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MICROWAVE BREAST MODELS THROUGH T1-WEIGHTED 3-D MRI 

DATA 

SUMMARY 

Biomedical microwave imaging of the human breast emerged as an important 

multidisciplinary research subject concerning bio-electromagnetics and signal 

processing. Recent years, early detection of breast cancer in the field of 

electromagnetic imaging has gained high popularity. In this context, computational 

electromagnetic models of the human breast are used to help researchers develope 

better techniques and instruments for imaging, increasing the feasibility of new 

technologies, and doing fast experimental analysis. There are hundreds of 

publications on the subject, which in turn stimulates the development of realistic 

breast phantoms for electromagnetic simulations. The increased interest in breast 

phantoms resulted in realistic 3-D breast phantoms derived from T1-weighted 3-D 

MRI data. However, development of numerical 3-D breast phantoms is still open to 

improvements in many areas such as effective filtering of MRI data, tissue 

classification, phantom shape and electromagnetic properties mapping. In this study, 

an effective and automated methodology for realistic numerical 3-D breast phantom 

development of different shapes, size and radiographic density in order to be used for 

different electromagnetic simulation models in microwave breast imaging research is 

presented. The spatial information of heterogeneity of the breast structure is collected 

from T1-weighted MRI slices of different patients’ in prone position with normal 

breast tissue (not malignant or abnormal). Then each voxel in MRI data is mapped to 

the appropriate dielectric properties using several steps. Our work involves the 

processing of each MRI slice separately and combining the processes to get efficient 

results. First, bias field appears on each slice was estimated and eliminated by fitting 

a surface to the adipose voxels disrupted by the field using thin plate spline method, 

and then this corruptive signal was removed from the corresponding images 

represented by MRI data. After filtering of all slices, voxels belong to adipose and 

glandular tissues were classified into four categories. Utilizing the natural shape of 

the breast MRI histogram, they were segmented according to their intensities by a 

curve-fit-based segmentation method. Then those tissue categories which are 

represented by five MRI voxel intensity intervals were combined together and were 

related to electromagnetic properties of relative permittivity and conductivity by a 

nonlinear mapping function which is formed using monotone piecewise polynomial 

cubic Hermite interpolation. Electromagnetic properties of the breast tissue are 

expanded to desired frequency using Debye dispersion models. Each voxel intensity 

value is nonlinearly mapped to the appropriate electromagnetic properties of the 

corresponding breast tissue. Later, the resultant slices of permittivity and 

conductivity are linearly interpolated to form a proper 3-D breast structure. Proposed 

method allows transforming any axial T1-weighted 3-D MRI breast data into 

conductivity and permittivity distributions for a desired operating frequency with a 

desired grid size in order to be used in numerical microwave experiments.  
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T1-AĞIRLIKLI 3-BOYUTLU MRI DATASI KULLANILARAK GERÇEKÇİ 

MİKRODALGA GÖĞÜS MODELLERİ ÜRETİLMESİ 

ÖZET 

Meme kanseri kadınlar arasında en sık teşhis edilen kanser türüdür. Kadınlar 

arasında, teşhis edilen tüm kanser vakalarının yaklaşık dörtte birini meme kanseri 

oluşturmaktadır. Yine kadınlar arasında kansere bağlı ölümlerin yaklaşık yedide 

birinin meme kanseri sonucu gerçekleştiği görülmektedir. Kanser vakaları arasında 

bu denli öneme sahip olan meme kanserinin erken teşhisi, hastaların yaşam sürelerini 

kayda değer bir biçimde artırmada ilk ve en yüksek öneme sahip husustur. Non-

invazif meme kanseri vakalarında kanser tedavi edildikten sonra hastanın on beş 

yıldan fazla yaşama olasılığı %90’ın üzerindedir. Yaklaşık olarak aynı hayatta kalma 

olasılığı, tümörün bir santimetreden daha küçük boyutlarda iken teşhis edilmiş 

olduğu invasif meme kanseri vakalarında da görülebilmektedir. Ne yazık ki, tümörün 

teşhis edilmesinin gecikmesi ve tümör boyutlarının iki santimetreyi aşması 

durumunda, tedavi sonrasında hayatta kalma olasılığı %75’lere kadar düşmektedir. 

Yapılan çalışmalarda, teşhis edilen tümörün boyutlarındaki bir milimetrelik artış, 

ölüm oranını %1.3 artırmaktadır. Bu sebeple, meme kanserine karşı en etkin savaşma 

biçimi şu an için erken teşhis olarak kabul görmektedir. 

Meme kanserinin erken teşhisinde birçok tıbbi ve biyomedikal yöntem 

kullanılmaktadır. Bunlar arasında hastaların kendi kendilerine veya bir hekim 

tarafından yapılan el ile muayene, ultrasonografi, MRI görüntüleme ve mamografi 

yöntemleri ilk sırada gelmektedir. Ayrıca, yukarıdaki teşhis amaçlı yöntemlerin 

haricinde, çeşitli genetik incelemeler sonucunda bireylerin meme kanserine 

yakalanma riski de belirlenebilmektedir. Ancak, henüz hiçbir teşhis yöntemi göğüs 

kanserini yeterince erken teşhis edememektedir. Üstelik tüm teşhis yöntemlerinin 

kendilerine has zararları ve dezavantajları bulunmaktadır. Örneğin, meme kanserinin 

teşhisi için en yaygın kullanılan yöntem olan mamografi, tümörlerin %10 kadarını 

tespit edememektedir. Buna ek olarak, mamografi iyonize edici X-ışınlarını temel 

alarak çalıştığından, bir yandan meme kanserini tespit etmeye çalışırken diğer bir 

yandan meme kanserine yol açmaktadır. Bu sebeple son yıllarda meme kanserinin 

erken teşhisi için elektromanyetik görüntüleme yöntemlerinin kullanımı konusundaki 

çalışmalar hız kazanmıştır. 

İnsan memesinin biyomedikal mikrodalga teknikleri kullanılarak görüntülemesi bio-

elektromanyetik ve sinyal işleme ile ilgili birçok alanı içeren çok disiplinli bir 

araştırma konusu olarak ortaya çıkmıştır. Son yıllarda, meme kanserinin erken teşhisi 

konusunda mikrodalga görüntüleme alanında yapılan çalışmalar popülerlik 

kazanmıştır. Bu bağlamda, insan memesinin elektromanyetik sayısal modelleri bu 

konuda çalışan araştırmacılara, hızlı deneysel analizler yaparak yeni teknolojilerin 

fizibilitesinin artırılması ve böylece daha iyi görüntüleme tekniklerinin ve 

aygıtlarının geliştirilmesi konularında yardımcı olmaktadır. Bu konuda yayınlanmış 
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yüzlerce çalışma, zaman içerisinde mikrodalga meme görüntülemesi alanında sayısal 

meme modellerinin geliştirilmesini teşvik etmiştir.  

Mikrodalga meme görüntüleme alanında ortaya konan ilk sayısal meme modelleri 

anatomik açıdan gerçekçilikten uzak, boşluklar ve homojen-heterojen dağılımlar 

içeren basit yapılı iki-boyutlu modellerdir. 1990’lı yılların başlarında ortaya çıkan bu 

tip modeller gerek yapısal, gerekse işlevsel açılardan büyük farklılıklar 

göstermekteydi. İlerleyen süreçle birlikte mikrodalga meme görüntülemesi alanına 

yönelik artan yoğun ilgi neticesinde, sayısal meme modellerine gösterilen önem de 

paralel bir şekilde artmıştır. Bu sayede bir sonraki adım olarak ortaya çıkan görece 

basit yapılı 3-boyutlu meme modelleri de literatürdeki çalışmalar arasında yerini 

almıştır. Meme modelleri konusuna gösterilen yüksek ilgi, MRI verisi kullanılarak 

oluşturulan anatomik açıdan gerçekçi 3-boyutlu sayısal meme modellerinin 

geliştirilmesiyle sonuçlanmıştır. İlk gerçekçi 3-boyutlu sayısal meme modeli 

kapsamlı bir çalışma ve kullanılabilir bir yöntem ile birlikte 2008 yılında ortaya 

konmuştur. Literatürde özel olarak sayısal mikrodalga meme modellerini konu alan 

bu ilk çalışmada arzu edilen türde bir model üretilebilmesi için 3 ana adım içeren bir 

yöntem öne sürülmüştür. Bu yöntemin alt adımları kısaca: MRI verisindeki 

gürültünün homomorfik filtreleme ile giderilmesi, dokuların Gauss Karışım Modeli 

(GMM) ile segmentasyonu ve elektromanyetik özelliklerin parçalı-doğrusal eşleme 

fonksiyonları ile eşlenmesi olarak tarif edilebilir.  

MRI verisindeki gürültünün giderilmesi için kullanılan homomorfik filtreleme 

yöntemi MRI verilerinin karakteristiğine uygun bir yöntem olmayıp, genel bir 

gürültü giderme yöntemidir. Bu sebeple homomorfik filtreleme MRI verisindeki 

gürültüden kurtulmak için doğru bir yöntem değildir. Aynı şekilde GMM birleşik 

Gauss eğrilerinin ayrıştırılmasına ilişkin bir yöntem olup, birçok göğüs tipinde, 

özellikle çok yağlı göğüslerde, dokuların segmentasyonu sürecinde başarısız 

olmaktadır.  

Elektromanyetik özelliklerin parçalı-doğrusal eşleme fonksiyonları ile eşlenmesi 

literatürde bugüne kadar sunulmuş olan doğrusal eşleme ve bi-modal eşleme 

yöntemlerine göre çok daha üstün bir yöntem olsa da, eşleme fonksiyonunun 

doğrusal parçalarının oluşturtulabilmesi için literatürde zaten sınırlı sayıda bulunan 

ve dokuların elektromanyetik özelliklerini konu alan çalışmalardaki meme dokusuna 

ilişkin elektromanyetik değerlerin pek de sağlıklı olmayan yollarla parçalara 

ayrılması gerekmektedir. Bu da elektromanyetik özelliklerin sağlıklı bir şekilde 

eşlenmesinin önünde bir engel teşkil etmektedir. 

Tüm bunlara ek olarak halen literatürde memenin şekilsel özelliklerini tam anlamıyla 

yansıtan gerçekçi sayısal meme modelleri bulunmamaktadır. Mevcut 3-boyutlu 

modellerin gerçeğe en yakın olanları da z ekseninde sıkıştırılmış elipsoitlerin koronal 

kesitler halinde birleştirilmesiyle oluşturulmuş modellerdir.  

Tüm bu bilgilerin ışığında şu kesin olarak söylenebilir ki, 3-boyutlu sayısal meme 

modelleri MRI verisinin etkin bir şekilde filtrelenmesi, doku sınıflandırılması, sayısal 

modellerin yapısal şekli ve elektromanyetik özelliklerin eşlenmesi gibi birçok alanda 

geliştirilmeye açık durumdadır.  

Bu çalışmada, mikrodalga meme görüntülemesi çalışmalarında kullanılmak üzere 

değişik şekil, ebat ve radyografik yoğunluklarda 3-boyutlu sayısal mikrodalga meme 

modelleri üretilmesi için etkin ve kendi kendine işleyebilen bir yöntem sunulmuştur. 

Memenin heterojen yapısının mekânsal bilgisi, memelerinde bir anomaliye 

rastlanmayan değişik hastaların yüz üstü pozisyonda alınmış T1-ağırlıklı 3-boyutlu 
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MRI verileri kullanılarak elde edilmiştir. Ardından MRI verilerindeki her bir voksel 

değeri birçok adım sonunda uygun dilelektrik özellikler ile eşlenmiştir. MRI 

verisindeki kesitler önce ayrı ayrı işlenmiş, ardından tüm işlemler birleştirilerek 

gerçekçi sayısal modeller üretilmiştir.  

İlk olarak, her bir kesitte, görüntüdeki bozucu etki olan bias alanı ince tabaka kama 

modeli yöntemi kullanılarak kestirilmiş ve ilgili MRI kesitinden temizlenmiştir. Bias 

alanının kestirimi, yağ dokulara ait örnek voksellerin toplanması ve bu voksellerin 

yoğunluk değerlerinin karşılaştırılması neticesinde bu örneklerden geçen ve bias 

alanının yumuşak değişimini temsil eden iki boyutlu bir kama modeli uydurularak 

gerçekleştirilmiştir. Elde edilen kestirilmiş gürültü, ilgili gürültülü kesitlerden basit 

bir bölme işlemi ile uzaklaştırılmıştır. Böylece gürültüden arındırılmış meme MRI 

verisi segmentasyon için hazır duruma getirilmiştir. 

Her bir kesitin filtrelenmesinin ardından, MRI histogramının doğal şekli kullanılarak 

eğri uydurma tabanlı bir segmentasyon algoritması geliştirilmiş ve MRI voksel 

değerleri glandula ve yağ doku olmak üzere iki farklı sınıfa ayrıştırılmıştır. 

Segmentasyon işlemi meme MRI verisi histogramının doğal şekli olan birbirine 

karışmış iki Gauss eğrisinin ayrıştırılması işlemidir. Birbirine karışmış durumda 

bulnan bu eğrilerin her biri glandula ve yağ dokuya ait voksellerin dağılımını 

göstermektedir. Yağ dokuya ait olan eğrinin yarı yükseklikteki tam genişliği 

saptanmış ve geliştirilen algoritma ile yağ dokuyu temsil eden eğriye en iyi şekilde 

uyacak bir Gauss eğrisi hesaplanmış ve iki farklı doku tipini birbirinden ayıran bir 

eşik değeri bulunmuştur. Ardından yağ ve glandula dokularına ait voksel yoğunluk 

değerleri literatürdeki çalışmalar doğrultusunda sınıflandırılarak dört ana sınıfa 

ayrılmıştır. 

Dokulara ait her bir sınıf ile elektromanyetik özellikler arasında tekdüze parçalı 

kübik Hermitte interpolasyon yöntemi kullanılarak doğrusal olmayan bir ilişki 

kurulmuştur. İlgili meme dokularının elektromanyetik özellikleri Debye and Cole-

Cole dağılım modelleri üzerinden tercih edilen çalışma frekansına göre belirlenmiş, 

böylece MRI verisindeki her bir voksel değeri uygun bağıl geçirgenlik ve iletkenlik 

değerleri ile eşlenmiştir.  

Bağıl geçirgenlik ve iletkenlik dağılımlarına dönüştürülen MRI kesitleri, doğrusal 

interpolasyon ile 3-boyutlu ve gerçekçi bir yapıya dönüştürülmüştür. Sunulan meme 

modeli geliştirme yöntemi, herhangi bir 3-boyutlu T1-ağırlıklı MRI verisini, tercih 

edilen frekanslardaki bağıl geçirgenlik ve iletkenlik dağılımlarına dönüştürerek 

anatomik açıdan gerçekçi 3-boyutlu sayısal mikrodalga meme modeline 

dönüştürmektedir. 
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1.  INTRODUCTION 

Cancer is a term used for a broad group of various diseases in which abnormal cells 

grow without control forming malignant tumors and are able to invade other tissues. 

Cancer cells may also spread to other parts of the body through the blood 

and lymph systems. There are also some types of tumors, known as benign, that are 

not cancerous. In contrast to malignant tumors, these types of tumors, what are not 

able to spread to other organs and do not grow uncontrollably, are usually considered 

as harmless cystic forms. There are more than 200 different types of cancer and 60 

different organs in the body where a cancer can develop [3]. Female breast is one of 

the organs in which both malignant and benign tumors appear frequently. Most of the 

time, tumors emerges in glandular tissue which consists of lobules (milk-producing 

glands) and milk ducts. Glandular tissue is rich in blood vessels and lymph nodes and 

vessels are really close to it. Therefore, there is a high chance that the cells could 

have gotten into the bloodstream and spread (metastasized) to other sites in the body.  

Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 

million cancer deaths are estimated to have occurred in 2008 [1]. Among these, 

breast cancer is the most frequently diagnosed cancer and the leading cause of cancer 

death among females, accounting for 23% (1.38 million) of the total cancer cases and 

14% (458,400) of the cancer deaths [2]. Moreover, it is reported that the incidence of 

the cancer is rising by 0.5% annually resulting in 1.35 to 1.45 million new cases by 

2010.  

Early detection of breast cancer increases the lifetime of the patients severely. For 

non-invasive breast cancers, the survival rate after 15 years is greater that 94%. 

Invasive cancers of smaller than 1cm, reduces the survival rate to 90-92%, while for 

cancers of 1-2cm size, it remains around 75%. The death rate is increased 1.3% per 

millimeter increase in cancer size [5]. Therefore, early breast cancer detection is a 

vital subject to increase the survival preventing deaths by metastasis. There are 

several techniques used for early breast cancer detection including clinical and self-

http://en.wikipedia.org/wiki/Disease
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=lymph&version=Patient&language=English


2 

breast exams, genetic screening, ultrasound, and magnetic resonance imaging and 

mammography.  

Clinical and self-exams involve either feeling the tumor by touch or by observing the 

lumps or abnormalities appear on the shape. Self-exams are recommended for all 

women to do frequently, because it is cheap and easy to be done without going to a 

clinic or an hospital. However, research findings show that small cysts cannot be 

detected by clinical or self-exams, because when a cyst is large enough to be found, 

it is likely to have been growing for several years [6].  

Genetic screening may help to identify people who are at increased risk for breast 

cancer, and also allow for specific screening of those people or their family 

members. It is based on investigating any mutation or abnormalities in either the two 

genes which susceptible for breast cancer, named BRCA1 (Breast Cancer gene one) 

and BRCA2 (Breast Cancer gene two). Women, who inherit any mutations or 

abnormalities in their BRCA genes, tend to develop breast or ovarium cancer more 

than the average [7]. However, genetic screening is not a method for early breast 

cancer detection, indeed, preserves the risk table for patients helping them to be 

conscious of their cancer risk. 

Ultrasound is another technique that is frequently used in breast cancer detection but, 

not used on its own as a screening test for breast cancer. Rather, it is used to 

complement other screening tests. If an abnormality is seen on mammography or felt 

by physical exam, ultrasound is the best way to categorize it.  

MRI imaging is a technique has a high soft tissue contrast and used in breast cancer 

diagnosis frequently. MRI imaging does not use any radiation, since less harmless 

than mammography. However, the cost of a typical MRI imaging season limits the 

usage of this technique. Although MRI is very effective at spotting abnormalities like 

tumors, that sensitivity can result in a false-positive reading. Currently, a breast MRI 

is usually ordered after a mammogram has come back showing suspicious lumps, 

bumps, or other abnormalities.  Today, the most common screening method for 

breast cancer is mammography. In women who have breast screening, most cancers 

are found at an early stage when there is a good chance that treatment will be 

successful. Women who take part in breast screening reduce their risk of dying from 

breast cancer. In women who have breast screening, any cancer is more likely to be 

found early. This means that the cancer is likely to be small and more likely to be 
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removed by a lumpectomy (removal of the lump) rather than needing a mastectomy 

(removal of the whole breast). However, It is important to understand that 

mammography can miss 10% of the cancers. It is less sensitive in dense breasts 

which are seen in young women or women taking hormone replacement therapy, and 

this is a major disadvantage, and it is for this reason that mammography is not 

routinely recommended for screening for women below 40 years of age. In addition, 

mammograms can be uncomfortable or even painful for some women, because 

compressing the breast is necessary to flatten and reduce the thickness of the breast. 

The x-ray beam should penetrate as few layers of overlapping tissues as possible. 

From start to finish, the entire procedure takes about 20 minutes and the sensation 

can last for minutes. Another disadvantage of mammography is the radiation dose. 

Since mammography is an X-ray based imaging method, it is ionizing. The radiation 

dose for a standard two-view examination of both breasts is approximately 4.5 mGy. 

At first glance, it seems to be a relatively small amount of radiation dose, however it 

is the same with the dose that the human body can be exposed by the environment 

within 3 months.  According to the scientists in University of Toronto, incidence of 

breast cancer caused by mammographic radiation for the women who were screened 

annually from age 40 to 55 years and biennially thereafter to age 74 years, is 

predicted as approximately 0.086 percent, which is also remarkable [8].  

To date, there no accurate method has been proposed for early breast cancer 

detection. Most of the frequently used methods are usually preferred to be used 

together to get accurate results. Among them, mammography is the most popular 

method for breast cancer detection although its side effects. It is usually performed 

for the first diagnostic method at the beginning of the breast cancer detection 

procedure.  

Nowadays, scientists are focused on the area "microwave imaging", because of its 

potential of preserving a significant and steady contrast between malignant and 

normal breast tissues. Previous studies on electromagnetic properties of biological 

tissues, and especially those of concerning the breast tissues, showed that there is a 

significant contrast difference between malignant and normal breast tissues from the 

perspective of dielectric properties [9]-[14]. In the last two decades, the number of 

electromagnetic therapy and diagnosis studies for the human female breast cancer is 

drastically increased. With the growing interests on the electromagnetic imaging of 
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the human breast for early cancer detection, and the electromagnetic therapy of 

malignant breast tumors, dozens of studies published. Several imaging methods such 

as microwave tomography,  ultrawideband radar, narrow and wide-band microwave 

techniques [15]-[17]; ultrawideband radar  and other time-domain techniques, such 

as time reversal [18]-[20]; microwave-induced thermoacoustic tomography [21]; and 

microwave holography [22]; proposed. Additionally, therapeutic methods such as 

microwave-induced hyperthermia and microwave ablation [23]-[27]; have been 

reported recently. At development stages of new imaging and therepathic methods, 

numerical models are frequently used in microwave simulations. In this context, 

numerical breast phantoms are served as invaluable experimental tools for 

biomedical electromagnetic imaging, electromagnetic therapy and all the fields of 

those deal with interactions between human breast tissue and the electromagnetic 

waves.  

1.1 Purpose of Thesis 

In this study, development of a general and versatile method for generating various 

numerical microwave breast models is aimed. Spatial information of tissue 

distribution is obtained from T1-wighted 3-D MRI data provided by Marmara 

University Medical Faculty and Euromed Medical Center. In contrast to uniform, 

piecewise linear and bimodal mapping methods, spatial information obtained from 

MRI data is mapped to the appropriate dielectric properties through non-linear 

mapping functions. An effective histogram based segmentation method is presented 

for development of numerical breast phantoms. Human dependency of the previous 

methods are substantially eliminated allowing to easily develop numerous numerical 

breast phantoms with various types for such studies in which plenty of different 

phantoms are required, such as neural networks algorithms. 

1.2 Literature Review of Microwave Breast Models 

In earlier studies, numerical breast phantoms were relatively simple, in which the 

heterogeneity of the breast is obtained by simple structures [28],[29].  At the 

beginning of 2000's more realistic numerical phantoms are derived using the spatial 

information of the breast tissues preserved by MRI data [30],[31]. This new 

development technique is based on mapping of electromagnetic properties of certain 
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breast tissues to the appropriate voxel intensities in MRI data. In years, with the new 

candidate studies on diagnostic and therapeutic microwave techniques, three 

different mapping methods are proposed: uniform, bimodal and piecewise-linear 

mapping. However, numerical phantoms were still limited to anatomically realistic 

2-D phantoms or relatively simple 3-D phantoms. There had been no such study that 

specifically deals with 3-D anatomically realistic numerical breast phantoms until the 

most recent one proposed by University of Wisconsin [32]. It introduced three main 

stages of anatomically realistic numerical phantom development process as denoising 

of MRI data, segmentation of tissues and mapping of electromagnetic properties. It 

suggests using homomorphic filter to remove the slowly changing gradient on MRI 

data and two-component Gaussian Mixture Model (GMM) for segmentation of 

tissues.  

Eventually, anatomically realistic phantoms still have deficiencies and the studies 

have done on this area so far pave the way for better techniques for development of 

numerical phantoms to use in computational electromagnetic experiments. In this 

context, alternative steps for development of numerical realistic 3-D breast models in 

order to use in biomedical electromagnetic breast cancer detection and treatment 

experiments is presented. T1-wighted 3-D MRI data is used for the source of spatial 

information of tissue distribution. Anonymous MRI samples are provided by 

Marmara University Medical Faculty and Euromed Medical Center. 3-D phantoms 

with heterogeneously distributed relative permittivity and conductivity properties 

vary with the spatial locations are developed. An effective noise reduction technique 

depends on estimating and removing the slowly changing gradient on MRI images, 

which is called bias field, is proposed. In addition, An histogram based segmentation 

algorithm is developed to be used effectively for any type of breast belong to four 

ACR categories defined by American College of Radiology [33]. For the first time a 

nonlinear electromagnetic mapping technique is integrated into development of 

realistic breast phantoms. In order to increase the speed of the process, MRI data is 

processed slice by slice, and it is stack together to form a 3-D realistic model at the 

end. 
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1.3 Basic Anatomy of the Female Breast 

The main function of the breast is producing milk and feeding the baby. Breasts are 

positioned on the pectoralis muscles of the anterior chest wall, in left and right sides. 

The fundamental structure of the breast is considerably heterogeneous [34]. It 

consists of glandular, adipose, and fibroconnective tissues covered by 0.5-2mm thick 

skin layer [35]. The superficial tissue layer is separated from the skin by 0.5–2.5 cm 

of subcutaneous fat (adipose tissue). There are no muscles in the breast, but muscles 

lie under each breast and cover the ribs.  

Each breast has 15 to 20 sections called lobes that are arranged like the petals of a 

daisy. Each lobe has many smaller lobules, which end in dozens of tiny bulbs that 

can produce milk. Thin tubes called milk ducts link all the lobes, lobules and bulbs. 

These ducts lead to the nipple in the center of a dark area of skin called the areola. 

Areola and nipple has major tasks in lactation. While nipple allows breast milk to 

pass to the suckling infant, sebaceous glands in areola secretes a kind of lubricant. In 

addition, underlying smooth muscle fibers compress the lactiferous ducts when the 

nipple is stimulated to allow for breastfeeding. 

Adipose tissue fills the spaces around the lobules and ducts. A layer of fat surrounds 

the breast glands and extends throughout the breast. It gives the breast a soft 

consistency and protects the breast form external factors. A representative picture of 

the breast depicted in Fig. 1.1. 

8 
9 

1. Chest wall 
2. Pectoralis 

muscles 

3. Lobules 

4. Nipple 

5. Areola 

6. Milk ducts 

7. Adipose tissue 

8. Fibroconnectiv
e Tissue 

9. Skin 
Figure 1.1 : Representative picture showing the basic anatomy of the female     

breast where the anatomical structures and different tissue types 

are indicated by numbers [46].
 

http://en.wikipedia.org/wiki/Chest_wall
http://en.wikipedia.org/wiki/Pectoralis_muscle
http://en.wikipedia.org/wiki/Pectoralis_muscle
http://en.wikipedia.org/wiki/Pectoralis_muscle
http://en.wikipedia.org/wiki/Lobules
http://en.wikipedia.org/wiki/Nipple
http://en.wikipedia.org/wiki/Areola
http://en.wikipedia.org/wiki/Lactiferous_duct
http://en.wikipedia.org/wiki/Adipose_tissue
http://en.wikipedia.org/wiki/Chest_wall
http://en.wikipedia.org/wiki/Chest_wall
http://en.wikipedia.org/wiki/Chest_wall
http://en.wikipedia.org/wiki/Human_skin
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2.  MATHEMATICAL METHODS 

2.1 Thin Plate Splines 

Thin plate splines were first introduced by Duchon [36] in 1976 by the physical 

analogy involving the bending of a thin sheet of metal plate. When it is compressed 

from the edges, thin metal plate deforms and bends.  In order to apply this idea to the 

problem of coordinate transformation, one interprets the lifting of the plate as a 

displacement of the x or y coordinates within the plane. In 3-D coordinate system, 

the deflection is in the z direction and is orthogonal to the plane x-y plane.  

 In 2D cases, given a set of   corresponding points, the TPS warp is described by 

         parameters, which include six global affine motion parameters 

and    coefficients for correspondences of the control points. These parameters are 

computed by solving a linear system, in other words, TPS has closed-form solution. 

Smoothing TPS is a regularized TPS. The model has a parameter   to control how 

non-rigid is allowed for the deformation. Given a set of control points       

          , a radial basis function basically defines a spatial mapping which maps 

any location   in space to a new location     , represented by, 

     ∑    ‖    ‖ 

 

   

 (2.1) 

with  ‖ ‖ denotes the usual Euclidean norm, and     is a set of mapping coefficients, 

and   is called the thin-plate spline basis function. Thin-plate spline basis function is 

defined by the length of  , given by   ‖ ‖, as the following: 

     ‖ ‖    ‖ ‖  (2.2) 

Assume that each of   observations in     is represented by  , having the 

coordinates [    ]  and values  . Correspondingly, the sites    are points in   . In 

http://en.wikipedia.org/wiki/Closed-form_solution
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this case the TPS fits a mapping surface      between corresponding point-sets   , 

and    by minimizing the following energy function: 

     [∬(
   

   
)

 

  (
   

   
)

 

 (
   

   
)

 

]       (2.3) 

It is also called the roughness measure, which tells how interpolated points on thin 

plate surge around corresponding point-set   , and    . 

If the error measure      is define as: 

     ∑|    (  )|
 

 

 
(2.4) 

then the thin-plate smoothing spline       is defined as the unique minimizer of the 

weighted sum as given below: 

     ∑      
 

                 

 

   

 (2.5) 

Here,   denotes the smoothing parameter that penalizes for curvature. With     

there is no penalty for curvature, this corresponds to an interpolating surface function 

where the function passes through each observation point. At higher   values close to 

1, the surface becomes smoother since curvature is penalized. For   going towards 

infinity the surface will go towards the plane with the least squares fit, since no 

curvature is allowed. It means that a proper smoothing parameter must be estimated. 

According to Green and Silverman [37]    is defined in the following form in 2-D: 

          
   ∑   (‖    ‖)

 

 

 (2.6) 

where the   function is defined as: 

     {  
                   
                          

 (2.7) 
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Now there are   equations, one for each observation, but there are      variables 

is to be estimated;   variables    , one variable    and two variables   . The last 

three equations from the three linear constraints: 

∑  

 

   

 ∑    

 

   

 ∑    

 

   

 (2.8) 

that ensures that the      function is finite. The system can be defined in matrix 

form. First, the matrices 

  [
          
           

] (2.9) 

And 

     (‖     ‖) (2.10) 

are defined. The system can then be written as: 

[  (
     

 
)    

  

] [
 
 ]  [

 
 
] (2.11) 

where   [     ] ,    [     ] ,and     [     ] 

The first line in the matrix equation is the interpolation and smoothing equations and 

the second line is the constraints. This matrix equation is solved with respect to   

and  . An estimate of the TPS at the location   can now be calculated using equation 

3.3. 

To extend the formulation above to 3-D, only slight changes are needed. There are   

observations in  3, with each observation   having coordinates [     ]  and values 

 . The only major change to the formulation above is that 3.4 becomes: 

     {  
               
                  

 (2.12) 
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The smoothing parameter   is chosen so that  
     

 
 equals the average of the 

diagonal entries of the matrix  , with   (
     

 
)   the coefficient matrix of the 

linear system for the   coefficients of the smoothing spline to be determined. This 

choice of   is meant to ensure that the function is in between the two extremes; 

interpolation (when   is close to 1 and the coefficient matrix is essentially  ) and 

complete smoothing (when   is close to 0 and the coefficient matrix is essentially a 

multiple of the identity matrix). This should serve as a good first guess for  .  

2.2 Some Important Features of Gaussian Distribution 

Carl Friedrich Gauss invented the normal distribution in 1809 as a way to rationalize 

the method of least squares. Gaussian distribution function can be used when the 

number of events or features is extremely high. It is a continuous function 

approximating the accurate binomial distribution of events or features. For   

dimensions, the Gaussian distribution of a vector                T is defined by: 

         
 

    
 
 √   

    ( 
 

 
               ) 

(2.13) 

where   is the  mean and   is the covariance matrix of the Gaussian. For example, a 

two dimensional Gaussian distribution with          and   [
        
        

] is 

illustrated in Fig. 2.1. 

 

 

Figure 2.1 : A representative model of two-dimensional Gaussian distribution. 
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In one dimensional case, Gaussian distribution is defined with mean   and standard 

deviation  . The probability density function of one-dimensional Gaussian 

distribution is given as: 

         
 

 √  
   (

       

   
) (2.14) 

The two parameters    and    can be shown to correspond to the mean and variance 

of the distribution. The shape of the Gaussian is shown in Fig. 2.2 (a) which 

illustrates this distribution for various  . The significance of   as a measure of the 

distribution width is clearly seen. As can be calculated from (19), the standard 

deviation corresponds to the half width of the peak at about 60% of the full height. In 

some applications, the full width at half maximum (FWHM) which is shown in (b) is 

often used instead. This is somewhat larger than   and can easily be shown to be: 

       √           (2.15) 

An important practical note is the area under the Gaussian between integral intervals 

of  . This is shown in Fig. 2.3. These values should be kept in mind when 

interpreting measurement errors. The presentation of a result as     signifies, in 

fact, that the true value has      probability of lying between the limits   

  and     or a     probability of lying between      and     , etc. Note 

that for a    interval, there is almost a      probability that the true value is outside 

(a)     

   (b) Figure  2.2 : Illustration of   and FWHM. (a) Gaussian distribution for 

various  .  (b) Representation of FWHM with  . 

http://ned.ipac.caltech.edu/level5/Leo/Stats2_3.html#Figure 3
http://ned.ipac.caltech.edu/level5/Leo/Stats2_3.html#Figure 5
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these limits. If two standard deviations are taken, then, the probability of being 

outside is only     , etc. 

 

2.3 Monotone Piecewise Cubic Hermite Interpolation 

Many of the most effective interpolation techniques are based on piecewise cubic 

polynomials. Monotone piecewise cubic interpolation is a variant of cubic 

interpolation that preserves monotonicity of the data set being interpolated [38], [39]. 

A cubic Hermite spline is a third degree spline with each polynomial of the spline in 

Hermite form.  The Hermite form consists of two control points and two control 

tangents for each polynomial. Each interpolation is performed on one sub-interval at  

   

Figure 2.4 : Comparing monotone piecewise cubic Hermite interpolation (red) 

vs cubic Hermite interpolation (blue). 

      (a)        (b)          (c) 

Figure 2.3 : The area contained between the limits    ,      and   
   in a Gaussian distribution. 

http://en.wikipedia.org/wiki/Cubic_interpolation
http://en.wikipedia.org/wiki/Cubic_interpolation
http://en.wikipedia.org/wiki/Monotone_function
http://en.wikipedia.org/wiki/Data_set
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a time (piece-wise). Monotonicity is preserved by linear interpolation but not by 

cubic interpolation. Fig. 2.4 shows the difference between monotone piecewise cubic 

Hermite interpolation and cubic Hermite interpolation. 

2.3.1 Cubic interpolation 

Given values of the function to be interpolated    at      and      at       , 

and values of the derivatives at those points,    at       and      at       , 

then, 

        (
    

  
)       (

    

  
)         (

    

  
)     

    (
    

  
)        

(2.16) 

with              and        as before, satisfies 

                         (2.17) 

  
           

              (2.18) 

where     are the basis functions for the cubic Hermite spline. This cubic polynomial 

is unique, subject to these four conditions. 

2.3.2 Interpolating a data set 

Suppose there are   points in some interval [   ]                , and 

corresponding values of the function,   , and the derivative,    at each point   .  

Accordingly,           and            and      can be defined. Then the 

piecewise cubic interpolant is going to be: 

     ∑ {   (
    

  
)       (

    

  
)     

 

   

    (
    

  
)         (

    

  
)       } 

(2.19) 

with            as before, and          for   [   ]. Then the basis 

functions      ,and        can be introduced as: 

http://en.wikipedia.org/wiki/Cubic_Hermite_spline
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and the piecewise cubic interpolant will be: 

     ∑        

   

   

 ∑        

   

   

 (2.22) 

2.3.3 Monoton interpolation 

Given                      and            , with   s 

unspecified, it’s always possible to find   s such that the resulting      is strictly 

increasing [38]. Let 

   
       
       

    
  

  
    

    

  
 (2.23) 

then       is monotone in [        ], if and only if: 

1.           ,and                               or 

2.          ,                               and: 

 (a)           , or 

 (b)           , or 

 (c)    
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The condition  

√  
    

    (2.24) 

implies either 1 or 2(a) ─2(c) above, so it’s sufficient to guarantee monotonicity. 

This motivates the following algorithm for constructing the   s: 

1. Initialize the derivatives      so that          =                     . For 

instance, 

          
       

 
                     (2.25) 

2. For          

 (a) If √  
    

    the interpolant will be monotone in [        ]; go to 

next    

 (b) If √  
    

   , let    
 

√  
    

 
   

        and   
      ; set 

      
       (2.26) 

       
    (2.27) 

The interpolant will be monotone in [        ];  go to next  . The algorithm may 

change the value of each    at most twice from its initial value: first when the 

interval [        ] is considered and again when the interval [        ]  is 

considered. But since       
     and       

    , the modification of    for 

[        ] will maintain the monotonicity condition on [        ]. 

2.4 Electromagnetic Models for Biological Tissues 

Electromagnetic properties of biological tissues for different frequencies can be 

calculated using proper electromagnetic dispersion models such as Cole-Cole or 
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Debye models. Actually, both models are based on the dielectric relaxation response 

of dispersive materials based on the frequency. 

Debye relaxation model is usually expressed in the complex relative permittivity   
  

of a medium as a function of the field's frequency  . Single pole Debye dispersion 

expressions are given in the following form: 

  
        

  

     
  

  

   
 (2.28) 

Here,    is the relative permittivity at infinite frequency,    is the static conductivity, 

and     as the permittivity of free space and   is the relaxation time constant. the The 

term     is called the magnitude of the dispersion and expressed as below: 

          (2.29) 

where    is the static relative permittivity. 

The other one, Cole–Cole relaxation model is based on the same parameters used in 

Debye model with one except; Cole-Cole model includes a distribution parameter  , 

which takes a value between 0 and 1, allows to describe different spectral shapes. For 

the single pole Cole-Cole dispersion model, the frequency-dependent permittivity is 

given as: 

  
        

  

            
  

  

   
 (2.30) 

As seen from the expression, when    , Cole-Cole model reduces to the Debye 

model.  

In both cases, equations (2.28) and (2.29) can be used to predict the dielectric 

behavior over the desired frequency range. The corresponding equation for the tissue 

conductivity can be derived from the general relation between conductivity and 

permittivity given below: 

      
 

       (2.31) 

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Relaxation
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where    is the conductivity at infinite firequency.  

Consequently, the complex conductivity    and the complex specific impedance    

of the tissue can be calculated using the expressions below: 

        
           

     

     
 (2.32) 

   
 

  
 (2.33) 
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3.  METHODOLOGY 

In this study, our purpose is to preserve an efficient method for development of 3-D 

realistic microwave breast models using T1-weighted 3-D MRI data to be used in 

microwave breast imaging experiments. The body of work can be summarized as 

mapping of correct electromagnetic properties to the correct spatial coordinates of 

the breast. 3-D MRI of anonymous patients is used to obtain the spatial information 

of tissue distributions inside the female breast. 

The methodology can be separate into four parts as pre-processing of MRI data, bias 

field correction, and tissue segmentation, electromagnetic properties mapping, and 

building the 3-D structure. Each of them are associated with the previous one, 

indeed, each process prepares the data for the next step up to the end. Some of the 

parameters given in this paper are proportional to the size of the provided MRI data, 

and need to be changed according to specific studies. 

3.1 Properties of MRI Data 

Numerical phantoms are generated using T1-weighted 3-D MRI data. Collection of 

axial MRI data belonging to anonymous and non-cancerous patients is provided by 

Marmara University Medical Faculty in order to be used in numerical phantom 

development. Provided MRI data consist of 40-45 slices per patient in prone 

position.  An example of MRI data with 42 slices is illustrated in Fig. 3.1. Each axial 

slice of the patients’ chest consists of 1024x1024 voxels, with 8-bit grey color 

format. Typical field-of-view of given MRI is 32cm x 32cm and spacing between 

each slice is approximately 3mm. In this case, each voxel in the MRI data represents 

a 0.369mm x 0.369mm x 3mm volume. A more detailed view of the 20th slice of 

Data 1 is showed in Fig. 3.2.  
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Figure 3.1 : An example of MRI data which consists of 42 slices of an anonymous patient in prone position. 
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3.1.1 Pre-processing of MRI data 

Provided MRI data pictures the whole chest of the patients. It covers the Therefore, 

the region that consists only the breast is extracted from the data. First, the breast 

whose electromagnetic model is going to be created is enclosed by a restrictive box 

as illustrated in Fig. 3.3(a). Then, the structure inside the box is extracted from the 

data as shown in (b). By this way, any other structures such as chest wall, internal 

organs etc. are removed. The size of an extracted slice varies patient to patient, but it 

is approximately 300x300 voxels. 

Before starting development process, each slice should be interpolated to obtain 

required cell size for desired operating frequency, which increases the speed of the 

algorithm. For example, for an operating frequency of 6 GHz and 20 points per 

wavelength, the required grid size will be 5mm x 5mm x 5mm, which is 

Figure 3.2 : A more detailed view of an MRI slice. 
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approximately 13.5 times the given grid size. Therefore, for an MRI data with a 

voxel size 0.369mm x 0.369mm x 3mm, size of each slice must be reduced by a 

factor 13.5, increasing the speed of the numerical phantom development process, 

approximately, by 10 times. However, if desired frequency or desired simulation 

method requires a gird size smaller than the given MRI data, than it is more 

reasonable to apply interpolation step just before building the 3-D structure of the 

numerical breast phantom. 

3.1.2 Removing the background artefects 

One important purpose of prepossessing of MRI data is to prepare the data for 

segmentation. Our segmentation method is based on the natural property of breast 

MRI histogram that is composed of a mixture of two Gaussians, which is fully 

covered in section II-C. Any noises, such as artifacts on the background, can lead 

inaccurate mapping of electromagnetic properties disrupting the distribution of the 

voxel intensities on histogram and must be removed before tissue segmentation. In 

fact, the artifacts are considered as a low intensity  noise at the breast exterior 

originate from either the non-uniformities due to the bandwidth-limiting filtering 

Figure 3.3 : Extraction of the breast tissue from axial slices of 3-D MRI data.   

(a) A simple box is defined to cover whole breast tissue. (b) 

Breast tissue is extracted from each of the slices using the box 

defined. 

(a)    (b) 
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and/or the ghost images which is seen mainly in the phase direction [40]. Several 

image processing steps  are applied to eliminate this noise seen at the exterior of the 

breast. Fig. 3.4(a) shows an axial slice with background artifacts which are actually 

barely seen. First, MRI data is multiplied by a constant to increase the contrast 

between the artifacts and the background. This multiplication is followed by a 

thresholding step using Otsu's method [41] in order to generate a binary image as 

shown in Fig. 3.4(b). To sever the connected components in the binary mask,  it is 

eroded with a structural element of a radius of 2 voxels [42], [43]. Connected 

component with the biggest area is considered as the rough mask of the breast. All 

the other components are removed from the corresponding slice and reverse the 

erosion operation by applying dilation with the same structural element. Result is 

shown in Fig. 3.4 (c). 

Although the resultant slices contain only the binary masks, and the noise at the 

environment is removed, the masks have indented boarders. As depicted in Fig. 

3.4.(d), a Gaussian filter with a 8cm x 8cm kernel size with     cm is applied to 

smooth the boarders by eliminating the high frequency noises. Again, final binary 

mask is generated by Otsu's method and is eroded by 1.5 cm in order to maintain the 

original size of the mask.  Lastly, MRI data is multiplied with the final mask 

illustrated in Fig. 3.4 (e). As shown in the Fig. 3.4 (f), low intensity artifacts at the 

background and the skin are removed from the data preserving sharper edges and 

(a)         (b)              (c) 

(d)                (e)              (f) 

Figure 3.4 : Elimination of the noise at the breast exterior on MRI data. 
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uniform background. Removing the background artifacts also provides noticeable 

enhancement in MRI histogram.  In Fig. 3.5, probability density functions of MRI 

voxel intensities illustrate how the masking operations and noise reduction steps 

explained so far effects the distribution and the shape of the voxel intensities. Pdf of 

the noisy MRI data is shown in Fig. 3.5(a). It can be seen that most of the voxels, 

which are belong to the background (thus expected to be 0), are clustered around the 

intensity value 0.1. As illustrated in Fig 3.5(b), initial masking (see example in Fig 

3.4 (b)) sharply removes most of the salt and pepper type background noises. 

However, artifacts on the background still corrupt the distribution at lower 

intensities. These artifacts cause the sharp peak near the voxel intensities at 0.1. As 

depicted in Fig 3.5(c), it is eliminated by removing the connected components on the 

background (see example in Fig 3.4(c)). Neglecting the skin layer also enhances the 

distribution. Only the difference between Fig. 3.5(c) and (d) is that the skin layer is 

neglected in (d). 

Noise reduction on the background yields remarkable enhancement especially at 

lower intensities, which belong to glandular tissue. However, it is not enough to 

reveal the mixed Gaussians in a breast MRI histogram. There is another type of noise 

that also corrupts the Gaussian curves in the histogram by changing the voxel 

intensities, called bias field. Some distinguishable disruptive effects of bias field are 

depicted in (d).  

Removing the bias field from the breast MRI data is essential for segmentation 

process as well as removing the background noises. Unfortunately, removing the bias 

field is a tough process because it is hidden in the data. Therefore, it must be 

estimated before eliminated. 

3.2 Bias Field Correction 

Bias field in MRI images is a low frequency and smoothly changing signal that 

corrupts MRI images by changing voxel intensity values. This slowly changing field 

cross an image is caused by poor radio frequency coil uniformity and patients’ 

anatomy inside or outside the field-of-view. Therefore bias field occurs in MRI 

images is unique for each patient and even each MRI imaging season. The magnitude 

of the variation in intensity values is typically varies between the range 10-20% 
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resulting a tissue has not a unique voxel intensity value [44]. This means that two 

different tissues can have the same voxel intensity value causing confusion. This 

intricacy causes segmentation errors and leads inaccuracy at electromagnetic 

properties mapping stage. In addition, it has disruptive effects on the histogram. As 

mentioned before, any artifacts that corrupt the Gaussian structure of histogram lead 

also segmentation errors. 

In the previous study [32], bias field is tried to be suppressed by a simple 

homomorphic filter. Homomorphic filtering is not an adaptable filtering method; 

instead, it is a general method, which is used for suppressing the contrast components 

(or background illumination) on images. However, in MRI data, bias field does not 

only increase the illumination on the background, but also reduce it. Thus, a simple 

homomorphic filtering operation does not give sufficient results on MRI images. Fig. 

3.6(a) shows a breast MRI slice corrupted by a bias field and (b) resultant slice after 

homomorphic filtering. As seen, homomorphic filter slightly reduces the background 

(a)        (b) 

 (c)         (d) 

Effect of skin 

Effect of bias field 

Figure 3.5 : Probability density functions of MRI voxel intensities of the 

same data illustrate how the masking operations and noise 

reduction steps effects the distribution. 
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illumination, but obviously fails on the darker regions. Instead of trying to remove 

the bias field from the MRI slices by simple filtering operations, estimating and 

modeling the bias field directly on the corresponding slice and then eliminating it is 

more reasonable.  

Main idea of removing the bias field is lies on estimating the bias field in each slices 

and then removing this corruptive field from the data by a simple division. 

Estimation of the bias field is completed in two steps. First, enough number of the 

sample points (100-400 points according to the breast size) belonging to the adipose 

tissue in the related MRI slice are gathered. Then assuming the voxel intensities 

belonging to adipose tissue should have the maximum values, any subsidence in the 

intensity of those sample points refers to the bias field. Since bias field is a smoothly 

changing signal, it can be estimated by fitting a thin plate spline surface to those 

sample points [45].  

3.2.1 Collecting the sample points  

In each slice, voxels belonging to adipose tissue are taken as the local maxima inside 

a window that scans the ROI with some overlap. The region of interest (ROI) is 

defined as the smallest rectangle whose size is    x   , covering the whole breast 

tissue in the given MRI  slice. It determines the boundaries for the scanning 

operation. Fig. 3.7 illustrates the ROI and the scanning operation on a sample binary 

  direction is given as   , and    respectively. Gathering the correct voxels 

belonging to adipose tissue is   the vital step for a correct estimation of bias field.  

(a)           (b) 

Figure 3.6 : Application of homomorphic filtering on an MRI slice corrupted 

by a bias field. 
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Figure 3.7 : Illustration of the ROI and the scanning operation on a 

representative binary mask 

The distribution of the glandular tissue can lead false determination of some adipose 

tissues. This happens when a scanning window is fully filled with glandular tissue. In 

this case, the local maximum is taken as the maximum voxel intensity belonging to 

the glandular tissue yielding remarkably low voxel intensity. In order to avoid false 

determination of sample points, different window parameters (yielding different 

window sizes and amount of overlap) for different regions of the breast depending on 

the tissue distributions. As illustrated in Fig. 3.8, breast interior is divided into four 

different regions denoted by    to    depending on the distributions of glandular and 

adipose tissue densities.  

Four different regions are defined by three thickness parameters   ,   ,    which 

determines the thickness of the regions   ,   ,    respectively, and rest of the area is 

labeled as   .  

   defines the region that includes nipple which is composed of milk ducts and very 

rich in glandular tissue. In a breast MRI of a patient in prone position, nipple is 

usually located at the bottom of the breast when the patient is in prone position. 

Therefore    is defined as the last    rows at the bottom of the ROI.  

The structure of the glandular tissue starts branching out from the nipple through the 

chest wall, and is separated from the skin by 0.5-2.5 cm of subcutaneous fat. 
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Therefore, the lateral edges of the breast denoted by    composed of almost 

completely adipose tissue.  

 

Figure 3.8 : Four different regions depending on the distributions of 

glandular and adipose tissue densities. 

For    and   , sizes of the windows are the same and they are relatively smaller than 

the windows used for    and   . The reason is that smaller windows yield greater 

number of samples and gathering number of sample points near the boarders of the 

breast produce better estimation of bias field. Retrieved sample points from the 

regions    and    are illustrated with red dots in Fig. 3.9. Skin layer is neglected 

during the screening operation excluding non-adipose voxels in order to avoid 

incorrect samples.  

 

Figure 3.9 : Retrieved sample points from the regions    and    
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There is also another region which lies on near the chest wall and rich in glandular 

tissue than   , indicated by   . Local maximas found on this region are shown in 

Fig. 3.10. Again the window size for    is the same with those for    and   .  

Finally, the region confined with   ,   and    is represented by    which is 

composed of mostly the glandular tissue and has the greater area. Fig. 3.11 depicts 

the local maximas found in   . Since it may contain large amount of glandular 

tissue, required window size must be large enough to cover some adipose tissue. 

As mentioned before, four different regions are defined by three thickness operators 

named   ,   , and   .    is selected as 1.5 cm which is the maximum height of the 

nipple area out of 20 different breast MRIs. 

Other two thickness parameters are defined proportional to the size of the current 

slice of the breast in order to avoid the selected sample points go out of the breast 

Figure 3.11 : Retrieved sample points from the regions   . 

 

Figure 3.10 : Retrieved sample points from the regions   . 
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bounds.    is taken as minimum adipose thickness just under the skin which is 5 mm 

(for a medium sized breast it is nearly      ). Likewise,    is selected as 2 cm 

(nearly     ) as an optimum value after examining different breast MRIs. 

For each region, local maximas are retrieved using a scanning window whose 

parameters are peculiar to different regions. Coordinates and the values of retrieved 

points are stored in a matrix     . Corresponding window parameters for sampling 

are given in Table 1.   

Table 3.1 : Corresponding window sizes for finding local maxima. 

R1 R2 R3 R4 

nr1=Nr /25 nr2=Nr /25 nr3=Nr /25 nr4=4sNr /25 

nc1=Nc /25 nc2=Nc /25 nc3=Nc /25 nc4=4sNc /25 

or1=0.5nr1 or2=0.5nr2 or3=0.5nr3 or4=0.5nr4 

oc1=0.5nc1 oc2=0.5nc2 oc3=0.5nc3 oc4=0.5nc4 

 

However there is a special case for   . In mid slices, most of the glandular tissue 

appear in   , so a bigger size scanning window should be defined to reduce 

undesired samples belonging to glandular tissue. On the other hand, density of the 

glandular tissue reduces in lateral slices. Therefore, bigger sized scanning windows 

lead insufficient number of samples. To overcome this problem, a parameter called 

the slice factor is defined for the region   , which slightly decreases the 

corresponding scanning window sizes up to (approximately) 4 times, in lateral slices. 

For a corresponding MRI data consists of K slices, slice factor   for     slice is 

calculated as given below: 

        
      

         
 (3.1) 

where  

   |
 

 
  |                    (3.2) 

and  

     
                 

 
 (3.3) 
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Then the corresponding window sizes for each slice are divided by the slice factor 

yielding approximately no-change in the mid slice while 1/4 times size reduction in 

lateral slices (which is equal to the window size for   ,   , and   ). For example, 

linear change of the   in an MRI data with 42 slices is given in Fig. 3.12. Slice factor 

increases the number of sample voxels especially at lateral slices. 

Fig. 3.13 represents the sample voxels collected from the same slice with and without 

using the slice factor. As seen in (a), bigger scanning window leads insufficient 

number of sample voxels in the region   . On the other hand, using a smaller 

scanning window in    provides relatively large quantity of samples as depicted in 

(b). 

Figure 3.12 : Relation between the slice factor   and the slice number  . 

 

(a)          (b) 

Figure 3.13 : Sample voxels collected from the same slice with and without 

using the slice factor 
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3.2.2 Discarding the non-adipose voxels  

Using different scanning window sizes for different regions is a clever idea which 

drastically reduce the number of undesired samples. However, it is not a complete 

solution. Fig. 3.14 (a) illustrates the selected sample voxels, which are expected to 

represent adipose tissue. Obviously, there are still some samples belonging to non-

adipose voxels. They can be distinguished from the correct samples using the 

properties of bias field. Since bias field is a slowly changing signal, voxels belong to 

adipose tissue tent to have similar values in a small area. 

Therefore, to discard the non-adipose samples, again,      is scanned with a local 

window with different parameters for each of four regions. Corresponding window 

parameters used for reduction of sample points are given in Table 2. An intensity 

threshold operator   is applied inside the window to discard the voxels that are not 

satisfying the following condition: 

                      (3.4) 

Here           denotes the retrieved point located at the coordinates       in a local 

window. The threshold operator   is selected as 0.85, which is also given in [45]. 

An example of discarding process is shown in Fig. 3.14 (b). As seen in (a), plenty of 

samples are collected from glandular tissue especially in the regions R2 and R3. 

These undesired samples belonging to non-adipose tissue are removed from the 

  (a)                (b) 

 

 

    

 

 

 

                (b) 

Figure 3.14 : An illustration of discarding the undesired non-adipose sample 

voxels from the corresponding slice. 
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corresponding slice as illustrated in (b). Now these samples belonging to adipose 

tissue can be used to estimate the bias field. 

Table 3.2 : Corresponding window sizes for trimming out the non-adipose samples.  

R1 R2 R3 R4 

nr1=8Nr /25 

 

No 

Reduction 

nr3=3Nr /25 nr4=8sNr /25 

nc1=8Nc /25 nc3=3Nc /25 nc4=8sNc /25 

or1=0.5nr1 or3=0.5nr3 or4=0.5nr4 

oc1=0.5nc1 oc3=0.5nc3 oc4=0.5nc4 

 

3.2.3 Removing the bias field and results 

In order to model the bias field, an interpolated smooth surface is fitted to the sample 

voxels using thin plate smoothing. Thin plate smoothing spline surface fitted to the 

sample voxels is shown in Fig. 3.15(a) with a 3-D plot. As seen, the surface smoothly 

changes interpolating the sample voxels and lies through the whole slice. Since all 

the samples are selected inside the breast and there are no samples selected from the 

background, estimated surface must be expected to be valid only inside the breast 

area. Therefore, the values which correspond to the background are rounded to 1 to 

obtain the bias field shown in Fig. 3.15(b).  

Estimated bias field is removed from the corresponding slice by an element-wise 

division given below: 

   (a)                           (b) 

Figure 3.15 : Bias field estimation using thin plate splines fitted to the 

sample points. 
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 (3.5) 

where     represents the original voxel value disrupted by bias field,       represents 

the bias fied estimated at the same location, and            represents the corrected 

voxel value after bias field is eliminated. Fig. 3.16(a) shows the MRI slice corrupted 

with a disruptive bias field and the resultant slice after removing the bias field. As 

seen in (b), presented method for bias field elimination corrects the shadowing on the 

upper side of the slice as well as the undesired illumination on the boarders. 

Additionally, the contrast between glandular and adipose tissues is enhanced, by 

filtering the corresponding slice with an unsharp filter [42], [43] as depicted in (c). 

Bias field correction also enhances the MRI histogram, uncovering the natural 

structure of the voxel intensity distribution of the breast tissue. Fig. 3.17 shows bias 

field correction results on various breast MRI data and corresponding histograms. 

The first and the second columns show pre-processed MRI data (background noise is 

eliminated) and the same slice after bias field correction. As the same, the third and 

 (a)     (b) 

     (c) 

Figure 3.16 : Result of bias field elimination. (a)MRI slice corrupted with a 

disruptive bias field, and (b) the resultant slice after removing 

the bias field. 
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the fourth columns represent the histogram of the pre-processed MRI data and the 

same histogram after bias field correction respectively.  

Fig. 3.18 shows the comparison between the slices denoised by homomorphic 

filtering and proposed method. First column shows different slices from different 

MRI data which are corrupted by bias field. Slices in the second column illustrate the 

resultant slices after homomorphic filtering. As seen, homomorphic filter reduces the 

background illumination, but obviously fails on the darker regions.  On the other 

hand, bias field estimation and correction method presented in this study, corrects the 

Figure 3.17 : Bias field correction results on various breast MRI data and 

corresponding histograms. 
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brighten regions reducing the illumination and also enhances the darker regions as 

well.  

3.3 Segmentation of Two Main Tissues 

Breast tissue composes of adipose, which gives the breast its shape and preserve 

protection, and glandular tissue that includes lobs, lobules and milk ducts. These two 

main tissues have different electromagnetic properties. Therefore, they must be 

separated on the MRI voxel intensity space, in order to assign correct 

electromagnetic properties according to their voxel intensities. Histogram of 3-D 

MRI breast data is assumed to consist of two Gaussian distributions of voxel 

Figure 3.18 : Comparison between the slices denoised by homomorphic 

filtering and the presented method for bias field correction. 
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intensities representing glandular and adipose tissue distributions. In the previous 

study on 3-D breast phantoms [32], Gaussian Mixture Model (GMM) is used for 

segmentation of breast tissues. However, glandular and adipose tissues are well 

separated by GMM only if the considered breast is dense enough. In fatty breasts 

case (ACR 1 and some of ACR 2) as depicted in Fig. 3.19, upper bound of glandular 

tissue cannot be determined since the distribution belonging to the glandular tissue 

(blue curve) lies under the curve belonging to the adipose tissue (red curve). 

 

Figure 3.19 : Result of GMM on an almost entirely fatty breast.  

Consequently, a different kind of segmentation method that is effective on all types 

of breasts is needed. In this study, a histogram based segmentation method, which 

determines a proper threshold value for separating glandular, and adipose tissues, is 

presented. The method is also based on the general characteristics of the histogram of 

breast MRI, but this time the purpose is to find the Gaussian distribution of adipose 

tissue. For breasts classified as ACR IV and most of ACR III, peaks of the Gaussian 

curves can be distinguishable on the histogram with the smaller peak at the left of the 

bigger one as illustrated in Fig. 3.20(a). However, as depicted in (b), for ACR I and 

ACR II type breasts, distribution of voxels intensities belong to glandular tissue does 

not exhibits a Gaussian like shape and any peak.  

In brief, for a T1-weighted MRI histogram, glandular tissue may not preserves 

enough signs. However, a peak belongs to adipose tissue always exists so as its 

Gaussian shape above the Full Width Half Maximum (FWHM). Therefore, the 

parameters of the Gaussian distribution belong to the adipose tissue voxels in the 
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histogram can be determined by its FWHM property. A threshold value which 

correctly separates two tissue types must ensure that the distribution of adipose voxel 

intensities after segmentation must have nearly the same FWHM value which is 2.34 

times of the standard deviation (  ) of itself.  

Let X be the set of voxel intensities in the breast interior and      is the probability 

density function of  . If the threshold value  , which separates two tissue types is 

defined then the standard deviation of the adipose tissue voxels can be found as 

   √∑     (     )
 
 

   

 
(3.6) 

where    is the expected value of the adipose tissue voxels. Then the threshold value 

that separates two tissue types can be calculated as below: 

        
            

                   (3.7) 

FWHM of adipose tissue in a given histogram is calculated as the width of the 

distribution around the half of the peak that exists at higher voxel intensities. Before 

the segmentation process, in order to increase the consistency of calculated FWHM, 

histograms are smoothed by a moving average filter as depicted in Fig. 3.21. The 

length of the filter kernel is selected as three elements along the voxel intensity axis. 

Segmentation results for various breasts are illustrated in Fig. 3.22 and 3.23. Both the 

visual results and the results in the histograms are given with different breast types. 

In Fig. 3.22, fitted Gaussian curves to the histograms of the breast classified into 

  (a)                  (b) 

Figure 3.20 : Histograms of two different breasts of different radiographic 

densities. 
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different radiographic densities are illustrated to show the effectiveness of the 

segmentation procedure. Sub figures labeled as (a) to (d) represents the segmentation 

results of ACR class I to IV type breasts respectively. Red curves represent fitted 

Gaussian to the adipose distribution of tissue. Blue curves are calculated after finding 

the threshold value to represent how the rest of the distribution (which represents 

glandular tissue) behaves as a Gaussian distribution with parameters    and   . 

These two parameters are calculated as below: 

   ∑      

 

   

 (3.8) 

 

    √∑     (     )
 
  

   

 (3.9) 

Where    and    represents expected value and standard deviation of glandular 

tissue voxels respectively. 

In addition, Fig. 3.23 shows the visual segmentation results on MRI slices of each of 

four ACR classes. Obviously, presented method succeeds in separating adipose and 

glandular tissues in MRI data for different breast characteristics 

  (a)          (b) 

Figure 3.21 : Smoothing the histogram by a moving average filter. 
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    (a)         (b) 

    (c)          (d) 

Figure 3.22 : Segmentation results on the histograms of the breast classified as different radiographic densities. 
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(1) 

(2) 

(3) 

(4) 

Figure 3.23 : Visual results of segmentation of the breast classified as 

different radiographic densities. 
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3.4 Electromagnetic Properties Mapping 

Electromagnetic properties of breast tissue can be assigned to the corresponding 

voxel intensities in an MRI data via a proper nonlinear mapping function. In previous 

section breast tissue is separated into two main tissues in MRI data according to the 

corresponding voxel intensities. Similarly, adipose and glandular tissues have 

different electromagnetic properties. Dielectric properties of the breast tissue are 

revealed with a significant heterogeneity in Wisconsin–Calgary studies [13], [14]. In 

those studies, breast tissue are categorized into three groups according to the portion 

of adipose content and the maximum and minimum dielectric values for the breast 

found during the measurements.  

Average values of relative permittivity (  ) and conductivity ( ) for tissue group 1 

(0-30% adipose content) group 2 (31-84% adipose content), and group 3 (85-100% 

adipose content), as well as the maximum and minimum bounds, are calculated using 

the single-pole Cole-Cole model given in Table 3.  

Table 3.3 : Parameters of single-pole Cole-Cole model for the five tissue groups. 

Media 

Electromagnetic Media Characteristics 

                       

maximum 1.000 66.31 1.370 7.585 0.063 

group 1 7.821 41.48 0.713 10.66 0.047 

group 2 5.573 34.57 0.524 9.149 0.095 

group 3 3.140 1.708 0.036 14.65 0.061 

minimum 2.293 0.141 0.002 16.40 0.251 

Each of five tissue group represented by     (maximum),   (group 1),   (group 2), 

  (group 3), and     (minimum), for   , and     (maximum),   (group 1), 

  (group 2),   (group 3),and      (minimum), for  . Intervals between each group 

and/or maximum and minimum values are considered as four different intervals of 

dielectric properties of the breast. Fig. 3.24 shows the frequency dependence of 

single-pole Cole-Cole model for   and   . Four intervals of dielectric properties 
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labeled as            , and            , correspond to the four sub-categories 

of the breast tissue.  

In MRI voxel intensity space, those four sub-categories are labeled with   ,   ,   ,and 

   . They are defined by five intensity boundaries defined by      ,    ,   ,    ,      

as depicted in Fig. 3.24. Minimum and maximum values of the dielectric properties 

are paired with      and     . Dielectric properties of group 1, group 2, and group 3 

 

(a) 

(b) 

Figure 3.24 : Frequency dependence of single-pole Cole-Cole model for   

and     
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are related with    ,    , and     , respectively. Five intensity boundaries are defined 

as below: 

            (3.10) 

    ∑     

 

   

 (3.11) 

    ∑      

 

   

 (3.12) 

     (3.13) 

            (3.14) 

where    and    are expected values and     and     are the standard deviations  of  

adipose and glandular tissue respectively. For a given histogram of an MRI data in 

Fig. 3.25, four voxel intensity intervals are depicted with the five boundary 

parameters, and the distributions of two main tissues are illustrated as a mixture of 

two Gaussians. Black curve represents the pdf of the voxel intensities in an MRI 

data. Dashed and dotted curves represent the glandular and adipose tissue 

distributions, respectively. For a specific operating frequency, if four intervals of 

electromagnetic properties are defined with five boundary points given as     ,   , 

  ,   , and     , for   , and     ,   ,   ,   ,and      , for  , then the intersections 

of those with eight MRI voxel intensity boundaries tell us how the mapping functions 

behave. For example, eight intersection points,  (    ,     ),  (   ,   ), (  ,   ), (   , 

  ), (    ,     ), can be linearly connected each other to define a piece-wise linear 

mapping function for   , considering the dielectric properties of each of four tissue 

types are linearly related with  MRI voxel intensity values on their own interval. 

Alternatively, a non-linear interaction can be defined between those intervals 

preserving a more versatile relationship. Monotone piecewise polynomial cubic 

Hermite interpolation is used to form a nonlinear mapping function passing through 

five intersection points for    and   [38]-[39]. Nonlinear mapping functions should 

assure the following features: 
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1) It should be a monotonically decreasing function: Because higher intensities refer 

to tissues rich in adipose content, there is an inverse proportion between the MRI 

intensities and the dielectric properties. Monotone piecewise polynomial cubic 

Hermite interpolation ensures that the mapping functions is strictly monotonic. 

2) It should cover the whole voxel intensity space in MRI data: Upper and lower 

bounds of mapping function in MRI voxel intensity axis is taken as     and      

respectively. For voxel intensities greater than      are mapped to the minimum 

dielectric values, while the voxel intensities smaller than      are mapped to the 

maximum dielectric values. 

An example of nonlinear mapping functions for both relative permittivity and 

conductivity are illustrated in Fig. 3.26. Each voxel in MRI data is mapped to 

appropriate electromagnetic properties through the non-linear mapping functions.  

3.5 Building the 3-D Structure of Numerical Model 

After mapping the electromagnetic properties to the MRI voxel intensities, slices in 

MRI data is linearly interpolated to form a proper volume. Interpolation process can 

be easily shown in coronal slices, which are depicted in Fig. 3.27. Normally, as 

mentioned before, MRI data consists of 40-45 axial slices which can also be shown 

as coronal slices by being stuck together as shown in (a). 

Figure 3.25 : Illustration of four voxel intensity intervals according to the 

distributions of two main tissues. 
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 Actually in   and   axes,MRI data consists of 300x300 voxels on average, but only 

40-45 voxels in y direction. Dimensions of the voxels were given as 0.369mm x 

0.369mm x 3mm in     and   dimensions respectively in Section 3.1 before. 

However, voxels are expected to be in cubic shape. Therefore, the interpolant  , 

                     

   

   

   
     

     

(a) 

   

   

   
     

     

                     

(b) 

Figure 3.26 : Illustration of nonlinear mapping functions for both relative 

permittivity and conductivity. 
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which is the parameter determining how the data is going to be stretched along   

dimension, is calculated below: 

  
 

     
     

(3.15) 

 

Linear interpolation produces the basis 3-D structure of numerical breast phantoms 

as illustrated in Fig. 3.28 (a). The basis structure is used to produce realistic breast 

shape for corresponding phantom. First, some additional slices that composed of 

entirely fat are added to the basic structure to maintain curvature of the breast surface 

as illustrated in (b).  

Figure 3.27 : Illustration of linear interpolation on a coronal slice. 

(a)          (b) 

    (a)                                  (b) 

Figure 3.28 : Representation of the basis structure and the additional slices. 
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The first and the last slices in the data is eroded by a rectangular binary structural 

element  . The length of   along    and   dimensions are called    and    

respectively. They are defined by the difference in size between the last two adjacent 

slices. As shown in Fig. 3.29 below,    is taken as the size difference along   axis 

between two representative adjacent slices labelled as "slice a" and "slice b". The 

difference along   axis between the bottom rows of two adjacent slices is represented 

by     and     from each side. Accordingly,    is calculated as the arithmetic mean 

of     and    . As a result of linear interpolation, the surface of the structure looks 

like stair steps. This phenomenon, which appears around the edges of the structure in 

the direction of interpolation, is called stair step artifact. Structural deficits caused by 

this artifact disrupt the surface of the phantom yielding an unrealistic structure. 

Therefore, these deficits must be removed from the model in order to achieve a 

realistic smooth breast surface.  

It must be stated here that, the skin is not imaged accurately by MRI, and its 

remnants must be also removed from the model for accurate distribution of the 

dielectric properties. Therefore, both the skin and the structural deficits must be 

removed from the model at the same time using a 3-D Gaussian filter. First, a 3-D 

binary mask is generated for the interpolated data to reveal the edges and the 

corruptions on the surface. Then a 3-D Gaussian filter is applied to the surface of the 

Figure 3.29 : Representation of the parameters used for generating the binary 

structural element. 
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binary mask. Smoothed 3-D binary mask is visualized in Fig. 3.30 below. It is seen 

that, a Gaussian filter with a kernel size of 10 mm and a variance of 15 mm is quite 

enough to eliminate the stair step artifact.  

 

Figure 3.30 : Visualization of smoothed 3-D binary mask. 

Smoothed mask is eroded to by 2.7 mm which is the maximum breast skin thickness 

given in [35]. Finally, interpolated data is masked with the smoothed and eroded 

binary mask to remove the stair step artifacts as well as the skin remnant. Fig. 3.31 

(a) shows a coronal slice of an interpolated breast MRI data with skin remnant and 

stair step artifact around the edges. As shown in (b), the stair step artifact and the 

skin are eliminated at the same time by masking operation. The breast surface is 

dilated and covered by an artificially produced 1.5mm thick skin layer as depicted in 

(c). 

Thickness of the skin layer is chosen to be the average value given in [35]. Whole 

structure is placed on an artificial chest model with a 1.5cm-thick subcutaneous fat 

followed by a 0.5cm thick muscle layer as depicted in Fig. 32. Dielectric properties 

of skin and muscle are obtained from the previous study reported Gabriel et al. [9].  
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fat and 
muscle 
layer 

Figure 3.32 : Representation of artificially produced chest model. 

  (a)                 (b) 

(c) 

Figure 3.31 : Illustration of the stair step artifact and the skin remnant 

elimination and artificially produced skin layer. 
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For a desired frequency, dielectric properties of skin and muscle are determined 

using the single-pole Debye dispersion parameters given in Table 4.  

Table 3.4 : Debye parameters for the dispersive materials used for the 

artificial muscle and skin layers. 

Media 

Electromagnetic Media Characteristics 

                     

muscle 4.00 50.00 1.370 7.23 

skin 4.00 37.00 1.10 7.23 

 

 

 

 

 



52 

 



53 

4.  RESULTS 

Realistic 3-D microwave breast phantoms with a broad variety were developed to be 

used in microwave breast cancer detection studies using T1-weighted 3-D MRI data 

of the patients in prone position. Each voxel intensity value in MRI data was mapped 

to the proper electromagnetic properties using the nonlinear mapping functions 

explained in Section II-D. For each numerical model, two different volume data (One 

for     and the other for  ) representing both the spatial information and 

electromagnetic properties were produced. Since there is not a general method for 

classifying the breast MRIs according to its density, a methodology is presented to 

classify the numerical breast phantoms into four ACR categories according to the 

adipose tissue percentage in MRI data. Based on the threshold value  , the 

proportion of adipose tissue   in the corresponding data is calculated as: 

  
       

   

      
 (4.1) 

Then the phantom is classified into one of the four ACR categories using the 

following rule: 

    {

                 
              
                
                  

 (4.2) 

In Fig. 4.1, examples for each of four ACR categories are given to show the 

effectiveness of the presented method. Axial cross sections of 3-D numerical breast 

phantoms belonging to four ACR categories are illustrated to show the distribution of 

dielectric properties. The first column depicts the filtered MRI slice, and the second 

and the third columns illustrate the relative permittivity and conductivity 

distributions respectively, for 6 GHz. In the first column, colour bars indicates the 

voxel intensity range and the other ones show the dielectric distribution ranges. 

Figures in each row illustrate the breasts of different ACR categories. In (a) and (b), 
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presented numerical phantoms are derived from the breasts of ACR I and II 

respectively. These types of breasts contain less glandular tissue than the breasts 

classified as ACR III and IV, so they look like more bluish according to the color 

range presented.  

On the other hand, axial slices of the microwave models derived from ACR III and 

IV type breasts illustrated in (c) and (d) respectively, look like in mixed colours of 

red and orange, because of their high glandular tissue contents. Also, artificial chest 

wall and the skin layer can be seen in all microwave models.  

    Filtered Slice           Distribution of        Distribution of   

 

   

   

   

(a) 

(b) 

(c) 

(d) 

   

Figure 4.1 : 3-D numerical breast phantoms belonging to four ACR 

categories with axial cross sections showing the distribution 

of dielectric properties. 
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Also in Fig. 4.2, some examples of 3-D microwave breast models for 6 GHz. derived 

from the breast MRIs of different ACR classes are visualized to show the realistic 

shapes of the models. Sagittal cross-sections show the relative permittivity 

distributions and the color bars next to the figures show the relative permittivity 

variation.  

ACR IV 
ACR III 

ACR II 

ACR I 

ACR III 

ACR I 

Figure 4.2 : Examples of 3-D microwave breast models belonging to different 

radiographic densities. 
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Any shape of tumor structures can be superimposed to the numerical phantoms for 

microwave breast cancer experiments. For a desired operating frequency, single pole 

Cole-Cole model can be used to calculate the dielectric properties of malignant 

tissue. Single pole Cole-Cole parameters for the malignant tissue are given in Table 

5. Corresponding parameters are obtained from the Wisconsin-Calgary study [14].  

Table 4.5 : Single-pole Cole-Cole model for the five dielectric property curves. 

Media 

Electromagnetic Media Characteristics 

                       

tumor 6.749 50.09 0.794 10.5 0.051 

Finally, the performance tests show that the proposed method can produce a phantom 

with 0.369 mm3 voxels in 5 to 15 minutes based on the breast size, on a 2.2 GHz 

Quad-Core system in MATLAB. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

In this study, realistic 3-D microwave breast models for microwave breast cancer 

detection and treatment studies were developed with a broad variety using T1-

weighted MRI data of the patients in prone position. A general methodology which 

can be successfully applied any types of breast belonging to four ACR categories 

was presented. Each voxel intensity value in MRI data was mapped to the proper 

electromagnetic properties. Three main stages of numerical microwave phantom 

development process, presented in the literature, were re-arranged and enhanced to 

produce a better methodology. 

First, an effective noise reduction technique which is based on estimating the bias 

field in breast MRI slices was presented. By this way, disorder of the intensity values 

belonging to glandular and adipose tissues are corrected. It was seen that, removing 

the bias field form the data, enhances the distribution of the voxel intensities, so that 

the natural shape of the histogram-mixture of two Gaussian curves- are revealed 

which is important for segmentation.  

Second, an effective histogram based segmentation method for T1-weighted breast 

MRIs of different ACR classes was proposed for development of microwave breast 

phantoms. With the given segmentation method, development of microwave breast 

models was transformed into an autonomous process. Human dependency of the 

previous methods were substantially eliminated allowing to easily develop numerous 

numerical breast phantoms with various types for such studies in which plenty of 

different phantoms are required, such as neural networks algorithms. 

Additionally, in contrast to uniform, piecewise linear and bimodal mapping methods, 

which were presented in previous studies, a non-linear mapping technique which 

assume a nonlinear transition between different tissues is presented for the first time.  

With the presented method in this study, 3-D microwave breast models with various 

types and shapes can be developed for breast cancer detection and therapy studies for 
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desired microwave frequencies. For different wavelengths, (so as the different grid 

sizes) microwave breast models can be linearly interpolated to increase or decrease 

the grid size. However, if the required grid size is greater than the MRI voxel size, 

then, interpolating the MRI data to the required grid size at the beginning would 

significantly reduce the process time. On the other hand, if the required grid size is 

smaller than the MRI voxel size, than leaving the interpolation process at the end 

would be a better approach.  
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