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KİMLİK TESPİTİNDE KULAK BİYOMETRİĞİ 

ÖZET 

Bu tez biyometrik tabanlı, kimlik tespitine dayalı güvenlik sistemi geliştirme fikriyle 
başlayan çalışmanın bir parçasıdır. Günümüzde, biyometrik tabanlı ve türleri içinde 
en yüksek doğruluk oranına sahip parmak izi ve iris tarama yöntemleri kriminal 
vakalarda ve yüksek güvenlik gerektiren tesislerde kullanılmaktatır. Yüz tanıma hala 
gelişmekte olan bir biyometrik yöntemidir, fakat yapılan literatür araştırmalarında 
ortam ışıklandırması, makyaj, verilen poz, duygusal ifadeler ve estetik operasyonlar 
gibi yüz görünümü üzerinde etkisi olan faktörlerin yüz tanıma probleminde doğrudan 
yöntemlerin başarımını azaltacak yönde etkili olduğu görülmüştür. Dolayısıyla, yüz 
gibi erişimi kolay fakat onun gibi gündelik hayatın makyaj, duygusal ifadeler, bıyık 
ve sakal bırakma gibi faktörlerinden etkilenmeyecek bir biyometrik gereksinimi 
ortaya çıkmıştır. Alternatif biyometriğin başarımının yüzle kıyaslanabilir 
mertebelerde olması gerektiği açıktır. Araştırmaların devamında, tek yumurta 
ikizlerinin birbirlerine ne kadar benzeseler de kulak yapılarının farklı olduğu, kulağın 
3 boyutlu olsa da yüz kadar detay içermediği ve kulağın yapısı itibariyle duygusal 
açılımlar ifade edilirken biçimini değiştirmediği görülmüştür. Bunların ışığında, 
kulak yüze karşı güçlü bir alternatif biyometrik olarak ortaya çıkmaktadır. Bu 
çalışmada, literatürde önerilen yöntemler kulak resimleri üzerine uygulanmıştır. Bu 
yöntemler veri kümesi olarak 2 boyutlu resimleri kullanan ve veri kümesi üzerinde 
sınıflandırma yapan, lineer yöntemlerdir. Yapılan çalışma sonunda görülmüştür ki, 
PCA, FLD, FLD'nın geliştirilmesiyle oluşturulan DCVA ve LPP yöntemlerinin kulak 
tanımadaki başarımları yüz tanımadaki başarılarından daha yüksektir. Bu 
yöntemlerin kulak tanımadaki doğru eşleştirme oranları, literatürde bulunan, yüz 
tanımadaki eşleştirme oranlarıyla karşılaştırıldıklarında daha yüksektir. Yapılan bu 
çalışmanın sonuçları biyometrik tabanlı kimlik tesbit yöntemleri için kulağın yüzden 
daha iyi bir alternatif olduğunu göstermiştir. 
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EAR BIOMETRICS IN PERSONAL IDENTIFICATION 

SUMMARY 

This thesis is one of the parts of a biometric based identity verification security 
system development project. Today, the most successful biometric based 
identification technologies such as fingerprint and iris scan are used worldwide in 
both criminal investigations and high security facilities. Face recognition is one of 
the developing biometric methods; however illumination, makeup, posing, emotional 
expressions and face-lifting reduce the success of face recognition. A new biometric 
which is not effected by any of the factors above is needed. The new biometric 
should be as successful as face recognition. Twins are identical but their ears differ 
from each other, ear is also 3-dimensional but it is simpler than face and emotional 
expressions do not affect the ear. In the light of this, ear is a good alternative to face, 
as a biometric. In this study, the methods presented in the literature are tested on ear 
images. These methods are linear classification algorithms that work on 2D image 
databases. It is found out that, PCA, FLD, modified FLD which is also known as 
DCVA and LPP has better results at ear recognition than face recognition. Ear 
recognition has higher hit rates, when compared with face recognition researches that 
are presented in the literature previously. The results of this study proved that ear is 
the best alternative to face at personal identification tasks. 



 1 

1. INTRODUCTION 

Ear recognition is considered to be a part of pattern recognition technology. Ear 

recognition and recognition of moving people in natural scenes require a set of visual 

activities to be performed. This process consists of three tasks: detection, 

normalization and recognition. Detection means the detection and tracking of ear-like 

image patches in dynamic scenes. Normalization is the segmentation, alignment and 

normalization of the ear images and finally recognition is the representation and 

modeling of ear images as identities, and the association of novel ear images with 

known models [1]. 

A number of approaches for recognition and classification tasks have been proposed 

in the literature. These can be classified as Principal Components Analysis (PCA) 

[2,3,4], Fisher's Linear Discriminant (FLD) [2,5,6], Discriminative Common Vectors 

(DCV) [7] and Locality Preserving Projections (LPP) [8,9,10]. 

Techniques like PCA and FLD treat the ear image as a vector in a high-dimensional 

space and derive a lower dimensional representation (in the case of PCA) or a 

discriminatory representation (in the case of FLD). FLD provides a better 

performance but it is computationally more intensive compared to feature-based 

approaches. Also, the performance of data analysis techniques depends on the 

training data. Discriminative Common Vector approach (DCVA) reduces 

computational cost in recognition stage because a common vector is chosen from 

each class, instead of dealing with all ears in the dataset. LPP tries to preserve local 

structure of ear images for classification, however, PCA, FLD and DCVA focus on 

global structure of ear images [8,9]. 

Comparison of ear and face, using one or two recognition methods is the topic of 

previous research papers [11,12]. This study will compare the performance of four 

most well-known traditional and new recognition algorithms at ear recognition task, 

for the first time.  
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1.1 Applications of Ear Recognition 

The applications of Ear Recognition Techniques (ERT) can be divided into 

commercial and law enforcement applications. ATMs, safe deposit boxes and ear 

recognition based security systems can be thought of commercial applications of ear 

recognition. There are surveillance cameras at all banks and ATMs. These cameras 

can be repositioned to record both the faces and ears of customers. In the case of 

robbery both ear and face images of suspects can be analyzed to identify them. These 

kinds of precautions make the security policies of banks stronger. Another example 

is an ear recognition system can be placed at the entrance of a parking lot and the 

gate opens if the driver is a known person. These kinds of applications can also be 

used at high-tech facilities where security is mandatory. These are all commercial 

examples. 

If law enforcement applications are considered, there are many wanted people all 

over the world. If the records of surveillance cameras, which are placed at crowed 

places like squares, train stations and airports, are processed by the algorithms such 

as ear and face recognition simultaneously, detecting and arresting these wanted 

people become easier [13,14]. So world becomes a safer place.  

1.2 Stages in Ear Recognition 

The definition of ear recognition task is to identify one or more people in a scene 

using a stored database of ears. The solution of the general problem is divided into 

three different stages: 

• Segmentation of ears from cluttered scenes. 

• Extraction of features from the ear region. 

• Decision. 

Segmentation is usually achieved by the following algorithm. An edge map is 

created, and then edges are connected together using several heuristics and the edges 

are matched into an elliptical shape using a Hough transformation. If the input is 

composed of video images (moving objects), motion could be used for segmentation. 

The second and most important stage is the extraction of features. There are two 

types of features: holistic features and partial features. Partial features techniques use 

crucial points in the ear for recognition, whereas holistic feature techniques always 

consider the ear as a whole. For example PCA is a holistic feature technique. 
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In the last stage, using the data collected in the previous stages a decision is made. 

There can be three types of decisions that can be made depending on the application: 

1. identification: where labels for each individual must be obtained; 2. recognition of 

a person: where a decision is made based on the ear that the individual has already 

been seen, and; 3. categorization; in which the ear must be assigned to a certain 

category [1]. This study will focus on two stages of ear recognition: extraction of 

features and decision. 
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2. WHY EAR RECOGNITION 

When there is a requirement for determining people's identity, the obvious question 

is what technology is best at supplying this information. There are many ways that 

humans can identify each other and it is the same for machines. There are many 

different identification methods available, many of which have been used in 

commercial applications for years. The most common type of application is 

password/PIN known as Personal Identification Number systems. The password/PIN 

applications such as credit cards are not unique. Swindlers can clone and use credit 

cards. The owner of credits card can forget his/her password and also lose his/her 

credit card. The credit card can be stolen. These are most possible and common 

problems of password/PIN applications. To solve these problems there has been 

considerable interest in biometric identification systems, which use pattern 

recognition methods to identify people using characteristic features. 

There are many behavioural and physiological characteristics of humans that satisfy 

the definition of biometric. All of these biometrics researched to find the best 

solution for biometric based identification problem. Some of them are efficient 

enough to use in criminal investigations and some of them are still developing. 

First research about head area biometrics is done by Bledsoe [15]. Kanade offered 

some models and face biometric ratios for face classification problem [16,17]. 

Pentland and Turk offered a 2D image based face recognition method for the first 

time in 1991 [4]. There are many researches about other biometrics. For example, 

Petejan developed a recognition system depending on lipreading, during his Ph. D. 

thesis researches in 1984 [18]. Nishida developed a speech recognition system in 

MIT in 1986 [19]. Daugman and Downing showed that iris can be the best biometric 

for human identification [20,21]. Nixon and Carter did research about gait 

identification [22]. Persuad and Sommerville did a research about human scent for 

identification [23,24]. There are also researches about hand writing and hand 

geometry. References [25,26,27] can be checked for more details about hand based 

biometrics. 

There are two types of identification techniques that are active identification 

techniques and passive identification techniques. However, active identification 
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techniques are not easy to use and can be intrusive both physically and socially. For 

example, in bank transactions and entry into secure areas, the user must position the 

body relative to the sensor and then pause for a second to declare himself or herself 

since the quality of the image is important. While the pause and present interaction is 

useful in high-security situation, it is inefficient in other circumstances. So, 

popularity of passive identification techniques rises. For instance, a store that wishes 

to recognize its best customers or an information kiosk that remembers you or a 

house that knows the people who live there does not want to interrupt the individual's 

daily activities. Passive biometric identification systems have a natural place in these 

next generation smart environments, they are unobtrusive, do not restrict user 

movement, and are now both low power and inexpensive. 

2.1 History of Ear Recognition 

Ear recognition was established when machines started to become more intelligent 

and were able to fill in correct or help the lack of human abilities and senses. Face 

and ear recognition and computer vision subjects are both important because of the 

practical importance of the topic and theoretical interest from cognitive science. Face 

recognition is not the only method of recognizing images and humans because of 

some restrictions. Humans also use senses between each other to recognize images 

and others. Today machines are used for different recognition purposes such as 

fingerprinting or iris scanning [21,28]. These methods of identification are more 

accurate than face recognition but face recognition is more interesting for researchers 

because of its non-invasive nature and because it is the primary method used by 

humans for identifying people. However, as mentioned above, face recognition 

comes with some restrictions, such as sensitivity to make up, illumination, posing, 

the rotation angle of face to up/down/right/left directions and emotional expressions 

such as smiling and frowning brows, which need to be eliminating during the 

recognition process. As a result of these restrictions, most of common face image 

databases, which are used to test face recognition methods, developed under the 

same illumination conditions, no emotional expressions, no makeup and limited 

degree of face rotation. These kind of studies that are done under extremely ideal 

conditions, will have far less accuracy in real world applications. Thinking of this 

obvious situation directed researchers to other biometrics which naturally do not 

have emotional expressions, beard (for males), makeup, etc.... Ear is an option for 

recognition tasks. First, Iannarelli showed that ear is adequate for being a biometric 
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after early research on a manual approach [29]. Burge and Burger proved that ear has 

a similar performance like face at personal identification tasks [30,31]. Chang and 

Bowyer compared PCA technique on both face and ear images and showed that they 

have similar performance as biometrics [11,12]. Hurley, Nixon and Carter did a 

research using Forced Field Transformation and Forced Field Feature Extraction 

techniques to classify ear images [13,32]. Yan and Bowyer did a research using PCA 

and Hausdorff matching on 2D ear images and ICP on 3D ear images [33,34]. 

Middendorff, Bowyer and Yan also researched Multi-model biometrics to increase 

the performance of their previous work [35]. The aim of this thesis is to provide the 

knowledge of performance differences of 2D image based, linear methods, on same 

ear image database, to the literature. 

At the beginning of the research, there were two main approaches in recognition 

technologies: 1. geometrical approach and 2. pictorial approach. 

The geometrical approach uses the spatial configuration of ear features. That means 

the main geometrical features of the ear such as the helix, lobule, antihelix, concha, 

tragus, antitragus, etc...  are first located and then ears are grouped or classified on 

the basis of various geometrical distances and angles between features. The pictorial 

approach uses templates of the features of ear. It uses templates of the major features 

and entire ear to perform recognition on frontal views of ears. Many of these studies 

that are based on these two approaches have some common extensions that handle 

different pose backgrounds. Different from these two techniques there are other 

recent template-based approaches, which form templates from the image gradient 

and the principal component analysis approach, which can be thought of a sub-

optimal template approach. 

2.2 Ear Recognition and Ear Detection 

As discussed earlier, face recognition is a technique that is used for recognizing faces 

but it is not necessary to freeze the user to take a picture. The problem with 

recognizing a face arises when the pose of the face is different, but in particular, 

there is a limit on face rotations in depth, which include left and right and up and 

down rotations. Face recognition is a difficult task because it has to discriminate 

among similar objects. To be more specific, when two faces are similar, recognition 

is going to be a challenge. By adding pose to a face, the problem becomes more 

complex. The appearance of face changes under rotation since the face has a 

complex three dimensional structure. Switching face with a simpler biometric will 
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automatically eliminate some limitations such as pose, emotional expressions and 

effect of makeup and enhance the performance of recognition algorithms. 

Ear recognition and ear detection are two distinct processes. The main difference is 

that ear recognition is a technique to detect ears and search through a dataset in order 

to find an exact match, but on the other hand ear detection is looking for any match 

and as soon as a match is found the search stops. 

In ear recognition techniques, three visual cues are most important; motion, color and 

ear appearance. Most of recognition algorithms are not concerned with color, neither 

is this study. Grayscale images are used in this study. 

Recognition is an area of research, which involves different fields such as biology, 

mathematics and computer science. Different recognition methods have been 

proposed in recent years resulting in interesting applications. The research presented 

here tries to bring a highly compatible alternative for human identification tasks. The 

results of this research prove that ear is a better option than face. The features of ear 

are simpler than the features of face which results in raising the performance of 

recognition methods.   
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3. EAR RECOGNITION ALGORITHMS 

3.1 Principal Component Analysis (PCA) 

3.1.1 Theory of PCA 

It is needed to represent all of the vectors in a set of n d-dimensional samples 

1,..., n
x x  by a single vector 0x . To be more specific, suppose that it is desired to find a 

vector 0x  such that the sum of the squared distances between 0x  and the various 
k

x  

is as small as possible. The squared-error criterion function ( )0 0J x  is defined by 

( )
2

0 0 0
1

n

k

k

J x x x
=

= −∑                                                                                              (3.1) 

and seek the value of 0x  that minimizes 0J . It is simple to show that the solution to 

this problem is given by 0x µ= , where µ  is the sample mean, 

1

1 n

k

k

x
n

µ
=

= ∑                                                                                                              (3.2) 

This can be easily verified by writing 

( ) ( ) ( )
2

0 0 0
1

n

k

k

J x x xµ µ
=

= − − −∑                                                                          (3.3a) 

( ) ( ) ( )
2 2

0 0 0 0
1 1 1

2
n n n

T

k k

k k k

J x x x x xµ µ µ µ
= = =

= − − − − + −∑ ∑ ∑                                (3.3b) 

( ) ( ) ( )
2 2

0 0 0 0
1 1 1

2
n n n

T

k k

k k k

J x x x x xµ µ µ µ
= = =

= − − − − + −∑ ∑ ∑                                (3.3c) 

( )

0

2 2

0 0 0
1 1

  

n n

k

k k

independent of x

J x x xµ µ
= =

= − + −∑ ∑
14243

                                                                   (3.3d) 

Since the second sum is independent of 0x , this expression is obviously minimized by 

the choice 0x µ= . 
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The sample mean is a zero-dimensional representation of the data set. It is simple, 

but it does not reveal any of the variability in the data. More interesting, one-

dimensional representation can be obtained by projecting the data onto a line running 

through the sample mean. Let e  be a unit vector in the direction of the line. Then the 

equation of the line can be written as 

x aeµ= +                                                                                                               (3.4) 

where the scalar a  (which takes on any real value) corresponds to the distance of 
any point x  from the mean µ . If 

k
x  is presented by 

k
a eµ + , an optimal set of 

coefficients 
k

a  can be found by minimizing the squared-error criterion function 

( ) ( ) ( )
2 2

1 1
1 1

,..., ,
n n

n k k k k

k k

J a a e a e x a e xµ µ
= =

= + − = − −∑ ∑                                   (3.5a) 

( ) ( )
2 22

1 1
1 1 1

,..., , 2
n n n

T

n k k k k

k k k

J a a e a e a e x xµ µ
= = =

= − − + −∑ ∑ ∑                                (3.5b) 

Recognizing that 1e = , partially differentiating with respect to 
k

a , and setting the 

derivative to zero, the Eq. (3.6) is obtained 

( )T

k k
a e x µ= −                                                                                                        (3.6) 

Geometrically, this result merely says that a least-squares solution is obtained by 
projecting the vector 

k
x  onto the line in the direction of e  that passes through the 

sample mean. 

This brings a more interesting problem of finding the best direction e  for the line. 

The solution to this problem involves the so-called scatter matrix S  defined by 

( )( )
1

n
T

k k

k

S x xµ µ
=

= − −∑                                                                                         (3.7) 

The scatter matrix should look familiar, it is merely 1n −  times the sample 
covariance matrix. It arises here when 

k
a  found in Eq.(3.6) is substituted into 

Eq.(3.5) to obtain 

( )
22 2

1
1 1 1

2
n n n

k k k

k k k

J e a a x µ
= = =

= − + −∑ ∑ ∑                                                                     (3.8a) 

( ) ( )
2 2

1
1 1

n n
T

k k

k k

J e e x xµ µ
= =

 = − − + − ∑ ∑                                                              (3.8b) 



 10 

( ) ( )( )
2

1
1 1

n n
TT

k k k

k k

J e e x x e xµ µ µ
= =

= − − − + −∑ ∑                                                  (3.8c) 

( )
2

1
1

n
T

k

k

J e e Se x µ
=

= − + −∑                                                                                  (3.8d) 

Clearly, the vector e  that minimizes 1J  also maximizes T
e Se . The method of 

Lagrange multipliers is used to maximize T
e Se  subject to the constraint that 1e = . 

Letting λ  be the undetermined multiplier, Eq. (3.9) is differentiated 

( )1T T
u e Se e eλ= − −                                                                                                (3.9) 

with respect to e  to obtain 

2 2
u

Se e
e

λ
∂

= −
∂

                                                                                                     (3.10) 

Setting this gradient vector equal to zero, it is seen that e  must be an eigenvector of 

the scatter matrix: 

Se eλ=                                                                                                                   (3.11) 

In particular, because T T
e Se e eλ λ= = , it follows that to maximizes T

e Se , it is 

needed to select the eigenvector corresponding to the largest eigenvalue of the scatter 

matrix. In other words, to find the best one-dimensional projection of the data (best 

in the least-sum-of-squared-error sense). The data is projected onto a line through the 

sample mean in the direction of the eigenvector of the scatter matrix having the 

largest eigenvalue 

This result can be readily extended from a one-dimensional projection to a d'-

dimensional projection. In place of Eq.(3.4), Eq. (3.12) is written 

'

1

d

i i

i

x a eµ
=

= +∑                                                                                                        (3.12) 

where 'd d≤ . It is not difficult to show that the criterion function 

2
'

'
1 1

n d

d ki i k

k i

J a e xµ
= =

 
= + − 

 
∑ ∑                                                                                 (3.13) 

is minimized when the vectors 1 ',...,
d

e e  are the 'd  eigenvectors of the scatter matrix 

having the largest eigenvalues. Because the scatter matrix is real and symmetric, 

these eigenvectors are orthogonal. They form a natural set of basis vectors for 
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representing any feature vector x. The coefficients 
i

a  in Eq.(3.12) are the 

components of x in that basis, and are called the principal components. 
Geometrically, if the data points 1,..., n

x x  are considered to form a d-dimensional, 

hyperellipsoidally shaped cloud, then the eigenvectors of the scatter matrix are the 

principal axis of that hyperellipsoid. Principal component analysis reduces the 

dimensionality of feature space by restricting attention to those directions along 

which the scatter of the cloud is greatest [2]. 

3.1.2 How to Use PCA on Ear Images 

There are patterns that occur in any input signal (image). Such patterns, which can be 

observed in all signals, could be - in the domain of ear recognition - the presence of 

some objects, such as helix, antihelix and ear lobe, in any ear as well as relative 

distances between these objects. These characteristic features are called eigenears 

(principal components) in ear recognition domain. They can be extracted out of the 

original image data by means of a mathematical tool called Principal Component 

Analysis (PCA). 

By means of PCA each original image of the training set can be transformed into a 

corresponding eigenear. Furthermore, an important feature of PCA makes possible to 

recontruct any original image from the training set by combining the eigenears. 

Eigenears are the characteristic features of the ear, the original ear image can be 

reconstructed from eigenears if all the eigenears (features) are added up in the right 

proportions. Each eigenear represents certain features of the ear, which may or may 

not be present in the original image. If the feature is present in the original image to a 

higher degree, then the share or sum of the corresponding eigenear should be greater. 

If the particular feature is not (or almost not) present in the original image, then the 

corresponding eigenear should contribute a smaller (or not at all) part to the sum of 

eigenears. so, in order to reconstruct the original image from the eigenears, one has 

to build a kind of weighted sum of all eigenears. That is, the reconstructed original 

image is equal to a sum of all eigenears, with each eigenface having a certain weight. 

This weight specifies, to what degree the specific feature (eigenear) is present in the 

original image. 

Eigenears that are extracted from original images can exactly reconstruct back these 

images. It is also possible to reconstruct original images approximately by using 

some of eigenears. Losses due to omitting some of the eigenears can be minimized 

by choosing the most important features (eigenears). The omission of eigenears is 

necessary due to scarcity of computational resources. 
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How does this relate to ear recognition? It is possible to extract the ear from 

eigenears that is given by a set of weights. It is also possible to extract the weights 

from the eigenears and recognize the ear. These weights tell the amount by which the 

ear in question differs from typical ears represented by the eigenears. Weights can 

determine two important things; 

1. Determine if the image in question is a ear at all. If the weights of the image differ 

a large degree from the weights of ear images (ie. images that are ears for sure), the 

image probably is not a ear. 

2. Similar ears (images) possess similar features (eigenears) to similar degrees 

(weights). If one extracts weights from all the images available, the images could be 

grouped into clusters. That is, all images having similar weights are likely to be 

similar ears. 

3.1.2.1 Ear Is Viewed As A Vector 

Consider ear as a 2D image. This image can be formed as a vector. Suppose that 

width of the image is w pixels and height of the image is h pixels. Thus the number 

of pixels for each vector is w*h. to construct the vector, the rows of the image are put 

beside each other as shown in Figure 3.1 and Figure 3.2 

 

Figure 3.1: Construction of ear vector [1] 
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Figure 3.2: Formation of the vector of ear from the image of ear. 1 Helix, 2 Lobule, 

3 Antihelix, 4 Concha, 5 Tragus, 6 Antitragus, 7 Crus of Helix, 8 Triangular Fossa, 9 

Incisure Intertragica 

By putting rows of the images beside each other, you make a vector as shown in 

Figure 3.3 

 

Figure 3.3: Mapping NxN image into N2 vector [1] 

The ear vector belongs to an ear space. This space is the image space, the space of all 

images whose dimensions are w by h pixels. The basis of the image space is 

composed of the following vectors; 
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Figure 3.4: Image (ear) space [1] 

All the ears look like earch other. They all have helix, antihelix, ear lobe, etc. located 

at the same place. There for, all the ear vectors are loceted in a very narrow cluster in 

the image space, as shown in Figure 3.5. 

 

Figure 3.5: Image space and ear cluster [1] 

The full image space is not an optimal space for ear description. The task presented 

here aims to build an ideal ear space that describes the ear better. The basis vectors of 

this ear space are so called eigenears (principal components) [4]. 
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In the field of recognition one of the most-preferred, because of its simplicity and 

accuracy, methods is Principal Components Analysis. PCA is based on the 

Karhunen-Loeve (K-L) or Hotelling Transform, which is the optimal linear method 

for reducing redundancy, in the least mean squared reconstruction error sense. The 

idea of PCA is based on the identification of linear transformation of the co-ordinates 

in a system: The three axis of the new coordinate system coincide with the directions 

of the three largest spreads of the point distributions. 

PCA uses the singular value decomposition to compute the principal components. A 

matrix whose rows consist of the eigenvectors of the input covariance matrix 

multiplies the input vector. This produces transformed input vectors whose 

components are ordered according to the magnitude of their variance. Those 

components, which contribute only a small amount to the total variance in the data 

set, are eliminated. It is assumed that the input data set has already been normalized 

so that  it has a zero mean. 

The most important components of each ear are located in a very narrow cluster. 

Thus the full image is not an optimal space for ear recognition and there are many 

redundant components that are not important for ear recognition. The purpose of 

PCA is to reduce the dimension of the set or the space. That means it aims to catch 

the total variation in the set of the training ears, and to explain this variation by few 

variables. Dealing with few variables is always more advantageous than dealing with 

huge numbers of variables, especially if there are huge number of ears to be 

processed. There are two approaches in PCA; 

1) Statistical approach 

2) Neural network approach 

This study will focus on PCA using statistical approach. 

3.1.2.2 Statistical PCA 

In statistics, PCA is used to simplify the data set, more formally it is a linear 

transformation that chooses a new coordinate system for the data set so that the first 

axis of new coordinate system, which is called principal component, holds the 

greatest variance by any projection of the data set, the second axis holds the second 

greatest variance and so on. PCA can be used for reducing dimensionality in a data 

set while leaving out least effective principal components, however keeping most 

effective principal components which carry the information of significant variances 

that characterizes the data set. In this application, the characteristics are the most 
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important, but it is not always necessary. It is an application dependent case. The 

purpose of PCA is making recognition simpler and faster by reducing vector space 

dimensions because the actual image space is redundant. 

Unlike other linear transformations, PCA does not have a fixed basis vectors. Its 

basis vectors depend on data set which makes it an optimal linear transformation that 

keeps the subspace of largest variance. 

The aim of PCA when data set has zero mean is to find a projection vector or matrix 

that makes the variance maximum as defined by the formula below; 

{ } ( ){ }2

1
1 1

arg max var arg maxT T

w w
w w x E w x

= =
= =                                                  (3.14) 

There are two stages in PCA; 

1) The training stage. 

2) The recognition stage. 

In the training stage, the training image set is used to calculate PCA variables. In the 

recognition stage, calculated variables are used to recognize an unidentified image. 
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Figure 3.6: High-level functioning principle of the eigenear-based ear recognition 

algorithm 

As shown in the algorithm diagram above in Figure 3.6 [1], the first step of training 

is transforming the training images to eigenears. Then the weights are calculated for 
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the each training image. In the recognition stage, weights for the unknown images 

are calculated, as well. In the last step of recognition step, the difference between the 

weights in training set and the weights for the unknown images are compared. The 

closest difference based on the threshold θ  is considered as the recognized image. 

Suppose that, each training image consists N pixels (N = w*h). Let { }| 1,...,
i

i MΓ =  

be the training set of images (
i

Γ  is the vector form of images and M is the number of 

images in training set). The average of these M images is calculated by the 

following; 

1

1 M

i

in =

Ψ = Γ∑                                                                                                           (3.15) 

Then each ear 
i

Γ  differs from the average ear Ψ  by 
i

Φ . 

 ; 1,...,
i i

i MΦ = Γ − Ψ =                                                                                         (3.16) 

A covariance matrix of the training images can be constructed as follows; 

T
C AA=                                                                                                                 (3.17) 

Where 1 2[ ... ]
M

A = Φ Φ Φ . The basis vectors, that are so called eigenears, of the ear 

space, are then the orthogonal eigenvectors of the covariance matrix C. 

A is a NxM matrix and AT is a MxN matrix so C will be a NxN matrix. Finding 

eigenvectors of a NxN matrix is a difficult task due to its size. Therefore, a simple 

calculation is required. 

Since the number of training images is usually less than the number of pixels in an 

image, there will be only M-1, instead of N, meaningful eigenvectors. The eigenears 
are computed by first finding the eigenvectors, ( 1,..., )

l
l Mυ = , of the M by M matrix 

L. 

T
L A A=                                                                                                                 (3.18) 

The eigenvectors, ( 1,..., )
l

u l M= , of the matrix C are then expressed by a linear 

combination of the difference ear images, ( 1,..., )
i

i MΦ = , weighted by 

( 1,..., )
l

l Mυ = ; 

Lυ λυ=                                                                                                               (3.19a) 

T
A Aυ λυ=                                                                                                          (3.19b) 
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T
AA A Aυ λυ=                                                                                                      (3.19c) 

( ) ( )C A A Cu uυ λ υ λ= ⇒ =                                                                                (3.19d) 

u Aυ=                                                                                                                  (3.19e) 

[ ]1 1 1,..., [ ,..., ][ ,..., ]
M M M

u u u Aυ υ υ= = Φ Φ =                                                         (3.20) 

Each eigenear can be viewed as a feature. When a particular ear is projected onto the 

ear space, its vector, which is made up of its weight values with respect to each 

eigenear, into the ear space describes the importance of each of those features in the 

ear. 

 

Figure 3.7: Eigenear generation process [1] 

In practice, a smaller set of '( ' )M M M<  eigenears is sufficient for ear 

identification. Hence, only M' significant eigenvectors of L, corresponding to the 

largest M' eigenvalues, are selected for the eigenear computation, resulting in a 
further data compression. M' is determined by a threshold, λθ , of the ratio of the 

eigenvalue summation. 

1

1

' min |

r

l

l

M
r

l

l

M r

λ

λ

=

=

 
  

=  
 
  

∑

∑
                                                                                             (3.21) 

In the training stage, the ear of each known individual, 
k

Γ , is projected into the ear 

space and an M'-dimensional vector, 
k

Ω , is obtained. 

( ) ;   1,...,T

k k
U k MΩ = Γ − Ψ =                                                                            (3.22) 



 20 

For comparison, two methods are used to describe an ear class in the ear space. The 

first method, referred to as the averaging representation, calculates the class vector 

by averaging the projected vectors from the training images of the corresponding 

individual. The second method, the point-set representation, describes an ear class by 

a set of vectors projected from all the training images of an individual. 

A distance threshold, 
c

θ , that defines the maximum allowable distance from an ear 

class as well as from the ear space, is set up by computing half the largest distance 

between any two ears; 

{ }
,

1
max ; , 1,...,

2
c j k

j k
j k Mθ = Ω − Ω =                                                                    (3.23) 

once the eigenears have been computed, the ear space has to be populated with 

known ears. Usually these ears are taken from the training set. Each known ear is 

transformed into the face space and its components stored in memory. 

at this stage the identification process can begin. An unknown ear is presented to the 

system. The system projects it onto the ear space and computes its distance from all 

the stores ears. the ear is identified as being the same individual as the ear space 

which is nearest to it in ear space. There are several methods of computing the 

distance between multidimensional vectors. In this study, a form of Euclidean 

distance is chosen. 

In the recognition stage, a new image, Γ , is projected into the ear space to obtain a 

vector, Ω ; 

( )T
UΩ = Γ − Ψ                                                                                                      (3.24) 

The distance of Ω  to each ear class is defined by 

22 ; 1,...,
k k

k Mε = Ω − Ω =                                                                                    (3.25) 

For the purpose of discriminating between ear images and non-ear like images, the 

distance, ε , between the original image, Γ , and its reconstructed image from the 
eigenear space, 

f
Γ , is also computed; 

22
k

ε = Γ − Γ                                                                                                         (3.26) 

where 

f
UΓ = Ω + Ψ                                                                                                         (3.27) 
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These distances are compared with the threshold given in Eq.(3.23) and the input 

image is classified by the following rules [1,4]; 

IF 
c

ε θ≥                                                                                                                 (3.28) 

THEN input image is not an ear image; 

IF 
c

ε θ<   AND ,
k c

k ε θ∀ ≥                                                                                   (3.29) 

THEN input image contains an unknown ear; 

IF 
c

ε θ<   AND  { }* min
k k ck

ε ε θ= <                                                                    (3.30) 

THEN input image contains the ear of individual *
k ; 

3.2 Fisher's Linear Discriminant (FLD) 

The main idea of PCA is to find components that are useful for representing data, but 

it is not guaranteed that these components are useful for discriminating between data 

in different classes. In some cases, the directions that are discarded by PCA might be 

exactly the directions that are needed for distinguishing between classes. For 

example, if the data is uppercase letters O and Q, PCA might discover the gross 

features that characterize Os and Qs, but might ignore the tail that distinguishes an O 

from a Q. Where PCA seeks directions that are efficient for representation, in Figure 

3.8, discriminant analysis seeks directions that are efficient for discrimination [2]. 

 

Figure 3.8: The Way that PCA Handles the Dataset [5] 

Projecting data from d dimensions onto a line is a hard problem if you desire good 

recognition performance. Even if the samples formed well-separated, compact 

clusters in d-space, projection onto an arbitrary line will usually produce a confused 

mixture of samples from all of the classes and thus produce poor recognition 

performance. However, by moving the line around, we might be able to find an 
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orientation for which the projected samples are well separated, in Figure 3.9. This is 

exactly the goal of classical discriminant analysis. 

 

Figure 3.9: Projection of the Same Set of Samples onto Two Different Lines in the 

Direction Marked w [5] 

In Figure 3.9, the figure on the right shows greater separation between the projected 

red and green points 

Suppose that there is a set of n  d-dimensional samples 1,..., n
x x , 1n  in the subset 1D  

labeled 1ω  and 2n  in the subset 2D  labeled 2ω . If the linear combination of the 

components of x is formed, the scalar dot product, in Figure 3.10, is obtained; 

T
y w x=                                                                                                                  (3.31) 

 

Figure 3.10: Shows the Projected Point xi [5] 

and a corresponding set of n  samples 1,..., n
y y  divided in to the subsets 1Y  and 2Y . 

Geometrically, if 1w = , each 
i

y  is the projection of the corresponding 
i

x  onto a 

line in the direction of w. Actually, the magnitude of w is of no real significance, 
because it merely scales y . The direction of w is important, however, if we imagine 
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that the samples labeled 1ω  fall more or less into one cluster while those labeled 2ω  

fall in another, we want the projections falling onto the line to be well separated, not 

thoroughly intermingled. It should be abundantly clear that if the original 

distributions are multimodal and highly overlapping, even the "best" w is unlikely to 

provide adequate separation, and thus this method will be of little use. 

Now, it is turned to the matter of finding the best such direction w, one will enable 

accurate classification. A measure of the separation between the projected points is 
the difference of the sample means. If 

i
m  is the d-dimensional sample mean given by 

1

i

i i

x Di

x
n

µ
∈

= ∑                                                                                                          (3.32) 

then the sample mean for the projected points is given by 

1

i

i

y Yi

y
n

µ
∈

= ∑%                                                                                                         (3.33a) 

1

i

T T

i i

x Di

w x w
n

µ µ
∈

= =∑%                                                                                         (3.33b) 

and is simply the projection of 
i

µ . 

 

Figure 3.11: Stand-alone 1 2µ µ−% %  is not always a Good Measure of Separation [5] 
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It follows that the distance between the projected means is 

1 2 1 2( )T
wµ µ µ µ− = −% %                                                                                          (3.34) 

and that we can make this difference as large as we wish merely by scaling w. Of 

course, to obtain good separation of the projected data we really want the difference 

between the means to be large relative to some measure of the standard deviations 

for each class, in Figure 3.11. Rather than forming sample variances, we define the 
scatter for projected samples labeled 

i
ω  by 

2 2( )
i

î i

y Y

s y µ
∈

= −∑% %                                                                                                    (3.35) 

Thus, ( ) ( )2 2
1 21 n s s+% %  is an estimate of the variance of the pooled data, and 2 2

1 2s s+% %  is 

called the total within-class scatter of the projected samples. The Fisher's Linear 

Discriminant employs that linear function T
w x  for which the criterion function 

2

1 2

2 2
1 2

( )
m m

J w
s s

−
=

+

% %

% %
                                                                                                  (3.36) 

is maximum (and independent of w ). While the w maximizing (.)J  leads to the 

best separation between the two projected sets (in the sense just described), a 

threshold criterion will be needed before a true classifier is obtained. It is first 

considered how to find the optimal w, and later turn to the issue of thresholds. 

To obtain (.)J  as an explicit function of w, we define the scatter matrices 
i

S  and 
W

S  

by 

( )( )
i

T

i i i

x D

S x xµ µ
∈

= − −∑                                                                                        (3.37) 

and 

1 2W
S S S= +                                                                                                           (3.38) 

then we can write 

2 2( )
i

T T

î i

x D

s w x w µ
∈

= −∑%                                                                                         (3.39a) 

2 ( )( )
i

T T

î i i

x D

s w x x wµ µ
∈

= − −∑%                                                                              (3.39b) 
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2 T

î i
s w S w=%                                                                                                           (3.39c) 

therefore the sum of these scatters can be written 

2 2
1 2

T

Ws s w S w+ =% %                                                                                                    (3.40) 

Similarly, the separation of the projected means obeys 

2 2
1 2 1 2( ) ( )T T

w wµ µ µ µ− = −% %                                                                                 (3.41a) 

2
1 2 1 2 1 2( ) ( )( )T T

w wµ µ µ µ µ µ− = − −% %                                                                   (3.41b) 

2
1 2( ) T

B
w S wµ µ− =% %                                                                                              (3.41c) 

where 

1 2 1 2( )( )T

BS µ µ µ µ= − −                                                                                         (3.42) 

We call 
W

S  the within-class scatter matrix. It is proportional to the sample 

covariance matrix for the pooled d-dimensional data. It is symmetric and positive 
semidefinite, and it is usually nonsingular if n d> . Likewise, 

B
S  is called the 

between-class scatter matrix. It is also symmetric and positive semidefinite, but 

because it is the outer product of two vectors, its rank is at most one. In particular, 
for any w, 

B
S w  is in the direction of 1 2µ µ− , and 

B
S  is quite singular. 

In terms of 
B

S  and 
W

S , the criterion function (.)J  can be written as 

( )
T

B

T

W

w S w
J w

w S w
=                                                                                                       (3.43) 

This expression is well known in mathematical physics as the generalized Rayleigh 
quotient. It is easy to show that a vector w that maximizes (.)J  must satisfy 

B W
S w S wλ=                                                                                                           (3.44) 

for some constant λ , which is a generalized eigenvalue problem. This can also be 

seen informally by noting that at an extremum of ( )J w  a small change in w in Eq. 

(3.43) should leave unchanged the ratio of the numerator to the denominator. If 
W

S  

is nonsingular we can obtain a conventional eigenvalue problem by writing 

1
W B

S S w wλ− =                                                                                                        (3.45) 
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In most cases, It is unnecessary to solve for the eigenvalues and eigenvectors of 
1

W B
S S

−  due to the fact that 
B

S w  is always in the direction of 1 2µ µ− . Because the 

scale factor for w  is immaterial, we can immediately write the solution for the w  

that optimizes (.)J : 

1
1 2( )Ww S µ µ−= −                                                                                                   (3.46) 

Thus, we have obtained w  for Fisher's Linear Discriminant, the linear function 

yielding the maximum ratio of between-class scatter. Thus the classification has been 

converted from a d-dimensional problem to a hopefully more manageable one-

dimensional one. This mapping is many-to-one, and in theory it cannot possibly 

reduce the minimum achievable error rate if we have a very large training set. In 

general, one is willing to sacrifice some of the theoretically attainable performance 

for the advantages of working in one-dimension. All that remains is to find the 

threshold, that is, the point along the one-dimensional subspace separating the 

projected points. 

When the conditional densities ( )|
i

p x ω  are multivariate normal with equal 

covariance matrices Σ , the threshold can be calculated directly. In that case the 

equation of optimal decision boundary is recalled 

0 0T
w x w+ =                                                                                                           (3.47) 

where 

1
1 2( )w µ µ−= Σ −                                                                                                     (3.48) 

and where 0w  is a constant involving w  and the prior probabilities. If  sample means 

and the sample covariance matrix is used to estimate 
i

µ  and Σ , a vector in the same 

direction as w  of Eq. (3.48) is obtained, that maximizes (.)J . Thus, for the normal, 

equal-covariance case, the optimal decision rule is merely to decide 1ω  if Fisher's 

Linear Discriminant exceeds some threshold, and to decide 2ω  otherwise. More 

generally, if the projected data is smoothed, or is fitted with a univariate Gaussion, 
then 0ω  where the posteriors in the one dimensional distributions are equal should be 

choosen. 

The computational complexity of finding the optimal w  for the Fisher linear 

discriminant is dominated by the calculation of the within-category total scatter and 

its inverse, an O (d2
n) calculation. 



 27 

3.2.1 Implementation of FLD 

In this section the implementation of FLD was done on a 2D random dataset. The 

purpose of this process is to show how FLD works. 

Different from PCA, FLD handles dataset as devided into classes and tries to find the 

best direction for the good classification. The dataset is divided into 2 classes as 

shown in Table 3.7 and plotted as in Figure 3.12. 

Table 3.1: Dataset Divided into 2 Classes 

  X Y 

P2 1 2 

P4 2 3 

P7 3 3 

P8 4 5 

Class 1 

P10 5 5 

P1 
1 0 

P3 2 1 

P5 3 1 

P6 3 2 

P9 5 3 

Class 2 

P11 6 5 
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Figure 3.12: The Plot of Dataset. "x" donates class 1, "o" donates class 2 

Mean of class 1µ  and 2µ  were calculated by the formula given in Eq. (3.32) and 

shown below; 

[ ]1 1( ) 3 3.6mean cµ = =  

[ ]2 2( ) 3.3 2mean cµ = =  

Scatter matrices 1S  and 2S  for each class were calculated by the formula given in 

Eq. (3.37) and shown below; 

1

10 8

8 7.2
S

 
=  
 

 

2

17.3 16

16 16
S

 
=  
 

 

Within the class scatter matrix 
W

S  of dataset was calculated by the formula given in 

Eq. (3.38) and shown below; 

1 2

27.3 24

24 23.2W
S S S

 
= + =  
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Between the class scatter matrix 
B

S  of dataset was calculated by the formula given in 

Eq. (3.42) and shown below; 

0.09 0.48

0.48 2.56B
S

− 
=  − 

 

After calculating the within the class scatter matrix 
W

S  and between the class scatter 

matrix 
B

S , the generalized eigenvalue problem, given in Eq. (3.45), was solved and 

1c −  most significant eigenvector, which has the larger eigenvalues, was taken to 

form projection direction. In this case there are two classes so there is just one 

eigenvector, which is shown below; 

0.67

0.75
w

− 
=  
 

 

The plot of dataset and projection direction is given below, in Figure 3.20. 

 

Figure 3.13: Projection Direction of FLD 

In the Figure 3.13, the doted red line that passes through the origin shows the 

direction of significant eigenvector which is also the projection direction. The doted 
red line is in the form of y ax= . Here, the important thing is the slope of the line that 
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is a . The line can be shifted anywhere along the X axis, which can be 

mathematically expressed as y ax b= + . In the Figure 3.20, the doted black line 

presents the shifted projection direction. It does not matter if it is shifted or not, as 

long as the slope of line is not changed. 

The projection of dataset on the projection direction is given in Figure 3.14. 

 

Figure 3.14: Shows the Best Possible Projection of Dataset for Classification. 

The goal of PCA is to find the direction of greatest variance while FLD tries to find 

the best projection direction for classification [5]. 

3.2.2 Multiple Discriminant Analysis 

For the c-class problem, the natural generalization of Fisher's linear discriminant 

involves 1c −  discriminant functions. Thus, the projection is from a d-dimensional 

space to a ( 1c − )-dimensional space, and it is tacitly assumed that d c≥ . The 

generalization for the within-class scatter matrix is obvious: 

1

c

W i

i

S S
=

=∑                                                                                                              (3.49) 
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where, as before, 

( )( )
i

T

i i i

x D

S x xµ µ
∈

= − −∑                                                                                        (3.50) 

and 

 
1

i

i i

x Di

x
n

µ
∈

= ∑                                                                                                         (3.51) 

The proper generalization for 
B

S  is not quite so obvious. Suppose that we define a 

total mean vector m and a total scatter matrix 
T

S  by 

1

1 1 c

i i

x i

x n
n n

µ µ
=

= =∑ ∑                                                                                            (3.52) 

and 

( )( )T

T

x

S x xµ µ= − −∑                                                                                          (3.53) 

Than it follows that 

1

( )( )
i

c
T

T i i i i

i x D

S x xµ µ µ µ µ µ
= ∈

= − + − − + −∑∑                                                      (3.54a) 

1 1

( )( ) ( )( )
i i

c c
T T

T i i i i

i x D i x D

S x xµ µ µ µ µ µ
= ∈ = ∈

= − − + − −∑∑ ∑∑                                        (3.54b) 

1

( )( )
c

T

T W i i i

i

S S n µ µ µ µ
=

= + − −∑                                                                          (3.54c) 

It is natural to define this second term as a general between-class scatter matrix, so 

that the total scatter is the sum of the within-class scatter and the between-class 

scatter: 

1

( )( )
c

T

B i i i

i

S n µ µ µ µ
=

= − −∑                                                                                   (3.55) 

and 

T W B
S S S= +                                                                                                           (3.56) 
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If we check the two-class case, we find that the resulting between-class scatter matrix 
is 1 2 /n n n  times our previous definition. 

The projection from a d-dimensional space to a ( 1c − )-dimensional space is 

accomplished by 1c −  discriminant functions 

              1,..., 1T

i i
y w x i c= = −                                                                                 (3.57) 

If the 
i

y  are viewed as components of a vector y  and the weight vectors 
i

w  are 

viewed as the columns of a d-by-( 1c − ) matrix W , then the projection can be written 

as a single matrix equation 

T
y W x=                                                                                                                 (3.58) 

The samples 1,..., n
x x  project to a corresponding set of samples 1,..., n

y y , which can 

be described by their own mean vectors and scatter matrices. Thus, if we define 

1

i

i

y Yi

y
n

µ
∈

= ∑%                                                                                                           (3.59) 

1

1 c

i i

ii

n
n

µ µ
=

= ∑% %                                                                                                         (3.60) 

1

( )( )
i

c
T

W i i

i y Y

S y yµ µ
= ∈

= − −∑∑% % %                                                                                  (3.61) 

and 

1

( )( )
c

T

B i i i

i

S n µ µ µ µ
=

= − −∑% % % % %                                                                                   (3.62) 

it is a straightforward matter to show that 

T

W WS W S W=%                                                                                                         (3.63) 

and 

T

B BS W S W=%                                                                                                         (3.64) 
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Figure 3.15: The Projection of Three-Dimension onto Two-Dimension [2] 

Figure 3.15 shows three 3-dimensional distributions are projected onto 2-

dimensional subspaces, described by a normal vectors W1 and W2. Informally, 

multiple discriminant methods seek the optimum such subspace, that is, the one with 

the greatest separation of the projected distributions for given total within-scatter 

matrix, here as associated with W1. 

These equations show how the within-class and between-class scatter matrices are 

transformed by the projection to the lower dimensional space, in Figure 3.15. What 

we seek is a transformation matrix W  that in some sense maximizes the ratio of the 

between-class scatter to the within-class scatter. A simple scalar measure of scatter is 

the determinant of the scatter matrix. The determinant is the product of the 

eigenvalues, and hence is the product of the "variances" in the principal directions, 

thereby measuring the square of the hyperellipsoidal scattering volume. Using this 

measure, we obtain the criterion function. 

( )
T

B B

T

WW

S W S W
J W

W S WS
= =

%

%
                                                                                       (3.65) 

The problem of finding a rectangular matrix W  that maximizes (.)J  is tricky, 

though fortunately it turns out that the solution is relatively simple. The columns of 

an optimal W  are the generalized eigenvectors that correspond to the largest 

eigenvalues in 

B i i W i
S w S wλ=                                                                                                       (3.66a) 

1
W B i i iS S w wλ− =                                                                                                      (3.66b) 
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A few observations about this solution are in order. First, if 
W

S  is nonsingular, this 

can be converted to a conventional eigenvalue problem as before. However, this is 

actually undesirable, since it requires an unnecessary computation of the inverse of 

W
S . Instead of this unnecessary computation, one can find the eigenvalues as the 

roots of the characteristic polynomial 

0
B i W

S Sλ− =                                                                                                        (3.67) 

and then solve 

( ) 0
B i W i

S S wλ− =                                                                                                  (3.68) 

directly for the eigenvectors 
i

w . Because 
B

S  is the sum of c  matrices of rank one or 

less, and because only 1c −  of these are independent, 
B

S  is of rank 1c −  or less. 

Thus, no more than 1c −  of the eigenvalues are nonzero, and the desired weight 

vectors correspond to these nonzero eigenvalues. If the within-class scatter is 
isotropic, the eigenvectors are merely the eigenvectors of 

B
S , and the eigenvectors 

with nonzero eigenvalues span the space spanned by applying the Gram-Schmidt 
orthonormalization procedure to the 1c −  vectors 

i
µ µ− , 1,..., 1i c= − . Finally, we 

observe that in general the solution for W  is not unique; the allowable 

transformations include rotating and scaling the axis in various ways. These are all 

linear transformations from a          ( 1c − )-dimensional space to a ( 1c − )-

dimensional space, however, and do not change things in any significant way; in 
particular, they leave the criterion function ( )J W  invariant and the classifier 

unchanged. 

If we have very little data, we would tend to project to a subspace of low dimension, 

while if there are more data, we can use a higher dimensions. 

As in the two-class case, multiple discriminant analysis primarily provides a 

reasonable way to reducing the dimensionality of the problem. Parametric or 

nonparametric techniques that might not have been feasible in the original space may 

work well in the lower-dimensional space. In particular, it may be possible to 

estimate separate covariance matrices for each class and use the general multivariate 

normal assumption after the transformation where this could not be done with the 

original data. In general, if the transformation causes some unnecessary overlapping 

of the data and increases the theoretically achievable error rate, then the problem of 

classifying the data still remains [2.6]. 



 35 

3.3 Small Sample Size Problem 

In ear recognition tasks, the dimension of the sample space is typically larger than 

the number of the samples in the training set. So the within-class scatter matrix is 

singular. This problem is known as the small sample size problem [1,2]. To 

overcome this problem, a new method is proposed called Discriminative Common 

Vector method, which is based on a variation of Fisher’s Linear Discriminant 

Analysis for small sample size. This algorithm uses within-class scatter matrix to 

produce common vectors. Then the common vectors are used for classification of 

new ears. This method claims more accuracy, efficiency and stability comparing to 

traditional methods like PCA and FLD. 

3.3.1 Problems with PCA 

PCA is unsupervised since it does not consider the classes within the training set 

data. In choosing a criterion that maximizes the total scatter, this approach tends to 

model unwanted within-class variations such as those resulting from the differences 

in illumination and other factors. Also, because the criterion does not minimize the 

within-class variation, there could be overlap in the result compared to other 

methods. Thus, the projection vectors chosen for optimal reconstruction may obscure 

the existence of the separate classes. 

3.3.2 Problems with FLD 

FLD solves the limitations of the Eigenears method by applying Fisher's Linear 

Discriminant criterion as mentioned below; 

( ) arg max
T

B

FLD opt W T

W

W S W
J W

W S W
=                                                                           (3.69) 

where 
B

S  is the between-class scatter-matrix and 
W

S  is the within-class scatter 

matrix. By applying this method, the projection directions maximize the Euclidian 

distance between the ear images of different classes on the other hand and on the 

other minimize the distance between the ear images of the same class. The problem 

in this method is that it cannot be applied since the dimension of the sample space is 

typically large than the number of samples in the training set. Discriminative 

Common Vector approach is one of the algorithms those were proposed to fix this 

problem [7]. 
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3.4 Discriminative Common Vector Approach (DCVA) 

Since ear images have similar structure, the image vectors are correlated, and any 

image in the image space can be represented in a lower-dimensional subspace 

without losing a significant amount of information. The Eigenear method has been 

proposed for finding such a lower-dimensional subspace. The key idea behind the 

Eigenear method, which uses Principal Component Analysis (PCA), is to find the 

best set of projection directions in the sample space that will maximize the total 

scatter across all images such that 

( ) arg max T

PCA opt T
W

J W W S W=                                                                               (3.70) 

is maximized. Here, 
T

S  is the total scatter matrix of the training set samples, and W  

is the matrix whose columns are orthonormal projection vectors. The projection 

directions are also so called the eigenears. Any ear image in the image space can be 

approximated by a linear combination of the significant eigenears. The sum of the 

eigenvalues that correspond to the eigenears not used in reconstruction gives the 

mean square error of reconstruction. This method is an unsupervised technique since 

it does not consider the classes within the training set data. In choosing a criterion 

that maximizes the total scatter, this approach tends to model unwanted within-class 

variations such as those resulting from the differences in lighting, facial expression, 

and other factors. Additionally, since the criterion does not attempt to minimize the 

within-class variation, the resulting classes may tend to have more overlap than other 

approaches. Thus, the projection vectors chosen for optimal reconstruction may 

obscure the existence of the separate classes. 

The Linear Discriminant Analysis (LDA) method overcomes the limitations of the 

eigenear method by applying the Fisher's Linear Discriminant criterion. This 

criterion tries to maximize the ratio of the function given in Eq. (3.69). Thus, by 

applying this method, we find the projection directions that on one hand maximize 

the Euclidean distance between the ear images of different classes and on the other 

hand minimize the distance between the ear images of the same class. The ratio is 

maximized when the column vectors of the projection matrix W are the eigenvectors 
of 1

W BS S
− . In ear recognition tasks, this method cannot be applied directly since the 

dimension of the sample space is typically larger than the number of samples in the 
training set. As a consequence, 

W
S  is singular in this case. This problem is also 

known as the "small sample size problem" [1,2]. Numerous methods have been 

proposed to solve this problem, in the last decade. 
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The idea of common vectors was originally introduced for isolated word recognition 

problems in the case where the number of samples in each class was less than or 

equal to the dimensionality of the sample space. These approaches extract the 

common properties of classes in the training set by eliminating the differences of the 

samples in each class. A common vector for each individual class is obtained by 

removing all the features that are in the direction of the eigenvectors corresponding 

to the nonzero eigenvalues of the scatter matrix of its own class. The common 

vectors are then used for recognition. In our case, instead of using a given class's own 

scatter matrix, we use the within-class scatter matrix of all classes to obtain the 

common vectors. Then, a new set of vectors, called the discriminative common 

vectors, which will be used for classification are obtained from the common vectors 

[7]. 

3.4.1 Obtaining The Discriminative Common Vectors By Using The Range 

Space Of 
W

S  

Let the training set be composed of C  classes, where each class contains N  
samples, and let i

m
x  be a d-dimensional column vector which donates the mth sample 

from the ith class. There will be a total of M NC=  samples in the training set. 
Suppose that d M C> − . In this case, 

W
S , 

B
S , and 

T
S  are defined as, 

( )( )
1 1

C N
T

i i

W m i m i

i m

S x xµ µ
= =

= − −∑∑                                                                              (3.71) 

( )( )
1

C
T

B i i

i

S N µ µ µ µ
=

= − −∑                                                                                  (3.72) 

and 

( )( )
1 1

C N
T

i i

T m m W B

i m

S x x S Sµ µ
= =

= − − = +∑∑                                                                (3.73) 

where µ  is the mean of all samples, and 
i

µ  is the mean of samples in the ith class. 

In the special case where 0T

WSω ω =  and 0T

BSω ω ≠ , for all { }\ 0d
Rω ∈ , the 

modified Fisher's Linear Discriminant criterion attains a maximum. However, a 

projection vector ω , satisfying the above conditions, does not necessarily maximize 

the between-class scatter. In this case, a better criterion is given below, 

( )
0 0

arg max arg max
T T

W W

T T

opt B T

W S W W S W

J W W S W W S W
= =

= =                                                    (3.74) 
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To find the optimal projection vectors ω  in the null space of 
W

S , we project the ear 

samples onto the null space of 
W

S and then obtain the projection vectors by 

performing PCA. To do so, vectors that span the null space of 
W

S  must first be 

computed. However, this task is computationally intractable since the dimension of 

this null space can be very large. A more efficient way to accomplish this task is by 
using the orthogonal complement of the null space of 

W
S , which typically is a 

significantly lower-dimensional space. 

Let d
R  be the original sample space, V  be the range space of 

W
S , and V

⊥  be the 

null space of 
W

S . Equivalently, 

{ }| 0, 1,...,k W kV span a S a k r= ≠ =                                                                        (3.75) 

and 

{ }| 0, 1,...,k W kV span a S a k r d
⊥ = = = +                                                                (3.76) 

where r d<  is the rank of 
W

S , { }1,..., da a  is an orthonormal set, and { }1,..., ra a  is 

the set of orthonormal eigenvectors corresponding to the nonzero eigenvalues of 
W

S . 

Consider the matrices [ ]1   ...   rQ a a=  and [ ]1   ...   r dQ a a+= . Since d
R V V

⊥= ⊕ , 

every ear image i d

m
x R∈  has a unique decomposition of the form 

i i i

m m mx y z= +                                                                                                           (3.77) 

where i i T i

m m my Px QQ x V= = ∈ , i i T i

m m mz Px QQ x V
⊥= = ∈  and P  and P  are the 

orthogonal projection operators onto V  and V
⊥ , respectively. Our goal is to 

compute 

i i i i i

m m m m m
z x y x Px= − = −                                                                                         (3.78) 

To do this, we need to find a basis for V , which can be accomplished by an 
eigenanalysis of 

W
S . In particular, the normalized eigenvectors 

k
a  corresponding to 

the nonzero eigenvalues of 
W

S  will be an orthonormal basis for V . The eigenvectors 

can be obtained by calculating the eigenvectors of the smaller M  by M  matrix, 
T

A A , defined such that T

WS AA= , where A  is a d  by M  matrix of the form 

1 1 2
1 1 1 1 2   ...         ...   C

N N C
A x x x xµ µ µ µ = − − − −                                                     (3.79) 

let 
k

λ  and 
k

v  be the kth nonzero eigenvalue and the corresponding eigenvector of 
T

A A , where k M C≤ − . Then, 
k k

a Av=  will be the eigenvector that corresponds to 
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the kth nonzero eigenvalue of 
W

S . The sought-for projection onto V ⊥  is achieved by 

using Eq. (3.78). In this way, it turns out that we obtain the same unique vector for 

all samples of the same class, 

i i T i T i

com m m m
x x QQ x QQ x= − = ,   1,..., ,   1,...,m N i C= =                                         (3.80) 

i.e., the vector on the right-hand side of Eq. (3.80) is independent of the sample index 
m , we refer to the vectors i

comx  as the common vectors [36]. So it is enough to 

project a single sample from each class. This will greatly reduce the computational 

burden of the calculations. 

After obtaining the common vectors i

com
x , optimal projection vectors will be those 

that maximize the total scatter of the common vectors, 

( )
0 0

arg max arg max arg max
T T

W W

T T T

opt B T com
WW S W W S W

J W W S W W S W W S W
= =

= = =                   (3.81) 

where W  is a matrix whose columns are the orthonormal optimal projection vectors 

k
ω  and 

com
S  is the scatter matrix of the common vectors, 

( )( )
1

C
T

i i

com com com com com

i

S x xµ µ
=

= − −∑ ,     1,...,i C=                                                (3.82) 

where 
com

µ  is the mean of all common vectors, 

1

1 C
i

com com

i

x
C

µ
=

= ∑                                                                                                     (3.83) 

In this case, optimal projection vectors 
k

ω  can be found by an eigenanalysis of 
com

S . 

In particular, all eigenvectors corresponding to the nonzero eigenvalues of 
com

S  will 

be the optimal projection vectors. 
com

S  is typically a large d  by d  matrix and, thus, 

we can use the smaller matrix, T

com comA A , of size C  by C , to find nonzero 

eigenvalues and the corresponding eigenvectors of T

com com com
S A A= , where 

com
A  is the 

d  by C  matrix of the form 

1    ...   C

com com com com com
A x xµ µ = − −                                                                        (3.84) 

There will be 1C −  optimal projection vectors since the rank of 
com

S  is 1C −  if all 

common vectors are linearly independent. If two common vectors are identical, then 

the two classes, which are presented by this vector, cannot be distinguished. Since 
the optimal projection vectors 

k
ω  belong to the null space of 

W
S , it follows that 

when the image samples i

m
x  of the ith class are projected onto the linear span of the 
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projection vectors 
k

ω , the feature vector 1 1,    ...   ,
T

i i

i m m C
x xω ω −

 Ω =    of the 

projection coefficients ,i

m k
x ω  will also be independent of the sample index m . 

Thus, we have 

,   1,..., ,   1,...,T i

i m
W x m N i CΩ = = =                                                                     (3.85) 

We call the feature vectors 
i

Ω  discriminative common vectors, and they will be used 

for classification of face images. The fact that 
i

Ω  does not depend on the index m  in 

Eq. (3.85). 

To recognize a test image 
test

x , the feature vector of this test image is found by 

T

test testW xΩ =                                                                                                         (3.86) 

which is then compared with the discriminative common vector 
i

Ω  of each class 

using the Euclidian distance. The discriminative common vector found to be the 
closest to 

test
Ω  is used to identify the test image. 

Since 
test

Ω  is only compared to a single vector for each class, the recognition is very 

efficient for real-time ear recognition tasks. In the Eigenear and the Fisherear 
methods, the test sample feature vector 

test
Ω  is typically compared to all feature 

vectors of samples in the training set, making these methods impractical for real-time 

applications for large training sets. 

The above method can be summarized as follows [7]: 

• Step 1: Compute the nonzero eigenvalues and corresponding eigenvectors of 

W
S  by using the matrix T

A A , where T

W
S AA=  and A  is given by Eq. (3.79). 

Set [ ]1   ...   rQ a a= , where r is the rank of 
W

S . 

• Step 2: Choose any sample from each class and project it onto the null space 

of 
W

S  to obtain the common vectors 
i i T i

com m m
x x QQ x= − ,   1,..., ,   1,...,m N i C= =  

Step 3: Compute the eigenvectors 
k

ω  of 
com

S , corresponding to the nonzero 

eigenvalues, by using the matrix T

com com
A A , where T

com com com
S A A=  and 

com
A  is given 

in Eq. (3.84). There are at most 1C −  eigenvectors that correspond to the nonzero 

eigenvalues. Use these eigenvectors to form the projection matrix [ ]1 1   ...   CW ω ω −= , 

which will be used to obtain feature vectors in Eq. (3.85) and Eq. (3.86). 
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3.5 Laplacianears 

Many recognition techniques have been developed over the past few decades. One of 

the most successful and well-studied techniques to ear recognition is the appearance-

based method. When using appearance-based methods, we usually present an image 

of size n m×  pixels by a vector in an n m× -dimensional space. In practice, however, 

these n m× -dimensional spaces are too large to allow robust and fast ear recognition. 

A common way attempt to resolve this problem is to use dimensionality reduction 

techniques. Two of the most popular techniques for this purpose are Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA). 

PCA is an eigenvector method designed to model linear variations in high-

dimensional data. PCA performs dimensionality reduction by projecting the original 

n-dimensional data onto the ( )k n� -dimensional linear subspace spanned by the 

leading eigenvectors of the data's covariance matrix. Its goal is to find a set of 

mutually orthogonal basis functions that capture the directions of maximum variance 

in the data and for which the coefficients are pairwise decorrelated. For linearly 

embedded manifolds, PCA is guaranteed to discover the dimensionality of the 

manifold and produces a compact representation. 

LDA is a supervised learning algorithm. LDA searches for the project axis on which 

the data points of different classes are far from each other while requiring data points 

of the same class to be close to each other. Unlike PCA which encodes information 

in an orthogonal linear space, LDA encodes discriminating information in a linearly 

seperable space using bases that are not necessarily orthogonal. It is generally 

believed that algorithms based on LDA are superior to those based on PCA. 

However, some recent work shows that, when the training data set is small, PCA can 

outperform LDA, and also that PCA is less sensitive to different training data sets. 

Recently, a number of research efforts have shown that the biometrics images 

possibly reside on a nonlinear submanifold. However, both PCA and LDA 

effectively see only the Euclidian structure. They fail to discover the underlying 

structure, if the ear images lie on a nonlinear submanifold hidden in the image space. 

Some nonlinear techniques have been proposed to discover the nonlinear structure of 

the manifold, e.g., Isomap, LLE and Laplacian Eigenmap. These nonlinear methods 

do yield impressive results on some benchmark artificial data sets. However, they 

yield maps that are defined only on the training data points and how to evaluate the 

maps on novel test data points remains unclear. Therefore, these nonlinear manifold 
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learning techniques might not be suitable for some computer vision tasks, such as ear 

recognition. 

In the mean time, there has been some interest in the problem of developing low-

dimensional representations through kernel based techniques for biometrics 

recognition. These methods can discover the nonlinear structure of the biometrics 

images. However, they are computationally expensive. Moreover, none of them 

explicitly considers the structure of the manifold on which the biometrics images 

possibly reside. 

This part of my study focuses on a new approach to ear analysis (representation and 

recognition), which explicitly considers the manifold structure. To be specific, the 

manifold structure is modeled by a nearest-neighbor graph which preserves the local 

structure of the image space. An ear subspace is obtained by Locality Preserving 

Projections (LPP) [8]. Each ear image in the image space is mapped to a low-

dimensional ear subspace, which is characterized by a set of feature images, called 

Laplacianears. The ear subspace preserves local structure and seems to have more 

discriminating power than the PCA approach for classification purpose. 

Let highlight several aspects of the proposed approach below [8]: 

1. While the Eigenears method aims to preserve the global structure of the 

image space, and the Fisherears method aims to preserve the discriminating 

information, Laplacianears method aims to preserve the local structure of the 

image space. In many real-world classification problems, the local manifold 

structure is more important than the global Euclidian structure, especially 

when nearest-neighbor like classifiers are used for classification. LPP seems 

to have discriminating power although it is unsupervised. 

2. An efficient subspace learning algorithm for ear recognition should be able to 

discover the nonlinear manifold structure of the ear space. Laplacianears 

method explicitly considers the manifold structure which is modeled by an 

adjacency graph. Moreover, the Laplacianears are obtained by finding the 

optimal linear approximations to the eigenfunctions of the Laplace Beltrami 

operator on the ear manifold. They reflect the intrinsic face manifold 

structures. 

LPP shares some similar properties to LLE, such as a locality preserving character. 

However, their objective functions are totally different. LPP is obtained by finding 



 43 

the optimal linear approximations to the eigenfunctions of the Laplace Beltrami 

operator on the manifold. LPP is linear, while LLE is nonlinear. Moreover, LPP is 

defined everywhere, while LLE is defined only on the training data points and it is 

unclear how to evaluate the maps for new test points. In contrast, LPP may be simply 

applied to any new data point to locate it in the reduced representation space. 

3.5.1 Learning a Locality Preserving Subspace 

PCA and LDA aim to preserve the global structure. However, in many real-world 

applications, the local structure is more important. In this section, Locality 

Preserving Projection (LPP) is described, a new algorithm for learning a locality 

preserving subspace [9]. The complete derivation and theoretical justifications of 

LPP can be traced back to Eq. (3.90). LPP seeks to preserve the intrinsic geometry of 

the data and local structure. The objective function of LPP is as follows: 

( )
2

min
i j ij

ij

y y S−∑                                                                                               (3.87) 

where 
i

y  is the one-dimensional representation of 
i

x  and the matrix S  is a similarity 

matrix. A possible way of defining S  is follows: 

( )2 2
exp / ,         

0                                        

i j i j

ij

x x t x x
S

otherwise

ε − − − <
= 


                                                        (3.88) 

or 

( )2
exp / ,           

                                          

0                                                   

i j i j

ij
j i

x x t if x is among k nearest neighbors of x

S or x is among k nearest neighbors of x

otherwise

 − −


= 





                 (3.89) 

where ε  is sufficiently small, and 0ε > . Here, ε  defines the radius of the local 

neighborhood. In other words, ε  defines the "locality". The objective function with 

our choice of symmetric weights ( )ij ij ji
S S S=  incurs a heavy penalty if neighboring 

points 
i

x  and 
j

x  are mapped far apart, i.e., if ( )
2

i jy y−  is large. Therefore, 

minimizing it is an attempt to ensure that, if 
i

x  and 
j

x  are "close", then 
i

y  and 
j

y  

are close as well. Following some simple algebraic steps, we see that 

( ) ( )
221 1

2 2
T T

i j ij i j ij

ij ij

y y S w x w x S− = −∑ ∑                                                         (3.90a) 
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T T T T

i ij i i ij j

ij ij

w x S x w w x S x w= −∑ ∑                                                                         (3.90b) 

T T T T

i ii i

i

w x D x w w XSX w= −∑                                                                               (3.90c) 

T T T T
w XDX w w XSX w= −                                                                                   (3.90d) 

( )T T
w X D S X w= −                                                                                             (3.90e) 

T T
w XLX w=                                                                                                         (3.90f) 

where [ ]1 2, ,..., nX x x x= , and D  is a diagonal matrix; its entries are column (or row 

since S  is symmetric) sums of S , ii ji

j

D S=∑ . L D S= −  is the Laplacian matrix. 

Matrix D  provides a natural measure on the data points. The bigger the value 
ii

D  

(corresponding to 
i

y ) is, the more "important" is 
i

y . Therefore, we impose a 

constraint as follows: 

1T
y Dy =                                                                                                               (3.91a) 

1T T
w XDX w⇒ =                                                                                                 (3.91b) 

Finally, the minimization problem reduces to finding: 

        
1

arg min            
T T

T T

w

w XDX w

w XLX w

=

                                                                                     (3.92) 

The transformation vector w  that minimizes the objective function is given by the 

minimum eigenvalue solution to the generalized eigenvalue problem: 

T T
XLX w XDX wλ=                                                                                              (3.93) 

Note that the two matrices T
XLX  and T

XDX  are both symmetric and positive 

semidefined since the Laplacian matrix L  and the diagonal matrix D  are both 

symmetric and positive semidefinite. 

The Laplacian matrix for finite graph is analogous to the Laplace Beltrami operator 

on compact Riemannian manifolds. While the Laplace Beltrami operator for a 

manifold is generated by the Riemannian metric, for a graph it comes from the 

adjacency relation. Belkin and Niyogi [10] showed that the optimal map preserving 

locality can be found by solving the following optimization problem on the manifold: 
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( )2

2

1
min

L M
f

M

f
=

∇∫                                                                                                        (3.94) 

which is equivalent to 

( )

( )
2 1

min
L M

f
M

L f f
= ∫                                                                                                     (3.95) 

where L  is the Laplace Beltrami operator on the manifold, i.e., ( )( )L f div f= ∇ . 

Thus, the optimal f  has to be an eigenfunction of L . If we assume f  to be linear, 

we have ( ) T
f x w x= . By spectral graph theory, the integral can be discretely 

approximated by T T
w XLX w  and the 2

L  norm of f  can be discretely approximated 

by T T
w XDX w , which will ultimately lead to the following eigenvalue problem: 

T T
XLX w XDX wλ=                                                                                              (3.96) 

The derivation reflects the intrinsic geometric structure of the manifold. 

3.5.2 Statistical View of LPP 

LPP can also be obtained from statistical viewpoint. Suppose the data points follow 

some underlying distribution. Let x and y be two random variables. We define that a 

linear mapping T
x w x→  best preserves the local structure of the underlying 

distribution in the 2
L  sense if it minimizes that x y ε− < . Namely, 

( )2
min |T T

w
E w x w y x y ε− − <                                                                           (3.97) 

where ε  is sufficiently small and 0ε > . Here, ε  defines the "locality". Define 
z x y= − , then we have the following objective function: 

( )2
min |T

E w z z ε<                                                                                            (3.98) 

It follows that, 

( )2
|T

E w z z ε<                                                                                                (3.99a) 

( )|T T
E w zz w z ε= <                                                                                          (3.99b) 

( )|T T
w E zz z wε= <                                                                                          (3.99c) 
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Given a set of sample points 1 2, ,...,
n

x x x , we first define an indicator function 
ij

S  as 

follows: 

2
      1      

0      

i j

ij

x x
S

otherwise

ε − <
= 


                                                                                (3.100) 

Let d  be the number of nonzero 
ij

S , and D  be a diagonal matrix whose entries are 

column (or row since S  is symmetric) sums of S , ii ji

j

D S=∑ . By the Strong Law 

of Large Numbers, ( )|T
E zz z ε<  can be estimated from the sample points as 

follows: 

( )|T
E zz z ε<                                                                                                  (3.101a) 

1 T

z

zz
d ε<

≈ ∑                                                                                                         (3.101b) 

( )( )1

i j

T

i j i j

x x

x x x x
d ε− <

= − −∑                                                                             (3.101c) 

( )( )
,

1 T

i j i j ij

i j

x x x x S
d

= − −∑                                                                              (3.101d) 

, , , ,

1 T T T T

i i ij j j ij i j ij j i ij

i j i j i j i j

x x S x x S x x S x x S
d

 
= + − − 

 
∑ ∑ ∑ ∑                                       (3.101e) 

,

2 T T

i i ii i j ij

i i j

x x D x x S
d

 
= − 

 
∑ ∑                                                                              (3.101f) 

( )2 T T
XDX XSX

d
= −                                                                                         (3.101g) 

2 T
XLX

d
=                                                                                                          (3.101h) 

where L D S= −  is the Laplacian matrix. The ith  column of matrix X  is 
i

x . By 

imposing the same constraint, we finally get the same minimization problem 

described in Section 3.5.1. 
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3.5.3 Learning Laplacianears for Representation 

LPP is a general method for manifold learning. It is obtained by finding the optimal 

linear approximations to the eigenfunctions of the Laplace Beltrami operator on the 

manifold. Therefore, though it is still a linear technique, it seems to recover 

important aspects of the intrinsic nonlinear manifold structure by preserving local 

structure. Based on LPP, we describe our Laplacianears method for ear 

representation in a locality preserving subspace. 

In the ear analysis and recognition problem, one is confronted with the difficulty that 

the matrix T
XDX  is sometimes singular. This stems from the fact that sometimes the 

number of images in the training set ( )n  is much smaller than the number of pixels 

in each image ( )m . In such a case, the rank of T
XDX  is at most n , while T

XDX  is 

an m m×  matrix, which implies that T
XDX  is singular. To overcome the 

complication of a singular T
XDX , we first project the image set to a PCA subspace 

so that the resulting matrix T
XDX  is nonsingular. Another consideration of using 

PCA as preprocessing is for noise reduction. This method, we call Laplacianears, can 

learn an optimal subspace for ear representation and recognition. The algorithmic 

procedure of Laplacianears is formally stated below. 

1. PCA projection: The image set { }ix  is projected into the PCA subspace by 

throwing away the smallest principal components. In this study, 98 percent of 

information is kept, in the sense of reconstruction error. For the sake of 

simplicity, x  is still used to denote the images in the PCA subspace in the 

following steps. The transformation matrix of PCA is donated by 
PCA

W . 

2. Constructing the nearest-neighbor graph: Let G  denote a graph with n  

nodes. The ith  node corresponds to the ear image 
i

x . An edge is put between 

nodes i  and j  if 
i

x  and 
j

x  are close, i.e., 
j

x  is among k  nearest neighbors 

of 
i

x , or 
i

x  is among k  nearest neighbors of 
j

x . The constructed nearest-

neighbor graph is an approximation of the local manifold structure. Note that 

the ε -neighborhood is not used to construct the graph here. This is simply 

because it is often difficult to choose the optimal ε  in the real-world 

applications, while k  nearest-neighbor graph can be constructed more stably. 

The disadvantage is that the k  nearest-neighbor search will increase the 

computational complexity of our algorithm. When the computational 

complexity is a major concern, one can switch to the ε -neighborhood. 
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3. Choosing the weights: In the case of unsupervised learning, if node i  and j  

are connected, put 

2

i jx x

t
ij

S e

−
−

=  where t  is a suitable constant. Otherwise, put 

0
ij

S = . The weight matrix S  of graph G  models the ear manifold structure 

by preserving local structure. The justification for this choice of weights can 

be traced back to [9]. In this study, the supervised learning was considered. If 

node i  and j  are connected, which means they are in the same class, put 

1
ij

S = . Otherwise, if they are not in the same class, put 0
ij

S = . 

4. Eigenmap: Compute the eigenvectors and eigenvalues for the generalized 

eigenvector problem T T
XLX w XDX wλ=  where D  is a diagonal matrix 

whose entries are column (or row, since S  is symmetric) sums of S , 

ii ji

j

D S=∑  L D S= −  is the Laplacian matrix. The ith  row of matrix X  is 

i
x  . 

Let 0 1 1, ,...,
k

w w w −  be the solution of Eq. (3.96), ordered according to their 

eigenvalues, 0 1 10 ...
k

λ λ λ −≤ ≤ ≤ ≤ . These eigenvalues are equal to or greater than 

zero because the matrixes T
XLX  and T

XDX  are both symmetric and positive 

semidefinite. Thus, the embedding is as follows: 

T
x y W x→ =                                                                                                       (3.102) 

PCA LLP
W W W=                                                                                                       (3.103) 

[ ]0 1 1, ,...,LLP kW w w w −=                                                                                         (3.104) 

Where y  is a k -dimensional vector. W  is the transformation matrix. This linear 

mapping best preserves the manifold's estimated intrinsic geometry in a linear sense. 

The column vectors of W  are the so-called Laplacianears. 
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4. EXPERIMENTS USING İTU-E DATABASE 

There are many databases developed for face recognition experiments such as 

FERET Face Database, MIT Face Database, VCL Face Database and Georgia Tech 

Face Database. However, there is no adequate ear database for ear recognition 

experiments. That is why the author of this thesis developed an extensive ear 

database that consists of 50 subjects with both left and right ears. There are 12 

photographs of each subject, 6 for left ear and 6 for right ear. The ear images were 

taken at 0 to 15 degree rotation under same day light condition. This ear database is 

named as İTU Ear Database (İTU-E).  

The hit rates of 4 algorithms that are mentioned in previous sections were calculated 

by Random Subsampling and K-Fold Cross-validation. 20 random test and training 

set pairs were picked for random subsampling method. The hit rate of each pair was 

calculated. The hit rates of recognition algorithms were presented as the mean hit 

rate of 20 random test sets in Table 4.1, Table 4.3, Table 4.5 and Table 4.7. The 

dataset was divided randomly into 25 equal-sized parts for K-Fold cross-validation. 

One of these 25 parts was kept as validation set and remaining 24 parts were 

combined as training set. Each part was kept as validation set for once and hit rates 

were calculated. The validation set that had highest hit rate was determined and its 

training set was used to calculate the hit rate of the test set. This process was repeated 

20 times. The means of the hit rates were presented as K-Fold cross-validation hit 

rates in Table 4.2, Table 4.4, Table 4.6 and Table 4.8. 
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4.1 Testing PCA by Random Subsampling 

Table 4.1: Random Subsampling Hit Rates of PCA 

 Dimension Number 

(Number of Feature Vectors) 

Hit Rate (%) 

4 58,6 

8 82,4 

16 91,6 

32 95,9 

64 96,8 

Left Ear 

128 97,1 

4 64,8 

8 87,7 

16 95,6 

32 98,9 

64 99,2 

Right Ear 

128 99,3 
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4.2 Testing PCA by K-Fold Cross-validation 

Table 4.2: K-Fold Cross-validation Hit Rates of PCA 

 Dimension Number 

(Number of Feature Vectors) 

Hit Rate (%) 

4 58,6 

8 81,1 

16 89,4 

32 93,6 

64 93,5 

Left Ear 

128 94,8 

4 61,4 

8 84,6 

16 92,9 

32 96,8 

64 96,9 

Right Ear 

128 97,2 

Table 4.1 and Table 4.2 represent hit rates of PCA at some specific number of 

dimensions. Both random subsampling and K-Fold cross-validation methods were 

used to calculate hit rates. The purpose of this experiment is to show effects of 

number of selected feature vectors on hit rate. 
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4.3 Testing FLD by Random Subsampling 

Table 4.3: Random Subsampling Hit Rates of FLD 

Dimension Number 
(PCA) 

Dimension Number 
(FLD) 

Hit Rate (%) at 
Left Ear 

Hit Rate (%) at 
Right Ear 

4 2 31,2 32,9 

8 4 71,1 78,5 

4 86,1 87,5 16 

8 96,3 98,1 

4 89,9 89,8 

8 98,3 98,7 

32 

16 99,3 100 

4 92,4 90,2 

8 98,7 99,1 

16 99,0 99,6 

64 

32 99,6 99,9 

4 85,7 88,0 

8 97,6 98,1 

16 98,9 99,6 

128 

32 99,2 99,8 
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4.4 Testing FLD by K-Fold Cross-validation 

Table 4.4: K-Fold Cross-validation Hit Rates of FLD 

Dimension Number 
(PCA) 

Dimension Number 
(FLD) 

Hit Rate (%) at 
Left Ear 

Hit Rate (%) at 
Right Ear 

4 2 31,5 34,0 

8 4 71,5 76,2 

4 81,6 82,4 16 

8 92,3 94,7 

4 86,4 87,3 

8 97,2 96,9 

32 

16 98,3 99,4 

4 88,5 87,1 

8 96,9 98,3 

16 98,3 99,6 

64 

32 98,8 99,6 

4 77,5 77,1 

8 92,6 94,3 

16 97,9 98,4 

128 

32 98,3 99,1 

Table 4.3 and Table 4.4 represent hit rates of FLD at some specific number of 

dimensions. Before processing multiple linear discriminant analysis, PCA was 

performed to reduce dimensions of dataset. Reducing dimensions of dataset reduces 

the computational cost of multiple linear discriminant analysis. Both random 

subsampling and K-Fold cross-validation methods were used to calculate hit rates. 

The purpose of this experiment is to show effects of number of selected feature 

vectors on hit rate. 



 54 

4.5 Testing DCVA by Random Subsampling 

Table 4.5: Random Subsampling Hit Rates of DCVA 

 Dimension Number Hit Rate (%) 

4 94,0 

8 98,0 

Left Ear 

16 99,3 

4 91,3 

8 98,7 

Right Ear 

16 100 

4.6 Testing DCVA by K-Fold Cross-validation 

Table 4.6: K-Fold Cross-validation Hit Rates of DCVA 

 Dimension Number Hit Rate (%) 

4 91,0 

8 97,0 

Left Ear 

16 100 

4 96,0 

8 98,7 

Right Ear 

16 100 

Table 4.5 and Table 4.6 represent hit rates of DCVA at some specific number of 

dimensions. Both random subsampling and K-Fold cross-validation methods were 

used to calculate hit rates. The purpose of this experiment is to show effects of 

number of selected feature vectors on hit rate. 
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4.7 Testing Laplacianears by Random Subsampling 

Table 4.7: Random Subsampling Hit Rates of Laplacianears 

DNumber (PCA) DNumber (LPP) HR (%) at LE HR (%) at RE 

4 2 59,0 65,7 

4 71,1 78,5 8 

8 86,2 91,5 

4 86,1 87,5 

8 96,3 98,1 

16 

16 93,3 97,7 

4 89,9 89,8 

8 98,3 98,7 

16 99,3 100 

32 

32 97,8 99,3 

4 92,4 90,2 

8 98,7 99,1 

16 99,0 99,6 

32 99,6 100 

64 

64 99,5 99,6 

4 85,6 87,8 

8 97,7 98,1 

16 98,9 99,6 

32 99,1 99,8 

64 99,8 99,8 

128 

128 99,0 99,4 
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4.8 Testing Laplacianears by K-Fold Cross-validation 

Table 4.8: K-Fold Cross-validation Hit Rates of Laplacianears 

DNumber (PCA) DNumber (LPP) HR (%) at LE HR (%) at RE 

4 2 58,7 61,2 

4 71,1 77,3 8 

8 85,1 89,3 

4 84,6 85,7 

8 95,2 96,8 

16 

16 91,7 95,3 

4 90,5 89,3 

8 98,6 98,4 

16 98,8 99,6 

32 

32 97,6 98,8 

4 88,5 86,3 

8 97,9 98,0 

16 98,3 99,5 

32 99,3 100 

64 

64 99,2 99,1 

4 81,1 83,7 

8 95,5 95,1 

16 97,3 98,3 

32 98,9 99,1 

64 99,1 99,6 

128 

128 98,0 98,7 

Table 4.7 and Table 4.8 represent hit rates of LPP at some specific number of 

dimensions. Before processing locality preserving projections, PCA was performed 
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to reduce dimensions of dataset. Reducing dimensions of dataset reduces the 

computational cost of locality preserving projections. Both random subsampling and 

K-Fold cross-validation methods were used to calculate hit rates. The purpose of this 

experiment is to show effects of number of selected feature vectors on hit rate. 

4.9 Error Rate vs. Dimension Number 

 

Figure 4.1: Error Rates of PCA at Left Ear 
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Figure 4.2: Error Rates of PCA at Right Ear 

Figure 4.1 and Figure 4.2 show the relation of number of used feature vectors and hit 

rate of PCA. 
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Figure 4.3: Error Rates of FLD at Left Ear 
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Figure 4.4: Error Rates of FLD at Right Ear 

Figure 4.3 and Figure 4.4 show the relation of number of used feature vectors and hit 

rate of FLD. The hit rate of FLD is related to feature vectors of both LDA and PCA. 
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Figure 4.5: Error Rates of DCVA at Left Ear 
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Figure 4.6: Error Rates of DCVA at Right Ear 

Figure 4.5 and Figure 4.6 show the relation of number of used feature vectors and hit 

rate of DCVA. 
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Figure 4.7: Error Rates of Laplacianears at Left Ear 
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Figure 4.8: Error Rates of Laplacianears at Right Ear 

Figure 4.7 and Figure 4.8 show the relation of number of used feature vectors and hit 

rate of Laplacianears. The hit rate of Laplacianears is related to feature vectors of 

both LPP and PCA. 
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4.10 Effects of Cropping 

Testing images cropped in two different ways as shown in Figure 4.9 and Figure 4.10 

below. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.9: Test images are cropped and renormalized to 128*128 pixels. (a): 

uncropped. (b): cropped from left. (c): cropped from right. (d): cropped from top. (e): 

cropped from bottom. (f): cropped from all sides. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.10: Black mask applied to test images. (a): unmasked. (b): masked from 

left. (c): masked from right. (d): masked from top. (e): masked from bottom. (f): 

masked from all sides. 

Table 4.9: Hit Rates of PCA Over Cropped Left Ear Images 

 Cropped 

%5 

Cropped 

%10 

Cropped 

%15 

Cropped 

%20 

Cropped from left 92,2 82,3 63,7 48,4 

Cropped from right 89,7 73,0 49,6 32,5 

Cropped from top 86,4 37,8 22,7 17,5 

Cropped from bottom 91,1 68,0 46,3 32,2 

Cropped from all 

sides 

66,3 18,8 9,8 6,9 
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Table 4.10: Hit Rates of PCA Over Masked Left Ear Images 

 Masked %5 Masked %10 Masked %15 Masked %20 

Masked from left 89,8 68,5 45,4 24,3 

Masked from right 89,6 66,4 48,7 35,2 

Masked from top 93,3 69,4 49,7 37,1 

Masked from bottom 88,3 66,1 45,8 29,0 

Masked from all sides 47,0 47,0 47,0 47,0 

 

Table 4.11: Hit Rates of PCA Over Cropped Right Ear Images 

 Cropped 

%5 

Cropped 

%10 

Cropped 

%15 

Cropped 

%20 

Cropped from left 96,1 73,9 50,2 28,3 

Cropped from right 96,5 85,8 70,6 46,4 

Cropped from top 87,8 46,1 25,6 20,4 

Cropped from bottom 95,5 80,4 54,8 32,5 

Cropped from all 

sides 

72,5 19,7 13,3 7,8 
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Table 4.12: Hit Rates of PCA Over Masked Right Ear Images 

 Masked %5 Masked %10 Masked %15 Masked %20 

Masked from left 93,8 80,0 62,8 46,9 

Masked from right 93,7 72,3 42,9 22,6 

Masked from top 97,9 78,5 61,4 47,2 

Masked from bottom 93,9 73,7 62,2 40,4 

Masked from all sides 55,3 55,3 55,3 55,3 

During this experiment 32 PCA feature vector used. Hit rates of 32 dimensional 

uncropped/unmasked PCA process can be found in Table 4.1. 

Table 4.13: Hit Rates of FLD Over Cropped Left Ear Images 

 Cropped 

%5 

Cropped 

%10 

Cropped 

%15 

Cropped 

%20 

Cropped from left 97,6 86,1 60,5 37,7 

Cropped from right 97,2 80,7 60,5 37,0 

Cropped from top 88,1 33,9 15,1 8,3 

Cropped from bottom 94,5 60,2 39,1 25,8 

Cropped from all 

sides 

62,7 11,6 6,3 5,7 
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Table 4.14: Hit Rates of FLD Over Masked Left Ear Images 

 Masked %5 Masked %10 Masked %15 Masked %20 

Masked from left 88,7 50,3 23,5 13,5 

Masked from right 95,2 80,0 65,5 47,1 

Masked from top 93,8 40,8 24,5 20,1 

Masked from bottom 87,2 62,3 36,9 19,6 

Masked from all sides 54,6 22,5 11,9 6,5 

 

Table 4.15: Hit Rates of FLD Over Cropped Right Ear Images 

 Cropped 

%5 

Cropped 

%10 

Cropped 

%15 

Cropped 

%20 

Cropped from left 99,2 87,1 66,9 46,4 

Cropped from right 99,1 91,6 71,4 37,5 

Cropped from top 86,9 2937 13,9 10,6 

Cropped from bottom 98,2 69,1 36,6 19,1 

Cropped from all 

sides 

69,9 13,0 5,1 5,1 
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Table 4.16: Hit Rates of FLD Over Masked Right Ear Images 

 Masked %5 Masked %10 Masked %15 Masked %20 

Masked from left 98,9 96 85,3 57,7 

Masked from right 76,6 30,5 6,7 2,2 

Masked from top 94,3 53,8 29,3 25,4 

Masked from bottom 89,3 70,1 59,3 32,1 

Masked from all sides 46,6 6,9 3,7 3,3 

During this experiment, the data set is represented in a lower dimensional space by 

PCA. 32 feature vectors are used for PCA process. After that, FLD applied to the 

dataset. 16 feature vectors are used for FLD process. Hit rates of 

uncropped/unmasked FLD process can be found in Table 4.2. 

Table 4.17: Hit Rates of DCVA Over Ear Images 

 Left Right 

 Cropped %15 Masked %15 Cropped %15 Masked %15 

Left 54,0 24,0 82,0 92,0 

Right 72,0 64,0 72,0 32,0 

Top 10,0 22,0 12,0 36,0 

Bottom 30,0 40,0 36,0 52,0 

All sides 6,0 10,0 2,0 2,0 

During this experiment 16 DCVA feature vector used. Hit rates of 16 dimensional 

uncropped/unmasked DCVA process can be found in Table 4.3. 
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Table 4.18: Hit Rates of LPP Over Cropped Left Ear Images 

 Cropped 

%5 

Cropped 

%10 

Cropped 

%15 

Cropped 

%20 

Cropped from left 96,2 81,5 60,4 36,9 

Cropped from right 96,7 84 60,1 35,1 

Cropped from top 91,1 38,2 19,4 10,8 

Cropped from bottom 93,6 61,6 37,3 21,7 

Cropped from all 

sides 

70 17,5 9,1 5,7 

 

Table 4.19: Hit Rates of LLP Over Masked Left Ear Images 

 Masked %5 Masked %10 Masked %15 Masked %20 

Masked from left 92,2 69,4 39,4 19,1 

Masked from right 95,8 88,3 74,5 60,9 

Masked from top 94,3 57,7 33,8 26,7 

Masked from bottom 93,9 72,8 45,5 25,9 

Masked from all sides 64,5 21,9 11,9 7,2 
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Table 4.20: Hit Rates of LPP Over Cropped Right Ear Images 

 Cropped 

%5 

Cropped 

%10 

Cropped 

%15 

Cropped 

%20 

Cropped from left 98,3 85,9 67,2 45,9 

Cropped from right 97,8 85,1 61,8 32,3 

Cropped from top 89,5 37,8 15,3 9,9 

Cropped from bottom 96,7 76,4 46,5 26,5 

Cropped from all 

sides 

75,6 16 5,4 4,6 

 

Table 4.21: Hit Rates of LPP Over Masked Right Ear Images 

 Masked %5 Masked %10 Masked %15 Masked %20 

Masked from left 97,6 93,2 85,6 63,4 

Masked from right 94,2 62 29,7 9,1 

Masked from top 97,3 69,2 45,5 35,3 

Masked from bottom 97,2 89,5 77,5 53,6 

Masked from all sides 71,2 17,5 10,8 8,7 

During this experiment, the data set is represented in a lower dimensional space by 

PCA. 32 feature vectors are used for PCA process. After that, LPP applied to the 

dataset. 32 feature vectors are used for LPP process. Hit rates of 

uncropped/unmasked LPP process can be found in Table 4.4. 
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5. CONCLUSION 

Several recognition algorithms were introduced in the last two decades. According to 

the results that are presented in this thesis, 2D image based, linear recognition 

algorithms have better performance at ear recognition tasks than face recognition 

task that are presented in the literature previously. The explanation of this situation is 

conditions such as make up, illumination, posing, the rotation angle of face to 

up/down/right/left directions and emotional expressions such as smiling and 

frowning brows, mustache and beard do not affect ear as much as they affect face. 

PCA, FLD, DCVA and LPP are almost excellent at ear recognition tasks according 

to experiment have been done in this study. 

The experiments of error rate versus the numbers of selected dimensions show that 

error rate can be minimized by choosing adequate number of dimensions for 

representation of ear images. 

Four degrees of cropping applied to testing images to show effects of deformed test 

images. The experiments showed that if the cropping ratio increases, error rate 

increases. Hit rate and cropping are inversely proportional. 

According to the experiment results, this thesis achieved its goal and showed that ear 

is adequate alternative to face for recognition tasks. 
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