b00001) resetReg <= 0; else resetReg <= 1;  

   //Reset DAC registers 
   if(Command == 5'b00010) sdoutEn <= 1;    

         //Enable sdout 

   if(Command == 5'b00011) sdoutEn <= 0;    
          //Hi-Z sdout 

   //if(Command == 5'b00111)      

         //Reserved for now 

  end 

  if(Command == 5'b00100) write <= 1; else write <= 0;   

    //write data from serial input or parallel fuse data to registers 
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  if(Command == 5'b00110) BlowFuse <= 1; else BlowFuse <= 0;   

   //Blow Fuse   

 end 

end 
  

//fsync 0 iken 24 clk boyunca sdin'den data alinip SR'a yazilir. 

always @ (posedge sclk or negedge por) begin 
 if(por == 0) begin        

  Command <= 0; 

  Addr <= 0; 
 end 

 else begin      

  if (counter < 5) begin     //ilk 5 clk command 
   Command <= {Command[3:0], sdin}; 

  end 

  else if(counter < 16)begin     //sonraki 11 clk adres 
   Addr <= {Addr[L_ADDR-2:0], sdin}; 

  end 

 end 

end 

 

// 
always @ (posedge sclk or negedge reset) begin 

 if(reset == 0) begin        

  pre_CE <= 0; 
 end 

 else begin  

  if(counter == 15)begin      
 //command'in son clk'unda 

   if( (Command == 5'b00100) || (Command == 5'b00101) || (Command == 5'b00110) )begin

  // yaz, oku ya da yak demisse 
    pre_CE <= 1; 

   end 

   else begin  
    pre_CE <= 0; 

   end 

  end 
  else if(counter == (15 + L_DATA))begin      

 //son clk'ta   //data bit sayisi artsa bunu da arttiricaz 

   pre_CE <= 0; 
  end 

 end 

end 
 

//CE demux 

always@(*)begin 
 for(i=0; i<L_ARRAY; i=i+1)begin 

  if(i == Addr)begin 

   CE[i] = pre_CE;  // data bekleniyor 
  end 

  else begin 

   CE[i] = 0; 
  end 

 end 

end 

 

//fsync 0 iken her clk'ta counter 1 arttirilir 
always @ (posedge sclk or negedge reset) begin  //reset olmasinin sebebi fsync 1 oldugunda clk olmadan 

sifirlamak istememiz 

 if(reset == 0) begin        
  counter <= 0; 

 end 

 else begin    
  if(counter < (16 + L_DATA))begin  //data bit sayisi artarsa bunu da arttiricaz 

   counter <= counter + 1; 

  end 
 end 

end 

 
endmodule 
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V.9. Verilog Code of RAMDAC 

`timescale 1ns / 1ps 

module RAMDAC_BANK(    sclk, 

       SRclk_r,   
       resetRegOut, 

       dataW, 

       write, 
       RAMDAC_w_enable, 

       CE_374, 

       CE_376, 
       dataR_374, 

       dataR_376, 

       dout_r,   //data to 
       clk_out 

       );    

  

input sclk; 

input SRclk_r; 

input resetRegOut; 
input dataW; 

input write; 

input RAMDAC_w_enable; 
input CE_374; 

input CE_376; 

output dataR_374; 
output dataR_376; 

output [15:0]dout_r; 
output clk_out; 

 

wire [15:0] din_r, din_i; 
assign clk_out = SRclk_r; 

 

FILTER_REG reg374( 
.sclk  (sclk), 

.por  (resetRegOut), 

.dataW (dataW), 

.write (write), 

.CE  (CE_374), 

.dataR (dataR_374), 

.pardout (din_r)      

); 

RAMDAC_SR ramdac_sr( 
.clk_r  (SRclk_r), 

.resetRegOut (resetRegOut), 

.din_r  (din_r), 

.RAMDAC_w_enable (RAMDAC_w_enable),  

.dout_r  (dout_r) 

); 
FILTER_END reg376( 

.sclk  (sclk), 

.por  (resetRegOut), 

.doutF (dout_r), 

.write (write), 

.CE  (CE_376), 

.dataR (dataR_376) 

); 

endmodule 
 

`timescale 1ns / 1ps 

 
module RAMDAC_SR( 

      clk_r, 

      resetRegOut,  
      din_r,  

      RAMDAC_w_enable, 

      dout_r 
); 

 

input clk_r; 

input resetRegOut; 

input [15:0]din_r; 

input RAMDAC_w_enable; 
output [15:0] dout_r; 
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integer i; 

parameter L_RAMDAC = 128;    //default can be 4 or 128    

reg [15:0]RAMDAC_r[0:L_RAMDAC-1]; 
assign dout_r = RAMDAC_r[L_RAMDAC-1]; 

 

//real part 
always@(posedge clk_r, negedge resetRegOut) 

begin 

 if(resetRegOut == 0)begin 
  for( i=0; i<=L_RAMDAC-1; i=i+1 )begin 

   RAMDAC_r[i] <= 0; 

  end 
 end 

 else begin 

  if(RAMDAC_w_enable == 1)begin   
   RAMDAC_r[0] <= din_r;  

  end 

  else begin 

   RAMDAC_r[0] <= RAMDAC_r[L_RAMDAC-1]; 

  end 

  for( i=1; i<=L_RAMDAC-1; i=i+1 )begin 
   RAMDAC_r[i] <= RAMDAC_r[i-1];  

  end 

 end 
end 

endmodule 
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V.10. Verilog Code of Binary to Thermometer Encode with Modulation 

`timescale 1ns / 1ps 

module Bin2TherWmod ( clk_RAMDAC,  // RAMDAC 

   clk_suzgec,  // suzgec  
   clk4, 

   por, 

   mode, 
   RAMDAC_enable,   

   data_from_RAMDAC, 

   data_from_suzgec, 
   MSBout, 

   LSBout, 

   clk_out 
   ); 

 input clk_RAMDAC; 

 input clk_suzgec; 

 input clk4; 

 input por; 

 input [1:0] mode; //00: normal 01: normal 10: RZ  11: mod 
 input RAMDAC_enable; 

 input [15:0] data_from_RAMDAC; 

 input [15:0] data_from_suzgec; 
 output [30:0] MSBout; 

 output [10:0] LSBout; 

 output clk_out; 
 

 wire clk3; 
 reg [15:0] int_data_RAMDAC; 

 reg [15:0] int_data_suzgec; 

 reg [4:0] int_MSBin; 
 reg [30:0] Ther; 

 reg [30:0] PMTher; 

 reg [30:0] RZTher; 
 reg [30:0] mux_1_out; 

 reg [30:0] mux_2_out; 

 reg [10:0] int_LSBin; 
 reg [10:0] LSB_sev_1; 

 reg [10:0] PMLSB; 

 reg [10:0] RZLSB; 
 reg [10:0] mux_1_LSBout; 

 reg [10:0] mux_2_LSBout; 

 reg bir_say; 
 reg bir_say_2; 

 reg bir_say_3; 

  
 integer i; 

 

 assign clk_out = clk4; 
 assign MSBout = mux_2_out; 

 assign LSBout = mux_2_LSBout; 

 assign clk3 = RAMDAC_enable ? clk_RAMDAC : clk_suzgec; 
 

 //giris orneklenemsi 

 always@(posedge clk3 or negedge por)begin 
  if(por == 0)begin 

   int_data_RAMDAC <= 0; 

   int_data_suzgec <= 0; 
  end 

  else begin 

   int_data_RAMDAC <= data_from_RAMDAC; 
   int_data_suzgec <= data_from_suzgec; 

  end 

 end 
 //input muxes 

 always@(posedge clk3 or negedge por)begin 

  if(por == 0)begin 
   int_MSBin <= 0; 

   int_LSBin <= 0; 

  end 

  else begin 

   if(RAMDAC_enable == 1)begin    

 //RAMDAC_r_enable 
    int_MSBin <= {~int_data_RAMDAC[15], int_data_RAMDAC[14:11]}; 
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    int_LSBin <= int_data_RAMDAC[10:0]; 

   end 

   else begin 

    int_MSBin <= {~int_data_suzgec[15], int_data_suzgec[14:11]}; 
    int_LSBin <= int_data_suzgec[10:0]; 

   end 

  end 
 end 

 //Thermometer converter MSB 

 always@(posedge clk3 or negedge por)begin 
  if(por == 0)begin 

   Ther <= 0; 

  end 
  else begin 

   for(i=0;i<=30;i=i+1)begin 

    if(i < int_MSBin)begin 
     Ther[i] <= 1; 

    end 

    else begin 

     Ther[i] <= 0;  

    end 

   end 
  end 

 end 

 //plus minus thermometer MSB 
 always@(posedge clk4 or negedge por)begin 

  if(por == 0)begin 

   PMTher <= 0; 
  end 

  else begin 

   if(bir_say == 0)begin 
    PMTher <= Ther; 

   end 

   else begin 
    PMTher <= ~Ther;  

   end 

  end 
 end 

 //RTZ MSB 

 always@(posedge clk4 or negedge por)begin 
  if(por == 0)begin 

   RZTher <= 0; 

  end 
  else begin 

   if(bir_say_2 == 0)begin 

    RZTher <= Ther; 
   end 

   else begin 

    RZTher <= {16'hFFFF, 15'h0000};  
   end 

  end 

 end 
 //Mux 1 MSB 

 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 

   mux_1_out <= 0; 

  end 
  else begin 

   if(mode[0] == 0)begin 

    mux_1_out <= RZTher; //zero mode 
   end 

   else begin  

    mux_1_out <= PMTher; //mod mode 
   end 

  end 

 end 
 //Mux 2 MSB 

 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 
   mux_2_out <= 0; 

  end 

  else begin 

   if(mode[1] == 0)begin  //normal mode 

    mux_2_out <= Ther; 

   end 



143 

 

   else begin     //zero or mod mode 

    mux_2_out <= mux_1_out; 

   end  

  end 
 end 

 //Delay LSB 1 

 always@(posedge clk3 or negedge por)begin 
  if(por == 0)begin 

   LSB_sev_1 <= 0; 

  end 
  else begin 

   LSB_sev_1 <= int_LSBin; 

  end 
 end 

 //plus minus LSB 

 always@(posedge clk4 or negedge por)begin 
  if(por == 0)begin 

   PMLSB <= 0; 

  end 

  else begin 

   if(bir_say_3 == 0)begin 

    PMLSB <= LSB_sev_1; 
   end 

   else begin 

    PMLSB <= ~LSB_sev_1;  
   end 

  end 

 end 
 //RTZ LSB 

 always@(posedge clk4 or negedge por)begin 

  if(por == 0)begin 
   RZLSB <= 0; 

  end 

  else begin 
   if(bir_say_3 == 0)begin 

    RZLSB <= LSB_sev_1; 

   end 
   else begin 

    RZLSB <= 0;  

   end 
  end 

 end 

 //Mux 1 LSB 
 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 

   mux_1_LSBout <= 0; 
  end 

  else begin 

   if(mode[0] == 0)begin 
    mux_1_LSBout <= RZLSB; //zero mode 

   end 

   else begin  
    mux_1_LSBout <= PMLSB; //mod mode 

   end 

  end 

 end 

 //Mux 2 LSB 
 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 

   mux_2_LSBout <= 0; 
  end 

  else begin 

   if(mode[1] == 0)begin  //normal mode 
    mux_2_LSBout <= LSB_sev_1; 

   end 

   else begin     //zero or mod mode 
    mux_2_LSBout <= mux_1_LSBout; 

   end  

  end 
 end 

 //bire kadar sayan sayici 

 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 

   bir_say <= 0; 

  end 
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  else begin 

   bir_say <= ~bir_say; 

  end 

 end 
 //bire kadar sayan sayici 2 

 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 
   bir_say_2 <= 0; 

  end 

  else begin 
   bir_say_2 <= ~bir_say_2; 

  end 

 end 
 //bire kadar sayan sayici 3 

 always@(posedge clk4, negedge por)begin 

  if(por == 0)begin 
   bir_say_3 <= 0; 

  end 

  else begin 

   bir_say_3 <= ~bir_say_3; 

  end 

 end 
endmodule 
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