

ĠSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Fidel BAYAM, B.Sc.

Department: Electronics and Communication Engineering

Programme: Electronics Engineering

MAY 2005

CHAOTIC OSCILLATOR BASED RANDOM NUMBER

GENERATOR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62730662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ĠSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Fidel BAYAM, M.Sc.

(504021207)

Date of submission : 9 May 2005

Date of defence examination: 30 May 2005

 Supervisor (Chairman): Assoc. Prof. Dr. Ali ZEKĠ

Members of the Examining Committee Assoc. Prof. Dr. Serdar ÖZOĞUZ

 Assist. Prof. Dr. A. ġima ETANER-UYAR

MAY 2005

CHAOTIC OSCILLATOR BASED RANDOM NUMBER

GENERATOR

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

YÜKSEK LĠSANS TEZĠ

Müh. Fidel BAYAM

(504021207)

Tez Danışmanı : Doç.Dr. Ali ZEKĠ

Diğer Jüri Üyeleri Doç. Dr. Serdar ÖZOĞUZ

 Yrd. Doç. Dr. A. ġima ETANER-UYAR

MAY 2005

KAOTĠK OSĠLATÖR TABANLI RASGELE SAYI ÜRETECĠ

Tezin Enstitüye Verildiği Tarih : 9 Mayıs 2005

Tezin Savunulduğu Tarih : 30 Mayıs 2005

iii

ACKNOWLEDGEMENT

First I would like to thank my supervisor Assoc. Prof. Ali Zeki for his guidance and
support during my B.Sc. and M.Sc. thesis.

Next I would like to thank Assoc. Prof. Serdar Özoğuz for his valuable contribution.
In this work, the test chip was submitted with the research budget of Assoc. Prof. Dr.
Serdar Özoğuz who is awarded by TÜBA‘s (Türkiye Bilimler Akademisi) Young
Scientists Award Program (TÜBA-GEBİP).

I feel obliged to thank to my family, without their support, all I could have achieved
would be a complete failure.

Finally, I would like to thank Keklik Alptekin for her endless support. I feel very lucky
for every single day of six years we have spent together.

May 2005 Fidel Bayam

iv

CONTENTS

TABLE LIST vı

FIGURE LIST vıı

ÖZET ıx

SUMMARY x

1. INTRODUCTION 1
1.1 Motivation 1
1.2 Organization of Thesis 1

2. RANDOM NUMBER GENERATION BASICS 3
2.1 Pseudo Random Number Generators (PRNGs) 4
2.2 True Random Number Generators (TRNGs) 5

2.2.1 SW-Based Generators 5
2.2.2 HW-Based Generators 6

2.3 Post-Processing 6
2.4 Statistical Tests 7

2.4.1 Frequency Test (Monobit Test) 7
2.4.2 Serial Test 7
2.4.3 Poker Test 8
2.4.4 Runs Test 8
2.4.5 Autocorrelation Test 8
2.4.6 FIPS 140-1 Statistical Tests 8

2.5 IC Random Number Generators 9
2.5.1 Direct Amplification of Noise 9
2.5.2 Oscillator Sampling 10
2.5.3 Chaos Based Generators 10

3. CHAOS 12
3.1 Chaos in Electronic Systems 12
3.2 Chua‘s Circuit 14

4. CHAOTIC OSCILLATOR BASED RANDOM NUMBER GENERATOR 16

4.1 Construction of Chaotic Oscillator 16

4.1.1 RLC Resonator 16

4.1.2 Basic LC Oscillator 19

4.1.3 Block Level Chaotic Oscillator 21

4.1.4 Bipolar Transistor Chaotic-LC Oscillator 24
4.1.5 MOS Transistor Chaotic-LC Oscillator 28

4.2 Random Bit Generation 31
4.2.1 Construction of the Clock Signal 33
4.2.2 Combining Bits In One Signal 34
4.2.3 Implementing Von Neumann‘s De-Skewing Algorithm 34

4.3 IC Implementation 35
4.3.1 Bipolar Chaotic Oscillator 36
4.3.2 MOS Transistor Chaotic-LC Oscillator 37
4.3.3 Difference Amplifier 39

v

4.3.4 Comparator Circuit 41
4.3.5 ―OR‖ Circuit 42
4.3.6 DFF 44
4.3.7 EXOR Gate 45
4.3.8 Divide-by-two Circuit 46
4.3.9 Output Drivers 47
4.3.10 Toplevel Integration 48

5. CONCLUSION 50

REFERENCES 52

BIOGRAPHY 54

vi

TABLE LIST

 Page

No

Table 2.1: Conditions of runs test 9
Table 4.1: Different parameter-sets for which chaotic oscillation occurs 23
Table 4.2: Parameter sets that generate chaotic oscillation 30

vii

FIGURE LIST

 Page No

Figure 2.1: Direct amplification of noise ... 10
Figure 2.2: Oscillator sampling technique .. 10
Figure 3.1: Chua's Circuit... 14
Figure 3.2: I-V characteristic of Chua's diode ... 15
Figure 3.3: Attractor of Chua's circuit ... 15
Figure 4.1: Parallel RLC circuit .. 16
Figure 4.2: V1 versus t, for R=-10 .. 17
Figure 4.3: V1 versus t, for R=10 ... 18
Figure 4.4: V1 versus t, for R= ... 18
Figure 4.5: The vector field of a system (a) for positive R; (b) for negative R 19
Figure 4.6: Implementation of negative resistance with cross coupled transistors .. 20
Figure 4.7: Plot of (V1/VT) for I=1mA, and VT=25mV ... 21
Figure 4.8: Chaotic circuit .. 22
Figure 4.9: V1 for a1=0.6, and a2=2 .. 23
Figure 4.10: Trajectory of the chaotic circuit in Figure 4.8 24
Figure 4.11: Chaotic LC oscillator .. 25
Figure 4.12: Numeric analyses result of the BJT Chaotic-LC oscillator 27
Figure 4.13: Trajectory of the BJT Chaotic-LC Oscillator (x versus z) 27
Figure 4.14: MOS transistor chaotic-LC oscillator .. 28
Figure 4.15: Waveform of the State Variable x versus time 31
Figure 4.16: Trajectory of the MOS Chaotic-LC Oscillator 31
Figure 4.17: Constructed subspaces with comparator references 32
Figure 4.18: Placement of comparator references ... 33
Figure 4.19: Connections of comparators .. 34
Figure 4.20: construction of clock and data signals .. 34
Figure 4.21: Realization of Von-Neumann‘s De-Skewing Algorithm 35
Figure 4.22: Phase Space (VA-VB) versus (VC-VD) of the BJT Chaotic Oscillator 37
Figure 4.23: Waveform of (VA-VB) .. 37
Figure 4.24: Phase Space of the MOS Transistor Chaotic Oscillator 38
Figure 4.25: Waveforms of (VA-VB) and (VC-VD) differences 39
Figure 4.26: Subtraction circuit .. 40
Figure 4.27: DC characteristic of a differential pair ... 40
Figure 4.28: Simulation results of subtraction circuit .. 41
Figure 4.29: Comparator circuit .. 42
Figure 4.30: Simulation results of comp0 and comp1 ... 42
Figure 4.31: OR circuit ... 43
Figure 4.32: Getting Vref ... 43
Figure 4.33: Simulation results of OR circuit .. 44
Figure 4.34: DFF circuit ... 44
Figure 4.35: Simulation results of DFF ... 45
Figure 4.36: EXOR gate ... 46
Figure 4.37: Simulation results of EXOR .. 46
Figure 4.38: Construction of signal "clk/2" .. 47
Figure 4.39: Load structure was used in CML simulations 47

viii

Figure 4.40: Simulation results of CML drivers ... 48
Figure 4.41: Toplevel layout of the system ... 49

ix

KAOTĠK OSĠLATÖR TABANLI RASGELE SAYI ÜRETECĠ

ÖZET

Bu çalışmada, yüksek hızlı, sürekli zaman LC-kaotik osilatör tasarlanmış ve bu
osilatörün çıkışları rasgele bit üretiminde kullanılmıştır. Hem Bipolar hem de MOS
transistorlu osilatör versiyonları için devre deklemleri türetilmiştir. Bu denklemlerin
nümerik denklem çözücü programlar yardımıyla çözülmesiyle kaotik osilasyonun
sağlandığı görülmüştür. Devreler, Spectre spice simülatörü ve IHP SGB25VD
0.25µm SiGeC BiCMOS prosesi model parametreleri kullanılarak test edilmiştir.
Rasgele sayı üretimi, osilatör çıkışlarının 2 farklı referansla karşılaştırılmasıyla elde
edilmektedir. Oluşturulan bitlerin istatistiksel özelliklerini iyileştirmek amacıyla Von-
Neumann algoritması tasarlanarak entegre edilmiştir. Üretilen çıkış bitleri periyodik
olmadığından anlamlı bitlerin oluşma anlarını belirten bir saat işareti tanımlanmıştır.
Rasgele sayı üretimi için gerekli olan alt bloklar yüksek hızlı çalışmaya uygun olacak
şeklide Emetör Bağlamalı Lojik ve Akım Modlu Lojik aileleri kullanılarak
tasarlanmıştır. Spectre simülatöründe gerçekleştirilen simülasyonlar, tasarlanan
rasgele bit üretecinin yaklaşık 300Mbit/s hızında çıkış oluşturabildiğini göstermiştir.
Çıkış işaretlerini cip dışına alabilmek amacıyla Akım Modlu Lojik çıkış sürecüleri
tasarlanmıştır. Kaotik osilatör ve rasgele bit üreteci sistemi, IHP SGB25VD 0.25µm
SiGeC BiCMOS prosesi ile gerçeklenmiş ve üretime gönderilmiştir. Çipin toplam güç
harcaması 50mW mertebesindedir. Toplam kırmık alanı 1 mm x 0.5 mm‘dir.

x

CHAOTIC OSCILLATOR BASED RANDOM BIT GENERATOR

SUMMARY

In this study, a high speed continuous time LC-chaotic oscillator was designed and
utilized as a random bit generator. Circuit equations were derived for both MOS
transistor and BJT versions. These equations were solved by using numeric solvers,
and chaotic oscillation was observed. Spectre circuit simulator was used as the
simulator. Circuits were verified by using IHP‘s SGB25VD 0.25µm SiGeC BiCMOS
process. To generate successive ‗1‘s and ‗0‘s, two comparators with different
references were used. A well-known Von-Neumann de-skewing algorithm was also
implemented in order to improve statistical properties of the generated bit stream.
The clock signal was constructed using the outputs of the comparators in order to
define the bit generation events. The random bit generation sub-blocks were
implemented as bipolar Emitter Coupled Logic (ECL) and Current Mode Logic
(CML) gates. Spectre simulations showed that the average throughput of the
designed random bit generator is approximately 300Mbit/s. The CML output drivers
were designed to output the generated data and clock signals. The whole system,
including the BJT chaotic oscillator and the random bit generation sub-blocks, were
implemented in IHP‘s SGB25VD 0.25µm SiGeC BiCMOS process. The chaotic
oscillator and the random bit generator block consume approximately 50mW power
under typical conditions. Total area of the chip is 1 mm x 0.5 mm.

1

1. INTRODUCTION

1.1 Motivation

Random numbers are statistically independent and unbiased binary digits, and a

random number generator is a system whose output consists of fully unpredictable

bits. Random Number generation has a great importance in many applications. For

example: numerical simulations, gaming, statistical analysis, distributed

computations and cryptographic protocols. Almost all cryptographic protocols

require the generation and use of secret values that must be unknown to attackers,

so in cryptographic applications, the unpredictability of the output implies that the

generator must also be not observable and not manipulable by any attacker.

There are two kinds of random number generators (RNGs). Pseudo Random

Number Generators (PRNGs) use deterministic algorithms to generate random bits

starting from the initial seed. True Random Number Generators (TRGNs) use a non-

deterministic phenomenon to produce randomness [1].

True random number generation can be made by using various techniques. One of

them is using chaotic circuits. Although chaos is a deterministic process, most times

it is accepted to be a true random number generator due to very high initial condition

sensitivity and complex behavior. For electronic systems a deterministic system is

called chaotic if an infinitesimally small perturbation to its initial conditions produces

a change in its behavior.

In 1961, Edward Lorentz discovered the butterfly effect coincidently while trying to

forecast the weather. ―Butterfly effect‖ is the idea that very small causes can

produce dramatically out-of-proportion effects.

 Chaos was first observed electronically in Chua‘s circuit. Chaotic nature of Chua‘s

circuit was first observed by Matsumoto in 1983, and the first experimental results of

Chua‘s circuit which confirm the presence of chaos were taken by Zhong and Ayrom

in 1984 [2].

1.2 Organization of Thesis

This thesis presents a high speed continuous time chaotic-LC oscillator and utilizes

it to implement a high speed random bit generator.

2

Chapter 2 presents basic concepts of random number generation. Different types of

random number generators and randomness tests are explained. Important IC

implementations are also given.

Chapter 3 is a review of chaos theory.

Chapter 4 is a main subject of the thesis. Designed high speed chaotic LC-oscillator

is explained in detail. Random bit generation method is presented in a detail.

Implementation of Von-Neumann de-skewing algorithm is also given.

Chapter 5 is a review of the thesis and conclusion is given.

3

2. RANDOM NUMBER GENERATION BASICS

In general, random numbers can be summarized as numbers that are

indistinguishable from outcomes that would arise purely by chance. With another

way of saying, random numbers are the statistically independent and unbiased

binary digits, that are outputs of algorithmic or device level random bit generators.

The quality of a random number generator is often measured by the degree to which

it produces unpredictable and unbiased output [2]

Random numbers are widely used in;

 numerical simulations

 gaming

 statistical analysis (Monte Carlo simulations)

 distributed computations,

 secure communication protocols (SSL, GSM…) and of course

 cryptography

Because security protocols rely on the unpredictability of the keys they use, random

number generators for cryptographic applications must meet stringent requirements.

The most important is that attackers, including those who know the RNG design,

must not be able to make any useful predictions about the RNG outputs. In

particular, the apparent entropy of the RNG output should be as close as possible to

the bit length [1].

According to Shannon theorem, the entropy H of any message or state is:

n

i

ii ppH
1

log (2.1)

where pi is the probability of state i out of n possible states. In the case of a random

number generator that produces a k-bit binary result, pi is the probability that an

output will equal i, where 0≤i2k. Thus, for a perfect random number generator, pi =

2k and the entropy of the output is equal to k bits. This means that all possible

outcomes are equally (un)likely, and on average the information present in the

output cannot be represented in a sequence shorter than k bits [1].

4

Almost all cryptographic protocols require the generation and use of secret number

[2]. For example:

 Conventional encryption requires the generation of unguessable keys.

 The computation of a digital signature with the Digital Signature Algorithm

requires, besides the signer's private key, a value customarily called k that

must be secret, and that must not be re-used.

 Standards for message encryption using the RSA algorithm generally require

the use of random numbers to form message padding.

 Many challenge-response protocols require the use of a unique number, or

nonce. In practice, a good way to produce a number with a large likelihood of

being unique is to use a sufficiently large random number.

While a high quality random source is always best, application can be classified into

two categories according to randomness requirements [2].

1. Applications which need flat statistic and unbiased bit streams but have

fewer unpredictability requirements; such as numerical simulations. In this

type of applications pseudo random number generators (PRNGs) can be

used

2. Applications which have extremely strong unpredictability requirements but

may be slightly tolerant of biased information; such as cryptographic

applications. These kind of applications often need true random number

generators (tRNG)

2.1 Pseudo Random Number Generators (PRNGs)

In many applications where a random bit stream is required, pseudorandom number

generators (PRNGs) are used. Applications where flat statistic and unbiased bits are

enough, such as numerical simulations, PRNGs can be safely used. In addition

properly-implemented and seeded PRNGs are also suitable for most cryptographic

applications, however great care must be taken in the development, testing, and

selection of PRNG algorithms. PRNGs use a deterministic process to generate bit

sequence, starting from an initial seed. Since the adopted algorithms are usually

public, the seed is the only source of randomness and the actual entropy of the

output can never exceed the entropy of the seed. Therefore, it is critical that a

PRNG be properly seeded from a source of true randomness. In most cases, it must

be properly seeded from a source of true randomness.

5

The output of a PRBG is not random; in fact, the number of possible output

sequences is at most a small fraction of all possible binary sequences. The intent is

to take a small truly random sequence and expand it to a sequence of much larger

length [3].

2.2 True Random Number Generators (TRNGs)

Since it is impossible to create true randomness from within a deterministic system,

True Random Number Generators (TRGNs) use a non-deterministic source to

produce randomness.

In the applications, the random source can be constructed of dedicated hardware

devices; otherwise; the random source can use software procedures to extract

random processes from the platform on which the generator is implemented.

Generators of the first type are commonly called hardware-based (HW); generators

of the second type are software-based (SW) [3].

2.2.1 SW-Based Generators

Generally, SW-based generators are implemented on computer systems and the

values typically exploited as raw stream sources are obtained from:

 event timings:

o mouse movements and clicks

o keystrokes

o disk and network accesses

 data depending on the history of the system and/or large amount of events:

o system clock

o I/O buffers

o Load and network statistics

The behavior of such processes can vary considerably depending on various factors,

such as the computer platform, and entropy is mostly low and difficult to evaluate as

well as the actual robustness with respect to observation and manipulation.

A well-designed software random bit generator should utilize as many good sources

of randomness as are available. Using many sources guards against the possibility

of a few of the sources failing, or being observed or manipulated by an adversary.

Although employing these protections, it‘s had to say that most PRNGs are immune

to attacks. In 1996 two researchers found that Netscape‘s random number

6

generator seed was derived from ―just three quantities: the time of day, the process

ID, and the parent process ID. Thus, an adversary who can predict these three

values can apply the well-known MD5 algorithm to compute the exact seed

generated [1].

2.2.2 HW-Based Generators

HW-Based generators use a non-deterministic, physical phenomenon to produce

randomness. Most operate by measuring unpredictable natural processes.

Examples of such physical phenomena include [3]:

1. elapsed time between emission of particles during radioactive decay;

2. thermal noise from a semiconductor diode or resistor;

3. the frequency instability of a free running oscillator;

4. flip-flop metastability

5. the amount a metal-insulator-semiconductor capacitor is charged during a

fixed period of time;

6. air turbulence within a sealed disk drive which causes random fluctuations in

disk drive sector read latency times; and

7. sound from a microphone or video input from a camera.

2.3 Post-Processing

In practice, every kind of raw random source can present defects as offset, auto-

correlation or cross-correlation. The probability of the producing a ‗1‘ bit may not be

equal to ½ because of interference with other signals (cross-correlation) or the

probability of the generated output bit depends on previous bits because of bandwith

limitations (auto-correlation).

There are various techniques for generating truly random bit sequences from the

output bits of such a defective generator; such techniques are called de-skewing

techniques.

One of the well-known de-skewing algorithms is the Von Neumann‘s algorithm [3].

According to Von Neumann‘s algorithm;

 ―01‖ sequences must be converted into ‗0‘ bit,

 ―10‖ sequences must be converted into ‗1‘ bit

7

 ―00‖ and ―11‖ sequences must be discarded

2.4 Statistical Tests

Statistical tests are designed to measure the quality of a generator. While it is

impossible to give a mathematical proof that a generator is indeed a random bit

generator, the tests help detect certain kinds of weaknesses the generator may

have. This is accomplished by taking a sample output sequence of the generator

and subjecting it to various statistical tests. Each statistical test determines whether

the sequence possesses a certain attribute that a truly random sequence would be

likely to exhibit; the conclusion of each test is not definite, but rather probabilistic. An

example of such an attribute is that the sequence should have roughly the same

number of 0‘s as 1‘s. If the sequence is deemed to have failed any one of the

statistical tests, the generator may be rejected as being non-random; alternatively,

the generator may be subjected to further testing. On the other hand, if the

sequence passes all of the statistical tests, the generator is accepted as being

random. More precisely, the term ―accepted‖ should be replaced by ―not rejected‖,

since passing the tests merely provides probabilistic evidence that the generator

produces sequences which have certain characteristics of random sequences.

There are 5 basic statistical tests [3].

2.4.1 Frequency Test (Monobit Test)

The purpose of this test is to determine whether the number of ‗0‘bits and in binary

sequence (s) of length n are approximately same as would be expected from a

random sequence. Let n0, and n1 denote the number of ‗0‘bits and ‗1‘bits in

sequence s, respectively. The statistic used is

n

nn
X

2

10

1

 (2.2)

2.4.2 Serial Test

The purpose of this test is to determine whether the number of occurrences of 00,

01, 10 and 11 as subsequences of binary sequence s are same, as would be

expected for a random sequence. Let n0, and n1 denote the number of ‗0‘bits and

‗1‘bits in s, and let n00, n01, n10, and n11 denotes number of occurrences of ―00‖, ―01‖,

―10‖, and ―11‖ respectively. Note that n00 + n01 + n10 + n11 = (n − 1) since the

subsequences are allowed to overlap. The statistic used is

 1
2

1

4 2

1

2

0

2

11

2

10

2

01

2

002

 nn
n

nnnn
n

X (2.3)

8

2.4.3 Poker Test

Let m be a positive integer such that m

m

n
25

and let.

m

n
k . Divide the

sequence s into k non-overlapping parts each of length m, and let ni be the number

of occurrences of the ith type of sequence of length m,
mi 21 . The poker test

determines whether the sequences of length m each appear approximately the

same number of times in s, as would be expected for a random sequence. The

statistic used is

kn
k

X

m

i

i

m

2

1

2

3

2
 (2.4)

The poker test is a generalization of the frequency test: setting m = 1in the poker

test yields the frequency test.

2.4.4 Runs Test

The purpose of the runs test is to determine whether the number of runs (of either

zeros or ones) of various lengths in the sequence s is as expected for a random

sequence. The expected number of gaps (or blocks) of length i in a random

sequence of length n is 22/3 i

i ine . Let k be equal to the largest integer i for

which. Let Bi, Gi be the number of blocks and gaps, respectively, of length i in s for

each i, ki 1 . The statistic used is

k

i i

ii
k

i i

ii

e

eG

e

eB
X

1

2

1

2

4

)()(
 (2.5)

2.4.5 Autocorrelation Test

The purpose of this test is to check for correlations between the sequence s and

(non-cyclic) shifted versions of it.

2.4.6 FIPS 140-1 Statistical Tests

Federal Information Processing Standards (FIPS) specifies four statistical test for

randomness with FIPS 140-1 standard [4]:

 monobit test. The number n1 of ‗1‘bits in s must satisfy 9654 < n1 < 10346.

 poker test. The statistic X3 defined by equation (2.4) is computed for m = 4,

and the poker test is passed if 1,03 <X3 < 57,4 is satisfied.

 runs test. The number Bi and Gi of blocks and gaps, respectively, of length i

in s are counted for each i, 61 i (For the purpose of this test, runs of

length greater than 6 are considered to be of length 6). The runs test is

9

passed if the 12 counts Bi, Gi, 61 i , are each within the corresponding

interval specified by the following Table 2.1.

Table 2.1: Conditions of runs test

Length of run Required interval

1 2267-2733

2 1079-1421

3 502-748

4 223-402

5 90-223

6 90-223

 long run test. The long run test is passed if there are no runs of length 34

or more.

2.5 IC Random Number Generators

The increasing usage and importance of network communication and cryptography

results in an increasing to use integrated RNGs. There are a various IC

implementations of RNGs, and the important ones are explained below.

2.5.1 Direct Amplification of Noise

The direct amplification technique shown in Figure 2.1 uses a high-gain high-

bandwidth amplifier to process the small ac voltage produced by a noise source

such as thermal or shot noise, is in the order of µV making the RNG very sensitive

to signal coupling. The noise must be amplified to a level where it can be accurately

processed with no bias by a clocked comparator. This is the most popular RNG

technique for single-chip solutions where shielding of the noise source is possible.

The lack of adequate shielding from power supply and substrate signals in an IC

environment prohibits the exclusive use of this method for IC-based cryptographic

systems [4].

10

Figure 2.1: Direct amplification of noise

2.5.2 Oscillator Sampling

Oscillator based RNGs have a advantage over direct amplification of noise

technique even in the presence of sinusoidal signal coupling. Oscillator based RNGs

use oscillator timing jitter as a source of randomness. Two or more oscillators are

combined to produce a random bit stream. In Figure 2.2, a low frequency oscillator

samples the output of a high frequency oscillator using a D flip-flop. The level of

randomness depends on the mean frequency separation of the oscillators and the

amount jitter. If the low frequency oscillator period has a standard deviation much

greater than the fast oscillator period, then the states for two successive sampled

times can be considered uncorrelated and therefore the output bit stream is random

in nature [1].

Figure 2.2: Oscillator sampling technique

In some applications, to improve statistical properties of generated bits, and achive

a high bit rates the oscillation frequency of VCO is controlled by other RNG [4].

2.5.3 Chaos Based Generators

A deterministic system is called chaotic if an infinitesimally small perturbation to its

initial conditions produces a change in its behavior that grows exponentially with

time. Chaos will be examined in detain in the next chapter.

11

While chaos is a concept completely different from randomness, it is important in

random-number generation for the following reason: If an RNG is chaotic, and if

there is some inescapable uncertainty in any contribution to its state (e.g., due to

thermal noise), then simply by waiting for a certain length of time, namely the time

required for the exponential growth of that uncertainty to reach the magnitude of the

system's gross state, it can be assumed that the state of the system is unknowable.

By waiting a sufficient length of time between samplings, is can be possible to

sample high-quality random bits from a chaotic system that is otherwise

deterministic [2]. This time period changes from implementation to implementation.

12

3. CHAOS

The chaos theory is often ascribed to Edward Lorenz. Edward Lorenz was a

meteorologist at MIT who showed that weather is chaotic and ultimately

unpredictable. In 1961, he used term ―butterfly effect‖ to explain his theory. ―Butterfly

effect‖ is the idea that very small causes can produce dramatically out-of-proportion

effects. The notion that "the flap of a butterfly's wings in Brazil" might "set off a

tornado in Texas" was presented in a lecture by Edward Lorenz to illustrate the

impossibility of perfect weather prediction even if all known causes and effects could

be measured. The butterfly effect is an illustration of sensitive dependence on initial

conditions.

In other way of saying, chaos is the certain systems, in both nature and

mathematics, appear to be governed by chance, but can be shown to be

deterministic through analysis, phase space maps and computer models. These

systems exhibit a sensitive dependence on initial conditions, so that even small

variations in their starting conditions will produce wildly differing results.

Every model able to produce chaotic behavior must be a non-linear, dynamical

system. Simply, dynamic system is a system in a motion. The swing of a pendulum,

boiling water, weather, the growth of populations and the interactions between

atoms and molecules are all examples of dynamical systems. Some are predictable

and some are not, but they are all systems whose future motions depend entirely on

past movements. Dynamical systems signal their presence through three factors:

 they are dynamic, that is, subject to lasting changes

 they are complex, that is, depend on many factors

 they are iterative, that is, the laws that govern their behavior can be

described by feedback.

Regarding non-linearity, it can be say that systems and phenomena that do not

move predictably by following a clear pattern are said to be non-linear.

3.1 Chaos in Electronic Systems

For electronic systems a deterministic system is called chaotic if an infinitesimally

small perturbation to its initial conditions produces a change in its behavior that

13

grows exponentially with time. So, it is impossible to make accurate long-term

predictions about the behavior of the system. Chaotic signals are non-periodic in

time domain and trajectory of the system cannot go through the same point twice [5]

Chaotic circuits can be used in:

 analog signal processing applications as a dither source to improve the

performance of other blocks. For instance, dithering can be used to

whiten the noise floor of modulators, as well as to reduce the (idle

channel) spurious tones, which are introduced during quantization of

direct current (dc) inputs (audible in voice-band applications) [6]. Also,

dithering can be used to improve the integral nonlinearity of high-

performance Nyquist-rate analog-to-digital converters [7].

 ranging systems, the nonperiodicity of chaotic signals, as well as the

rapid decorrelation of their time-shifted sequences, make the use of

chaos an interesting coding technique for high resolution radar systems

[8].

 chaos-based digital communication systems as a generator of

communication carriers [9].

 random number generation frequently. Although chaotic oscillator is a

deterministic system, most times it is accepted as a TRNG. Since a small

changes, affects its behavior, they can be thought as a noise

amplificatory.

Chaotic circuits can be classified into autonomous or nonautonomous systems,

depending on whether the system is able or not to self-sustain chaotic oscillations

without any external excitation. Most of the IC implementations are autonomous

systems. Another possible classification is between discrete-time or continuous-time,

depending on whether the system evolution is described by nonlinear difference or

differential equations, respectively [10].

Autonomous discrete-time systems (or discrete maps) can be generally described

by the following qth (delay) order n-dimensional finite-difference equation (FDE),

 kxqkxFqkx ,...,1 (3.1)

where k=0,1,2… symbolizes the discrete time variable, x(k) represents the state

vector of the system at the kth discrete time instant and F is a n-dimensional time-

invariant vector field. Autonomous continuous-time systems are defined by the ODE

ordinary differential equations (ODE),

14

)(txF

dt

tdx
 (3.2)

where x(t) is the state vector of the system (also trajectory) and F is the nonlinear

vector field that defines the direction and speed of a trajectory at every point in the

state space and at every instant of time [10].

In order to exhibit chaos electronically, an autonomous circuit consisting of resistors,

capacitors, and inductors must contain:

 at least one nonlinear element (sign, absolute value, hysteresis etc.)

 at least one negative resistor (to supply energy to the system)

 at least three energy-storage elements

3.2 Chua’s Circuit

Chua‘s circuit is the simplest electronic circuit that generates chaos [11] (see Figure

3.1).

Figure 3.1: Chua's Circuit

It consists of;

 A linear inductor L

 A linear resistor R

 Two linear capacitors C1 and C2 and

 A single voltage controlled nonlinear resistor called Chua‘s diode.

I-V characteristic of Chua‘s Diode is shown in Figure 3.2.

The state equations of Chua‘s circuit are:

)()(
1

112

1

1 vfvvG
Cdt

dv
 (3.3)

15

 321

2

2)(
1

ivvG
Cdt

dv
 (3.4)

2
3 1

v
Ldt

di
 (3.5)

where,
R

G
1

 , and EvEvGGvGvf bab 1111
2

1
)(.

These equations form different attractors for different parameter values. In Figure

3.3 one of the attractors obtained from computer simulation of Chua‘s circuit is

shown.

Figure 3.2: I-V characteristic of Chua's diode

Figure 3.3: Attractor of Chua's circuit

16

4. CHAOTIC OSCILLATOR BASED RANDOM NUMBER GENERATOR

The ultimate goal of this research was to integrate a chaotic oscillator, and use this

oscillator outputs to generate a successive bit stream that passes randomness tests.

A high speed negative-gm LC oscillator was selected as the oscillator [12]. Random

bits were generated with the method described in [13].

By adding new elements to the well known LC oscillator, chaotic oscillation was

obtained. The state equations of the oscillator were derived and solved by using

various numeric solvers.

4.1 Construction of Chaotic Oscillator

Before substituting equations for the proposed chaotic oscillator, deriving equations

for familiar RLC resonator may be helpful in order to illustrate the concepts in

dynamical systems theory, and introduce ideas of stability and oscillation,.

4.1.1 RLC Resonator

The parallel-tuned RLC resonant circuit consists of two linear, lossless passive

energy-storage elements (L, C) and a linear resistor R (See Figure 4.1).

Figure 4.1: Parallel RLC circuit

This circuit can be described by a system of ordinary differential equations of the

form;

),),(()(ttXFtX

 0)0(XX (4.1)

where)(tX is called a state vector, and)),((ttXF is called a vector field. If the

vector field depends only on the state, and is independent of time t, then the system

is said to be autonomous and can be written as [8];

17

),(XFX

 0)0(XX (4.2)

For the circuit in Figure 4.1, with the selection of V1 and iL as state variables, two

state equations can be written as;

RC

V
i

Cdt

dV
L

11 1
 (4.3)

L

V

dt

dİ L 1 (4.4)

By applying variable transformation as ,,1 yixV L and
RC

t
tn ; the above state

equations for the circuit become independent of time t;

xRyx

 (4.5)

x
L

RC
y

 (4.6)

Without solving these equations, the behavior of the circuit can easily be explained

with respect to the polarity of R. If R is positive then the resistor is said to be

dissipative. The energy initially stored in the capacitor and inductor is dissipated,

and V1(t) and İL(t) approach zero either monotonically or in the form of exponentially

decaying sinusoids. If R is negative, the resistor has negative dissipation; it supplies

energy to the rest of the circuit. Energy stored in the circuit increases with time. This

circuit simply oscillates when the R infinite.

Figure 4.2: V1 versus t, for R=-10

18

To see the behavior of the circuit visually, equations (4.5) and (4.6) can be solved by

using MATLAB. For L=C and a given initial condition-set; the typical voltage V1

waveforms for negative, positive and infinite R situations are shown in Figure 4.2,

4.3, and 4.4 respectively.

Figure 4.3: V1 versus t, for R=10

Figure 4.4: V1 versus t, for R=

The trajectories of a system are also shown in Figure 4.5a,b for positive, and

negative R situations respectively (In infinite R situation, the trajectory becomes a

simple circle).

19

Figure 4.5: The vector field of a system (a) for positive R; (b) for negative R

For positive R values, trajectories are pushed together as they track spiral towards

the origin, which is the equilibrium point of the RLC circuit (Figure 4.5-a). For

negative R values trajectories are stretched apart as they track a spiral away from

the equilibrium point - the origin (Figure 4.5-b). Although the last situation

corresponds to a continuous oscillation, it neither has a physical meaning (A real

oscillator must possess a nonlinearity to limit the amplitude of the oscillation), nor is

sufficient to produce a chaos.

Indeed, in physical systems there is always a positive R that comes from the

parasitic resistance of the inductor. Thus the energy stored in the resonator is

dissipated even without the need of an external positive resistor. In order to

compensate resonator losses and achieve oscillation, active devices that show

negative resistance must be used.

4.1.2 Basic LC Oscillator

Most LC oscillators employ a cross-coupled transistor pair as a negative resistance.

Figure 4.6 shows one of the basic configurations of classical LC oscillators. This

configuration provides a symmetrical nature to the oscillator.

Since the circuit has a symmetric nature, when node A has a common mode voltage

VC and differential voltage +V1, the voltage of node B can be written as VC-V1.

20

Figure 4.6: Implementation of negative resistance with cross coupled transistors

By applying KCL to node A and B, two equations can be written;

0

2
1

1

IeII
dt

Vd
C T

C

V

VV

SL (4.7)

0

2
1

1

IeII
dt

Vd
C T

C

V

VV

SL (4.8)

where IS and VT are the reverse saturation current of the transistor and thermal

voltage respectively. By adding, and subtracting (4.7) and (4.8) we conclude with;

)(
42

1
11

1 TT

T

C

V

V

V

VV

V

S

L ee
eI

i
dt

dV
C

 (4.9)

)(

2
11

TT

T

C

V

V

V

V

V

V

S

ee

I
eI

 (4.10)

Rearranging (4.9) by using (3.10) and the tanh definition, one of the state equations

of the circuit is reached:

)tanh(
22

1
11

T
L V

VI
I

dt

dV
C (4.11)

The other state equation comes from the voltage across the inductor L:

21

12V
dt

dI
L L (4.12)

If)(1

TV
V

, and LI are chosen as state variables and normalization is applied to time,

equations (4.11) and (4.12) can be rearranged with using x
V

V

T

)(1 , yI L and

LC

t
tn

)tanh(
22

1
x

V

I
y

V
x

TT

 (4.13)

xVy T2

 (4.14)

These equations form the vector field of the circuit in Figure 4.6, and can be solved

by using MATLAB. For I=1mA, VT=25mV, and a given initial condition-set, the

obtained waveform of the state variable)(1

TV
V

 is shown in Figure 4.7.

Figure 4.7: Plot of (V1/VT) for I=1mA, and VT=25mV

Since there is no amplitude limiting mechanism included, again increasing oscillation

is observed.

4.1.3 Block Level Chaotic Oscillator

As discussed in Chapter 3, in order to produce chaos in an electronic system three

conditions must be satisfied:

 the system must have at least one nonlinear element

22

 at least one locally active resistor

 at least three state variables.

By making the appropriate modifications in the circuit seen in Figure 4.6, a sustained

chaotic oscillation can be maintained. In Figure 4.8 the new version of the RLC

circuit is shown. A resistor (R2) and a capacitor (C2) couple are included in order to

produce one more state variable. The Signum function (sgn) is employed as the

nonlinear element. It maintains nonlinearity by sourcing a current to node V2 or

sinking a current at node V2 according to the polarity of the node voltage V1.

Figure 4.8: Chaotic circuit

For the circuit shown in Figure 4.8, the state equations can be written as;

1

11
1

R

V
I

dt

dV
C L (4.15)

2

2
1

2
2)sgn(

R

V
IV

dt

dV
C L (4.16)

21 VV
dt

dI
L L (4.17)

If V1, RIL, and V2 are chosen as variables, equations (4.15-17) can be rearranged

using the variable transformation; xV 1 , yRI L , zV 2 and time normalization

RC

t
tn .

xayx 1

 (4.18)

)(
)(

2

zx
CL

R
y

 (4.19)

23

zayxRz 2)sgn(

 (4.20)

where
1

1 R
Ra , and

2
2 R

Ra

These equations can be solved by using MATLAB numeric solver ODE45. With the

selection of 1
)(

2

CL

R
, and L=C, it is seen that chaotic oscillation occurs for some

values of a1, and a2. In Table 4.1, three sets of variables (a1, a2) that provide chaotic

oscillation is shown.

Table 4.1: Different parameter-sets for which chaotic oscillation occurs

 a1 a2

1 0.6 2

2 0.8 1.6

3 1 1.4

Figure 4.9 shows the waveform of node voltage V1 for the first parameter-set in

Table 4.1.

Figure 4.9: V1 for a1=0.6, and a2=2

24

Figure 4.10 is a plot of V1 versus V2, in other words the trajectory of the system in

Figure 4.8.

Figure 4.10: Trajectory of the chaotic circuit in Figure 4.8

4.1.4 Bipolar Transistor Chaotic-LC Oscillator

By combining the concepts of classical negative-gm LC oscillator and the circuit that

uses the signum function, the final chaotic oscillator has been reached (Figure 4.11)

[12]. This circuit has been derived from the classical negative-gm LC oscillator, by

adding a parallel RC3 section (like the R2C2 section in Figure 4.8), and a differential

pair stage, to realize the signum-like function.

Similar to the classical LC oscillator in Figure 4.6, if node A has a common mode

voltage of VC and a differential voltage component of +V1, then node B has a

common mode voltage of VC but differential voltage of -V1. Similarly, the voltage

values of node C, and D can be written as VC+V2 and VC-V2 respectively, as a result

of the symmetrical nature of the circuit.

The inductance, placed between nodes A and C has a current value of LL iI ,

whereas the other one has LL iI .

25

Figure 4.11: Chaotic LC oscillator

Applying KCL at node A, B, C and D, with the assumption of C1=C2=C3=C yields the

following equations;

0
)(

1

1

LL

V

VV

S

C iIeI
dt

VVd
C T

C

 (4.21)

0
)(

1

1

LL

V

VV

S

C iIeI
dt

VVd
C T

C

 (4.22)

0
)2(2 22

2 BLL I
dt

Vd
C

R

V
IiI (4.23)

0
)2(2 22

1 BLL I
dt

Vd
C

R

V
IiI (4.24)

where IS and VT are the reverse saturation current of the transistor and the thermal

voltage respectively.

By rearranging (4.21) and (4.22), the following equations can be written:

TT

T

C

V

V

V

VV

V

S

L ee
eI

i
dt

dV
C

11

2

1 (4.25)

26

TT

T

C

V

V

V

VV

V

S

L

C ee
eI

I
dt

dV
C

11

2
 (4.26)

By combining (4.23) and (4.24),

42

2122 IIi

R

V

dt

dV
C L

 (4.27)

is achieved. In this equation 21 II represents the output current difference of the

differential pair and can be written in terms of the tail current 0I and the differential

input voltage as, 12VVV BA .

)tanh(1
021

TV

V
III (4.28)

Equation (4.27) can be rearranged by using (4.28), as

T

OL

V

VIi

R

V

dt

dV
C 122 tanh

42
 (4.29)

Equations (4.25), (4.26) and (4.29) are the state equations of the chaotic oscillator

circuit, but there is one more equation that comes from the voltage-current

relationship of inductance:

dt

iId
LVVVV LL

CC

)(
12

 (4.30)

By making the appropriate simplifications;

dt

id
LVV L)(

21 (4.31)

is reached.

The 4 equations (4.25, 4.26, 4.29, and 4.31) are the state equations of the circuit

shown in Figure 4.11.

By scaling all voltage values with an arbitrary scaling voltage Vs; choosing state

variables as
SV

V
x 1 ,

S

L

V

Rİ
y ,

SV

V
z 2 , and

S

C

C
V

V
x ; scaling time t with RC

(
RC

t
tn); and taking

C

L
R ; the state equations are transformed into a simple

and dimensionless form:

 axax
ax

ee
be

yx
C

2

 (4.32)

zxy (4.33)

27

 ax
cy

zz tanh
42

 (4.34)

 axax

ax

S
C ee

ec
cx

C

2

 (4.35)

where
T

S

V
V

a ,
T

S

aV
RI

b ,
TaV

RI
c 0 , and

T

B

aV

R
I

I
d

)
2

(0
 .

These state equations can be solved by using numeric solvers, and again for

different sets of parameters a, b, c and d, chaotic oscillation occurs. Figure 4.12 and

4.13 are obtained for a=0.5, b=10-4, c=8.8 and d=2.

Figure 4.12: Numeric analyses result of the BJT Chaotic-LC oscillator

Figure 4.13: Trajectory of the BJT Chaotic-LC Oscillator (x versus z)

28

4.1.5 MOS Transistor Chaotic-LC Oscillator

The MOS transistor version of the chaotic-LC oscillator is also possible (Figure 4.14)

Figure 4.14: MOS transistor chaotic-LC oscillator

Comparing Figure 4.11 and 4.14, it can be seen that transistor type is not the only

difference. While currents I1 and I2 are sunk from nodes C and D in Figure 4.11,

these currents are sourced to nodes C and D with a gain of k in Figure 4.14.

The nonlinearity in this chaotic oscillator, whose basic structure has been explained

in Chapter 4.1.3, has been established by using a transimpedance amplifier block

with a signum functionality. While the bipolar differential pair maintains this

functionality with a good approximation thanks to the exponential nature of the BJTs,

the MOS differential pair cannot achieve a good approximation due to the square-

law behavior of MOS transistors. However, it has been seen that in the MOS

differential pair, the requested approximation can be achieved when the currents I1

and I2 are multiplied with a gain of k. The circuit structure has been modified

accordingly. The currents I1 and I2 could be mirrored once more – this time with

NMOS transistors – in order to make a structure, which would be more similar to the

BJT version. This modification was not needed.

The currents being sourced this way have made another modification in connections

necessary. In the BJT version, the transistor whose base is connected to node A

29

has its collector at node D, which causes current to be sunk from D according to the

voltage value at node A. This connection has been changed in the MOS version and

current is being sourced to C according to the voltage value at node A.

Applying KCL at node A, B, C and D, with the assumption of C1=C2=C3=C yields the

following equations:

0)(
2

)(2

1

1

LLTNC

C iIVVV
dt

VVd
C

 (4.36)

0)(
2

)(2

1

1

LLTNC

C iIVVV
dt

VVd
C

 (4.37)

0
)2(2 22

2 BLL I
dt

Vd
C

R

V
kIiI (4.38)

0
)2(2 22

1 BLL I
dt

Vd
C

R

V
kIiI (4.39)

where
coupledcross

oxn
L

W
C

 and VTN is the threshold voltage of the NMOS

transistors.

By rearranging (4.36) and (4.37), the following equations can be written:

1
1)(VVVi

dt

dV
C TNCL (4.40)

 2

1

2)(
2

VVVI
dt

dV
C TNCL

C

 (4.41)

By combining (4.38) and (4.39):

)(
42

21
22 II

ki

R

V

dt

dV
C L (4.42)

(4.42) is achieved. In equation (4.42) (I1-I2) is the output current difference of the

MOS differential pair and by rearranging (4.42) using the output current-input

differential voltage relationship of the MOS differential pair, the following equation

can be derived:

0

02

1

2

1

0
22

2
,2

42
I

I
VVV

I
ki

R

V

dt

dV
C

nn

nL

 (4.43)

Here,
pairdiff

oxn
L

W
C

30

By scaling all voltage values with an arbitrary scaling voltage Vs; choosing state

variables as;
SV

V
x 1 ,

S

L

V

Rİ
y ,

SV

V
z 2 , and

S

C

C
V

V
x ; scaling time t with RC

(
RC

t
tn); and taking

C

L
R ; the state equations are transformed into a simple

and dimensionless form:

 xcxbyx thC (4.44)

zxy (4.45)

0

0220

2
,2

42
c

b

c
xxx

b

c
bky

zz
nn

n (4.46)

 220

2
xcx

b
cx thCbC (4.47)

where SRVb , Snn RVb
S

th
th V

V
c ,

SV
RI

c 0
0 and

S

L
b V

RI
c .

These state equations again generate chaos for different set of parameters. In Table

4.2, four sets of parameters that generate chaotic oscillation are shown.

Table 4.2: Parameter sets that generate chaotic oscillation

 b bn cth c0 cb k

1 1 2.6 1 2.2 0.7 1

2 1 0.4 1 0.5 0.7 5

3 1 0.3 1 0.3 0.7 7

4 0.5 0.3 1 0.3 0.7 9

Figure 4.15, and Figure 4.16 show the waveform of the state variable x, and the

trajectory of the system (x versus z) respectively for the second parameter set in

Table 4.2.

31

Figure 4.15: Waveform of the State Variable x versus time

Figure 4.16: Trajectory of the MOS Chaotic-LC Oscillator

4.2 Random Bit Generation

The chaotic oscillator presented in the last section, is a continuous time autonomous

system, which exhibits a double-scroll attractor. This chaotic oscillator has been

used as a source for the RBG.

Bits are produced by using the VA-VB voltage difference which is one of the state

variables of the chaotic oscillator. To generate ‗1‘s and ‗0‘s, two comparators with

different references are used [13] (Figure 4.17). These two comparators divide the

state space into three sub regions; V0, Vtr, and V1. One of the comparators is

32

responsible for detecting the jumps between the scrolls, and the reference of this

comparator has been set to the mid-value of the oscillation. The other comparator is

used for detecting the crossings inside one scroll, and the reference of this

comparator has been selected as a design variable.

Figure 4.17: Constructed subspaces with comparator references

A ‗1‘ bit is generated when the trajectory passes from region Vtr to region V1 and a

‗0‘ bit is generated when the trajectory passes from region Vtr to region V0.

The time domain representation of the reference placement is shown in Figure 4.18.

In Figure 4.18, the x-axis is the voltage signal (VA-VB), which is one of the state

variables of the system described in section 4.1.4

It is easy to see that by using the bit generation procedure that has just been

explained, and applying the comparator references as seen in Figure 4.18, the

resulting number of ‗1‘s will be significantly less than that of ‗0‘s. This

nonsymmetrical replacement of references can be overcome by a proper selection

of the reference of comp0 (ref0), and applying Von-Neumann de-skewing algorithm

as explained in chapter 2.

33

Figure 4.18: Placement of comparator references

Up to here, the ‗1‘s have been generated at the output of the comparator comp1 at 0

to 1 crossings, and ‗0‘s at the output of comparator comp0 at 1 to 0 crossings. It is

obvious that this is not an appropriate way of outputting random numbers, therefore

another method should be found.

4.2.1 Construction of the Clock Signal

In data transport protocols, it is common to synchronize the data on the line with a

synchronization signal, namely the clock. Therefore combining the generated ‗1‘s

and ‗0‘s in one signal and defining a clock signal would be a better way of outputting

random bits.

The clock signal must point to the meaningful bits. As a result, it has to be

constructed using the comparator outputs.

The first step of clock generation is to make the two comparators similar in the way

they generate ‗1‘s and ‗0‘s. In order to achieve that, the reference and signal inputs

of comp0 have been interchanged. Thus comp0 generates ‗0‘s during 0 to 1

crosses; while comp1 keeps generating ‗1‘s during 0 to 1 crossings.

34

Figure 4.19: Connections of comparators

This new arrangement gives us an opportunity to combine the two comparator

outputs by using an OR function. The output of this OR function is the clock signal

that we need.

4.2.2 Combining Bits In One Signal

Since the two comparators are taking the same signal as input and reference of

comp0 is smaller than comp1; the output of comp1 has already been set to ‗0‘

whenever comp0 produces ‗0‘. This means that sampling the output of comp1 with

the constructed clock signal gives us the random bit stream that has been generated

by system the (Figure 4.20).

Figure 4.20: construction of clock and data signals

4.2.3 Implementing Von Neumann’s De-Skewing Algorithm

As explained in chapter 2, generated bits may have cross or auto correlation related

defects. For example, if the reference of comp0 is selected improperly, the resulting

number of ‗0‘s would be significantly higher that that of ‗1‘s. De-skewing can be

applied to the generated bits to prevent correlation related defects. Von Neumann‘s

well known de-skewing algorithm was implemented to improve the statistical

properties of the produced bits. With this de-skewing algorithm ―01‖ sequences are

converted into ―0‖; ―10‖ sequences are converted into ―1‖; ―00‖ and ―11‖ sequences

are discarded.

Although this de-skewing would change the generated bit sequences, since the

meaningful bits have been defined by the generated clock signal, the manipulations

to implement Von Neumann‘s de-skewing algorithm must be applied to the clock

35

signal. The complete block level diagram, where de-skewing algorithm is realized, is

shown in Figure 4.21.

Figure 4.21: Realization of Von-Neumann‘s De-Skewing Algorithm

In figure 4.21:

 Data signals have been stored into two consecutive DFFs (DFF1, DFF2).

 To eliminate the ―00‖s and ―11‖s and keep the ―01‖s and ―10‖s, the outputs of

these two DFFs have been EXORed.

 To process the non-overlapping bit pairs only, the clock signal has been

divided by two again using DFF (DFF4).

 To get the final clock signal (clk_out), outputs of EXOR and DFF4 have been

combined by using AND function. If the EXOR operation results ―0‖, the

signal ―clk/2‖ is disabled by this AND gate.

 DFF5 has been used to synchronize the data signal with the newly

constructed clock signal, and it produces the final data.

4.3 IC Implementation

In the first steps of the design process, AustriaMicroSystems (AMS) 0.35m SiGe

BiCMOS process had been chosen for production and the oscillator circuits had

been designed and simulated by using the parameters of this process. Afterwards,

out of financial reasons, the process to be used was changed to the IHP 0.25m

SiGe-C BiCMOS process, and the design was completed in this process and sent

along for production.

It was proven numerically in section 4.1 that the designed oscillators can generate

chaotic oscillation. By choosing an appropriate parameter-set out of the sets that

36

generate chaotic oscillation and using the definitions of these parameters, the

values of the circuit elements have been identified. Although different sets of

parameters produce chaos in numeric analyses, some parameter sets are not

meaningful in physical basis. In other words, not all of the parameter sets that

numerically generate chaos can produce suitable L, C and R values for IC

implementation.

With the existence of transistors with high transit frequency, the RBG blocks were

implemented using standard ECL and CML structures.

Cadence Spectre circuit simulator was used as the simulator. Supply voltages were

1.2V. Simulations have been verified for various corner parameters, and

temperature was swept from -20 0C to 50 0C.

4.3.1 Bipolar Chaotic Oscillator

R, L, C, IB, and I0 were calculated for the parameter values a=0.5, b=10-4, c=8.8,

and d=2. With using definitions of these four parameters -
T

S

V
V

a ,
T

S

aV
RI

b ,

TaV
RI

c 0 , and
T

B

aV

R
I

I
d

)
2

(0
 - and choosing L=11.7nH we conclude with

the other element values as R=180, C=350fF, and DC bias currents I0=600A,

IB=710A.

L=11.7nH was chosen to be able to use standard inductances supplied by the

vendor. By doing this, we can avoid design and layout of inductances customly.

Since, these parameters do not restrict the selection of transistor geometries,

transistor geometries were determined in such a way that maximum transit

frequency and current gain occur for the transistors at given current levels.

After first simulations:

 IB was changed to 800A

 C values were reduced in order to compensate parasitic capacitances at

node A,B,C and D

 In contrast to the differential pair, the cross coupled stage transistors were

changed with large area ones, to be able to reduce the base resistance

which was not included in the state equations

Figure 4.22 and 4.23 show the observed phase space corresponding to (VA-VB)

versus (VC-VD) and time domain waveform of (VA-VB) respectively.

37

Figure 4.22: Phase Space (VA-VB) versus (VC-VD) of the BJT Chaotic Oscillator

Figure 4.23: Waveform of (VA-VB)

4.3.2 MOS Transistor Chaotic-LC Oscillator

Although for the bipolar version, there are some parameter sets that result suitable

element values for IC implementation, for the MOS version, no parameter set that

was found that supplies acceptable L values could not be found. Despite this known

inconvenience, MOS version was constructed, and simulated by using the AMS

38

model parameters. R, L, C, IB and I0 values were calculated for the second

parameter set of Table 4.2, i.e. -b=1, bn=0.4, cth=1, c0=0.5, cb=0.7, and k=5-. By

using definitions of these parameters - SRVb , Snn RVb ,
S

th
th V

V
c ,

SV
RI

c 0
0 and

S

L
b V

RI
c - we conclude with passive element values as R=1k,

C=10pF, L=10nH, and bias currents as I0=250A, IB=-275A. Since IB results a

negative value, the direction of current sources IB were changed, and the design

was finalized.

Figure 4.24 and 4.25 show the Spectre simulation results of circuit in Figure4.14. In

Figure 4.24 phase space corresponding to (VA-VB) versus (VC-VD) and in Figure 4.25

time domain waveforms of (VA-VB) are shown.

The large L values result an obligation of using off-chip inductance, and reduce the

oscillation frequency. Because of these inconveniences the MOS version chaotic-LC

oscillator was not chosen as the golden version, and the design was later carried on

by using the bipolar version.

Figure 4.24: Phase Space of the MOS Transistor Chaotic Oscillator

39

Figure 4.25: Waveforms of (VA-VB) and (VC-VD) differences

4.3.3 Difference Amplifier

As explained in chapter 1.2, VA-VB difference is needed to generate random bits.

Since the oscillation has high frequency components, opamp-based closed-loop

topologies are not suitable as the subtraction circuit. Because of their simplicity and

high frequency operation capability, open-loop architectures such as differential

pairs can be good candidates.

Although the oscillation amplitude in VA and VB is approximately 600mVpp (meaning

that 500mVpp linear region is needed), the output of the differential pair saturates

when the input voltage difference reaches 4VT=100mV. Resistive degeneration was

applied to widen the linear region of the differential pair. In Figure 4.26, the

schematic view of the difference amplifier is shown.

40

Figure 4.26: Subtraction circuit

The Vin-Vout characteristic of the circuit in Figure 4.26 for different degeneration

resistance values are shown in Figure 4.27.

Figure 4.27: DC characteristic of a differential pair

In Figure 4.27, R1=0, and R3 > R2 > R1. Bigger the degeneration resistance, results

the bigger linear region. R=600 was chosen to maintain the desired linear region.

The simulation results of the subtraction circuit are shown in Figure 4.28.

41

Figure 4.28: Simulation results of subtraction circuit

In Figure 4.28, the output of difference amplifier is shown with the voltage

waveforms of node VA, VB and the ideal VA-VB difference which derived using

Spectre calculator function. From Figure 4.28 it is seen that the differences of VA

and VB voltages are taken properly with the help of applied linearization.

4.3.4 Comparator Circuit

Again a differential pair was used as a comparator. Unlike the subtraction circuit, a

wide linear region is not needed in the comparator, so resistive degeneration was

not applied. In the signal flow, when the signals reached the comparator, there is no

defined clock signal yet. Because of the absence of the clock signal, well known

―latch‖ structures with positive feedback could not be used. Instead, the desired gain

was achieved by using three differential stages in cascade. The final schematic of

comparator circuit is shown in Figure 4.29. The simulation results of comp0 and

comp1 are shown in Figure 4.30.

42

Figure 4.29: Comparator circuit

Figure 4.30: Simulation results of comp0 and comp1

As seen in the Figure 4.30, the outputs of comparator circuits go to logic one, if the

inputs exceed reference levels, and otherwise comparators produce logic zero.

4.3.5 “OR” Circuit

OR operation was realized by using a standard ECL logic gate. Since the output of

OR circuit is a clock signal, and it drives three flip-flops, relatively stronger emitter

followers were placed at the outputs of the OR gate. The schematic of the OR circuit

is shown in Figure 4.31 (The emitter followers are not included).

43

Figure 4.31: OR circuit

The operation of OR circuit is same as the comparator. If any one of Vin1 and Vin2

exceeds Vref, the output of the circuit is inverted. To maintain the proper operation,

Vref must be placed at the middle of the swing of Vin1,Vin2 signals. Since Vin1 and

Vin2 signals are the outputs of comparator circuit, Vref can be obtained with the

same structure, and element values that were used in the comparator as shown in

Figure 4.32.

Figure 4.32: Getting Vref

The simulation results of the OR circuit is shown in Figure 4.33. In Figure 4.33, last

two waveforms are the inputs of OR circuit, while the first one is the output of OR

circuit or ―clk‖ signal. Whenever any of the comp0 or comp1 outputs go to logic high,

the output of the OR circuit also goes to high and the clk signal is constructed.

44

Figure 4.33: Simulation results of OR circuit

4.3.6 DFF

DFF was realized by using two CML latches that receive inverted clocks. The circuit

schematic and simulation results of DFF are shown in Figure 4.34, and Figure 4.35

respectively.

Figure 4.34: DFF circuit

45

Figure 4.35: Simulation results of DFF

From Figure 4.35 it is seen that DFF circuit works correctly. At the rising edge of

clock signal it transfers the input data to the output.

The glitches that occur at the output signal in clock transitions are not such a high

level that degrades the circuit functionality.

4.3.7 EXOR Gate

As explained in Section 4.2, in Von-Neumann de-skewing algorithm so as to keep

01, 10 sequences and discard 00,11 sequences EXOR gate was used. The well-

known CML structure was used as the EXOR gate. In Figure 4.36, schematic of

EXOR gate, and in Figure 4.37 simulation results are shown.

46

Figure 4.36: EXOR gate

Figure 4.37: Simulation results of EXOR

From Figure 4.37 it is seen that fhe EXOR gate, produce logic―1‖, if the inputs are

complement of each other. Otherwise it produces logic‖0‖.

4.3.8 Divide-by-two Circuit

Divide-by-two circuit was realized using designed DFF, and shorting Q output and

input of flip-flop. Simulation result is given in Figure 4.38.

47

Figure 4.38: Construction of signal "clk/2"

4.3.9 Output Drivers

CML drivers with on-chip 50Ω termination resistors are designed and used as output

derivers. In order to maintain a desired swing, current I was selected 8mA. In order

to represent the loads that drivers will face in reality, the equivalent structure shown

in Figure 4.39 was constructed and simulations were carried out with this structure.

In FigureXXX, Cpad, Lbondwire,Rbodnwire,Cpin are pad capacitance, bondwire inductance,

parasitic bondwire resistance, and pin capacitance respectively. The values were

taken as Cpad=100f, Lbondwire=5nH, Rbodnwire=5 and Cpin=5pF. Simulation results of

CML drivers are shown in Figure 4.40

Figure 4.39: Load structure was used in CML simulations

48

Figure 4.40: Simulation results of CML drivers

Since the used load model is relatively high compared to the loads of internal

circuits, rise and fall times of data and clock signals are decreased at the output of

CML buffers as expected. However, this decreasing is not effect the operation.

4.3.10 Toplevel Integration

In toplevel integration the supply lines of chaotic oscillator and consecutive RBG

blocks were separated to prevent cross-correlation as far as possible. Coupling

capacitances were placed between VCC and VEE lines to get better AC coupling

between the supply lines. RF probe pads were placed at the output of the

subtraction circuit to avail monitoring the oscillation directly. Total silicon area is

1,09mmx0.57mm. Power dissipation is approximately 50mW in the core circuits and

150mW at CML IO pad drivers. The final layout of the chip is shown in Figure 4.42.

49

Figure 4.41: Toplevel layout of the system

50

5. CONCLUSION

The ultimate goal of this research was to integrate a negative-gm LC chaotic

oscillator, and use this oscillator outputs to generate a successive bit stream that

passes random tests.

The design is carried out using IHP 0.25 µm SiGeC BiCMOS technology, which has

three different types of bipolar transistors (high speed, high voltage and standard),

high-Q MIM (Metal Insulator Metal) capacitor, salicided and unsalicided polysilicon

resistors, 4 level Al interconnect metal and 2µm thick fourth level metal to realize

high-Q inductors.

Achieved throughput of random bit generation system is approximately 300Mbit/s.

There are a few RNGs that exhibit comparable bit rates to our design. Also there is

no reported chaotic oscillator in the literature operating at frequencies similar to our

design.

From Spectre simulations, it is observed that when component values deviate from

real values because of process variations by changing IB current the circuit can be

derived to chaotic oscillation. In order to guarantee the chaotic oscillation, IB and IO

were taken out of the chip so that they would be driven from outside.

A test PCB will be designed and measurements will be done on receiving the chip

samples from production.

In order to examine statistical properties of the generated bit stream, 150.000 bits

were taken from Spectre simulations and each 20.000 bits were subjected to FIPS-

140-1 tests. The stream was failed in poker test. Although chaotic oscillator

generates very complex behavior, it is a deterministic system indeed. Without noise

injection it may be hard to pass statistical tests. It is thought that, after fabrication of

test chip, generated bit streams will pass all tests.

The BJT version of the chaotic oscillator and the random bit generation block was

experimentally tested by using discrete components. In order to use standard

discrete components, the passive element values and DC biasing currents were

changed accordingly. The generated bit streams were read via the parallel port of a

personal computer. A bit stream with a length of 1,500,000 was obtained. It was

divided into 75 groups each having a length of 20,000 bits and each block was

subjected to the FIPS-1-140 test suit. The first 27 blocks passed the statistical tests.

51

However, 5 of the following 48 blocks failed to tests. It is thought that this is due to

the cross-correlations resulting from the improper setup. When the bit stream was

subjected to the tests by skipping one of each consecutive bits, all sequences

passed the statistical tests.

From Spectre simulations, it is observed that bipolar version of chaotic-LC oscillator

can oscillate in frequencies up to 5GHz, by choosing another parameter set and

using smaller inductance values. In this way, the throughput of the circuit can be

also increased.

It is also assumed that another good RNG could be designed by sampling the output

of the chaotic oscillator by a slower oscillator.

52

REFERENCES

[1] Jun, B. and Kocher P., 1999, The Intel® Random Number Generator,

Cryptography Research, Inc. white paper prepared for Intel

Corporation.

[2] Cryptography Research Inc., 2003, Evaluation of VIA C3 Nehemiah Random

Number Generator, Cryptography Research Inc.

[3] Menezes, A.J., Van Oorschot, P.C., and Vanstone S.A., 1997. Handbook of

Applied Cryptography. CRC Press, Florida.

[4] Stefanou, N., Sonkusale S.R., 2004. High Speed Array of Oscillator-based Truly

Binary Random Number Generators, IEEE ISCAS '04, pp. 505 -508

May 2004.

[5] Kennedy, M.P., 1993. Three Steps to Chaos - Part I: Evolution, IEEE

Transactions on Circuits and Systems I: Fundamental Theory and

Applications, 40, 640-656.

[6] Hein, S., 1993. Exploiting chaos to suppress spurious tones in general double-

loop modulators, IEEE Trans. Circuits Syst. II, vol. 40, pp. 651–

659, Oct. 1993.

[7] Jewett, R., Poulton, K., Hsieh, K.-C. and Doernberg, J., 1997. A 12b

128MSample/s ADC with 0.05LSB DNL, ISSCC Digest of Technical

Papers, San Francisco, CA, Feb. 1997, pp. 138–139.

[8] Walker, W. T., Radar system utilizing chaotic coding, U.S. Patent 5 321 409,

June 1994.

[9] Kolumban, G., Kennedy, M. P. and Chua, L. O., The role of synchronization in

digital communications using chaos—Part II: Chaotic modulation and

chaotic synchronization, IEEE Trans. Circuits Syst. I, vol. 45, pp.

1129–1140, Nov. 1998.

[10] Delgado-Restituto, M., Rodriguez-Vazquez, A., 2002. Integrated Chaos

Generators, Proceedings of the IEEE, 90, 747-767.

[11] Chua, L.O., Wu, C.W., Huang A. and Zong G., 1993. A Universal Circuit for

Studying and Generating Chaos – Part I : Routes to Chaos, IEEE

53

[12] Ozoguz, S., Ates, O., Elwakil, A.S., 2005. An Integrated Circuit Chaotic

Oscillator and Its Application for High Speed Random Bit Generation,

IEEE Proceedings of the 2005 International Symposium on Circuits

and Systems , Kobe, Japan, May 23-26.

[13] Yalcin, M.E. , Suykens, J.A.K. and Vandewalle J., 2004. True Random Bit

Generaton from a Double Scroll Attractor, IEEE Transactions on

Circuits and Systems I : Fundemantal Theory and Applications, 51,

1395-1404.

54

BIOGRAPHY

Fidel Bayam was born in Bergama, TURKEY in 1981. He graduated from Bergama
High School in 1997. In 2002, he received B.Sc. degree in Electronics and
Communication Engineering from Istanbul Technical University where he started to
continue M.Sc. degree in the same year. He has been working as a design engineer
at ETA ASIC Design Center since 2002. His research interests are high frequency
IC design and high speed data converters.

