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RECURSIVE MODELING OF SWITCHED LINEAR SYSTEMS:
A BEHAVIORAL APPROACH

SUMMARY

Switched systems are hybrid systems which result from interaction of continuous
or discrete time dynamical systems with discrete events. In such systems, discrete
events triggered by the changes in the switching signal lead the system to operate
in different modes. In this thesis, a recursive method for modeling and identifying
a finite dimensional discrete time switched system from its input/output signals will
be proposed. Recursive partial realization of a discrete time linear switched system
(DTLSS) is a special case of this problem and it is treated seperately. The fact that the
system model is updated as new data samples are received provides a way to detect
the mode changes if the orders of modes are assumed to be known. Thus, a solution
to a basic problem in the literature regarding this subject is given. In addition, for
correctly identifying each mode, a condition on the dwell times of modes, which is the
time between two consecutive changes in the switching signal, is given for both cases.
The procedure gives the kernel representations of the local modes of a DTLSS from its
partial input/output sequence for both problems. Lastly, problem of constructing state
space representations consistent with the data from acquired kernel representations
is discussed. For this purpose, a global viewpoint for realization theory of DTLSSs
existing in the recent literature is briefly explained. In this work, behavioral approach
to system theory, developed by J. C. Willems, is used for modeling dynamical systems.
In this approach, a dynamical system is defined by the set of all possible trajectories it
can generate.

The research plan is as follows: A recursive procedure is applied to the identification
of switched linear systems from impulse response. This problem, known as partial
realization problem, is studied in recent literature for discrete time linear systems and
results acquired there is modified by taking the mode changes of a switched system
into account. For the identification of each mode, the input-output sequence generated
by each mode must be sufficiently rich to exhibit all characteristic features of it. In this
thesis, necessary and sufficient conditions for the sequence generated by the switched
system to be sufficiently rich is derived. This problem is separately studied for the
cases of partial realization and identification from arbitrary input/output sequences.
By the help of these conditions the minimum needed value of the dwell times of the
modes are found. In addition, for the partial realization problem, ways for testing these
conditions recursively are examined. Then, the recursive method is generalized for the
identification of the switched systems from its arbitrary input-output sequences. The
necessary changes are made in identifiability conditions and the recursive procedure
i1s modified accordingly. For making various theoretical predictions and comments
and to test the results obtained, the recursive procedure is realized in Matlab for both
problems. The constructed codes will hopefully contribute to the comparison of other

XV



works in the literature regarding this topic with our work. Finally the problem about
state space representations is discussed.

For the general case, the recursive procedure mainly consists of five steps
being “initialization”, “error computation”, “event detection”, “model update” and
“identification of the mode” respectively. In the initialization step, the algorithm is
initialized by defining the necessary initial conditions for the procedure and giving
the order of modes of the DTLSS assumed to be a priori known to the algorithm as
inputs. In the error computation phase, the error is computed at each step by applying
the found kernel representation in the previous step to the newly acquired data. In
the event detection step, a criterion based on this error and the dwell time is checked
and the information about whether there is a mode change or not is acquired by the
help of this criterion. If there is no event detected, in the model update step, the old
representation is updated by multiplying it by the kernel representation of the “most
powerful unfalsified model” for the error sequence. If there is an event detected, the
procedure gives the kernel representation of the MPUM for the mode and then turns
back to the initialization step to identify the new mode.

The results acquired in this thesis are for identification from one observed partial
trajectory of a single input single output DTLSS only. Future work can be done to
generalize the recursive procedure for application to multi input multi output systems
and for the case when there are more than one observed trajectory. In addition, the
problem can be considered for the case of known switching signal. The dwell time
assumptions may be modified accordingly for that case. Lastly, a persistency of
excitation test may be added to the recursive procedure for the identification from
arbitrary input/output sequences case and subspace methods can be merged into the
recursive procedure.
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DOGRUSAL ANAHTARLI SISTEMLERIN ARDISIL MODELLENMESI:
DAVRANISSAL YAKLASIM

OZET

Anahtarli sistemler ayrik zamanli veya siirekli zamanl dinamik sistemlerin ayrik
olaylarla etkilesimi sonucu ortaya c¢ikan karma sistemlerdir. Bu tiir sistemlerde anahtar
isaretinin degisimine bagli olarak tetiklenen ayrik olay, sistemin farkli modlarda
calismasin 1 saglar. Anahtarli sistemler denetleyici kontrol sistemlerinin modellenmesi,
analizi ve tasariminda kullanilabilir. Darbe etkili mekanik sistemler, roleli veya ideal
diyodlu devreler de bu tiir sistemlere drnek olarak verilebilir. Bu 6rnekler, ve anahtarli
sistemlerin sistem-kuramsal 6zellikleri son yillarda detayli olarak ¢alisilmaktadir. Bu
tezde ayrik zamanli anahtarli sistemlerin modellenmesi problemi incelenmigtir. Bu
amag i¢in iki farkli yontem kullanilabilir. Birinci yontem, dinamik sistemi daha kii¢iik
alt sistemlere ayirip, fiziksel yasalar1 ve temel prensipleri kullanarak sistemin uygun
bir temsilini (bir diferansiyel denklem veya fark denklemi takimi gibi) bulmaktir. Bu
calismada kullanilan bir diger yontem ise sistemin gozlenmis giris/cikis ¢iftlerinden
yararlanarak sistemin davranigini tam ya da yaklagik olarak aciklayan bir model
bulmaktir. Bu yaklagim, literatiirde “sistem tanima” olarak adlandirilir. Genelde
bu yaklagim, pratik durumlar icin daha uygun, Olctimlerin iizerinde stokastik bir
giiriiltiiniin var oldugu durumlar i¢in kullanilsa da bu ¢calismada daha temel bir problem
olan, ideal veriden sistemin tam olarak taninmasi problemi ele alinmigtir.

Bu tezde giris ve ¢ikis isaretlerinden sonlu boyutta ayrik zamanli anahtarli sistemlerin
modellenmesi ve taninmasi ic¢in ardigil bir yontem Onerilmistir.  Ayrik zamanl
dogrusal anahtarli sistemlerin kismi gerceklemesi bu problemin 6zel bir halidir
ve ayr1 olarak incelenmigtir. ~ Sistem modelinin veriler geldik¢e giincellenmesi,
modlarin mertebelerinin bilinmesi halinde, mod degisimlerinin sezilmesine olanak
saglamaktadir. Boylece literatiirde bu konuda yapilan ¢alismalarda karsilagilan temel
bir soruna ¢oziim getirilmektedir. Ayrica bu iki problem i¢in, anahtarli sistemin her
bir modunun tek olarak taninabilmesi i¢in modlarin saglamasi, ve art arda gelen iki
anahtarlama ani arasinda gegen zaman olan bekleme siiresinin saglamasi gereken
kosullar ¢ikarilmugstir. Iki problem icin de, ardigil prosediir, anahtarl sistemin iirettigi
kismi girig/cikis ¢ifti dizisinden her bir modunun sifir gosterilimini elde etmektedir.
Son olarak, elde edilen sifir gosterilimlerinden, gozlenen veriyle uyumlu durum
gosterilimlerinin elde edilmesi problemi tartisilmigtir. Bunun ig¢in, ayrik zamanh
anahtarli sistemlerin gercekleme kuramina iligkin yakin zamanda literatiirde sunulmus
daha global bir bakis acis1 kisaca agiklanmigtir. Uyumlu durum gosterilimleri elde
edebilmek icin literatiirde bulunan bir yontem 6nerilmistir.

Tezde, J. C. Willems tarafindan gelistirilen sistem kuramina davranigsal yaklagim,
dinamik sistemlerin modellenmesi i¢in kullanilmistir. Bu yaklasimda, bir dinamik
sistem, liretebilecegi her yoriingeden (¢o6ziimden) olusan bir kiime (davranis kiimesi)
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ile tanimlanir.  Dinamik sistemin bir parametre kiimesi ile degil, bu sekilde
bir fonksiyon (ayrik zamanli sistemler i¢in dizi) kiimesi ile tanimlanmasi sistem
kuramindaki bazi temel kavramlarin belirli sistem temsillerinden bagimsiz olarak
verilmesini saglamaktadir (parametreye dayali tanimlar “yonetilebilirlik” gibi herhangi
bir dinamik sisteme has Ozelliklerin, sistemin kendi 6zelligi degil, sistemin “durum
gosterilimi” gibi belirli bir “temsili”nin 6zelligi oldugu yanilgisina yol agabilir).

Tezin arastirma plani su sekildedir:  Oncelikle tezde kullanilan davranigsal
yaklasimdaki modelleme amacina iliskin temel kavramlar ve tanimlar arastirilmis
ve kisaca agiklanmistir. Bu yaklasim kullanilarak, bir ardigil yontem, anahtarl
dogrusal sistemin sonlu sayida birim diirtii (impulse) yaniti verisinden taninmasina
uygulanmistir. Literatiirde “kismi gergekleme” olarak bilinen bu problem iizerine ayrik
zamanlh dogrusal sistemler icin yakin zamanda c¢alisilmistir. Elde edilen sonuglar bu
tezde anahtarli sistemin mod degisimleri goz Oniine alinarak genisletilmistir. Her bir
modun taninabilmesi i¢in, her bir mod tarafindan iiretilen giris/cikis ciftleri dizisinin
o modun biitiin karakteristik Ozelliklerini yansitmasi, bagka bir deyisle yeterince
zengin olmas1 gerekmektedir. Bu calismada, anahtarli sistemin trettigi giris/cikis
dizisinin yeterince zengin olabilmesi icin gerekli ve yeterli kosullar ¢cikarilmistir. Bu
problem, kismi gercekleme ve keyfi giris/¢ikis dizisinden modlar1 tanima amaclari
icin ayr1 ayr1 ele alinmistir. Bu kosullar yardimiyla, anahtarli sistemin modlarinin
bekleme siirelerinin saglamasi gereken minimum siireler bulunmustur.  Ayrica,
kismi gercekleme problemi i¢in, bu kosullar1 ardisil olarak her asamada kontrol
etme yollar1 incelenmistir. Sonra, ardisil yontem, anahtarli sistemin modlarinin
sistemin tirettigi keyfi giris/cikis ¢ifti dizisinden taninmasi amaciyla genellestirilmistir.
Taninabilme kosullarinda gerekli degisiklikler yapilmistir ve ardigil yontem de buna
gore yeniden diizenlenmigtir. Her bir problem i¢in anahtarlama isaretinin bilinmedigi
fakat anahtarli sistemin modlarinin derecesinin bilindigi varsayilmis ve tek bir
¢cOziim aranmigstir. Anahtarli sistemlerin taninmasi konusunda literatiirde yapilan
calismalarda, anahtarlama olayinin sezilmesi problemi bir¢ok zorluga yol agmaktadir.
Tezde modlarin bekleme siirelerine iligkin yapilan belli varsayimlar ve yontemin her
yeni veri ornegi geldiginde ardisil olarak modeli giincellemesi sayesinde bu problem
cOziilmiigtiir.

Genel durum icin, ardigil yontem ana hatlarniyla “baglangic”, “hata bulma”,
“anahtarlama sezme”, “model giincelleme” ve “modun taninmasi” olmak {izere bes
asamadan olusmaktadir. Baslangic asamasinda prosediiriin baglamasi i¢in gereken
ilk kosullar ve “a priori” bilindigi varsayilan mod mertebeleri algoritmaya verilir.
Hata bulma asamasinda her adimda bir onceki adimda bulunan sistem temsilinin
yeni elde edilen veriye uygulandiginda ortaya cikan hata hesaplanir. Anahtarlama
sezme asamasinda, bu hataya iligkin belirli bir kriter kontrol edilerek bir anahtarlama
olup olmadig1 anlasilir. Anahtarlama yoksa eski model, hataya iligkin bulunan sifir
gosterilimiyle carpilarak giincellenir. Anahtarlama var ise prosediir, ¢ikis olarak moda
iligkin modelin temsilini vererek baslangi¢ asamasina geri doner.

Calisma siirecinde cesitli kuramsal tahminler ve yorumlar yapabilmek ve elde edilen
sonuglart deneyebilmek icin ardigil yontem, her iki ana problem icin de Matlab
ortaminda gerceklenmistir. Olusturulan kodlarin, literatiirde bu konuda yapilan diger
caligmalarla bu caligmanin karsilagtirilmasini saglamasi ve gelecek caligmalara destek
olmas1 umulmaktadir. Son olarak modlarin elde edilen sifir gosterilimlerinden, uyumlu
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durum gosterilimleri elde edilmesi problemi tartisilmigtir. Bu boliimde ayrica dogrusal
anahtarli sistemin yerel dogrusal sistemlerin u¢ uca eklenmesi olarak yorumlanmasinin
kismi gercekleme probleminde getirdigi bazi sorunlar, konu hakkinda yeni yapilan
caligmalar kullanilarak gosterilmeye calisilmistir. Sonu¢ bdliimiinde ise ¢alismanin
ileride nasil gelistirilebilecegine iliskin bazi1 6nerilerde bulunulmustur.

Tezin son asamasinda, ardigil yontem yardimiyla modlara iligkin bulunan sifir
gosterilimlerinden, ayni modlara iliskin gozlenmis giris/cikis verisiyle tutarli olacak
durum gosterilimlerinin elde edilmesi problemi tartisilmistir. Bu problem, ¢oziimii
apacik olan bir problem degildir. Dogrusal sistemler i¢in boyle bir problem s6z konusu
degildir fakat anahtarli sistemlerde, anahtarlama anindan énceki modun, sonraki moda
iligkin bir ilk kosul yaratmasi boyle bir probleme yol acar. Bu bdliimde, tezde
kullanilan, anahtarli sistemi tek tek dogrusal sistemlerin u¢ uca eklenmis hali olarak
yorumlamanin yol ac¢ti§1 kavram bulanikliklar1 da M. Petreczky’nin c¢aligmalarndan
yararlanilarak tartisilmistir (S6z gelimi, anahtarli bir sistemin minimal bir gercekleme
olmasi, yerel modlarimin her birinin minimal olmasi anlamina gelmez). Bolim
sonunda bahsedilen probleme iligkin bir ¢6ziim Onerisi, varolan literatiir kaynak
gosterilerek verilmigtir.

Tezde elde edilen sonuclar, tek giris tek cikish bir ayrik zamanli dogrusal anahtarh
sistemin, anahtarlama isaretinin bilinmedigi varsayildiginda, tek bir giris cikis ¢ifti
dizisinden taninmasi icin verilmistir. Calismanin olast zenginlestirilmesi, ardisil
yontemin ¢ok giris cok cikish sistemler i¢in de kullanilabilir hale getirilmesi veya elde
gozlenmis birden ¢ok giris ¢ikis cifti dizisi oldugu durumlarda da uygulamaya elverisli
olmas1 cabalanarak gerceklestirilebilinir. Ek olarak, tezdeki problem, anahtarlama
isaretinin bilinmesi durumu ic¢in de ele alinabilir. Bekleme siiresi iizerine yapilan
varsayimlar, bu duruma gore degisiklik gosterebilir. Son olarak, keyfi girig ¢ikis cifti
dizisinden sistemi tanima problemi i¢in, ardisil prosediir icine, girisin her agsamada
yeterince uyarici olup olmadigini kontrol eden bir kisim eklenebilir. Ayrica, altuzay
yontemleri, ardigil prosediir i¢ine yerlestirilebilir.
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1. INTRODUCTION

Switched systems are models of dynamical phenomena whose behavior changes
among a number of submodels depending on a logical decision mechanism. Such
systems are used in modeling, analysis and design of supervisory control systems,
mechanical systems with impact, circuits with relays or ideal diodes for instance.
These examples and some system theoretic properties of switched systems have been
studied in [1,2] and the references therein. In this thesis, we consider the problem of
modeling a discrete-time dynamical switched linear system and finding an appropriate
representation for the model is considered. For this purpose, one can use two different
ways of approach. First approach is to separate the dynamical system into subsystems
and elements and, by using physical laws and first principles, to find a representation
(like a set of equations) that defines the system. Second approach, which is used in
this work, is to find a representation for the behavior of the system by using observed
input-output measurements. This approach is known as system identification in the
literature. Although this approach generally used with the existence of stochastic
noise on the measurements, in this work, the problem of identification from exact
data is considered. In [3] extensive information for system identification from noisy
measurements is given. In references like [4], [5] and [6] it is argued that the problem
of exact identification is a more basic one and it should preceed the problem of
stochastic identification. In this thesis, the behavioral approach for system theory
(see [7,8]) is adopted to develope a recursive method for exact identification of discrete

time switched linear systems (abbreviated as DTLSSs).

First, the problem of identification of a DTLSS from impulse response sequences
(which is known as the partial realization problem) is considered. This is a classical
problem which has been extensively studied in [9]. For linear systems the solution
of the problem using the generating system approach has been described in [4]. This

method gives the possible orders and parametrization of all linear systems which have



a given sequence of impulse response samples. In the present work the recursive
method given in [4, 10] for the construction of the generating system is appropriately
modified and applied to the partial realization of switched systems. Then, the problem
of identification of a DTLSS from arbitrary input-output sequences is considered. The
solution to the problem of recursively modeling a linear system from continuous-time
polynomial-exponential time series is given in [4]. In the same reference, it is pointed
out that the modeling of a discrete time linear system from arbitrary input-output data
is a special case of that problem. Necessary modifications for the identification of

switched systems are made and a procedure is given.

For both problems, it is assumed that the switching signal is unknown but the orders
of the modes are known and a unique solution is sought. Identifiability conditions
for both cases are derived and explained. The problem studied in the present paper is
similar to those in [11-13] which address identification of switched or hybrid systems.
The detection of mode changes causes various difficulties in these works. By adopting
certain assumptions on dwell times of the modes of the DTLSS, this problem is easily
resolved by the recursive method described in this work since the model derived is

tested and updated as new data samples are received.

In the recent related work [14] realizability of a family of input-output maps by a
switched linear system has been considered and minimality of the realizations has
been characterized. The related concepts and definitions are briefly given in the last
chapter, and ways of finding state space representations for the modes consistent with

the observed data are discussed.

The thesis is organised as follows: The preliminaries of behavioral approach for the
context of modeling are given in Chapter 2. Basic definitions are given and different
system representations are presented. At the end of the chapter, the problem of
exact identification is stated. In Chapter 3, recursive partial realization problem is
considered. Identifiability conditions and the recursive procedure for this case is given.
In Chapter 4, the problem is generalized for recursive identification from arbitrary
input-output data. In Chapter 5 state space realization problem is considered and ways
of finding state space representations for the modes of the DTLSS are discussed. The

thesis is concluded with the summary of results and ideas for possible future work.



2. PRELIMINARIES OF BEHAVIORAL APPROACH FOR MODELING
CONTEXT

Here, we present some preliminaries about “the behavioral approach to linear system
theory” which is developed by Jan C. Willems. The motivation for this approach is
the following: First, in many practical cases (for example in electrical circuits) the
distinction between inputs and outputs is not a priori clear; instead it should follow
as a consequence of the modeling. Second, it is desirable to have representation-free
definitions for classical conceptes in system theory like controllability or observability.
This kind of concepts are not properties of a particular representation of a system,
rather they are properties of the dynamical system itself. In addition, one should be able
to treat the different representations of a given system (for example: input-output or
state space representations) in a unified way [4]. In behavioral approach, a dynamical
system is defined as a collection of trajectories rather than a collection of parameters.
Therefore, it creates the possibility to define classical concepts in system theory in
a representation free way. In the next sections, some basic definitions in behavioral
framework needed for the purpose of this thesis will be given. The chapter will
end with the definitions of exact identification problem and the central object of this

problem called “the most powerful unfalsified model (MPUM)”.

2.1 Linear Time-Invariant Dynamical Systems

Definition 2.1.1. (Dynamical System [15]) A dynamical system X is a 3-tuple X =
(T, W,B), with T C R the time axis, W the signal space, and B C WT the behavior.

In Definition 2.1.1, T is the time axis which is R or R for continuous time case and
Z or N for discrete time case. The set W is called the signal space where the signals
take on their values. The set of all functions (trajectories) w : T — W is denoted by
WT in the definition. A subset of this set W7 is called the behavior of the system and

denoted by B. Behavior set B consists of all possible trajectories w € W7 that the



system can generate and this is the set that defines a particular dynamical system. It
can be seen that a dynamical system is defined with the three sets in Definition 2.1.1
where the behavior B is a collection of trajectories. For the purpose of this work, we

take the time axis as either Z or N since we deal with discrete time systems.

Definition 2.1.2. (Linearity) A dynamical system X = (T, W,®3) is linear if and only
if
Wi (1), walt) € B = (cw (1) + Bwa (1)) € B @1

where w (), wy(t) are any two trajectories in ‘B and «, B € R are arbitrary constants.

Definition 2.1.2 implies that a system is called linear if and only if any linear
combination of trajectories in ‘B is also an element of ‘8. In other words, a system
Y = (T, W,B) is linear when the signal space W is a vector space and B is a linear

subspace of W,

Definition 2.1.3. (Time-Invariance) Let w(z +A) denote the A times backward shifted
trajectory w(t) in the time axis T. A dynamical system £ = (T, W, B) is time-invariant
if and only if

wit)eB=>w(t+A) B VAT (2.2)

where w(t) is any trajectory of B.

Definition 2.1.3 implies that if a time series w is a trajectory of a time-invariant system,

then all its shifts are also trajectories of that system.

In the following, the class of all discrete-time, linear time-invariant (LTI) systems with

q variables (q is the dimension of the signal space W) will be denoted by £9.

2.2 Dynamical System Representations

In the classical theory, a property of the system is defined as a property of a particular
representation (For example, controllability is defined as a property of a state space
representation). This implicitly allows that such a definition might be representation
dependent (it might only hold for that particular representation) and therefore not a

specific property of the system itself. In behavioral approach, a certain property is first



defined in terms of the behavior ‘B, then the implications of it on the parameters of a
particular system representation is found. It is important to emphasize that a system is
defined as a collection of trajectories and then can be represented in a particular way
(For example by using differential or difference equations). In this section, different

representations of dynamical systems and their properties are discussed briefly.

2.2.1 Kernel representation

Consider the difference equation
Row(t) + Ryw(t +1)+ ...+ Rw(t +1) =0, where R; e R®*9 fori =0,1,....I. (2.3)

This vector equation shows the recurrence relation between the consecutive samples
of the time series w. Assuming that R; # 0, the maximum number of shifts / is called
the lag of the equation. Since (2.3) is a vector equation consisting of g rows, [ is the

largest lag among the lags [y, ..., [, of all scalar equations.

The equation (2.3) induces a dynamical system whose behavior set is defined as
B = {w e (RY)%| (2.3) holds}. 2.4)

It means that the behavior of discrete time linear dynamical system can be represented
and analyzed with the use of a vector difference equation. It turns out, however, it is
more advantageous to use polynomial matrix algebra for analyzing 8. Let ¢ be the
backward shift operator whose operation is defined as (ow)(z) = w(¢ + 1). Therefore,
(2.3) can be written in a more compact form in terms of the polynomial matrix with

the indeterminate s:
R(s) :=Ry +Ris' +Ros®+ ... +R;s € R8%4s] (2.5)

as

R(c)w=0. (2.6)

Consequently, operations on the system of difference equations can be represented by
operations on the polynomial matrix R(s). The behavior of the system induced by
(2.3)is

B = kerR(c) := {w € (RY)N|R(c)w = 0}. 2.7



(2.7) is called the kernel representation of the system.

In [Wil86a] it is proven that without loss of generality one can assume the existence of
a kernel representation B = kerR(o) of an LTI complete system B € £9. Briefly, the
linearity of the system induced by (2.3) follows from the linearity of (2.3) with respect
to w. The time-invariance follows from the constant coefficient matices Ry, ..., R;, and
the finite dimensionality of the system follows from the fact that (2.3) involves a finite

number [ of shifts of the time series.

Note that a kernel representation for a given ‘B is not unique. The nonuniqueness is
due to the possible existence of linearly dependent equations and equivalence of some
representations. We need the following important definition and theorems for clearly

explaining these facts.

Definition 2.2.1.1. (Unimodular Matrix) [8] A matrix U(s) € R8*$[s] which
represents elementary row operations on a matrix R(s) € R8*4[s] is called unimodular.

These operations can be defined as following:

(i) Permute any two rows of R(s).

(ii) Multiply a row of R(s) by a constant.

(iii) Multiply row i of R(s) by s¢ and add it to row j, whered € Nand i,j € 1,2,...,g
with i # j.

Let the matrices M, C and Q(s) be the matrices representing any number of these
operations defined in (i), (ii) and (iii) respectively. U (s) can always be factored as

U(s) =MCQ(s). (2.8

Furthermore, U(s) is a matrix with nonzero constant determinant i.e., detU(s) = ¢

where ¢ 1S a nonzero constant.

Notice that applying these operations to a set of difference equations, does not change
the corresponding behavior, but it changes the representation. This fact will be stated
in Theorem 2.2.1.4. The following theorem states that linearly dependent equations
can always be destroyed by left multiplication with unimodular matrices. For stating

the theorem we need one more definition.



Definition 2.2.1.2. (Matrix of full row rank) [16] Polynomial vectors r;(s) € R'*4[s],
i=1,2,..,¢g[R* s] denotes the set of all 1 x g polynomial vectors in real coefficients)

are called linearly independent over the field R if and only if
airi(s)+aora(s)+ ...+ agre(s) =0a;=0,i=1,2,....,8 2.9

where a; € R, i = 1,2,...,g are real coefficients. A matrix R(s) € R8*9][s] is called
to have full row rank (or “of rull row rank™) if and only if all row vectors of R(s) is

linearly independent.

Theorem 2.2.1.3. Every behavior B defined by R(c)w = 0, R(s) € R8*4]s| (where
R(s) is not of full row rank) admits an equivalent full row rank (minimal)
representation, that is, there exists a representation fé(G)w =0 of B with ﬁ(s) €
RE*4[s], g < g of full row rank where ( R(()S) ) = U(s)R(s) and the matrix U(s) is

unimodular.
Proof. For the proof, see [8]. [

Theorem 2.2.1.3 implies that for a given system ‘B there always exists a kernel
representation in which R(s) has full row rank [Wil91]. Such a representation is called

a minimal kernel representation.

Theorem 2.2.1.4. Two polynomial matrices Ry € R8*4[s| and R, € R8*4[s] of full row
rank, represent the same behavior if and only if there exists a unimodular matrix U (s)

such that Ry (s) = U (s)Ra(s).
Proof. For the proof, see [8]. U]

Theorem 2.2.1.4 states that also the minimal representation is nonunique. The

representation changes under unimodular transformations.

In a minimal kernel representation, the number of equations is minimal among all
possible kernel representations of B and this number is defined as p :=row dim R(s).
We define the degree of row i of R(s) as the highest power of s in that row and denote it
by /; or degr;. Also define the maximum row degree of R(s) (maximum lag among all

scalar equations) as [ := max;—1,.._,l;, and the sum of the lags as n := Zf.’zl l;. In[15] it



is stated that there exists a minimal kernel representation ‘8 = ker R(o ), in which the
numbers p,/ and n are simultaneously minimal over all possible kernel representations.
Such a representation is called shortest lag representation and it is achived when R(s)
is row reduced. Below, the definition of row reducedness is given. From now on, the
numbers p,/ and n in the shortest lag representation of a system will be denoted by

p(*B), [(*B) and n(*B) respectively.

Definition 2.2.1.5. (Row reducedness) Let the polynomial matrix R(s) be written row
by row

R=[r . ry]", deg(r)=1 (2.10)

R(s) is row reduced if the leading row coefficient matrix (i.e., the matrix of which the

(i, j)th entry is the coefficient of the term with power /; of R;;(s)) is full row rank.

The minimal number of equations p(*B), the lag /(*8) and the total lag n(*B) in a
hortest lag representation are therefore invariants of 8. It turns out p(8) is equal to
the number of outputs in an input/output representation (It is called output cardinality).
Correspondingly, the integer m(8) = g — p(*B) is also an invariant of 8 and it is equal
to the number of inputs (It is called input cardinality). The total lag n(*8) is equal to

the state dimension in a minimal state space representation of ‘8.

2.2.2 Input/output representation

Definition 2.2.2.1. Input/Output Partition) [8] Let 5 be a behavior with signal
space RY. Partition the signal space as R? = R™ x R? and correspondingly as
w = col(wy,ws), w; € R™T and wy € RPT. This partition is called an input/output

partition if:

1. wy is free; ie., for all w; € (R’")T there exists a wy € (IRP)T such that w =

col(wy,wy) € B.

2. wy does not contain any further free components; i.e., given wi, none of the

components of w, can be chosen freely. Stated differently, wy is maximally free.

If 1 and 2 hold then w; is called an input variable and w is called an output variable.



Definition 2.2.2.2. (Proper matrix) A matrix of rational functions (i.e., each of the
entries is the ratio of two polynomials) is called proper if in each entry, the degree of

the numerator does not exceed the degree of the denominator.

Theorem 2.2.2.3. Let R(s) € RP*4[s| be of full row rank with p < q. then there exists

a partition of R(s) of the form:
R(s)=[ —N(s) D(s) ] (2.11)

where D(s) € RP*P is composed of the columns of R(s) which makes deg detD(s)
maximal among all p X p submatrices of R(s), and where N(s) is composed of the
remaining columns. There also exists a corresponding partitioning of w:

_| 2.12
-1 an

where the elements of w corresponding to the columns of R(s) which comprises —N(s)
are chosen as inputs u, and elements of w corresponding to the columns of R(s)
which comprises D(s) are chosen as outputs y. This partitioning is in the sense of
Definition 2.2.2.1 and the corresponding input/output behavioral equations can be

written as

D(o)y =N(o)u. (2.13)
Also, N(s) and D(s) satisfy:
e det D(s) #0

e D~ !(5)N(s) is a matrix of proper rational functions.

Proof. For a proof, see [8]. ]

Definition 2.2.2.4. (Transfer matrix) Let the signal space R? of a behavior partitioned
as in Theorem 3.2, i.e.

R(s)=[ —N(s) D(s) ] ,Tlw= [;‘] (2.14)

where IT is a suitable ¢ X ¢ permutation matrix, D(s) € RP*P[s], N(s) € RP*"[s] and
u € R™, y e RP. The p x m matrix D~ (s)N(s) is called the transfer matrix of the

behavior.



Theorem 2.2.2.3 and Definition 2.2.2.4 imply that one can always find an input/output
partitioning in the sense of Definition 2.2.2.1 such that the behavior is defined by the
equation

D(o)y=N(o)u. (2.15)

The system B induced by an input/output equation with parameters (D,N) and

input/output partitioning defined by IT can be formally defined as
Bi/o(D,N,TI) := {TIw := col(u,y) € (R?)"|D(c)y = N(c)u}. (2.16)

The representation (2.16) is called an input/output representation of the system ‘5. The

matrix D~!(s)N(s) is called the transfer matrix of the behavior defined by (2.16) [8].

2.2.3 State space representation

In the modeling procedure, there are variables whose relation wanted to be defined.
Those variables are called the manifest variables and they were previously denoted
by w. However, in the process of modeling from first principles, calculations involve
different variables than the model aims to describe. These variables are called the latent
variables (For example when modeling the port behavior of a one port electrical circuit,
port voltage and current are the manifest variables and voltages and currents among all
other branches are latent variables). State variables are special latent variables that

specify the memory of the system. Below, a definition is given.

Definition 2.2.3.1. (State variables [7]) Latent variables x are called state variables if

they satisfy the following axiom of state:
(wi,x1),(wa,x2) € B, €N, and x1 (1) = x2(t) = (w,x) € B, (2.17)

where
(wi(7),x1(7)) for T <1,

(w(D).x(7)) = { (w(2),x2(7)) for 7 > 1. (218)

It turns out any LTT system ‘B admits a representation by an input/state/output equation
ox =Ax+Bu, y=Cx+Du, IIw=col(u,y), (2.19)
in which both the input/output and the state structure of the system are explicitly

displayed [15]. The system ‘B induced by an input/state/output equation with
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parameters (A, B,C,D) and I, is formally defined as

%i/S/O(A,B,C,D,H) = {HW = Col(u,y) S (Rq)NElx S (Rn)N’
(2.20)
such that ox = Ax+ Bu,y = Cx+ Du}.

(2.20) is called an input/state/output representation of the system 8.

2.3 Autonomous Systems

Definition 2.3.1. (Autonomous System) A system ‘B is autonomous if for any

trajectory w € ‘B the past

W= (e w(=2),w(=1)) (2.21)

wy = (w(0),w(1),...). (2.22)

A system ‘B is autonomous if and only if its input cardinality m equals zero.
That means there are no external free variables (inputs). Every trajectory’s future
is completely determined by its past. Therefore an autonomous LTI system is

parameterized by the pair of matrices A and C via the state space representation
ox=Ax, y=Cx, w=y. (2.23)
The system induced by the state space representation with parameters (A,C) is
Bi/5/0(A,C) = {w € (R")"|Zx € (R")", such that ox = Ax,w =Cx}.  (2.24)

Since there are no free variables, behavior of an autonomous system is finite
dimensional where dim (8) = n. An autonomous LTI system can also be
parameterized in a minimal kernel representation 6 = ker R(c) by a square
nonsingular polynomial matrix R(s) i.e., R(s) € RP*P[s], det R(s) # 0. Note that this is
a special case of an input/output representation, a behavior with outputs only [8] (An

autonomous system can be interpreted as an input/output system with zero inputs).

11



2.4 Controllability

Definition 2.4.1. (Controllability) The system ‘B is controllable if for any two
trajectories wi,wy € ‘B there exists a third trajectory w € 8 and a time instant

' >0,t' € Z, such that w(r) = wy(¢) for all t < 0 and w(r) = wy(r —1t') forall t > ¢'.

Controllability implies that we can steer any trajectory to another one within the
behavior provided we allow a delay [8]. A test for controllability of the system ‘B
in terms of the parameter R(s) € R8*4[s] in a kernel representation B = ker R(0) is
given in [7]: B is controllable if and only if the matrix R(s) has a constant rank for all
s € C (This equivalently means ‘B is controllable if and only if the matrix R(s) is left
prime). In terms of input/output representation B = B, ,(D,N), D(s) and N(s) must

be left coprime for B to be controllable.

2.5 Complexity of a Linear Time-Invariant System

The complexity of an LTI system is parameterized by the ordered pair ¢(*B) :=
(m(B),n(*B)) where m(B) and n(*B) shows the input cardinality and total lag of
the system respectively. The parameter ¢(*8) is called the complexity of the system.
Define the lexicographic ordering as follows: Given the vectors of n real numbers a, b
we write a > bifa=borif forsome j € 1,2,...,n,a;=b;,i < j,and a; > b;. By using
this ordering we call a system B, more complex than B if ¢(B;) < c(B,). Notice
since there are no inputs in an autonomous system complexity of an autonomous

system is always less than the complexiy of a nonautonomous system [4].

2.6 Exact Identification

The exact identification problem is defined as follows: Given a trajectory w of a
discrete time LTI system ‘B, find a representation of B. In this thesis problem
of finding a kernel representation is considered. The exact identification is a basic
and important system theoretic problem. It includes the classical impulse response
realization (partial realization) problem and it is a prerequisite for the study of
more complicated approximate, stochastic, and stochastic/approximate identification

problems [17].
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In this thesis, the problem is considered for a finite number of data and although the
behavioral setting is used, the results are given in input/output setting. A central object
for the discussion of exact identification problem is the “Most Powerful Unfalsified

Model (MPUM)” and a definition is given below.

Definition 2.6.1. (MPUM)Assume we have a data set D = {wg,wy,...,wy} where
w; € (RY )N for i = 0,1,...,N are observed trajectories. A behavior B is called an
unfalsified model for D if D C 8. A model ‘B is called more powerful than B, if
B1 C By. A model B* is called the most powerful unfalsified model (MPUM) for D,
if 2B* is unfalsified for D and D C B = 8™ C 8.

Let us define the restriction of the behavior B* C (]Rq)N to the time interval [1,T]
where 7 € N as %*HI,T] ie., %*“LT} consists of the parts of all trajectories in ‘B
between the time interval [1,T] for any 7 € N. It is shown in [5] that a MPUM for D
exists and the system 8" C (Rq)N is an MPUM of the set D in the model class £ if it
is

1. finite dimensional LTI,

2. unfalsified, i.e., D C B*|;;

3. most powerful among all finite dimensional LTI unfalsified systems, i.e.,

B e Ll andDg‘B’“ﬂi’B*l[]ﬂ Q‘Bl[lﬂ (2.25)

Thus the dynamical system with behavior ®8* explains the observed signal set and as
little else as possible. Hence it has the most predictive power. Note that because of
finite dimensionality, MPUM for a data set is always an autonomous system. The
main results of the thesis, methods defined in Chapter 3 and Chapter 4, recursively
finds a representation for the MPUM for each newly acquired impulse response or
arbitrary input/output data for single input single output (SISO) DTLSSs. Then, from
the representation of the MPUM, a representation for the kernel representation of the
system is derived and the transfer function of the zero state behavior of the system is

acquired. For the uniqueness of solution, some assumptions are used.
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3. RECURSIVE PARTIAL REALIZATION OF DTLSSs

Switched linear systems are most conveniently described by the state equations (recall

the definition of backward shift operator from Section 2.2.1)

(0x)(k) = Agiyx(k) + Boiyu(k)
y(k) = Copyx(k) + D yu(k)

where u(k),y(k) and x(k) are respectively the input, output and state vectors. The

3.1)

trajectories that satisfy these equations comprises the set 8 (Recall the state space
representation from Section 2.2.3). The sequence « is the switching signal which takes
values from a set Q = {1,2,...,q}. For a fixed value (k) =i of the switching signal,
the linear system represented by the state-space parameters (A;, B;,C;,D;) is called a
mode of the switched system. Thus the system represented by (3.1) comprises g
subsystems (modes). The active mode which operates at a time instant is determined
by the value of the switching signal at that instant. The time between two consecutive

changes of the switching sequence is called the dwell time.

By eliminating x(k) from (3.1) a mode i of the switched system can alternatively be
represented by the kernel representation in input/output form (Recall Ch. 2.2.1 and
2.2.2) by

Di(c)y—Ni(c)u=0. 3.2)

For u = 0 the autonomous system described by the state-space parameters (A;,C;) or
equivalently by the kernel of D;(o) is from now on called the zero-input dynamics of

mode i. The problem studied in this chapter is defined as follows:
Problem: Partial realization of DTLSSs

Given the impulse response sequence h(k) = hy for k = 0,1,...,N of the switched
system (3.1) corresponding to the initial state x(0) = 0, input u(k) = 8(k) and
an unknown switching signal o; find the state equation representation or kernel
representation of the starting mode and zero-input dynamics of all subsequent modes

assuming that the orders n of the modes are known.
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Remark 3.0.1. Note that in the partial realization problem only a finite length of the
impulse response sequence is given and the solution is highly nonunique. In the case of
linear systems a parameterization of all solutions and their possible orders are studied
in [4, 10]. In our formulation it is assumed that the orders of the modes are known in

order to find a unique solution.

Remark 3.0.2. Notice that for switched systems, after a switch at time instant 7 the
kernel representation (3.2) found for the mode is not actually valid for time interval
[T —n,t]. Because since we make use of the backward shift operator to write the
kernel representations, in time interval [T — n, 7| data from the subsequent mode must
be used and the kernel representation found for the previous mode would not hold. The
method studied in this work gives kernel representation (3.2) (and therefore the transfer
function of the controllable part of the behavior) of the individual local modes as if
they are distinct systems. To interpret a DTLSS as a concatenation of different local
systems (this is the approach adopted for the purposes of the thesis) is not always very
advantagous. For instance, the minimality of a DTLSS realization does not depend
on the minimality of all local modes. In addition, the state equation representation
(A, B;,C;,D;) of the modes can only be determined up to a change of basis (within a
similarity transformation) in state space. The problem of writing state equations of the
modes in a common coordinate system is not a trivial one and it is considered in [13].
These remarks and problem about state space representations with formal definitions

and concepts in partial realization theory for DTLSSs will also be discussed in Chapter

5.

3.1 Identifiability Conditions

A system is identifiable from the observed trajectory w = (wg,wy,...,wy_1) if there
exists no other system in the given model class which generates the same trajectory. In
this case, the trajectory w is called sufficiently rich for the system. In other words, a
sufficiently rich trajectory reflects all characteristic features of the system to distinguish
it from other systems in the same model class. In [18] it is shown that a controllable
system of order n and lag [ is identifiable from the trajectory w = col(y,u) if the input

component u is persistently exciting of order n+ [/ + 1. This result, however, cannot

16



be directly applied to this problem since some of the modes of the switched system
are not driven by inputs, but only the responses due to initial conditions are known.
In the following lemma an identifiability condition similar to the one in [18] is given
which is suitable in the present situation and which is also necessary for single output
systems. In order to state this result let H,(w) denote the block Hankel matrix of r rows

associated with the trajectory w = (wg,wy,...,wy—_1) which is explicitly defined as

wo wip ... WN—r
wr W2 ... WN_rt1
H.(w)= : — : 3.3)
Wr_1 Wy ... WN—1

The term identification in this thesis is used in the meaning “to find the kernel
representation of unique, minimal order, controllable model for local modes of a
DTLSS”. Also for the next lemma the definition of left kernel of a matrice M can be
reminded as the nullspace of M i.e., the subspace consists of all nonzero row vectors

r; that makes r;M = 0.

Lemma 3.1.1. Assume that the trajectory w = (wg,w1,...,wy—1) is generated by a
linear, time-invariant single output system of order n. The system can be identified

from w if and only if dim (left ker H,+1(w))= 1.

Proof. Let the system be described by the kernel representation Ryw (k) + Ryw(k +
1)+..+Rw(k+n)=0. Clearly [ Ry Ry ... Ry | € left ker H,{{(w) and the
system can be uniquely identified if and only if left ker H,, | (w) is the one dimensional

subspace span ([ Ro Ry ... Ry ]) O

In the next lemma the above result is specialized to the identification of the system from
impulse response or zero-input response. This is stated in terms of a state equation
representation of the system and also the minimum number of samples required to

identify the system is given.

Lemma 3.1.2. Consider a single input-single output, nth order system defined by
(0x)(k) = Ax(k) + Bu(k),y(k) = Cx(k) + Du(k). Let Ny = 2n.

(i) The system can be identified from the impulse response sequence h(k) = hy, k =
0,...,N—1; h(k) =0 for k < 0 if and only if the system is controllable, observable and
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N > Nyin + 1 (impulse response is defined as the response of a system due to an input

as a unit impulse at time k = 0).

(ii) The zero-input dynamics of the system can be identified from the response y(k) = yj.
for k=0,...,N — 1 due to the initial state x(0) = xo if and only if the pair (A,xg) is

controllable, the system is observable and N > Nyp,.

Proof. (i)

Take z(k) = col(h(k),5(k)) and note that z(k) = 0 for k < 0. We will apply
Lemma 3.1.1 to the shifted trajectory defined by w(k) =0 for k = 0,...,n— 1 and
w(k) = z(k—n) for k = n,...,N +n—1 (Notice that the trajectory w(k) is the n times
forward shifted version of z(k), the partial impulse response). If we write the Hankel

matrix for w(k) we get

Hy1(w) =

[0 0 hy AN—n—1 ]
0O 0 0 0
h hy_

I 34

0 : 0 0
o 0 0
: ho hy hn—2
o1 L 0 0
ho hi ... hy hn -1

10 0 0

By reordering the rows of the (2n+2) x N matrix in (3.4) we get the form in (3.5).
Define the four block columns in (3.5) in the usual sense as Hy1,H12,H»1 and Hyy. Hyj
is(n+1)x(n+1),Hpis(n+1)x (N—n—1), Hyis (n+1) x (n+ 1) and Hp; is
(n+1) x (N—n—1). Notice by using the last n+ 1 rows of (3.5) we can eliminate
Hj to get a zero matrix, without changing Hi,. Again by reordering the rows we get

the block matrix seen in (3.6).
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0O 0 ... ... hy| Wi ... .. hy_n_1
0O 0 ... hg | ho ... ... hy_,
hy h h, | h A
Huni(w) = | 55— R I (35)
0 O 1 O 0 0
10 . .. 0 0 ... 0
In—o—l‘ 0
H = 3.6
n—H(W) 0 ‘Hn+l(6h) ( )

In (3.6), Hankel matrix of the backward shifted impulse response oh = (hy,...,hAx—1)

is defined as

hy hy ... hy_,
Hya(oh)=| : . 3.7)
hutt Py oo Ay

From (3.6) it can be seen that rank H,,;(w) = n+ 14 rank H,, (ch). By
Lemma 3.1.1 the system can be identified from w if and only if dim (left ker
H,+1(w))= 1. This implies the system can be identified from w if and only if
rankH, ;1 (w) = (2n+2) —1 =2n+ 1. This, in turn, implies rankH,|(ch) must
be n. By defining the controllability matrix as K = [ B AB ... AN"™"7?B | and
the observability matrix as O = [ C CA ... CA" }T, H,1(oh) can be written as
Hy11(0h) = O(sn)Kinx (n—n—1))- For Hy1(0h) to be of rank n both O and K must
be of rank n (It can be seen from the rank inequality rankO+rankK — n < rank(OK) <
min{rankO,rankK}). This implies the number of columns of K must be at least n
(This, in turn, implies the condition N > 2n + 1) and the system must be controllable

and observable.
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(ii)
Let us construct the Hankel matrix associated with the zero-input output due to an

initial state xq as

Yoo Y1 - YN-n—1
YI Y2 . YN-n

Hn+1 (y) = . . . (3-8)
Yo Yntl e IN=L ] 1y (N—n—1)

We will again apply Lemma 3.1.1 to H,.i(y). For left ker H,.i(y) to be one
dimensional rank of H,(y) must be n+ 1 — 1 = n. Note that H,,1(y) can be written
as Hy1(y) = OnxnXyx (N—n—1) Where O is the observability matrix defined in part (i)
andX = [ xo Axg .. A¥"""lxy |. By the rank inequality in part (i) for H,.1(y) to
be of rank n both O and X must be of rank n. This implies the number of columns of
X must be at least n (This, in turn, implies the condition N > 2n) and the system must

be observable and the pair (A, xp) must be controllable. O

3.2 Recursive Modeling Procedure

The recursive solution of the partial realization problem for switched systems is

presented under the following assumptions.
Assumptions

Al. The switched system (3.1) has single input, single output. The modes of the

system are controllable, observable and the orders n of the modes are known.

A2. The dwell time of the starting mode driven by the impulse is greater than N,,;, = 2n

i.e., if the switching instants for the DTLSS are defined as (71, 2, ...), T1 > Nyin-

A3. Dwell time of the subsequent modes whose zero-input responses are observed are

at least 2N, — 1 =4n—11.e., Tj— Ti_1 > 2Npin — 1 fori = 2,3, ...

A4. For each mode, there is at least one period in the impulse response sequence which
is sufficiently rich for the mode active in the same period i.e., for each mode j of the
DTLSS there is at least one switching instant 7; to that mode such that (A4;,x(7;)) is

controllable.
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It should be noted that the dwell time assumed for the modes is about twice the time
required to identify a single nth order system since the zero-input response produced by
a mode may coincide with the response of the previous mode and it may take N,;;, — 1
samples to detect a mode change (since in Lemma 3.1.2 (ii), it is shown that the zero
input dynamics of a system is identifiable from its zero input response by using at least
Npin samples, zero-input response produced by a mode may coincide with the response
of the previous mode for at most N,,;, — 1 samples) and N,,;;, samples more to identify
after the event is detected. Thus controllability, observability of the modes and the
assumption on dwell times are necessary conditions for identifiability. Assumption A4
which is also necessary is tested in Step 5 of the recursive procedure, no rank tests are

required.

In the partial realization problem, the input/output trajectory to be modeled is w(k) =
col(h(k),0(k)) where h(k) = hi,k =0,...,N;h(k) = 0,k < 0. The sequence w(k) is
defined for K < N. In order to work with sequences defined on the nonnegative time

axis N take

2(k) =w(N—k), k=0,1,... 3.9)

and define the backward shifts of the sequence z by

Z=0""zi=0.1,...N (3.10)

Note that z¥ =z and z~! = 67 fori = 1,2,...,N. It is easily seen that the MPUM of
Z in £2 (notice g = 2 since we have a SISO system) is B} = span{zo,zl, ...,zi}. The
procedure described below recursively finds a shortest lag kernel representation of 257
until a mode change is detected. Then the sequences z’ are redefined and the procedure

is repeated.
Recursive Procedure

The flowchart of the recursive procedure is depicted in Figure 3.1. The steps of the

procedure are then explained in detail.
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Input:
Impulse response samples,
Order of modes

¥
Initialize:
Data & system model

Compute
error Update
del

Identify mode
Output:
Kernel representation

Figure 3.1: Flowchart of the recursive partial realization procedure of DTLSSs

1. Initialization: The time reversed trajectory z and its backward shifts 7' are initially
defined by (3.9) and (3.10). If a mode change is detected when the data sample w(r)

is received, let N, = N — r+ 1 and redefine the sequences z, 7 as

Z(k) = W(N—k) k=0, 1,...,N—}"7Z(Nr) = COI(O, ])7
| . 3.11)
2(k)=0k>N,, and ' = M 'zi=0,1,...,N,.

In this way, the remaining data samples are considered as being generated by an

impulse applied at time r — 1 to set up initial conditions (state). Furthermore we

initially take R_; = I. The following steps are repeated for k =0, 1, ...

2. Error Computation: Let R;_1(0) be the kernel representation of the MPUM for

Z=1. The error at stage k is defined by

& =R (0)F (3.12)

k— k

Since cef = Ry_1(0)0zF = Ry_1(0)z"~! = 0 the sequence e

ek = (€9,0,0,...) and ep = col(Ay, Ay).

is a pulse of the form
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3. Event Detection: In general, a mode change is detected when the model represented
by the first row of Ri(0) is falsified by the recently received data. Because of the
assumptions (A2,A3) on dwell time the test for event detection need not be performed

for k < Nyin = 2n. Thus, a mode change is detected if the conditions
(i)k > Npin (ii)Ak 7é 0 3.13)

are simultaneously satisfied. Under the conditions (3.13) (i — ii) the controllable model

derived for the sequence 7!

cannot be updated without increasing the order which is
an indication of the mode change. Note that an event may be detected before the
currently active mode is identified. This happens when the zero-input response is not
sufficiently rich for the mode and is indicated by the conditions k > N,;;, and Ly <n
where L;_; denotes the degree of the first row of Ry_{(s). After the detection of mode
change Step 4 for the model update is skipped and the procedure proceeds with Step 5

to identify the mode.

4. Model Update: When the error sequence ¢* defined by (3.12) is nonzero, the
kernel representation R;_(o) has to be updated to obtain a kernel representation of
the MPUM for zX. Let Vi (o) be a kernel representation of the MPUM for e. Then it
is easily seen that

Rk(G) = Vk(G)Rk_l(G) (3.14)

is a kernel representation of the MPUM for z*. As explained in [10] the update matrix
Vi(s) is chosen in such a way that Ry (s) is row reduced at each step and the row which
does not lose rank at s = 0 (the row which gives a controllable model for Z*) is the
first row. Let L;_; and Zk_l denote the degrees of the first and second rows of R;_1(s)

respectively then the choice

Vk<S) = |i Aok _sAk :| lfAk =0or Ly 1> Zkfl and

Ay

Vi(s) = [ S/A

_()Ak } otherwise

meets the above requirements as shown in [10]. After the model update, the counter k

is incremented and the procedure returns to Step 2 for error computation.
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5. Identifiability Test and Ildentification of the Mode: For k > N,,;, = 2n the first row
of Ry (s) which does not lose rank at s = 0 is the kernel representation of the unique,
minimal order, controllable model of the sequence z* which is entirely generated by a
single mode of the switched system. Let r(s) = [ ri(s) r2(s) ] denote the first row of
Ry (s) for k > Nyy,. If the degree of r(s) is equal to the order n of the modes, then the
mode is identified. Taking the time reversal operation (3.9) into account, the kernel
representation of the mode is given by 7(¢)w = 0 and the kernel representation of the
zero-input dynamics is 7| (o )w = 0 where for a polynomial p(s) of degree n, p(s) is
defined as j(s) = s"p(s~!). Under the assumptions (Al A4) the starting mode driven
by the impulse is identified as soon as N, + 1 data samples are received. For the
subsequent modes whose zero-input responses are known, the degree of r(s) may be
lower than n. This indicates that the trajectory z* is not sufficiently rich hence the
mode cannot be identified on this visit. The identification of the mode is postponed
until a portion of the impulse response sequence which satisfies the condition of
Lemma 3.1.2 (ii) is received. Assumption A4 ensures that such a period exists. After
the identifiability test and identification of the mode, the flow of the procedure is

returned to Step 1.

Remark 3.2.1. It can be proven that the condition in Lemma 3.1.2 (ii) can be used to
guarantee the detection of switching in Step 3. The related theorem and its proof are

below.

Theorem 3.2.2. Assume R; and R, are minimal representations of the zero input
dynamics of any two modes (A1,C1), (A2,C>) of the DTLSS with Ry # R, and degR; =
degRy = n. Also suppose the assumptions (A1-A3) are fulfilled for the DTLSS. The
switching can always be detected by the recursive algorithm (the conditions in Step 3
(i) and (ii) are always satisfied) if the there is a switching instant x(1;;) (x(7;;) shows
the ith switching instant to mode j) for each mode j such that (Aj,x(%;;)) is controllable

and the pair (A;,C) is observable for j =2,3,...and i € {1,2,...}.

Proof. Without loss of generality consider any two adjacent modes of the DTLSS. Call
the former mode operating as mode 1 and the latter as mode 2. Call n as the order of
these modes. Suppose zero-input dynamics of these modes are represented with the

distinct polynomials R (s) and R, (s) respectively.
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Now suppose (Az,x(()z)) (with x(()z) showing the state of the DTLSS at the switching
instant to mode 2) is controllable, (A;,C,) is observable and after the dwell time
assumptions (A2,A3) are fulfilled, there is a switch to mode 2 from mode 1. Consider

the Hankel matrix of mode 1 H (1)

i1 constructed from the response due to the initial

state x(()l) (x(()l) shows the state of the DTLSS at the switching instant to mode 1) as

Cixy) Al
(n  _ ) .
H. = : : (3.15)
a1 oAty
IfR|(s) = 5" +a, 15" '+ ...+ ar;s+ap, from Ry (c)y = 0, it is clear that
(1)
[ap a1 ... ap1 1] ; =0. (3.16)
y(t+n)
Hence, we can see that
[ao a1 ... an-1 1 |Hpp1 =0 (3.17)

for k > 1. Define also Ry(s) = s" + by_15" 14+ ...+ bys+by. Suppose after 2n steps
from the switch, there is still no error found with the algorithm (i.e. the switching

could not be detected). This means both kernel representations are valid for mode 2

1.e.,
115%, =0 3.18
[ao a ... ap— } 1041 (3.18)
2
(b0 b1 o by 1]HZ =0 (3.19)
where Hﬁr)l 141 18 the Hankel matrix constructed with the first 2n+ 1 output data after

(2)

the switching due to the initial state x;" i.e.,

oL A
Hrsi)l,n+1 = : ; (3.20)
A A
Substituting (3.19) from (3.18) yields
"y by 0THP —0 3.21
[ ao—bo ... an_1—bp_y O] ntln (3.21)
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which implies

[a—bo - @y 1—by |HZ =0. (3.22)
Notice H,S%} can be written as
&)
Hl=0@x@ =1 1 arY . (3.23)
CzArzl*l

We know from the observability of (A2,C;) and controllability of (Az,x(()z)) that
0®) € R"™" is of full column rank and X(®) € R"™*" is of full row rank. That
(2) )

n

means rankH,,; = n. By linear independence of the rows of H,gzn we can say

[ ap—bo ... ay—1—by—1 | =0. This implies
apg — bo,...,an,1 = bn,1 (3.24)

Since kernel representation of two distinct modes of the DTLSS must be different, this

is a contradiction. Therefore, the proof is complete. ]

Remark 3.2.3. Note that after the switch detection, an impulse is applied in the
initialization step (Step I) to build the initial state at the instant of switching. Thus,
after a switch, the parameters of the system to be identified is (A, B’,C") where (A’,C’)
are the original (A,C) matrices of the active mode and B’ is the initial state vector xg
(xo 1s the state of the DTLSS at the switching instant). Since the matrices defining
the zero-input dynamics of the original system (A,C) are equal to (A’,C’), zero-input
dynamics can be correctly identified with the recursive procedure from (1,1) element
of R(s) after N,,;;, new data. Note that first row of R(s), r(s), is a kernel representation
for this newly “created” system (A’, B’,C’), thus, it is not the kernel representation of
the original system. One cannot derive original B matrix of the system, since only a

partial response due to an initial state is known.

3.3 Example

Consider the bimodal switched linear system seen in Figure 3.2. The first mode is

defined by the state space parameters

0 1 0
AI:{ 1 _1},31:[1}@:[0 1],Dy=[1] (3.25)
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Figure 3.2: Impulse response of the DTLSS for k£ = [0, 16]

and the second mode is given by
. —| =[-10 =[0 2
A=, | [B= C=| — |.D,=[0]. (3.26)

The impulse response sequence of total length 17 obtained by starting with the first
mode, running mode 1 for k € [0,7] and then switching to second mode for k € [8,16]
is givenas h = [ hy hy } where h; = (1,1,—1,0,1,—1,0, 1) is the sequence produced
by mode 1 and iy = (—1,0,1,0,—1,0,1,0,—1) is the zero-input response due to initial
state x(8) = col(1,—1) generated by mode 2. Figure 3.2 shows the response of the
system for k = [0, 16] where the instant of switching (k = 8) and detection of switching
(k= 11) are shown in circles. When the first 5 samples of # are received, the procedure
described above gives

s24+s+1 —s2—2s—1

Rals) = 452425 —3s2—2s (3.27)

as the kernel representation of the MPUM for the sequence z* defined in (3.10). The
kernel representation of the first mode is correctly identified from the first row of R(s)
as

(6’ +o0+1)y=(c’+20+1)u. (3.28)
As the procedure proceeds it is seen that the first component Ay, of the error sequence

(3.12) is zero hence the first row of Ry (s) remains the same for k € [5,10]. The mode
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change is detected at k = 11 when i(11) = 0 is received. The switching to mode 2 takes
place at k = 8 but cannot be detected before k = 11 since the second mode produces
the same response with mode 1 for k € [8,10]. After the event detection, the sequence

is initialized as explained above and

2 2
Ra(s) = { sl } (3.29)

S S

is found as the kernel representation of the MPUM for the time-reversed trajectory
consisting of the samples i(11)...h(14). From the (1,1) element of R4(s) the kernel
representation of the zero-input dynamics of mode 2 is correctly read as (624 1)y =0.
It should be noted that if the dwell time of mode 2 were not sufficiently long there
would not be enough data samples to uniquely identify the mode. This justifies the

assumption A3 on minimum dwell times.

To illustrate the identifiability condition given in Lemma 3.1.2 (ii) and the equivalent
condition in Step 5 of the recursive procedure, suppose that the (1,1) element of the
matrix A; is changed to —2 everything else remaining the same. Then the zero-input
response corresponding to initial state x(8) = col(1, —1) produced by the second mode
is hy (k) = (—1)¥*! for k > 8. The mode change is detected at k = 9 but mode 2 cannot
be identified from the available sequence &, since the pair (Az,x(8)) is uncontrollable.
The condition given in Lemma 3.1.2 (i) is not satisfied. In the recursive procedure this
is revealed by the matrix

(3.30)

s+1 —s
-5 s

Ry(s) = { 3 4
which is obtained after the samples hy(k),k € [9, 12] are received. The degree of the

first row of Ry4(s) is 1 which means that the given trajectory is not sufficiently rich for

mode 2 and could also be produced by a first order system.

3.4 A Different Assumption For the Procedure

From the previous sections, it can be seen that there is a possibility that even though
the assumptions on dwell times (A2,A3) are satisfied, detecting a mode change may
not be possible by the procedure. This fact is characterized by Lemma 3.1.2 (ii)
and the problem solved by assumption A4 (Note that apart from the condition on

dwell times assumptions (Al,A4) are mild conditions and are generically satisfied).
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However, a different assumption can be made to guarantee the detection of switching.
This assumption should guarantee that there is no element in the intersection of each
individual mode’s behavior set. In this section, such an assumption will be derived and
explained. It should be noted that even though the assumption which will be derived
in this section guarantees the detection of mode change, but not identifiability. So, it

cannot replace Lemma 3.1.2 (ii). First, the problem will be illustrated on an example.

Example 3.4.1. Let £ = (p,m,n,0,{(A4,B4,Cy)|q € O},x0) with Q = {1,2}, n =2,
m=1,p=1,x%=[0 0],

(3.31)
Azz[(l) g],Bzz[?],czz[l 1].

Suppose a unit impulse at time r = 0 is applied to this DTLSS. Also suppose the
assumptions on the dwell time (A2,A3) hold. It can be seen that starting from
time ¢ = 2 the output of the first mode will always be y(f) = 1 and the state will
be x(1) = [ 10 ]T. If a switch to the second mode occurs after the dwell time
assumption is fulfilled, it can also be seen that the output and state will still be the
same. Thus it will be impossible to detect the switching with the recursive algorithm.
Notice also that the pair (A, xo) will always be uncontrollable when xo = [ 10 } T(xo
is the initial state of second mode generated by the previous mode). In Chapter 3.3, this
problem is solved by assuming that a sufficiently rich period in the impulse response
data always exists. In an example like this such a period can never exist, therefore we
conclude the second mode of this DTLSS is not identifiable by this algorithm (Note
that in this case the second system is not minimal, but the example still illustrates the

problem).

Instead of the assumption A4, another assumption (which is more restrictive but can be
still regarded as generic) can be made to quarantee the switch detection and DTLSSs as
in Example 6 are formally excluded from this recursive algorithm’s application area.
One such solution would be assuming the intersection of the behavior sets of each

modes of the DTLSS is the empty set. In the following, a condition on the behavioral
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equation representations of each mode will be given. This condition guarantees any
two modes of the switched system to have no common trajectories in their behavior
sets. For this, some known results of polynomial matrix algebra in behavioral context

will be used.

Lemma 3.4.2. (Smith form, square case) Let R(s) € R7*4[s]. There exist unimodular

matrices U (s),V (s) € R1*4[s] such that
1. U(s)R(s)V (s) =diag(d(s),...,dy(s)).
2. There exist (scalar) polynomials g;(s) such that di1(s) = gi(s)di(s), i=1,...,q—1
Proof. For the proof, see [8]. [l

Remark 3.4.3. (Lemma 3.4.2) If R(s) is not square, then the Smith form can also be

defined. If R(s) is wide (g < q) or if R(s) is tall (g > ¢), the Smith forms are given by

- di(s) i}
di(s) 0 0 '
de(s)
S « (3.32)
de(s) 0 ... 0 ,
0 .. 0 |

respectively (Blank spaces are all zeros).

Lemma 3.4.4. Let B(R) :=kerR(c). *B(R) = {0} if and only if R(s) is unimodular.

PrOOf ((I‘fn

We know that for any matrix I'(s) € RS *8[s], R;(s) € R8*4[s] and Ry (s) € RS *4]s]
with ¢’ < g; if Ra(s) = ['(s)R(s), B(R1) C B(R,) (See [4]). If R(s) is unimodular,
then R(s)R~!(s) = I implies B(R) C B(I) = {0}.

((Only l“f")

Suppose R(s) € R8*4][s], g < q is not unimodular. By Lemma 3.4.2, we know that there

exist unimodular matrices U (s) € R$*8[s], V (s) € R?*4[s] such that

U(s)R(s)V(s) = D(s) (3.33)
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where D(s) € R8*9[s] is the wide rectangular matrix with one g x g diagonal submatrix
composed of invariant factors of R(s) and one g x (¢ — g) submatrix composed of zeros

i.e.,
d 1 (S) 0O ... 0
: : (3.34)

dg(s) O ... O

Multiplying (3.33) from the left by U ! (s) and from the right by V! (s) we get R(s) =
U~1(s)D(s)V~!(s). Since U(s) and V (s) are unimodular it is clear that their inverses
exist and they are again unimodular. We want to prove there exists a nonzero w such

that
R(c)w=U"Y(o)D(c)V ! (c)w=0 (3.35)

Define new variables h;, j = 1,...,q as h := V1 (o)w where h = col(hy, ..., h,). Since
left unimodular transformations do not change the behavior (see Lemma 2.2.1.4), the
equations U~ (6)D(c)h = 0 and D(c)h = 0 represent the same behavior. Also, since
R(s) is not unimodular, there exist a non-unity polynomial invariant factor d;(s) for an
i € {1,...,g} which has at least one nonzero root. Take this row of the equation and
consider

di(o)h; = 0. (3.36)

Now the proof is reduced to scalar case. It is clear that d;(s) = s +d; s 4 +d,, 1s

n—1

the characteristic equation of the scalar recurrence relation (3.36) (Note that (3.36) can

be written as h;(t +n) +d;,  hi(t+n—1)+...4+d;,hi(t) = 0). Let 4; € C, be one root

n—1
of d;(s). We know that there exist solutions to this recurrence relation which include
the term cA; with ¢ being an arbitrary constant (Notice even when A has complex part
ie., 4 = a+ jp, the term cA] has still a real part which is R {c¥]_, ())&’ (jB)'}.

Since we know that there is at least one nonzero A;, (3.36) has a solution with nonzero

real part i.e., h;(t) # 0. Thus h(t) # 0, w(t) # 0 which means B(R) # {0}. O

Definition 3.4.5. (g.c.r.d) [16] If three polynomial matrices satisfy the relation: P(s) =
H(s)G(s), then G(s) is called a right divisor of P(s), and P(s) is called a left multiple
of G(s). A greatest common right divisor (g.c.r.d.) of two polynomial matrices P(s)
and R(s) is a common right divisor which is a left multiple of every common right

divisor of P(s) and R(s).
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Lemma 3.4.6. [19]Consider P(s) € R7*4[s| and R(s) € R8*4[s|. If a unimodular

matrix U(s) € RE+0)* €19 (5] and a matrix T (s) € R9*4[s] are such that

U@{H”]:[””} (3.37)

U@{Pw}:lTy]. (3.38)

We can rewrite (3.38) as
]l -1 0170 )- [ o
if U(s) is partitioned accordingly. Thus, P(s) = Li(s)T(s) and R(s) = L(s)T (s)

implies 7'(s) is a common right divisor of {P(s),R(s)}. To show that it is the greatest

Ls(s) Le(s)
Ly(s) Lg(s)

common right divisor; consider the partition U (s) = { } so that from

(3.38) we can write

Ls(s)P(s) 4+ Le(s)R(s) =T (s) (3.40)
Consider a common right divisor X (s) of {P(s),R(s)} i.e.;

(3.41)

where A(s) and B(s) are arbitrary polynomial matrices with suitable dimensions.

Substituting (3.41) into (3.40) yields:

Ls(s)A(s)X (s) + Le(s)B(s)X (s) = T(s). (3.42)

We can see that for any common right divisor X(s) of {P(s),R(s)}, (3.42) holds.
Since Ls(s) and Lg(s) have the same number of rows, by defining the matrix L(s) =
Ls(s)A(s) 4+ Le(s)B(s), (3.42) can be rewritten as L(s)X(s) = T(s). So T(s) is a left
multiple of any X (s), and that means 7 (s) is the g.c.r.d. of {P(s),R(s)}.

Below is the main result of this section. This result is derived from the work [4].
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Theorem 3.4.7. Let Ry (s) € R8*4[s] and R (s) € RS *4[s] represent two behavior sets.
B(R1)NB(Ry) = {0} if and only if greatest common right divisor(g.c.r.d.) of R| and
Ry, R(s) € R¥*4[s] is unimodular (If Ry (s) and Ry (s) are scalar, B(R;) NB(R,) = {0}
if and only if any common divisor of the polynomials R\ and R, is constant).

Proof. Since by Lemma 3.4.6 R{,R; and their g.c.r.d. R satisfy U ( ? ) = ( Ig )
2

for some unimodular U (s);

B(R;) N B(R,) :%( 2; ) _ 3 ( §> _ B(R). (3.43)

By Lemma 3.4.4, we know that $5(R) = {0} if and only if R(s) is unimodular. So
unimodularity of R(s) implies B(R;) NB(R;) = {0}. O

Corollary 3.4.8. Suppose the assumptions in Chapter 3.2 (A1-A3) are fulfilled for
the DTLSS. The switching can always be detected by the recursive algorithm given in
Chapter 3.2 if kernel representations of the DTLSS’s each mode’s zero-input dynamics

(denominators of each mode’s transfer function) are co-prime.

Proof. The proof is done in a similar way to the proof of Theorem 3.2.2. Again,
without loss of generality consider any two adjacent modes of the DTLSS. Call the
former mode operating as mode 1 and the latter as mode 2. Call n as the order of
these modes. Suppose zero-input dynamics of these modes are represented with the

polynomials R; (s) and R, (s) respectively.

Now suppose B(R) NB(R,) = {0} and after the dwell time assumptions (A2,A3) are
fulfilled, there is a switch to mode 2 from mode 1. Suppose after 2n steps from the
switch, there is still no error found with the algorithm (i.e. the switching could not be

detected). Consider the Hankel matrix H, 1,41 constructed by the impulse response

data as
y(0) ... y(n)
Hn+17n+1 - . (3.44)
y) e ¥(2n)
IfR(s) =s"+a, 15" '+ ... +ars+ag, from Ry (c)y = 0, it is clear that
(1)
[ ay ap ... a,—1; 1 } =0. (3.45)
y(t+n)
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Hence, we can see that

[ao ar ... ap-1 1 |Hpp1x=0 (3.46)

forall k> n+1. Since Hy, 11 541 is constructed from the impulse response samples of a
minimal realization, a new column added to H, , would be linearly dependent on the
first n columns. This implies (3.46) holds for all £k > 1 (Notice since first n columns

comprise the basis for the column space of H, ImH,, 1 x € ImH,, 1 ;4 1).

Suppose also Ry(s) = s + by_15" Y+ ...+ bis+by. By our assumption, if there is no
error after 2n steps (after the switch), that means the kernel representation R (c)y =0

is valid for new data which implies
[bo b1 ... byt 1 |Hppipp2=0 (3.47)

also holds. Since any new column added to H,, 1,2 would be linearly dependent on
first n+ 1 columns, [ by by ... b1 1 }Hn—i—l,k = 0 actually holds for all k£ > 1.
This implies kernel representations of both modes are valid for k > 1 i.e., B(R;) N
B(R,) # {0}. This contradicts our initial assumption. Therefore the proof is complete.

]

Theorem 3.4.7 and Corollary 3.4.8 provides a formal assumption on the domain
of recursive algorithm’s application area. Therefore, assuming ‘“the intersection of
zero-input behaviors of each mode of the DTLSS is the set {0}” will guarantee not to
encounter problems as in Example 3.4.1. However, even though we can always find a
relation that represents the data, note that for identifiability, condition in Lemma 3.1.2

(ii) must be satisfied.
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4. RECURSIVE IDENTIFICATION OF DTLSSs FROM ARBITRARY
INPUT/OUTPUT SEQUENCES

The aim of first part of this chapter is to present the necessary conditions for a general
discrete-time linear system to be identifiable from a measured input/output sequence
of it. Then the problem of recursively identifying the local modes of a DTLSS will be
stated. A recursive method for the identification of a discrete time linear system from
measured input/output data is given in [4] . The method is mainly presented in [4] as a
solution to the continuous time polynomial-exponential time series modeling problem.
Then, the connection to the problem of identification of a discrete time linear system
from measured input/output data is given. In the problem statement section, we discuss
how to reformulate the problem of identification of a DTLSS to use this recursive
procedure. In the third part, the modified recursive procedure for identification of the
local modes of a DTLSS will be stated. Finally, the chapter ends with an example to

illustrate the procedure.

4.1 Identifiability Conditions

The material presented in this section can be found in [17] and [18]. In this section,
sufficient conditions for identifiability of a general discrete time linear system from
arbitrary input/output measurements, will be given. It turns out, by reformulating the
problem (how to do it will be explained in Section 4.2) these sufficient conditions can
be used for identifiability of the local modes of a DTLSS from arbitrary input/output

measurements.

First, for the purposes of this section let us define the Hankel matrix of L block rows

as in (3.3) associated with the trajectory w = (wg,wy,...,wn_1) as
wWo Wl ...  WN_L
Hy () = w:1 w:z WN:LJrl @D
Wi—1 WL ..  WN_]
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The following definition is important for stating the identifiability conditions.

Definition 4.1.1. (Persistency of excitation)The time series u = (u(0),u(1),...,u(N —

1)) is persistently exciting of order L if the Hankel matrix Hy (u) is of full row rank.

Lemma 4.1.2. [18]Let

1. w=col(u,y) be an N samples long trajectory of the LTI system B, i.e.,

o[- Do

2. the system ‘B be controllable and
3. the input sequence u be persistently exciting of order L+n

Then any L samples long trajectory w = col(u,y) of B can be written as a linear
combination of the columns of Hp(w), and any linear combination H(w)g, g €

RN=L+1 s a trajectory of B, i.e.,

col span (HL(w)) = B|o n—1]- 4.3)
Proof. For a proof, see [18]. [

In [17] it is stated that for sufficiently large L, namely L > [+ 1, Lemma 4.1.2 answers

the identifiability question.

Theorem 4.1.3. The system B € £ is identifiable from the exact data w = col(u,y) €

B if B is controllable and u is persistently exciting of order [ +n+ 1.

Note that applying Theorem 4.1.3 to a single input single output LTI system of order
n, it can be said that minimum number of sufficiently rich samples required for
guaranteeing the identification of the system is n+/[+n+/+1=2n+2/+ 1. For
systems whose order n are equal to their lag /, this number is from now on defined as

N/

min = 4n+1. Note that the condition in Theorem 4.1.3 is just a sufficient one, and

the identification of the system may occur before N/

min RUMber of samples.
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4.2 Problem Statement

In this section, how to reformulate the problem of recursive identificiation of local
modes of DTLSS for making it possible to use the procedure given in [4] will be
explained. For this purpose, without loss of generality consider any local mode of a

SISO DTLSS represented as

(ox)(k) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where A € R, B e R™!, C e R, D e R x(k) € R, u(k) € R, y(k) € R and

4.4)

the initial state of the mode is defined as x(0) = xo. Recall from Chapter 3 that the

kernel representation of one mode can be written as,

[ D(6) —N(0) ] {y } = 0. 4.5)

u

Also, recall from Definition 2.2.2.4 that the transfer function of the zero state behavior
of this mode can be acquired from H(s) = D~ !(s)N(s). It can also be found by H(s) =

C(sI —A)~'B+D. Now consider the system with zero initial condition defined as

(0:)(K) = Ax(k) + Bt (K w6

y(k) = Cx(k) + Du' (k)
where the new matrix B is created with adding a new column to B which is equal to
x0, D is created with adding a zero column to D and u(k) consists of two inputs with
the new input v(k) being an impulse i.e, B=[B xo |,D=[D 0] and (k) =
col(u,v) where u = (0,u(0),u(1),...) and v=6 = (v(0),v(1),v(2),...) = (1,0,0,...).
Note that if the response of the system (4.4) to a specific sequence of arbitrary inputs
u = (u(0),u(1),...) is y = (y(0),y(1),...); the response of (4.6) to the sequence of
inputs u' = (4/(0),4/(1),u/(2),...) = col(u,v) = ({ (1) } : [ M(OO) } : [ u(ol) } ,) is
y = (¥(0),y(1),y(2),...) = (0,y(0),y(1),...). That means the system (4.6) produces
the same response with (4.4) preceded by a zero. This is the idea similar to the one
stated in Remark 3.2.3 to construct the initial state of the DTLSS at the switching
instant. By this reformulation, and by constructing an initialization step similar to the
one in Chapter 3.2, the problem is reduced to recursively identifying a discrete time
)'JI‘

linear system from the observed sequence w € (R?)" of length N. Observe that if we

define the kernel representation of this newly “created” system (4.6) as

=)

[ D(o) —Ni(o) —Na(o) ] =0, 4.7)

<
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(1,1) element of the 1 x 2 transfer matrix D~'(s) [ Ni(s) Na(s) | is the transfer

function of the zero state behavior of the original mode D! (s)N(s).

Now, to show that this reformulation does not change the identifiability conditions

given in Theorem 4.1.3, following fact is stated as a theorem.

Theorem 4.2.1. The system ‘B represented by (4.4) is identifiable from the data
sequence w = col(y,u) if and only if the system B represented by (4.6) is also

identifiable from the data sequence w = col(y,u,v).

Proof. Recall from Chapter 3 Lemma 3.1.1 and how the block Hankel matrix of L
block rows associated with a partial data sequence w, Hy(w) is defined in (4.1). By
making use of Lemma 3.1.1 we need to prove that if dim left ker H,,1(w) is 1, dim
left ker H,;(w) is also 1. Since H,i(w) and H,(w) has 2n+2 and 3n+ 3 rows

respectively, this is equivalent to stating

rank H,y1(w) =2n+1=rank H,4|(w) =3n+2. 4.8)
Consider
Yo Y1 e YN-n—1 |
wo Wi e WN—n—] uy Ul .. UN—p—]
Hyp(w)=1+:+ + : =1 : 4.9)
Wn Wpgl ... WN-1 Yn Yn+1 -~ YN-1
| Un Upt1 ... UN-]

and suppose rank H,(w) =2n+ 1. Now consider the Hankel matrix associated with

the n times forward shifted trajectory w as in the proof of Lemma 3.1.2 as

0 0 Yo Y1 o YN-n—1 ]
0 O up UL .. UN—p1
0 O 1 0o .. 0
Hoa=| o @.10)
uo
Yo Yyt - o o ¥Yn Yn+l -+ YN-—I
up ur ... ... o Uy Upy1 ... UnN—1
10 0 0 0 |
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Notice that by elementary row operations matrix H,, 1 (w) can be rewritten as

~\ Lyt ‘ 0
Hn+1(w) - |: 0 ‘H,H_](W) :| . 4.11)

Since rank I, 1 =n+ 1 and rank H,1(w) =2n+ 1, rank H, 1 (w) = (n+1) + (2n+
1) = 3n+ 2. Therefore the proof is complete. [

4.3 Recursive Modeling Procedure

The recursive solution of the identification problem for DTLSSs from arbitrary

input/output sequences is presented under the following assumptions.
Assumptions

Al’. The switched system (3.1) has single input, single output. The modes of the

system are controllable, observable and the orders n of the modes are known.

A2’. The dwell time of the starting mode driven by an initial state and arbitrary inputs

is at least N/, ..

=4n+1 ie., if the switching instants for the DTLSS are defined as

(Tl,TQ,...), Tl >N/

min®
A3’. Dwell times of the subsequent modes whose responses due to arbitrary inputs are

/
observed are at least 2N,

—1=8n+1ie, T—T1 > 2Npin— | fori=2,3,...

A4’. Every window of length N/

min

in the input sequence u(t) of the DTLSS is
persistently exciting of order 2n + 1, i.e., the Hankel matrix Hp,(u) constructed by

uls,, 1 Where to,t' € Nand ¢’ — 19 > N,

nin 18 always of full row rank.

It should be noted that the dwell time assumed for the modes is again about twice the
time required to identify a single nth order system since the response produced by a

mode may coincide with the response of the previous mode and it may take N, — 1

samples to detect a mode change (since in Chapter 4.1, it is stated that the a system is

guaranteed to be identifiable from its response due to arbitrary inputs by using at least

!

in Samples, the response of a mode may coincide with the response of the previous

mode for at most N, ..

— 1 samples) and N . samples more to identify after the event

in
is detected. Thus controllability of the modes, the assumption on dwell times and the
assumption A4’ are sufficient conditions for identifiability. Note that even though the

assumption A4’ seems restrictive, it is necessary for identification and a random input
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signal would generically satisfy this assumption. By adopting these assumptions it is
not needed to check for identifiability in the recursive procedure. Nevertheless, in an
example at the end of the chapter, the implication of an input signal not satisfying A4’

on the recursive procedure will be illustrated.

Also note that the partial realization problem explained in Chapter 3 can be considered
as a special case of problem at hand. In the thesis, it is explained first since making
the proofs of identifiability conditions for the partial realization problem is relatively

simpler because the DTLSS has zero inputs for # < 0 (the initial state is zero).

In the recursive procedure for the problem at hand, the input/output trajectory
originally aimed to be modeled is w'(k) = col(y(k),u(k)) where y(k) = yi,k =
0,...,N;y(k) =0,k < 0and u(k) = uy,k=0,...,N;u(k) = 0,k < 0. In this problem, we
assume that the initial state of the active mode can always be nonzero i.e., past inputs
for k < 0 are represented with an initial state x(0) = xo. However, as it is explained
in the previous section, this initial state will be constructed with an additional impulse
input. Therefore, the data to be modeled is converted into a prepended and augmented
version of w'(k). Also, by taking the time reversal operation into account the modified

data is defined as

0 0
wk = of,lo0], fork=0
1 0
- (4.12)
Yk—1 Yo 0 0
wk = ey | e |l uo |, O], 10|, | fork=1,...N+1.
0 0 1 0

We also need to define an integer p = 0 initially for further use in the procedure.
Recursive Procedure

The flowchart of the recursive procedure is depicted in Figure 4.1. The steps of the

procedure are then explained in detail.

1. Initialization: The time reversed trajectory is initially defined by (4.12). If a mode
change is detected in the time instant k = p’, redefine k = 0, p = p + p’ and define the

new trajectory at each step as
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Input:
Arbitrary input/output sequence,
Order of modes

¥
Initialize:
Data & system model

Compute
error U pd ate
del

Identify mode
Output:
Kernel representation

Figure 4.1: Flowchart of the recursive identification procedure of DTLSSs from
arbitrary input/output sequences

0 0
wk=101],]0], fork=0
1 0
- (4.13)
Yp+k—1 Yp 0 0
wh = Upik—1 | sees | Up |1 O ,] O ],...| fork=1,....N—p.
0 0 1 0

Furthermore, initially take R_;(s) = I. The following steps are repeated for k =0, 1, ...

2. Error Computation: Let R;_1(0) be the kernel representation of the MPUM for

wk=1. The error at stage k is defined by

¢ = Ri_ 1 (o)wk. 4.14)
As in partial realization problem, the sequence ¢* is again in the simple form
& 0
ek = Sl f |, |- To give an explicit formula for error computation
& 0
similar to the one given in [4], consider the sequence wX is defined as wk =
0 0
di_1,di—2,...,do,d_1,| O | ,...| for k=0,1,... where d_; = | O |. The first
0 1
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element &, of the error sequence ¢* at each step is given by
& =Ry (O)dk_l fork=20

(/)

R (0 4.15

k_,l()dk_1_~fork:1,2,... (4.15)
J! !

k
& =Ry (O)dk_] + Z
j=1

where R,(ij (0) denotes the jth derivative of R;_1(s) at s = 0.

Next, preprocess Ri_1(s) such that only last element of the error corresponding to the
rows of same degree in R;_;(s) is nonzero i.e., find a g x ¢ matrix P representing

elementary row operations such that:
Rk—l (S) = PRk_l (S) (416)

and only last element of the error corresponding to the rows of same degree in Ry_(s)
is nonzero. Then normalize the error such that its first nonzero element is 1, i.e. it has

the shape:

0

(4.17)

0

1
- ék -
3. Event Detection: This step is very similar to the corresponding one in the partial
realization problem. In general, a mode change is detected when the model represented
by the first row of Ry(0o) is falsified by the recently received data. Because of the
assumptions (A2,A3) on dwell time the test for event detection need not be performed

fork <N/

min = 4n -+ 1. Thus, a mode change is detected if the conditions

(i)k > Npin (ii)é‘l 75 0 (4.18)

are simultaneously satisfied. Under the conditions (4.18) (i — ii) the controllable model

derived for the sequence w*~!

cannot be updated without increasing the order which
is an indication of the mode change. Note that if an event is detected before the
currently active mode is identified, it means that the assumption A4’ does not hold.
This happens when the input is not persistently exciting for the mode and is indicated
by the conditions k > N, . and L; |, < n where L; _, denotes the degree of the first row
of R;_1(s). After the detection of mode change Step 4 for the model update is skipped

and the procedure proceeds with Step 5 to identify the mode.
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4. Model Update: Find a kernel representation for the MPUM of the error. Let r be
the number showing the index of the first element of the error equal to 1. Define the

kernel representation of error as the update matrix Vi (s) where

I..1 O 0
Vi(s) = 0 s 0 . 4.19)
0 —& I,

Then, update the kernel representation of the MPUM, i.e., the matrix Ri(o) in

accordance with the equation:
Ri(0) = Vi(0)Ri—1(0). (4.20)

Finally reorder the rows of Ri(o) such that the row degrees are ascending from top
to the bottom. Note that by the preprocessing operation defined in Step 2 and by
reordering the rows such that the row degrees are ascending from top to the bottom,
the update matrix defined by (4.19) does not change the row reducedness of R(0),
i.e., resulting Ry (o) is always row reduced. This guarantees that the representation for

the MPUM acquired at each step is always the shortest lag representation.

Step 5. Identification of the mode: For k > N’

in = 4n+ 1 the first row of Ry(s)
which does not lose rank at s = 0 and which has the least order among all rows
is the kernel representation of the unique, minimal order, controllable model of the
sequence w* which is generated by the modified single mode of the switched system.

Let [ D(s) —Ni(s) —Na(s) | denote the first row of Ry (s) for k > NJ,,.. If the degree

min®
of r(s) is equal to the order n of the modes and the degrees of other two rows are strictly
greater than n, then the mode is identified. Taking the time reversal operation (4.12)
into account, the kernel representation of the mode is given by 7(c)w = 0 where for a

polynomial p(s) in a row of Ry(s) of degree n, p(s) is defined as
pls) =s"p(s™"). (4.21)

In addition, if we take the reciprocal of this row as defined in (4.21) and define the new
rowas | D(s) —Ni(s) —Na(s) |, as explained in the previous section (1,1) element
of the 1 x 2 transfer matrix D~!(s) [ Ni(s) Na(s) | is the transfer function of the zero

state behavior of the original mode i.e.,

H(s) =D '(s)N(s). (4.22)
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Figure 4.2: Response of the DTLSS for a sequence of arbitrary inputs for k = [0, 17|

Under the assumptions (Al’-A4’) the modes driven by persistently exciting inputs are

identified after at most N’

in data samples are received. After the identification of the

mode, the flow of the procedure is returned to Step 1.

4.4 Example

Consider again the bimodal DTLSS example used in Chapter 3.4 with the data as seen
in Figure 4.2. The two modes of the DTLSS are represented by (3.25) and (3.26)

respectively.

The output sequence of total length 18 obtained in response to the arbitrary input
sequence u. Starting with the first mode, running mode 1 for k£ € [0,8] and
then switching to the second mode for k € [9,17] corresponding input sequence
for the DTLSS is u = [ u; up | where u; = (1,2,3,4,7,5,1,3,2) and u, =
(—-1,1,1,0,2,0,1,—1,5). Corresponding output sequence is given by y = [ Yy }
where y; = (1,3,4,5,9,9,0,1,8) and y, = (—6,4,5,—3,—4,3,6,—3,—5). Inu and y
parts of the sequences with same indices are showing the inputs and outputs of the

corresponding modes (See Figure 4.2 for the response of this DTLSS). Suppose that
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the initial condition for the first mode was zero (note that the algorithm could also be

used for nonzero initial state with no difference).

After 8 steps of the recursive algorithm, at k = 7 (recall that we always start with one

additional impulse input), i.e., after receiving

0 9 9 5 4 3 1 0 0
w(7):1,5,7,4,3,2,1,0,0,
0 0 0 0 0 0 0 1 0
(4.23)
the procedure gives
—s2—s—1 s24+2s+1 0
Ry(s) = —0.1255% +0.755> +0.125s 1.1255% — 1.552 — 0.25s 0.87553 +0.12552
s +1.826152 4+ 0.043554+0.1739  —s°> —2.43485% — 0.087s — 0.3478 s> +0.2174s% +0.1739s
(4.24)

as the kernel representation of the MPUM for the sequence w(7). By taking the
reciprocal of the first row as defined in the procedure we get the “augmented” kernel

representation of mode 1 as

y y

[ D(6) —Ni(6) —Ny(o) || u|=[-062~0—-1 o?+20+1 0] | u | =0.
\% 1%

(4.25)

As explained in the previous two sections, the transfer function of the original mode 1
is correctly obtained from the (1, 1) element of the acquired transfer matrix from (4.25)
as

~ - 242z+1

H(Z) = Di1 (Z)N] (Z) = m (4.26)

For the remaining data from mode 1, first element of the error vector is found to be zero

and no change is made in the first row of R(s). After receiving the first data from the

second mode at k = 9, the conditions in Step 3 of the recursive procedure are satisfied

and the switch is detected as soon as it occurs. Then, the procedure is initialized

as described in Step I and again after using 7 data points from mode 2, i.e., for
6 3 —4 -3 5 4 —6 0 0

wh=| 1|, lol.] 2 .o, [1].[1]|.]=1].,{0]|.,]0],.]@2n
0 0 0 0 0 0 0 1 0

the recursive procedure gives

241 —§2 —45% 4+ 6s
R(s) = 0.0173s% +0.2491s 53— 0339152 +0.0242s —1.25615° +1.519s? (4.28)
—2.85715% —0.05725s — 2.8804 3.1527s% —0.07955 —0.28 s>+ 11.37925% — 17.5624s
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Again, by applying the same procedure we get the correct transfer function of zero

state behavior of mode 2 as

~ 1

H(z) =D '(2)Ni(z) = Tk (4.29)

Notice, different from the partial realization problem, since we could use the
responses due to persistently exciting inputs, we could identify both modes’ complete

input/outpur behavior.

Now we will illustrate the case when the input trajectory is not persistently exciting
of order 2n+ 1 = 5. Consider the first mode only and take the input sequence u =
(1,1,1,1,1,1,1,1,1). Notice the length of the input sequence is 9 > N, . but clearly
sequence u is not persistently exciting for the mode. After Sth step of the procedure, it

gives the first row of R(s) as
r(s)=[0 s—1 s]. (4.30)

For subsequent data, first element of error is always zero and no update is done in r(s)
so the mode cannot be identified. This is seen in the recursive procedure when k > N, ..

and the order of r(s) is still equal to 1 which is lesser than the order n = 2 of the mode

assumed to be known a priori.
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S. PROBLEM OF CONSTRUCTING A CONSISTENT STATE SPACE
REPRESENTATION

Constructing state space representations for the modes from the acquired kernel
representations with the procedures described in Chapters 3 and 4 is not entirely
trivial. More precisely, the state space realization of each different mode of the
switched system may not generate the observed input-output data. This is due to the
fact that the state of the active mode in the exact moment of switching, acts as the
initial state of the subsequent mode of the switched system. Since one can use an
arbitrary realization algorithm for one mode, the state trajectory may not be the same
for each realization. For linear case, input-output behavior does not change under
similarity transformations. However, for switched systems, a similarity transformation
on one arbitrary mode also changes the state trajectory of that mode. This changes
the initial state of the subsequent mode. Thus it changes the input-output behavior of
the switched system. This problem can be fixed by slightly modifying the statements
of results. In future research, it may also be possible to characterize all possible
state space realizations which are consistent with the kernel representations and which

would generate the observed data.

In the following, this point is stated clearly using an example.

Example 5.0.1. Consider again the bimodal switched linear system used as an example

in both Chapter 3 and 4 given by state space parameters
0 1 0
AI:{_I _J,Blz[l},q:[o 1],Di=[1] (5.1)

[ e[t oo e

Suppose a similarity transformation is applied to the first mode with the transformation

matrix
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2 0
p:{oz}. (5.3)

So the new state space parameters of the first mode is given by

Alz[_ol _11},31:[132],01:[0 2],D1=[1]. (5.4)

Suppose as in the partial realization problem, the first mode operates for k € [0,7]
and the switching occures in k = 8. It is clear that the first mode will have the same
impulse response data as in Chapter 3.3 for k € [0,7]. However, in this case the state at
the switching instant will be changed into x(8) = { _11//22 ] from x(8) = { _11 1 So
the output for k = 8 will be y(8) = —1/2. From that, it can be easily seen that input

output behavior of the switched system has changed.

It should be noted that if the same transformation matrix P in Example 5.0.1 was used
for similarity transformation of both modes, the input-output behavior would have
remained the same. However, since an arbitrary realization algorithm could be used for
finding a state space representation from the acquired kernel representations of each
mode, one cannot be sure whether the found state space realization would generate
the observed data. Therefore, the global viewpoint presented in [20] should be used
for realizability of switched linear systems. This viewpoint gives the identifiability
conditions for the whole switched system instead of dealing with local modes of
the system. It turns out minimality of the global system does not necessarily imply
minimality of local systems(modes). In [20], there is also a procedure given for
constructing the minimal realization for DTLSSs from Markov parameters. This
procedure however, is different from the viewpoint adopted in this thesis. Still, some
formal aspects of this new viewpoint is studied through the progress of the thesis,
and they will be presented in this chapter briefly. In the next section definitions of
span-reachability, observability and minimality of a DTLSS will be given. An example
will be provided to show that all modes of a switched system should not necessarily
be minimal for the corresponding switched system to be minimal. Then, realizability

conditions for DTLSSs in terms of Hankel matrices will be given. Finally, at the end
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of the chapter, ways of solutions to the problem defined above will be discussed by

making use of the existing literature.

5.1 Minimality of DTLSS Realizations

Notation 5.1.1. Denote by N the set of natural numbers including 0. Consider a set
Q which will be called the alphabet. Denote by Q* the set of finite sequences of
elements of Q. Finite sequences of elements of Q are called strings or words over Q.
Each non-empty word w is of the form w = aja;...a; for some ay,ay,...,a; € Q. The
element q; is called the ith letter of w, for i = 1,2, ...,k and k is called the length w.
The empty sequence(word) is denoted by €. |w| denotes the length of word w; note that
|€] = 0. The set of non-empty words is denoted by O, i.e. 07 = Q*\{e}. wv is called
the concatenation of word w € Q* with v € Q*. For each j=1,...,m, e; € R™ is the

Jjth unit vector which has 1 in its jth element and zeros elsewhere.

Definition 5.1.2. (Lexicographic Ordering) Suppose that Q = {1,....D}. A

lexicographic ordering < can be defined as follows: For any v,s € Q%, if |v| < |s],
then v <s. If 0 < |v| = |s|, v # s and for some [ € {1,...,|s|}, v; < s; with the usual
ordering of integers and v; = s; fori =1, ...,/ — 1 then v < 5. Here v; and s; denote the ith
letter of v and s respectively. Note that < is a complete ordering and Q* = {vy,vy,...}

with vy < vy < .... Notethatvi =€ and foralli e N, g € Q, v; < viq.

Example 5.1.3. (Notation 5.1.1, Definition 5.1.2) This is an example to illustrate
Notation 5.1.1 and Definition 5.1.2. Consider a bimodal switched linear system.
Since the system has two modes, the alphabet set is: Q = {1,2}. The
set Q" consists of all possible switching sequences of the system which is:
0" ={e1,2,11,12,21,22,111,112,121,122,211,212,221,222,...}. Note that the
elements of the set Q* is ordered in accordance with the lexicographic ordering defined
above. Each element(switching sequence) of the set Q* except € is called a word.
Define two elements of set Q* as w = 112 and v = 212. Note that both |w/|,|v| = 3. The

concatenation of these two words is: wy = 112212.

Definition 5.1.4. (DTLSS) A definition of a DTLSS similar to the one used earlier

in this work is given to make the connection with given notation and context for
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the purposes of this chapter. A discrete-time linear switched system (DTLSS) is a

discrete-time control system of the form

2{ Xr 41 = AgX: + Bg,u; and xo is fixed (5.5)

yt = Cq[xl .
Here Q = {1,...,D} is the finite set of discrete modes, D is a positive integer. For each
t € N, g; € Qis the discrete mode, u; € R is the continuous input, y; € R? is the output

at time ¢. Moreover, A, € R"™", B, € R, C, € RP*" are the matrices of the linear

system in mode g € Q, and xg is the initial continuous state. The notation

(p’m7n7Q’{(Aq7Bl]7C¢7)‘q€Q}ax()) (5-6)

is used as a short-hand representation for DTLSSs of the form (8.5).

Throughout the chapter, X denotes a DTLSS of the form (5.5). The inputs of X are the
continuous inputs {u },- , and the switching signal {q; },—,. The state of the system at

time 7 is x;. Note that any switching signal is admissible.

Notation 5.1.5. Let Q be a finite set, 2 be a linear space, Ag: & — 2, 6 € Q
be linear maps and let w € Q*. The linear map A,, in 2 is defined as follows. If
w = g, then A is the identity map, i.e Acx =x forallx € 2. If w = 0,0,...0; € O,
O1,...,0r € Q, k > 0, then

A, =AGgAg, . Ag,. (5.7

If 2" =R" for some n > 0, then A,, and each A5, 6 € Q can be identified with an n x n

matrix. In this case A,, defines a product of matrices.

The notation Q<" is used to represent the set {w € Q*||w| < n} of all words w € Q*
of length at most n — 1. M,, is the cardinality of Q<" and an enumeration is fixed such

that
Q<n = {vl,...,an}. (5.8)

Notation defined above will be used to define observability and reachability matrices

for DTLSS:s.
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Theorem 5.1.6. (Span-Reachability) Define the span-reachability matrix R(X) of £

9‘{(2) = [ AV1§7 AV2§7 AanE ] € RHX(|Q|m+])Mn where

5.9
B= [ X0, Bl, ceny BD }
Then, X is span-reachable if and only if rank R(X) = n.

Theorem 5.1.7. (Observability) Define the observability matrix O(X) € RPICMwn of

Y as follows:

C:Avl C]
CA _ |c

O(T) = " where C=| (5.10)
CA,,, Cp

Then X is observable if and only if rank O(X) = n.

Example 5.1.8. Consider a bimodal single input single output DTLSS of order n = 3
with the initial condition xo(Let £ = (p,m,n,Q,{(A4,B4,Cy)|lq € Q},x0) with Q =
{1,2},n=3, m =1, p = 1). The span-reachability matrix of ¥ is defined as:

R(E)=[B A1B AB A1A|B A1A2B A)A|B ArAB | € R3*2! where
B:[X() B, B ]
(5.11)

The observability matrix O(X) of X is defined similarly.

Procedure 5.1.9. (Reachability Reduction) Assume dim P3(X) = n” and choose a
basis by, ...,b, of R" such that by, ..., b, span Im 93(X). In the new basis, A, B,,Cy,q €
Q and x( become as follows
Ar A/ r nr Br xr

Aq:|:06] A;q]/:|ch:[cq Cq }7Bq:l0q:|>x0:|:6):| (5.12)
where A} € R 1" By € R">m xr € R". Then X, = (p,m,n",0,{(A},B;,Cp)lq €
Q},xp) is span-reachable, and has the same input-output map as X.
Intuitively, ¥, is obtained from X by restricting the dynamics and the output map of X

to the space Im R(X).

Procedure 5.1.10. (Observability Reduction) Assume that dim ker O(X) = n —n°
and let by, ...,b, be a basis in R" such that b, ,...,b, span Ker O(X). In the new
basis, A,, B,,C, and x( can be rewritten as

A2 0 B 0
AQZ[AZ A;’]’CZ[CZ O]’Bq:{BZ]’XOZ{%] (5.13)
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where A7 € R">"", Bo € R">™, Co € RP*™ and xj € R"”. Then the DTLSS %, =
(p,m,n°, Q,{(Ag, By, Cy)|q € Q},x() is observable and its input-output map is the same
as that of X. If X is span-reachable, then so is ¥,,.

Intuitively, X, is obtained from X by merging any two states xi,x; of X, for which

O(X)x; = O(X)xz.

Procedure 5.1.11. (Minimization) First transform X to a span-reachable DTLSS X,
and then transform X, to an observable DTLSS X, = (X,), . Then %, is a minimal

realization of the input-output map of X.

Using the definitions and procedures above, Example 5.1.12 is given to highlight the

fact that minimality of the DTLSS does not imply minimality of its modes.

Example 5.1.12. Let £ = (p,m,n,0,{(A4,B;,C,)|q € Q},x0) with 0 = {1,2}, n =3,
m=1,p=1x=[0 1 0],

010 0
Ai=|001[,Bi=|0|,Ci=[10 0]
|0 0 1| | 0 |
(5.14)
[0 1 0] [0 ]
Ay=1011[,Bp=|1[,C,=[0 0 1]
|0 0 1| | 0 |

The system is observable, but it is not span-reachable. In order to see observability,
notice that the sub-matrix [ CT(C1A;)"C} ]T of O(X) is of rank 3. In order to see
that ¥ is not span-reachable, notice that the last row of PR(X) is a zero row. Hence dim

MR(X) < 2. Using Procedure 5.1.11, we can transform X to the minimal realization

Zm = (pvmanma Q7 {(AZI7B?7CZI)|q € Q}7x6n) (5'15)

of yy (input-output map of X): Q = {1,2},n" =2,xj = [ 1 0 }T and

0 0] [0 ]

Al=171 o |:BI=],|Cr=1[0 1]
] ] - (5.16)
(1 0] (1]

Ay = 1 0 By = 0 ’C’ZnZ[O O]
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Since a minimal realization of a linear system must be reachable and observable, it is

easy to see that neither (A", Bf',C}",x{}') nor (A%, BY,C',x{) are minimal.

5.2 Existence of a Realization

In this section, necessary and sufficient conditions for the existence of a DTLSS
realization for a known Markov-parameter sequence similar to the conditions in the
linear case will be given. Following [20], first, the definitions of Markov parameters,
combined Markov-parameters and Hankel matrices for DTLSSs will be briefly given.

Then the result on existence of a realization in [20] will be stated.

Definition 5.2.1. (Input/Output Map) Denote 7 = Q x R™ and % " as the set of all

non-empty and finite sequences of elements of %/. A sequence
w = (qo,uo).-(qr,ur) €%, 1 >0 (5.17)

describes the case, when the discrete mode ¢; and the input u; are fed to X at time i, for
i=0,...,t. Also, consider a state xo € R". For any w € % * of the form (5.17), denote
by yx(x0,w) the output of ¥ at time ¢, if X is started from x( and the inputs {u;}’_, and
the discrete modes {qi}ﬁzo are fed to the system. The map ys : ZZ+ — R”, defined by

Vw e U :ys(w) = y(xo,w), is called the input/output map of X.

Definition 5.2.1 implies that the input/output behavior of a DTLSS can be formalized
as a map

U > RP. (5.18)

The value f(w) for w of the form (5.17) represents the output of the DTLSS
(considered as a black-box system) at time ¢, if the inputs {”i}izo and the switching

sequence {g;}'_ are fed to the system.

In the sequel, we identify any element w = (qo,uo)...(q;,u;) € Z * with the pair of
sequences (v,u),veE QT, u e (Rm)+, v =qo-...qr and u = ug...u;. Also, the following

notation is needed to define the Markov Parameters of an input/output map:

Consider the input/output map f. For each word v € Q" of length |v| =1 > 0 we define

for R = RPas fi(u) = f((v,u)).
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Definition 5.2.2. (Markov Parameters) Denote 0¥* = {w € Q* | |w| > k}. Define
the maps Sg : Q1" - R and ij 1 0** - RP, j=1,...,m as follows; for any v € Q*,
9,90 € O,

Sg(vq) = f14(0,...,0) and

(5.19)
S;(QOVQ) = fqovq(ejaoa ...,0) —fqovq(o, ., 0)

where e; € R" is the vector with 1 as its jth entry and zero everywhere else. The

collection of maps {Sf };n: , is called the Markov Paremeters of f.

In addition, Markov parameters of a state space realization can be defined as follows:
Define v as any possible switching sequence(word) for DTLSS, i.e define v as any
element of the set Q*, thatis v € Q*. Define ¢, g as any discrete mode ¢, qo € Q(Define
q,qo as any letter of the alphabet Q). Note that ¢, g are not necessarily distinct. The
Markov Parameters of a DTLSS are defined by,

S} (vq) = C4Axo and
; (5.20)
S7(qovq) = CyAvByejs j=1,...,m.

Markov parameters of a DTLSS can be interpreted as Markov parameters of an
ordinary linear system except they are defined for all possible switching sequences

in the switched case.

Definition 5.2.3. (Combined Markov Parameters) A combined Markov-parameter

M/ (v) of f indexed by the word v € Q* is the following pD x (Dm 4 1) matrix

Spv1) ST(Ivl) ... ST(Dvl)
MF () — s) (.v2) SA( ?vz) LS (z?vz) 521)
s (;/D) sf (l.vD) L (va)
where for any w € O, |w| > 2, 8/ (w) = S{(w) S{(w) o Shw) |-
Definition 5.2.4. (Hankel Matrix) Let the elements of the set Q* are ordered with the

lexigoraphic ordering < (as in Example 2), i.e Q* = {vy,vy,...} withv; < vy < .... The
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Hankel Matrix Hy of f is defined as the following infinite matrix

Mf(vlvl) Mf<V2V1) Mf(vkvl)
Mf<V1V2) Mf(VQVQ) Mf(VkVZ)
Hy = M (viv3) M (vpvz) ... MI(nvz) . (5.22)

Example 5.2.5. Consider again the bimodal DTLSS in Example 2. Remember Q* =
{vi,va,...} = {€,1,2,11,12,...} with vi < v, < .... The Markov parameters of this

system are given by

S3(1) = Cixo sf(11)=c,B,

S)(21) = CiApxg  S(111) = C1A By 523
$1(22) = CyArxo  S1(112) = CA1B, .
s1(111) = C1A2xg  SI(121) = C1A2B,
s1(112) = CAZg  §1(122) = GA2B,
S)(121) = CiAA1xg S (211) = C1A1B,
Combined Markov-parameters of the system are given by
/ sy s{(1) {2
MI(e)=| 7,0 o f
5o(2) §1(12) §1(22)
[ of ! f ]
wor-[ 31 S
| Sp(12) §7(112) §4(212) | (5.24)
fov | b sfazny sf21) |
M (2)=| o y y
s)(22) §](122) §](222)

Ml(e) M) M2
MI(1) MI(11)  M/(21)
MI(2) MI(12) M/(22) ..
Hy=1 pmfany mf(11) mf@ein) .. |- (5.25)

1
2) M/ (212)
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Theorem 5.2.6. A Markov parameter sequence is realizible by a DTLSS if and only if
rank Hy < +oo. A minimal realization of f can be constructed from Hy (see Procedure

5 in [2]) and any minimal DTLSS realization of the sequence has dimension rank H.

Theorem 5.2.6 gives a compact realizability condition for DTLSSs similar to the linear
case. However, checking this condition in the recursive identification algorithm given
in Chapter 3 is not possible, since impulse response data for all possible switching
sequences would be required. Nevertheless, after acquiring the kernel representation
for the modes it can be stated that there exists a minimal state space realization that
would generate the observed data. In particular, the method given in [13] can be used
to solve the problem of writing the state equations in a common basis (which is defined
in the beginning of this chapter) so that found state space representations for each local
mode generate the same response to an impulse or arbitrary inputs that are used in
the identification process. For this method to be used the switching instants must be
known. As illustrated in the example in Chapter 3.4. detecting the exact instant of
switching may not be possible with the recursive algorithms presented in this thesis.
However, taking the instants of switch detection as the exact moment of switching
and applying the method in [13] would be possible and solve the problem. It should be
noted that even though the state space representations acquired with the method in [13]
would be consistent with the data at hand, they can be acquired up to a similarity
transformation and they may not be consistent with another data sequence from the
same DTLSS. Characterizing all possible state space realizations that would generate

the observed data may also be possible, so it is another problem.
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6. CONCLUSIONS

The two main results of this thesis can be stated as follows: Firstly, a recursive
procedure which gives kernel representations of the modes of a DTLSS from impulse
response measurements is presented. Then this procedure is modified accordingly and
also presented as a solution to the problem of recursive identification of a DTLSS
from a measured arbitrary input/output sequence. The behavioral approach to linear
system theory is adopted to state the results. In partial realization problem, it is shown
that the zero-input dynamics of the modes can be uniquely identified provided the
observed trajectory is sufficiently rich and the dwell time of the modes is greater than
a given lower bound. For the latter problem, it is also shown that input/output behavior
of all modes can be identified if the input sequence for the mode satisfies a specific
persistency of excitation criterion and the dwell times of the modes are greater than a
given lower bound. In both problems, the system model is recursively updated every
time a new input-output sample is available. This makes the methods suitable for
on-line implementation and to detect mode changes of the switched system. Finally, a
way, existing in the literature, to find state space representations of the modes which are
consistent with the observed data is suggested. In future work the recursive method can
be extended to the identification of a DTLSS from multiple input-output trajectories
corresponding to different switching sequences. The method can be further improved
with respect to numerical efficiency and accuracy. A block recursive version of the
method can also be developed in which only the model testing and event detection
steps are performed recursively. Then, subspace methods can be used to identify the

modes which satisfy the dwell time assumptions.
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APPENDICES

APPENDIX A.1 : MATLAB Code for Recursive Partial Realization of DTLSSs
APPENDIX A.2 : MATLAB Code for Recursive Identification of DTLSSs from
Arbitrary Input/Output Sequences
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APPENDIX A.1

clear
clc
syms X

R11=1;

R12=0;

R21=0;

R22=1;

R=[R11 R12;R21 R22];
ck=[1 O]*Rx*[1:;0];

L=0;

deltakl =0;
deltak2=1;
V=[x x;Xx Xx];
flag =0;

%Program will be ended with this flag when there are
%no data remaining

counter=0;

flag2 =0;

counter2 =0;

deg=input(’ Order of modes:\n’);

while flag==
flag2 =0;
counter2 =0;
counter=counter+1;
y=input(’ Please enter the impulse response sequencel\n’);

if counter==
y=y
else
y=[B y]
end
B=y;
while flag2==
counter2=counter2 +1;
if (counter2>length(y))
flag2=1;
R
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R11=1;
R12=0;
R21=0;
R22=1;
R=[R11 R12;R21 R22];
ck=[1 O]*Rx[1:;0];
L=0;
deltakl =0;
deltak2=1;
V=[x x;x Xx];
continue
end
D=y (1l:counter2);
D_ters=fliplr (D);%Time reversal operation
D_sym=poly2sym (D _ters);

hata_poll=D_symxck;
hata_pol2=sym2poly (hata_poll);
hata_pol=poly2sym (hata_pol2);
hatal=sym2poly (hata_poll );
hata2=fliplr (hatal );
if (counter2>length (hata2))
deltakl1 =0;
else
deltakl=hata2 (counter2);
end
%The degree of second row is defined as Lk2
Lk2=max ((length (R21)—1),(length(R22)—1));

9TTTITTSTSITTSTENVNENT DETECTIONE /6757676 %0
if (L==deg) && (L<Lk2) && (deltakl ~=0)
an=counter? ;
fprintf (°Switch at k=%i\nEnter the data
instant n=%i again\n’,an,an)
fprintf (’Ker. repr. of the MPUM for the
R
R=[1 0;0 1];
V=[x x;Xx Xx];
ck=[1 O]*Rx*[1:;0];
L=0;
deltak1 =0;
deltak2=1;
kontrol2 =0;
counter2 =0;
flag2=1;
y=0;
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counter=0;
continue
end

96757876787878787676767777 T PDATE - MODELYSISISI787777 777757
if ((deltak1==0) Il (L>((counter2 —1)/2)))
V(l,1)=1;
V(1,2)=—deltakl ;
V(2,1)=0;
V(2,2)=x;
L=L;
else
V(l,1)=1;
V(1,2)=—deltakl ;
V(2,1)=x/deltakl ;
V(2,2)=0;
L=(counter2 —1)—L;
end

\&
R=VxR;
R1l1=sym2poly (R(1,1));
R(1,1)=poly2sym (RI1);
R12=sym2poly (R(1,2));
R(1,2)=poly2sym (R12);
R21=sym2poly (R(2,1));
R(2,1)=poly2sym (R21);
R22=sym2poly (R(2,2));
R(2,2)=poly2sym (R22);
ck=[1 O]*R=x*[1;0];

end

kontrol=input(’ Are there any remaining data?(1/0)\n’);

if (kontrol==0)
flag=1;

end

end

APPENDIX A.2

clear

clc

syms X

97676767% 1. INITIALIZATION 9577575775767 %
R=[x 0 0;0 1 0;0 O 1];

R(1,1)=1;

V=[x X X;X X X;X X X];

sequence =[];
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y=1[1;
u=[1];
w=[1];
flag=1;
n=input (’ Order of the modes:\n’);
Nmin=4xn+1;
while flag==
R=[x 0 0;0 1 0;0 O 1];
R(1,1)=1;
V=[x X X;X X X;X X X];
y=input(’ Enter the output sequence:\n’);
u=input(’ Enter the input sequence:\n’);
seq=[y;ul;
sequence=[sequence , seq];
[q, N]=size (sequence);
w=[0 sequence (1 ,:); O sequence(2,:); 1 zeros(1,(N))];
N=N+1;
k=1;
for k=1:N
data=fliplr(w(:,1:k));

975567577676757% 2. ERROR COMPUTATION 9787575767678/ 77E7TSI57E767 o

Rll=sym2poly (R(1,1));
I1I=1length (R11);
vlil=zeros (1.,k);
for i=1:111
if i==111
vlil=vI11+4+R11(1i).xdata(1,:);
else
vlil=v1I1+RI1(i).x[data(l,111—i+1:k) zeros(1l,l111—-1)];
end
end

R12=sym2poly (R(1,2));
112=1length (R12);
vi2=zeros (1,k);
for i=1:112
if 1==112
v12=v12+R12(i).x data (2 ,:);
else
v12=v12+R12(i).x[ data(2,112—i+1:k) zeros(1,112—1i)];
end
end

R13=sym2poly (R(1,3));
113=length (R13);
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vl3=zeros(1,k);
for i=1:113
if 1i==113
v13=v13+R13(1i).xdata (3 ,:);
else
v13=v13+R13(1).x[ data(3,113—1+1:k) zeros(1,113—1)];
end
end

vsum=vl11l+v12+v13;
el=vsum(1);

R21=sym2poly (R(2,1));
121=1ength (R21);
u2l=zeros (1,k);
for i=1:121
if i==121
u2l=u21+R21(1i).xdata (1 ,:);
else
u2l=u2l1+R21(i).x[data(1,121—i+1:k) zeros(1,I121—1)];
end
end

R22=sym2poly (R(2,2));
122=1ength (R22);
u22=zeros (1,k);
for i=1:122
if 1==122
u22=u22+R22(i).xdata (2 ,:);
else
u22=u22+R22(i).x[data(2,122—i+1:k) zeros(1,122—1)];
end
end

R23=sym2poly (R(2,3));
123=1ength (R23);
u23=zeros (1,k);
for 1i=1:123
if 1==123
u23=u23+R23(1i).xdata (3 ,:);
else
u23=u23+R23(i).x[data(3,123—i1+1:k) zeros(1,I123—1)];
end
end
usum=u21+u22+u23;
e2=usum(1);

67



R31=sym2poly (R(3,1));
I131=1ength (R31);
y3l=zeros (1,k);

for

end

i=1:131
if i==131
y31=y31+R31(1).xdata(1,:);
else
y31=y31+R31(1).x[data(1,131—-1+1:k) zeros(1,I31—-1)];
end

R32=sym2poly (R(3,2));
132=length (R32);
y32=zeros (1,k);

for

end

i=1:132
if 1==132
y32=y32+4+R32(1).xdata (2 ,:);
else
y32=y32+R32(1).x[data(2,132—i+1:k) zeros(1,132—1)];
end

R33=sym2poly (R(3,3));
133=length (R33);
y33=zeros (1,k);

for

end

i=1:133
if 1==133
y33=y33+R33(1).xdata (3 ,:);
else
y33=y33+R33(i).x[data(3,133—i+1:k) zeros(1,I133—-1)];
end

ysum=y31+y32+y33;
e3=ysum(1);

er=[el;e2;e3];

9557177757770 3. EVNGENT DETECTION 9567878760770 7 TSI TSI 77 o
if (k>Nmin) && (el ~=0)

fprintf (’Switch detected at k=%d \n’ ,k—1)

R

Rll=sym2poly (R(1,1));

R12=sym2poly (R(1,2));

R13=sym2poly (R(1,3));

degrl=max ([ length (R11),length (R12),length (R13)]) —1;
rowl=x"degrl .*xsubs (R(1,:),x"—1);

num=—sym2poly (rowl (2));
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den=sym2poly (rowl (1));

tf (num, den)

pause

data(1:2,1)

fprintf (’When asked, enter again the data received
after the displayed point including it.\n’)

pause

9878787878777 TTTTTTTT 1. INITIALIZATION 995557575757876767 0
R=[x 0 0;0 1 0;0 0 17];

R(1,1)=1;

V=[x X X;X X X;X X X];

sequence =[];

y=[1;

u=[];
w=[];

flag=1;

break

end

Yolailedeadledededledledledledledldledledledledledleddledledledledledledledledledledledledledledledl e edledldledledledledledledledledledledledledd
9%Preprocess R such that only last element of error
Jcorresponding to the same degree rows of R is nonzero
degrl=max([length (R11),length (R12),length (R13)]) —1;
degr2=max ([ length (R21),length (R22),length (R23)]) —1;

degr3=max ([ length (R31),length (R32),length (R33)]) —1;
r=find (er);

if (degrl==degr2) && (degrl~=degr3)
if (any(r==1)==1) && (er(2)==0)
R([1 2],:)=R([2 1],:);
er([1 2])=er([2 1]);
elseif (any(r==1)==1) && (er(2)~=0)
R(1,:)=R(1,:)—(er(1)/er(2)).xR(2,:);
er(1)=0;
end
elseif (degr2==degr3) && (degrl~=degr2)
if (any(r==2)==1) && (er(3)==0)
R([2 3],:)=R([3 2].:);
er([2 3]D=er([3 2]);
elseif (any(r==2)==1) && (er(3)~=0)
R(2,:)=R(2,:) —(er(2)/er(3)).xR(3,:);
er (2)=0;
end
elseif (degrl==degr2) && (degr2==degr3)
if (length(r)==1) && (er(1)~=0)
R([1 3],:)=R([3 1],:);
er([1 3]D=er([3 1]);
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elseif (length(r)==1) && (er(2)~=0)
R([2 3],:)=R([3 2],:);
er([2 3])=er([3 2]);

elseif (length(r)==2) && (er(1)==0)
R(2,:)=R(2,:) —(er(2)/er(3)).xR(3,:);
er(2)=0;

elseif (length(r)==2) && (er(2)==0)
R(1,:)=R(1,:)—(er(1l)/er(3)).xR(3,:);
er(1)=0;

elseif (length(r)==2) && (er(3)==0)
R([2 3],:)=R([3 2],:);
er([2 3])=er([3 2]);
R(1,:)=R(1,:)—(er(1l)/er(3)).«xR(3,:);
er (1)=0;

elseif (length(r)==3)
R(1,:)=R(1,:)—(er(1)/er(3)).xR(3,:);
R(2,:)=R(2,:) —(er(2)/er(3)).xR(3,:);
er (1)=0;
er (2)=0;

end

end
IITTTTTTTSISIIITTTTTTSTSIIITTTTTTTTSIIITTTTTTSISIS o

9%%Normalize the error such that first nonzero element
9%would be 1.

r=find (er);

er=(1/er(r(l))).xer;
YITTTTTTTSTSIIITTTTTSTSTSIIITTTTTTSTSTTIITTTTTT o

er;

9187770 4. MODEL UPDATE 9S75757SSISTSTSTSISISISISISISTS78787878 %o
97%Create the update matrix V
if (length(r)==3)
V=[x 0 O0;—er(2) 1 0;—er(3) 0 1];
elseif (length(r)==2)
if (er(l)==1)
V=[x 0 0;—er(2) 1 0;—er(3) 0 1];
elseif (er(1)==0)
V=[1 0 0;0 x 0;0 —er(3) 1];
end
elseif (length(r)==1)
if (er(l)==1)
V=[x 0 0;0 1 0;0 0 17;
elseif (er(2)==1)
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v=[1 0 0;0 x 0;0 0 17];
else
vV=[1 0 0;0 1 0;0 0 x];
end
else
V=eye (3);
end
IISTTTSTSTSTITTTTTSTSTTIITTTTSTSTIEIITTTTI o

V;

9%%Update the kernel representation of the MPUM: R
R=VxR;
Ylstleddlelledledlededledledledledledlededledledledledledledldledledledledledledledlededledledledledl el edledledledledl el ededledl

9%Define row degrees

R1l1=sym2poly (R(1,1));

R12=sym2poly (R(1.,2));

R13=sym2poly (R(1,3));

R21=sym2poly (R(2,1));

R22=sym2poly (R(2,2));

R23=sym2poly (R(2,3));

R31=sym2poly (R(3,1));

R32=sym2poly (R(3.,2));

R33=sym2poly (R(3,3));

degrl=max ([ length (R11),length (R12),length (R13)]) —1;
degr2=max ([ length (R21),length (R22),length (R23)]) —1;
degr3=max ([ length (R31),length (R32),length (R33)]) —1;
Vtalaleleledledledledledlededledl el dledledlodlodlododledledlededledledledbedededl el dledledledlododlodledledledledledledledkedbedde e

9%Reorder the rows of R in ascending row degrees

if (degrl>degr2) && (degr2>degr3)
R([1 3],:)=R([3 1],:);

elseif (degrl>degr3) && (degr3>degr2)
R([1 3],:)=R([3 1],:);
R([1 2],)=R(2 11],:);

elseif (degr2>degr3) && (degr3>degrl)
R([2 3],:)=R([3 2],:);

elseif (degr2>degrl) && (degrl>degr3)
R([1 3],:)=R([3 1],:);
R([2 3],:)=R([3 2],:);

elseif (degr3>degrl) && (degrl>degr2)
R([1 2],:)=R([2 1],:);

elseif (degrl>degr2) && (degr2==degr3)
R([1 3],:)=R([3 1],:);

elseif (degr2>degrl) && (degrl==degr3)
R([2 3],:)=R([3 2],:);
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elseif (degr2>degr3d) && (degrl==degr2)
R([I 3],:)=R(3 1],:);
elseif (degrl>degr2) && (degrl==degr3)
R([1 2],:)=R([2 1],:);
end
IR
Jopause
end
a=input(’Any more data? (1/0));
if a==
continue
else
flag=0;
end
R
RIl=sym2poly (R(1,1));
RI12=sym2poly (R(1,2));
R13=sym2poly (R(1,3));
degrl=max ([ length (R11),length (R12),length (R13)]) —1;
rowl=x"degrl .xsubs(R(1,:),x"—1);
num=—sym2poly (rowl (2));
den=sym2poly (rowl (1));
tf (num, den)
pause
end
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