
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĠSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 

M.Sc. Thesis  by 

Fidel BAYAM, B.Sc. 

 

Department: Electronics and Communication Engineering 

Programme: Electronics Engineering 

 

MAY 2005 

CHAOTIC OSCILLATOR BASED RANDOM NUMBER 

GENERATOR 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62730662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĠSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 

 

M.Sc. Thesis  by 

Fidel BAYAM, M.Sc. 

(504021207) 

 

Date of submission : 9 May 2005 

Date of defence examination: 30 May 2005 

 Supervisor (Chairman): Assoc. Prof. Dr. Ali ZEKĠ 

Members of the Examining Committee Assoc. Prof. Dr. Serdar ÖZOĞUZ 

 Assist. Prof. Dr. A. ġima ETANER-UYAR 

  

  

 

MAY 2005 

 

CHAOTIC OSCILLATOR BASED RANDOM NUMBER 

GENERATOR  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ  FEN BĠLĠMLERĠ ENSTĠTÜSÜ 

 

YÜKSEK LĠSANS TEZĠ 

Müh. Fidel BAYAM 

(504021207) 

 

Tez Danışmanı : Doç.Dr. Ali ZEKĠ 

Diğer Jüri Üyeleri Doç. Dr. Serdar ÖZOĞUZ 

 Yrd. Doç. Dr. A. ġima ETANER-UYAR 

  

  

 

MAY 2005 

 

KAOTĠK OSĠLATÖR TABANLI RASGELE SAYI ÜRETECĠ 

 

Tezin Enstitüye Verildiği Tarih :    9 Mayıs 2005 

Tezin Savunulduğu Tarih :  30 Mayıs 2005 

 

 



 
iii 

ACKNOWLEDGEMENT 

First I would like to thank my supervisor Assoc. Prof. Ali Zeki for his guidance and 
support during my B.Sc. and M.Sc. thesis. 

Next I would like to thank Assoc. Prof. Serdar Özoğuz for his valuable contribution. 
In this work, the test chip was submitted with the research budget of Assoc. Prof. Dr. 
Serdar Özoğuz who is awarded by TÜBA‘s (Türkiye Bilimler Akademisi) Young 
Scientists Award Program (TÜBA-GEBİP). 

I feel obliged to thank to my family, without their support, all I could have achieved 
would be a complete failure. 

Finally, I would like to thank Keklik Alptekin for her endless support. I feel very lucky 
for every single day of six years we have spent together.  

 

 

May 2005 Fidel Bayam 



 
iv 

CONTENTS 

 

TABLE LIST vı 

FIGURE LIST vıı  

ÖZET ıx 

SUMMARY x 

1. INTRODUCTION 1 
1.1 Motivation 1 
1.2 Organization of Thesis 1 

2. RANDOM NUMBER GENERATION BASICS 3 
2.1 Pseudo Random Number Generators (PRNGs) 4 
2.2 True Random Number Generators (TRNGs) 5 

2.2.1 SW-Based Generators 5 
2.2.2 HW-Based Generators 6 

2.3 Post-Processing 6 
2.4 Statistical Tests 7 

2.4.1 Frequency Test (Monobit Test) 7 
2.4.2 Serial Test 7 
2.4.3 Poker Test 8 
2.4.4 Runs Test 8 
2.4.5 Autocorrelation Test 8 
2.4.6 FIPS 140-1 Statistical Tests 8 

2.5 IC Random Number Generators 9 
2.5.1 Direct Amplification of Noise 9 
2.5.2 Oscillator Sampling 10 
2.5.3 Chaos Based Generators 10 

3. CHAOS 12 
3.1 Chaos in Electronic Systems 12 
3.2 Chua‘s Circuit 14 

4. CHAOTIC OSCILLATOR BASED RANDOM NUMBER GENERATOR 16 

4.1 Construction of Chaotic Oscillator 16 

4.1.1 RLC Resonator 16 

4.1.2 Basic LC Oscillator 19 

4.1.3 Block Level Chaotic Oscillator 21 

4.1.4 Bipolar Transistor Chaotic-LC Oscillator 24 
4.1.5 MOS Transistor Chaotic-LC Oscillator 28 

4.2 Random Bit Generation 31 
4.2.1 Construction of the Clock Signal 33 
4.2.2 Combining Bits In One Signal 34 
4.2.3 Implementing Von Neumann‘s De-Skewing Algorithm 34 

4.3 IC Implementation 35 
4.3.1 Bipolar Chaotic Oscillator 36 
4.3.2 MOS Transistor Chaotic-LC Oscillator 37 
4.3.3 Difference Amplifier 39 



 
v 

4.3.4 Comparator Circuit 41 
4.3.5 ―OR‖ Circuit 42 
4.3.6 DFF 44 
4.3.7 EXOR Gate 45 
4.3.8 Divide-by-two Circuit 46 
4.3.9 Output Drivers 47 
4.3.10 Toplevel Integration 48 

5. CONCLUSION 50 

REFERENCES  52 

BIOGRAPHY  54 

 



 
vi 

TABLE LIST  

 Page 

No 

Table 2.1: Conditions of runs test 9 
Table 4.1: Different parameter-sets for which chaotic oscillation occurs 23 
Table 4.2: Parameter sets that generate chaotic oscillation 30 

 



 
vii 

FIGURE LIST  

 Page No 

Figure 2.1: Direct amplification of noise ................................................................. 10 
Figure 2.2: Oscillator sampling technique .............................................................. 10 
Figure 3.1: Chua's Circuit....................................................................................... 14 
Figure 3.2: I-V characteristic of Chua's diode ......................................................... 15 
Figure 3.3: Attractor of Chua's circuit ..................................................................... 15 
Figure 4.1: Parallel RLC circuit .............................................................................. 16 
Figure 4.2: V1 versus t, for R=-10 ........................................................................ 17 
Figure 4.3: V1 versus t, for R=10 ......................................................................... 18 
Figure 4.4: V1 versus t, for R= ............................................................................. 18 
Figure 4.5: The vector field of a system (a) for positive R; (b) for negative R ......... 19 
Figure 4.6: Implementation of negative resistance with cross coupled transistors .. 20 
Figure 4.7: Plot of (V1/VT) for I=1mA, and VT=25mV ............................................... 21 
Figure 4.8: Chaotic circuit ...................................................................................... 22 
Figure 4.9: V1 for a1=0.6, and a2=2 ........................................................................ 23 
Figure 4.10: Trajectory of the chaotic circuit in Figure 4.8 ...................................... 24 
Figure 4.11: Chaotic LC oscillator .......................................................................... 25 
Figure 4.12: Numeric analyses result of the BJT Chaotic-LC oscillator .................. 27 
Figure 4.13: Trajectory of the BJT Chaotic-LC Oscillator (x versus z) .................... 27 
Figure 4.14: MOS transistor chaotic-LC oscillator .................................................. 28 
Figure 4.15: Waveform of the State Variable x versus time .................................... 31 
Figure 4.16: Trajectory of the MOS Chaotic-LC Oscillator ...................................... 31 
Figure 4.17: Constructed subspaces with comparator references .......................... 32 
Figure 4.18: Placement of comparator references ................................................. 33 
Figure 4.19: Connections of comparators .............................................................. 34 
Figure 4.20: construction of clock and data signals ................................................ 34 
Figure 4.21: Realization of Von-Neumann‘s De-Skewing Algorithm ....................... 35 
Figure 4.22: Phase Space (VA-VB) versus (VC-VD) of the BJT Chaotic Oscillator .... 37 
Figure 4.23: Waveform of (VA-VB) .......................................................................... 37 
Figure 4.24: Phase Space of the MOS Transistor Chaotic Oscillator ..................... 38 
Figure 4.25: Waveforms of  (VA-VB) and (VC-VD) differences .................................. 39 
Figure 4.26: Subtraction circuit .............................................................................. 40 
Figure 4.27: DC characteristic of a differential pair ................................................. 40 
Figure 4.28: Simulation results of subtraction circuit .............................................. 41 
Figure 4.29: Comparator circuit .............................................................................. 42 
Figure 4.30: Simulation results of comp0 and comp1 ............................................. 42 
Figure 4.31: OR circuit ........................................................................................... 43 
Figure 4.32: Getting Vref ......................................................................................... 43 
Figure 4.33: Simulation results of OR circuit .......................................................... 44 
Figure 4.34: DFF circuit ......................................................................................... 44 
Figure 4.35: Simulation results of DFF ................................................................... 45 
Figure 4.36: EXOR gate ......................................................................................... 46 
Figure 4.37: Simulation results of EXOR ................................................................ 46 
Figure 4.38: Construction of signal "clk/2" .............................................................. 47 
Figure 4.39: Load structure was used in CML simulations ..................................... 47 



 
viii 

Figure 4.40: Simulation results of CML drivers ....................................................... 48 
Figure 4.41: Toplevel layout of the system ............................................................. 49 

 

 

 



 
ix 

KAOTĠK OSĠLATÖR TABANLI RASGELE SAYI ÜRETECĠ 

ÖZET 

Bu çalışmada, yüksek hızlı, sürekli zaman LC-kaotik osilatör tasarlanmış ve bu 
osilatörün çıkışları rasgele bit üretiminde kullanılmıştır. Hem Bipolar hem de MOS 
transistorlu osilatör versiyonları için devre deklemleri türetilmiştir. Bu denklemlerin 
nümerik denklem çözücü programlar yardımıyla çözülmesiyle kaotik osilasyonun 
sağlandığı görülmüştür. Devreler, Spectre spice simülatörü ve IHP SGB25VD 
0.25µm SiGeC BiCMOS prosesi model parametreleri kullanılarak test edilmiştir. 
Rasgele sayı üretimi, osilatör çıkışlarının 2 farklı referansla karşılaştırılmasıyla elde 
edilmektedir. Oluşturulan bitlerin istatistiksel özelliklerini iyileştirmek amacıyla Von-
Neumann algoritması tasarlanarak entegre edilmiştir. Üretilen çıkış bitleri periyodik 
olmadığından anlamlı bitlerin oluşma anlarını belirten bir saat işareti tanımlanmıştır. 
Rasgele sayı üretimi için gerekli olan alt bloklar yüksek hızlı çalışmaya uygun olacak 
şeklide Emetör Bağlamalı Lojik ve Akım Modlu Lojik aileleri kullanılarak 
tasarlanmıştır. Spectre simülatöründe gerçekleştirilen simülasyonlar, tasarlanan 
rasgele bit üretecinin yaklaşık 300Mbit/s hızında çıkış oluşturabildiğini göstermiştir. 
Çıkış işaretlerini cip dışına alabilmek amacıyla Akım Modlu Lojik  çıkış sürecüleri 
tasarlanmıştır. Kaotik osilatör ve rasgele bit üreteci sistemi, IHP SGB25VD 0.25µm 
SiGeC BiCMOS prosesi ile gerçeklenmiş ve üretime gönderilmiştir. Çipin toplam güç 
harcaması 50mW mertebesindedir. Toplam kırmık alanı 1 mm x 0.5 mm‘dir. 
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CHAOTIC OSCILLATOR BASED RANDOM BIT GENERATOR 

SUMMARY 

In this study, a high speed continuous time LC-chaotic oscillator was designed and 
utilized as a random bit generator. Circuit equations were derived for both MOS 
transistor and BJT versions. These equations were solved by using numeric solvers, 
and chaotic oscillation was observed. Spectre circuit simulator was used as the 
simulator. Circuits were verified by using IHP‘s SGB25VD 0.25µm SiGeC BiCMOS 
process. To generate successive ‗1‘s and ‗0‘s, two comparators with different 
references were used. A well-known Von-Neumann de-skewing algorithm was also 
implemented in order to improve statistical properties of the generated bit stream. 
The clock signal was constructed using the outputs of the comparators in order to 
define the bit generation events. The random bit generation sub-blocks were 
implemented as bipolar Emitter Coupled Logic (ECL) and Current Mode Logic 
(CML) gates. Spectre simulations showed that the average throughput of the 
designed random bit generator is approximately 300Mbit/s. The CML output drivers 
were designed to output the generated data and clock signals. The whole system, 
including the BJT chaotic oscillator and the random bit generation sub-blocks, were 
implemented in IHP‘s SGB25VD 0.25µm SiGeC BiCMOS process. The chaotic 
oscillator and the random bit generator block consume approximately 50mW power 
under typical conditions. Total area of the chip is 1 mm x 0.5 mm. 
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1. INTRODUCTION 

1.1 Motivation 

Random numbers are statistically independent and unbiased binary digits, and a 

random number generator is a system whose output consists of fully unpredictable 

bits. Random Number generation has a great importance in many applications. For 

example: numerical simulations, gaming, statistical analysis, distributed 

computations and cryptographic protocols. Almost all cryptographic protocols 

require the generation and use of secret values that must be unknown to attackers, 

so in cryptographic applications, the unpredictability of the output implies that the 

generator must also be not observable and not manipulable by any attacker. 

There are two kinds of random number generators (RNGs). Pseudo Random 

Number Generators (PRNGs) use deterministic algorithms to generate random bits 

starting from the initial seed. True Random Number Generators (TRGNs) use a non-

deterministic phenomenon to produce randomness [1]. 

True random number generation can be made by using various techniques. One of 

them is using chaotic circuits. Although chaos is a deterministic process, most times 

it is accepted to be a true random number generator due to very high initial condition 

sensitivity and complex behavior. For electronic systems a deterministic system is 

called chaotic if an infinitesimally small perturbation to its initial conditions produces 

a change in its behavior.  

In 1961, Edward Lorentz discovered the butterfly effect coincidently while trying to 

forecast the weather. ―Butterfly effect‖ is the idea that very small causes can 

produce dramatically out-of-proportion effects.  

 Chaos was first observed electronically in Chua‘s circuit. Chaotic nature of Chua‘s 

circuit was first observed by Matsumoto in 1983, and the first experimental results of 

Chua‘s circuit which confirm the presence of chaos were taken by Zhong and Ayrom 

in 1984 [2]. 

1.2 Organization of Thesis 

This thesis presents a high speed continuous time chaotic-LC oscillator and utilizes 

it to implement a high speed random bit generator. 
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Chapter 2 presents basic concepts of random number generation. Different types of 

random number generators and randomness tests are explained. Important IC 

implementations are also given. 

Chapter 3 is a review of chaos theory.  

Chapter 4 is a main subject of the thesis. Designed high speed chaotic LC-oscillator 

is explained in detail. Random bit generation method is presented in a detail. 

Implementation of Von-Neumann de-skewing algorithm is also given. 

Chapter 5 is a review of the thesis and conclusion is given. 
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2. RANDOM NUMBER GENERATION BASICS 

In general, random numbers can be summarized as numbers that are 

indistinguishable from outcomes that would arise purely by chance. With another 

way of saying, random numbers are the statistically independent and unbiased 

binary digits, that are outputs of algorithmic or device level random bit generators. 

The quality of a random number generator is often measured by the degree to which 

it produces unpredictable and unbiased output [2] 

Random numbers are widely used in; 

 numerical simulations 

 gaming 

 statistical analysis (Monte Carlo simulations) 

 distributed computations,  

 secure communication protocols (SSL, GSM…) and of course  

 cryptography 

Because security protocols rely on the unpredictability of the keys they use, random 

number generators for cryptographic applications must meet stringent requirements. 

The most important is that attackers, including those who know the RNG design, 

must not be able to make any useful predictions about the RNG outputs. In 

particular, the apparent entropy of the RNG output should be as close as possible to 

the bit length [1].  

According to Shannon theorem, the entropy H of any message or state is: 





n

i

ii ppH
1

log   (2.1) 

where pi is the probability of state i out of n possible states. In the case of a random 

number generator that produces a k-bit binary result, pi is the probability that an 

output will equal i, where 0≤i2k. Thus, for a perfect random number generator, pi = 

2k and the entropy of the output is equal to k bits. This means that all possible 

outcomes are equally (un)likely, and on average the information present in the 

output cannot be represented in a sequence shorter than k bits [1]. 
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Almost all cryptographic protocols require the generation and use of secret number 

[2]. For example: 

 Conventional encryption requires the generation of unguessable keys. 

 The computation of a digital signature with the Digital Signature Algorithm 

requires, besides the signer's private key, a value customarily called k that 

must be secret, and that must not be re-used. 

 Standards for message encryption using the RSA algorithm generally require 

the use of random numbers to form message padding. 

 Many challenge-response protocols require the use of a unique number, or 

nonce. In practice, a good way to produce a number with a large likelihood of 

being unique is to use a sufficiently large random number. 

While a high quality random source is always best, application can be classified into 

two categories according to randomness requirements [2]. 

1. Applications which need flat statistic and unbiased bit streams but have 

fewer unpredictability requirements; such as numerical simulations. In this 

type of applications pseudo random number generators (PRNGs) can be 

used 

2. Applications which have extremely strong unpredictability requirements but 

may be slightly tolerant of biased information; such as cryptographic 

applications. These kind of applications often need true random number 

generators (tRNG) 

2.1 Pseudo Random Number Generators (PRNGs) 

In many applications where a random bit stream is required, pseudorandom number 

generators (PRNGs) are used. Applications where flat statistic and unbiased bits are 

enough, such as numerical simulations, PRNGs can be safely used. In addition 

properly-implemented and seeded PRNGs are also suitable for most cryptographic 

applications, however great care must be taken in the development, testing, and 

selection of PRNG algorithms. PRNGs use a deterministic process to generate bit 

sequence, starting from an initial seed. Since the adopted algorithms are usually 

public, the seed is the only source of randomness and the actual entropy of the 

output can never exceed the entropy of the seed. Therefore, it is critical that a 

PRNG be properly seeded from a source of true randomness. In most cases, it must 

be properly seeded from a source of true randomness. 
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The output of a PRBG is not random; in fact, the number of possible output 

sequences is at most a small fraction of all possible binary sequences. The intent is 

to take a small truly random sequence and expand it to a sequence of much larger 

length [3]. 

2.2 True Random Number Generators (TRNGs) 

Since it is impossible to create true randomness from within a deterministic system, 

True Random Number Generators (TRGNs) use a non-deterministic source to 

produce randomness. 

In the applications, the random source can be constructed of dedicated hardware 

devices; otherwise; the random source can use software procedures to extract 

random processes from the platform on which the generator is implemented. 

Generators of the first type are commonly called hardware-based (HW); generators 

of the second type are software-based (SW) [3]. 

2.2.1 SW-Based Generators 

Generally, SW-based generators are implemented on computer systems and the 

values typically exploited as raw stream sources are obtained from: 

 event timings: 

o mouse movements and clicks 

o keystrokes 

o disk and network accesses 

 data depending on the history of the system and/or large amount of events: 

o system clock 

o I/O buffers 

o Load and network statistics 

The behavior of such processes can vary considerably depending on various factors, 

such as the computer platform, and entropy is mostly low and difficult to evaluate as 

well as the actual robustness with respect to observation and manipulation. 

A well-designed software random bit generator should utilize as many good sources 

of randomness as are available. Using many sources guards against the possibility 

of a few of the sources failing, or being observed or manipulated by an adversary. 

Although employing these protections, it‘s had to say that most PRNGs are immune 

to attacks. In 1996 two researchers found that Netscape‘s random number 
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generator seed was derived from ―just three quantities: the time of day, the process 

ID, and the parent process ID. Thus, an adversary who can predict these three 

values can apply the well-known MD5 algorithm to compute the exact seed 

generated [1].  

2.2.2 HW-Based Generators 

HW-Based generators use a non-deterministic, physical phenomenon to produce 

randomness. Most operate by measuring unpredictable natural processes. 

Examples of such physical phenomena include [3]: 

1. elapsed time between emission of particles during radioactive decay; 

2. thermal noise from a semiconductor diode or resistor; 

3. the frequency instability of a free running oscillator; 

4. flip-flop metastability 

5. the amount a metal-insulator-semiconductor capacitor is charged during a 

fixed period of time; 

6. air turbulence within a sealed disk drive which causes random fluctuations in 

disk drive sector read latency times; and 

7. sound from a microphone or video input from a camera. 

2.3 Post-Processing 

In practice, every kind of raw random source can present defects as offset, auto-

correlation or cross-correlation. The probability of the producing a ‗1‘ bit may not be 

equal to ½ because of interference with other signals (cross-correlation) or the 

probability of the generated output bit depends on previous bits because of bandwith 

limitations (auto-correlation). 

There are various techniques for generating truly random bit sequences from the 

output bits of such a defective generator; such techniques are called de-skewing 

techniques.  

One of the well-known de-skewing algorithms is the Von Neumann‘s algorithm [3]. 

According to Von Neumann‘s algorithm; 

 ―01‖ sequences must be converted into ‗0‘ bit, 

 ―10‖ sequences must be converted into ‗1‘ bit 
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 ―00‖ and ―11‖ sequences must be discarded 

2.4 Statistical Tests 

Statistical tests are designed to measure the quality of a generator. While it is 

impossible to give a mathematical proof that a generator is indeed a random bit 

generator, the tests help detect certain kinds of weaknesses the generator may 

have. This is accomplished by taking a sample output sequence of the generator 

and subjecting it to various statistical tests. Each statistical test determines whether 

the sequence possesses a certain attribute that a truly random sequence would be 

likely to exhibit; the conclusion of each test is not definite, but rather probabilistic. An 

example of such an attribute is that the sequence should have roughly the same 

number of 0‘s as 1‘s. If the sequence is deemed to have failed any one of the 

statistical tests, the generator may be rejected as being non-random; alternatively, 

the generator may be subjected to further testing. On the other hand, if the 

sequence passes all of the statistical tests, the generator is accepted as being 

random. More precisely, the term ―accepted‖ should be replaced by ―not rejected‖, 

since passing the tests merely provides probabilistic evidence that the generator 

produces sequences which have certain characteristics of random sequences. 

There are 5 basic statistical tests [3]. 

2.4.1 Frequency Test (Monobit Test) 

The purpose of this test is to determine whether the number of ‗0‘bits and in binary 

sequence (s) of length n are approximately same as would be expected from a 

random sequence. Let n0, and n1 denote the number of ‗0‘bits and ‗1‘bits in 

sequence s, respectively. The statistic used is 

 
n

nn
X

2

10

1


    (2.2) 

2.4.2 Serial Test 

The purpose of this test is to determine whether the number of occurrences of 00, 

01, 10 and 11 as subsequences of binary sequence s are same, as would be 

expected for a random sequence. Let n0, and n1 denote the number of ‗0‘bits and 

‗1‘bits in s, and let n00, n01, n10, and n11 denotes number of occurrences of ―00‖, ―01‖, 

―10‖, and ―11‖ respectively. Note that n00 + n01 + n10 + n11 = (n − 1) since the 

subsequences are allowed to overlap. The statistic used is 
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2.4.3 Poker Test 

Let m be a positive integer such that  m

m

n
25








and let. 










m

n
k . Divide the 

sequence s into k non-overlapping parts each of length m, and let ni be the number 

of occurrences of the ith type of sequence of length m, 
mi 21  . The poker test 

determines whether the sequences of length m each appear approximately the 

same number of times in s, as would be expected for a random sequence. The 

statistic used is 

kn
k

X

m

i

i

m















 



2

1

2

3

2
  (2.4) 

The poker test is a generalization of the frequency test: setting m = 1in the poker 

test yields the frequency test. 

2.4.4 Runs Test 

The purpose of the runs test is to determine whether the number of runs (of either 

zeros or ones) of various lengths in the sequence s is as expected for a random 

sequence. The expected number of gaps (or blocks) of length i in a random 

sequence of length n is   22/3  i

i ine . Let k be equal to the largest integer i for 

which. Let Bi, Gi be the number of blocks and gaps, respectively, of length i in s for 

each i, ki 1 . The statistic used is 










k

i i

ii
k

i i

ii

e
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2

4

)()(
  (2.5) 

2.4.5 Autocorrelation Test 

The purpose of this test is to check for correlations between the sequence s and 

(non-cyclic) shifted versions of it. 

2.4.6 FIPS 140-1 Statistical Tests 

Federal Information Processing Standards (FIPS) specifies four statistical test for 

randomness with FIPS 140-1 standard [4]:  

 monobit test. The number n1 of ‗1‘bits in s must satisfy 9654 < n1 < 10346. 

 poker test. The statistic X3 defined by equation (2.4) is computed for m = 4, 

and the poker test is passed if 1,03 <X3 < 57,4 is satisfied. 

 runs test. The number Bi and Gi of blocks and gaps, respectively, of length i 

in s are counted for each i, 61  i  (For the purpose of this test, runs of 

length greater than 6 are considered to be of length 6). The runs test is 
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passed if the 12 counts Bi, Gi, 61  i , are each within the corresponding 

interval specified by the following Table 2.1. 

Table 2.1: Conditions of runs test 

Length of run Required interval 

1 2267-2733 

2 1079-1421 

3 502-748 

4 223-402 

5 90-223 

6 90-223 

 long run test. The long run test is passed if there are no runs of length 34 

or more. 

2.5 IC Random Number Generators 

The increasing usage and importance of network communication and cryptography 

results in an increasing to use integrated RNGs. There are a various IC 

implementations of RNGs, and the important ones are explained below. 

2.5.1 Direct Amplification of Noise 

The direct amplification technique shown in Figure 2.1 uses a high-gain high-

bandwidth amplifier to process the small ac voltage produced by a noise source 

such as thermal or shot noise, is in the order of µV making the RNG very sensitive 

to signal coupling. The noise must be amplified to a level where it can be accurately 

processed with no bias by a clocked comparator. This is the most popular RNG 

technique for single-chip solutions where shielding of the noise source is possible. 

The lack of adequate shielding from power supply and substrate signals in an IC 

environment prohibits the exclusive use of this method for IC-based cryptographic 

systems [4]. 
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Figure 2.1: Direct amplification of noise 

2.5.2 Oscillator Sampling 

Oscillator based RNGs have a advantage over direct amplification of noise 

technique even in the presence of sinusoidal signal coupling. Oscillator based RNGs 

use oscillator timing jitter as a source of randomness. Two or more oscillators are 

combined to produce a random bit stream. In Figure 2.2, a low frequency oscillator 

samples the output of a high frequency oscillator using a D flip-flop. The level of 

randomness depends on the mean frequency separation of the oscillators and the 

amount jitter. If the low frequency oscillator period has a standard deviation much 

greater than the fast oscillator period, then the states for two successive sampled 

times can be considered uncorrelated and therefore the output bit stream is random 

in nature [1]. 

 

Figure 2.2: Oscillator sampling technique 

In some applications, to improve statistical properties of generated bits, and achive 

a high bit rates the oscillation frequency of VCO is controlled by other RNG [4]. 

2.5.3 Chaos Based Generators 

A deterministic system is called chaotic if an infinitesimally small perturbation to its 

initial conditions produces a change in its behavior that grows exponentially with 

time. Chaos will be examined in detain in the next chapter. 
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While chaos is a concept completely different from randomness, it is important in 

random-number generation for the following reason: If an RNG is chaotic, and if 

there is some inescapable uncertainty in any contribution to its state (e.g., due to 

thermal noise), then simply by waiting for a certain length of time, namely the time 

required for the exponential growth of that uncertainty to reach the magnitude of the 

system's gross state, it can be assumed that the state of the system is unknowable. 

By waiting a sufficient length of time between samplings, is can be possible to 

sample high-quality random bits from a chaotic system that is otherwise 

deterministic [2]. This time period changes from implementation to implementation. 
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3. CHAOS 

The chaos theory is often ascribed to Edward Lorenz. Edward Lorenz was a 

meteorologist at MIT who showed that weather is chaotic and ultimately 

unpredictable. In 1961, he used term ―butterfly effect‖ to explain his theory. ―Butterfly 

effect‖ is the idea that very small causes can produce dramatically out-of-proportion 

effects. The notion that "the flap of a butterfly's wings in Brazil" might "set off a 

tornado in Texas" was presented in a lecture by Edward Lorenz to illustrate the 

impossibility of perfect weather prediction even if all known causes and effects could 

be measured. The butterfly effect is an illustration of sensitive dependence on initial 

conditions. 

In other way of saying, chaos is the certain systems, in both nature and 

mathematics, appear to be governed by chance, but can be shown to be 

deterministic through analysis, phase space maps and computer models. These 

systems exhibit a sensitive dependence on initial conditions, so that even small 

variations in their starting conditions will produce wildly differing results. 

Every model able to produce chaotic behavior must be a non-linear, dynamical 

system. Simply, dynamic system is a system in a motion. The swing of a pendulum, 

boiling water, weather, the growth of populations and the interactions between 

atoms and molecules are all examples of dynamical systems. Some are predictable 

and some are not, but they are all systems whose future motions depend entirely on 

past movements. Dynamical systems signal their presence through three factors: 

 they are dynamic, that is, subject to lasting changes 

 they are complex, that is, depend on many factors 

 they are iterative, that is, the laws that govern their behavior can be 

described by feedback. 

Regarding non-linearity, it can be say that systems and phenomena that do not 

move predictably by following a clear pattern are said to be non-linear. 

3.1 Chaos in Electronic Systems 

For electronic systems a deterministic system is called chaotic if an infinitesimally 

small perturbation to its initial conditions produces a change in its behavior that 



 
13 

grows exponentially with time. So, it is impossible to make accurate long-term 

predictions about the behavior of the system. Chaotic signals are non-periodic in 

time domain and trajectory of the system cannot go through the same point twice [5] 

Chaotic circuits can be used in: 

 analog signal processing applications as a dither source to improve the 

performance of other blocks. For instance, dithering can be used to 

whiten the noise floor of  modulators, as well as to reduce the (idle 

channel) spurious tones, which are introduced during quantization of 

direct current (dc) inputs (audible in voice-band applications) [6]. Also, 

dithering can be used to improve the integral nonlinearity of high-

performance Nyquist-rate analog-to-digital converters [7]. 

 ranging systems, the nonperiodicity of chaotic signals, as well as the 

rapid decorrelation of their time-shifted sequences, make the use of 

chaos an interesting coding technique for high resolution radar systems 

[8]. 

 chaos-based digital communication systems as a generator of 

communication carriers [9]. 

 random number generation frequently. Although chaotic oscillator is a 

deterministic system, most times it is accepted as a TRNG. Since a small 

changes, affects its behavior, they can be thought as a noise 

amplificatory.  

Chaotic circuits can be classified into autonomous or nonautonomous systems, 

depending on whether the system is able or not to self-sustain chaotic oscillations 

without any external excitation. Most of the IC implementations are autonomous 

systems. Another possible classification is between discrete-time or continuous-time, 

depending on whether the system evolution is described by nonlinear difference or 

differential equations, respectively [10]. 

Autonomous discrete-time systems (or discrete maps) can be generally described 

by the following qth (delay) order n-dimensional finite-difference equation (FDE), 

      kxqkxFqkx ,...,1   (3.1) 

where  k=0,1,2… symbolizes the discrete time variable, x(k) represents the state 

vector of the system at the  kth discrete time instant and F is a n-dimensional time-

invariant vector field. Autonomous continuous-time systems are defined by the ODE 

ordinary differential equations (ODE), 
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 )(txF

dt

tdx
   (3.2) 

where x(t) is the state vector of the system (also trajectory) and F is the nonlinear 

vector field that defines the direction and speed of a trajectory at every point in the 

state space and at every instant of time [10]. 

In order to exhibit chaos electronically, an autonomous circuit consisting of resistors, 

capacitors, and inductors must contain: 

 at least one nonlinear element (sign, absolute value, hysteresis etc.) 

 at least one negative resistor (to supply energy to the system) 

 at least three energy-storage elements 

3.2 Chua’s Circuit 

Chua‘s circuit is the simplest electronic circuit that generates chaos [11] (see Figure 

3.1). 

 

Figure 3.1: Chua's Circuit 

It consists of; 

 A linear inductor L 

 A linear resistor R 

 Two linear capacitors C1 and C2 and  

 A single voltage controlled nonlinear resistor called Chua‘s diode. 

I-V characteristic of Chua‘s Diode is shown in Figure 3.2. 

The state equations of Chua‘s circuit are: 

 )()(
1

112

1

1 vfvvG
Cdt

dv
   (3.3) 
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Cdt
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   (3.4) 
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di
   (3.5) 

where, 
R

G
1

 , and   EvEvGGvGvf bab  1111
2

1
)( . 

These equations form different attractors for different parameter values. In Figure 

3.3 one of the attractors obtained from computer simulation of Chua‘s circuit is 

shown. 

 

Figure 3.2: I-V characteristic of Chua's diode 

 

 

Figure 3.3: Attractor of Chua's circuit 
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4. CHAOTIC OSCILLATOR BASED RANDOM NUMBER GENERATOR  

The ultimate goal of this research was to integrate a chaotic oscillator, and use this 

oscillator outputs to generate a successive bit stream that passes randomness tests. 

A high speed negative-gm LC oscillator was selected as the oscillator [12]. Random 

bits were generated with the method described in [13]. 

By adding new elements to the well known LC oscillator, chaotic oscillation was 

obtained. The state equations of the oscillator were derived and solved by using 

various numeric solvers.  

4.1 Construction of Chaotic Oscillator 

Before substituting equations for the proposed chaotic oscillator, deriving equations 

for familiar RLC resonator may be helpful in order to illustrate the concepts in 

dynamical systems theory, and introduce ideas of stability and oscillation,.  

4.1.1 RLC Resonator 

The parallel-tuned RLC resonant circuit consists of two linear, lossless passive 

energy-storage elements (L, C) and a linear resistor R (See Figure 4.1). 

 

Figure 4.1: Parallel RLC circuit 

This circuit can be described by a system of ordinary differential equations of the 

form; 

),),(()( ttXFtX 


  0)0( XX     (4.1) 

where )(tX  is called a state vector, and )),(( ttXF  is called a vector field. If the 

vector field depends only on the state, and is independent of time t, then the system 

is said to be autonomous and can be written as [8]; 
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),(XFX 


   0)0( XX    (4.2) 

For the circuit in Figure 4.1, with the selection of V1 and iL as state variables, two 

state equations can be written as; 

RC

V
i

Cdt

dV
L

11 1
   (4.3) 

L

V

dt

dİ L 1   (4.4) 

By applying variable transformation as ,,1 yixV L  and
RC

t
tn  ; the above state 

equations for the circuit become independent of time t; 

xRyx 


  (4.5) 

x
L

RC
y 


  (4.6) 

Without solving these equations, the behavior of the circuit can easily be explained 

with respect to the polarity of R. If R is positive then the resistor is said to be 

dissipative. The energy initially stored in the capacitor and inductor is dissipated, 

and V1(t) and İL(t) approach zero either monotonically or in the form of exponentially 

decaying sinusoids. If R is negative, the resistor has negative dissipation; it supplies 

energy to the rest of the circuit. Energy stored in the circuit increases with time. This 

circuit simply oscillates when the R infinite.  

 

Figure 4.2: V1 versus t, for R=-10 
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To see the behavior of the circuit visually, equations (4.5) and (4.6) can be solved by 

using MATLAB. For L=C and a given initial condition-set; the typical voltage V1 

waveforms for negative, positive and infinite R situations are shown in Figure 4.2, 

4.3, and 4.4 respectively.  

 

Figure 4.3: V1 versus t, for R=10 

 

Figure 4.4: V1 versus t, for R= 

The trajectories of a system are also shown in Figure 4.5a,b for positive, and 

negative R situations respectively (In infinite R situation, the trajectory becomes a 

simple circle).  
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Figure 4.5: The vector field of a system (a) for positive R; (b) for negative R 

For positive R values, trajectories are pushed together as they track spiral towards 

the origin, which is the equilibrium point of the RLC circuit (Figure 4.5-a). For 

negative R values trajectories are stretched apart as they track a spiral away from 

the equilibrium point - the origin (Figure 4.5-b). Although the last situation 

corresponds to a continuous oscillation, it neither has a physical meaning (A real 

oscillator must possess a nonlinearity to limit the amplitude of the oscillation), nor is 

sufficient to produce a chaos.  

Indeed, in physical systems there is always a positive R that comes from the 

parasitic resistance of the inductor. Thus the energy stored in the resonator is 

dissipated even without the need of an external positive resistor. In order to 

compensate resonator losses and achieve oscillation, active devices that show 

negative resistance must be used.  

4.1.2 Basic LC Oscillator 

Most LC oscillators employ a cross-coupled transistor pair as a negative resistance. 

Figure 4.6 shows one of the basic configurations of classical LC oscillators. This 

configuration provides a symmetrical nature to the oscillator. 

Since the circuit has a symmetric nature, when node A has a common mode voltage 

VC and differential voltage +V1, the voltage of node B can be written as VC-V1. 
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Figure 4.6: Implementation of negative resistance with cross coupled transistors 

By applying KCL to node A and B, two equations can be written;  

 
0

2
1

1 



IeII
dt

Vd
C T

C

V

VV

SL   (4.7) 

 
0

2
1

1 



IeII
dt

Vd
C T

C

V

VV

SL   (4.8) 

where IS and VT are the reverse saturation current of the transistor and thermal 

voltage respectively. By adding, and subtracting (4.7) and (4.8) we conclude with; 

)(
42

1
11

1 TT

T

C

V

V

V

VV

V

S

L ee
eI

i
dt

dV
C 



  (4.9) 

)(

2
11

TT

T

C

V

V

V

V

V

V

S

ee

I
eI






  (4.10) 

Rearranging (4.9) by using (3.10) and the tanh definition, one of the state equations 

of the circuit is reached: 

)tanh(
22

1
11

T
L V

VI
I

dt

dV
C    (4.11) 

The other state equation comes from the voltage across the inductor L: 



 
21 

12V
dt

dI
L L    (4.12) 

If )( 1

TV
V

, and LI are chosen as state variables and normalization is applied to time, 

equations (4.11) and (4.12) can be rearranged with using x
V

V

T

)( 1 , yI L  and 

LC

t
tn   

)tanh(
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V
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  (4.13) 

xVy T2


  (4.14) 

These equations form the vector field of the circuit in Figure 4.6, and can be solved 

by using MATLAB. For I=1mA, VT=25mV, and a given initial condition-set, the 

obtained waveform of the state variable )( 1

TV
V

 is shown in Figure 4.7. 

 

Figure 4.7: Plot of (V1/VT) for I=1mA, and VT=25mV 

Since there is no amplitude limiting mechanism included, again increasing oscillation 

is observed. 

4.1.3 Block Level Chaotic Oscillator 

As discussed in Chapter 3, in order to produce chaos in an electronic system three 

conditions must be satisfied: 

 the system must have at least one nonlinear element 
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 at least one locally active resistor 

 at least three state variables. 

By making the appropriate modifications in the circuit seen in Figure 4.6, a sustained 

chaotic oscillation can be maintained. In Figure 4.8 the new version of the RLC 

circuit is shown. A resistor (R2) and a capacitor (C2) couple are included in order to 

produce one more state variable. The Signum function (sgn) is employed as the 

nonlinear element. It maintains nonlinearity by sourcing a current to node V2 or 

sinking a current at node V2 according to the polarity of the node voltage V1.  

 

Figure 4.8: Chaotic circuit 

For the circuit shown in Figure 4.8, the state equations can be written as; 

1

11
1

R

V
I

dt

dV
C L    (4.15) 

2

2
1

2
2 )sgn(

R

V
IV

dt

dV
C L    (4.16) 

21 VV
dt

dI
L L    (4.17) 

If V1, RIL, and V2 are chosen as variables, equations (4.15-17) can be rearranged 

using the variable transformation; xV 1 , yRI L  , zV 2 and time normalization 

RC

t
tn  . 

xayx 1


  (4.18) 
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zayxRz 2)sgn( 


  (4.20) 

where 
1

1 R
Ra  , and 

2
2 R

Ra   

These equations can be solved by using MATLAB numeric solver ODE45. With the 

selection of 1
)(

2


CL

R
, and L=C, it is seen that chaotic oscillation occurs for some 

values of a1, and a2. In Table 4.1, three sets of variables (a1, a2) that provide chaotic 

oscillation is shown. 

Table 4.1: Different parameter-sets for which chaotic oscillation occurs 

 a1 a2 

1 0.6 2 

2 0.8 1.6 

3 1 1.4 

Figure 4.9 shows the waveform of node voltage V1 for the first parameter-set in 

Table 4.1. 

 

Figure 4.9: V1 for a1=0.6, and a2=2 
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Figure 4.10 is a plot of V1 versus V2, in other words the trajectory of the system in 

Figure 4.8. 

 

Figure 4.10: Trajectory of the chaotic circuit in Figure 4.8 

4.1.4 Bipolar Transistor Chaotic-LC Oscillator 

By combining the concepts of classical negative-gm LC oscillator and the circuit that 

uses the signum function, the final chaotic oscillator has been reached (Figure 4.11) 

[12]. This circuit has been derived from the classical negative-gm LC oscillator, by 

adding a parallel RC3 section (like the R2C2 section in Figure 4.8), and a differential 

pair stage, to realize the signum-like function. 

Similar to the classical LC oscillator in Figure 4.6, if node A has a common mode 

voltage of VC and a differential voltage component of +V1, then node B has a 

common mode voltage of VC but differential voltage of -V1. Similarly, the voltage 

values of node C, and D can be written as VC+V2 and VC-V2 respectively, as a result 

of the symmetrical nature of the circuit.  

The inductance, placed between nodes A and C has a current value of LL iI  , 

whereas the other one has LL iI  . 
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Figure 4.11: Chaotic LC oscillator 

Applying KCL at node A, B, C and D, with the assumption of C1=C2=C3=C yields the 

following equations; 
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where IS and VT are the reverse saturation current of the transistor and the thermal 

voltage respectively. 

By rearranging (4.21) and (4.22), the following equations can be written: 
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By combining (4.23) and (4.24), 
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   (4.27) 

is achieved. In this equation 21 II  represents the output current difference of the 

differential pair and can be written in terms of the tail current 0I  and the differential 

input voltage as, 12VVV BA  . 
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Equation (4.27) can be rearranged by using (4.28), as 
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Equations (4.25), (4.26) and (4.29) are the state equations of the chaotic oscillator 

circuit, but there is one more equation that comes from the voltage-current 

relationship of inductance: 

   
dt

iId
LVVVV LL
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   (4.30) 

By making the appropriate simplifications; 

dt

id
LVV L )(

21    (4.31) 

is reached. 

The 4 equations (4.25, 4.26, 4.29, and 4.31) are the state equations of the circuit 

shown in Figure 4.11. 

By scaling all voltage values with an arbitrary scaling voltage Vs; choosing state 

variables as 
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V
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z 2 , and 
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x  ; scaling time t with RC 

(
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t
tn  ); and taking
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L
R  ; the state equations are transformed into a simple 

and dimensionless  form: 
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These state equations can be solved by using numeric solvers, and again for 

different sets of parameters a, b, c and d, chaotic oscillation occurs. Figure 4.12 and 

4.13 are obtained for a=0.5, b=10-4, c=8.8 and d=2. 

 

Figure 4.12: Numeric analyses result of the BJT Chaotic-LC oscillator 

 

Figure 4.13: Trajectory of the BJT Chaotic-LC Oscillator (x versus z) 



 
28 

4.1.5 MOS Transistor Chaotic-LC Oscillator 

The MOS transistor version of the chaotic-LC oscillator is also possible (Figure 4.14) 

 

Figure 4.14: MOS transistor chaotic-LC oscillator 

Comparing Figure 4.11 and 4.14, it can be seen that transistor type is not the only 

difference. While currents I1 and I2 are sunk from nodes C and D in Figure 4.11, 

these currents are sourced to nodes C and D with a gain of k in Figure 4.14. 

The nonlinearity in this chaotic oscillator, whose basic structure has been explained 

in Chapter 4.1.3, has been established by using a transimpedance amplifier block 

with a signum functionality. While the bipolar differential pair maintains this 

functionality with a good approximation thanks to the exponential nature of the BJTs, 

the MOS differential pair cannot achieve a good approximation due to the square-

law behavior of MOS transistors. However, it has been seen that in the MOS 

differential pair, the requested approximation can be achieved when the currents I1 

and I2 are multiplied with a gain of k. The circuit structure has been modified 

accordingly. The currents I1 and I2 could be mirrored once more – this time with 

NMOS transistors – in order to make a structure, which would be more similar to the 

BJT version. This modification was not needed.  

The currents being sourced this way have made another modification in connections 

necessary. In the BJT version, the transistor whose base is connected to node A 
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has its collector at node D, which causes current to be sunk from D according to the 

voltage value at node A. This connection has been changed in the MOS version and 

current is being sourced to C according to the voltage value at node A. 

Applying KCL at node A, B, C and D, with the assumption of C1=C2=C3=C yields the 

following equations: 
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   and VTN is the threshold voltage of the NMOS 

transistors.  

By rearranging (4.36) and (4.37), the following equations can be written: 
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By combining (4.38) and (4.39): 
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(4.42) is achieved. In equation (4.42) (I1-I2) is the output current difference of the 

MOS differential pair and by rearranging (4.42) using the output current-input 

differential voltage relationship of the MOS differential pair, the following equation 

can be derived: 
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By scaling all voltage values with an arbitrary scaling voltage Vs; choosing state 

variables as;
SV

V
x 1 , 

S
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V
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y  , 

SV

V
z 2 , and 

S
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V

V
x  ; scaling time t with RC 

(
RC

t
tn  ); and taking

C

L
R  ; the state equations are transformed into a simple 

and dimensionless  form: 
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These state equations again generate chaos for different set of parameters. In Table 

4.2, four sets of parameters that generate chaotic oscillation are shown. 

Table 4.2: Parameter sets that generate chaotic oscillation 

 b bn cth c0 cb k 

1 1 2.6 1 2.2 0.7 1 

2 1 0.4 1 0.5 0.7 5 

3 1 0.3 1 0.3 0.7 7 

4 0.5 0.3 1 0.3 0.7 9 

Figure 4.15, and Figure 4.16 show the waveform of the state variable x, and the 

trajectory of the system (x versus z) respectively for the second parameter set in 

Table 4.2. 
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Figure 4.15: Waveform of the State Variable x versus time 

 

Figure 4.16: Trajectory of the MOS Chaotic-LC Oscillator 

4.2 Random Bit Generation  

The chaotic oscillator presented in the last section, is a continuous time autonomous 

system, which exhibits a double-scroll attractor. This chaotic oscillator has been 

used as a source for the RBG. 

Bits are produced by using the VA-VB voltage difference which is one of the state 

variables of the chaotic oscillator. To generate ‗1‘s and ‗0‘s, two comparators with 

different references are used [13] (Figure 4.17). These two comparators divide the 

state space into three sub regions; V0, Vtr, and V1. One of the comparators is 
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responsible for detecting the jumps between the scrolls, and the reference of this 

comparator has been set to the mid-value of the oscillation. The other comparator is 

used for detecting the crossings inside one scroll, and the reference of this 

comparator has been selected as a design variable. 

 

Figure 4.17: Constructed subspaces with comparator references 

A ‗1‘ bit is generated when the trajectory passes from region Vtr to region V1 and a 

‗0‘ bit is generated when the trajectory passes from region Vtr to region V0. 

The time domain representation of the reference placement is shown in Figure 4.18. 

In Figure 4.18, the x-axis is the voltage signal (VA-VB), which is one of the state 

variables of the system described in section 4.1.4 

It is easy to see that by using the bit generation procedure that has just been 

explained, and applying the comparator references as seen in Figure 4.18, the 

resulting number of ‗1‘s will be significantly less than that of ‗0‘s. This 

nonsymmetrical replacement of references can be overcome by a proper selection 

of the reference of comp0 (ref0), and applying Von-Neumann de-skewing algorithm 

as explained in chapter 2. 
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Figure 4.18: Placement of comparator references 

Up to here, the ‗1‘s have been generated at the output of the comparator comp1 at 0 

to 1 crossings, and ‗0‘s at the output of comparator comp0 at 1 to 0 crossings. It is 

obvious that this is not an appropriate way of outputting random numbers, therefore 

another method should be found.  

4.2.1 Construction of the Clock Signal  

In data transport protocols, it is common to synchronize the data on the line with a 

synchronization signal, namely the clock. Therefore combining the generated ‗1‘s 

and ‗0‘s in one signal and defining a clock signal would be a better way of outputting 

random bits.  

The clock signal must point to the meaningful bits. As a result, it has to be 

constructed using the comparator outputs. 

The first step of clock generation is to make the two comparators similar in the way 

they generate ‗1‘s and ‗0‘s. In order to achieve that, the reference and signal inputs 

of comp0 have been interchanged. Thus comp0 generates ‗0‘s during 0 to 1 

crosses; while comp1 keeps generating ‗1‘s during 0 to 1 crossings. 
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Figure 4.19: Connections of comparators 

This new arrangement gives us an opportunity to combine the two comparator 

outputs by using an OR function. The output of this OR function is the clock signal 

that we need.  

4.2.2 Combining Bits In One Signal  

Since the two comparators are taking the same signal as input and reference of 

comp0 is smaller than comp1; the output of comp1 has already been set to ‗0‘ 

whenever comp0 produces ‗0‘. This means that sampling the output of comp1 with 

the constructed clock signal gives us the random bit stream that has been generated 

by system the (Figure 4.20). 

 

Figure 4.20: construction of clock and data signals 

4.2.3 Implementing Von Neumann’s De-Skewing Algorithm 

As explained in chapter 2, generated bits may have cross or auto correlation related 

defects. For example, if the reference of comp0 is selected improperly, the resulting 

number of ‗0‘s would be significantly higher that that of ‗1‘s. De-skewing can be 

applied to the generated bits to prevent correlation related defects.  Von Neumann‘s 

well known de-skewing algorithm was implemented to improve the statistical 

properties of the produced bits. With this de-skewing algorithm ―01‖ sequences are 

converted into ―0‖; ―10‖ sequences are converted into ―1‖; ―00‖ and ―11‖ sequences 

are discarded. 

Although this de-skewing would change the generated bit sequences, since the 

meaningful bits have been defined by the generated clock signal, the manipulations 

to implement Von Neumann‘s de-skewing algorithm must be applied to the clock 
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signal. The complete block level diagram, where de-skewing algorithm is realized, is 

shown in Figure 4.21. 

 

Figure 4.21: Realization of Von-Neumann‘s De-Skewing Algorithm 

In figure 4.21: 

 Data signals have been stored into two consecutive DFFs (DFF1, DFF2). 

 To eliminate the ―00‖s and ―11‖s and keep the ―01‖s and ―10‖s, the outputs of 

these two DFFs have been EXORed. 

 To process the non-overlapping bit pairs only, the clock signal has been 

divided by two again using DFF (DFF4). 

 To get the final clock signal (clk_out), outputs of EXOR and DFF4 have been 

combined by using AND function. If the EXOR operation results ―0‖, the 

signal ―clk/2‖ is disabled by this AND gate.  

 DFF5 has been used to synchronize the data signal with the newly 

constructed clock signal, and it produces the final data. 

4.3 IC Implementation 

In the first steps of the design process, AustriaMicroSystems (AMS) 0.35m SiGe 

BiCMOS process had been chosen for production and the oscillator circuits had 

been designed and simulated by using the parameters of this process. Afterwards, 

out of financial reasons, the process to be used was changed to the IHP 0.25m 

SiGe-C BiCMOS process, and the design was completed in this process and sent 

along for production. 

It was proven numerically in section 4.1 that the designed oscillators can generate 

chaotic oscillation. By choosing an appropriate parameter-set out of the sets that 
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generate chaotic oscillation and using the definitions of these parameters, the 

values of the circuit elements have been identified. Although different sets of 

parameters produce chaos in numeric analyses, some parameter sets are not 

meaningful in physical basis. In other words, not all of the parameter sets that 

numerically generate chaos can produce suitable L, C and R values for IC 

implementation. 

With the existence of transistors with high transit frequency, the RBG blocks were 

implemented using standard ECL and CML structures. 

Cadence Spectre circuit simulator was used as the simulator. Supply voltages were 

1.2V. Simulations have been verified for various corner parameters, and 

temperature was swept from -20 0C to 50 0C. 

4.3.1 Bipolar Chaotic Oscillator 

R, L, C, IB, and I0 were calculated for the parameter values a=0.5, b=10-4, c=8.8, 

and d=2. With using definitions of these four parameters -
T
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a  , 
T
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aV
RI

b  , 

TaV
RI

c 0  , and 
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B
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R
I

I
d

)
2

( 0
 - and choosing L=11.7nH we conclude with 

the other element values as R=180, C=350fF, and DC bias currents I0=600A, 

IB=710A. 

L=11.7nH was chosen to be able to use standard inductances supplied by the 

vendor. By doing this, we can avoid design and layout of inductances customly. 

Since, these parameters do not restrict the selection of transistor geometries, 

transistor geometries were determined in such a way that maximum transit 

frequency and current gain occur for the transistors at given current levels.  

After first simulations: 

 IB was changed to 800A 

 C values were reduced in order to compensate parasitic capacitances at 

node A,B,C and D 

 In contrast to the differential pair, the cross coupled stage transistors were 

changed with large area ones, to be able to reduce the base resistance 

which was not included in the state equations 

Figure 4.22 and 4.23 show the observed phase space corresponding to (VA-VB) 

versus (VC-VD)  and time domain waveform of (VA-VB) respectively. 
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Figure 4.22: Phase Space (VA-VB) versus (VC-VD) of the BJT Chaotic Oscillator 

 

Figure 4.23: Waveform of (VA-VB) 

4.3.2 MOS Transistor Chaotic-LC Oscillator 

Although for the bipolar version, there are some parameter sets that result suitable 

element values for IC implementation, for the MOS version, no parameter set that 

was found that supplies acceptable L values could not be found. Despite this known 

inconvenience, MOS version was constructed, and simulated by using the AMS 
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model parameters. R, L, C, IB and I0 values were calculated for the second 

parameter set of Table 4.2, i.e. -b=1, bn=0.4, cth=1, c0=0.5, cb=0.7, and k=5-. By 

using definitions of these parameters - SRVb  , Snn RVb  ,
S

th
th V

V
c  , 

SV
RI

c 0
0   and 

S

L
b V

RI
c  - we conclude with passive element values as R=1k, 

C=10pF, L=10nH, and bias currents as I0=250A, IB=-275A. Since IB results a 

negative value, the direction of current sources IB were changed, and the design 

was finalized. 

Figure 4.24 and 4.25 show the Spectre simulation results of circuit in Figure4.14. In 

Figure 4.24 phase space corresponding to (VA-VB) versus (VC-VD) and in Figure 4.25 

time domain waveforms of (VA-VB) are shown. 

The large L values result an obligation of using off-chip inductance, and reduce the 

oscillation frequency. Because of these inconveniences the MOS version chaotic-LC 

oscillator was not chosen as the golden version, and the design was later carried on 

by using the bipolar version. 

 

 

Figure 4.24: Phase Space of the MOS Transistor Chaotic Oscillator 
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Figure 4.25: Waveforms of  (VA-VB) and (VC-VD) differences 

4.3.3 Difference Amplifier 

As explained in chapter 1.2, VA-VB difference is needed to generate random bits. 

Since the oscillation has high frequency components, opamp-based closed-loop 

topologies are not suitable as the subtraction circuit. Because of their simplicity and 

high frequency operation capability, open-loop architectures such as differential 

pairs can be good candidates.  

Although the oscillation amplitude in VA and VB is approximately 600mVpp (meaning 

that 500mVpp linear region is needed), the output of the differential pair saturates 

when the input voltage difference reaches 4VT=100mV. Resistive degeneration was 

applied to widen the linear region of the differential pair. In Figure 4.26, the 

schematic view of the difference amplifier is shown. 
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Figure 4.26: Subtraction circuit 

The Vin-Vout characteristic of the circuit in Figure 4.26 for different degeneration 

resistance values are shown in Figure 4.27.  

 

Figure 4.27: DC characteristic of a differential pair 

In Figure 4.27, R1=0, and R3 > R2 > R1. Bigger the degeneration resistance, results 

the bigger linear region. R=600 was chosen to maintain the desired linear region. 

The simulation results of the subtraction circuit are shown in Figure 4.28. 
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Figure 4.28: Simulation results of subtraction circuit 

In Figure 4.28, the output of difference amplifier is shown with the voltage 

waveforms of node VA, VB and the ideal VA-VB difference which derived using 

Spectre calculator function. From Figure 4.28 it is seen that the differences of VA 

and VB voltages are taken properly with the help of applied linearization. 

4.3.4 Comparator Circuit 

Again a differential pair was used as a comparator. Unlike the subtraction circuit, a 

wide linear region is not needed in the comparator, so resistive degeneration was 

not applied. In the signal flow, when the signals reached the comparator, there is no 

defined clock signal yet. Because of the absence of the clock signal, well known 

―latch‖ structures with positive feedback could not be used. Instead, the desired gain 

was achieved by using three differential stages in cascade. The final schematic of 

comparator circuit is shown in Figure 4.29. The simulation results of comp0 and 

comp1 are shown in Figure 4.30. 
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Figure 4.29: Comparator circuit 

 

Figure 4.30: Simulation results of comp0 and comp1 

As seen in the Figure 4.30, the outputs of comparator circuits go to logic one, if the 

inputs exceed reference levels, and otherwise comparators produce logic zero.  

4.3.5 “OR” Circuit 

OR operation was realized by using a standard ECL logic gate. Since the output of 

OR circuit is a clock signal, and it drives three flip-flops, relatively stronger emitter 

followers were placed at the outputs of the OR gate. The schematic of the OR circuit 

is shown in Figure 4.31 (The emitter followers are not included).  
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Figure 4.31: OR circuit 

The operation of OR circuit is same as the comparator. If any one of Vin1 and Vin2 

exceeds Vref, the output of the circuit is inverted. To maintain the proper operation, 

Vref must be placed at the middle of the swing of Vin1,Vin2 signals. Since Vin1 and 

Vin2 signals are the outputs of comparator circuit, Vref can be obtained with the 

same structure, and element values that were used in the comparator as shown in 

Figure 4.32. 

 

Figure 4.32: Getting Vref 

The simulation results of the OR circuit is shown in Figure 4.33. In Figure 4.33, last 

two waveforms are the inputs of OR circuit, while the first one is the output of OR 

circuit or ―clk‖ signal. Whenever any of the comp0 or comp1 outputs go to logic high, 

the output of the OR circuit also goes to high and the clk signal is constructed.  
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Figure 4.33: Simulation results of OR circuit 

4.3.6 DFF 

DFF was realized by using two CML latches that receive inverted clocks. The circuit 

schematic and simulation results of DFF are shown in Figure 4.34, and Figure 4.35 

respectively.  

 

Figure 4.34: DFF circuit 
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Figure 4.35: Simulation results of DFF 

From Figure 4.35 it is seen that DFF circuit works correctly. At the rising edge of 

clock signal it transfers the input data to the output. 

The glitches that occur at the output signal in clock transitions are not such a high 

level that degrades the circuit functionality. 

4.3.7 EXOR Gate 

As explained in Section 4.2, in Von-Neumann de-skewing algorithm so as to keep 

01, 10 sequences and discard 00,11 sequences EXOR gate was used. The well-

known CML structure was used as the EXOR gate. In Figure 4.36, schematic of 

EXOR gate, and in Figure 4.37 simulation results are shown. 
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Figure 4.36: EXOR gate 

 

Figure 4.37: Simulation results of EXOR 

From Figure 4.37 it is seen that fhe EXOR gate, produce logic―1‖, if the inputs are 

complement of each other. Otherwise it produces logic‖0‖.  

4.3.8 Divide-by-two Circuit 

Divide-by-two circuit was realized using designed DFF, and shorting Q output and 

input of flip-flop. Simulation result is given in Figure 4.38. 
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Figure 4.38: Construction of signal "clk/2" 

4.3.9 Output Drivers 

CML drivers with on-chip 50Ω termination resistors are designed and used as output 

derivers. In order to maintain a desired swing, current I was selected 8mA. In order 

to represent the loads that drivers will face in reality, the equivalent structure shown 

in Figure 4.39 was constructed and simulations were carried out with this structure. 

In FigureXXX, Cpad, Lbondwire,Rbodnwire,Cpin are pad capacitance, bondwire inductance, 

parasitic bondwire resistance, and pin capacitance respectively. The values were 

taken as Cpad=100f, Lbondwire=5nH, Rbodnwire=5 and Cpin=5pF. Simulation results of 

CML drivers are shown in Figure 4.40 

 

Figure 4.39: Load structure was used in CML simulations 
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Figure 4.40: Simulation results of CML drivers 

Since the used load model is relatively high compared to the loads of internal 

circuits, rise and fall times of data and clock signals are decreased at the output of 

CML buffers as expected. However, this decreasing is not effect the operation.  

4.3.10 Toplevel Integration 

In toplevel integration the supply lines of chaotic oscillator and consecutive RBG 

blocks were separated to prevent cross-correlation as far as possible. Coupling 

capacitances were placed between VCC and VEE lines to get better AC coupling 

between the supply lines. RF probe pads were placed at the output of the 

subtraction circuit to avail monitoring the oscillation directly. Total silicon area is 

1,09mmx0.57mm. Power dissipation is approximately 50mW in the core circuits and 

150mW at CML IO pad drivers. The final layout of the chip is shown in Figure 4.42.  
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Figure 4.41: Toplevel layout of the system
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5. CONCLUSION 

The ultimate goal of this research was to integrate a negative-gm LC chaotic 

oscillator, and use this oscillator outputs to generate a successive bit stream that 

passes random tests.  

The design is carried out using IHP 0.25 µm SiGeC BiCMOS technology, which has 

three different types of bipolar transistors (high speed, high voltage and standard), 

high-Q MIM (Metal Insulator Metal) capacitor, salicided and unsalicided polysilicon 

resistors, 4 level Al interconnect metal and 2µm thick fourth level metal to realize 

high-Q inductors. 

Achieved throughput of random bit generation system is approximately 300Mbit/s. 

There are a few RNGs that exhibit comparable bit rates to our design. Also there is 

no reported chaotic oscillator in the literature operating at frequencies similar to our 

design.  

From Spectre simulations, it is observed that when component values deviate from 

real values because of process variations by changing IB current the circuit can be 

derived to chaotic oscillation. In order to guarantee the chaotic oscillation, IB and IO 

were taken out of the chip so that they would be driven from outside. 

A test PCB will be designed and measurements will be done on receiving the chip 

samples from production. 

In order to examine statistical properties of the generated bit stream, 150.000 bits 

were taken from Spectre simulations and each 20.000 bits were subjected to FIPS-

140-1 tests. The stream was failed in poker test. Although chaotic oscillator 

generates very complex behavior, it is a deterministic system indeed. Without noise 

injection it may be hard to pass statistical tests. It is thought that, after fabrication of 

test chip, generated bit streams will pass all tests. 

The BJT version of the chaotic oscillator and the random bit generation block was 

experimentally tested by using discrete components. In order to use standard 

discrete components, the passive element values and DC biasing currents were 

changed accordingly. The generated bit streams were read via the parallel port of a 

personal computer. A bit stream with a length of 1,500,000 was obtained. It was 

divided into 75 groups each having a length of 20,000 bits and each block was 

subjected to the FIPS-1-140 test suit. The first 27 blocks passed the statistical tests. 
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However, 5 of the following 48 blocks failed to tests. It is thought that this is due to 

the cross-correlations resulting from the improper setup. When the bit stream was 

subjected to the tests by skipping one of each consecutive bits, all sequences 

passed the statistical tests.  

From Spectre simulations, it is observed that bipolar version of chaotic-LC oscillator 

can oscillate in frequencies up to 5GHz, by choosing another parameter set and 

using smaller inductance values. In this way, the throughput of the circuit can be 

also increased.  

It is also assumed that another good RNG could be designed by sampling the output 

of the chaotic oscillator by a slower oscillator. 
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