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RECURSIVE MODELING OF SWITCHED LINEAR SYSTEMS:
A BEHAVIORAL APPROACH

SUMMARY

Switched systems are hybrid systems which result from interaction of continuous
or discrete time dynamical systems with discrete events. In such systems, discrete
events triggered by the changes in the switching signal lead the system to operate
in different modes. In this thesis, a recursive method for modeling and identifying
a finite dimensional discrete time switched system from its input/output signals will
be proposed. Recursive partial realization of a discrete time linear switched system
(DTLSS) is a special case of this problem and it is treated seperately. The fact that the
system model is updated as new data samples are received provides a way to detect
the mode changes if the orders of modes are assumed to be known. Thus, a solution
to a basic problem in the literature regarding this subject is given. In addition, for
correctly identifying each mode, a condition on the dwell times of modes, which is the
time between two consecutive changes in the switching signal, is given for both cases.
The procedure gives the kernel representations of the local modes of a DTLSS from its
partial input/output sequence for both problems. Lastly, problem of constructing state
space representations consistent with the data from acquired kernel representations
is discussed. For this purpose, a global viewpoint for realization theory of DTLSSs
existing in the recent literature is briefly explained. In this work, behavioral approach
to system theory, developed by J. C. Willems, is used for modeling dynamical systems.
In this approach, a dynamical system is defined by the set of all possible trajectories it
can generate.

The research plan is as follows: A recursive procedure is applied to the identification
of switched linear systems from impulse response. This problem, known as partial
realization problem, is studied in recent literature for discrete time linear systems and
results acquired there is modified by taking the mode changes of a switched system
into account. For the identification of each mode, the input-output sequence generated
by each mode must be sufficiently rich to exhibit all characteristic features of it. In this
thesis, necessary and sufficient conditions for the sequence generated by the switched
system to be sufficiently rich is derived. This problem is separately studied for the
cases of partial realization and identification from arbitrary input/output sequences.
By the help of these conditions the minimum needed value of the dwell times of the
modes are found. In addition, for the partial realization problem, ways for testing these
conditions recursively are examined. Then, the recursive method is generalized for the
identification of the switched systems from its arbitrary input-output sequences. The
necessary changes are made in identifiability conditions and the recursive procedure
is modified accordingly. For making various theoretical predictions and comments
and to test the results obtained, the recursive procedure is realized in Matlab for both
problems. The constructed codes will hopefully contribute to the comparison of other
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works in the literature regarding this topic with our work. Finally the problem about
state space representations is discussed.

For the general case, the recursive procedure mainly consists of five steps
being “initialization”, “error computation”, “event detection”, “model update” and
“identification of the mode” respectively. In the initialization step, the algorithm is
initialized by defining the necessary initial conditions for the procedure and giving
the order of modes of the DTLSS assumed to be a priori known to the algorithm as
inputs. In the error computation phase, the error is computed at each step by applying
the found kernel representation in the previous step to the newly acquired data. In
the event detection step, a criterion based on this error and the dwell time is checked
and the information about whether there is a mode change or not is acquired by the
help of this criterion. If there is no event detected, in the model update step, the old
representation is updated by multiplying it by the kernel representation of the “most
powerful unfalsified model” for the error sequence. If there is an event detected, the
procedure gives the kernel representation of the MPUM for the mode and then turns
back to the initialization step to identify the new mode.

The results acquired in this thesis are for identification from one observed partial
trajectory of a single input single output DTLSS only. Future work can be done to
generalize the recursive procedure for application to multi input multi output systems
and for the case when there are more than one observed trajectory. In addition, the
problem can be considered for the case of known switching signal. The dwell time
assumptions may be modified accordingly for that case. Lastly, a persistency of
excitation test may be added to the recursive procedure for the identification from
arbitrary input/output sequences case and subspace methods can be merged into the
recursive procedure.
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DOĞRUSAL ANAHTARLI SİSTEMLERİN ARDIŞIL MODELLENMESİ:
DAVRANIŞSAL YAKLAŞIM

ÖZET

Anahtarlı sistemler ayrık zamanlı veya sürekli zamanlı dinamik sistemlerin ayrık
olaylarla etkileşimi sonucu ortaya çıkan karma sistemlerdir. Bu tür sistemlerde anahtar
işaretinin değişimine bağlı olarak tetiklenen ayrık olay, sistemin farklı modlarda
çalışmasın ı sağlar. Anahtarlı sistemler denetleyici kontrol sistemlerinin modellenmesi,
analizi ve tasarımında kullanılabilir. Darbe etkili mekanik sistemler, röleli veya ideal
diyodlu devreler de bu tür sistemlere örnek olarak verilebilir. Bu örnekler, ve anahtarlı
sistemlerin sistem-kuramsal özellikleri son yıllarda detaylı olarak çalışılmaktadır. Bu
tezde ayrık zamanlı anahtarlı sistemlerin modellenmesi problemi incelenmiştir. Bu
amaç için iki farklı yöntem kullanılabilir. Birinci yöntem, dinamik sistemi daha küçük
alt sistemlere ayırıp, fiziksel yasaları ve temel prensipleri kullanarak sistemin uygun
bir temsilini (bir diferansiyel denklem veya fark denklemi takımı gibi) bulmaktır. Bu
çalışmada kullanılan bir diğer yöntem ise sistemin gözlenmiş giriş/çıkış çiftlerinden
yararlanarak sistemin davranışını tam ya da yaklaşık olarak açıklayan bir model
bulmaktır. Bu yaklaşım, literatürde “sistem tanıma” olarak adlandırılır. Genelde
bu yaklaşım, pratik durumlar için daha uygun, ölçümlerin üzerinde stokastik bir
gürültünün var olduğu durumlar için kullanılsa da bu çalışmada daha temel bir problem
olan, ideal veriden sistemin tam olarak tanınması problemi ele alınmıştır.

Bu tezde giriş ve çıkış işaretlerinden sonlu boyutta ayrık zamanlı anahtarlı sistemlerin
modellenmesi ve tanınması için ardışıl bir yöntem önerilmiştir. Ayrık zamanlı
doğrusal anahtarlı sistemlerin kısmi gerçeklemesi bu problemin özel bir halidir
ve ayrı olarak incelenmiştir. Sistem modelinin veriler geldikçe güncellenmesi,
modların mertebelerinin bilinmesi halinde, mod değişimlerinin sezilmesine olanak
sağlamaktadır. Böylece literatürde bu konuda yapılan çalışmalarda karşılaşılan temel
bir soruna çözüm getirilmektedir. Ayrıca bu iki problem için, anahtarlı sistemin her
bir modunun tek olarak tanınabilmesi için modların sağlaması, ve art arda gelen iki
anahtarlama anı arasında geçen zaman olan bekleme süresinin sağlaması gereken
koşullar çıkarılmıştır. İki problem için de, ardışıl prosedür, anahtarlı sistemin ürettiği
kısmi giriş/çıkış çifti dizisinden her bir modunun sıfır gösterilimini elde etmektedir.
Son olarak, elde edilen sıfır gösterilimlerinden, gözlenen veriyle uyumlu durum
gösterilimlerinin elde edilmesi problemi tartışılmıştır. Bunun için, ayrık zamanlı
anahtarlı sistemlerin gerçekleme kuramına ilişkin yakın zamanda literatürde sunulmuş
daha global bir bakış açısı kısaca açıklanmıştır. Uyumlu durum gösterilimleri elde
edebilmek için literatürde bulunan bir yöntem önerilmiştir.

Tezde, J. C. Willems tarafından geliştirilen sistem kuramına davranışsal yaklaşım,
dinamik sistemlerin modellenmesi için kullanılmıştır. Bu yaklaşımda, bir dinamik
sistem, üretebileceği her yörüngeden (çözümden) oluşan bir küme (davranış kümesi)
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ile tanımlanır. Dinamik sistemin bir parametre kümesi ile değil, bu şekilde
bir fonksiyon (ayrık zamanlı sistemler için dizi) kümesi ile tanımlanması sistem
kuramındaki bazı temel kavramların belirli sistem temsillerinden bağımsız olarak
verilmesini sağlamaktadır (parametreye dayalı tanımlar “yönetilebilirlik” gibi herhangi
bir dinamik sisteme has özelliklerin, sistemin kendi özelliği değil, sistemin “durum
gösterilimi” gibi belirli bir “temsili”nin özelliği olduğu yanılgısına yol açabilir).

Tezin araştırma planı şu şekildedir: Öncelikle tezde kullanılan davranışsal
yaklaşımdaki modelleme amacına ilişkin temel kavramlar ve tanımlar araştırılmış
ve kısaca açıklanmıştır. Bu yaklaşım kullanılarak, bir ardışıl yöntem, anahtarlı
doğrusal sistemin sonlu sayıda birim dürtü (impulse) yanıtı verisinden tanınmasına
uygulanmıştır. Literatürde “kısmi gerçekleme” olarak bilinen bu problem üzerine ayrık
zamanlı doğrusal sistemler için yakın zamanda çalışılmıştır. Elde edilen sonuçlar bu
tezde anahtarlı sistemin mod değişimleri göz önüne alınarak genişletilmiştir. Her bir
modun tanınabilmesi için, her bir mod tarafından üretilen giriş/çıkış çiftleri dizisinin
o modun bütün karakteristik özelliklerini yansıtması, başka bir deyişle yeterince
zengin olması gerekmektedir. Bu çalışmada, anahtarlı sistemin ürettiği giriş/çıkış
dizisinin yeterince zengin olabilmesi için gerekli ve yeterli koşullar çıkarılmıştır. Bu
problem, kısmi gerçekleme ve keyfi giriş/çıkış dizisinden modları tanıma amaçları
için ayrı ayrı ele alınmıştır. Bu koşullar yardımıyla, anahtarlı sistemin modlarının
bekleme sürelerinin sağlaması gereken minimum süreler bulunmuştur. Ayrıca,
kısmi gerçekleme problemi için, bu koşulları ardışıl olarak her aşamada kontrol
etme yolları incelenmiştir. Sonra, ardışıl yöntem, anahtarlı sistemin modlarının
sistemin ürettiği keyfi giriş/çıkış çifti dizisinden tanınması amacıyla genelleştirilmiştir.
Tanınabilme koşullarında gerekli değişiklikler yapılmıştır ve ardışıl yöntem de buna
göre yeniden düzenlenmiştir. Her bir problem için anahtarlama işaretinin bilinmediği
fakat anahtarlı sistemin modlarının derecesinin bilindiği varsayılmış ve tek bir
çözüm aranmıştır. Anahtarlı sistemlerin tanınması konusunda literatürde yapılan
çalışmalarda, anahtarlama olayının sezilmesi problemi birçok zorluğa yol açmaktadır.
Tezde modların bekleme sürelerine ilişkin yapılan belli varsayımlar ve yöntemin her
yeni veri örneği geldiğinde ardışıl olarak modeli güncellemesi sayesinde bu problem
çözülmüştür.

Genel durum için, ardışıl yöntem ana hatlarıyla “başlangıç”, “hata bulma”,
“anahtarlama sezme”, “model güncelleme” ve “modun tanınması” olmak üzere beş
aşamadan oluşmaktadır. Başlangıç aşamasında prosedürün başlaması için gereken
ilk koşullar ve “a priori” bilindiği varsayılan mod mertebeleri algoritmaya verilir.
Hata bulma aşamasında her adımda bir önceki adımda bulunan sistem temsilinin
yeni elde edilen veriye uygulandığında ortaya çıkan hata hesaplanır. Anahtarlama
sezme aşamasında, bu hataya ilişkin belirli bir kriter kontrol edilerek bir anahtarlama
olup olmadığı anlaşılır. Anahtarlama yoksa eski model, hataya ilişkin bulunan sıfır
gösterilimiyle çarpılarak güncellenir. Anahtarlama var ise prosedür, çıkış olarak moda
ilişkin modelin temsilini vererek başlangıç aşamasına geri döner.

Çalışma sürecinde çeşitli kuramsal tahminler ve yorumlar yapabilmek ve elde edilen
sonuçları deneyebilmek için ardışıl yöntem, her iki ana problem için de Matlab
ortamında gerçeklenmiştir. Oluşturulan kodların, literatürde bu konuda yapılan diğer
çalışmalarla bu çalışmanın karşılaştırılmasını sağlaması ve gelecek çalışmalara destek
olması umulmaktadır. Son olarak modların elde edilen sıfır gösterilimlerinden, uyumlu
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durum gösterilimleri elde edilmesi problemi tartışılmıştır. Bu bölümde ayrıca doğrusal
anahtarlı sistemin yerel doğrusal sistemlerin uç uca eklenmesi olarak yorumlanmasının
kısmi gerçekleme probleminde getirdiği bazı sorunlar, konu hakkında yeni yapılan
çalışmalar kullanılarak gösterilmeye çalışılmıştır. Sonuç bölümünde ise çalışmanın
ileride nasıl geliştirilebileceğine ilişkin bazı önerilerde bulunulmuştur.

Tezin son aşamasında, ardışıl yöntem yardımıyla modlara ilişkin bulunan sıfır
gösterilimlerinden, aynı modlara ilişkin gözlenmiş giriş/çıkış verisiyle tutarlı olacak
durum gösterilimlerinin elde edilmesi problemi tartışılmıştır. Bu problem, çözümü
apaçık olan bir problem değildir. Doğrusal sistemler için böyle bir problem söz konusu
değildir fakat anahtarlı sistemlerde, anahtarlama anından önceki modun, sonraki moda
ilişkin bir ilk koşul yaratması böyle bir probleme yol açar. Bu bölümde, tezde
kullanılan, anahtarlı sistemi tek tek doğrusal sistemlerin uç uca eklenmiş hali olarak
yorumlamanın yol açtığı kavram bulanıklıkları da M. Petreczky’nin çalışmalarndan
yararlanılarak tartışılmıştır (Söz gelimi, anahtarlı bir sistemin minimal bir gerçekleme
olması, yerel modlarının her birinin minimal olması anlamına gelmez). Bölüm
sonunda bahsedilen probleme ilişkin bir çözüm önerisi, varolan literatür kaynak
gösterilerek verilmiştir.

Tezde elde edilen sonuçlar, tek giriş tek çıkışlı bir ayrık zamanlı doğrusal anahtarlı
sistemin, anahtarlama işaretinin bilinmediği varsayıldığında, tek bir giriş çıkış çifti
dizisinden tanınması için verilmiştir. Çalışmanın olası zenginleştirilmesi, ardışıl
yöntemin çok giriş çok çıkışlı sistemler için de kullanılabilir hale getirilmesi veya elde
gözlenmiş birden çok giriş çıkış çifti dizisi olduğu durumlarda da uygulamaya elverişli
olması çabalanarak gerçekleştirilebilinir. Ek olarak, tezdeki problem, anahtarlama
işaretinin bilinmesi durumu için de ele alınabilir. Bekleme süresi üzerine yapılan
varsayımlar, bu duruma göre değişiklik gösterebilir. Son olarak, keyfi giriş çıkış çifti
dizisinden sistemi tanıma problemi için, ardışıl prosedür içine, girişin her aşamada
yeterince uyarıcı olup olmadığını kontrol eden bir kısım eklenebilir. Ayrıca, altuzay
yöntemleri, ardışıl prosedür içine yerleştirilebilir.
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1. INTRODUCTION

Switched systems are models of dynamical phenomena whose behavior changes

among a number of submodels depending on a logical decision mechanism. Such

systems are used in modeling, analysis and design of supervisory control systems,

mechanical systems with impact, circuits with relays or ideal diodes for instance.

These examples and some system theoretic properties of switched systems have been

studied in [1, 2] and the references therein. In this thesis, we consider the problem of

modeling a discrete-time dynamical switched linear system and finding an appropriate

representation for the model is considered. For this purpose, one can use two different

ways of approach. First approach is to separate the dynamical system into subsystems

and elements and, by using physical laws and first principles, to find a representation

(like a set of equations) that defines the system. Second approach, which is used in

this work, is to find a representation for the behavior of the system by using observed

input-output measurements. This approach is known as system identification in the

literature. Although this approach generally used with the existence of stochastic

noise on the measurements, in this work, the problem of identification from exact

data is considered. In [3] extensive information for system identification from noisy

measurements is given. In references like [4], [5] and [6] it is argued that the problem

of exact identification is a more basic one and it should preceed the problem of

stochastic identification. In this thesis, the behavioral approach for system theory

(see [7,8]) is adopted to develope a recursive method for exact identification of discrete

time switched linear systems (abbreviated as DTLSSs).

First, the problem of identification of a DTLSS from impulse response sequences

(which is known as the partial realization problem) is considered. This is a classical

problem which has been extensively studied in [9]. For linear systems the solution

of the problem using the generating system approach has been described in [4]. This

method gives the possible orders and parametrization of all linear systems which have
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a given sequence of impulse response samples. In the present work the recursive

method given in [4, 10] for the construction of the generating system is appropriately

modified and applied to the partial realization of switched systems. Then, the problem

of identification of a DTLSS from arbitrary input-output sequences is considered. The

solution to the problem of recursively modeling a linear system from continuous-time

polynomial-exponential time series is given in [4]. In the same reference, it is pointed

out that the modeling of a discrete time linear system from arbitrary input-output data

is a special case of that problem. Necessary modifications for the identification of

switched systems are made and a procedure is given.

For both problems, it is assumed that the switching signal is unknown but the orders

of the modes are known and a unique solution is sought. Identifiability conditions

for both cases are derived and explained. The problem studied in the present paper is

similar to those in [11–13] which address identification of switched or hybrid systems.

The detection of mode changes causes various difficulties in these works. By adopting

certain assumptions on dwell times of the modes of the DTLSS, this problem is easily

resolved by the recursive method described in this work since the model derived is

tested and updated as new data samples are received.

In the recent related work [14] realizability of a family of input-output maps by a

switched linear system has been considered and minimality of the realizations has

been characterized. The related concepts and definitions are briefly given in the last

chapter, and ways of finding state space representations for the modes consistent with

the observed data are discussed.

The thesis is organised as follows: The preliminaries of behavioral approach for the

context of modeling are given in Chapter 2. Basic definitions are given and different

system representations are presented. At the end of the chapter, the problem of

exact identification is stated. In Chapter 3, recursive partial realization problem is

considered. Identifiability conditions and the recursive procedure for this case is given.

In Chapter 4, the problem is generalized for recursive identification from arbitrary

input-output data. In Chapter 5 state space realization problem is considered and ways

of finding state space representations for the modes of the DTLSS are discussed. The

thesis is concluded with the summary of results and ideas for possible future work.
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2. PRELIMINARIES OF BEHAVIORAL APPROACH FOR MODELING
CONTEXT

Here, we present some preliminaries about “the behavioral approach to linear system

theory” which is developed by Jan C. Willems. The motivation for this approach is

the following: First, in many practical cases (for example in electrical circuits) the

distinction between inputs and outputs is not a priori clear; instead it should follow

as a consequence of the modeling. Second, it is desirable to have representation-free

definitions for classical conceptes in system theory like controllability or observability.

This kind of concepts are not properties of a particular representation of a system,

rather they are properties of the dynamical system itself. In addition, one should be able

to treat the different representations of a given system (for example: input-output or

state space representations) in a unified way [4]. In behavioral approach, a dynamical

system is defined as a collection of trajectories rather than a collection of parameters.

Therefore, it creates the possibility to define classical concepts in system theory in

a representation free way. In the next sections, some basic definitions in behavioral

framework needed for the purpose of this thesis will be given. The chapter will

end with the definitions of exact identification problem and the central object of this

problem called “the most powerful unfalsified model (MPUM)”.

2.1 Linear Time-Invariant Dynamical Systems

Definition 2.1.1. (Dynamical System [15]) A dynamical system Σ is a 3-tuple Σ =

(T,W,B), with T⊆ R the time axis, W the signal space, and B⊆WT the behavior.

In Definition 2.1.1, T is the time axis which is R or R+ for continuous time case and

Z or N for discrete time case. The set W is called the signal space where the signals

take on their values. The set of all functions (trajectories) w : T→W is denoted by

WT in the definition. A subset of this set WT is called the behavior of the system and

denoted by B. Behavior set B consists of all possible trajectories w ∈WT that the
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system can generate and this is the set that defines a particular dynamical system. It

can be seen that a dynamical system is defined with the three sets in Definition 2.1.1

where the behavior B is a collection of trajectories. For the purpose of this work, we

take the time axis as either Z or N since we deal with discrete time systems.

Definition 2.1.2. (Linearity) A dynamical system Σ = (T,W,B) is linear if and only

if

w1(t),w2(t) ∈B⇒ (αw1(t)+βw2(t)) ∈B (2.1)

where w1(t), w2(t) are any two trajectories in B and α,β ∈ R are arbitrary constants.

Definition 2.1.2 implies that a system is called linear if and only if any linear

combination of trajectories in B is also an element of B. In other words, a system

Σ = (T,W,B) is linear when the signal space W is a vector space and B is a linear

subspace of WT.

Definition 2.1.3. (Time-Invariance) Let w(t+∆) denote the ∆ times backward shifted

trajectory w(t) in the time axis T. A dynamical system Σ = (T,W,B) is time-invariant

if and only if

w(t) ∈B⇒ w(t +∆) ∈B,∀∆ ∈ T (2.2)

where w(t) is any trajectory of B.

Definition 2.1.3 implies that if a time series w is a trajectory of a time-invariant system,

then all its shifts are also trajectories of that system.

In the following, the class of all discrete-time, linear time-invariant (LTI) systems with

q variables (q is the dimension of the signal space W) will be denoted by Lq.

2.2 Dynamical System Representations

In the classical theory, a property of the system is defined as a property of a particular

representation (For example, controllability is defined as a property of a state space

representation). This implicitly allows that such a definition might be representation

dependent (it might only hold for that particular representation) and therefore not a

specific property of the system itself. In behavioral approach, a certain property is first
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defined in terms of the behavior B, then the implications of it on the parameters of a

particular system representation is found. It is important to emphasize that a system is

defined as a collection of trajectories and then can be represented in a particular way

(For example by using differential or difference equations). In this section, different

representations of dynamical systems and their properties are discussed briefly.

2.2.1 Kernel representation

Consider the difference equation

R0w(t)+R1w(t + l)+ ...+Rlw(t + l) = 0, where Ri ∈ Rg×q for i = 0,1, ..., l. (2.3)

This vector equation shows the recurrence relation between the consecutive samples

of the time series w. Assuming that Rl 6= 0, the maximum number of shifts l is called

the lag of the equation. Since (2.3) is a vector equation consisting of g rows, l is the

largest lag among the lags l1, ..., lg of all scalar equations.

The equation (2.3) induces a dynamical system whose behavior set is defined as

B= {w ∈ (Rq)Z| (2.3) holds}. (2.4)

It means that the behavior of discrete time linear dynamical system can be represented

and analyzed with the use of a vector difference equation. It turns out, however, it is

more advantageous to use polynomial matrix algebra for analyzing B. Let σ be the

backward shift operator whose operation is defined as (σw)(t) = w(t +1). Therefore,

(2.3) can be written in a more compact form in terms of the polynomial matrix with

the indeterminate s:

R(s) := R0 +R1s1 +R2s2 + ...+Rlsl ∈ Rg×q[s] (2.5)

as

R(σ)w = 0. (2.6)

Consequently, operations on the system of difference equations can be represented by

operations on the polynomial matrix R(s). The behavior of the system induced by

(2.3) is

B= kerR(σ) := {w ∈ (Rq)N|R(σ)w = 0}. (2.7)
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(2.7) is called the kernel representation of the system.

In [Wil86a] it is proven that without loss of generality one can assume the existence of

a kernel representation B= kerR(σ) of an LTI complete system B ∈ Lq. Briefly, the

linearity of the system induced by (2.3) follows from the linearity of (2.3) with respect

to w. The time-invariance follows from the constant coefficient matices R0, ...,Rl , and

the finite dimensionality of the system follows from the fact that (2.3) involves a finite

number l of shifts of the time series.

Note that a kernel representation for a given B is not unique. The nonuniqueness is

due to the possible existence of linearly dependent equations and equivalence of some

representations. We need the following important definition and theorems for clearly

explaining these facts.

Definition 2.2.1.1. (Unimodular Matrix) [8] A matrix U(s) ∈ Rg×g[s] which

represents elementary row operations on a matrix R(s) ∈Rg×q[s] is called unimodular.

These operations can be defined as following:

(i) Permute any two rows of R(s).

(ii) Multiply a row of R(s) by a constant.

(iii) Multiply row i of R(s) by sd and add it to row j, where d ∈ N and i, j ∈ 1,2, ...,g

with i 6= j.

Let the matrices M, C and Q(s) be the matrices representing any number of these

operations defined in (i), (ii) and (iii) respectively. U(s) can always be factored as

U(s) = MCQ(s). (2.8)

Furthermore, U(s) is a matrix with nonzero constant determinant i.e., detU(s) = c

where c is a nonzero constant.

Notice that applying these operations to a set of difference equations, does not change

the corresponding behavior, but it changes the representation. This fact will be stated

in Theorem 2.2.1.4. The following theorem states that linearly dependent equations

can always be destroyed by left multiplication with unimodular matrices. For stating

the theorem we need one more definition.
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Definition 2.2.1.2. (Matrix of full row rank) [16] Polynomial vectors ri(s)∈R1×q[s],

i= 1,2, ...,g (R1×q[s] denotes the set of all 1×q polynomial vectors in real coefficients)

are called linearly independent over the field R if and only if

a1r1(s)+a2r2(s)+ ...+agrg(s) = 0⇔ ai = 0, i = 1,2, ...,g (2.9)

where ai ∈ R, i = 1,2, ...,g are real coefficients. A matrix R(s) ∈ Rg×q[s] is called

to have full row rank (or “of rull row rank”) if and only if all row vectors of R(s) is

linearly independent.

Theorem 2.2.1.3. Every behavior B defined by R(σ)w = 0, R(s) ∈ Rg×q[s] (where

R(s) is not of full row rank) admits an equivalent full row rank (minimal)

representation, that is, there exists a representation R̃(σ)w = 0 of B with R̃(s) ∈

Rg̃×q[s], g̃ < g of full row rank where
(

R̃(s)
0

)
= U(s)R(s) and the matrix U(s) is

unimodular.

Proof. For the proof, see [8].

Theorem 2.2.1.3 implies that for a given system B there always exists a kernel

representation in which R(s) has full row rank [Wil91]. Such a representation is called

a minimal kernel representation.

Theorem 2.2.1.4. Two polynomial matrices R1 ∈Rg×q[s] and R2 ∈Rg×q[s] of full row

rank, represent the same behavior if and only if there exists a unimodular matrix U(s)

such that R1(s) =U(s)R2(s).

Proof. For the proof, see [8].

Theorem 2.2.1.4 states that also the minimal representation is nonunique. The

representation changes under unimodular transformations.

In a minimal kernel representation, the number of equations is minimal among all

possible kernel representations of B and this number is defined as p :=row dim R(s).

We define the degree of row i of R(s) as the highest power of s in that row and denote it

by li or degri. Also define the maximum row degree of R(s) (maximum lag among all

scalar equations) as l := maxi=1,...,pli, and the sum of the lags as n := ∑
p
i=1 li. In [15] it
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is stated that there exists a minimal kernel representation B= ker R(σ), in which the

numbers p,l and n are simultaneously minimal over all possible kernel representations.

Such a representation is called shortest lag representation and it is achived when R(s)

is row reduced. Below, the definition of row reducedness is given. From now on, the

numbers p,l and n in the shortest lag representation of a system will be denoted by

p(B), l(B) and n(B) respectively.

Definition 2.2.1.5. (Row reducedness) Let the polynomial matrix R(s) be written row

by row

R =
[

r1 ... rp
]T
, deg(ri) = li. (2.10)

R(s) is row reduced if the leading row coefficient matrix (i.e., the matrix of which the

(i, j)th entry is the coefficient of the term with power li of Ri j(s)) is full row rank.

The minimal number of equations p(B), the lag l(B) and the total lag n(B) in a

hortest lag representation are therefore invariants of B. It turns out p(B) is equal to

the number of outputs in an input/output representation (It is called output cardinality).

Correspondingly, the integer m(B) = q− p(B) is also an invariant of B and it is equal

to the number of inputs (It is called input cardinality). The total lag n(B) is equal to

the state dimension in a minimal state space representation of B.

2.2.2 Input/output representation

Definition 2.2.2.1. Input/Output Partition) [8] Let B be a behavior with signal

space Rq. Partition the signal space as Rq = Rm × Rp and correspondingly as

w = col(w1,w2), w1 ∈ RmT and w2 ∈ RpT. This partition is called an input/output

partition if:

1. w1 is free; i.e., for all w1 ∈ (Rm)T there exists a w2 ∈ (Rp)T such that w =

col(w1,w2) ∈B.

2. w2 does not contain any further free components; i.e., given w1, none of the

components of w2 can be chosen freely. Stated differently, w1 is maximally free.

If 1 and 2 hold then w1 is called an input variable and w2 is called an output variable.
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Definition 2.2.2.2. (Proper matrix) A matrix of rational functions (i.e., each of the

entries is the ratio of two polynomials) is called proper if in each entry, the degree of

the numerator does not exceed the degree of the denominator.

Theorem 2.2.2.3. Let R(s) ∈ Rp×q[s] be of full row rank with p < q. then there exists

a partition of R(s) of the form:

R(s) =
[
−N(s) D(s)

]
(2.11)

where D(s) ∈ Rp×p is composed of the columns of R(s) which makes deg detD(s)

maximal among all p× p submatrices of R(s), and where N(s) is composed of the

remaining columns. There also exists a corresponding partitioning of w:

w =

[
u
y

]
, (2.12)

where the elements of w corresponding to the columns of R(s) which comprises−N(s)

are chosen as inputs u, and elements of w corresponding to the columns of R(s)

which comprises D(s) are chosen as outputs y. This partitioning is in the sense of

Definition 2.2.2.1 and the corresponding input/output behavioral equations can be

written as

D(σ)y = N(σ)u. (2.13)

Also, N(s) and D(s) satisfy:

• det D(s) 6= 0

• D−1(s)N(s) is a matrix of proper rational functions.

Proof. For a proof, see [8].

Definition 2.2.2.4. (Transfer matrix) Let the signal space Rq of a behavior partitioned

as in Theorem 3.2, i.e.

R(s) =
[
−N(s) D(s)

]
,Πw =

[
u
y

]
(2.14)

where Π is a suitable q× q permutation matrix, D(s) ∈ Rp×p[s], N(s) ∈ Rp×m[s] and

u ∈ Rm, y ∈ Rp. The p×m matrix D−1(s)N(s) is called the transfer matrix of the

behavior.
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Theorem 2.2.2.3 and Definition 2.2.2.4 imply that one can always find an input/output

partitioning in the sense of Definition 2.2.2.1 such that the behavior is defined by the

equation

D(σ)y = N(σ)u. (2.15)

The system B induced by an input/output equation with parameters (D,N) and

input/output partitioning defined by Π can be formally defined as

Bi/o(D,N,Π) := {Πw := col(u,y) ∈ (Rq)N|D(σ)y = N(σ)u}. (2.16)

The representation (2.16) is called an input/output representation of the system B. The

matrix D−1(s)N(s) is called the transfer matrix of the behavior defined by (2.16) [8].

2.2.3 State space representation

In the modeling procedure, there are variables whose relation wanted to be defined.

Those variables are called the manifest variables and they were previously denoted

by w. However, in the process of modeling from first principles, calculations involve

different variables than the model aims to describe. These variables are called the latent

variables (For example when modeling the port behavior of a one port electrical circuit,

port voltage and current are the manifest variables and voltages and currents among all

other branches are latent variables). State variables are special latent variables that

specify the memory of the system. Below, a definition is given.

Definition 2.2.3.1. (State variables [7]) Latent variables x are called state variables if

they satisfy the following axiom of state:

(w1,x1),(w2,x2) ∈B, t ∈ N, and x1(t) = x2(t)⇒ (w,x) ∈B, (2.17)

where

(w(τ),x(τ)) :=
{

(w1(τ),x1(τ)) for τ < t,
(w2(τ),x2(τ)) for τ ≥ t. (2.18)

It turns out any LTI system B admits a representation by an input/state/output equation

σx = Ax+Bu, y =Cx+Du, Πw = col(u,y), (2.19)

in which both the input/output and the state structure of the system are explicitly

displayed [15]. The system B induced by an input/state/output equation with
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parameters (A,B,C,D) and Π, is formally defined as

Bi/s/o(A,B,C,D,Π) := {Πw := col(u,y) ∈ (Rq)N|∃x ∈ (Rn)N,

such that σx = Ax+Bu,y =Cx+Du}.
(2.20)

(2.20) is called an input/state/output representation of the system B.

2.3 Autonomous Systems

Definition 2.3.1. (Autonomous System) A system B is autonomous if for any

trajectory w ∈B the past

w− := (...,w(−2),w(−1)) (2.21)

of w completely determines its future

w+ := (w(0),w(1), ...). (2.22)

A system B is autonomous if and only if its input cardinality m equals zero.

That means there are no external free variables (inputs). Every trajectory’s future

is completely determined by its past. Therefore an autonomous LTI system is

parameterized by the pair of matrices A and C via the state space representation

σx = Ax, y =Cx, w = y. (2.23)

The system induced by the state space representation with parameters (A,C) is

Bi/s/o(A,C) := {w ∈ (Rp)N|∃x ∈ (Rn)N, such that σx = Ax,w =Cx}. (2.24)

Since there are no free variables, behavior of an autonomous system is finite

dimensional where dim (B) = n. An autonomous LTI system can also be

parameterized in a minimal kernel representation B = ker R(σ) by a square

nonsingular polynomial matrix R(s) i.e., R(s)∈Rp×p[s], det R(s) 6= 0. Note that this is

a special case of an input/output representation, a behavior with outputs only [8] (An

autonomous system can be interpreted as an input/output system with zero inputs).
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2.4 Controllability

Definition 2.4.1. (Controllability) The system B is controllable if for any two

trajectories w1,w2 ∈ B there exists a third trajectory w ∈ B and a time instant

t ′ ≥ 0, t ′ ∈ Z, such that w(t) = w1(t) for all t ≤ 0 and w(t) = w2(t− t ′) for all t ≥ t ′.

Controllability implies that we can steer any trajectory to another one within the

behavior provided we allow a delay [8]. A test for controllability of the system B

in terms of the parameter R(s) ∈ Rg×q[s] in a kernel representation B = ker R(σ) is

given in [7]: B is controllable if and only if the matrix R(s) has a constant rank for all

s ∈ C (This equivalently means B is controllable if and only if the matrix R(s) is left

prime). In terms of input/output representation B =Bi/o(D,N), D(s) and N(s) must

be left coprime for B to be controllable.

2.5 Complexity of a Linear Time-Invariant System

The complexity of an LTI system is parameterized by the ordered pair c(B) :=

(m(B),n(B)) where m(B) and n(B) shows the input cardinality and total lag of

the system respectively. The parameter c(B) is called the complexity of the system.

Define the lexicographic ordering as follows: Given the vectors of n real numbers a,b

we write a≥ b if a = b or if for some j ∈ 1,2, ...,n, ai = bi, i < j, and a j > b j. By using

this ordering we call a system B2 more complex than B1 if c(B1) ≤ c(B2). Notice

since there are no inputs in an autonomous system complexity of an autonomous

system is always less than the complexiy of a nonautonomous system [4].

2.6 Exact Identification

The exact identification problem is defined as follows: Given a trajectory w of a

discrete time LTI system B, find a representation of B. In this thesis problem

of finding a kernel representation is considered. The exact identification is a basic

and important system theoretic problem. It includes the classical impulse response

realization (partial realization) problem and it is a prerequisite for the study of

more complicated approximate, stochastic, and stochastic/approximate identification

problems [17].
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In this thesis, the problem is considered for a finite number of data and although the

behavioral setting is used, the results are given in input/output setting. A central object

for the discussion of exact identification problem is the “Most Powerful Unfalsified

Model (MPUM)” and a definition is given below.

Definition 2.6.1. (MPUM)Assume we have a data set D = {w0,w1, ...,wN} where

wi ∈ (Rq)N for i = 0,1, ...,N are observed trajectories. A behavior B is called an

unfalsified model for D if D ⊆ B. A model B1 is called more powerful than B2 if

B1 ⊆B2. A model B∗ is called the most powerful unfalsified model (MPUM) for D,

if B∗ is unfalsified for D and D⊆B⇒B∗ ⊆B.

Let us define the restriction of the behavior B∗ ⊆ (Rq)N to the time interval [1,T ]

where T ∈ N as B∗|[1,T ] i.e., B∗|[1,T ] consists of the parts of all trajectories in B

between the time interval [1,T ] for any T ∈ N. It is shown in [5] that a MPUM for D

exists and the system B∗ ⊆ (Rq)N is an MPUM of the set D in the model class Lq if it

is

1. finite dimensional LTI,

2. unfalsified, i.e., D⊆B∗|[1,T ]

3. most powerful among all finite dimensional LTI unfalsified systems, i.e.,

B ∈ Lq and D⊆B|[1,T ]⇒B∗|[1,T ] ⊆B|[1,T ] (2.25)

Thus the dynamical system with behavior B∗ explains the observed signal set and as

little else as possible. Hence it has the most predictive power. Note that because of

finite dimensionality, MPUM for a data set is always an autonomous system. The

main results of the thesis, methods defined in Chapter 3 and Chapter 4, recursively

finds a representation for the MPUM for each newly acquired impulse response or

arbitrary input/output data for single input single output (SISO) DTLSSs. Then, from

the representation of the MPUM, a representation for the kernel representation of the

system is derived and the transfer function of the zero state behavior of the system is

acquired. For the uniqueness of solution, some assumptions are used.
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3. RECURSIVE PARTIAL REALIZATION OF DTLSSs

Switched linear systems are most conveniently described by the state equations (recall

the definition of backward shift operator from Section 2.2.1)

(σx)(k) = Aα(k)x(k)+Bα(k)u(k)
y(k) =Cα(k)x(k)+Dα(k)u(k)

(3.1)

where u(k),y(k) and x(k) are respectively the input, output and state vectors. The

trajectories that satisfy these equations comprises the set B (Recall the state space

representation from Section 2.2.3). The sequence α is the switching signal which takes

values from a set Q = {1,2, ...,q}. For a fixed value α(k) = i of the switching signal,

the linear system represented by the state-space parameters (Ai,Bi,Ci,Di) is called a

mode of the switched system. Thus the system represented by (3.1) comprises q

subsystems (modes). The active mode which operates at a time instant is determined

by the value of the switching signal at that instant. The time between two consecutive

changes of the switching sequence is called the dwell time.

By eliminating x(k) from (3.1) a mode i of the switched system can alternatively be

represented by the kernel representation in input/output form (Recall Ch. 2.2.1 and

2.2.2) by

Di(σ)y−Ni(σ)u = 0. (3.2)

For u = 0 the autonomous system described by the state-space parameters (Ai,Ci) or

equivalently by the kernel of Di(σ) is from now on called the zero-input dynamics of

mode i. The problem studied in this chapter is defined as follows:

Problem: Partial realization of DTLSSs

Given the impulse response sequence h(k) = hk for k = 0,1, ...,N of the switched

system (3.1) corresponding to the initial state x(0) = 0, input u(k) = δ (k) and

an unknown switching signal α; find the state equation representation or kernel

representation of the starting mode and zero-input dynamics of all subsequent modes

assuming that the orders n of the modes are known.
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Remark 3.0.1. Note that in the partial realization problem only a finite length of the

impulse response sequence is given and the solution is highly nonunique. In the case of

linear systems a parameterization of all solutions and their possible orders are studied

in [4, 10]. In our formulation it is assumed that the orders of the modes are known in

order to find a unique solution.

Remark 3.0.2. Notice that for switched systems, after a switch at time instant τ the

kernel representation (3.2) found for the mode is not actually valid for time interval

[τ − n,τ]. Because since we make use of the backward shift operator to write the

kernel representations, in time interval [τ−n,τ] data from the subsequent mode must

be used and the kernel representation found for the previous mode would not hold. The

method studied in this work gives kernel representation (3.2) (and therefore the transfer

function of the controllable part of the behavior) of the individual local modes as if

they are distinct systems. To interpret a DTLSS as a concatenation of different local

systems (this is the approach adopted for the purposes of the thesis) is not always very

advantagous. For instance, the minimality of a DTLSS realization does not depend

on the minimality of all local modes. In addition, the state equation representation

(Ai,Bi,Ci,Di) of the modes can only be determined up to a change of basis (within a

similarity transformation) in state space. The problem of writing state equations of the

modes in a common coordinate system is not a trivial one and it is considered in [13].

These remarks and problem about state space representations with formal definitions

and concepts in partial realization theory for DTLSSs will also be discussed in Chapter

5.

3.1 Identifiability Conditions

A system is identifiable from the observed trajectory w = (w0,w1, ...,wN−1) if there

exists no other system in the given model class which generates the same trajectory. In

this case, the trajectory w is called sufficiently rich for the system. In other words, a

sufficiently rich trajectory reflects all characteristic features of the system to distinguish

it from other systems in the same model class. In [18] it is shown that a controllable

system of order n and lag l is identifiable from the trajectory w = col(y,u) if the input

component u is persistently exciting of order n+ l + 1. This result, however, cannot
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be directly applied to this problem since some of the modes of the switched system

are not driven by inputs, but only the responses due to initial conditions are known.

In the following lemma an identifiability condition similar to the one in [18] is given

which is suitable in the present situation and which is also necessary for single output

systems. In order to state this result let Hr(w) denote the block Hankel matrix of r rows

associated with the trajectory w = (w0,w1, ...,wN−1) which is explicitly defined as

Hr(w) =


w0 w1 ... wN−r
w1 w2 ... wN−r+1
...

... . . . ...
wr−1 wr ... wN−1

 (3.3)

The term identification in this thesis is used in the meaning “to find the kernel

representation of unique, minimal order, controllable model for local modes of a

DTLSS”. Also for the next lemma the definition of left kernel of a matrice M can be

reminded as the nullspace of MT i.e., the subspace consists of all nonzero row vectors

ri that makes riM = 0.

Lemma 3.1.1. Assume that the trajectory w = (w0,w1, ...,wN−1) is generated by a

linear, time-invariant single output system of order n. The system can be identified

from w if and only if dim (left ker Hn+1(w))= 1.

Proof. Let the system be described by the kernel representation R0w(k) +R1w(k +

1) + ...+Rnw(k + n) = 0. Clearly
[

R0 R1 ... RN
]
∈ left ker Hn+1(w) and the

system can be uniquely identified if and only if left ker Hn+1(w) is the one dimensional

subspace span
([

R0 R1 ... RN
])

.

In the next lemma the above result is specialized to the identification of the system from

impulse response or zero-input response. This is stated in terms of a state equation

representation of the system and also the minimum number of samples required to

identify the system is given.

Lemma 3.1.2. Consider a single input-single output, nth order system defined by

(σx)(k) = Ax(k)+Bu(k),y(k) =Cx(k)+Du(k). Let Nmin = 2n.

(i) The system can be identified from the impulse response sequence h(k) = hk, k =

0, ...,N−1; h(k) = 0 for k < 0 if and only if the system is controllable, observable and
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N ≥ Nmin +1 (impulse response is defined as the response of a system due to an input

as a unit impulse at time k = 0).

(ii) The zero-input dynamics of the system can be identified from the response y(k) = yk

for k = 0, ...,N− 1 due to the initial state x(0) = x0 if and only if the pair (A,x0) is

controllable, the system is observable and N ≥ Nmin.

Proof. (i)

Take z(k) = col(h(k),δ (k)) and note that z(k) = 0 for k < 0. We will apply

Lemma 3.1.1 to the shifted trajectory defined by w(k) = 0 for k = 0, ...,n− 1 and

w(k) = z(k− n) for k = n, ...,N + n− 1 (Notice that the trajectory w(k) is the n times

forward shifted version of z(k), the partial impulse response). If we write the Hankel

matrix for w(k) we get

Hn+1(w) =


w(0) w(1) ... w(n+1) ... w(N−1)
w(1) w(2) ... w(n+2) ... w(N)

...
... ...

... ...
...

w(n) w(n+1) ... w(2n+1) ... w(N +n−1)



=



0 0 ... h1 ... hN−n−1
0 0 ... 0 ... 0
0 0 ... h2 ... hN−n
0 0 ... 0 ... 0

0
... ... 0 ... 0

0
... ... 0 ... 0

... h0 ... hn ... hN−2

... 1 ... 0 ... 0
h0 h1 ... hn+1 ... hN−1
1 0 ... 0 ... 0



.

(3.4)

By reordering the rows of the (2n+ 2)×N matrix in (3.4) we get the form in (3.5).

Define the four block columns in (3.5) in the usual sense as H11,H12,H21 and H22. H11

is (n+ 1)× (n+ 1), H12 is (n+ 1)× (N− n− 1), H21 is (n+ 1)× (n+ 1) and H22 is

(n+ 1)× (N− n− 1). Notice by using the last n+ 1 rows of (3.5) we can eliminate

H11 to get a zero matrix, without changing H12. Again by reordering the rows we get

the block matrix seen in (3.6).
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Hn+1(w) =



0 0 ... ... h0 h1 ... ... hN−n−1
0 0 ... h0 h1 h2 ... ... hN−n
...

...
...

...
...

...
...

...
...

...
h0 h1 ... ... hn hn+1 ... ... hN−1
0 0 ... ... 1 0 ... ... 0
0 0 ... 1 0 0 ... ... 0
...

...
...

...
...

...
...

...
...

...
1 0 ... ... 0 0 ... ... 0



. (3.5)

Hn+1(w) =
[

In+1 0
0 Hn+1(σh)

]
(3.6)

In (3.6), Hankel matrix of the backward shifted impulse response σh = (h1, ...,hN−1)

is defined as

Hn+1(σh) =


h1 h2 ... hN−n−1
h2 h3 ... hN−n
...

...
...

hn+1 hn+2 ... hN−1

 . (3.7)

From (3.6) it can be seen that rank Hn+1(w) = n + 1+ rank Hn+1(σh). By

Lemma 3.1.1 the system can be identified from w if and only if dim (left ker

Hn+1(w))= 1. This implies the system can be identified from w if and only if

rankHn+1(w) = (2n + 2)− 1 = 2n + 1. This, in turn, implies rankHn+1(σh) must

be n. By defining the controllability matrix as K =
[

B AB ... AN−n−2B
]

and

the observability matrix as O =
[

C CA ... CAn ]T , Hn+1(σh) can be written as

Hn+1(σh) = O(n×n)K(n×(N−n−1)). For Hn+1(σh) to be of rank n both O and K must

be of rank n (It can be seen from the rank inequality rankO+rankK−n≤ rank(OK)≤

min{rankO, rankK}). This implies the number of columns of K must be at least n

(This, in turn, implies the condition N ≥ 2n+ 1) and the system must be controllable

and observable.
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(ii)

Let us construct the Hankel matrix associated with the zero-input output due to an

initial state x0 as

Hn+1(y) =


y0 y1 ... yN−n−1
y1 y2 ... yN−n
...

... ...
...

yn yn+1 ... yN−1


(n+1)×(N−n−1)

(3.8)

We will again apply Lemma 3.1.1 to Hn+1(y). For left ker Hn+1(y) to be one

dimensional rank of Hn+1(y) must be n+1−1 = n. Note that Hn+1(y) can be written

as Hn+1(y) = On×nXn×(N−n−1) where O is the observability matrix defined in part (i)

and X =
[

x0 Ax0 ... AN−n−1x0
]
. By the rank inequality in part (i) for Hn+1(y) to

be of rank n both O and X must be of rank n. This implies the number of columns of

X must be at least n (This, in turn, implies the condition N ≥ 2n) and the system must

be observable and the pair (A,x0) must be controllable.

3.2 Recursive Modeling Procedure

The recursive solution of the partial realization problem for switched systems is

presented under the following assumptions.

Assumptions

A1. The switched system (3.1) has single input, single output. The modes of the

system are controllable, observable and the orders n of the modes are known.

A2. The dwell time of the starting mode driven by the impulse is greater than Nmin = 2n

i.e., if the switching instants for the DTLSS are defined as (τ1,τ2, ...), τ1 > Nmin.

A3. Dwell time of the subsequent modes whose zero-input responses are observed are

at least 2Nmin−1 = 4n−1 i.e., τi− τi−1 ≥ 2Nmin−1 for i = 2,3, ...

A4. For each mode, there is at least one period in the impulse response sequence which

is sufficiently rich for the mode active in the same period i.e., for each mode j of the

DTLSS there is at least one switching instant τi to that mode such that (A j,x(τi)) is

controllable.
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It should be noted that the dwell time assumed for the modes is about twice the time

required to identify a single nth order system since the zero-input response produced by

a mode may coincide with the response of the previous mode and it may take Nmin−1

samples to detect a mode change (since in Lemma 3.1.2 (ii), it is shown that the zero

input dynamics of a system is identifiable from its zero input response by using at least

Nmin samples, zero-input response produced by a mode may coincide with the response

of the previous mode for at most Nmin−1 samples) and Nmin samples more to identify

after the event is detected. Thus controllability, observability of the modes and the

assumption on dwell times are necessary conditions for identifiability. Assumption A4

which is also necessary is tested in Step 5 of the recursive procedure, no rank tests are

required.

In the partial realization problem, the input/output trajectory to be modeled is w(k) =

col(h(k),δ (k)) where h(k) = hk,k = 0, ...,N;h(k) = 0,k < 0. The sequence w(k) is

defined for k ≤ N. In order to work with sequences defined on the nonnegative time

axis N take

z(k) = w(N− k), k = 0,1, ... (3.9)

and define the backward shifts of the sequence z by

zi = σ
N−iz, i = 0,1, ...,N (3.10)

Note that zN = z and zi−1 = σzi for i = 1,2, ...,N. It is easily seen that the MPUM of

zi in L2 (notice q = 2 since we have a SISO system) is B∗i = span{z0,z1, ...,zi}. The

procedure described below recursively finds a shortest lag kernel representation of B∗i

until a mode change is detected. Then the sequences zi are redefined and the procedure

is repeated.

Recursive Procedure

The flowchart of the recursive procedure is depicted in Figure 3.1. The steps of the

procedure are then explained in detail.
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Figure 3.1: Flowchart of the recursive partial realization procedure of DTLSSs

1. Initialization: The time reversed trajectory z and its backward shifts zi are initially

defined by (3.9) and (3.10). If a mode change is detected when the data sample w(r)

is received, let Nr = N− r+1 and redefine the sequences z, zi as

z(k) = w(N− k) k = 0,1, ...,N− r,z(Nr) = col(0,1),

z(k) = 0 k > Nr, and zi = σ
Nr−iz i = 0,1, ...,Nr.

(3.11)

In this way, the remaining data samples are considered as being generated by an

impulse applied at time r− 1 to set up initial conditions (state). Furthermore we

initially take R−1 = I. The following steps are repeated for k = 0,1, ...

2. Error Computation: Let Rk−1(σ) be the kernel representation of the MPUM for

zk−1. The error at stage k is defined by

ek = Rk−1(σ)zk (3.12)

Since σek = Rk−1(σ)σzk = Rk−1(σ)zk−1 = 0 the sequence ek is a pulse of the form

ek = (e0,0,0, ...) and e0 = col(∆k, ∆̃k).
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3. Event Detection: In general, a mode change is detected when the model represented

by the first row of Rk(σ) is falsified by the recently received data. Because of the

assumptions (A2,A3) on dwell time the test for event detection need not be performed

for k ≤ Nmin = 2n. Thus, a mode change is detected if the conditions

(i)k > Nmin (ii)∆k 6= 0 (3.13)

are simultaneously satisfied. Under the conditions (3.13) (i− ii) the controllable model

derived for the sequence zk−1 cannot be updated without increasing the order which is

an indication of the mode change. Note that an event may be detected before the

currently active mode is identified. This happens when the zero-input response is not

sufficiently rich for the mode and is indicated by the conditions k > Nmin and Lk−1 < n

where Lk−1 denotes the degree of the first row of Rk−1(s). After the detection of mode

change Step 4 for the model update is skipped and the procedure proceeds with Step 5

to identify the mode.

4. Model Update: When the error sequence ek defined by (3.12) is nonzero, the

kernel representation Rk−1(σ) has to be updated to obtain a kernel representation of

the MPUM for zk. Let Vk(σ) be a kernel representation of the MPUM for ek. Then it

is easily seen that

Rk(σ) =Vk(σ)Rk−1(σ) (3.14)

is a kernel representation of the MPUM for zk. As explained in [10] the update matrix

Vk(s) is chosen in such a way that Rk(s) is row reduced at each step and the row which

does not lose rank at s = 0 (the row which gives a controllable model for zk) is the

first row. Let Lk−1 and L̃k−1 denote the degrees of the first and second rows of Rk−1(s)

respectively then the choice

Vk(s) =
[

∆̃k −∆k
0 s

]
if ∆k = 0 or Lk−1 > L̃k−1 and

Vk(s) =
[

∆̃k −∆k
s/∆k 0

]
otherwise

meets the above requirements as shown in [10]. After the model update, the counter k

is incremented and the procedure returns to Step 2 for error computation.
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5. Identifiability Test and Identification of the Mode: For k ≥ Nmin = 2n the first row

of Rk(s) which does not lose rank at s = 0 is the kernel representation of the unique,

minimal order, controllable model of the sequence zk which is entirely generated by a

single mode of the switched system. Let r(s) =
[

r1(s) r2(s)
]

denote the first row of

Rk(s) for k ≥ Nmin. If the degree of r(s) is equal to the order n of the modes, then the

mode is identified. Taking the time reversal operation (3.9) into account, the kernel

representation of the mode is given by r̃(σ)w = 0 and the kernel representation of the

zero-input dynamics is r̃1(σ)w = 0 where for a polynomial p(s) of degree n, p̃(s) is

defined as p̃(s) = sn p(s−1). Under the assumptions (A1 A4) the starting mode driven

by the impulse is identified as soon as Nmin + 1 data samples are received. For the

subsequent modes whose zero-input responses are known, the degree of r(s) may be

lower than n. This indicates that the trajectory zk is not sufficiently rich hence the

mode cannot be identified on this visit. The identification of the mode is postponed

until a portion of the impulse response sequence which satisfies the condition of

Lemma 3.1.2 (ii) is received. Assumption A4 ensures that such a period exists. After

the identifiability test and identification of the mode, the flow of the procedure is

returned to Step 1.

Remark 3.2.1. It can be proven that the condition in Lemma 3.1.2 (ii) can be used to

guarantee the detection of switching in Step 3. The related theorem and its proof are

below.

Theorem 3.2.2. Assume R1 and R2 are minimal representations of the zero input

dynamics of any two modes (A1,C1), (A2,C2) of the DTLSS with R1 6= R2 and degR1 =

degR2 = n. Also suppose the assumptions (A1-A3) are fulfilled for the DTLSS. The

switching can always be detected by the recursive algorithm (the conditions in Step 3

(i) and (ii) are always satisfied) if the there is a switching instant x(τi j) (x(τi j) shows

the ith switching instant to mode j) for each mode j such that (A j,x(τi j)) is controllable

and the pair (A j,C j) is observable for j = 2,3, ... and i ∈ {1,2, ...}.

Proof. Without loss of generality consider any two adjacent modes of the DTLSS. Call

the former mode operating as mode 1 and the latter as mode 2. Call n as the order of

these modes. Suppose zero-input dynamics of these modes are represented with the

distinct polynomials R1(s) and R2(s) respectively.
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Now suppose (A2,x
(2)
0 ) (with x(2)0 showing the state of the DTLSS at the switching

instant to mode 2) is controllable, (A2,C2) is observable and after the dwell time

assumptions (A2,A3) are fulfilled, there is a switch to mode 2 from mode 1. Consider

the Hankel matrix of mode 1 H(1)
n+1,n+1 constructed from the response due to the initial

state x(1)0 (x(1)0 shows the state of the DTLSS at the switching instant to mode 1) as

H(1)
n+1,k =

 C1x(1)0 ... C1Ak−1
1 x(1)0

...
...

C1Ak−1
1 x(1)0 ... C1A2k−1

1 x(1)0

 . (3.15)

If R1(s) = sn +an−1sn−1 + ...+a1s+a0, from R1(σ)y = 0, it is clear that

[
a0 a1 ... an−1 1

] y(t)
...

y(t +n)

= 0. (3.16)

Hence, we can see that

[
a0 a1 ... an−1 1

]
Hn+1,k = 0 (3.17)

for k ≥ 1. Define also R2(s) = sn + bn−1sn−1 + ...+ b1s+ b0. Suppose after 2n steps

from the switch, there is still no error found with the algorithm (i.e. the switching

could not be detected). This means both kernel representations are valid for mode 2

i.e.,

[
a0 a1 ... an−1 1

]
H(2)

n+1,n+1 = 0 (3.18)[
b0 b1 ... bn−1 1

]
H(2)

n+1,n+1 = 0 (3.19)

where H(2)
n+1,n+1 is the Hankel matrix constructed with the first 2n+1 output data after

the switching due to the initial state x(2)0 i.e.,

H(2)
n+1,n+1 =

 C2x(2)0 ... C2An
2x(2)0

...
...

C2An
2x(2)0 ... C2A2n

2 x(2)0

 . (3.20)

Substituting (3.19) from (3.18) yields[
a0−b0 ... an−1−bn−1 0

]
H(2)

n+1,n = 0 (3.21)
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which implies [
a0−b0 ... an−1−bn−1

]
H(2)

n,n = 0. (3.22)

Notice H(2)
n,n can be written as

H(2)
n,n = O(2)X (2) =

 C2
...

C2An−1
2

[ x(2)0 ... An−1
2 x(2)0

]
. (3.23)

We know from the observability of (A2,C2) and controllability of (A2,x
(2)
0 ) that

O(2) ∈ Rn×n is of full column rank and X (2) ∈ Rn×n is of full row rank. That

means rankH(2)
n,n = n. By linear independence of the rows of H(2)

n,n we can say[
a0−b0 ... an−1−bn−1

]
= 0. This implies

a0 = b0, ...,an−1 = bn−1 (3.24)

Since kernel representation of two distinct modes of the DTLSS must be different, this

is a contradiction. Therefore, the proof is complete.

Remark 3.2.3. Note that after the switch detection, an impulse is applied in the

initialization step (Step 1) to build the initial state at the instant of switching. Thus,

after a switch, the parameters of the system to be identified is (A′,B′,C′) where (A′,C′)

are the original (A,C) matrices of the active mode and B′ is the initial state vector x0

(x0 is the state of the DTLSS at the switching instant). Since the matrices defining

the zero-input dynamics of the original system (A,C) are equal to (A′,C′), zero-input

dynamics can be correctly identified with the recursive procedure from (1,1) element

of R(s) after Nmin new data. Note that first row of R(s), r(s), is a kernel representation

for this newly “created” system (A′,B′,C′), thus, it is not the kernel representation of

the original system. One cannot derive original B matrix of the system, since only a

partial response due to an initial state is known.

3.3 Example

Consider the bimodal switched linear system seen in Figure 3.2. The first mode is

defined by the state space parameters

A1 =

[
0 1
−1 −1

]
,B1 =

[
0
1

]
,C1 =

[
0 1

]
,D1 =

[
1
]

(3.25)
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Figure 3.2: Impulse response of the DTLSS for k = [0,16]

and the second mode is given by

A2 =

[
−1 −1
2 1

]
,B2 =

[
0
1

]
,C2 =

[
−1 0

]
,D2 =

[
0
]
. (3.26)

The impulse response sequence of total length 17 obtained by starting with the first

mode, running mode 1 for k ∈ [0,7] and then switching to second mode for k ∈ [8,16]

is given as h=
[

h1 h2
]

where h1 = (1,1,−1,0,1,−1,0,1) is the sequence produced

by mode 1 and h2 = (−1,0,1,0,−1,0,1,0,−1) is the zero-input response due to initial

state x(8) = col(1,−1) generated by mode 2. Figure 3.2 shows the response of the

system for k = [0,16] where the instant of switching (k = 8) and detection of switching

(k = 11) are shown in circles. When the first 5 samples of h are received, the procedure

described above gives

R4(s) =
[

s2 + s+1 −s2−2s−1
s3 + s2 +2s −3s2−2s

]
(3.27)

as the kernel representation of the MPUM for the sequence z4 defined in (3.10). The

kernel representation of the first mode is correctly identified from the first row of R(s)

as

(σ2 +σ +1)y = (σ2 +2σ +1)u. (3.28)

As the procedure proceeds it is seen that the first component ∆k of the error sequence

(3.12) is zero hence the first row of Rk(s) remains the same for k ∈ [5,10]. The mode
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change is detected at k = 11 when h(11) = 0 is received. The switching to mode 2 takes

place at k = 8 but cannot be detected before k = 11 since the second mode produces

the same response with mode 1 for k ∈ [8,10]. After the event detection, the sequence

is initialized as explained above and

R4(s) =
[

s2 +1 s2

s s3

]
(3.29)

is found as the kernel representation of the MPUM for the time-reversed trajectory

consisting of the samples h(11)...h(14). From the (1,1) element of R4(s) the kernel

representation of the zero-input dynamics of mode 2 is correctly read as (σ2+1)y = 0.

It should be noted that if the dwell time of mode 2 were not sufficiently long there

would not be enough data samples to uniquely identify the mode. This justifies the

assumption A3 on minimum dwell times.

To illustrate the identifiability condition given in Lemma 3.1.2 (ii) and the equivalent

condition in Step 5 of the recursive procedure, suppose that the (1,1) element of the

matrix A2 is changed to −2 everything else remaining the same. Then the zero-input

response corresponding to initial state x(8) = col(1,−1) produced by the second mode

is h2(k) = (−1)k+1 for k≥ 8. The mode change is detected at k = 9 but mode 2 cannot

be identified from the available sequence h2 since the pair (A2,x(8)) is uncontrollable.

The condition given in Lemma 3.1.2 (ii) is not satisfied. In the recursive procedure this

is revealed by the matrix

R4(s) =
[

s+1 −s
−s3 s4

]
(3.30)

which is obtained after the samples h2(k),k ∈ [9,12] are received. The degree of the

first row of R4(s) is 1 which means that the given trajectory is not sufficiently rich for

mode 2 and could also be produced by a first order system.

3.4 A Different Assumption For the Procedure

From the previous sections, it can be seen that there is a possibility that even though

the assumptions on dwell times (A2,A3) are satisfied, detecting a mode change may

not be possible by the procedure. This fact is characterized by Lemma 3.1.2 (ii)

and the problem solved by assumption A4 (Note that apart from the condition on

dwell times assumptions (A1,A4) are mild conditions and are generically satisfied).
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However, a different assumption can be made to guarantee the detection of switching.

This assumption should guarantee that there is no element in the intersection of each

individual mode’s behavior set. In this section, such an assumption will be derived and

explained. It should be noted that even though the assumption which will be derived

in this section guarantees the detection of mode change, but not identifiability. So, it

cannot replace Lemma 3.1.2 (ii). First, the problem will be illustrated on an example.

Example 3.4.1. Let Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) with Q = {1,2}, n = 2,

m = 1, p = 1, x0 =
[

0 0
]T ,

A1 =

[
1 1
0 0

]
,B1 =

[
0
1

]
,C1 =

[
1 0

]
A2 =

[
1 0
0 3

]
,B2 =

[
0
1

]
,C2 =

[
1 1

]
.

(3.31)

Suppose a unit impulse at time t = 0 is applied to this DTLSS. Also suppose the

assumptions on the dwell time (A2,A3) hold. It can be seen that starting from

time t = 2 the output of the first mode will always be y(t) = 1 and the state will

be x(t) =
[

1 0
]T . If a switch to the second mode occurs after the dwell time

assumption is fulfilled, it can also be seen that the output and state will still be the

same. Thus it will be impossible to detect the switching with the recursive algorithm.

Notice also that the pair (A2,x0) will always be uncontrollable when x0 =
[

1 0
]T (x0

is the initial state of second mode generated by the previous mode). In Chapter 3.3, this

problem is solved by assuming that a sufficiently rich period in the impulse response

data always exists. In an example like this such a period can never exist, therefore we

conclude the second mode of this DTLSS is not identifiable by this algorithm (Note

that in this case the second system is not minimal, but the example still illustrates the

problem).

Instead of the assumption A4, another assumption (which is more restrictive but can be

still regarded as generic) can be made to quarantee the switch detection and DTLSSs as

in Example 6 are formally excluded from this recursive algorithm’s application area.

One such solution would be assuming the intersection of the behavior sets of each

modes of the DTLSS is the empty set. In the following, a condition on the behavioral
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equation representations of each mode will be given. This condition guarantees any

two modes of the switched system to have no common trajectories in their behavior

sets. For this, some known results of polynomial matrix algebra in behavioral context

will be used.

Lemma 3.4.2. (Smith form, square case) Let R(s) ∈ Rq×q[s]. There exist unimodular

matrices U(s),V (s) ∈ Rq×q[s] such that

1. U(s)R(s)V (s) =diag(d1(s), ...,dq(s)).

2. There exist (scalar) polynomials gi(s) such that di+1(s) = gi(s)di(s), i = 1, ...,q−1

Proof. For the proof, see [8].

Remark 3.4.3. (Lemma 3.4.2) If R(s) is not square, then the Smith form can also be

defined. If R(s) is wide (g < q) or if R(s) is tall (g > q), the Smith forms are given by

 d1(s) 0 ... 0
. . . ...

...
dg(s) 0 ... 0

 ,


d1(s)
. . .

dg(s)
0 ... 0
...

...
0 ... 0


(3.32)

respectively (Blank spaces are all zeros).

Lemma 3.4.4. Let B(R) :=kerR(σ). B(R) = {0} if and only if R(s) is unimodular.

Proof. “If”

We know that for any matrix Γ(s) ∈ Rg′×g[s], R1(s) ∈ Rg×q[s] and R2(s) ∈ Rg′×q[s]

with g′ ≤ g; if R2(s) = Γ(s)R1(s), B(R1) ⊆B(R2) (See [4]). If R(s) is unimodular,

then R(s)R−1(s) = I implies B(R)⊂B(I) = {0}.

“Only if”

Suppose R(s)∈Rg×q[s], g≤ q is not unimodular. By Lemma 3.4.2, we know that there

exist unimodular matrices U(s) ∈ Rg×g[s], V (s) ∈ Rq×q[s] such that

U(s)R(s)V (s) = D(s) (3.33)
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where D(s)∈Rg×q[s] is the wide rectangular matrix with one g×g diagonal submatrix

composed of invariant factors of R(s) and one g×(q−g) submatrix composed of zeros

i.e.,  d1(s) 0 ... 0
. . . ...

...
dg(s) 0 ... 0

 . (3.34)

Multiplying (3.33) from the left by U−1(s) and from the right by V−1(s) we get R(s) =

U−1(s)D(s)V−1(s). Since U(s) and V (s) are unimodular it is clear that their inverses

exist and they are again unimodular. We want to prove there exists a nonzero w such

that

R(σ)w =U−1(σ)D(σ)V−1(σ)w = 0 (3.35)

Define new variables h j, j = 1, ...,q as h :=V−1(σ)w where h = col(h1, ...,hq). Since

left unimodular transformations do not change the behavior (see Lemma 2.2.1.4), the

equations U−1(σ)D(σ)h = 0 and D(σ)h = 0 represent the same behavior. Also, since

R(s) is not unimodular, there exist a non-unity polynomial invariant factor di(s) for an

i ∈ {1, ...,g} which has at least one nonzero root. Take this row of the equation and

consider

di(σ)hi = 0. (3.36)

Now the proof is reduced to scalar case. It is clear that di(s)= sn+din−1sn−1+ ...+di0 is

the characteristic equation of the scalar recurrence relation (3.36) (Note that (3.36) can

be written as hi(t +n)+din−1hi(t +n−1)+ ...+di0hi(t) = 0). Let λk ∈ C, be one root

of di(s). We know that there exist solutions to this recurrence relation which include

the term cλ t
k with c being an arbitrary constant (Notice even when λk has complex part

i.e., λk = α + jβ , the term cλ t
k has still a real part which is ℜ

{
c∑

t
l=0
(t

l

)
α t−l( jβ )l}).

Since we know that there is at least one nonzero λk, (3.36) has a solution with nonzero

real part i.e., hi(t) 6= 0. Thus h(t) 6= 0, w(t) 6= 0 which means B(R) 6= {0}.

Definition 3.4.5. (g.c.r.d) [16] If three polynomial matrices satisfy the relation: P(s) =

H(s)G(s), then G(s) is called a right divisor of P(s), and P(s) is called a left multiple

of G(s). A greatest common right divisor (g.c.r.d.) of two polynomial matrices P(s)

and R(s) is a common right divisor which is a left multiple of every common right

divisor of P(s) and R(s).
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Lemma 3.4.6. [19]Consider P(s) ∈ Rq×q[s] and R(s) ∈ Rg×q[s]. If a unimodular

matrix U(s) ∈ R(g+q)×(g+q)[s] and a matrix T (s) ∈ Rq×q[s] are such that

U(s)
[

P(s)
R(s)

]
=

[
T (s)

0

]
(3.37)

then T (s) is a g.c.r.d. of {P(s),R(s)}.

Proof. Consider the equation given in the statement of the lemma

U(s)
[

P(s)
R(s)

]
=

[
T (s)

0

]
. (3.38)

We can rewrite (3.38) as[
P(s)
R(s)

]
=U−1(s)

[
T (s)

0

]
=

[
L1(s) L2(s)
L3(s) L4(s)

][
T (s)

0

]
=

[
L1(s)T (s)
L3(s)T (s)

]
(3.39)

if U(s) is partitioned accordingly. Thus, P(s) = L1(s)T (s) and R(s) = L3(s)T (s)

implies T (s) is a common right divisor of {P(s),R(s)}. To show that it is the greatest

common right divisor; consider the partition U(s) =
[

L5(s) L6(s)
L7(s) L8(s)

]
so that from

(3.38) we can write

L5(s)P(s)+L6(s)R(s) = T (s) (3.40)

Consider a common right divisor X(s) of {P(s),R(s)} i.e.;

P(s) = A(s)X(s)
R(s) = B(s)X(s) (3.41)

where A(s) and B(s) are arbitrary polynomial matrices with suitable dimensions.

Substituting (3.41) into (3.40) yields:

L5(s)A(s)X(s)+L6(s)B(s)X(s) = T (s). (3.42)

We can see that for any common right divisor X(s) of {P(s),R(s)}, (3.42) holds.

Since L5(s) and L6(s) have the same number of rows, by defining the matrix L(s) =

L5(s)A(s)+L6(s)B(s), (3.42) can be rewritten as L(s)X(s) = T (s). So T (s) is a left

multiple of any X(s), and that means T (s) is the g.c.r.d. of {P(s),R(s)}.

Below is the main result of this section. This result is derived from the work [4].
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Theorem 3.4.7. Let R1(s) ∈Rg×q[s] and R2(s) ∈Rg′×q[s] represent two behavior sets.

B(R1)∩B(R2) = {0} if and only if greatest common right divisor(g.c.r.d.) of R1 and

R2, R̃(s)∈Rk×q[s] is unimodular (If R1(s) and R2(s) are scalar, B(R1)∩B(R2) = {0}

if and only if any common divisor of the polynomials R1 and R2 is constant).

Proof. Since by Lemma 3.4.6 R1,R2 and their g.c.r.d. R̃ satisfy U
(

R1
R2

)
=

(
R̃
0

)
for some unimodular U(s);

B(R1)∩B(R2) =B

(
R1
R2

)
=B

(
R̃
0

)
=B(R̃). (3.43)

By Lemma 3.4.4, we know that B(R̃) = {0} if and only if R̃(s) is unimodular. So

unimodularity of R̃(s) implies B(R1)∩B(R2) = {0}.

Corollary 3.4.8. Suppose the assumptions in Chapter 3.2 (A1-A3) are fulfilled for

the DTLSS. The switching can always be detected by the recursive algorithm given in

Chapter 3.2 if kernel representations of the DTLSS’s each mode’s zero-input dynamics

(denominators of each mode’s transfer function) are co-prime.

Proof. The proof is done in a similar way to the proof of Theorem 3.2.2. Again,

without loss of generality consider any two adjacent modes of the DTLSS. Call the

former mode operating as mode 1 and the latter as mode 2. Call n as the order of

these modes. Suppose zero-input dynamics of these modes are represented with the

polynomials R1(s) and R2(s) respectively.

Now suppose B(R1)∩B(R2) = {0} and after the dwell time assumptions (A2,A3) are

fulfilled, there is a switch to mode 2 from mode 1. Suppose after 2n steps from the

switch, there is still no error found with the algorithm (i.e. the switching could not be

detected). Consider the Hankel matrix Hn+1,n+1 constructed by the impulse response

data as

Hn+1,n+1 =

 y(0) ... y(n)
...

...
y(n) ... y(2n)

 . (3.44)

If R1(s) = sn +an−1sn−1 + ...+a1s+a0, from R1(σ)y = 0, it is clear that

[
a0 a1 ... an−1 1

] y(t)
...

y(t +n)

= 0. (3.45)
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Hence, we can see that

[
a0 a1 ... an−1 1

]
Hn+1,k = 0 (3.46)

for all k≥ n+1. Since Hn+1,n+1 is constructed from the impulse response samples of a

minimal realization, a new column added to Hn+1,n would be linearly dependent on the

first n columns. This implies (3.46) holds for all k ≥ 1 (Notice since first n columns

comprise the basis for the column space of H, ImHn+1,k ⊆ ImHn+1,n+1).

Suppose also R2(s) = sn +bn−1sn−1 + ...+b1s+b0. By our assumption, if there is no

error after 2n steps (after the switch), that means the kernel representation R1(σ)y = 0

is valid for new data which implies

[
b0 b1 ... bn−1 1

]
Hn+1,n+2 = 0 (3.47)

also holds. Since any new column added to Hn+1,n+2 would be linearly dependent on

first n+ 1 columns,
[

b0 b1 ... bn−1 1
]

Hn+1,k = 0 actually holds for all k ≥ 1.

This implies kernel representations of both modes are valid for k ≥ 1 i.e., B(R1)∩

B(R2) 6= {0}. This contradicts our initial assumption. Therefore the proof is complete.

Theorem 3.4.7 and Corollary 3.4.8 provides a formal assumption on the domain

of recursive algorithm’s application area. Therefore, assuming “the intersection of

zero-input behaviors of each mode of the DTLSS is the set {0}” will guarantee not to

encounter problems as in Example 3.4.1. However, even though we can always find a

relation that represents the data, note that for identifiability, condition in Lemma 3.1.2

(ii) must be satisfied.
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4. RECURSIVE IDENTIFICATION OF DTLSSs FROM ARBITRARY
INPUT/OUTPUT SEQUENCES

The aim of first part of this chapter is to present the necessary conditions for a general

discrete-time linear system to be identifiable from a measured input/output sequence

of it. Then the problem of recursively identifying the local modes of a DTLSS will be

stated. A recursive method for the identification of a discrete time linear system from

measured input/output data is given in [4] . The method is mainly presented in [4] as a

solution to the continuous time polynomial-exponential time series modeling problem.

Then, the connection to the problem of identification of a discrete time linear system

from measured input/output data is given. In the problem statement section, we discuss

how to reformulate the problem of identification of a DTLSS to use this recursive

procedure. In the third part, the modified recursive procedure for identification of the

local modes of a DTLSS will be stated. Finally, the chapter ends with an example to

illustrate the procedure.

4.1 Identifiability Conditions

The material presented in this section can be found in [17] and [18]. In this section,

sufficient conditions for identifiability of a general discrete time linear system from

arbitrary input/output measurements, will be given. It turns out, by reformulating the

problem (how to do it will be explained in Section 4.2) these sufficient conditions can

be used for identifiability of the local modes of a DTLSS from arbitrary input/output

measurements.

First, for the purposes of this section let us define the Hankel matrix of L block rows

as in (3.3) associated with the trajectory w = (w0,w1, ...,wN−1) as

HL(w) =


w0 w1 ... wN−L
w1 w2 ... wN−L+1
...

... . . . ...
wL−1 wL ... wN−1

 (4.1)
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The following definition is important for stating the identifiability conditions.

Definition 4.1.1. (Persistency of excitation)The time series u = (u(0),u(1), ...,u(N−

1)) is persistently exciting of order L if the Hankel matrix HL(u) is of full row rank.

Lemma 4.1.2. [18]Let

1. w = col(u,y) be an N samples long trajectory of the LTI system B, i.e.,

w =

[
u
y

]
=

([
u(0)
y(0)

]
, ...,

[
u(N−1)
y(N−1)

])
∈B|[0,N−1]; (4.2)

2. the system B be controllable and

3. the input sequence u be persistently exciting of order L+n

Then any L samples long trajectory w = col(u,y) of B can be written as a linear

combination of the columns of HL(w), and any linear combination HL(w)g, g ∈

RN−L+1 is a trajectory of B, i.e.,

col span (HL(w)) =B|[0,N−1]. (4.3)

Proof. For a proof, see [18].

In [17] it is stated that for sufficiently large L, namely L≥ l+1, Lemma 4.1.2 answers

the identifiability question.

Theorem 4.1.3. The system B ∈ Lq is identifiable from the exact data w = col(u,y) ∈

B if B is controllable and u is persistently exciting of order l +n+1.

Note that applying Theorem 4.1.3 to a single input single output LTI system of order

n, it can be said that minimum number of sufficiently rich samples required for

guaranteeing the identification of the system is n+ l + n+ l + 1 = 2n+ 2l + 1. For

systems whose order n are equal to their lag l, this number is from now on defined as

N′min = 4n+ 1. Note that the condition in Theorem 4.1.3 is just a sufficient one, and

the identification of the system may occur before N′min number of samples.
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4.2 Problem Statement

In this section, how to reformulate the problem of recursive identificiation of local

modes of DTLSS for making it possible to use the procedure given in [4] will be

explained. For this purpose, without loss of generality consider any local mode of a

SISO DTLSS represented as

(σx)(k) = Ax(k)+Bu(k)
y(k) =Cx(k)+Du(k) (4.4)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1, x(k) ∈ Rn, u(k) ∈ R, y(k) ∈ R and

the initial state of the mode is defined as x(0) = x0. Recall from Chapter 3 that the

kernel representation of one mode can be written as,[
D(σ) −N(σ)

][ y
u

]
= 0. (4.5)

Also, recall from Definition 2.2.2.4 that the transfer function of the zero state behavior

of this mode can be acquired from H(s) = D−1(s)N(s). It can also be found by H(s) =

C(sI−A)−1B+D. Now consider the system with zero initial condition defined as

(σx)(k) = Ax(k)+ B̃u′(k)
ỹ(k) =Cx(k)+ D̃u′(k)

(4.6)

where the new matrix B̃ is created with adding a new column to B which is equal to

x0, D̃ is created with adding a zero column to D and ũ(k) consists of two inputs with

the new input v(k) being an impulse i.e., B̃ =
[

B x0
]
, D̃ =

[
D 0

]
and u′(k) =

col(ũ,v) where ũ = (0,u(0),u(1), ...) and v = δ = (v(0),v(1),v(2), ...) = (1,0,0, ...).

Note that if the response of the system (4.4) to a specific sequence of arbitrary inputs

u = (u(0),u(1), ...) is y = (y(0),y(1), ...); the response of (4.6) to the sequence of

inputs u′ = (u′(0),u′(1),u′(2), ...) = col(ũ,v) =
([

0
1

]
,

[
u(0)

0

]
,

[
u(1)

0

]
, ...

)
is

ỹ = (ỹ(0), ỹ(1), ỹ(2), ...) = (0,y(0),y(1), ...). That means the system (4.6) produces

the same response with (4.4) preceded by a zero. This is the idea similar to the one

stated in Remark 3.2.3 to construct the initial state of the DTLSS at the switching

instant. By this reformulation, and by constructing an initialization step similar to the

one in Chapter 3.2, the problem is reduced to recursively identifying a discrete time

linear system from the observed sequence w ∈ (R3)
T of length N. Observe that if we

define the kernel representation of this newly “created” system (4.6) as

[
D(σ) −N1(σ) −N2(σ)

] ỹ
ũ
v

= 0, (4.7)
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(1,1) element of the 1× 2 transfer matrix D−1(s)
[

N1(s) N2(s)
]

is the transfer

function of the zero state behavior of the original mode D−1(s)N(s).

Now, to show that this reformulation does not change the identifiability conditions

given in Theorem 4.1.3, following fact is stated as a theorem.

Theorem 4.2.1. The system B represented by (4.4) is identifiable from the data

sequence w = col(y,u) if and only if the system B̃ represented by (4.6) is also

identifiable from the data sequence w̃ = col(ỹ, ũ,v).

Proof. Recall from Chapter 3 Lemma 3.1.1 and how the block Hankel matrix of L

block rows associated with a partial data sequence w, HL(w) is defined in (4.1). By

making use of Lemma 3.1.1 we need to prove that if dim left ker Hn+1(w) is 1, dim

left ker Hn+1(w̃) is also 1. Since Hn+1(w) and Hn+1(w̃) has 2n+ 2 and 3n+ 3 rows

respectively, this is equivalent to stating

rank Hn+1(w) = 2n+1⇒ rank Hn+1(w̃) = 3n+2. (4.8)

Consider

Hn+1(w) =

 w0 w1 ... wN−n−1
...

... ...
...

wn wn+1 ... wN−1

=


y0 y1 ... yN−n−1
u0 u1 ... uN−n−1
...

... ...
...

yn yn+1 ... yN−1
un un+1 ... uN−1

 (4.9)

and suppose rank Hn+1(w) = 2n+1. Now consider the Hankel matrix associated with

the n times forward shifted trajectory w̃ as in the proof of Lemma 3.1.2 as

Hn+1(w̃) =



0 0 ... ... ... y0 y1 ... yN−n−1
0 0 ... ... ... u0 u1 ... uN−n−1
0 0 ... ... ... 1 0 ... 0
...

...
...

...
...

...
...

...
...

...
y0 ... ... ...
u0 ... ... ...
1 ... ... ...

y0 y1 ... ... ... yn yn+1 ... yN−1
u0 u1 ... ... ... un un+1 ... uN−1
1 0 ... ... ... 0 0 ... 0



(4.10)
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Notice that by elementary row operations matrix Hn+1(w̃) can be rewritten as

Hn+1(w̃) =
[

In+1 0
0 Hn+1(w)

]
. (4.11)

Since rank In+1 = n+1 and rank Hn+1(w) = 2n+1, rank Hn+1(w̃) = (n+1)+(2n+

1) = 3n+2. Therefore the proof is complete.

4.3 Recursive Modeling Procedure

The recursive solution of the identification problem for DTLSSs from arbitrary

input/output sequences is presented under the following assumptions.

Assumptions

A1’. The switched system (3.1) has single input, single output. The modes of the

system are controllable, observable and the orders n of the modes are known.

A2’. The dwell time of the starting mode driven by an initial state and arbitrary inputs

is at least N′min = 4n+ 1 i.e., if the switching instants for the DTLSS are defined as

(τ1,τ2, ...), τ1 > N′min.

A3’. Dwell times of the subsequent modes whose responses due to arbitrary inputs are

observed are at least 2N′min−1 = 8n+1 i.e., τi− τi−1 ≥ 2Nmin−1 for i = 2,3, ...

A4’. Every window of length N′min in the input sequence u(t) of the DTLSS is

persistently exciting of order 2n+ 1, i.e., the Hankel matrix H2n+1(u) constructed by

u|[t0,t ′] where t0, t ′ ∈ N and t ′− t0 ≥ N′min is always of full row rank.

It should be noted that the dwell time assumed for the modes is again about twice the

time required to identify a single nth order system since the response produced by a

mode may coincide with the response of the previous mode and it may take N′min− 1

samples to detect a mode change (since in Chapter 4.1, it is stated that the a system is

guaranteed to be identifiable from its response due to arbitrary inputs by using at least

N′min samples, the response of a mode may coincide with the response of the previous

mode for at most N′min−1 samples) and N′min samples more to identify after the event

is detected. Thus controllability of the modes, the assumption on dwell times and the

assumption A4’ are sufficient conditions for identifiability. Note that even though the

assumption A4’ seems restrictive, it is necessary for identification and a random input
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signal would generically satisfy this assumption. By adopting these assumptions it is

not needed to check for identifiability in the recursive procedure. Nevertheless, in an

example at the end of the chapter, the implication of an input signal not satisfying A4’

on the recursive procedure will be illustrated.

Also note that the partial realization problem explained in Chapter 3 can be considered

as a special case of problem at hand. In the thesis, it is explained first since making

the proofs of identifiability conditions for the partial realization problem is relatively

simpler because the DTLSS has zero inputs for t < 0 (the initial state is zero).

In the recursive procedure for the problem at hand, the input/output trajectory

originally aimed to be modeled is w′(k) = col(y(k),u(k)) where y(k) = yk,k =

0, ...,N;y(k) = 0,k < 0 and u(k) = uk,k = 0, ...,N;u(k) = 0,k < 0. In this problem, we

assume that the initial state of the active mode can always be nonzero i.e., past inputs

for k < 0 are represented with an initial state x(0) = x0. However, as it is explained

in the previous section, this initial state will be constructed with an additional impulse

input. Therefore, the data to be modeled is converted into a prepended and augmented

version of w′(k). Also, by taking the time reversal operation into account the modified

data is defined as

wk =

 0
0
1

 ,
 0

0
0

 , ...
 for k = 0

wk =

 yk−1
uk−1

0

 , ...,
 y0

u0
0

 ,
 0

0
1

 ,
 0

0
0

 , ...
 for k = 1, ...,N +1.

(4.12)

We also need to define an integer p = 0 initially for further use in the procedure.

Recursive Procedure

The flowchart of the recursive procedure is depicted in Figure 4.1. The steps of the

procedure are then explained in detail.

1. Initialization: The time reversed trajectory is initially defined by (4.12). If a mode

change is detected in the time instant k = p′, redefine k = 0, p = p+ p′ and define the

new trajectory at each step as
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Figure 4.1: Flowchart of the recursive identification procedure of DTLSSs from
arbitrary input/output sequences

wk =

 0
0
1

 ,
 0

0
0

 , ...
 for k = 0

wk =

 yp+k−1
up+k−1

0

 , ...,
 yp

up
0

 ,
 0

0
1

 ,
 0

0
0

 , ...
 for k = 1, ...,N− p.

(4.13)

Furthermore, initially take R−1(s) = I. The following steps are repeated for k = 0,1, ...

2. Error Computation: Let Rk−1(σ) be the kernel representation of the MPUM for

wk−1. The error at stage k is defined by

ek = Rk−1(σ)wk. (4.14)

As in partial realization problem, the sequence ek is again in the simple form

ek =


 ε1

...
εq

 ,
 0

...
0

 , ...
. To give an explicit formula for error computation

similar to the one given in [4], consider the sequence wk is defined as wk =dk−1,dk−2, ...,d0,d−1,

 0
0
0

 , ...
 for k = 0,1, ... where d−1 =

 0
0
1

. The first
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element εk of the error sequence ek at each step is given by

εk = Rk−1(0)dk−1 for k = 0

εk = Rk−1(0)dk−1 +
k

∑
j=1

R( j)
k−1(0)

j!
dk−1− j for k = 1,2, ...

(4.15)

where R( j)
k−1(0) denotes the jth derivative of Rk−1(s) at s = 0.

Next, preprocess Rk−1(s) such that only last element of the error corresponding to the

rows of same degree in Rk−1(s) is nonzero i.e., find a q× q matrix P representing

elementary row operations such that:

Rk−1(s) = PRk−1(s) (4.16)

and only last element of the error corresponding to the rows of same degree in Rk−1(s)

is nonzero. Then normalize the error such that its first nonzero element is 1, i.e. it has

the shape:

ε̂k =


0
...
0
1
ε̂k

 (4.17)

3. Event Detection: This step is very similar to the corresponding one in the partial

realization problem. In general, a mode change is detected when the model represented

by the first row of Rk(σ) is falsified by the recently received data. Because of the

assumptions (A2,A3) on dwell time the test for event detection need not be performed

for k ≤ N′min = 4n+1. Thus, a mode change is detected if the conditions

(i)k > Nmin (ii)ε1 6= 0 (4.18)

are simultaneously satisfied. Under the conditions (4.18) (i− ii) the controllable model

derived for the sequence wk−1 cannot be updated without increasing the order which

is an indication of the mode change. Note that if an event is detected before the

currently active mode is identified, it means that the assumption A4’ does not hold.

This happens when the input is not persistently exciting for the mode and is indicated

by the conditions k > N′min and L′k−1 < n where L′k−1 denotes the degree of the first row

of Rk−1(s). After the detection of mode change Step 4 for the model update is skipped

and the procedure proceeds with Step 5 to identify the mode.
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4. Model Update: Find a kernel representation for the MPUM of the error. Let r be

the number showing the index of the first element of the error equal to 1. Define the

kernel representation of error as the update matrix Vk(s) where

Vk(s) =

 Ir−1 0 0
0 s 0
0 −ε̂k Iq−r

 . (4.19)

Then, update the kernel representation of the MPUM, i.e., the matrix Rk(σ) in

accordance with the equation:

Rk(σ) =Vk(σ)Rk−1(σ). (4.20)

Finally reorder the rows of Rk(σ) such that the row degrees are ascending from top

to the bottom. Note that by the preprocessing operation defined in Step 2 and by

reordering the rows such that the row degrees are ascending from top to the bottom,

the update matrix defined by (4.19) does not change the row reducedness of Rk(σ),

i.e., resulting Rk(σ) is always row reduced. This guarantees that the representation for

the MPUM acquired at each step is always the shortest lag representation.

Step 5. Identification of the mode: For k ≥ N′min = 4n + 1 the first row of Rk(s)

which does not lose rank at s = 0 and which has the least order among all rows

is the kernel representation of the unique, minimal order, controllable model of the

sequence wk which is generated by the modified single mode of the switched system.

Let
[

D(s) −N1(s) −N2(s)
]

denote the first row of Rk(s) for k≥N′min. If the degree

of r(s) is equal to the order n of the modes and the degrees of other two rows are strictly

greater than n, then the mode is identified. Taking the time reversal operation (4.12)

into account, the kernel representation of the mode is given by r̃(σ)w = 0 where for a

polynomial p(s) in a row of Rk(s) of degree n, p̃(s) is defined as

p̃(s) = sn p(s−1). (4.21)

In addition, if we take the reciprocal of this row as defined in (4.21) and define the new

row as
[

D̃(s) −Ñ1(s) −Ñ2(s)
]
, as explained in the previous section (1,1) element

of the 1×2 transfer matrix D−1(s)
[

N1(s) N2(s)
]

is the transfer function of the zero

state behavior of the original mode i.e.,

H(s) = D−1(s)N1(s). (4.22)
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Figure 4.2: Response of the DTLSS for a sequence of arbitrary inputs for k = [0,17]

Under the assumptions (A1’-A4’) the modes driven by persistently exciting inputs are

identified after at most N′min data samples are received. After the identification of the

mode, the flow of the procedure is returned to Step 1.

4.4 Example

Consider again the bimodal DTLSS example used in Chapter 3.4 with the data as seen

in Figure 4.2. The two modes of the DTLSS are represented by (3.25) and (3.26)

respectively.

The output sequence of total length 18 obtained in response to the arbitrary input

sequence u. Starting with the first mode, running mode 1 for k ∈ [0,8] and

then switching to the second mode for k ∈ [9,17] corresponding input sequence

for the DTLSS is u =
[

u1 u2
]

where u1 = (1,2,3,4,7,5,1,3,2) and u2 =

(−1,1,1,0,2,0,1,−1,5). Corresponding output sequence is given by y =
[

y1 y2
]

where y1 = (1,3,4,5,9,9,0,1,8) and y2 = (−6,4,5,−3,−4,3,6,−3,−5). In u and y

parts of the sequences with same indices are showing the inputs and outputs of the

corresponding modes (See Figure 4.2 for the response of this DTLSS). Suppose that
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the initial condition for the first mode was zero (note that the algorithm could also be

used for nonzero initial state with no difference).

After 8 steps of the recursive algorithm, at k = 7 (recall that we always start with one

additional impulse input), i.e., after receiving

w(7) =

 0
1
0

 ,
 9

5
0

 ,
 9

7
0

 ,
 5

4
0

 ,
 4

3
0

 ,
 3

2
0

 ,
 1

1
0

 ,
 0

0
1

 ,
 0

0
0

 , ...


(4.23)

the procedure gives

R7(s) =

[
−s2− s−1 s2 +2s+1 0

−0.125s3 +0.75s2 +0.125s 1.125s3−1.5s2−0.25s 0.875s3 +0.125s2

s3 +1.8261s2 +0.0435s+0.1739 −s3−2.4348s2−0.087s−0.3478 s3 +0.2174s2 +0.1739s

]
(4.24)

as the kernel representation of the MPUM for the sequence w(7). By taking the

reciprocal of the first row as defined in the procedure we get the “augmented” kernel

representation of mode 1 as

[
D̃(σ) −Ñ1(σ) −Ñ2(σ)

] y
u
v

=
[
−σ2−σ −1 σ2 +2σ +1 0

] y
u
v

= 0.

(4.25)

As explained in the previous two sections, the transfer function of the original mode 1

is correctly obtained from the (1,1) element of the acquired transfer matrix from (4.25)

as

H(z) = D̃−1(z)Ñ1(z) =
z2 +2z+1
z2 + z+1

. (4.26)

For the remaining data from mode 1, first element of the error vector is found to be zero

and no change is made in the first row of R(s). After receiving the first data from the

second mode at k = 9, the conditions in Step 3 of the recursive procedure are satisfied

and the switch is detected as soon as it occurs. Then, the procedure is initialized

as described in Step 1 and again after using 7 data points from mode 2, i.e., for

w(7)=

 6
1
0

 ,
 3

0
0

 ,
 −4

2
0

 ,
 −3

0
0

 ,
 5

1
0

 ,
 4

1
0

 ,
 −6
−1
0

 ,
 0

0
1

 ,
 0

0
0

 , ...
 (4.27)

the recursive procedure gives

R7(s) =

[
s2 +1 −s2 −4s2 +6s

0.0173s2 +0.2491s s3−0.3391s2 +0.0242s −1.2561s3 +1.519s2

−2.8571s2−0.0572s−2.8804 3.1527s2−0.0795s−0.28 s3 +11.3792s2−17.5624s

]
(4.28)
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Again, by applying the same procedure we get the correct transfer function of zero

state behavior of mode 2 as

H(z) = D̃−1(z)Ñ1(z) =
1

z2 +1
. (4.29)

Notice, different from the partial realization problem, since we could use the

responses due to persistently exciting inputs, we could identify both modes’ complete

input/outpur behavior.

Now we will illustrate the case when the input trajectory is not persistently exciting

of order 2n+ 1 = 5. Consider the first mode only and take the input sequence u =

(1,1,1,1,1,1,1,1,1). Notice the length of the input sequence is 9 ≥ N′min but clearly

sequence u is not persistently exciting for the mode. After 5th step of the procedure, it

gives the first row of R(s) as

r(s) =
[

0 s−1 s
]
. (4.30)

For subsequent data, first element of error is always zero and no update is done in r(s)

so the mode cannot be identified. This is seen in the recursive procedure when k≥N′min

and the order of r(s) is still equal to 1 which is lesser than the order n = 2 of the mode

assumed to be known a priori.
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5. PROBLEM OF CONSTRUCTING A CONSISTENT STATE SPACE
REPRESENTATION

Constructing state space representations for the modes from the acquired kernel

representations with the procedures described in Chapters 3 and 4 is not entirely

trivial. More precisely, the state space realization of each different mode of the

switched system may not generate the observed input-output data. This is due to the

fact that the state of the active mode in the exact moment of switching, acts as the

initial state of the subsequent mode of the switched system. Since one can use an

arbitrary realization algorithm for one mode, the state trajectory may not be the same

for each realization. For linear case, input-output behavior does not change under

similarity transformations. However, for switched systems, a similarity transformation

on one arbitrary mode also changes the state trajectory of that mode. This changes

the initial state of the subsequent mode. Thus it changes the input-output behavior of

the switched system. This problem can be fixed by slightly modifying the statements

of results. In future research, it may also be possible to characterize all possible

state space realizations which are consistent with the kernel representations and which

would generate the observed data.

In the following, this point is stated clearly using an example.

Example 5.0.1. Consider again the bimodal switched linear system used as an example

in both Chapter 3 and 4 given by state space parameters

A1 =

[
0 1
−1 −1

]
,B1 =

[
0
1

]
,C1 =

[
0 1

]
,D1 =

[
1
]

(5.1)

A2 =

[
−1 −1
2 1

]
,B2 =

[
0
1

]
,C2 =

[
−1 0

]
,D2 =

[
0
]
. (5.2)

Suppose a similarity transformation is applied to the first mode with the transformation

matrix
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P =

[
2 0
0 2

]
. (5.3)

So the new state space parameters of the first mode is given by

A1 =

[
0 1
−1 −1

]
,B1 =

[
0

1/2

]
,C1 =

[
0 2

]
,D1 =

[
1
]
. (5.4)

Suppose as in the partial realization problem, the first mode operates for k ∈ [0,7]

and the switching occures in k = 8. It is clear that the first mode will have the same

impulse response data as in Chapter 3.3 for k ∈ [0,7]. However, in this case the state at

the switching instant will be changed into x(8) =
[

1/2
−1/2

]
from x(8) =

[
1
−1

]
. So

the output for k = 8 will be y(8) = −1/2. From that, it can be easily seen that input

output behavior of the switched system has changed.

It should be noted that if the same transformation matrix P in Example 5.0.1 was used

for similarity transformation of both modes, the input-output behavior would have

remained the same. However, since an arbitrary realization algorithm could be used for

finding a state space representation from the acquired kernel representations of each

mode, one cannot be sure whether the found state space realization would generate

the observed data. Therefore, the global viewpoint presented in [20] should be used

for realizability of switched linear systems. This viewpoint gives the identifiability

conditions for the whole switched system instead of dealing with local modes of

the system. It turns out minimality of the global system does not necessarily imply

minimality of local systems(modes). In [20], there is also a procedure given for

constructing the minimal realization for DTLSSs from Markov parameters. This

procedure however, is different from the viewpoint adopted in this thesis. Still, some

formal aspects of this new viewpoint is studied through the progress of the thesis,

and they will be presented in this chapter briefly. In the next section definitions of

span-reachability, observability and minimality of a DTLSS will be given. An example

will be provided to show that all modes of a switched system should not necessarily

be minimal for the corresponding switched system to be minimal. Then, realizability

conditions for DTLSSs in terms of Hankel matrices will be given. Finally, at the end

48



of the chapter, ways of solutions to the problem defined above will be discussed by

making use of the existing literature.

5.1 Minimality of DTLSS Realizations

Notation 5.1.1. Denote by N the set of natural numbers including 0. Consider a set

Q which will be called the alphabet. Denote by Q∗ the set of finite sequences of

elements of Q. Finite sequences of elements of Q are called strings or words over Q.

Each non-empty word w is of the form w = a1a2...ak for some a1,a2, ...,ak ∈ Q. The

element ai is called the ith letter of w, for i = 1,2, ...,k and k is called the length w.

The empty sequence(word) is denoted by ε . |w| denotes the length of word w; note that

|ε|= 0. The set of non-empty words is denoted by Q+, i.e. Q+ = Q∗\{ε}. wv is called

the concatenation of word w ∈ Q∗ with v ∈ Q∗. For each j = 1, ...,m, e j ∈ Rm is the

jth unit vector which has 1 in its jth element and zeros elsewhere.

Definition 5.1.2. (Lexicographic Ordering) Suppose that Q = {1, ...,D}. A

lexicographic ordering ≺ can be defined as follows: For any v,s ∈ Q∗, if |v| < |s|,

then v ≺ s. If 0 < |v| = |s|, v 6= s and for some l ∈ {1, ..., |s|}, vl < sl with the usual

ordering of integers and vi = si for i= 1, ..., l−1 then v≺ s. Here vi and si denote the ith

letter of v and s respectively. Note that ≺ is a complete ordering and Q∗ = {v1,v2, ...}

with v1 ≺ v2 ≺ .... Note that v1 = ε and for all i ∈ N, q ∈ Q, vi ≺ viq.

Example 5.1.3. (Notation 5.1.1, Definition 5.1.2) This is an example to illustrate

Notation 5.1.1 and Definition 5.1.2. Consider a bimodal switched linear system.

Since the system has two modes, the alphabet set is: Q = {1,2}. The

set Q∗ consists of all possible switching sequences of the system which is:

Q∗ = {ε,1,2,11,12,21,22,111,112,121,122,211,212,221,222, ...}. Note that the

elements of the set Q∗ is ordered in accordance with the lexicographic ordering defined

above. Each element(switching sequence) of the set Q∗ except ε is called a word.

Define two elements of set Q∗ as w = 112 and v = 212. Note that both |w|, |v|= 3. The

concatenation of these two words is: wv = 112212.

Definition 5.1.4. (DTLSS) A definition of a DTLSS similar to the one used earlier

in this work is given to make the connection with given notation and context for
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the purposes of this chapter. A discrete-time linear switched system (DTLSS) is a

discrete-time control system of the form

Σ

{
xt+1 = Aqt xt +Bqt ut and x0 is fixed

yt =Cqt xt .
(5.5)

Here Q = {1, ...,D} is the finite set of discrete modes, D is a positive integer. For each

t ∈N, qt ∈Q is the discrete mode, ut ∈R is the continuous input, yt ∈Rp is the output

at time t. Moreover, Aq ∈ Rn×n, Bq ∈ Rn×m, Cq ∈ Rp×n are the matrices of the linear

system in mode q ∈ Q, and x0 is the initial continuous state. The notation

(p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) (5.6)

is used as a short-hand representation for DTLSSs of the form (5.5).

Throughout the chapter, Σ denotes a DTLSS of the form (5.5). The inputs of Σ are the

continuous inputs {ut}∞

t=0 and the switching signal {qt}∞

t=0. The state of the system at

time t is xt . Note that any switching signal is admissible.

Notation 5.1.5. Let Q be a finite set, X be a linear space, Aσ : X → X , σ ∈ Q

be linear maps and let w ∈ Q∗. The linear map Aw in X is defined as follows. If

w = ε , then Aε is the identity map, i.e Aεx = x for all x ∈X . If w = σ1σ2...σk ∈ Q∗,

σ1, ...,σk ∈ Q, k > 0, then

Aw = AσkAσk−1...Aσ1. (5.7)

If X =Rn for some n > 0, then Aw and each Aσ , σ ∈Q can be identified with an n×n

matrix. In this case Aw defines a product of matrices.

The notation Q<n is used to represent the set {w ∈ Q∗||w| < n} of all words w ∈ Q∗

of length at most n−1. Mn is the cardinality of Q<n and an enumeration is fixed such

that

Q<n = {v1, ...,vMn}. (5.8)

Notation defined above will be used to define observability and reachability matrices

for DTLSSs.
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Theorem 5.1.6. (Span-Reachability) Define the span-reachability matrix R(Σ) of Σ

R(Σ) =
[

Av1B̃, Av2B̃, ..., AvMn
B̃
]
∈ Rn×(|Q|m+1)Mn where

B̃ =
[

x0, B1, ..., BD
]
.

(5.9)

Then, Σ is span-reachable if and only if rank R(Σ) = n.

Theorem 5.1.7. (Observability) Define the observability matrix O(Σ) ∈ Rp|Q|Mn×n of

Σ as follows:

O(Σ) =


C̃Av1

C̃Av2
...

C̃AvMn

 where C̃ =


C1
C2
...

CD

 (5.10)

Then Σ is observable if and only if rank O(Σ) = n.

Example 5.1.8. Consider a bimodal single input single output DTLSS of order n = 3

with the initial condition x0(Let Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) with Q =

{1,2}, n = 3, m = 1, p = 1). The span-reachability matrix of Σ is defined as:

R(Σ) =
[

B̃ A1B̃ A2B̃ A1A1B̃ A1A2B̃ A2A1B̃ A2A2B̃
]
∈ R3×21 where

B̃ =
[

x0 B1 B2
]
.

(5.11)

The observability matrix O(Σ) of Σ is defined similarly.

Procedure 5.1.9. (Reachability Reduction) Assume dim R(Σ) = nr and choose a

basis b1, ...,bn of Rn such that b1, ...,bnr span Im R(Σ). In the new basis, Aq,Bq,Cq,q∈

Q and x0 become as follows

Aq =

[
Ar

q A′q
0 A′′q

]
,Cq =

[
Cr

q Cnr
q
]
,Bq =

[
Br

q
0

]
,x0 =

[
xr

0
0

]
(5.12)

where Ar
q ∈ Rnr×nr

, Br
q ∈ Rnr×m, xr

0 ∈ Rnr
. Then Σr = (p,m,nr,Q,{(Ar

q,B
r
q,C

r
q)|q ∈

Q},xr
0) is span-reachable, and has the same input-output map as Σ.

Intuitively, Σr is obtained from Σ by restricting the dynamics and the output map of Σ

to the space Im R(Σ).

Procedure 5.1.10. (Observability Reduction) Assume that dim ker O(Σ) = n− no

and let b1, ...,bn be a basis in Rn such that bn0+1, ...,bn span Ker O(Σ). In the new

basis, Aq,Bq,Cq and x0 can be rewritten as

Aq =

[
Ao

q 0
A′q A′′q

]
,Cq =

[
Co

q 0
]
,Bq =

[
Bo

q
B′q

]
,x0 =

[
xo

0
x′0

]
(5.13)
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where Ao
q ∈ Rno×no

, Bo
q ∈ Rno×m, Co

q ∈ Rp×no
and xo

0 ∈ Rno
. Then the DTLSS Σo =

(p,m,no,Q,{(Ao
q,B

o
q,C

o
q)|q∈Q},xo

0) is observable and its input-output map is the same

as that of Σ. If Σ is span-reachable, then so is Σo.

Intuitively, Σo is obtained from Σ by merging any two states x1,x2 of Σ, for which

O(Σ)x1 =O(Σ)x2.

Procedure 5.1.11. (Minimization) First transform Σ to a span-reachable DTLSS Σr

and then transform Σr to an observable DTLSS Σm = (Σr)o . Then Σm is a minimal

realization of the input-output map of Σ.

Using the definitions and procedures above, Example 5.1.12 is given to highlight the

fact that minimality of the DTLSS does not imply minimality of its modes.

Example 5.1.12. Let Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈Q},x0) with Q = {1,2}, n = 3,

m = 1, p = 1, x0 =
[

0 1 0
]T ,

A1 =

 0 1 0
0 0 1
0 0 1

 ,B1 =

 0
0
0

 ,C1 =
[

1 0 0
]

A2 =

 0 1 0
0 1 1
0 0 1

 ,B2 =

 0
1
0

 ,C2 =
[

0 0 1
] (5.14)

The system is observable, but it is not span-reachable. In order to see observability,

notice that the sub-matrix
[

CT
1 (C1A1)

TCT
2

]T
of O(Σ) is of rank 3. In order to see

that Σ is not span-reachable, notice that the last row of R(Σ) is a zero row. Hence dim

R(Σ)≤ 2. Using Procedure 5.1.11, we can transform Σ to the minimal realization

Σm = (p,m,nm,Q,{(Am
q ,B

m
q ,C

m
q )|q ∈ Q},xm

0 ) (5.15)

of yΣ (input-output map of Σ): Q = {1,2},nm = 2,xm
0 =

[
1 0

]T and

Am
1 =

[
0 0
1 0

]
,Bm

1 =

[
0
0

]
,Cm

1 =
[

0 1
]

Am
2 =

[
1 0
1 0

]
,Bm

2 =

[
1
0

]
,Cm

2 =
[

0 0
] (5.16)
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Since a minimal realization of a linear system must be reachable and observable, it is

easy to see that neither (Am
1 ,B

m
1 ,C

m
1 ,x

m
0 ) nor (Am

2 ,B
m
2 ,C

m
2 ,x

m
0 ) are minimal.

5.2 Existence of a Realization

In this section, necessary and sufficient conditions for the existence of a DTLSS

realization for a known Markov-parameter sequence similar to the conditions in the

linear case will be given. Following [20], first, the definitions of Markov parameters,

combined Markov-parameters and Hankel matrices for DTLSSs will be briefly given.

Then the result on existence of a realization in [20] will be stated.

Definition 5.2.1. (Input/Output Map) Denote U = Q×Rm and U + as the set of all

non-empty and finite sequences of elements of U . A sequence

w = (q0,u0)...(qt ,ut) ∈U +, t ≥ 0 (5.17)

describes the case, when the discrete mode qi and the input ui are fed to Σ at time i, for

i = 0, ..., t. Also, consider a state x0 ∈ Rn. For any w ∈U + of the form (5.17), denote

by yΣ(x0,w) the output of Σ at time t, if Σ is started from x0 and the inputs {ui}ti=0 and

the discrete modes {qi}ti=0 are fed to the system. The map yΣ : U +→ Rp, defined by

∀w ∈U + : yΣ(w) = y(x0,w), is called the input/output map of Σ.

Definition 5.2.1 implies that the input/output behavior of a DTLSS can be formalized

as a map

f : U +→ Rp. (5.18)

The value f (w) for w of the form (5.17) represents the output of the DTLSS

(considered as a black-box system) at time t, if the inputs {ui}ti=0 and the switching

sequence {qi}ti=0 are fed to the system.

In the sequel, we identify any element w = (q0,u0)...(qt ,ut) ∈ U + with the pair of

sequences (v,u), v ∈ Q+, u ∈ (Rm)+, v = q0...qt and u = u0...ut . Also, the following

notation is needed to define the Markov Parameters of an input/output map:

Consider the input/output map f . For each word v∈Q+ of length |v|= t > 0 we define

fv : (Rm)t → Rp as fv(u) = f ((v,u)).
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Definition 5.2.2. (Markov Parameters) Denote Qk,∗ = {w ∈ Q∗ | |w| ≥ k}. Define

the maps S f
0 : Q1,∗→ Rp and S f

j : Q2,∗→ Rp, j = 1, ...,m as follows; for any v ∈ Q∗,

q,q0 ∈ Q,

S f
0(vq) = fvq(0, ...,0) and

S f
j (q0vq) = fq0vq(e j,0, ...,0)− fq0vq(0, ...,0)

(5.19)

where e j ∈ Rm is the vector with 1 as its jth entry and zero everywhere else. The

collection of maps {S f
j }

m

j=0
is called the Markov Paremeters of f .

In addition, Markov parameters of a state space realization can be defined as follows:

Define v as any possible switching sequence(word) for DTLSS, i.e define v as any

element of the set Q∗, that is v∈Q∗. Define q,q0 as any discrete mode q,q0 ∈Q(Define

q,q0 as any letter of the alphabet Q). Note that q,q0 are not necessarily distinct. The

Markov Parameters of a DTLSS are defined by,

S f
0(vq) =CqAvx0 and

S f
j (q0vq) =CqAvBq0e j, j = 1, ...,m.

(5.20)

Markov parameters of a DTLSS can be interpreted as Markov parameters of an

ordinary linear system except they are defined for all possible switching sequences

in the switched case.

Definition 5.2.3. (Combined Markov Parameters) A combined Markov-parameter

M f (v) of f indexed by the word v ∈ Q∗ is the following pD× (Dm+1) matrix

M f (v) =


S f

0(v1) S f (1v1) ... S f (Dv1)
S f

0(v2) S f (1v2) ... S f (Dv2)
...

... ...
...

S f
0(vD) S f (1vD) ... S f (DvD)

 (5.21)

where for any w ∈ Q+, |w|> 2, S f (w) =
[

S f
1(w) S f

2(w) ... S f
m(w)

]
.

Definition 5.2.4. (Hankel Matrix) Let the elements of the set Q∗ are ordered with the

lexigoraphic ordering≺ (as in Example 2), i.e Q∗ = {v1,v2, ...} with v1 ≺ v2 ≺ .... The
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Hankel Matrix H f of f is defined as the following infinite matrix

H f =


M f (v1v1) M f (v2v1) ... M f (vkv1) ...
M f (v1v2) M f (v2v2) ... M f (vkv2) ...
M f (v1v3) M f (v2v3) ... M f (vkv3) ...

...
... ...

... . . .

 (5.22)

Example 5.2.5. Consider again the bimodal DTLSS in Example 2. Remember Q∗ =

{v1,v2, ...} = {ε,1,2,11,12, ...} with v1 ≺ v2 ≺ .... The Markov parameters of this

system are given by

S f
0(1) =C1x0 S f

1(11) =C1B1

S f
0(2) =C2x0 S f

1(12) =C2B1

S f
0(11) =C1A1x0 S f

1(21) =C1B2

S f
0(12) =C2A1x0 S f

1(22) =C2B2

S f
0(21) =C1A2x0 S f

1(111) =C1A1B1

S f
0(22) =C2A2x0 S f

1(112) =C2A1B1

S f
0(111) =C1A2

1x0 S f
1(121) =C1A2B1

S f
0(112) =C2A2

1x0 S f
1(122) =C2A2B1

S f
0(121) =C1A2A1x0 S f

1(211) =C1A1B2
...

...

(5.23)

Combined Markov-parameters of the system are given by

M f (ε) =

[
S f

0(1) S f
1(11) S f

1(21)
S f

0(2) S f
1(12) S f

1(22)

]

M f (1) =

[
S f

0(11) S f
1(111) S f

1(211)
S f

0(12) S f
1(112) S f

1(212)

]

M f (2) =

[
S f

0(21) S f
1(121) S f

1(221)
S f

0(22) S f
1(122) S f

1(222)

]

...

(5.24)

And the Hankel matrix constructed from combined Markov-parameters is given by

H f =



M f (ε) M f (1) M f (2) ...
M f (1) M f (11) M f (21) ...
M f (2) M f (12) M f (22) ...
M f (11) M f (111) M f (211) ...
M f (12) M f (112) M f (212) ...

...
...

... . . .


. (5.25)
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Theorem 5.2.6. A Markov parameter sequence is realizible by a DTLSS if and only if

rank H f <+∞. A minimal realization of f can be constructed from H f (see Procedure

5 in [2]) and any minimal DTLSS realization of the sequence has dimension rank H f .

Theorem 5.2.6 gives a compact realizability condition for DTLSSs similar to the linear

case. However, checking this condition in the recursive identification algorithm given

in Chapter 3 is not possible, since impulse response data for all possible switching

sequences would be required. Nevertheless, after acquiring the kernel representation

for the modes it can be stated that there exists a minimal state space realization that

would generate the observed data. In particular, the method given in [13] can be used

to solve the problem of writing the state equations in a common basis (which is defined

in the beginning of this chapter) so that found state space representations for each local

mode generate the same response to an impulse or arbitrary inputs that are used in

the identification process. For this method to be used the switching instants must be

known. As illustrated in the example in Chapter 3.4. detecting the exact instant of

switching may not be possible with the recursive algorithms presented in this thesis.

However, taking the instants of switch detection as the exact moment of switching

and applying the method in [13] would be possible and solve the problem. It should be

noted that even though the state space representations acquired with the method in [13]

would be consistent with the data at hand, they can be acquired up to a similarity

transformation and they may not be consistent with another data sequence from the

same DTLSS. Characterizing all possible state space realizations that would generate

the observed data may also be possible, so it is another problem.
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6. CONCLUSIONS

The two main results of this thesis can be stated as follows: Firstly, a recursive

procedure which gives kernel representations of the modes of a DTLSS from impulse

response measurements is presented. Then this procedure is modified accordingly and

also presented as a solution to the problem of recursive identification of a DTLSS

from a measured arbitrary input/output sequence. The behavioral approach to linear

system theory is adopted to state the results. In partial realization problem, it is shown

that the zero-input dynamics of the modes can be uniquely identified provided the

observed trajectory is sufficiently rich and the dwell time of the modes is greater than

a given lower bound. For the latter problem, it is also shown that input/output behavior

of all modes can be identified if the input sequence for the mode satisfies a specific

persistency of excitation criterion and the dwell times of the modes are greater than a

given lower bound. In both problems, the system model is recursively updated every

time a new input-output sample is available. This makes the methods suitable for

on-line implementation and to detect mode changes of the switched system. Finally, a

way, existing in the literature, to find state space representations of the modes which are

consistent with the observed data is suggested. In future work the recursive method can

be extended to the identification of a DTLSS from multiple input-output trajectories

corresponding to different switching sequences. The method can be further improved

with respect to numerical efficiency and accuracy. A block recursive version of the

method can also be developed in which only the model testing and event detection

steps are performed recursively. Then, subspace methods can be used to identify the

modes which satisfy the dwell time assumptions.
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APPENDIX A.1

c l e a r
c l c
syms x

R11 =1;
R12 =0;
R21 =0;
R22 =1;
R=[ R11 R12 ; R21 R22 ] ;
ck =[1 0]∗R ∗ [ 1 ; 0 ] ;
L=0;
d e l t a k 1 =0;
d e l t a k 2 =1;
V=[ x x ; x x ] ;

f l a g =0;
%Program w i l l be ended wi th t h i s f l a g when t h e r e a r e
%no d a t a r e m a i n i n g
c o u n t e r =0;
f l a g 2 =0;
c o u n t e r 2 =0;

deg= i n p u t ( ’ Order o f modes : \ n ’ ) ;

w h i l e f l a g ==0
f l a g 2 =0;
c o u n t e r 2 =0;
c o u n t e r = c o u n t e r +1;
y= i n p u t ( ’ P l e a s e e n t e r t h e i m p u l s e r e s p o n s e s e q u e n c e \ n ’ ) ;

i f c o u n t e r ==1
y=y

e l s e
y =[B y ]

end
B=y ;

w h i l e f l a g 2 ==0
c o u n t e r 2 = c o u n t e r 2 +1;
i f ( c o u n t e r 2 > l e n g t h ( y ) )

f l a g 2 =1;
R
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R11 =1;
R12 =0;
R21 =0;
R22 =1;
R=[ R11 R12 ; R21 R22 ] ;
ck =[1 0]∗R ∗ [ 1 ; 0 ] ;
L=0;
d e l t a k 1 =0;
d e l t a k 2 =1;
V=[ x x ; x x ] ;
c o n t i n u e

end
D=y ( 1 : c o u n t e r 2 ) ;
D _ t e r s = f l i p l r (D);% Time r e v e r s a l o p e r a t i o n
D_sym=poly2sym ( D _ t e r s ) ;

h a t a _ p o l 1 =D_sym∗ ck ;
h a t a _ p o l 2 =sym2poly ( h a t a _ p o l 1 ) ;
h a t a _ p o l =poly2sym ( h a t a _ p o l 2 ) ;
h a t a 1 =sym2poly ( h a t a _ p o l 1 ) ;
h a t a 2 = f l i p l r ( h a t a 1 ) ;
i f ( c o u n t e r 2 > l e n g t h ( h a t a 2 ) )

d e l t a k 1 =0;
e l s e

d e l t a k 1 = h a t a 2 ( c o u n t e r 2 ) ;
end
%The d e g r e e o f second row i s d e f i n e d as Lk2
Lk2=max ( ( l e n g t h ( R21 ) −1) , ( l e n g t h ( R22 ) −1 ) ) ;

%%%%%%%%%%%%EVENT DETECTION%%%%%%%
i f ( L==deg ) && ( L<Lk2 ) && ( d e l t a k 1 ~=0)

an= c o u n t e r 2 ;
f p r i n t f ( ’ Swi tch a t k=%i \ n E n t e r t h e d a t a s t a r t i n g from
i n s t a n t n=%i a g a i n \ n ’ , an , an )
f p r i n t f ( ’ Ker . r e p r . o f t h e MPUM f o r t h e p r e v i o u s mode : ’ )
R
R=[1 0 ; 0 1 ] ;
V=[ x x ; x x ] ;
ck =[1 0]∗R ∗ [ 1 ; 0 ] ;
L=0;
d e l t a k 1 =0;
d e l t a k 2 =1;
k o n t r o l 2 =0;
c o u n t e r 2 =0;
f l a g 2 =1;
y =0;
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c o u n t e r =0;
c o n t i n u e

end

%%%%%%%%%%%%%%%%%%%%UPDATE MODEL%%%%%%%%%%%%%%%
i f ( ( d e l t a k 1 ==0) | | ( L > ( ( c o u n t e r 2 − 1 ) / 2 ) ) )

V( 1 , 1 ) = 1 ;
V(1 ,2)=− d e l t a k 1 ;
V( 2 , 1 ) = 0 ;
V( 2 , 2 ) = x ;
L=L ;

e l s e
V( 1 , 1 ) = 1 ;
V(1 ,2)=− d e l t a k 1 ;
V( 2 , 1 ) = x / d e l t a k 1 ;
V( 2 , 2 ) = 0 ;
L=( c o u n t e r 2 −1)−L ;

end

V;
R=V∗R ;
R11=sym2poly (R ( 1 , 1 ) ) ;
R( 1 , 1 ) = poly2sym ( R11 ) ;
R12=sym2poly (R ( 1 , 2 ) ) ;
R( 1 , 2 ) = poly2sym ( R12 ) ;
R21=sym2poly (R ( 2 , 1 ) ) ;
R( 2 , 1 ) = poly2sym ( R21 ) ;
R22=sym2poly (R ( 2 , 2 ) ) ;
R( 2 , 2 ) = poly2sym ( R22 ) ;
ck =[1 0]∗R ∗ [ 1 ; 0 ] ;

end
k o n t r o l = i n p u t ( ’ Are t h e r e any r e m a i n i n g d a t a ? ( 1 / 0 ) \ n ’ ) ;
i f ( k o n t r o l ==0)

f l a g =1;
end

end

APPENDIX A.2

c l e a r
c l c
syms x

%%%%%% 1 . INITIALIZATION %%%%%%%%%
R=[ x 0 0 ; 0 1 0 ; 0 0 1 ] ;
R( 1 , 1 ) = 1 ;
V=[ x x x ; x x x ; x x x ] ;
s e q u e n c e = [ ] ;
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y = [ ] ;
u = [ ] ;
w= [ ] ;
f l a g =1;
n= i n p u t ( ’ Order o f t h e modes : \ n ’ ) ;
Nmin=4∗n +1;
w h i l e f l a g ==1

R=[ x 0 0 ; 0 1 0 ; 0 0 1 ] ;
R( 1 , 1 ) = 1 ;
V=[ x x x ; x x x ; x x x ] ;
y= i n p u t ( ’ E n t e r t h e o u t p u t s e q u e n c e : \ n ’ ) ;
u= i n p u t ( ’ E n t e r t h e i n p u t s e q u e n c e : \ n ’ ) ;
seq =[ y ; u ] ;
s e q u e n c e =[ sequence , seq ] ;
[ q , N]= s i z e ( s e q u e n c e ) ;
w=[0 s e q u e n c e ( 1 , : ) ; 0 s e q u e n c e ( 2 , : ) ; 1 z e r o s ( 1 , (N ) ) ] ;
N=N+1;
k =1;
f o r k =1:N

d a t a = f l i p l r (w ( : , 1 : k ) ) ;

%%%%%%%%%% 2 . ERROR COMPUTATION %%%%%%%%%%%%%%%%%

R11=sym2poly (R ( 1 , 1 ) ) ;
l 1 1 = l e n g t h ( R11 ) ;
v11= z e r o s ( 1 , k ) ;
f o r i =1 : l 1 1

i f i == l 1 1
v11=v11+R11 ( i ) . ∗ d a t a ( 1 , : ) ;

e l s e
v11=v11+R11 ( i ) . ∗ [ d a t a ( 1 , l11−i +1 : k ) z e r o s ( 1 , l11−i ) ] ;

end
end

R12=sym2poly (R ( 1 , 2 ) ) ;
l 1 2 = l e n g t h ( R12 ) ;
v12= z e r o s ( 1 , k ) ;
f o r i =1 : l 1 2

i f i == l 1 2
v12=v12+R12 ( i ) . ∗ d a t a ( 2 , : ) ;

e l s e
v12=v12+R12 ( i ) . ∗ [ d a t a ( 2 , l12−i +1 : k ) z e r o s ( 1 , l12−i ) ] ;

end
end

R13=sym2poly (R ( 1 , 3 ) ) ;
l 1 3 = l e n g t h ( R13 ) ;
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v13= z e r o s ( 1 , k ) ;
f o r i =1 : l 1 3

i f i == l 1 3
v13=v13+R13 ( i ) . ∗ d a t a ( 3 , : ) ;

e l s e
v13=v13+R13 ( i ) . ∗ [ d a t a ( 3 , l13−i +1 : k ) z e r o s ( 1 , l13−i ) ] ;

end
end

vsum=v11+v12+v13 ;
e1=vsum ( 1 ) ;

R21=sym2poly (R ( 2 , 1 ) ) ;
l 2 1 = l e n g t h ( R21 ) ;
u21= z e r o s ( 1 , k ) ;
f o r i =1 : l 2 1

i f i == l 2 1
u21=u21+R21 ( i ) . ∗ d a t a ( 1 , : ) ;

e l s e
u21=u21+R21 ( i ) . ∗ [ d a t a ( 1 , l21−i +1 : k ) z e r o s ( 1 , l21−i ) ] ;

end
end

R22=sym2poly (R ( 2 , 2 ) ) ;
l 2 2 = l e n g t h ( R22 ) ;
u22= z e r o s ( 1 , k ) ;
f o r i =1 : l 2 2

i f i == l 2 2
u22=u22+R22 ( i ) . ∗ d a t a ( 2 , : ) ;

e l s e
u22=u22+R22 ( i ) . ∗ [ d a t a ( 2 , l22−i +1 : k ) z e r o s ( 1 , l22−i ) ] ;

end
end

R23=sym2poly (R ( 2 , 3 ) ) ;
l 2 3 = l e n g t h ( R23 ) ;
u23= z e r o s ( 1 , k ) ;
f o r i =1 : l 2 3

i f i == l 2 3
u23=u23+R23 ( i ) . ∗ d a t a ( 3 , : ) ;

e l s e
u23=u23+R23 ( i ) . ∗ [ d a t a ( 3 , l23−i +1 : k ) z e r o s ( 1 , l23−i ) ] ;

end
end
usum=u21+u22+u23 ;
e2=usum ( 1 ) ;
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R31=sym2poly (R ( 3 , 1 ) ) ;
l 3 1 = l e n g t h ( R31 ) ;
y31= z e r o s ( 1 , k ) ;
f o r i =1 : l 3 1

i f i == l 3 1
y31=y31+R31 ( i ) . ∗ d a t a ( 1 , : ) ;

e l s e
y31=y31+R31 ( i ) . ∗ [ d a t a ( 1 , l31−i +1 : k ) z e r o s ( 1 , l31−i ) ] ;

end
end

R32=sym2poly (R ( 3 , 2 ) ) ;
l 3 2 = l e n g t h ( R32 ) ;
y32= z e r o s ( 1 , k ) ;
f o r i =1 : l 3 2

i f i == l 3 2
y32=y32+R32 ( i ) . ∗ d a t a ( 2 , : ) ;

e l s e
y32=y32+R32 ( i ) . ∗ [ d a t a ( 2 , l32−i +1 : k ) z e r o s ( 1 , l32−i ) ] ;

end
end

R33=sym2poly (R ( 3 , 3 ) ) ;
l 3 3 = l e n g t h ( R33 ) ;
y33= z e r o s ( 1 , k ) ;
f o r i =1 : l 3 3

i f i == l 3 3
y33=y33+R33 ( i ) . ∗ d a t a ( 3 , : ) ;

e l s e
y33=y33+R33 ( i ) . ∗ [ d a t a ( 3 , l33−i +1 : k ) z e r o s ( 1 , l33−i ) ] ;

end
end
ysum=y31+y32+y33 ;
e3=ysum ( 1 ) ;

e r =[ e1 ; e2 ; e3 ] ;

%%%%%%%%%%%%%%%%% 3 . EVENT DETECTION %%%%%%%%%%%%%%%%%%%%
i f ( k>Nmin ) && ( e1 ~=0)

f p r i n t f ( ’ Swi tch d e t e c t e d a t k=%d \ n ’ , k−1)
R
R11=sym2poly (R ( 1 , 1 ) ) ;
R12=sym2poly (R ( 1 , 2 ) ) ;
R13=sym2poly (R ( 1 , 3 ) ) ;
deg r1 =max ( [ l e n g t h ( R11 ) , l e n g t h ( R12 ) , l e n g t h ( R13 ) ] ) −1 ;
row1=x^ degr1 . ∗ subs (R ( 1 , : ) , x ^−1);
num=−sym2poly ( row1 ( 2 ) ) ;
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den=sym2poly ( row1 ( 1 ) ) ;
t f ( num , den )
pause
d a t a ( 1 : 2 , 1 )
f p r i n t f ( ’ When asked , e n t e r a g a i n t h e d a t a r e c e i v e d
a f t e r t h e d i s p l a y e d p o i n t i n c l u d i n g i t . \ n ’ )
pause

%%%%%%%%%%%%%%%%%%% 1 . INITIALIZATION %%%%%%%%%%%%
R=[ x 0 0 ; 0 1 0 ; 0 0 1 ] ;
R( 1 , 1 ) = 1 ;
V=[ x x x ; x x x ; x x x ] ;
s e q u e n c e = [ ] ;
y = [ ] ;
u = [ ] ;
w= [ ] ;
f l a g =1;
b r e a k

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%P r e p r o c e s s R such t h a t on ly l a s t e l e m e n t o f e r r o r
%c o r r e s p o n d i n g t o t h e same d e g r e e rows of R i s nonze ro
degr1 =max ( [ l e n g t h ( R11 ) , l e n g t h ( R12 ) , l e n g t h ( R13 ) ] ) −1 ;
deg r2 =max ( [ l e n g t h ( R21 ) , l e n g t h ( R22 ) , l e n g t h ( R23 ) ] ) −1 ;
deg r3 =max ( [ l e n g t h ( R31 ) , l e n g t h ( R32 ) , l e n g t h ( R33 ) ] ) −1 ;
r = f i n d ( e r ) ;

i f ( deg r1 == degr2 ) && ( degr1 ~= degr3 )
i f ( any ( r ==1)==1) && ( e r ( 2 ) = = 0 )

R( [ 1 2 ] , : ) = R( [ 2 1 ] , : ) ;
e r ( [ 1 2 ] ) = e r ( [ 2 1 ] ) ;

e l s e i f ( any ( r ==1)==1) && ( e r ( 2 ) ~ = 0 )
R ( 1 , : ) = R( 1 , : ) − ( e r ( 1 ) / e r ( 2 ) ) . ∗R ( 2 , : ) ;
e r ( 1 ) = 0 ;

end
e l s e i f ( deg r2 == degr3 ) && ( degr1 ~= degr2 )

i f ( any ( r ==2)==1) && ( e r ( 3 ) = = 0 )
R( [ 2 3 ] , : ) = R( [ 3 2 ] , : ) ;
e r ( [ 2 3 ] ) = e r ( [ 3 2 ] ) ;

e l s e i f ( any ( r ==2)==1) && ( e r ( 3 ) ~ = 0 )
R ( 2 , : ) = R( 2 , : ) − ( e r ( 2 ) / e r ( 3 ) ) . ∗R ( 3 , : ) ;
e r ( 2 ) = 0 ;

end
e l s e i f ( deg r1 == degr2 ) && ( degr2 == degr3 )

i f ( l e n g t h ( r )==1) && ( e r ( 1 ) ~ = 0 )
R( [ 1 3 ] , : ) = R( [ 3 1 ] , : ) ;
e r ( [ 1 3 ] ) = e r ( [ 3 1 ] ) ;
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e l s e i f ( l e n g t h ( r )==1) && ( e r ( 2 ) ~ = 0 )
R( [ 2 3 ] , : ) = R( [ 3 2 ] , : ) ;
e r ( [ 2 3 ] ) = e r ( [ 3 2 ] ) ;

e l s e i f ( l e n g t h ( r )==2) && ( e r ( 1 ) = = 0 )
R ( 2 , : ) = R( 2 , : ) − ( e r ( 2 ) / e r ( 3 ) ) . ∗R ( 3 , : ) ;
e r ( 2 ) = 0 ;

e l s e i f ( l e n g t h ( r )==2) && ( e r ( 2 ) = = 0 )
R ( 1 , : ) = R( 1 , : ) − ( e r ( 1 ) / e r ( 3 ) ) . ∗R ( 3 , : ) ;
e r ( 1 ) = 0 ;

e l s e i f ( l e n g t h ( r )==2) && ( e r ( 3 ) = = 0 )
R( [ 2 3 ] , : ) = R( [ 3 2 ] , : ) ;
e r ( [ 2 3 ] ) = e r ( [ 3 2 ] ) ;
R ( 1 , : ) = R( 1 , : ) − ( e r ( 1 ) / e r ( 3 ) ) . ∗R ( 3 , : ) ;
e r ( 1 ) = 0 ;

e l s e i f ( l e n g t h ( r )==3)
R ( 1 , : ) = R( 1 , : ) − ( e r ( 1 ) / e r ( 3 ) ) . ∗R ( 3 , : ) ;
R ( 2 , : ) = R( 2 , : ) − ( e r ( 2 ) / e r ( 3 ) ) . ∗R ( 3 , : ) ;
e r ( 1 ) = 0 ;
e r ( 2 ) = 0 ;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Normal ize t h e e r r o r such t h a t f i r s t nonze ro e l e m e n t
%%would be 1 .
r = f i n d ( e r ) ;
e r = ( 1 / e r ( r ( 1 ) ) ) . ∗ e r ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

e r ;

%%%%%%%%%%%%%%% 4 . MODEL UPDATE %%%%%%%%%%%%%%%%%%%%%%
%%C r e a t e t h e u p d a t e m a t r i x V
i f ( l e n g t h ( r )==3)

V=[ x 0 0;− e r ( 2 ) 1 0;− e r ( 3 ) 0 1 ] ;
e l s e i f ( l e n g t h ( r )==2)

i f ( e r ( 1 ) = = 1 )
V=[ x 0 0;− e r ( 2 ) 1 0;− e r ( 3 ) 0 1 ] ;

e l s e i f ( e r ( 1 ) = = 0 )
V=[1 0 0 ; 0 x 0 ; 0 −e r ( 3 ) 1 ] ;

end
e l s e i f ( l e n g t h ( r )==1)

i f ( e r ( 1 ) = = 1 )
V=[ x 0 0 ; 0 1 0 ; 0 0 1 ] ;

e l s e i f ( e r ( 2 ) = = 1 )
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V=[1 0 0 ; 0 x 0 ; 0 0 1 ] ;
e l s e

V=[1 0 0 ; 0 1 0 ; 0 0 x ] ;
end

e l s e
V=eye ( 3 ) ;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V;

%%Update t h e k e r n e l r e p r e s e n t a t i o n o f t h e MPUM: R
R=V∗R ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%D ef in e row d e g r e e s
R11=sym2poly (R ( 1 , 1 ) ) ;
R12=sym2poly (R ( 1 , 2 ) ) ;
R13=sym2poly (R ( 1 , 3 ) ) ;
R21=sym2poly (R ( 2 , 1 ) ) ;
R22=sym2poly (R ( 2 , 2 ) ) ;
R23=sym2poly (R ( 2 , 3 ) ) ;
R31=sym2poly (R ( 3 , 1 ) ) ;
R32=sym2poly (R ( 3 , 2 ) ) ;
R33=sym2poly (R ( 3 , 3 ) ) ;
deg r1 =max ( [ l e n g t h ( R11 ) , l e n g t h ( R12 ) , l e n g t h ( R13 ) ] ) −1 ;
deg r2 =max ( [ l e n g t h ( R21 ) , l e n g t h ( R22 ) , l e n g t h ( R23 ) ] ) −1 ;
deg r3 =max ( [ l e n g t h ( R31 ) , l e n g t h ( R32 ) , l e n g t h ( R33 ) ] ) −1 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Reorde r t h e rows of R i n a s c e n d i n g row d e g r e e s
i f ( degr1 > degr2 ) && ( degr2 > degr3 )

R( [ 1 3 ] , : ) = R( [ 3 1 ] , : ) ;
e l s e i f ( degr1 > degr3 ) && ( degr3 > degr2 )

R( [ 1 3 ] , : ) = R( [ 3 1 ] , : ) ;
R ( [ 1 2 ] , : ) = R( [ 2 1 ] , : ) ;

e l s e i f ( degr2 > degr3 ) && ( degr3 > degr1 )
R( [ 2 3 ] , : ) = R( [ 3 2 ] , : ) ;

e l s e i f ( degr2 > degr1 ) && ( degr1 > degr3 )
R( [ 1 3 ] , : ) = R( [ 3 1 ] , : ) ;
R ( [ 2 3 ] , : ) = R( [ 3 2 ] , : ) ;

e l s e i f ( degr3 > degr1 ) && ( degr1 > degr2 )
R( [ 1 2 ] , : ) = R( [ 2 1 ] , : ) ;

e l s e i f ( degr1 > degr2 ) && ( degr2 == degr3 )
R( [ 1 3 ] , : ) = R( [ 3 1 ] , : ) ;

e l s e i f ( degr2 > degr1 ) && ( degr1 == degr3 )
R( [ 2 3 ] , : ) = R( [ 3 2 ] , : ) ;
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e l s e i f ( degr2 > degr3 ) && ( degr1 == degr2 )
R( [ 1 3 ] , : ) = R( [ 3 1 ] , : ) ;

e l s e i f ( degr1 > degr2 ) && ( degr1 == degr3 )
R( [ 1 2 ] , : ) = R( [ 2 1 ] , : ) ;

end
%R
%pause

end
a= i n p u t ( ’ Any more d a t a ? ( 1 / 0 ) ’ ) ;
i f a==1

c o n t i n u e
e l s e

f l a g =0;
end
R
R11=sym2poly (R ( 1 , 1 ) ) ;
R12=sym2poly (R ( 1 , 2 ) ) ;
R13=sym2poly (R ( 1 , 3 ) ) ;
deg r1 =max ( [ l e n g t h ( R11 ) , l e n g t h ( R12 ) , l e n g t h ( R13 ) ] ) −1 ;
row1=x^ degr1 . ∗ subs (R ( 1 , : ) , x ^−1);
num=−sym2poly ( row1 ( 2 ) ) ;
den=sym2poly ( row1 ( 1 ) ) ;
t f ( num , den )
pause

end
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