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HOPF BIFURCATIONS IN A POWER SYSTEM SUSCEPTIBLE TO 
SUBSYNCHRONOUS RESONANCE AND A NOVEL CONTROLLER FOR 
DAMPING TORSIONAL OSCILLATIONS 

SUMMARY 

In this study, bifurcation theory is employed for the analysis of torsional oscillations 
in a power system, which consists of a synchronous generator connected to an 
infinite busbar through two parallel transmission lines, one of which is equipped with 
a series compensation capacitor. The first system of the IEEE Second Benchmark 
Model for Subsynchronous Resonance studies has been used. Damper windings of 
the synchronous generator are included in the nonlinear model.  

Synchronous generators connected to transmission lines with series capacitor 
compensation are potentially subject to the interaction between the subsynchronous 
electrical mode and torsional oscillation modes of the turbine generator shaft system. 
This phenomenon is called Subsynchronous Resonance (SSR). Hopf bifurcation 
occurs at certain values of the series compensation factor. Instead of employing the 
Floquet multipliers method reported in the literature, the first Lyapunov coefficients 
are computed analytically to determine the type of Hopf bifurcation (subcritical or 
supercritical) existing in the power system under study. The impact of mechanical 
torque input, network voltage level and field voltage on the Hopf bifurcation point 
and the first Lyapunov coefficient is also explored.  

Moreover, an automatic voltage regulator (AVR) is included into the model. It is 
shown that subcritical Hopf bifurcations in the model without AVR changes to 
supercritical Hopf bifurcation if the AVR is added to the model.  

In addition, a novel controller based on the delayed feedback control theory has been 
developed for damping the unstable torsional oscillations caused by SSR. The 
proposed Time Delay Auto-Synchronization controller has two set parameters to be 
tuned and uses the state variable synchronous generator rotor angular speed as the 
only input. The optimal values of the controller time delay and gain parameters have 
been determined by computing a performance index evaluating the dynamic 
responses in time domain. The effectiveness of the proposed controller is 
demonstrated via time-domain simulations in MATLAB-Simulink.  

Finally, the impact of AVR and TDAS controller limiters on the damping 
performance is also investigated. It is demonstrated that the controller is effective 
even in the presence of limiters within the practical operating ranges of series 
capacitor compensation. 
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SENKRONALTI REZONANSA DUYARLI BİR GÜÇ SİSTEMİNDE HOPF 
ÇATALLANMALARI VE BURULMA SALINIMLARININ 
SÖNÜMLENDİRİLMESİ İÇİN YENİ BİR KONTROLÖR 

ÖZET 

Bu çalışmada, bir elektrik güç sistemindeki burulma salınımlarının analizi için 
çatallanma teorisinden yararlanılmıştır. Modellenen elektrik güç sistemi, birinde seri 
kapasitör kompanzasyonu bulunan iki paralel iletim hattı üzerinden sonsuz baraya 
bağlı bir senkron makine içermektedir. Senkronaltı rezonans araştırmaları için 
geliştirilen IEEE İkinci Gösterge Modelinin birinci sistemi kullanılmıştır. Senkron 
makinenin amortisör sargıları doğrusal olmayan modele dahil edilmiştir.  

Seri kompanzasyon kapasitör tesis edilmiş olan iletim hatlarına bağlı senkron 
makineler, potansiyel olarak senkronaltı elektrik modunun, türbin-generatör şaft 
sisteminin burulma salınım modları ile etkileşimine maruz kalabilirler. Bu olay 
senkronaltı rezonans (SSR) olarak isimlendirilir. Belirli seri kompanzasyon 
değerlerinde Hopf çatallanması meydana gelir. Modellenen elektrik güç sisteminde 
meydana gelen Hopf çatallanmalarının hangi tip olduğu (kritik-altı veya kritik-üstü), 
literatürde yaygın biçimde kullanılan Floquet çarpanları yöntemi yerine, birinci 
Lyapunov katsayılarının analitik olarak hesaplanması ile  belirlenmiştir. Mekanik 
tork değeri, şebeke gerilim seviyesi ve uyartı geriliminin Hopf çatallanma noktaları 
ile birinci Lyapunov katsayısının değeri üzerindeki etkileri araştırılmıştır.  

Ek olarak, Otomatik Gerilim Düzenleyicisinin (AVR) Hopf çatallanması üzerindeki 
etkisi de incelenmiş ve AVR içermeyen modelde kritik-altı olan Hopf 
çatallanmasının, AVR ilave edildiği zaman kritik-üstü Hopf çatallanmasına 
dönüştüğü gösterilmiştir.  

Ayrıca, SSR sonucu ortaya çıkan kararsız burulma salınımlarını sönümlendirmek 
için, zaman gecikmeli geri besleme teorisine dayanan bir kontrolör tasarlanmıştır. 
Önerilen Zaman Gecikmeli Otosenkronizasyon Kontrolörünün iki adet ayar değeri 
mevcuttur ve girdi olarak kullandığı tek durum değişkeni, senkron makine rotorunun 
açısal hızıdır. Kontrolörün zaman gecikme ve kazanç parametreleri için uygun 
değerler, sistemin dinamik cevabını değerlendiren bir performans endeksi 
hesaplanarak belirlenmiştir. Önerilen kontrolörün ektili sonuçlar verdiği, MATLAB-
Simulink kullanılarak gerçekleştirilen simülasyonlar ile gösterilmiştir.  

Son olarak, AVR ve kontrolör çıkış sınırlayıcılarının sönümlendirme performansı 
üzerindeki etkileri de araştırılmış ve seri kapasitör kompanzasyonun pratik değerleri 
için, sınırlayıcıların mevcut olduğu durumda da kontrolörün etkili olduğu 
gösterilmiştir. 
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1. INTRODUCTION 

Series capacitor compensation of AC transmission lines is an effective way of 

increasing load carrying capacity and enhancing transient stability in electric power 

systems [1]. However, potential danger of interaction between torsional oscillation 

modes of the turbine generator shaft system and the subsynchronous electrical mode 

may arise in electric power systems consisting of turbine-generators connected to 

transmission lines with series compensation capacitors. This phenomenon is called 

Subsynchronous Resonance (SSR). Unless adequate measures are implemented, SSR 

can lead to turbine-generator shaft failures as occurred at the Mohave Power Plant in 

Southern Nevada in the USA in 1970 [2].  

1.1 Statement of the Problem 

The SSR condition due to the interaction between the electrical subsynchronous 

mode and turbine-generator torsional modes occurs through a Hopf bifurcation. The 

determination of the type of Hopf bifurcation (i.e. subcritical or supercritical) is 

important to identify the stability of limit cycles arising out of the Hopf bifurcation. 

The rigorous method of computing the first Lyapunov coefficient is well suited for 

this task because of the analytic techniques involved in the process. Moreover, the 

impact of Automatic Voltage Regulator and dynamic parameters on the first 

Lyapunov coefficient, thereby on the stability of limit cycles is an area requiring 

further research.  

Furthermore, it is crucial to mitigate the risk of a catastrophic failure of turbine-

generator shafts due to SSR. In recent years, the delayed feedback control theory has 

been widely applied to improve damping in dynamic systems. The development of a 

delayed feedback controller for damping the torsional oscillations caused by SSR can 

bring substantial benefits including the further utilization of series capacitor 

compensation and mitigating the fatigue deformation on turbine-generator shafts due 

to torsional oscillations.  
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1.2 Objectives of the Dissertation 

In this dissertation, the first system of the IEEE SBM for SSR studies is used to 

analyze Hopf bifurcations occurring in a power system experiencing SSR. The 

single-machine-infinite-busbar (SMIB) power system, which consists of a 

synchronous generator connected to an infinite busbar through two parallel 

transmission lines, one of which is equipped with an adjustable series capacitor, is 

modeled using autonomous ordinary differential equations. The inherently nonlinear 

model representing the dynamics of the turbine-generator shaft system and network 

components is analyzed by employing the bifurcation theory. The oscillation modes 

and their stability at various operating conditions are studied taking the series 

compensation factor as the bifurcation parameter. The interaction between the 

subsynchronous electrical mode and the torsional modes of the turbine-generator 

mechanical system and the resulting effect on the stability are also investigated. 

The existence of Hopf bifurcations in the SMIB power system under study is 

verified. The first Lyapunov coefficient is computed analytically to determine the 

type of Hopf bifurcation (i.e. supercritical or subcritical) through which the system 

stability of equilibrium is lost. The impacts of the mechanical torque input, field 

voltage, network voltage and the automatic voltage regulator (AVR) on the first 

Lyapunov coefficient thereby on the characteristic of Hopf bifurcation are studied 

separately. Time domain simulations are used to validate the analytic findings. 

Transition from subcritical Hopf bifurcation to supercritical Hopf bifurcation is also 

explored. 

In addition, a novel controller based on the Delayed Feedback Control theory has 

been developed for damping the unstable torsional oscillations due to the SSR. With 

only two parameters to be optimally set, the proposed Time Delay Auto- 

Synchronization (TDAS) controller requires the measurement of the synchronous 

generator rotor angular speed, an easily accessible state variable. The TDAS 

controller output is then combined into the automatic voltage regulator (AVR) as the 

stabilizing signal. Time domain simulations in MATLAB-Simulink demonstrate that 

the proposed TDAS controller is very effective for damping the unstable 

subsynchronous oscillations.  
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Determining the optimum set values for time delay and gain parameters of the TDAS 

controller involves evaluation of time domain simulations at various operating 

conditions in the absence of a practical method for this purpose. This is mainly 

because of the fact that the analysis of delay-differential systems is extremely 

complex. Moreover, it is found that the controller effectiveness is not reduced with 

the inclusion of AVR limiters in the range of practical operational levels of series 

capacitor compensation.  

1.3 Literature Review 

Following the shaft failure incidents at the Mohave Power Plant in 1970, 

considerable effort by researchers and industry professionals has been devoted to the 

analysis of SSR phenomenon. Walker et al. [3] found that torsional fatigue caused 

the shaft failures at Mohave. Farmer et al. [4] identified three types of SSR: 

induction generator effect, torsional interaction effect, and transient torque effect.  

The induction generator effect (IGE) occurs as a result of self excitation of the 

synchronous generators when the resistance of the rotor circuits to the 

subsynchronous current, viewed from the armature terminal, is negative [5]. If this 

negative resistance of the generator is greater in magnitude than the positive 

resistance of the network at the natural frequencies, then the electrical system 

becomes self-excited. 

Oscillations of the generator rotor speed at natural frequencies of the torsional modes 

result in the modulation of the generator terminal voltage. The torsional interaction 

effect (TIE) occurs if the frequency of the produced voltage component is close to 

one of natural frequencies of the electric network. The resulting armature currents 

produce a magnetic field which is phased to produce a torque which reinforces the 

aforementioned generator rotor oscillations [6]. Turbine-generator shaft damage can 

occur due to severe torque amplification.  

Contrary to IGE and TIE, the transient torque effect (TTE) is not self-excited. 

Following a significant system disturbance, natural modes of the turbine-generator 

shaft system are excited, subjecting shaft segments to torsional stresses [7] which can 

cause catastrophic shaft damage.     
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IEEE SSR Working Group has constructed three benchmark models for computer 

simulation of the SSR [8, 9]. Analytical tools for studying the SSR involve frequency 

scanning technique [10, 11], eigenvalue technique [12-13], the complex torque 

coefficient method [14, 15] and time domain simulation programs [16-18]. The first 

three techniques are linear and the fourth one is nonlinear. 

In the frequency scanning method, the equivalent resistance and reactance looking 

into the network from a point behind the stator winding of a generator are computed 

as a function of frequency. The eigenvalue technique provides both the oscillation 

frequencies and the damping values for each frequency using the linearized system 

of differential equations representing the electric power system. The eigenvalue 

method is very useful in the analysis of small systems. On the other hand, it is 

difficult to apply in large power systems. In the complex torque coefficient method, 

transfer function of the mechanical system is obtained using the linearized equations 

of the multi-mass shaft system of a turbine generator. Then the resulting mechanical 

transfer function is combined with the electrical transfer function, which represent 

the effect of damping and synchronizing torques in order to identify torsional modes 

and evaluate their stabilities.   

Time domain simulation programs are used to avoid the disadvantages associated 

with the linearization of the ordinary differential equations. Numerically integrating 

the set of nonlinear ODEs representing a dynamic system, time domain simulation 

programs enable detailed and accurate modeling and therefore are extremely useful 

for the analysis of SSR problems. Among widely used ones are Electromagnetic 

Transient Program (EMTP) and MATLAB-Simulink. Exponential growth observed 

in the linearized methods does not occur in the nonlinear analysis performed using 

the time domain simulation programs.  

SSR countermeasures and mitigation techniques have been an active area of research 

over decades. Hingorani [19] developed the NGH SSR damping scheme which 

consists of a linear resistor and an anti-parallel thyristor combination across a series 

compensation capacitor segment with measuring equipment and appropriate controls.  

Zhao and Chen [20] proposed an improved NGH SSR damping scheme, adding SSR 

detection and pre-firing functions to the original NGH scheme. The use of static 

synchronous compensator (STATCOM), a flexible AC transmission system (FACT) 
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device, for damping of subsynchronous oscillations was analyzed in [21-22]. 

Damping of torsional oscillations using excitation controllers and static VAR 

compensators was studied in [23-24] and [25], respectively. Wang and Tseng [26] 

proposed a damping scheme utilizing a superconducting magnetic storage (SMES) 

unit to stabilize torsional oscillations. Wang [27] studied the first system of the IEEE 

Second Benchmark Model by employing the modal control theory. Linear and 

nonlinear state feedback controllers are proposed in [28] to control the bifurcation in 

a power system susceptible to SSR. 

Hopf bifurcation is defined as the birth of a limit cycle from equilibrium in a 

nonlinear dynamical system governed by autonomous ODEs under variation of one 

or more parameters on which the system is dependent. Hopf bifurcations associated 

with the voltage stability in power systems were widely investigated by researchers 

[29-34]. In the SSR area, Zhu et al. [35] demonstrated the existence of Hopf 

bifurcations in a SMIB experiencing SSR and reported a limited oscillation behavior 

at the Hopf bifurcation point. Iravani et al. [36] investigated Hopf bifurcation 

phenomenon of the torsional dynamics. Harb [37] employed the bifurcation theory to 

investigate the complex dynamics of SSR. The effect of the machine saturation on 

SSR was also studied by Harb et al [38]. 

Floquet theory is widely used to study the stability of limit cycles. The procedure 

involves the calculation of steady-state solutions, Hopf bifurcation points and the 

branches of periodic orbits which emanate from the Hopf bifurcation points [32].  

Then by tracing the evolution of the Floquet multipliers, one can observe the stability 

of these solutions. One of the multipliers is always unity for an autonomous system. 

If all the other multipliers are inside the unit circle in the complex plane, then the 

limit cycle is orbitally stable. A multiplier crossing the unit circle is called a critical 

multiplier. If only one multiplier crosses the unit circle along the positive real axis 

then cyclic fold occurs. Period doubling, on the other hand, occurs when the critical 

multiplier leaves the unit circle along the negative real axis. Only one pair of 

complex conjugate multipliers crossing the unit circle indicates occurrence of a torus 

bifurcation [39].  

Another method to analyze Hopf bifurcations is to compute the first and second 

Lyapunov coefficients [40]. Negative sign of the first Lyapunov coefficient 
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corresponds to the occurrence of supercritical Hopf bifurcations through which an 

orbitally stable limit cycle is born, whilst the first Lyapunov coefficient with positive 

sign implies that a subcritical Hopf bifurcation occurs and an unstable limit cycle 

bifurcates from equilibrium after loss of stability. If the first Lyapunov coefficient 

vanishes with a nonzero second Lyapunov coefficient, then generalized Hopf 

bifurcation occurs [41]. Kucukefe and Kaypmaz [42] investigated the Hopf 

bifurcations occurring in the first system of the IEEE Second Benchmark Model for 

SSR studies by computing the first Lyapunov coefficient.  

In this dissertation, the emphasis is given to determining the type of Hopf bifurcation 

by computing the first Lyapunov coefficient. Moreover, the impact of the operating 

parameters other than the series compensation level on the first Lyapunov 

coefficient, thereby on the type of Hopf bifurcation, has been investigated. From this 

point of view, the dissertation differs from the studies of Zhu [35], who verified the 

occurrence of SSR on the Boardman generator model, and Harb [37], who studied 

the bifurcations depending on the variations in the series compensation level and also 

determined the amplitudes of the limit cycles emanating from the Hopf bifurcation 

on the Boardman and CHOLLA#4 generator models. Furthermore, both Zhu and 

Harb employed the Floquet multipliers method to determine the type of Hopf 

bifurcation. 

Delayed feedback control [43] is a simple and efficient method to stabilize both 

unstable periodic orbits (UPO) embedded in the strange attractors of chaotic systems 

[44] and unstable steady states [45]. Also known as Time Delay Auto-

Synchronization (TDAS), this control scheme makes use of the current state of a 

system and its state τ-time unit in the past to generate a control signal. In the case 

with UPOs, the most efficient control performance of TDAS scheme can be obtained 

if time delay (τ) corresponds to an integer multiple of the minimal period of the 

unstable orbit. The method works best if τ is set a value related to intrinsic 

characteristic time scale given by the imaginary part of the system’s eigenvalue in 

the case of unstable steady states [46]. Successful implementations of TDAS 

algorithm are reported in diverse experimental systems including mechanical 

pendulums [47], chemical systems [48], helicopter rotor blades [49], a cardiac 

system [50], trajectory tracking [51], and absorption of mechanical vibrations [52]. 
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1.4 Outline of the Dissertation  

The dissertation is organized as follows. Chapter 2 gives a review of the bifurcation 

theory and describes the procedures for computing the Lyapunov coefficients. In 

Chapter 3, the first system of the IEEE SBM is described and its complete nonlinear 

model is obtained. Furthermore, bifurcation analysis of the nonlinear model is 

performed and the occurrence of Hopf bifurcations is verified. The first Lyapunov 

coefficients are computed to determine the type of Hopf bifurcations. The AVR is 

included into the model in Chapter 4 and its effect on the Hopf bifurcations is 

investigated. Chapter 5 introduces the novel controller based on the Delayed 

Feedback Control theory to stabilize the unstable torsional oscillations. Optimization 

performance index to determine the optimal values of the controller is also described. 

In Chapter 6, the effect of AVR and TDAS controller limiters is investigated. 
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2. REVIEW OF BIFURCATION THEORY 

Bifurcation theory deals with qualitative changes in dynamical systems. As a 

matured branch of mathematics, the theory offers useful tools in the analysis of 

dynamical systems, particularly nonlinear ones. By definition, a nonlinear system is a 

system which does not satisfy the superposition principle. The most common way to 

define a continuous-time nonlinear dynamical system is to represent the system in 

the form of autonomous ordinary differential equations (ODEs). Consider a 

continuous-time nonlinear system depending on a parameter vector. 

ሶݔ ൌ ݂ሺݔ, ݔ   ,ሻߙ א Թ௡,   ߙ א Թ௠                   (2.1) 

where ݂ is smooth with respect to ݔ and ߙ. If varying the parameter vector ߙ results 

in qualitative changes in the system dynamic behavior in a way that different 

behaviors (aperiodic, periodic, chaotic, etc.) and stability conditions are introduced, 

these changes are called bifurcations and the parameter vector values at which the 

changes occur are called bifurcation (critical) values. 

2.1 Stability of Equilibrium Solutions 

Suppose that nonlinear dynamical system (2.1) has an equilibrium at ݔ଴ 

(i.e. ݂ሺݔ଴, ଴ሻߙ ൌ 0) and J denotes the Jacobian matrix of ݂ሺݔሻ evaluated at the 

equilibrium. The Jacobian matrix is defined as follows: 

J ൌ

ۏ
ێ
ێ
ۍ
డ௙భ
డ௫భ

ڮ డ௙భ
డ௫೙

ڭ ڰ ڭ
డ௙భ
డ௫೙

ڮ డ௙೙
డ௫೙ے

ۑ
ۑ
ې
               (2.2) 

The eigenvalues of J provides information about the local stability of the equilibrium 

solution. If all the eigenvalues λ1,λ2,…,λn of J satisfy Re(λi)<0 for i=1,2,..,n, then the 

system ݂ሺݔ଴,   .଴ሻ is asymptotically stableߙ
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2.2 Bifurcation Mechanisms 

There are different types of bifurcations. Among the most important ones are fold 

bifurcation, pitchfork bifurcation, transcritical bifurcation, period doubling and Hopf 

bifurcation [53]. Fold bifurcations are associated with dynamic systems which have 

Jacobian matrix with a single zero eigenvalue while all the other eigenvalues remain 

in the left half plane. This type of bifurcation has also other names such as saddle-

node bifurcation and turning point. Transcritical bifurcation is characterized by the 

intersection of two bifurcation curves. Pitchfork bifurcations often occur in systems 

with some symmetry, as a manifestation of symmetry braking. Period doubling 

bifurcation, as its name implies, is a bifurcation in which the dynamic system 

switches to a new behavior with twice the period of the previous system. The 

bifurcation corresponding to the presence of distinct pair of purely imaginary 

eigenvalues (λ1,2 =±i߱0, ߱0>0) of the Jacobian matrix ௫݂ሺݔ଴,  ଴ሻ is called a Hopf (orߙ

Andronov-Hopf) bifurcation. A Hopf point is called transversal if the real part of the 

parameter dependent complex eigenvalues creating the Hopf bifurcation condition 

has non-zero derivative with respect to the bifurcation parameter (i.e. 

d(Re(λ(ߙ))/dߙ ് 0 at 0ߙ=ߙ). Transversality condition is usually met. 

2.3 Hopf Bifurcation 

Hopf bifurcation is the birth of limit cycles from equilibrium in dynamical systems 

generated by ODEs, when the equilibrium changes stability via a purely imaginary 

eigenvalues [54]. Limit cycles are periodic orbits that represent regular motions in a 

dynamical system. Hopf bifurcations generate limit cycles from equilibrium. 

Supercritical Hopf bifurcation results in a stable limit cycle and exists after the 

bifurcation point, whereas an unstable limit cycle emanates from subcritical Hopf 

bifurcation and is present before the critical value. In both cases, loss of stability of 

the equilibrium occurs. 

Floquet theory is widely employed in order to study the stability of limit cycles. 

Floquet multipliers give information about the stability of a limit cycle. One 

multiplier is always unity. A periodic orbit (i.e. limit cycle) is stable if the remaining 

Floquet multipliers are smaller than unity in modulus. If all the other multipliers are 

inside the unit circle in the complex plane, then the limit cycle is orbitally stable.  A 
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multiplier crossing the unit circle is called a critical multiplier. If only one multiplier 

crosses the unit circle along the positive real axis then cyclic fold occurs. Period 

doubling, on the other hand, occurs when the critical multiplier leaves the unit circle 

along the negative real axis. Only one pair of complex conjugate multipliers crossing 

the unit circle indicates occurrence of a torus bifurcation. The Floquet multipliers are 

the eigenvalues of the monodromy matrix. Various algorithms for calculating the 

monodromy matrix can be found in [54].  

In this dissertation, we compute the first Lyapunov coefficient instead of obtaining 

the Floquet multipliers in order to study the stability of limit cycles in a SMIB power 

system susceptible to SSR. The type of Hopf bifurcation (i.e. Supercritical or 

subcritical) is determined by computing the first Lyapunov coefficient at Hopf 

bifurcation point. The first Lyapunov coefficient is negative if a supercritical Hopf 

bifurcation occurs. On the other hand, positive sign of the first Lyapunov coefficient 

corresponds to the occurrence of a subcritical Hopf bifurcation [40]. 

2.3.1 Subcritical Hopf Bifurcation 

A subcritical Hopf bifurcation occurs when a stable equilibrium point and an 

unstable limit cycle coalesce [55]. Consider the following nonlinear system of two 

differential equations depending on one parameter [40]: 

ሶଵݕ ൌ ଵݕߚ െ ଶݕ ൅ ଵଶݕଵሺݕ ൅  ଶଶሻݕ

ሶଶݕ ൌ ଵݕ ൅ ଶݕߚ ൅ ଵଶݕଶሺݕ ൅  ଶଶሻ                 (2.3)ݕ

Fig. 2.1 depicts the subcritical Hopf bifurcation occurring in the nonlinear system. 

 

Figure 2.1 : Subcritical Hopf Bifurcation 
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The system (2.3) is stable for 0 > ߚ and unstable for 0 < ߚ. The loss of stability of the 

equilibrium occurs at 0=ߚ through Hopf bifurcation. The first Lyapunov coefficient 

for the system (2.3) has a positive sign (l1(0) =2.0), indicating that the Hopf 

bifurcation is subcritical. Therefore, there exists an unstable limit cycle.  

The region of attraction of the equilibrium point is bounded by the unstable cycle, 

which shrinks as the control parameter approaches it critical value and disappears. 

Thus, the system is pushed out from a neighborhood of the equilibrium, giving a 

sharp or catastrophic loss of stability. In this case, resetting the control parameter to a 

negative value may not result in stable equilibrium since it may have left its stability 

of attraction.  

2.3.2 Supercritical Hopf Bifurcation 

The supercritical Hopf bifurcation corresponds to the coalescing of an unstable 

equilibrium point and a stable limit cycle [55].  

As an example, consider the following system with two dimensions depending on 

one parameter [40]: 

ሶଵݕ ൌ ଵݕߚ െ ଶݕ ൅ ଵଶݕଵሺݕ ൅  ଶଶሻݕ

ሶଶݕ ൌ ଵݕ ൅ ଶݕߚ ൅ ଵଶݕଶሺݕ ൅  ଶଶሻ                 (2.4)ݕ

The loss of stability of equilibrium occurs at 0=ߚ through a Hopf bifurcation. 

Contrary to (2.3), there is a stable limit cycle. All orbits starting inside or outside the 

cycle for 0 < ߚ tend to the cycle as t ՜ +∞. The first Lyapunov coefficient has a 

negative sign (l1(0) =-2.0),  revealing that the Hopf bifurcation is supercritical. 

 

Figure 2.2 : Supercritical Hopf bifurcation 
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2.4 Center Manifold Theorem 

Center Manifold Theorem allows reducing the dimension of multidimensional 

systems near a local bifurcation. The center manifold is an invariant manifold of the 

differential equations which is tangent at the equilibrium point to the eigenspace of 

the neutrally stable eigenvalues [56]. The complicated asymptotic behavior is 

isolated by locating an invariant manifold tangent to the subspace spanned by the 

eigenspace of eigenvalues on the imaginary axis. 

The analysis of bifurcations of equilibria and fixed points in multidimensional 

systems reduces to that for the differential equations restricted to the invariant  ఈܹ
௖. 

Since these bifurcations are determined by the normal form coefficients of the 

restricted systems at the critical parameter value ߙ଴, one is able to compute the 

center manifold ܹ௖= ఈܹబ
௖  and ODEs restricted to this manifold up to sufficiently 

high-order terms. 

2.5 Lyapunov Coefficients 

This section presents methods to compute the Lyapunov coefficients found in [39]. 

Unknown coefficients of the Taylor expansion of a function representing the center 

manifold ܹ௖can be computed either by a recursive procedure or a projection 

method. The former involves solving a linear system of algebraic equations at each 

step whilst the latter uses eigenvectors corresponding to the critical eigenvalues of J 

and to “project” the system into the critical eigenspace and its complement. The 

projection procedure is based on the Fredholm Alternative Theorem and avoids the 

transformation of the system into its eigenbasis. 

Suppose the system (2.1) has the form 

ሶݔ ൌ J ݔ ൅ F (ݔ), ,   ݔ א Թ௡                  (2.5) 

where F (ݔ) = ܱሺ||ݔ||ଶሻ is a smooth function. We write its Taylor expansion near 

ݔ ൌ 0 as  

ሻݔሺܨ ൌ
1
ܤ2

ሺݔ, ሻݔ ൅
1
ܥ6

ሺݔ, ,ݔ ሻݔ ൅
1
ܦ24

ሺݔ, ,ݔ ,ݔ ሻݔ ൅
1
ܧ120

ሺݔ, ,ݔ ,ݔ ,ݔ ሻݔ ൅ ܱሺ||6||ݔሻ 

        (2.6) 
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where ܦ ,ܥ ,ܤ and ܧ are multilinear vector functions. In coordinates, we have 

,ݔ௜ሺܤ ሻݕ ൌ ෍
߲ଶ ௜݂ሺߦ, ଴ሻߙ
௞ߦ௝߲ߦ߲

|కୀ଴ ݔ௝ݕ௞                                                                              (2.7)
௡

௝,௞ୀଵ

 

,ݔ௜ሺܥ ,ݕ ሻݖ ൌ ෍
߲ଷ ௜݂ሺߦ, ଴ሻߙ
௟ߦ௞߲ߦ௝߲ߦ߲

|కୀ଴ ݔ௝ݕ௞ݖ௟      
௡

௝,௞,௟ୀଵ

                                                              (2.8) 

,ݔ௜ሺܦ ,ݕ ,ݖ ሻݑ ൌ ෍
߲ସ ௜݂ሺߦ, ଴ሻߙ

௠ߦ௟߲ߦ௞߲ߦ௝߲ߦ߲
|కୀ଴ ݔ௝ݕ௞ݖ௟ݑ௠      

௡

௝,௞,௟,௠ୀଵ

                                         (2.9) 

,ݔ௜ሺܧ ,ݕ ,ݖ ,ݑ ሻݒ ൌ ෍
߲ହ ௜݂ሺߦ, ଴ሻߙ

௣ߦ௠ߦ௟߲ߦ௞߲ߦ௝߲ߦ߲
|కୀ଴ ݔ௝ݕ௞ݖ௟ݑ௠ݒ௣      

௡

௝,௞,௟,௠,௣ୀଵ

                       (2.10) 

for i=1,2, .., n. 

In case of a Hopf bifurcation, the Jacobian matrix J has a simple pair of complex 

eigenvalues on the imaginary axis, λ1,2 =±i߱0, ߱0>0, and these eigenvalues are the 

only eigenvalues with Re(λ) = 0. Let ݍ א  ௡ be a complex eigenvectorܥ

corresponding to λ1: 

Jݍ ൌ ݅߱଴ݍ,  Jݍത ൌ െ݅߱଴ݍത                                                (2.11) 

Introduce also the adjoint eigenvector ݌ א  :௡ having the propertiesܥ

JT݌ ൌ ݅߱଴݌,  JT݌ҧ ൌ െ݅߱଴݌ҧ                                           (2.12) 

The procedure for obtaining  ݍ and ݌ complex eigenvectors is given in Appendix-A. 

2.5.1 The First Lyapunov Coefficient 

After normalization of (2.9) and (2.10) according to ݌ۃ, ۄݍ ൌ 1, where ݌ۃ, ۄݍ ൌ

∑ ௜௡ݍҧ௜݌
௜ୀଵ  is the standard scalar product in ܥ௡, the following invariant expression 

gives the first Lyapunov coefficient, l1(0): 

 l1(0) ൌ
1
2߱଴

ܴ݁ሾ݌ۃ, ,ݍ)ܥ ,ݍ ,ݍ)ܤۃ2-ۄ(തݍ J-1ܤሺݍ, ۄ((തݍ ൅ ,݌ۃ ,ݍ)ܤଵି(୬-Jܫ2݅߱଴),തݍ)ܤ  ሿۄ((ݍ

                     (2.13) 
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Whether a Hopf bifurcation is supercritical or subcritical can be found from the sign 

of the first Lyapunov coefficient. Negative sign of l1(0) indicates a supercritical Hopf 

bifurcation and positive l1(0) corresponds to a subcritical Hopf bifurcation. A Hopf 

bifurcation of codimension 2 is a Hopf point where l1(0) vanishes, provided that the 

second Lyapunov coefficient is nonzero [57]. 

2.5.2 The Second Lyapunov Coefficient 

After normalization of (2.9) and (2.10) according to ݌ۃ, ۄݍ ൌ 1, the procedure for 

deriving the expression for the second Lyapunov coefficient is as follows: 

 l2(0)  = 
1

12߱଴
ܴ݁ሾ݌ۃ, ,ݍ)ܧ ,ݍ ,ݍ ,തݍ ,ݍ)ܦ+(തݍ ,ݍ ,ݍ ത݄ଶ଴)+3ݍ)ܦ, ,തݍ ,തݍ ݄ଶ଴)+6ݍ)ܦ, ,ݍ ,തݍ ݄ଵଵ)  

,തݍ)ܥ+  ,തݍ ݄ଷ଴)+3ݍ)ܥ, ,ݍ ത݄ଶଵ)+6ݍ)ܥ, ,തݍ ݄ଶଵ)+3ݍ)ܥ, ത݄ଶ଴, ݄ଶ଴)+6ݍ)ܥ, ݄ଵଵ, ݄ଵଵ)   

,തݍ)ܥ6+  ݄ଶ଴, ݄ଵଵ)+2ݍ)ܤത, ݄ଷଵ)+3ݍ)ܤ, ݄ଶଶ)+ܤ( ത݄ଶ଴, ݄ଷ଴)  

)ܤ3+  ത݄ଶଵ, ݄ଶ଴)+6ܤ(݄ଵଵ, ݄ଶଵ)ۄሿ                                                                             (2.14) 

where 

 ݄ଶ଴ ൌ (2݅߱଴ܫ୬-J)ିଵݍ)ܤ,  (2.15)                                                                                   (ݍ

 ݄ଵଵ ൌ -J-1ܤሺݍ,  ത)                                                                                                   (2.16)ݍ

݄ଷ଴ = (3݅߱଴ܫ୬-J)ିଵ[ݍ)ܥ, ,ݍ ,ݍ)ܤ3+(ݍ ݄ଶ଴)]                                                 (2.17) 

݄ଶଵ = (݅߱଴ܫ୬-J)ିଵ[ݍ)ܥ, ,ݍ ,തݍ)ܤ+(തݍ ݄ଶ଴)+2ݍ)ܤ, ݄ଵଵ)‐2ܿଵ(2.18)                         [ݍ 

ܿଵ ൌ
1
2
,݌ۃ ,ݍ)ܥ ,ݍ ,ݍ)ܤۃ2-ۄ(തݍ J-1ܤሺݍ, ,݌ۃ+ۄ((തݍ ,ݍ)ܤ1-(୬-Jܫ2݅߱଴),തݍ)ܤ  (2.19)   ۄ((ݍ

 ݄ଷଵ = (2݅߱଴ܫ୬-J)ିଵሾݍ)ܦ, ,ݍ ,ݍ ,ݍ)ܥത)+3ݍ ,ݍ ݄ଵଵ)+3ݍ)ܥ, ,തݍ ݄ଶ଴)                                

,ଶ଴݄)ܤ3+   ݄ଵଵ)+ݍ)ܤത, ݄ଷ଴)+3ݍ)ܤ, ݄ଶଵ)‐6ܿଵ݄ଶ଴ሿ                                (2.20) 

݄ଶଶ = -J-1ሾݍ)ܦ, ,ݍ ,തݍ ,ݍ)ܥത)+4ݍ ,തݍ ݄ଵଵ)+ݍ)ܥത, ,തݍ ݄ଶ଴)+ݍ)ܥ, ,ݍ ത݄ଶ଴)+2ܤ(݄ଵଵ, ݄ଵଵ)     

,ݍ)ܤ2+  ത݄ଶଵ)+2ݍ)ܤത, ݄ଶଵ)+ܤ( ത݄ଶ଴, ݄ଶ଴)-4݄ଵଵ(ܿଵ+ܿҧଵ)ሿ                       (2.21) 

Obtaining the second Lyapunov coefficient analytically is extremely complex. 

Therefore, numerical methods available in the continuation and bifurcation software 

MATCONT [58] can be used to calculate l2(0). 
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2.6 Torus Bifurcation 

It is important to note that various forms of bifurcations may occur in a nonlinear 

system, following the loss stability of equilibrium through a Hopf bifurcation, 

irrespective of birth of stable or unstable limit cycles. 

Consider the following system [55] as an example: 

ሶଵݕ ൌ ሺߣ െ 3ሻݕଵ െ ଶݕ0.25 ൅ ଷݕଵሾݕ ൅ 0.2ሺ1 െ  ଷଶሻሿݕ

ሶଶݕ ൌ ଵݕ0.25 ൅ ሺߣ െ 3ሻݕଶ ൅ ଷݕଶሾݕ ൅ 0.2ሺ1 െ  ଷଶሻሿ             (2.22)ݕ

ሶଷݕ ൌ ଷݕߣ െ ሺݕଵଶ ൅ ଶଶݕ ൅  ଷଶሻݕ

There is a Hopf bifurcation for ߣH=1.684 as illustrated in Fig. 2.3. The first 

Lyapunov coefficient has a negative sign (l1(0) =-1.55). Hence, the type of Hopf 

bifurcation is supercritical. Stable limit cycles with angular frequency ߱=0.25 rad/s 

are born. On the other hand, a bifurcation into a torus occurs for 2=0ߣ. Fig. 2.4 shows 

three dimensional projection of the phase portrait for 1.85=ߣ at which a stable limit 

cycle exists. Bifurcation into torus for 2.02=ߣ is depicted in Fig. 2.5. 

  Figure 2.3 : Real part of imaginary eigenvalues w.r.t. ߣ (ߣH=1.684) 
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Figure 2.4 : Three dimensional projection for 1.85=ߣ (Supercritical Hopf) 

 

Figure 2.5: Three dimensional projection for 2.02=ߣ (Torus bifurcation) 
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3. SYSTEM DESCRIPTION AND MODELING 

In this chapter, we construct a mathematical model of the first system of the IEEE 

Second Benchmark Model for SSR studies. The SMIB power system consists of a 

synchronous generator connected to an infinite busbar through two parallel 

transmission lines, one of which is equipped with an adjustable series compensation 

capacitor. We include the dynamics of the d-q axes generator damper windings in the 

model. The excitation system is modeled without AVR and it supplies constant field 

voltage. The turbine-governor dynamics and the effect of machine saturation are 

neglected in the model. 

3.1 Electrical System 

Fig. 3.1 shows the first system of the IEEE SBM for SSR studies.  

 

Figure 3.1 : The SMIB power system (System-1, IEEE SBM for SSR studies) 

Series capacitor compensation in the transmission line-1 reduces the equivalent 

impedance between the synchronous generator and the infinite busbar. As a result, 

benefits such as improved transient stability [1] and increased load carrying capacity 

of the transmission system are achieved. The expression which gives the equivalent 

impedance of the network elements between the generator and the infinite busbar can 

be written as 

Zeq = (Rt + jXt) + [[R1 + j(XL1- ߤXL1)]//(R2 + jXL2)] + (Rb + jXb)             (3.1) 

where ߤ is the series compensation factor defined as the ratio of Xc to XL1 (i.e. 

 .(Xc/ XL1 =ߤ

Synch. 
Gen

Rt Xt

R1 XL1 Xc

R2 XL2

Rb Xb 

Vo 
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It follows from (3.1) that the equivalent impedance decreases as ߤ is increased. Fig. 

3.2 shows that the equivalent impedance drops to 0.31 p.u. from 0.53 p.u. if the 

series compensation capacity is fully utilized.  

 
Figure 3.2 : Equivalent Impedance (Zeq) w.r.t. the compensation factor (ߤ) 

Park’s transformation from three phase reference frame to direct and quadrature axes 

(d-q axes) is performed in order to obtain state equations describing the dynamics of 

the electrical system [59-62]. Before writing the equations for generator flux linkages 

and voltages of the d-q axes equivalent circuits, first we define the following 

parameters to represent the equations conveniently.  

ܴா ൌ R୲ ൅ ݇RLଵ ൅ Rୠ                  (3.2) 

ܺா ൌ Xt+݇XL1+Xb                             (3.3) 

where 

݇ ൌ
ඥܴ2

ଶ ൅ ܺL2
ଶ

ඥሺܴ1 ൅ ܴ2ሻଶ ൅ ሺܺL1 ൅ ܺL2 െ L1ሻଶܺߤ
                                                                      

Hereafter ܺ஼ will be represented as ܺߤL1.  



 
 

21 
 

3.1.1 Electrical System d-axis Equivalent Circuit 

Fig. 3.3 shows the electrical system d-axis equivalent circuit.  

 

Figure 3.3 : Electrical system d-axis equivalent circuit 

Using the basic circuit theory, the equations representing the flux linkages and 

voltages can be written as follows  

Flux linkages in the d-axis: 

߰ௗ ൌ െܺௗ݅ௗ ൅ ܺ௔௙ௗ݅௙ௗ ൅ ܺ௔௞ௗ݅௞ௗ                 (3.4) 

߰௙ௗ ൌ െܺ௔௙ௗ݅ௗ ൅ ௙ܺௗ݅௙ௗ ൅ ௙ܺ௞ௗ݅௞ௗ                    (3.5) 

߰௞ௗ ൌ െܺ௔௞ௗ݅ௗ ൅ ௙ܺ௞ௗ݅௙ௗ ൅ ܺ௞ௗ݅௞ௗ                                     (3.6) 

d-axis voltage equations: 

݀߰ௗ
ݐ݀ ൌ ߱௕൫ ௗܸ ൅ ௔݅ௗݎ ൅ ߱௥߰௤൯                                                                                         (3.7) 

݀߰௙ௗ
ݐ݀ ൌ ߱௕൫ܧ௙ௗ െ  ௙ௗ݅௙ௗ൯                                                                                                  (3.8)ݎ

݀߰௞ௗ
ݐ݀ ൌ ߱௕ሺെݎ௞ௗ݅௞ௗሻ                                                                                                          (3.9) 

ௗܸ ൌ ܴா݅ௗ െ ܺா݅௤ ൅
ܺா
߱௕

݀݅ௗ
ݐ݀ ൅ ݁௖ௗ ൅ ଴ܸௗ                                                                     (3.10) 

଴ܸௗ ൌ ଴ܸௗߜ݊݅ݏ௥                                                                                (3.10) 

݁௖ௗ ൌ L1݇݅௤ܺߤ െ
1
߱௕

݀݁௖௤
 ݐ݀                                                                                                (3.11) 

rfd

Efd 
+ 

- 

X
fd 

ifd 

rkd 

X
kd 

ikd 

ra 

X
d 

+ - 
߱௥߰௤

id 

Rt Xt

R1 XL1 Xc 

R2 XL2

+ ecd kid 
Rb Xb

- 

Vod

Mafd 

Mfkd 

Makd 

Vd
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3.1.2 Electrical System q-axis Equivalent Circuit 

The electrical system q-axis equivalent circuit is shown in Fig. 3.3.  

 

Figure 3.4 : Electrical system q-axis equivalent circuit 

Flux linkages in the q-axis: 

߰௤ ൌ െܺ௤݅௤ ൅ ܺ௔௞௤݅௞௤                (3.12) 

߰௞௤ ൌ െܺ௔௞௤݅௤ ൅ ܺ௞௤݅௞௤                (3.13) 

q-axis voltage equations: 

݀߰௤
ݐ݀ ൌ ߱௕൫ ௤ܸ ൅ ௔݅௤ݎ െ ߱௥߰ௗ൯                                                                                        (3.14) 

݀߰௞௤
ݐ݀ ൌ ߱௕൫െݎ௞௤݅௞௤൯                                                                                                        (3.15) 

௤ܸ ൌ ܴா݅௤ ൅ ܺா݅ௗ ൅
ܺா
߱௕

݀݅௤
ݐ݀ ൅ ݁௖௤ ൅ ଴ܸ௤                                                                      (3.16) 

଴ܸ௤ ൌ ଴ܸ௤ܿߜݏ݋௥                                                                                (3.17) 

݁௖௤ ൌ
1
߱௕

݀݁௖ௗ
 ݐ݀  െ  L1݇݅ௗ                                                                                               (3.18)ܺߤ

3.1.3 Electrical System State Equations 

We define the state variables of the electrical system as ࢍ࢏=ሾ݅ௗ ݅௤ ݅௙ ݅௞௤ ݅௞ௗሿ், ࢍ࢏ א

Թହ, and ࢉࢋ=ሾ݁௖ௗ ݁௖௤ሿ், ࢉࢋ א Թଶ. Using (3.4)-(3.18), the state equations of the 

electrical system can be written as  

ࢍ࢏݀
ݐ݀ =B-1߱௕ሺC ࢍ࢏+D)                                                                                             (3.19) 

ࢉࢋ݀
ݐ݀ =߱௕ሺE ࢍ࢏+F (3.20)                                                                                                           (ࢉࢋ 

rkq 

X
kq 

ikq 

ra 

X
q 

- + ߱௥߰ௗ 

iq 

Rt Xt

R1 XL1 Xc

R2 XL2

+ ecq kiq 
Rb Xb 

- 

VoqMakq Vq
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where: 

 B=

ۏ
ێ
ێ
ێ
ێ
ێ
(Xd+XE)-ۍ 0 ܺafd 0 ܺakd

0 -(ܺq+ܺE) 0 ܺୟ୩୯ 0
-ܺafd 0 fܺd 0 fܺkd

0 -ܺakq 0 ܺkq 0
-ܺakd 0 fܺkd 0 ܺkd ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

                 (3.21) 

             C=

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ (ra+ܴEሻ -(XE+߱௥ܺq) 0 ߱௥ܺakq 0
(XE+߱௥ܺd) (ra+ܴEሻ -߱௥ܺafd 0 -߱௥ܺakd

0 0 -rfd 0 0
0 0 0 -rkq 0
0 0 0 0 -rkd ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                (3.22) 

 D=

ۏ
ێ
ێ
ێ
ۍ ଴ܸsin(ߜ௥)+݁௖ௗ
଴ܸcos(ߜ௥)൅ ݁௖௤
rfdܧ௙ௗ/ܺafd

0
0 ے

ۑ
ۑ
ۑ
ې

 ,   E= ൤μkܺL1 0 0 0 0
0 μkܺL1 0 0 0

൨ ,   F= ൤
0 1
-1 0൨               (3.23) 

The numerical parameters of the electrical system in p.u. are listed below. 

 Xd=1.65,  Xq=1.59, Xfd=1.6286, Xkd=1.642, Xkq=1.5238,

 Xakd=1.51, Xakq=1.45, Xafd=1.51, Xfkd=1.51, ra=0.0045,

 rfd=0.00096, rkd=0.016, rkq=0.0116, XTR=0.12, RTR=0.0012,

 XL1=0.48, R1=0.0444, XL2=0.4434, R2=0.0402, Xb=0.18, 

 Rb=0.0084 

3.2 Mechanical System 

The mechanical system consists of a high pressure (HP) turbine, a low pressure (LP) 

turbine, a generator and an exciter (Exc.). Fig. 3.4 shows the schematic diagram of 

the mechanical system.  

 
Figure 3.5 : Schematic diagram of the mechanical system  

Exc.  

M1 
D1 

M2
D2

M3
D3

M4 
D4 
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K34
Generator 

K23K12 
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The equations governing dynamics of the mechanical system can be written as 

follows [62]. 

HP Turbine: 

݀߱ଵ
ݐ݀ ൌ

1
Mଵ

ሾെDଵሺ߱ଵ െ 1ሻ െ Kଵଶሺߠଵ െ  ଶሻሿ                                                                 (3.24)ߠ

ଵߠ݀
ݐ݀ ൌ ߱௕ሺ߱ଵ െ 1ሻ                                                                                                             (3.25) 

LP Turbine: 

݀߱ଶ

ݐ݀ ൌ
1
Mଶ

ሾെDଶሺ߱ଶ െ 1ሻ ൅ Kଵଶሺߠଵ െ ଶሻߠ െ Kଶଷሺߠଶ െ  ௥ሻሿ                                 (3.26)ߜ

ଶߠ݀
ݐ݀ ൌ ߱௕ሺ߱ଶ െ 1ሻ                                                                                                            (3.27) 

Generator: 

݀߱௥
ݐ݀ ൌ

1
Mଷ

ሾ ௠ܶ െ ௘ܶ െ Dଷሺ߱௥ െ 1ሻ ൅ Kଶଷሺߠଶ െ ௥ሻߜ െ Kଷସሺߜ௥ െ  ସሻሿ                  (3.28)ߠ

௥ߜ݀
ݐ݀ ൌ ߱௕ሺ߱௥ െ 1ሻ                                                                                                            (3.29) 

Exciter: 

݀߱ସ
ݐ݀ ൌ

1
Mସ

ሾെDସሺ߱௥ െ 1ሻ ൅ Kଷସሺߜ௥ െ  ସሻሿ                                                                 (3.30)ߠ

ସߠ݀
ݐ݀ ൌ ߱௕ሺ߱ସ െ 1ሻ                                                                                                            (3.31) 

Defining the state variables as ࢙ࡾ=ሾ߱ଵ ߠଵ ߱ଶ ߠଶ ߱௥ ߜ௥ ߱ସ ߠସሿ், ࢙ࡾ א Թ଼, and using 

(3.24)-(3.31), we write the equations representing the mechanical system in state 

space form as follows: 

࢙ࡾ݀
ݐ݀ =G ࢙ࡾ+H                                                                                                                 (3.32)  

where 
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G =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
-D1

M1

-K12

M1
0

K12

M1
0 0 0 0

ωb 0 0 0 0 0 0 0

0
K12

M2

-D2

M2

-(K12+K23ሻ
M2

0
K23

M2
0 0

0 0 ωb 0 0 0 0 0

0 0 0
K23

M3

-D3

M3

-(K23+K34ሻ
M3

0
K34

M3
0 0 0 0 ωb 0 0 0

0 0 0 0 0
K34

M4

-D4

M4

-K34

M4
0 0 0 0 0 0 ωb 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

      (3.33) 

H= ቈ
D1

M1
-߱௕

D2

M2
‐߱௕

( ௠ܶ െ ௘ܶ ൅ D3ሻ
M3

‐߱௕
D4

M4
‐߱௕቉

்

              (3.34) 

In (3.34), ௘ܶ represents the electromechanical torque and it is expressed as 

௘ܶ=(Xq-Xdሻ ݅ௗ݅௤+Xafd݅௙ௗ݅௤-Xakq݅௞௤݅ௗ+Xakd݅௞ௗ݅௤             (3.35) 

The numerical parameters of the mechanical system in p.u. are as follows 

 D1=0.0498, M1=0.498, K12=42.6572 

 D2=0.031 M2=3.1004 K23=83.3823 

 D3=0.1758 M3=1.7581 K34=3.7363 

 D4=0.0014 M4=0.0138 

3.3 Complete Mathematical Model 

The complete mathematical model of the nonlinear dynamical system in the state 

representation form is obtained by combining (3.19), (3.20) and (3.32). The dynamic 

system has 15 state variables: ݅ௗ, ݅௤, ݅௙, ݅௞௤, ݅௞ௗ, ݁௖ௗ, ݁௖௤, ߱ଵ, ,ଵߠ ߱ଶ, ,ଶߠ ߱௥, ,௥ߜ ߱ସ,  .ସߠ

There are 4 control parameters: Mechanical torque input ( ௠ܶ), Field voltage (ܧ௙ௗ), 

Infinite busbar voltage ( ଴ܸ) and the series compensation factor (ߤ). 

Defining the state vector ࢞ ൌ ሾ்࢙ࡾ ்ࢉࢂ ்ࢍ࢏ሿ், ࢞ א Թଵହ, we write 

ሶ࢞ ൌ ቎
B-1߱௕ሺC ࢍ࢏+D)
߱௕ሺE ࢍ࢏+F ࢉࢋ)

G ࢙ࡾ+H
቏                                                 (3.36) 
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3.4 Bifurcation Analysis 

We use the series compensation factor (ߤ=ܺ௖/ܺ௅ଵ) as the bifurcation parameter and 

perform bifurcation analysis by monitoring the real parts of the eigenvalues of the 

Jacobian matrix at the system equilibrium for values of ߤ from 0 to 1. The other three 

control parameters are kept constant at set values ௠ܶ=0.91, ܧ௙ௗ=2.2 and ଴ܸ=1.0.  

3.4.1 Equilibrium Solutions 

In order to obtain the equilibrium solutions for the model, standard methods for 

solving the initial value problems of the ordinary differential equations are 

employed. The equilibrium points for no series compensation case (i.e. 0=ߤ) are 

calculated first. To begin with, we set the angular speeds to the nominal value and 

the rotor angles to the load angle. 

߱௥= ߱ଵ= ߱ଶ=߱ସ=1                 (3.37) 

 ௥                 (3.38)ߜ =ସߠ =ଶߠ =ଵߠ

No current flows through the damper windings in the equilibrium condition. 

݅௞௤଴= ݅௞ௗ଴= 0                  (3.39) 

Series capacitor d-q axes voltages are set to zero for 0=ߤ at which the bifurcation 

analysis is started. 

݁௖ௗ଴ = ݁௖௤଴ = 0                 (3.40) 

With known values of  ௠ܶ, ܧ௙ௗ and  ଴ܸ, the load angle initial value is selected as p.u. 

value of the mechanical torque input. 

 ௥଴=  ௠ܶ                    (3.41)ߜ

Using (3.19), initial values for the state variables ࢍ࢏ can be written as  

 ૙=ሾ݅ௗ଴ ݅௤଴ ݅௙଴ ݅௞௤଴ ݅௞ௗ଴ሿ்=-C-1D               (3.42)ࢍ࢏

Having found the initial values of the state variables, the set of ordinary differential 

equations in (3.36) describing the dynamic model is solved using MATLAB. The 
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rest of the procedure is quite straightforward. The series compensation factor is 

increased to 1.0 at 0.001 incremental steps and at each step the equilibrium points are 

obtained by setting the previous step’s equilibrium solutions as the initial values and 

solving the current ODEs.  

3.4.2 Stability of the Equilibrium Points 

The eigenvalues of the Jacobian matrix evaluated at the equilibrium points of the 

model for values of ߤ from 0 to 1 are determined. In a stable system, real parts of all 

eigenvalues are less than zero. Fig. 3.6 shows the generator rotor angle (ߜ௥) variation 

depending on the series compensation factor. Full use of the series compensation 

capacity enables the synchronous generator to operate at a power angle of 0.85 rad. 

instead of 1.05 rad., without the series capacitor. On the other hand, the system loses 

dynamic stability through a subcritical Hopf bifurcation at 0.5184=ߤ due to the SSR 

as a result of interaction between the second torsional mode and the subsynchronous 

electrical mode. Even though the second torsional mode becomes stable again at 

 ൌ0.7283 and therefore overallߤ ൌ0.8110, the first torsional mode stability is lost atߤ

system stability is not regained.  

 
Figure 3.6 : Generator rotor angle ( ௠ܶ=0.91, ܧ௙ௗ=2.2 and ଴ܸ=1.0) 
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3.4.3 Oscillatory Modes 

The Jacobian matrix at the equilibrium condition has 6 pairs of complex conjugate 

eigenvalues. Hence, there are 6 modes of oscillation in the model. Supersynchronous 

and subsynchronous electrical modes have frequencies dependent on the series 

compensation level. The mechanical modes comprise one local swing mode and 

three torsional oscillation modes. Also called electro-mechanical mode, the local 

swing mode plays an important part in dynamic stability of a power system. In this 

mode, the turbine-generator shaft sections oscillate as a rigid rotating mass. In the 

model, the local swing mode has a frequency of 1.53 Hz. On the other hand, if the 

torsional modes are excited, some of the shaft masses oscillate against the others 

causing loss of fatigue life and eventually the shaft damage [63] in the absence of 

sufficient damping. In the model, there are three torsional oscillation modes with 

frequencies of 24.7, 32.4 and 51.1 Hz. Fig. 3.7 shows the relative rotation speed of 

shaft segments representing the mode shapes of the turbine-generator shaft system in 

the model.  

 
Figure 3.7 : Relative rotational speeds (RSS) representing the mode shapes 



 
 

29 
 

Relative rotation speeds have been determined by applying a small magnitude torque 

component with a frequency equal to one of the mechanical oscillation modes of the 

turbine-generator shaft system in order to excite the corresponding natural mode. The 

process is repeated for all four mechanical modes. At each step, rotor speeds of each 

shaft section are obtained. The rotational speed values are then converted into the 

relative quantities and scaled. From the view point of fatigue deformation on the 

shaft, the local swing mode oscillations do not result in any damage associated with 

torsional fatigue. Of primary interest are the modes with the polarity reversals along 

the shaft, which can be very dangerous if the damping is not sufficient or they are 

self excited due to the SSR.  

The flowchart of the bifurcation analysis is depicted in Fig. 3.8. The equilibrium 

solution for ߤൌ0, ௠ܶ=0.91, ܧ௙ௗ=2.2 and ଴ܸ=1.0 is obtained by solving (3.36). Then, 

the Jacobian matrix eigenvalues at incremental values of ߤ are evaluated and at each 

step, zero-crossing of the eigenvalues real parts are checked to detect the occurrence 

of a bifurcation condition. The first Lyapunov coefficient is computed if Hopf 

bifurcation occurs at the corresponding value of ߤ.  

Fig.3.9 shows the oscillatory modes of the system depending on the series 

compensation factor. As the compensation factor increases, the subsynchronous 

electrical mode frequency decreases and interacts with all three torsional modes. The 

interaction between the oscillatory modes results in movement of the real part of the 

corresponding eigenvalues towards to the zero-axis, as shown in Fig.3.10. The 

oscillatory modes other than the torsional modes are highly damped and therefore 

they are not shown in Fig. 3.10. 

The interaction between the subsynchronous electrical mode and the third torsional 

mode occurs at ߤൌ0.07 without causing instability. The real part of the second 

torsional mode eigenvalue crosses the zero-axis at ߤൌ0.5184, as a result of 

interaction with the subsynchronous electrical mode, and the system stability of 

equilibrium is lost through a Hopf bifurcation. Even though the second torsional 

mode becomes stable again at ߤൌ0.8110, the overall system stability is not regained 

due to the Hopf bifurcation occurring at ߤൌ0.7283 in the first torsional mode which 

strongly interacts with the subsynchronous electrical mode.  
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Figure 3.8 : The flowchart for Bifurcation Analysis 
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Figure 3.9 : Oscillation modes of the system 

 

Figure 3.10 : Real parts of the torsional mode eigenvalues 
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Table 3.1: Computed Eigenvalues for 0.5184=ߤ and ߤൌ0.7283 

Eigen- 
value 

Number 

 0.7283=ߤ 0.5184=ߤ
Real 
Part 
(s-1) 

Imaginary 
Part 

(Rad/s) 

Imaginary 
Part 
(Hz) 

Real 
Part 
(s-1) 

Imaginary 
Part 

(Rad/s) 

Imaginary 
Part 
(Hz) 

1, 2 -10.403 ± 544.841 86.714 -10.920 ± 585.699 93.217 
3, 4 -0.049 ± 321.038 51.095 -0.049 ± 321.038 51.095 
5, 6 -8.375 ± 208.336 33.158 -8.599 ± 166.123 26.439 
7, 8 0 ± 203.754 32.428 0.027 ± 203.362 32.366 
9, 10 -0.332 ± 155.645 24.772 0 ± 157.301 25.035 
11 -27.703      

12, 13 -0.956 ± 10.317 1.642 -1.111 ± 10.807 1.720 
14 -0.288      
15 -7.661      

Table 3.1 shows the eigenvalues of the SMIB power system at Hopf bifurcation 

points 0.5184=ߤ and ߤൌ0.7283. In order compute the first Lyapunov coefficient, 

computation of the complex vectors ݌ and ݍ satisfying (2.11) and (2.12) has been 

performed according to the procedure described in Appendix-A.1.  Table 3.2 gives ݌ 

and ݍ complex vectors.   

Table 3.2: Complex vectors ݌ and ݍ for 0.5184=ߤ and ߤൌ0.7283 

 0.7283=ߤ 0.5184=ߤ
Complex vector, ݌ Complex vector, ݍ Complex vector, ݌ Complex vector, ݍ 
-0.1568168987 0.0921782393 -0.1992053453 0.4326843035 
-0.4726205366 0.0107718912 -0.5046542364 0.2176372442 
-0.0608214353 -0.0749905653 -0.0766285818 -0.3709173982 
-0.4487179858 -0.0088150010 -0.4786297979 -0.1827961665 
-0.0914763745 -0.0749384790 -0.1169180864 -0.3695424263 
-0.1603110936 0.0075350728 -0.2228731617 0.0905822721 
0.0446754154 -0.0549391636 0.0758401959 -0.1570033202 
-0.0302496636 -0.1848909092 0.0143495701 0.3753247283 
-0.3648369095 -0.8045114295 0.1427655113 1.1683608664 
0.0087648208 0.3229436519 0.0033252031 0.5546827353 
0.1041756487 1.4310469041 0.0333880582 1.6997876514 
-0.0072784961 -0.1361024685 -0.0104513585 -0.9664520014 
-0.0824227770 -0.6627130851 -0.1040389355 -3.1113374694 
-0.0122943119 -0.0017954127 -0.0138075703 -0.0099981937 
-0.1389246074 -0.0085128663 -0.1373240889 -0.0311432479 

Using (2.13), l1(0)  for the Hopf bifurcation occurring in the second torsional mode at 

 is computed as 1.44x10-5. The positive sign of l1(0) reveals that the type of 0.5184=ߤ

Hopf bifurcation is subcritical. Similarly, the first torsional mode undergoes a 

subcritical Hopf bifurcation at ߤൌ0.7283 with positive l1(0) (=3.95x10-5). 
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3.5 Time Domain Simulations 

Time domain simulations using the software MATLAB-Simulink are carried out to 

verify the analytic findings of the bifurcation analysis. The set of ODEs representing 

the nonlinear dynamic model under study has been included into the Simulink model 

as embedded m-file. By this way, complexity of the model has been reduced 

significantly. 

Fig. 3.11 shows the generator rotor angular speed response to a disturbance of 0.46 

p.u. negative pulse torque (50% of the applied mechanical torque) on the generator 

shaft at t=1s for a duration of 0.5s at the first Hopf bifurcation point (ߤுଵ=0.5184). 

Following the disturbance, the generator rotor speed oscillates at decaying 

magnitudes but never reaches equilibrium state. Power Spectrum Density (PSD) 

estimation of the generator rotor angular speed confirms that small magnitude 

oscillations at the frequency of 32.4 Hz remain undamped as depicted in Fig. 3.12 in 

the PSD estimation. This is because of the fact that the real part of the second 

torsional mode eigenvalue is zero at 0.5184 = ߤ. 

In a similar manner, the Hopf bifurcation occurring at ߤൌ0.7283 causes the first 

torsional mode oscillations to experience transition from damped to undamped 

condition. At the values of the series compensation factor from 0.7283 to 0.8110, two 

unstable oscillation modes with the frequencies of 32.4 Hz and 24.7 Hz co-exist in 

the dynamic model.   

The simulation is repeated for 0.52=ߤ by applying the same disturbance at t=1s as in 

the simulations at Hopf bifurcation points. The initial response to the disturbance is 

similar to the cases with ߤ = ߤு in a form that the magnitude of oscillations of the 

stable modes decays following the disturbance and becomes zero eventually. 

However, the unstable second torsional mode causes the oscillations with frequency 

32.4 Hz. to reach to very high magnitudes without converging locally to an orbit as 

shown in Fig. 3.13. Therefore, it is concluded that the Hopf bifurcation is subcritical, 

verifying the analytic finding obtained by computing the first Lyapunov coefficient. 

The response of generator load angle for 0.52=ߤ is also shown in Fig. 3.14. Similar 

to the response of the generator rotor angular speed, the load angle response is in the 

form of oscillations with increasing magnitude. 
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Figure 3.11 : Generator rotor speed (߱௥) response (ߤ = ߤுଵ=0.5184) 

 

Figure 3.12 : PSD estimation of the generator rotor speed, (a) 10s< t <20s and (b) 
20s< t <30s 



 
 

35 
 

 
Figure 3.13 : Generator rotor speed (߱௥) response, 0.52=ߤ (ߤு=0.5184). 

 

Figure 3.14 : Generator load angle (0.52=ߤ) (Subcritical Hopf bifurcation) 
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It is important to note that in a real system the generator would lose synchronism and 

normally disconnect from the grid by the activation of protective relaying devices 

(e.g. out-of-step, over-speed protection) following a disturbance at the values of ߤ at 

which the SMIB power system is not stable.  

Various forms of dynamic behaviors such as torus bifurcation, cyclic fold and 

bluesky catastrophe may occur in the instability region of the nonlinear model. Fig. 

3.15 shows the generator rotor speed response exhibiting a Torus bifurcation at 

 The emphasis in this Dissertation is given to determining the type of Hopf .0.55=ߤ

bifurcation, through which the stability of equilibrium condition is lost, by 

computing the first Lyapunov coefficient analytically.  

 
Figure 3.15 : Generator rotor speed response (0.55=ߤ)  

Depicting the subcritical Hopf bifurcation in the first torsional mode is not possible 

because of the second torsional mode which is already unstable at the point of Hopf 

bifurcation for this mode.  

Fig 3.16 and Fig 3.17 depict the significant difference in the dynamic response of the 

generator rotor angular speed for 0.80=ߤ and 0.82=ߤ, respectively.  
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Figure 3.16 : Generator rotor speed response (0.80=ߤ)  

 

Figure 3.17 : Generator rotor speed response (0.82=ߤ)  
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3.6 Parameter Dependency of the First Lyapunov Coefficient 

In addition to the series compensation factor, the other control parameters  ௠ܶ, ଴ܸ and 

 ௙ௗ affect the dynamic behavior of the power system under study. In this section, theܧ

impact of these parameters on the bifurcation point and the first Lyapunov 

coefficient thereby on the type of Hopf bifurcations is discussed. Changes in the 

characteristic of the dynamic responses depending on the control parameters and the 

first Lyapunov coefficient will also be explored. Computing the first Lyapunov 

coefficient has the merit of investigating the impact of one parameter on the type of 

Hopf bifurcation thoroughly. 

Furthermore, comparatively very small values of the computed first Lyapunov 

coefficients (<2x10-5) in Section 1.4 may raise a validation requirement that 

variations in the first Lyapunov coefficient be consistent. By investigating the 

parameter dependency, the accuracy of the computed first Lyapunov coefficient can 

also be verified. 

It follows from Fig. 3.18 that increasing the mechanical torque input causes the Hopf 

bifurcation to occur at slightly higher series compensation levels. The first Lyapunov 

coefficient also increases with  ௠ܶ, as depicted in Fig. 3.19. The second torsional 

mode l1(0) crosses zero at   ௠ܶ=0.62 p.u.  

The impact of ௠ܶ on the first Lyapunov coefficient is stronger in the second torsional 

mode compared to the first torsional mode. It is important to note that the 

supercritical Hopf bifurcation occurs in the first torsional mode at the values of the 

electromechanical torque input less than 0.62 p.u. The first torsional mode is unstable 

at these values. Therefore, validation of this analytic finding is not possible via time 

domain simulations. 

From Fig. 3.20, one can conclude that the impact of the network voltage level on the 

Hopf bifurcation point is almost negligible. On the other hand, the variation of the 

second torsional mode l1(0) with ଴ܸ is more significant, as shown in Fig. 3.21. The 

type of Hopf bifurcation for both the first torsional mode and the second torsional 

mode remains the same as the value of the network voltage is changed from 0.95 p.u. 

to 1.05 p.u.  
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Figure 3.18 : Hopf Bifurcation points for varying values of  ௠ܶ 

 

Figure 3.19 : The first Lyapunov coefficients for varying values of  ௠ܶ 
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Figure 3.20 : Hopf Bifurcation points for varying values of  ଴ܸ 

 

Figure 3.21 : The first Lyapunov coefficients for varying values of  ଴ܸ 
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The impact of the field voltage on the Hopf bifurcation point and the first Lyapunov 

coefficient is in a way similar to that of the network voltage level. The Hopf 

bifurcation points slightly change as ܧ௙ௗ is increased from 2 p.u. to 3 p.u. as shown 

in Fig. 3.22. Moreover, from Fig. 3.23, the first Lyapunov coefficient of the second 

torsional mode is negative for ܧ௙ௗ < 2.72 p.u.  

It is interesting to see that the impact of the control parameters on the first Lyapunov 

coefficient is consistent. Though very small, the changes in the computed l1(0) 

depending on an increase or decrease in one of the control parameters exhibit a 

regular pattern. Hence, the accuracy of the computation procedure for the first 

Lyapunov coefficient is considered to be adequate. 

The analysis results show that the first Lyapunov coefficients remain positive and/or 

near zero for a wide range of the control parameters governing the dynamics of the 

system under study. Consequently, the regular pattern in the change of the first 

Lyapunov coefficients depending on a control parameter verifies the accuracy of the 

computation method.  

 

Figure 3.22 : Hopf Bifurcation points for varying values of  ܧ௙ௗ  
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Figure 3.23 : The first Lyapunov coefficients for varying values of  ܧ௙ௗ 
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4. SSR WITH AUTOMATIC VOLTAGE REGULATOR  

In this chapter, we include an automatic voltage regulator (AVR) into the SMIB 

power system model analyzed in Chapter 3. The primary function of an AVR is to 

regulate the generator terminal voltage. In addition, AVR contributes to transient 

stability enhancement and regulation of reactive power flow from and to the 

generator. New oscillatory modes appear in the model due to the AVR but these 

modes are usually stable. The emphasis in this chapter is given to analyzing the 

impact of the AVR on the Hopf bifurcation point and the first Lyapunov coefficient 

which is used to identify the type of Hopf bifurcations (i.e. supercritical or 

subcritical) occurring in the SMIB power system under study.  

4.1 Excitation System with AVR  

Automatic Voltage Regulator (AVR) of type DC1A described in [64] are included 

into the excitation system in the model. The exciter saturation effects are neglected 

and the limiters are not taken into account. It is also possible to add a power system 

stabilizer (PSS) to the model. PSS can provide additional damping for the 

oscillations with frequency well below the torsional oscillation mode frequencies, 

which are the primary focus in this dissertation. Therefore, PSS is not included into 

the model.  

Fig.4.1 shows the block diagram of the excitation system with AVR.  

 

Figure 4.1 : Block diagram of the excitation system with AVR  
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Defining ࢉ࢞ࢋࢂൌሾ ஼ܸ  ிܸ  ோܸ ܧ௙ௗሿ்,  ࢉ࢞ࢋࢂ א Թ૝, the state equations describing the 

dynamics of the excitation system with AVR can be written as follows: 

ࢉ࢞ࢋࢂ݀
ݐ݀ =P ࢉ࢞ࢋࢂ+Q                                                                                                                   (4.1) 

where  

Pൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
‐1
ோܶ

0 0 0

0
‐1
ிܶ

ிܭ
ிܶ ாܶ

ாܭிܭ‐
ிܶ ாܶ

஺ܭ‐
஺ܶ

஺ܭ‐
஺ܶ

‐1
஺ܶ

0

0 0
1
ாܶ

ாܭ‐
ாܶ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                                                                             (4.2) 

Q= ൤ ௧ܸ

ோܶ
0 ሺ

஺ܭ
஺ܶ

௥ܸ௘௙ሻ 0൨
்

                                                                                                   (4.3) 

௧ܸ in (4.3) is the generator terminal voltage. Neglecting the transients, it can be 

expressed as: 

௧ܸ=ටሺሺ-ݎ௔݅ௗ+ܺ௤݅௤ሻଶ+ሺ-ݎ௔݅௤ െ ܺௗ݅ௗ ൅ ܺ௔௙ௗ݅௙ௗሻଶ                                                          (4.4) 

Parameters of the excitation System with AVR are given below. 

 Regulator : KA=250, TA=0.002s 

 Exciter  : KE=1, TE=0.02s 

 Damping : KF=0.03, TF=1s  

 Transducer : TR=0.020 s  

4.2 Complete Mathematical Model with AVR 

We define the state vector ࢞ ൌ ሾ்ࢉ࢞ࢋࢂ ்࢙ࡾ ்ࢉࢂ ்ࢍ࢏ ሿ், ࢞ א Թଵଽ and combine (3.19), 

(3.20), (3.32) and (4.1) as follows:  

ሶ࢞ ൌ

ۏ
ێ
ێ
ێ
Bۍ

‐1߱௕ሺC ࢍ࢏൅Dሻ
߱௕ሺE ࢍ࢏൅F ࢉࢂሻ

G ࢙ࡾ൅H
P ࢉ࢞ࢋࢂ൅Q ے

ۑ
ۑ
ۑ
ې
                                                                                                         (4.5) 
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There are 19 state variables in the complete mathematical model: ݅ௗ, ݅௤, ݅௙, ݅௞ௗ,  

 ݅௞ௗ, ݁௖ௗ, ݁௖௤, ߱ଵ, ,ଵߠ ߱ଶ, ,ଶߠ ߱௥, ,௥ߜ ߱ସ, ,ସߠ ஼ܸ , ிܸ , ோܸand ܧ௙ௗ The control parameters 

vector consists of five variables: AVR gain (ܭ஺), AVR Reference Voltage (Vref), the 

series compensation factor (ߤ), mechanical torque input to the generator ( ௠ܶሻ and the 

network voltage level ( ଴ܸሻ. 

4.3 Bifurcation Analysis 

We use the series compensation factor (ߤ =ܺ௖/ܺ௅ଵ) as the bifurcation parameter and 

carry out the bifurcation analysis by monitoring the real parts of the eigenvalues of 

the Jacobian matrix at system equilibrium solutions for the values of ߤ from 0 to 1. 

The other five control parameters are kept constant at set values (Tm=0.91, KA=250, 

V0=1.0 and Vref =1.0953). 

4.3.1 Equilibrium Solutions 

In order to obtain the equilibrium solutions for the SMIB power system with AVR, 

firstly the initial values of the state variables ࢉࢋ ,ࢍ࢏ and ࢙ࡾ for the known values of 

Tm, V0 and ܧ௙ௗ(0=ߤ) are determined as described in Section 3.3.1. Then, the 

generator terminal voltage ( ௧ܸ) is calculated using (4.4). Then, the initial values of 

the excitation system state variables can be found as follows. 

஼ܸ଴= ௧ܸ                    (4.6) 

ோܸ଴ = KEܧ௙ௗ                    (4.7) 

ிܸ଴ = 0                                       (4.8) 

The AVR reference voltage is computed as 

Vref = ஼ܸ଴+ ܧ௙ௗ/ KA                   (4.9) 

Accordingly, the equilibrium points of the set of ODEs in (4.5) are calculated for the 

values of ߤ from 0 to 1 at incremental steps of 0.001. At each step, the equilibrium 

solution obtained at the previous step is used as the initial values for the solution of 

the ODEs and equilibrium points are calculated for the current value of ߤ. 
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4.3.2 Stability of Equilibrium Solutions in SMIB Power System with AVR 

The stability region of the equilibrium points is determined by computing the 

eigenvalues of the Jacobian matrix. The real parts of all eigenvalues are less than 

zero in a stable system. As shown in Fig. 4.2, Hopf bifurcations occur at 0.51968 = ߤ 

and 0.73448 = ߤ.  

Comparison of Fig 4.2 and Fig. 3.6 reveals that the generator rotor angle is less prone 

to variations in the series compensation factor in the model with AVR.  

 

Figure 4.2 : Generator rotor angle (Tm=0.91, KA=250, V0=1.0 and Vref =1.0953) 

4.3.3 Oscillatory Modes 

Fig. 4.3 shows the oscillatory modes of the SMIB power system model with AVR. In 

addition to the oscillatory modes identified in Chapter 3, two more oscillatory modes 

appear with frequencies 58.8 Hz and 6.1 Hz in the model due to the AVR.   

As the series compensation factor increases, the subsynchronous electrical mode 

frequency decreases and interacts with all three torsional modes and one AVR 

oscillator mode resulting in movement of the real part of the corresponding 

eigenvalues towards to the zero-axis, as shown in Fig. 4.4.  
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Figure 4.3 : Oscillation modes of the model with AVR 

 
Figure 4.4 : Real parts of the torsional mode eigenvalues of the model with AVR 
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The subsynchronous electrical mode interacts with the third torsional mode at 

ߤ ൌ0.0701 but the system stability is preserved. The real part of the second torsional 

mode eigenvalue crosses the zero-axis at 0.5197 = ߤ, as a result of interaction with 

the subsynchronous electrical mode and the system stability of equilibrium is lost 

through a Hopf bifurcation. Although the second torsional mode regains stability at 

 the overall system stability is not regained because of the Hopf ,0.8152 = ߤ

bifurcation occurring at 0.7345 = ߤ in the first torsional mode.  

Table 4.1 shows the eigenvalues of the SMIB power system with AVR at Hopf 

bifurcation points 0.5197=ߤ and 0.7345=ߤ. 

Table 4.1: Computed Eigenvalues for 0.5197=ߤ and ߤൌ0.7345 

Eigen-
value 

Number 

 0.7345=ߤ 0.5197=ߤ
Real Part 

(s-1) 
Imaginary  

Part  
(Rad/s) 

Imaginary  
Part  
(Hz) 

Real  
Part 
(s-1) 

Imaginary  
Part  

(Rad/s) 

Imaginary 
Part  
(Hz) 

1, 2 -10.416 ± 545.105 86.756 -10.942 586.908 93.409
3, 4 -277.539 ± 369.418 58.795 -277.545 369.432 58.797
5, 6 -0.049 ± 321.037 51.095 -0.049 321.037 51.095
7, 8 -8.083 ± 208.057 33.113 0.026 203.359 32.366
9, 10 0.000 ± 203.766 32.430 -8.085 164.799 26.229
11, 12 -0.344 ± 155.596 24.764 0.000 157.451 25.059
13, 14 -36.154 ± 38.110 6.065 -36.460 37.835 6.022
15, 16 -1.225 ± 9.785 1.557 -1.502 10.204 1.624

17 -6.860   -6.961  
18, 19 -1.206 ± 0.605 0.096 -1.157 ± 0.626 0.100

The complex vectors ݌ and ݍ satisfying (2.11) and (2.12) are given in Table 4.2.  

Using (2.13), the first Lyapunov coefficients at the Hopf bifurcation points 

 ,have been computed as -0.00015794 and -0.0026534 0.7345 =2ܪߤ and 0.5197 =1ܪߤ

respectively. The negative sign of the first Lyapunov coefficients show that the type 

of Hopf bifurcation for both torsional modes is supercritical. The inclusion of AVR 

into the model under study results in the occurrence of supercritical Hopf 

bifurcations. For this reason, stable limit cycles are born out of the Hopf bifurcation 

points. On the contrary, the Hopf bifurcations are found subcritical in the model 

without AVR analyzed in Chapter 3. It is important to note that these findings are 

only valid in the local region of the Hopf bifurcation points. Various forms of 

bifurcations and nonlinear events may occur in the range of control parameter values, 

at which the dynamic system is not stable.  
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Table 4.2: Complex vectors ݌ and ݍ for 0.5197=ߤ and ߤൌ0.7345 

 0.7345=ߤ 0.5197=ߤ
Complex vector, ݌ Complex vector, ݍ Complex vector, ݌ Complex vector, ݍ 

-0.0052155981 1.5569366376 0.0020481012 -7.2271383787 
-0.0289729037 0.4322003947 0.0284354742 -6.6267268033 
-0.0024188405 -1.2728005072 0.0009511072 6.2863643145 
-0.0275732938 -0.3435249499 0.0271372379 5.4887412153 
-0.0027977159 -1.2686517206 0.0013189771 6.2185692067 
-0.0101503441 0.2935219446 0.0132869309 -2.7952478788 
0.0011202924 -0.9206675224 0.0000230088 2.5323445866 
-0.0043774193 -9.5709197507 -0.0019167871 -28.3724877331 
-0.0191686049 -13.4237484893 -0.0059309603 -20.4140472347 
0.0012575492 16.9313157157 -0.0004440404 -41.1793620921 
0.0054730428 23.9042259342 -0.0013799266 -29.4859646914 
-0.0010155458 -7.4693154549 0.0013960282 72.9799536651 
-0.0043292280 -11.1881568559 0.0043208010 54.8104882592 
-0.0017132946 -0.0987440877 0.0018443686 0.7563486171 
-0.0072968791 -0.1427577312 0.0057060071 0.5442932572 
-0.0056400788 -0.0018091071 0.0066857968 -0.0362531816 
0.0017781911 -0.0037297520 -0.0028974343 -0.0121242362 
0.9708259733 -0.0000122822 -0.9551202873 0.0001124581 
0.0581754304 -0.0000359538 -0.0948499864 0.0014424640 

4.3.4 Time Domain Simulations 

In order to verify the bifurcation analysis results, time domain simulations have been 

carried out in MATLAB-Simulink. The embedded M-file consisting of the set of 

ODEs obtained in (4.5) has been incorporated in the Simulink model. Fig. 4.6 shows 

the generator rotor speed response to a disturbance of 0.46 p.u. pulse torque on the 

synchronous generator shaft at t=1s for a duration of 0.5s at the Hopf bifurcation 

point (5197 .0 = ܪߤ). Following the disturbance, the generator rotor speed oscillates 

at decaying magnitudes until the appearance of a limit cycle of small magnitude.  

The second torsional mode has a pair of purely imaginary eigenvalues (i.e. zero real 

parts) at the Hopf bifurcation point, 5197 .0 = ܪߤ. Hence, no decay or increase in the 

magnitude of oscillations in the second torsional mode with frequency is observed on 

the PSD estimation, even though the other two oscillatory modes disappear 

substantially within 20s following the disturbance, as shown in Fig. 4.6.  

The simulation is repeated at a slightly higher compensation factor (0.525=ߤ) and the 

generator rotor speed and load angle responses are shown in Figs. 4.7-8. The 

oscillations of small magnitude appear following the disturbance as in the case 

with 0.5197=ߤ. It is evident from Fig. 4.9 that the dynamic responses converge to a 

limit cycle.  
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Figure 4.5 : Generator rotor speed response (ߤ=ߤுଵ=0.5197) 

 

Figure 4.6 : PSD of the generator rotor speed, (a) 10s< t <20s and (b) 20s<t<30s 
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Figure 4.7 : Generator rotor speed (0.525 = ߤ) (Supercritical Hopf bifurcation) 

 

Figure 4.8 : Generator load angle (0.525 = ߤ) (Supercritical Hopf bifurcation) 
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Figure 4.9: Two-dimensional projections of the phase portrait onto the ߱௥- ߜ௥ plane 

from t=190s to t=200s (0.525 = ߤ) (Supercritical Hopf bifurcation) 

Analytic finding that the Hopf bifurcation is supercritical has been verified by time 

domain simulations. It is important to emphasize that various forms of bifurcations 

can occur in the region at which the system is not stable. 

4.3.5 Impact of the AVR Gain on l1(0) 

We analyze the impact of the AVR gain (KA) on the Hopf bifurcation point and the 

first Lyapunov coefficient. Taking the series compensation factor as the bifurcation 

parameter, the bifurcation analysis is carried out for the values of KA between 50 and 

450. The Hopf bifurcation point and the first Lyapunov coefficient are evaluated 

accordingly. The other three control parameters are kept constant (Tm=0.91, V0=1.0 

and Vtset=1.0869).  

Variation of the Hopf bifurcation point with the AVR gain is almost negligible, as 

shown in Fig. 4.10. On the other hand, the first Lyapunov coefficients increase with 

the AVR gain. Fig 4.11 shows that significant increase in the first Lyapunov 

coefficient occurs when the AVR gain is changed from 50 to 150. In the remaining 

range from 150 to 450, however, the increase is gradual.  
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Figure 4.10 : Variation of Hopf bifurcation point with the AVR Gain 

 
Figure 4.11 : Variation of the first Lyapunov coefficients with AVR gain, KA  
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5. DELAYED FEEDBACK CONTROLLER 

This chapter introduces a novel controller based on the delayed feedback control 

theory to stabilize unstable torsional oscillations on the turbine-generator shaft 

system due to the SSR.  Also known as Time-Delay Auto Synchronization (TDAS), 

the delayed feedback control scheme makes use of the current and time delayed 

values of an observable state variable in a dynamic system to obtain a stabilizing 

signal.  

Over the last decade, the TDAS control method has been successfully implemented 

in quite diverse experimental systems to stabilize both unstable periodic orbits and 

unstable steady states. From the view point of optimization requirements, the time 

delay (τ) and the DFC gain (KDFC) are the only parameters to be optimally set in the 

proposed controller. It is found that the optimum value of the DFC time delay is 

related to the imaginary parts of the unstable mode eigenvalues.  

The Delayed Feedback Controller (DFC) developed in this Dissertation is combined 

into the SMIB power system model through the excitation system with AVR and 

uses the generator rotor angular speed signal as the only input.       

5.1 Delayed Feedback Controller 

The block diagram of the DFC is shown in Fig. 5.1. The DFC uses the generator 

rotor angular speed as the sole input signal. The difference between τ-time delayed 

input signal and its current value is multiplied by a gain to obtain the stabilizing 

output signal (VS).  

 

Figure 5.1 : Delayed Feedback Controller (DFC) 

ܸܵ ሻ KDFC߬‐ݐሺݎሻ Σ ൅߱ݐሺݎ߱  
െ

Time Delay 
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The output signal VS is then added to the AVR block as shown in Fig. 5.2. 

 
Figure 5.2 : Excitation System with AVR and DFC 

The expression for ௌܸ can be written as 

ௌܸሺݐሻ=KDFC ሺ߱௥ሺݐ‐߬ሻ െ ߱௥ሺݐሻሻ                 (5.1) 

Due to the intricate nature of the delayed nonlinear differential equations, an analytic 

approach to study the DFC effect on the model dynamic stability is extremely 

complex. 

5.2 The DFC Performance 

The effectiveness of the DFC is investigated by time domain simulations using the 

software MATLAB-Simulink. A negative pulse torque disturbance identical to the 

one in Chapters 3 and 4 is applied on the generator operating at steady state for the 

purpose of exciting the natural oscillation modes in the model.  

Fig. 5.3 shows the generator rotor speed response without DFC at 55% series 

compensation. The unstable torsional oscillations increase in magnitude until a 

sudden drop after t≈27s. The dynamic response is in the form of sudden drop 

following the growing oscillations in the unstable modes for the series compensation 

levels at which the system is unstable.   

With Tm=0.91, KA=250, V0=1.0 and Vref =1.0953, the generator rotor angular speed 

response is obtained for the cases with the controller at for 0.75=ߤ ,0.55=ߤ and 

 at all three of which the nonlinear dynamic system is not stable. Figs. 5.4 to 0.85=ߤ

5.16 show the generator rotor speed responses with DFC.  
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Figure 5.3 : Generator rotor speed response without the DFC (0.55=ߤ) 

 
Figure 5.4 : Generator rotor speed response with DFC (0.55=ߤ, τ = 0.0185s, 

KDFC=76) 
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Figure 5.5 : Generator rotor speed with the DFC (0.75=ߤ, τ = 0.0175s) 

 
Figure 5.6 : Generator rotor speed with the DFC (0.85=ߤ, τ=0.0135s) 
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It is evident from the time domain simulations that the designed controller gives 

superior results. Consequently, provided that the control parameters are set correctly, 

the controller effectively damps the unstable torsional oscillations due to SSR in the 

model.  

Figs. 5.7 to 5.9 show the output of DFC. Due to the local mode oscillations following 

the disturbance, DFC output remains high until the local mode oscillations decay and 

disappear. Blocking the controller output along the period during which the 

magnitude of the local mode oscillations remains higher than a certain limit or 

filtering out the low frequency components in the input signal of the controller can 

improve the controller performance by preventing the controller action for the stable 

modes.  

It is important to note that the generator terminal voltage is also affected by DFC 

since the controller is combined with AVR. Terminal voltage regulating function of 

AVR is critical from the view point of transient stability and operational reliability. 

Therefore, the impact of DFC on the regulating duty of AVR is also investigated. It 

is evident from Figs. 5.10 to 5.12 that the generator terminal voltage is successfully 

maintained at its set value following the initial oscillations. 

 
Figure 5.7 : The DFC output (0.55=ߤ, τ=0.0185s, KDFC=76) 
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Figure 5.8 : The DFC output (0.75=ߤ, τ = 0.0175s, KDFC=76) 

 
Figure 5.9 : The DFC output (0.85=ߤ, τ = 0.0135s, KDFC=76) 
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Figure 5.10 : Generator terminal voltage with the DFC (0.55=ߤ, τ=0.0185s) 

 
Figure 5.11 : Generator voltage with DFC (0.75=ߤ, τ=0.0175s, KDFC=76) 
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Figure 5.12 : Generator voltage with the DFC (τ=0.0135s, KDFC=76) 

It is important to emphasize that the DFC effectiveness in stabilizing the unstable 

torsional oscillations due to SSR depends on the optimal setting of the control 

parameters τ and KDFC. Furthermore, applying a high pass filter to the input signal ߱௥ 

can improve the overall dynamic response by eliminating the effect of the local 

swing mode oscillation which is stable on the controller output and therefore no 

damping improvement is needed for the purpose of preventing the turbine-shaft 

fatigue.   

5.3 Optimization of the DFC Parameters  

In the absence of a convenient method to obtain the DFC control parameters 

analytically, the Optimization Performance Index (OPI) based on the evaluation of 

time domain simulations is defined as follows: 

OPI(τ, KDFC)=max (߱ݎሺݐሻ) – min (߱ݎሺݐሻ)        5.2 

over a time interval from 13=ݐs to 15=ݐs. The selection of other time intervals is also 

possible as long as the OPI variations are significant along the time range and the 

initial stable oscillations disappear substantially before the start of the selected time 
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interval. Difference between the maximum and minimum values of the generator 

rotor speed at the specified time interval is a measure of the stabilizing performance 

of the DFC with the set control parameters.  

The optimization procedure involves performing time domain simulations and 

determining the OPI for various values of τ. The optimum DFC time delay is the 

value at which the minimum OPI is achieved. Upon determining the optimum time 

delay for the controller, in a similar manner, the time domain simulations are carried 

out for a certain range of KDFC. The optimum value of KDFC is the gain with which 

the minimum OPI is obtained. The procedure also allows assessing the control 

parameter sensitivity of the DFC. 

With Tm=0.91, KA=250, V0=1.0 and Vref =1.0953, the generator rotor is subjected to 

the identical disturbance as in Section 5.2 in order to excite the system natural 

oscillation modes. Figs. 5.15 to 5.17 show the OPI values for a range of the DFC 

time delay at three levels of the series compensation factor, 0.75=ߤ ,0.55=ߤ and 

 for which the optimum DFC time delays are found 0.185s, 0.175s and 0.135 0.85=ߤ

for KDFC=76, respectively.  

 
Figure 5.13 : OPI vs DFC time delay. τopt=0.0185s (0.55=ߤ, KDFC=76) 
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Figure 5.14 : OPI vs DFC time delay. τopt=0.0175s (0.75=ߤ, KDFC=76) 

 
Figure 5.15 : OPI vs DFC time delay. τopt=0.0135s (0.85=ߤ, KDFC=76) 

Figs. 5.15 to 5.17 show the evaluated OPI values that result in good performance of 
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the controller for a range of the DFC time delay at three levels of the series 

compensation factor, 0.75=ߤ ,0.55=ߤ and 0.85=ߤ for which the optimum DFC time 

delays of 0.185s, 0.175s and 0.135 for respectively. It is concluded that setting KDFC 

parameter to a value between 70 and 80 results in an effective DFC performance as 

long as τ is optimally set. 

The time delay values of the controller giving the optimum performance based on the 

evaluated OPI for the values of the series compensation levels through which the 

dynamic system is unstable due to the Hopf bifurcations occurring in the first and the 

second torsional modes are shown in Fig. 5.21.  

It is interesting to observe that setting the time delay to 0.018 for the series 

compensation levels at which the second torsional mode is unstable results in an 

acceptable performance. As for the series compensation levels through which the 

first torsional mode is unstable, setting the time delay to 0.014 ensures that the 

controller provides damping the unstable torsional oscillations adequately.    

 

Figure 5.16 : OPI vs DFC gain (0.55=ߤ, τ=0.0185s) 
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Figure 5.17 : OPI vs DFC gain (0.75=ߤ, τ=0.0175s) 

 
Figure 5.18 : OPI vs DFC gain (0.85=ߤ, τ=0.0135s) 
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Figure 5.19 : DFC time delay optimum values (Tm=0.91, Vref =1.0953, KDFC=76) 

5.4 DFC Performance at Different Operating Conditions 

The optimum values of the DFC parameters which are effective at one operating 

condition may not yield the same performance at other operating conditions. The 

correct setting of the DFC time delay parameter is important to ensure an effective 

controller performance. With fixed series compensation factor, the optimum value of 

the DFC time delay varies depending on the operating conditions such as the loading 

level (i.e. mechanical torque input) of the generator and the AVR reference voltage.  

5.4.1 DFC Optimum Time Delay Depending on the Loading Level 

Fig 5.22 and Fig 5.23 show the generator rotor speed responses for Tm=0.60 and 

Tm=0.75, respectively. The AVR reference voltage is adjusted to regulate the 

generator terminal voltage at 1.09 p.u. Employing the optimization procedure 

described in 1.3, the optimum value of τ for Tm=0.60 has been computed as 0.022s. 

Repeating the procedure for Tm=0.75 gives an optimum value of 0.20s. In each case, 

the disturbance torque applied on the generator shaft is 50% of Tm. 
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Figure 5.20 : Generator rotor speed (0.55=ߤ, Tm=0.60, Vref =1.09, τ = 0.022s) 

 

Figure 5.21 : Generator rotor speed (0.55=ߤ, Tm=0.75, Vref =1.09, τ = 0.020s) 
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5.4.2 DFC Optimum Time Delay Depending on the AVR Reference Voltage 

The AVR regulates the generator terminal voltage by comparing the actual terminal 

voltage with the AVR reference voltage set value (Vref). The optimum τ also varies 

with Vref. In Section 4.3, the optimum τ was evaluated as 0.0185s for Vref =1.0953 

p.u. (0.55=ߤ, Tm=0.91). The generator terminal voltage was regulated at 1.0871 p.u. 

In order to assess the effectiveness of the DFC with τ=0.0185s at a lower generator 

terminal voltage regulated at 1.0577 p.u. (Vref =1.0657 p.u.), an external torque of 

50% of Tm is applied and the generator rotor speed response is obtained as shown in 

Fig. 5.24.  

Evaluation the OPI values reveals that the optimum τ is 0.0160s for Vref =1.0657 and 

it is smaller than the optimum τ computed for Vref =1.0953. Fig. 5.25 shows the 

generator rotor speed response with τ=0.0160s. The DFC performances for both 

cases are almost the same and the equilibrium condition is reached. Extending the 

DFC parameters optimization to evaluate the DFC gain (KDFC), the optimum KDFC 

has been found as 45. With both parameters optimized, the DFC yields a slightly 

better performance, as shown in Fig. 5.26.   

 
Figure 5.22 : Generator rotor speed (0.55=ߤ, Tm=0.91, Vref =1.0657, τ = 0.0185s) 
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Figure 5.23 : Generator rotor speed (0.55=ߤ, Vref =1.0657, τ=0.0160s, KDFC=76) 

 

Figure 5.24 : Generator rotor speed (0.55=ߤ, Vref =1.0657, τ=0.0160s, KDFC=45) 
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The nonlinear state feedback controller proposed by Harb and Widyan [28] requires 

two state signals to obtain a control signal, which is computed by subtracting ߱13 

(the first-turbine generator section) from ߱3ݎ. Although the nonlinear controller 

stabilizes the operating point at all realistic series compensation levels, the damping 

of torsional oscillations takes much longer when compared with the DFC, which 

requires the measurement of only one state signal (߱ݎ). The fast damping of the 

torsional oscillations prevents high cycle fatigue formation on the shaft. 

As a result, it is required that both control parameters of the DFC (i.e. τ and KDFC) 

are optimized in order to obtain an effective performance from the controller. The 

DFC optimum set values depend upon the operating parameters such as the series 

compensation, the mechanical torque input to the generator and the AVR reference 

voltage.  

In order to overcome the difficulties with the requirement to compute the DFC 

parameters optimally for each operating condition, an adaptive approach which 

involves changing the DFC parameters based on the on-line performance evaluation 

of the damping performance can be implemented.   
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6. THE EFFECT OF LIMITERS ON THE DFC PERFORMANCE 

In this chapter, the limiters will be included in the AVR and the delayed feedback 

controller and their effect on the controller performance will be investigated. The 

function of AVR limiter is to limit the output of the regulator so that the exciter and 

synchronous generator operate within design limits. The DFC limiters are applied to 

prevent the stabilizing control signal from blocking voltage regulation function of the 

AVR.    

6.1 AVR and DFC with Limiters 

The block diagram of the excitation system with AVR and DFC with limiters is 

shown in Fig. 6.1. The regulator output limiter keeps  ோܸ within the limits ோܸMAX and 

ோܸMIN. The DFC output limiter acts to limit stabilizing control signal ( ோܸ) within the 

limits ௌܸMAX and ௌܸMAX.  

 
Figure 6.1 : AVR and DFC with limiters 

The settings of the limiters are given below: 

  ோܸMAX = 7.3 p.u. ோܸMIN = -7.3 p.u. 

  ௌܸMAX = 0.15 p.u. ௌܸMIN = -0.15 p.u. 
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6.2 The DFC Performance with Limiters 

The effect of the limiters on the DFC performance is studied for the cases 0.55=ߤ, 

 The presence of limiters prevents the DFC and the AVR output .0.85=ߤ and 0.75=ߤ

from reaching to unrealistic values. Therefore, the representation of the power 

system under study is more accurate. With Tm=0.91, V0=1.0 and Vref =1.0953, the 

synchronous generator rotor is subjected to the identical torque disturbance of 0.46 

p.u. at t=1s in order to excite the natural oscillation modes, as in Chapter 5. 

Figs 6.2 and 6.3 show the generator rotor speed response and the load angle for 

 respectively. It is evident that both state variables remain within the ,0.55=ߤ

acceptable limits and the effectiveness of the DFC is not altered significantly with 

the introduction of the limiters at the series compensation level of 0.55. As shown in 

Fig. 6.4, the DFC and AVR limiters become active for several seconds following the 

disturbance. During the short time interval that the DFC and AVR outputs are 

limited, the stabilizing performance of the delayed feedback controller is not 

effective. The generator terminal voltage momentarily drops to 0.97 p.u. and rises to 

1.22 p.u. before it eventually reaches to near equilibrium, as shown in Fig. 6.5-b. 

 

Figure 6.2 : Generator rotor speed with DFC and AVR limiters (0.55=ߤ) 
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Figure 6.3 : Generator rotor angle with DFC and AVR limiters (0.55=ߤ) 

 

Figure 6.4 : (a) DFC output, ܸܵ and (b) Regulator output, ܸܴ (0.55=ߤ) 
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Figure 6.5 : (a) Exciter output, ݂݀ܧ and (b) Terminal voltage, ܸ(0.55=ߤ) ݐ   

Similarly, the case with 0.75=ߤ yields an effective controller performance with the 

DFC and AVR limiters. Fig. 6.6 shows that the generator rotor speed reaches to 

equilibrium without experiencing unstable oscillations. The load angle also remains 

within the transient stability range, as shown in Fig. 6.7.  

The DFC and AVR limiters cut in shortly after the disturbance as in the case with 

 As a result of the rapid decay in the local swing mode oscillations, the .0.55=ߤ

regulator limiter cuts out at t ≈ 3s. The DFC limiter becomes active relatively shorter 

than the regulator limiter, as shown in Fig. 6.8.  

Different from the case 0.55=ߤ, the DFC and AVR outputs continue to oscillate at 

decaying magnitudes even though the state variables reach near equilibrium at t ≈ 8s. 

Moreover, Fig. 6.9 shows that the generator terminal voltage experiences minimum 

and maximum instantaneous values of 0.97 p.u. and 1.23 p.u., respectively. 

 Consequently, the inclusion of DFC and AVR limiters do not cause a significant 

reduction on the effectiveness of the controller and it can effectively damp the 

unstable torsional oscillations due to SSR even at a practically high level of series 

compensation. 
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Figure 6.6 : Generator rotor speed with DFC and AVR limiters (0.75=ߤ) 

 
Figure 6.7 : Generator rotor angle with DFC and AVR limiters (0.75=ߤ) 
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Figure 6.8 : (a) DFC output, ܸܵ and (b) Regulator output, ܸܴ (0.75=ߤ)   

 

Figure 6.9 : (a) Exciter output, ݂݀ܧ and (b) Terminal voltage, ܸ(0.75=ߤ) ݐ   
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The DFC with limiters does not yield effective performance in stabilizing the 

subsynchronous oscillations for the case with 0.85=ߤ. Fig. 6.10 shows that the 

magnitude of generator rotor speed oscillations increases following the disturbance 

and equilibrium condition is not reached. The reason for ineffective controller 

performance is that the DFC and AVR limiters become active following the 

disturbance as shown in Fig. 6.11.  

It is thought that the eigenvalue real part of the unstable mode (σuns) plays an 

important role on the effectiveness of the DFC. The greater σuns results in faster 

increase in the magnitude of the unstable oscillations. In the cases at which the DFC 

effectively stabilized the unstable modes, 0.55=ߤ (σuns=0.25 s-1) and 0.75=ߤ 

(σuns1=0.67 s-1 and σuns2=0.02 s-1), the value of σuns is relatively small when compared 

with the case at which the DFC is not effective, 0.85=ߤ (σuns=1.99 s-1). From the 

view point of practical operating limits for series capacitors, the compensation factor 

usually lies between 0.20 and 0.70 [65]. Therefore, the effectiveness of the DFC 

performance at series compensation levels lower than 80% is considered to be 

adequate. 

 
Figure 6.10 : Generator rotor speed with DFC and AVR limiters (0.85=ߤ) 
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Figure 6.11 : (a) DFC output, ܸܵ and (b) Regulator output, ܸܴ (0.85=ߤ)   

 
Figure 6.12 : (a) Exciter output and (b) Generator terminal voltage (0.85=ߤ) 
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7. CONCLUSION 

In this dissertation, Hopf bifurcations in the first system of the IEEE Second 

Benchmark Model for SSR studies have been analyzed using the bifurcation theory. 

Damper windings of the synchronous generator have been included in the nonlinear 

model. The first-order nonlinear autonomous ODEs were obtained to represent the 

dynamics of the dynamic model. The existence of Hopf bifurcations in the model has 

been verified. Instead of employing the Floquet theory, we have computed the first 

Lyapunov coefficients analytically in order to determine whether the Hopf 

bifurcations are subcritical or supercritical. The compensation factor has been used 

as the bifurcation parameter.  

In the case with constant field voltage, the type of Hopf bifurcations occurring in the 

nonlinear model is found subcritical. On the other hand, supercritical Hopf 

bifurcation occurs in the model with AVR. The effects of variations in the 

mechanical torque input to the generator, network voltage, field current and the AVR 

gain on the type of Hopf bifurcation and the Hopf bifurcation point have also been 

investigated. The Hopf bifurcation points Time domain simulations in MATLAB-

Simulink have been presented to demonstrate the validity of analytic findings.  

In addition, a novel controller based on the delayed feedback control theory for 

damping the unstable torsional oscillations caused by SSR has been developed. The 

proposed TDAS controller uses the synchronous generator rotor angular speed 

signal, an accessible state variable, as the only input. Time domain simulations show 

that the TDAS controller successfully stabilizes the unstable torsional oscillations 

provided that the time delay and gain parameters are optimized. An optimization 

performance index has been defined and the optimum parameters for the time delay 

and the gain of the TDAS controller have been evaluated. Despite the inclusion of 

AVR and DFC limiters results in ineffective stabilizing performance at very high 

compensation levels, the designed controller yields effective performance within the 

practical range of series compensation levels. 
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In summary, the following conclusions are made: 

• In the IEEE SBM for SSR studies, the Hopf bifurcations occurring in the first 

and the second torsional mode are subcritical if the excitation system supplies 

constant field voltage. 

• The inclusion of Automatic Voltage Regulator into the excitation system 

results in supercritical Hopf bifurcations. 

• The operating parameters other than the series compensation factor have also 

impact on the Hopf bifurcation point and the type of Hopf bifurcation.  

• The proposed TDAS controller based on the delayed feedback control theory 

is effective for damping the unstable torsional oscillations due to SSR in the 

studied model. 

• The optimum time delay parameter of the TDAS controller depends on the 

imaginary part of the eigenvalue of the unstable mode. 

• At the practical levels of the series compensation factor (i.e. 0.20-0.75), the 

proposed TDAS controller yields effective performance even if the AVR 

limiters are included into the model. 

• As the eigenvalue real part of the unstable mode increases, the effectiveness 

of the TDAS controller decreases. 

The major contributions in this dissertation are as follows: 

1. Use of the first Lyapunov coefficient in order to determine the type of the 

Hopf bifurcations in a power system experiencing SSR. 

2. Development of a novel controller based on the delayed feedback control 

theory for the purpose of stabilizing the unstable torsional oscillations due to 

SSR. The proposed TDAS controller yields an effective performance. 

3. Development of an optimization performance index for the evaluation of 

optimum parameters of the TDAS controller. 
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The future study based on the contributions in this dissertation should concentrate on 

the following areas: 

1. Improvement of the evaluation procedure for the optimum control parameters 

of the TDAS controller. 

2. Adaptive determination of the TDAS controller optimum parameters 

depending on various operating conditions. 

3. Application of the TDAS controller to the other models for SSR studies (e.g. 

IEEE First Benchmark Model) and to the power systems with various 

configurations. 

4. Investigation of effectiveness of the TDAS controller in damping local mode 

oscillations as an alternative to Power System Stabilizers. 

5. Application of the TDAS controller to provide additional damping for 

torsional oscillation modes for mitigating fatigue deformation. 

6. Development of an analytic framework to explain the effectiveness of the 

TDAS controller and identify methods for optimal tuning of the control 

parameters 
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APPENDIX A.1 

 

Calculation of p and q Complex Vectors 

Define Vq and Dq as the eigenvectors matrix and the eigenvalue matrix of the 

Jacobian matrix (Jnxn) at the Hopf bifurcation point so that J * Vq = V * Dq. Matrix 

Vq is the modal matrix - its columns are the eigenvectors of J. Matrix Dq is the 

canonical form of J - a diagonal matrix with J's eigenvalues on the main diagonal.  

Let iHq denote the eigenvalue index with real (λiHq) = 0 and imag (λiHq) of the 

eigenvalues of J. Orthogonal-triangular decomposition of the real and imaginary 

vector of Vj,iHq , where j=1,2,…,n, gives the unitary matrix ࢗࡽ. 

Define also Vp and Dp as the eigenvectors matrix and the eigenvalue matrix of JT
nxn 

at the Hopf bifurcation point so that JT Vp = V Dp. Matrix Vp is the modal matrix - 

its columns are the eigenvectors of JT. Matrix Dp is the canonical form of J - a 

diagonal matrix with JT's eigenvalues on the main diagonal.  

Let iHp denote the eigenvalue index with real (λiHp) = 0 and imag (λiHp) = w0 , w0 >0, 

of the eigenvalues of JT. Orthogonal-triangular decomposition of the real and 

imaginary vector of Vj,iHp , where j=1,2,…,n, gives the unitary matrix ࢖ࡽ. 

 R = J * J + w0
 ଶ௫ଶ                 (A.1)ࡵ * 2

 V = ቈ
܀ ࢖ࡽ

ࢗࡽ
ࢀ ૙ଶ௫ଶ

቉
ିଵ

ሾ૙௡௫ଶ  ଶ௫ଶሿ               (A.2)ࡵ

W = ቈ
ࡾ ࢖ࡽ

ࢗࡽ
ࢀ ૙ଶ௫ଶ

቉
்షభ

ሾ૙௡௫ଶ  ଶ௫ଶሿ               (A.3)ࡵ

ܙۯ   ൌ ଵ:௡,ଵ்܄ כ J כ ଵ:௡,ଶ܄ െ ݅߱଴܄ଵ:௡,ଵ் כ  ଵ:௡,ଶ               (A.4)܄

ܙ۰   ൌ െ܄ଵ:௡,ଵ் כ J כ ଵ:௡,ଶ܄ ൅ ݅߱଴܄ଵ:௡,ଵ் כ  ଵ:௡,ଶ               (A.5)܄

ܘۯ   ൌ ଵ:௡,ଵ܅
் כ J܂ כ ଵ:௡,ଶ܅ ൅ ݅߱଴܅ଵ:௡,ଵ

் כ  ଵ:௡,ଶ               (A.6)܅
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ܘ۰   ൌ െ܅ଵ:௡,ଵ
் כ J܂ כ ଵ:௡,ଶ܅ െ ݅߱଴܅ଵ:௡,ଵ

் כ  ଵ:௡,ଶ               (A.7)܅

૙ܙ ൌ ܙۯ כ ଵ:௡,ଵ܄ ൅ ܙ۰ כ  ଵ:௡,ଶ                          (A.8)܄

૙ܘ ൌ ܘۯ ଵ:௡,ଵ܅כ ൅ ܘ۰ כ  ଵ:௡,ଶ                          (A.9)܅

Finally, normalization of ܙ૙ and ܘ૙ gives p and q : 

ࢗ ൌ
૙ܙ

ሺ∑ ሺࢗ૙࢏ሻଶሻଵ/ଶ௡
௜

                                                                                              (A.10) 

࢖ ൌ
૙ܘ

ሺ்ࢗ כ ૙ሻܘ
                                                                                                      (A.11) 
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