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HOPF BIFURCATIONS IN A POWER SYSTEM SUSCEPTIBLE TO
SUBSYNCHRONOUS RESONANCE AND A NOVEL CONTROLLER FOR
DAMPING TORSIONAL OSCILLATIONS

SUMMARY

In this study, bifurcation theory is employed for the analysis of torsional oscillations
in a power system, which consists of a synchronous generator connected to an
infinite busbar through two parallel transmission lines, one of which is equipped with
a series compensation capacitor. The first system of the IEEE Second Benchmark
Model for Subsynchronous Resonance studies has been used. Damper windings of
the synchronous generator are included in the nonlinear model.

Synchronous generators connected to transmission lines with series capacitor
compensation are potentially subject to the interaction between the subsynchronous
electrical mode and torsional oscillation modes of the turbine generator shaft system.
This phenomenon is called Subsynchronous Resonance (SSR). Hopf bifurcation
occurs at certain values of the series compensation factor. Instead of employing the
Floquet multipliers method reported in the literature, the first Lyapunov coefficients
are computed analytically to determine the type of Hopf bifurcation (subcritical or
supercritical) existing in the power system under study. The impact of mechanical
torque input, network voltage level and field voltage on the Hopf bifurcation point
and the first Lyapunov coefficient is also explored.

Moreover, an automatic voltage regulator (AVR) is included into the model. It is
shown that subcritical Hopf bifurcations in the model without AVR changes to
supercritical Hopf bifurcation if the AVR is added to the model.

In addition, a novel controller based on the delayed feedback control theory has been
developed for damping the unstable torsional oscillations caused by SSR. The
proposed Time Delay Auto-Synchronization controller has two set parameters to be
tuned and uses the state variable synchronous generator rotor angular speed as the
only input. The optimal values of the controller time delay and gain parameters have
been determined by computing a performance index evaluating the dynamic
responses in time domain. The effectiveness of the proposed controller is
demonstrated via time-domain simulations in MATLAB-Simulink.

Finally, the impact of AVR and TDAS controller limiters on the damping
performance is also investigated. It is demonstrated that the controller is effective
even in the presence of limiters within the practical operating ranges of series
capacitor compensation.
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SENKRONALTI REZONANSA DUYARLI BiR GUC SISTEMINDE HOPF
CATALLANMALARI VE BURULMA SALINIMLARININ
SONUMLENDIRILMESI iCiN YENIi BiR KONTROLOR

OZET

Bu c¢alismada, bir elektrik gii¢ sistemindeki burulma salinimlarinin analizi igin
catallanma teorisinden yararlanilmistir. Modellenen elektrik gii¢ sistemi, birinde seri
kapasitor kompanzasyonu bulunan iki paralel iletim hatt1 iizerinden sonsuz baraya
bagli bir senkron makine icermektedir. Senkronalti rezonans arastirmalari igin
gelistirilen IEEE Ikinci Gosterge Modelinin birinci sistemi kullamlmgtir. Senkron
makinenin amortisor sargilari dogrusal olmayan modele dahil edilmistir.

Seri kompanzasyon kapasitor tesis edilmis olan iletim hatlarina bagli senkron
makineler, potansiyel olarak senkronalti elektrik modunun, tiirbin-generator saft
sisteminin burulma salinim modlar ile etkilesimine maruz kalabilirler. Bu olay
senkronaltt rezonans (SSR) olarak isimlendirilir. Belirli seri kompanzasyon
degerlerinde Hopf ¢atallanmasi meydana gelir. Modellenen elektrik gii¢ sisteminde
meydana gelen Hopf c¢atallanmalarinin hangi tip oldugu (kritik-alt1 veya kritik-iistii),
literatiirde yaygin bigimde kullanilan Floquet g¢arpanlar1 yontemi yerine, birinci
Lyapunov katsayilarinin analitik olarak hesaplanmasi ile belirlenmistir. Mekanik
tork degeri, sebeke gerilim seviyesi ve uyart1 geriliminin Hopf ¢atallanma noktalari
ile birinci Lyapunov katsayisinin degeri lizerindeki etkileri aragtirilmistir.

Ek olarak, Otomatik Gerilim Diizenleyicisinin (AVR) Hopf ¢atallanmas1 tizerindeki
etkisi de incelenmis ve AVR icermeyen modelde kritik-alti olan Hopf
catallanmasinin, AVR ilave edildigi zaman kritik-listi Hopf catallanmasina
doniistiigli gdsterilmistir.

Ayrica, SSR sonucu ortaya ¢ikan kararsiz burulma salinimlarini soniimlendirmek
icin, zaman gecikmeli geri besleme teorisine dayanan bir kontrolor tasarlanmustir.
Onerilen Zaman Gecikmeli Otosenkronizasyon Kontroloriiniin iki adet ayar degeri
mevcuttur ve girdi olarak kullandig1 tek durum degiskeni, senkron makine rotorunun
acisal hizidir. Kontroloriin zaman gecikme ve kazang parametreleri i¢in uygun
degerler, sistemin dinamik cevabin1 degerlendiren bir performans endeksi
hesaplanarak belirlenmistir. Onerilen kontroldriin ektili sonuglar verdigi, MATLAB-
Simulink kullanilarak gerceklestirilen simiilasyonlar ile gosterilmistir.

Son olarak, AVR ve kontrolor ¢ikis siirlayicilarinin sontimlendirme performansi
tizerindeki etkileri de arastirilmis ve seri kapasitér kompanzasyonun pratik degerleri
icin, sirlayicilarin meveut oldugu durumda da kontroloriin  etkili oldugu
gosterilmistir.
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1. INTRODUCTION

Series capacitor compensation of AC transmission lines is an effective way of
increasing load carrying capacity and enhancing transient stability in electric power
systems [1]. However, potential danger of interaction between torsional oscillation
modes of the turbine generator shaft system and the subsynchronous electrical mode
may arise in electric power systems consisting of turbine-generators connected to
transmission lines with series compensation capacitors. This phenomenon is called
Subsynchronous Resonance (SSR). Unless adequate measures are implemented, SSR
can lead to turbine-generator shaft failures as occurred at the Mohave Power Plant in

Southern Nevada in the USA in 1970 [2].

1.1 Statement of the Problem

The SSR condition due to the interaction between the electrical subsynchronous
mode and turbine-generator torsional modes occurs through a Hopf bifurcation. The
determination of the type of Hopf bifurcation (i.e. subcritical or supercritical) is
important to identify the stability of limit cycles arising out of the Hopf bifurcation.
The rigorous method of computing the first Lyapunov coefficient is well suited for
this task because of the analytic techniques involved in the process. Moreover, the
impact of Automatic Voltage Regulator and dynamic parameters on the first
Lyapunov coefficient, thereby on the stability of limit cycles is an area requiring

further research.

Furthermore, it is crucial to mitigate the risk of a catastrophic failure of turbine-
generator shafts due to SSR. In recent years, the delayed feedback control theory has
been widely applied to improve damping in dynamic systems. The development of a
delayed feedback controller for damping the torsional oscillations caused by SSR can
bring substantial benefits including the further utilization of series capacitor
compensation and mitigating the fatigue deformation on turbine-generator shafts due

to torsional oscillations.



1.2 Objectives of the Dissertation

In this dissertation, the first system of the IEEE SBM for SSR studies is used to
analyze Hopf bifurcations occurring in a power system experiencing SSR. The
single-machine-infinite-busbar (SMIB) power system, which consists of a
synchronous generator connected to an infinite busbar through two parallel
transmission lines, one of which is equipped with an adjustable series capacitor, is
modeled using autonomous ordinary differential equations. The inherently nonlinear
model representing the dynamics of the turbine-generator shaft system and network
components is analyzed by employing the bifurcation theory. The oscillation modes
and their stability at various operating conditions are studied taking the series
compensation factor as the bifurcation parameter. The interaction between the
subsynchronous electrical mode and the torsional modes of the turbine-generator

mechanical system and the resulting effect on the stability are also investigated.

The existence of Hopf bifurcations in the SMIB power system under study is
verified. The first Lyapunov coefficient is computed analytically to determine the
type of Hopf bifurcation (i.e. supercritical or subcritical) through which the system
stability of equilibrium is lost. The impacts of the mechanical torque input, field
voltage, network voltage and the automatic voltage regulator (AVR) on the first
Lyapunov coefficient thereby on the characteristic of Hopf bifurcation are studied
separately. Time domain simulations are used to validate the analytic findings.
Transition from subcritical Hopf bifurcation to supercritical Hopf bifurcation is also

explored.

In addition, a novel controller based on the Delayed Feedback Control theory has
been developed for damping the unstable torsional oscillations due to the SSR. With
only two parameters to be optimally set, the proposed Time Delay Auto-
Synchronization (TDAS) controller requires the measurement of the synchronous
generator rotor angular speed, an easily accessible state variable. The TDAS
controller output is then combined into the automatic voltage regulator (AVR) as the
stabilizing signal. Time domain simulations in MATLAB-Simulink demonstrate that
the proposed TDAS controller is very effective for damping the unstable

subsynchronous oscillations.



Determining the optimum set values for time delay and gain parameters of the TDAS
controller involves evaluation of time domain simulations at various operating
conditions in the absence of a practical method for this purpose. This is mainly
because of the fact that the analysis of delay-differential systems is extremely
complex. Moreover, it is found that the controller effectiveness is not reduced with
the inclusion of AVR limiters in the range of practical operational levels of series

capacitor compensation.

1.3 Literature Review

Following the shaft failure incidents at the Mohave Power Plant in 1970,
considerable effort by researchers and industry professionals has been devoted to the
analysis of SSR phenomenon. Walker et al. [3] found that torsional fatigue caused
the shaft failures at Mohave. Farmer et al. [4] identified three types of SSR:

induction generator effect, torsional interaction effect, and transient torque effect.

The induction generator effect (IGE) occurs as a result of self excitation of the
synchronous generators when the resistance of the rotor circuits to the
subsynchronous current, viewed from the armature terminal, is negative [5]. If this
negative resistance of the generator is greater in magnitude than the positive
resistance of the network at the natural frequencies, then the electrical system

becomes self-excited.

Oscillations of the generator rotor speed at natural frequencies of the torsional modes
result in the modulation of the generator terminal voltage. The torsional interaction
effect (TIE) occurs if the frequency of the produced voltage component is close to
one of natural frequencies of the electric network. The resulting armature currents
produce a magnetic field which is phased to produce a torque which reinforces the
aforementioned generator rotor oscillations [6]. Turbine-generator shaft damage can

occur due to severe torque amplification.

Contrary to IGE and TIE, the transient torque effect (TTE) is not self-excited.
Following a significant system disturbance, natural modes of the turbine-generator
shaft system are excited, subjecting shaft segments to torsional stresses [7] which can

cause catastrophic shaft damage.



IEEE SSR Working Group has constructed three benchmark models for computer
simulation of the SSR [8, 9]. Analytical tools for studying the SSR involve frequency
scanning technique [10, 11], eigenvalue technique [12-13], the complex torque
coefficient method [14, 15] and time domain simulation programs [16-18]. The first

three techniques are linear and the fourth one is nonlinear.

In the frequency scanning method, the equivalent resistance and reactance looking
into the network from a point behind the stator winding of a generator are computed
as a function of frequency. The eigenvalue technique provides both the oscillation
frequencies and the damping values for each frequency using the linearized system
of differential equations representing the electric power system. The eigenvalue
method is very useful in the analysis of small systems. On the other hand, it is
difficult to apply in large power systems. In the complex torque coefficient method,
transfer function of the mechanical system is obtained using the linearized equations
of the multi-mass shaft system of a turbine generator. Then the resulting mechanical
transfer function is combined with the electrical transfer function, which represent
the effect of damping and synchronizing torques in order to identify torsional modes

and evaluate their stabilities.

Time domain simulation programs are used to avoid the disadvantages associated
with the linearization of the ordinary differential equations. Numerically integrating
the set of nonlinear ODEs representing a dynamic system, time domain simulation
programs enable detailed and accurate modeling and therefore are extremely useful
for the analysis of SSR problems. Among widely used ones are Electromagnetic
Transient Program (EMTP) and MATLAB-Simulink. Exponential growth observed
in the linearized methods does not occur in the nonlinear analysis performed using

the time domain simulation programs.

SSR countermeasures and mitigation techniques have been an active area of research
over decades. Hingorani [19] developed the NGH SSR damping scheme which
consists of a linear resistor and an anti-parallel thyristor combination across a series
compensation capacitor segment with measuring equipment and appropriate controls.
Zhao and Chen [20] proposed an improved NGH SSR damping scheme, adding SSR
detection and pre-firing functions to the original NGH scheme. The use of static

synchronous compensator (STATCOM), a flexible AC transmission system (FACT)
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device, for damping of subsynchronous oscillations was analyzed in [21-22].
Damping of torsional oscillations using excitation controllers and static VAR
compensators was studied in [23-24] and [25], respectively. Wang and Tseng [26]
proposed a damping scheme utilizing a superconducting magnetic storage (SMES)
unit to stabilize torsional oscillations. Wang [27] studied the first system of the IEEE
Second Benchmark Model by employing the modal control theory. Linear and
nonlinear state feedback controllers are proposed in [28] to control the bifurcation in

a power system susceptible to SSR.

Hopf bifurcation is defined as the birth of a limit cycle from equilibrium in a
nonlinear dynamical system governed by autonomous ODEs under variation of one
or more parameters on which the system is dependent. Hopf bifurcations associated
with the voltage stability in power systems were widely investigated by researchers
[29-34]. In the SSR area, Zhu et al. [35] demonstrated the existence of Hopf
bifurcations in a SMIB experiencing SSR and reported a limited oscillation behavior
at the Hopf bifurcation point. Iravani et al. [36] investigated Hopf bifurcation
phenomenon of the torsional dynamics. Harb [37] employed the bifurcation theory to
investigate the complex dynamics of SSR. The effect of the machine saturation on

SSR was also studied by Harb et al [38].

Floquet theory is widely used to study the stability of limit cycles. The procedure
involves the calculation of steady-state solutions, Hopf bifurcation points and the
branches of periodic orbits which emanate from the Hopf bifurcation points [32].
Then by tracing the evolution of the Floquet multipliers, one can observe the stability
of these solutions. One of the multipliers is always unity for an autonomous system.
If all the other multipliers are inside the unit circle in the complex plane, then the
limit cycle is orbitally stable. A multiplier crossing the unit circle is called a critical
multiplier. 1If only one multiplier crosses the unit circle along the positive real axis
then cyclic fold occurs. Period doubling, on the other hand, occurs when the critical
multiplier leaves the unit circle along the negative real axis. Only one pair of
complex conjugate multipliers crossing the unit circle indicates occurrence of a torus

bifurcation [39].

Another method to analyze Hopf bifurcations is to compute the first and second

Lyapunov coefficients [40]. Negative sign of the first Lyapunov coefficient
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corresponds to the occurrence of supercritical Hopf bifurcations through which an
orbitally stable limit cycle is born, whilst the first Lyapunov coefficient with positive
sign implies that a subcritical Hopf bifurcation occurs and an unstable limit cycle
bifurcates from equilibrium after loss of stability. If the first Lyapunov coefficient
vanishes with a nonzero second Lyapunov coefficient, then generalized Hopf
bifurcation occurs [41]. Kucukefe and Kaypmaz [42] investigated the Hopf
bifurcations occurring in the first system of the IEEE Second Benchmark Model for
SSR studies by computing the first Lyapunov coefficient.

In this dissertation, the emphasis is given to determining the type of Hopf bifurcation
by computing the first Lyapunov coefficient. Moreover, the impact of the operating
parameters other than the series compensation level on the first Lyapunov
coefficient, thereby on the type of Hopf bifurcation, has been investigated. From this
point of view, the dissertation differs from the studies of Zhu [35], who verified the
occurrence of SSR on the Boardman generator model, and Harb [37], who studied
the bifurcations depending on the variations in the series compensation level and also
determined the amplitudes of the limit cycles emanating from the Hopf bifurcation
on the Boardman and CHOLLA#4 generator models. Furthermore, both Zhu and
Harb employed the Floquet multipliers method to determine the type of Hopf

bifurcation.

Delayed feedback control [43] is a simple and efficient method to stabilize both
unstable periodic orbits (UPO) embedded in the strange attractors of chaotic systems
[44] and unstable steady states [45]. Also known as Time Delay Auto-
Synchronization (TDAS), this control scheme makes use of the current state of a
system and its state T-time unit in the past to generate a control signal. In the case
with UPOs, the most efficient control performance of TDAS scheme can be obtained
if time delay (1) corresponds to an integer multiple of the minimal period of the
unstable orbit. The method works best if T is set a value related to intrinsic
characteristic time scale given by the imaginary part of the system’s eigenvalue in
the case of unstable steady states [46]. Successful implementations of TDAS
algorithm are reported in diverse experimental systems including mechanical
pendulums [47], chemical systems [48], helicopter rotor blades [49], a cardiac
system [50], trajectory tracking [51], and absorption of mechanical vibrations [52].



1.4 Outline of the Dissertation

The dissertation is organized as follows. Chapter 2 gives a review of the bifurcation
theory and describes the procedures for computing the Lyapunov coefficients. In
Chapter 3, the first system of the IEEE SBM is described and its complete nonlinear
model is obtained. Furthermore, bifurcation analysis of the nonlinear model is
performed and the occurrence of Hopf bifurcations is verified. The first Lyapunov
coefficients are computed to determine the type of Hopf bifurcations. The AVR is
included into the model in Chapter 4 and its effect on the Hopf bifurcations is
investigated. Chapter 5 introduces the novel controller based on the Delayed
Feedback Control theory to stabilize the unstable torsional oscillations. Optimization
performance index to determine the optimal values of the controller is also described.

In Chapter 6, the effect of AVR and TDAS controller limiters is investigated.






2. REVIEW OF BIFURCATION THEORY

Bifurcation theory deals with qualitative changes in dynamical systems. As a
matured branch of mathematics, the theory offers useful tools in the analysis of
dynamical systems, particularly nonlinear ones. By definition, a nonlinear system is a
system which does not satisfy the superposition principle. The most common way to
define a continuous-time nonlinear dynamical system is to represent the system in
the form of autonomous ordinary differential equations (ODEs). Consider a

continuous-time nonlinear system depending on a parameter vector.

x=f(x,a), xeR", aeR™ 2.1

where f is smooth with respect to x and a. If varying the parameter vector a results
in qualitative changes in the system dynamic behavior in a way that different
behaviors (aperiodic, periodic, chaotic, etc.) and stability conditions are introduced,
these changes are called bifurcations and the parameter vector values at which the

changes occur are called bifurcation (critical) values.

2.1 Stability of Equilibrium Solutions

Suppose that nonlinear dynamical system (2.1) has an equilibrium at x°
(i.e. f(x% a®) = 0) and J denotes the Jacobian matrix of f(x) evaluated at the

equilibrium. The Jacobian matrix is defined as follows:

Oh ... 94
0x1 0xn

J=1 : : 2.2)
laxn aan

The eigenvalues of J provides information about the local stability of the equilibrium
solution. If all the eigenvalues A Az,...,A, of J satisfy Re(A,)<O for i=1,2,..,n, then the

system f(x°, a®) is asymptotically stable.



2.2 Bifurcation Mechanisms

There are different types of bifurcations. Among the most important ones are fold
bifurcation, pitchfork bifurcation, transcritical bifurcation, period doubling and Hopf
bifurcation [53]. Fold bifurcations are associated with dynamic systems which have
Jacobian matrix with a single zero eigenvalue while all the other eigenvalues remain
in the left half plane. This type of bifurcation has also other names such as saddle-
node bifurcation and turning point. Transcritical bifurcation is characterized by the
intersection of two bifurcation curves. Pitchfork bifurcations often occur in systems
with some symmetry, as a manifestation of symmetry braking. Period doubling
bifurcation, as its name implies, is a bifurcation in which the dynamic system
switches to a new behavior with twice the period of the previous system. The
bifurcation corresponding to the presence of distinct pair of purely imaginary
eigenvalues (A1, =tiw,, we>0) of the Jacobian matrix f,(x°, a®) is called a Hopf (or
Andronov-Hopf) bifurcation. A Hopf point is called transversal if the real part of the
parameter dependent complex eigenvalues creating the Hopf bifurcation condition
has non-zero derivative with respect to the bifurcation parameter (i.e.

d(Re(Ma))/da # 0 at a=ay). Transversality condition is usually met.

2.3 Hopf Bifurcation

Hopf bifurcation is the birth of limit cycles from equilibrium in dynamical systems
generated by ODEs, when the equilibrium changes stability via a purely imaginary
eigenvalues [54]. Limit cycles are periodic orbits that represent regular motions in a
dynamical system. Hopf bifurcations generate limit cycles from equilibrium.
Supercritical Hopf bifurcation results in a stable limit cycle and exists after the
bifurcation point, whereas an unstable limit cycle emanates from subcritical Hopf
bifurcation and is present before the critical value. In both cases, loss of stability of

the equilibrium occurs.

Floquet theory is widely employed in order to study the stability of limit cycles.
Floquet multipliers give information about the stability of a limit cycle. One
multiplier is always unity. A periodic orbit (i.e. limit cycle) is stable if the remaining
Floquet multipliers are smaller than unity in modulus. If all the other multipliers are

inside the unit circle in the complex plane, then the limit cycle is orbitally stable. A
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multiplier crossing the unit circle is called a critical multiplier. If only one multiplier
crosses the unit circle along the positive real axis then cyclic fold occurs. Period
doubling, on the other hand, occurs when the critical multiplier leaves the unit circle
along the negative real axis. Only one pair of complex conjugate multipliers crossing
the unit circle indicates occurrence of a torus bifurcation. The Floquet multipliers are
the eigenvalues of the monodromy matrix. Various algorithms for calculating the

monodromy matrix can be found in [54].

In this dissertation, we compute the first Lyapunov coefficient instead of obtaining
the Floquet multipliers in order to study the stability of limit cycles in a SMIB power
system susceptible to SSR. The type of Hopf bifurcation (i.e. Supercritical or
subcritical) is determined by computing the first Lyapunov coefficient at Hopf
bifurcation point. The first Lyapunov coefficient is negative if a supercritical Hopf
bifurcation occurs. On the other hand, positive sign of the first Lyapunov coefficient

corresponds to the occurrence of a subcritical Hopf bifurcation [40].

2.3.1 Subcritical Hopf Bifurcation

A subcritical Hopf bifurcation occurs when a stable equilibrium point and an
unstable limit cycle coalesce [55]. Consider the following nonlinear system of two

differential equations depending on one parameter [40]:

V1= By1— Y2 + 1% +¥3)

Y2 = Y1+ By, +y.(0F +¥5) (2.3)
Fig. 2.1 depicts the subcritical Hopf bifurcation occurring in the nonlinear system.

Yo Yo Yo

(o (€

\:7 Y1 Q&

1y

Yi K_// Y1

\&%

B<O =0 B>0

Figure 2.1 : Subcritical Hopf Bifurcation
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The system (2.3) is stable for § < 0 and unstable for f > 0. The loss of stability of the
equilibrium occurs at §=0 through Hopf bifurcation. The first Lyapunov coefficient
for the system (2.3) has a positive sign (/;(0) =2.0), indicating that the Hopf

bifurcation is subcritical. Therefore, there exists an unstable limit cycle.

The region of attraction of the equilibrium point is bounded by the unstable cycle,
which shrinks as the control parameter approaches it critical value and disappears.
Thus, the system is pushed out from a neighborhood of the equilibrium, giving a
sharp or catastrophic loss of stability. In this case, resetting the control parameter to a
negative value may not result in stable equilibrium since it may have left its stability

of attraction.

2.3.2 Supercritical Hopf Bifurcation

The supercritical Hopf bifurcation corresponds to the coalescing of an unstable

equilibrium point and a stable limit cycle [55].

As an example, consider the following system with two dimensions depending on

one parameter [40]:
V1 =By —y2 + 1 (f +¥3)

Y2 =y1 + By, +y. (v +y5) (2.4)

The loss of stability of equilibrium occurs at =0 through a Hopf bifurcation.
Contrary to (2.3), there is a stable limit cycle. All orbits starting inside or outside the
cycle for B> 0 tend to the cycle as ¢ —» +oo. The first Lyapunov coefficient has a

negative sign (/;(0) =-2.0), revealing that the Hopf bifurcation is supercritical.

Yo Yo Yo

Caiw @ Y1 G Y1
<O B=0 B :g

Figure 2.2 : Supercritical Hopf bifurcation
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2.4 Center Manifold Theorem

Center Manifold Theorem allows reducing the dimension of multidimensional
systems near a local bifurcation. The center manifold is an invariant manifold of the
differential equations which is tangent at the equilibrium point to the eigenspace of
the neutrally stable eigenvalues [56]. The complicated asymptotic behavior is
isolated by locating an invariant manifold tangent to the subspace spanned by the

eigenspace of eigenvalues on the imaginary axis.

The analysis of bifurcations of equilibria and fixed points in multidimensional
systems reduces to that for the differential equations restricted to the invariant W .
Since these bifurcations are determined by the normal form coefficients of the
restricted systems at the critical parameter value a®, one is able to compute the

c

center manifold W=W_, and ODEs restricted to this manifold up to sufficiently

high-order terms.

2.5 Lyapunov Coefficients

This section presents methods to compute the Lyapunov coefficients found in [39].
Unknown coefficients of the Taylor expansion of a function representing the center
manifold W€an be computed either by a recursive procedure or a projection
method. The former involves solving a linear system of algebraic equations at each
step whilst the latter uses eigenvectors corresponding to the critical eigenvalues of J
and to “project” the system into the critical eigenspace and its complement. The
projection procedure is based on the Fredholm Alternative Theorem and avoids the

transformation of the system into its eigenbasis.

Suppose the system (2.1) has the form

x=Jx+F(x),, x€R" 2.5)
where F (x) = 0(]|x||?) is a smooth function. We write its Taylor expansion near

x =0as

1 1 1 1
= — — - - 6
F(x) 2B(x,x)+6C(x,x,x)+24D(x,x,x,x)+120E(x,x,x,x,x)+0(||x|| )

(2.6)
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where B, C, D and E are multilinear vector functions. In coordinates, we have

Bi(x,y) = j:ﬂ% le=0 XYk 2.7
Ci(x,y,z) = j,;::l% le=0 XYk 21 (2.8)
Di(x,y,2,u) = j,k;ﬂ : ;] Zﬁgg;gm le=0 X YicZ1m 2.9
Ei(x,y,z,u,v) = j,k'szl agjaaitf}:g?lg;)ngp le=0 XY ZiUmVyp (2.10)
for i=1,2, .., n.

In case of a Hopf bifurcation, the Jacobian matrix J has a simple pair of complex
eigenvalues on the imaginary axis, A2 =+iwo, we>0, and these eigenvalues are the
only eigenvalues with Re(A) = 0. Let g € C™ be a complex eigenvector

corresponding to A;:

Jq =iwgq, Jq=—lwyq (2.11)
Introduce also the adjoint eigenvector p € C™ having the properties:

I'p =iwep, I'P=—iwyp (2.12)
The procedure for obtaining q and p complex eigenvectors is given in Appendix-A.

2.5.1 The First Lyapunov Coefficient

After normalization of (2.9) and (2.10) according to {(p,q) = 1, where (p,q) =
Y1 Diq; is the standard scalar product in C™, the following invariant expression

gives the first Lyapunov coefficient, /;(0):

1
1(0) = 5= Rel(p, €0, 4. 0)-2(B(@, T B@. D)) + (P, B@ 2ieo n-3) ™ B(@ @)

2.13)
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Whether a Hopf bifurcation is supercritical or subcritical can be found from the sign
of the first Lyapunov coefficient. Negative sign of /;(0) indicates a supercritical Hopf
bifurcation and positive /,(0) corresponds to a subcritical Hopf bifurcation. A Hopf
bifurcation of codimension 2 is a Hopf point where /;(0) vanishes, provided that the

second Lyapunov coefficient is nonzero [57].

2.5.2 The Second Lyapunov Coefficient

After normalization of (2.9) and (2.10) according to (p,q) = 1, the procedure for

deriving the expression for the second Lyapunov coefficient is as follows:

1 _ - _ _
[(0) = T Re[(p,E(q,9,9,9,9)+D(q,q,q, h20)+3D(q,q, q, h20)+6D(q,q,q, h11)
0

+C(q, , h3o)+3C(q, q, ha1)+6C(q, §, hy1)+3C(q, hao, hao)+6C(q, hy1, hyp)

+6C(q, hyg, hy1)+2B(q, h31)+3B(q, hys)+B(hyo, hso)

+3B(hyy, hy0)+6B(hy1, hy))] (2.14)
where

hao = 2iwoly-1) "' B(q, @) (2.15)

hy, =-I"'B(q,q) (2.16)

h3o = Biwoly-1)"[C(q, 9, 9)+3B(q, hy0)] (2.17)

ha1 = (iwoly-0) "' [C(q, 4, DB, hzo)+2B(q, h11)-2614] (2.18)

1
&1 =5(p,C(0,4,9)-2(B(q, 1" B(q, D) Hp, B@2iwol-) ' B(,9)) (2.19)

h31 = Qiwely-1) "' [D(q, 9,9, 7)+3C(q, q, h11)+3C(q, G, hyo)
+3B(hyo, h11)+B(q, h30)t3B(q, hp1)-6¢1hyg] (2.20)
hy, = ! [D(q,q,q,9)+4C(q,q, h11)+C(q, G, h20)+C(q, q, }_120)+2B(h11' hi1)

+2B(q, hy1)+2B(q, hy1)+B(hag, hyo)-4hys(c17C1)] (2.21)

Obtaining the second Lyapunov coefficient analytically is extremely complex.
Therefore, numerical methods available in the continuation and bifurcation software

MATCONT [58] can be used to calculate 75(0).
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2.6 Torus Bifurcation

It is important to note that various forms of bifurcations may occur in a nonlinear
system, following the loss stability of equilibrium through a Hopf bifurcation,

irrespective of birth of stable or unstable limit cycles.

Consider the following system [55] as an example:

y1 = (A =3)y; =025y, + y1[y3 + 0.2(1 — y3)]

Y2 = 0.25y; + (A = 3)y, + y2[ys + 0.2(1 = y3)] (2.22)
¥z =ys — O +¥5 +¥3)

There is a Hopf bifurcation for Ay=1.684 as illustrated in Fig. 2.3. The first
Lyapunov coefficient has a negative sign (/;(0) =-1.55). Hence, the type of Hopf
bifurcation is supercritical. Stable limit cycles with angular frequency w=0.25 rad/s
are born. On the other hand, a bifurcation into a torus occurs for 1;=2. Fig. 2.4 shows

three dimensional projection of the phase portrait for A=1.85 at which a stable limit

cycle exists. Bifurcation into torus for A=2.02 is depicted in Fig. 2.5.
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Oak ............................. .......................... _
OB Lo ............................. .......................... i
‘i.: Oak ............................ ........................... _
o, : :
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m : :
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E . .
= : :
iz adb ............................. fre _
OEE ............................. ............................ i
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-1 i 1
1 1.5 2 2.5
A

Figure 2.3 : Real part of imaginary eigenvalues w.r.t. 1 (Az=1.684)
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Figure 2.4 : Three dimensional projection for A=1.85 (Supercritical Hopf)

i -5 15

Figure 2.5: Three dimensional projection for A=2.02 (Torus bifurcation)
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3. SYSTEM DESCRIPTION AND MODELING

In this chapter, we construct a mathematical model of the first system of the IEEE
Second Benchmark Model for SSR studies. The SMIB power system consists of a
synchronous generator connected to an infinite busbar through two parallel
transmission lines, one of which is equipped with an adjustable series compensation
capacitor. We include the dynamics of the d-q axes generator damper windings in the
model. The excitation system is modeled without AVR and it supplies constant field
voltage. The turbine-governor dynamics and the effect of machine saturation are

neglected in the model.

3.1 Electrical System

Fig. 3.1 shows the first system of the IEEE SBM for SSR studies.

Ry Xu X

Synch.
Gen

Figure 3.1 : The SMIB power system (System-1, IEEE SBM for SSR studies)

Series capacitor compensation in the transmission line-1 reduces the equivalent
impedance between the synchronous generator and the infinite busbar. As a result,
benefits such as improved transient stability [1] and increased load carrying capacity
of the transmission system are achieved. The expression which gives the equivalent
impedance of the network elements between the generator and the infinite busbar can

be written as
Zeq = (Re+jX) + [[Ry +/(Xei- uXL))/(Rz + jX12)] + (Ro +jXb) @3.1)
where u is the series compensation factor defined as the ratio of X, to X;; (i.e.

p= X/ Xr1)
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It follows from (3.1) that the equivalent impedance decreases as pu is increased. Fig.
3.2 shows that the equivalent impedance drops to 0.31 p.u. from 0.53 p.u. if the

series compensation capacity is fully utilized.

0.55 '. ’ T '_ " : : : :

0.5

eq

0.45

0.4

0.35

Equivalent Impedance, |£ | (p.u)

0.3

o 01 02 03 04 05 0B 07 0B 08 1
Compensation factor ()

Figure 3.2 : Equivalent Impedance (Z.q) w.r.t. the compensation factor (1)

Park’s transformation from three phase reference frame to direct and quadrature axes
(d-q axes) is performed in order to obtain state equations describing the dynamics of
the electrical system [59-62]. Before writing the equations for generator flux linkages
and voltages of the d-q axes equivalent circuits, first we define the following

parameters to represent the equations conveniently.

RE = Rt + kRLl + Rb (3.2)
XE - Xt+kXLl+Xb (3.3)
where

_ VR; + X},

\/(Rl + Ry)% + (X1 + X, — uXp))?

Hereafter X will be represented as pXj ;.
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3.1.1 Electrical System d-axis Equivalent Circuit

Fig. 3.3 shows the electrical system d-axis equivalent circuit.

Figure 3.3 : Electrical system d-axis equivalent circuit

Using the basic circuit theory, the equations representing the flux linkages and

voltages can be written as follows

Flux linkages in the d-axis:

Ya = —Xalq + Xafalra + Xakalka (3.4)
Yra = —Xagala + Xralra + Xfraira (3.5)
Yira = —Xakala + Xrkalra + Xkalka (3.6)

d-axis voltage equations:

diy .
e a)b(Vd + 1hig + wrtpq) 3.7
dra .

d{ = wp(Era — Traifq) (3.8)
dYiq )

dt = wp(~Tkalka) 3.9
Vo = Rei ., Xpdig

d = Iglyg _XElq +a)_bE+eCd +V0d (3.10)
Voa = VoaSiné, (3.10)
ecq = UXp ki, — 1 decg (3.11)

¢ a Wy dt
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3.1.2 Electrical System q-axis Equivalent Circuit

The electrical system g-axis equivalent circuit is shown in Fig. 3.3.

R1 XL1 Xc
I‘kq
—-—>
lkq
2
Nal
+ -
wrlpd

Figure 3.4 : Electrical system g-axis equivalent circuit

Flux linkages in the g-axis:

Vg = —Xgig + Xakqlkg 3.12)
lpkq = _Xakqiq + quikq (3.13)
g-axis voltage equations.

dy,

— = @b (V, + 1adq — wrpq) (3.14)
diy, .
dtq = wb(—rkqlkq) (3.15)
V, = Rgi +XEid+ﬁdﬁ+e +V, (3.16)
q q wp, dt cq q
Vog = Vogcosé, (3.17)
€oy = 1 deea _ Xy ki (3.18)
a Wp dt

3.1.3 Electrical System State Equations

We define the state variables of the electrical system as ig=[ig ig if ixq ixal®s iy €
R5, and e.=[e.q e.q]". €. € R*. Using (3.4)-(3.18), the state equations of the

electrical system can be written as

di
g _n-1 .
5 B wp(C iy+D) (3.19)
de .
dtc =w,(E i, tF e,) (3.20)
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where:

-(XgtXe) 0 Xyg 0 Xyl
0 -(X;Xp) 0 Xugq O
B= -Xuu 0 Xeg 0 Xpg (3.21)
0  Xyq 0 Xy O
-Xakd 0 Xpga 0 Xygd
[ (ra+RE) '(XE+erq) 0 erakq 0
XetwrXq) (ratRp) -0, Xpg 0 -0 Xaig
C: 0 0 -I'td 0 0 (3'22)
0 0 0 g O
0 O 0 0 -de
VOSin(6r)+ecd
. Vocos(8;) + ecq . WX, 0 00 O] F=[0 1] 123
rdefc(z)/Xafd = 0 kX ,000]" -10 (3:23)
0

The numerical parameters of the electrical system in p.u. are listed below.

Xg=1.65,  X=1.59,  Xp=1.6286, X =1.642, X =1.5238,
Xaa=1.51,  Xoq=145,  Xg=1.51,  Xgg=1.51,  1,=0.0045,
rg=0.00096, 1=0.016, 1,=0.0116, X=0.12, Rpz=0.0012,
X =048, R,=0.0444, X,,=0.4434, R,=0.0402, X,=0.18,

R,=0.0084

3.2 Mechanical System

The mechanical system consists of a high pressure (HP) turbine, a low pressure (LP)
turbine, a generator and an exciter (Exc.). Fig. 3.4 shows the schematic diagram of

the mechanical system.

Kiz LP 1 Kus Kis
IE >< Generator Exc.
M 1 M2 M3 M4
Dy D, D; D4

Figure 3.5 : Schematic diagram of the mechanical system
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The equations governing dynamics of the mechanical system can be written as

follows [62].

HP Turbine:

dw; 1

W = M_1 [-D;(w; — 1) — K;,(0; — 6)]
do,

Tl wp(wy; — 1)

LP Turbine:

dw, 1

F = M_z [—D2 (a)z - 1) + K12(91 - 92) - K23(92 - 6r)]

do
d_tz = wp(w, — 1)
Generator:
dw 1
- = —[T, — T, — D3(w, — 1) + Kp3(6; — 6,) — K34(8, — 6,)]
dt M,
dé
dtr = wb(wr - 1)
Exciter:
dw 1
a = a0 = 1)+ Ksa (6, = 04)]
do
d_t4 = wp(wy — 1)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

Defining the state variables as Rg=[w; 8, w, 0, w, &, w, 6,]7, Ry € R®, and using

(3.24)-(3.31), we write the equations representing the mechanical system in state

space form as follows:

dR,
dt

=G R,+H

where
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-D; Ky, Ko ]
— — 0 — 0 0 0 0
M, M, M,
O 0 0 0 0 0 0 0
K -D, -(K{,tK K
0 iz (Ki2+Ky3) 0 Ky 0 0
M, M, M, M,
0 0 Oy 0 0 0 0 0
G= 3.33
oo o K D Kaks) K| O
M; M; M; M;
0 0 0 0 op 0 0 0
Ks4 Dy Ky
0 0 0 0 0 — _— —
M, M, M,
Lo 0 o0 0 0 0 w, 0
- T
Dl D2 (T - T + D ) D4
H= 9 ap, @b = MZ 3w, M, O (3.34)
In (3.34), T, represents the electromechanical torque and it is expressed as
To=(Xq-Xq) lalqgtXatalralqXakqlkglatXakalkalq (3.35)

The numerical parameters of the mechanical system in p.u. are as follows

D,=0.0498, M,=0.498, K,,=42.6572
D,=0.031 M,=3.1004 K,3=83.3823
D3=01758 M3=17581 K34=37363

D,4=0.0014 M,=0.0138

3.3 Complete Mathematical Model

The complete mathematical model of the nonlinear dynamical system in the state
representation form is obtained by combining (3.19), (3.20) and (3.32). The dynamic
system has 15 state variables: ig, ig, if, ikg, lka €cdr €cqr W1, 81, W2, 02, Wy, 8y, Wy, O4.
There are 4 control parameters: Mechanical torque input (T3,), Field voltage (Erq),

Infinite busbar voltage (V) and the series compensation factor (u).

Defining the state vector x = [iy VI R{]", x € R'>, we write

' B wp(C i, +D)
X =|w,(Ei,+Fe,) (3.36)
G R,+H
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3.4 Bifurcation Analysis

We use the series compensation factor (u=X./X;;) as the bifurcation parameter and
perform bifurcation analysis by monitoring the real parts of the eigenvalues of the
Jacobian matrix at the system equilibrium for values of y from 0 to 1. The other three

control parameters are kept constant at set values T,,=0.91, Ef4=2.2 and V,=1.0.

3.4.1 Equilibrium Solutions

In order to obtain the equilibrium solutions for the model, standard methods for
solving the initial value problems of the ordinary differential equations are
employed. The equilibrium points for no series compensation case (i.e. u=0) are
calculated first. To begin with, we set the angular speeds to the nominal value and

the rotor angles to the load angle.

W= W= Wy=wy=1 3.37)
0,=0,=0,=6, (3.38)
No current flows through the damper windings in the equilibrium condition.

Ikqo= tkao=0 3.39)

Series capacitor d-q axes voltages are set to zero for u=0 at which the bifurcation

analysis is started.
€cdao = €cqo =0 (3.40)

With known values of T, Erq and V;, the load angle initial value is selected as p.u.

value of the mechanical torque input.
6r0= T (3.41)

Using (3.19), initial values for the state variables i, can be written as

g
igo=liao iqo iro ikqo ikao] =-C"'D (3.42)

Having found the initial values of the state variables, the set of ordinary differential

equations in (3.36) describing the dynamic model is solved using MATLAB. The
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rest of the procedure is quite straightforward. The series compensation factor is
increased to 1.0 at 0.001 incremental steps and at each step the equilibrium points are
obtained by setting the previous step’s equilibrium solutions as the initial values and

solving the current ODEs.

3.4.2 Stability of the Equilibrium Points

The eigenvalues of the Jacobian matrix evaluated at the equilibrium points of the
model for values of u from 0 to 1 are determined. In a stable system, real parts of all
eigenvalues are less than zero. Fig. 3.6 shows the generator rotor angle (6,.) variation
depending on the series compensation factor. Full use of the series compensation
capacity enables the synchronous generator to operate at a power angle of 0.85 rad.
instead of 1.05 rad., without the series capacitor. On the other hand, the system loses
dynamic stability through a subcritical Hopf bifurcation at u=0.5184 due to the SSR
as a result of interaction between the second torsional mode and the subsynchronous
electrical mode. Even though the second torsional mode becomes stable again at
©=0.8110, the first torsional mode stability is lost at u=0.7283 and therefore overall

system stability is not regained.
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: : Stable Region
: : : : : * | —=—=LUnstable Region
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=
=
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o
fag]
= : : : : : : : : :
% goask......- SR ........ e e ........ H"\H ........ S
e : ;ﬁ" “
= : : .
= : : : : : : : ., :
g ook RTINS e L SRPRRIS L ERTI. L N
' : . : . : : . : \:
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: : : : : : : : RN
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0 0.1 0z 03 04 05 oe 07 os 089 1

Compensation factor ()

Figure 3.6 : Generator rotor angle (T5,=0.91, Ef4=2.2 and V;,=1.0)
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3.4.3 Oscillatory Modes

The Jacobian matrix at the equilibrium condition has 6 pairs of complex conjugate
eigenvalues. Hence, there are 6 modes of oscillation in the model. Supersynchronous
and subsynchronous electrical modes have frequencies dependent on the series
compensation level. The mechanical modes comprise one local swing mode and
three torsional oscillation modes. Also called electro-mechanical mode, the local
swing mode plays an important part in dynamic stability of a power system. In this
mode, the turbine-generator shaft sections oscillate as a rigid rotating mass. In the
model, the local swing mode has a frequency of 1.53 Hz. On the other hand, if the
torsional modes are excited, some of the shaft masses oscillate against the others
causing loss of fatigue life and eventually the shaft damage [63] in the absence of
sufficient damping. In the model, there are three torsional oscillation modes with
frequencies of 24.7, 32.4 and 51.1 Hz. Fig. 3.7 shows the relative rotation speed of
shaft segments representing the mode shapes of the turbine-generator shaft system in

the model.

RRES

RRS

FRS

RRES

Figure 3.7 : Relative rotational speeds (RSS) representing the mode shapes
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Relative rotation speeds have been determined by applying a small magnitude torque
component with a frequency equal to one of the mechanical oscillation modes of the
turbine-generator shaft system in order to excite the corresponding natural mode. The
process is repeated for all four mechanical modes. At each step, rotor speeds of each
shaft section are obtained. The rotational speed values are then converted into the
relative quantities and scaled. From the view point of fatigue deformation on the
shaft, the local swing mode oscillations do not result in any damage associated with
torsional fatigue. Of primary interest are the modes with the polarity reversals along
the shaft, which can be very dangerous if the damping is not sufficient or they are

self excited due to the SSR.

The flowchart of the bifurcation analysis is depicted in Fig. 3.8. The equilibrium
solution for u=0, T,,=0.91, Ef4=2.2 and V;,=1.0 is obtained by solving (3.36). Then,
the Jacobian matrix eigenvalues at incremental values of u are evaluated and at each
step, zero-crossing of the eigenvalues real parts are checked to detect the occurrence
of a bifurcation condition. The first Lyapunov coefficient is computed if Hopf

bifurcation occurs at the corresponding value of u.

Fig.3.9 shows the oscillatory modes of the system depending on the series
compensation factor. As the compensation factor increases, the subsynchronous
electrical mode frequency decreases and interacts with all three torsional modes. The
interaction between the oscillatory modes results in movement of the real part of the
corresponding eigenvalues towards to the zero-axis, as shown in Fig.3.10. The
oscillatory modes other than the torsional modes are highly damped and therefore

they are not shown in Fig. 3.10.

The interaction between the subsynchronous electrical mode and the third torsional
mode occurs at u=0.07 without causing instability. The real part of the second
torsional mode eigenvalue crosses the zero-axis at pu=0.5184, as a result of
interaction with the subsynchronous electrical mode, and the system stability of
equilibrium is lost through a Hopf bifurcation. Even though the second torsional
mode becomes stable again at u=0.8110, the overall system stability is not regained
due to the Hopf bifurcation occurring at u=0.7283 in the first torsional mode which

strongly interacts with the subsynchronous electrical mode.

29



START

A 4

Solve the ODEs to
obtain the equilibrium
solution for u =0

\ 4
u=u+0.001

v

Solve the ODEs to
obtain the equilibrium
solution for u

\ 4

A 4

Calculate the eigenvalues
of the jacobian matrix

Check
for zero-crossing
of the eigenvalue
real parts

Compute the first
Lyapunov Coefficient

NO Check

Figure 3.8 : The flowchart for Bifurcation Analysis
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Table 3.1: Computed Eigenvalues for u=0.5184 and u=0.7283

. u=0.5184 ©=0.7283
Eigen- - - - -
value Real Imaginary Imaginary Real Imaginary Imaginary
Number Palrt Part Part Palrt Part Part
(s) (Rad/s) (Hz) (s7) (Rad/s) (Hz)
1,2 -10.403 +£544.841 86.714 -10.920 +585.699 93.217
3,4 -0.049  +£321.038 51.095 -0.049  +321.038 51.095
5,6 -8.375 +208.336 33.158 -8.599  £166.123 26.439
7,8 0 +203.754 32.428 0.027  +203.362 32.366
9,10 -0.332  £155.645 24.772 0 +157.301 25.035
11 -27.703
12,13 -0.956  +£10.317 1.642 -1.111  £10.807 1.720
14 -0.288
15 -7.661

Table 3.1 shows the eigenvalues of the SMIB power system at Hopf bifurcation
points u=0.5184 and p=0.7283. In order compute the first Lyapunov coefficient,
computation of the complex vectors p and q satisfying (2.11) and (2.12) has been
performed according to the procedure described in Appendix-A.1. Table 3.2 gives p

and g complex vectors.

Table 3.2: Complex vectors p and q for u=0.5184 and u=0.7283

u=0.5184 u=0.7283
Complex vector, p Complex vector,q  Complex vector,p ~ Complex vector, q
-0.1568168987 0.0921782393 -0.1992053453 0.4326843035
-0.4726205366 0.0107718912 -0.5046542364 0.2176372442
-0.0608214353 -0.0749905653 -0.0766285818 -0.3709173982
-0.4487179858 -0.0088150010 -0.4786297979 -0.1827961665
-0.0914763745 -0.0749384790 -0.1169180864 -0.3695424263
-0.1603110936 0.0075350728 -0.2228731617 0.0905822721
0.0446754154 -0.0549391636 0.0758401959 -0.1570033202
-0.0302496636 -0.1848909092 0.0143495701 0.3753247283
-0.3648369095 -0.8045114295 0.1427655113 1.1683608664
0.0087648208 0.3229436519 0.0033252031 0.5546827353
0.1041756487 1.4310469041 0.0333880582 1.6997876514
-0.0072784961 -0.1361024685 -0.0104513585 -0.9664520014
-0.0824227770 -0.6627130851 -0.1040389355 -3.1113374694
-0.0122943119 -0.0017954127 -0.0138075703 -0.0099981937
-0.1389246074 -0.0085128663 -0.1373240889 -0.0311432479

Using (2.13), /;(0) for the Hopf bifurcation occurring in the second torsional mode at
1=0.5184 is computed as 1.44x10”. The positive sign of /,(0) reveals that the type of
Hopf bifurcation is subcritical. Similarly, the first torsional mode undergoes a

subcritical Hopf bifurcation at u=0.7283 with positive /;(0) (=3.95x107).
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3.5 Time Domain Simulations

Time domain simulations using the software MATLAB-Simulink are carried out to
verify the analytic findings of the bifurcation analysis. The set of ODEs representing
the nonlinear dynamic model under study has been included into the Simulink model
as embedded m-file. By this way, complexity of the model has been reduced

significantly.

Fig. 3.11 shows the generator rotor angular speed response to a disturbance of 0.46
p.u. negative pulse torque (50% of the applied mechanical torque) on the generator
shaft at t=Is for a duration of 0.5s at the first Hopf bifurcation point (uy,=0.5184).
Following the disturbance, the generator rotor speed oscillates at decaying
magnitudes but never reaches equilibrium state. Power Spectrum Density (PSD)
estimation of the generator rotor angular speed confirms that small magnitude
oscillations at the frequency of 32.4 Hz remain undamped as depicted in Fig. 3.12 in
the PSD estimation. This is because of the fact that the real part of the second

torsional mode eigenvalue is zero at u = 0.5184.

In a similar manner, the Hopf bifurcation occurring at u=0.7283 causes the first
torsional mode oscillations to experience transition from damped to undamped
condition. At the values of the series compensation factor from 0.7283 to 0.8110, two
unstable oscillation modes with the frequencies of 32.4 Hz and 24.7 Hz co-exist in

the dynamic model.

The simulation is repeated for u=0.52 by applying the same disturbance at t=1s as in
the simulations at Hopf bifurcation points. The initial response to the disturbance is
similar to the cases with u = uy in a form that the magnitude of oscillations of the
stable modes decays following the disturbance and becomes zero eventually.
However, the unstable second torsional mode causes the oscillations with frequency
32.4 Hz. to reach to very high magnitudes without converging locally to an orbit as
shown in Fig. 3.13. Therefore, it is concluded that the Hopf bifurcation is subcritical,
verifying the analytic finding obtained by computing the first Lyapunov coefficient.
The response of generator load angle for u=0.52 is also shown in Fig. 3.14. Similar
to the response of the generator rotor angular speed, the load angle response is in the

form of oscillations with increasing magnitude.
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It is important to note that in a real system the generator would lose synchronism and
normally disconnect from the grid by the activation of protective relaying devices
(e.g. out-of-step, over-speed protection) following a disturbance at the values of u at

which the SMIB power system is not stable.

Various forms of dynamic behaviors such as torus bifurcation, cyclic fold and
bluesky catastrophe may occur in the instability region of the nonlinear model. Fig.
3.15 shows the generator rotor speed response exhibiting a Torus bifurcation at
©=0.55. The emphasis in this Dissertation is given to determining the type of Hopf
bifurcation, through which the stability of equilibrium condition is lost, by

computing the first Lyapunov coefficient analytically.

r

Generator Fotor Speed, w (p.u)

0 P R S R S
a 10 20 a0 40 A0 B0 70 a0 a0 100
time (8]

Figure 3.15 : Generator rotor speed response (u=0.55)

Depicting the subcritical Hopf bifurcation in the first torsional mode is not possible
because of the second torsional mode which is already unstable at the point of Hopf

bifurcation for this mode.

Fig 3.16 and Fig 3.17 depict the significant difference in the dynamic response of the

generator rotor angular speed for u=0.80 and u=0.82, respectively.
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3.6 Parameter Dependency of the First Lyapunov Coefficient

In addition to the series compensation factor, the other control parameters T,,, V,, and
Efq affect the dynamic behavior of the power system under study. In this section, the
impact of these parameters on the bifurcation point and the first Lyapunov
coefficient thereby on the type of Hopf bifurcations is discussed. Changes in the
characteristic of the dynamic responses depending on the control parameters and the
first Lyapunov coefficient will also be explored. Computing the first Lyapunov
coefficient has the merit of investigating the impact of one parameter on the type of

Hopf bifurcation thoroughly.

Furthermore, comparatively very small values of the computed first Lyapunov
coefficients (<2x107) in Section 1.4 may raise a validation requirement that
variations in the first Lyapunov coefficient be consistent. By investigating the
parameter dependency, the accuracy of the computed first Lyapunov coefficient can

also be verified.

It follows from Fig. 3.18 that increasing the mechanical torque input causes the Hopf
bifurcation to occur at slightly higher series compensation levels. The first Lyapunov
coefficient also increases with T;,,, as depicted in Fig. 3.19. The second torsional

mode /;(0) crosses zero at T,,=0.62 p.u.

The impact of T,,, on the first Lyapunov coefficient is stronger in the second torsional
mode compared to the first torsional mode. It is important to note that the
supercritical Hopf bifurcation occurs in the first torsional mode at the values of the
electromechanical torque input less than 0.62 p.u. The first torsional mode is unstable
at these values. Therefore, validation of this analytic finding is not possible via time

domain simulations.

From Fig. 3.20, one can conclude that the impact of the network voltage level on the
Hopf bifurcation point is almost negligible. On the other hand, the variation of the
second torsional mode /;(0) with V, is more significant, as shown in Fig. 3.21. The
type of Hopf bifurcation for both the first torsional mode and the second torsional
mode remains the same as the value of the network voltage is changed from 0.95 p.u.

to 1.05 p.u.
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The impact of the field voltage on the Hopf bifurcation point and the first Lyapunov
coefficient is in a way similar to that of the network voltage level. The Hopf
bifurcation points slightly change as Ef4 is increased from 2 p.u. to 3 p.u. as shown
in Fig. 3.22. Moreover, from Fig. 3.23, the first Lyapunov coefficient of the second

torsional mode is negative for E¢y <2.72 p.u.

It is interesting to see that the impact of the control parameters on the first Lyapunov
coefficient is consistent. Though very small, the changes in the computed /;(0)
depending on an increase or decrease in one of the control parameters exhibit a
regular pattern. Hence, the accuracy of the computation procedure for the first

Lyapunov coefficient is considered to be adequate.

The analysis results show that the first Lyapunov coefficients remain positive and/or
near zero for a wide range of the control parameters governing the dynamics of the
system under study. Consequently, the regular pattern in the change of the first
Lyapunov coefficients depending on a control parameter verifies the accuracy of the

computation method.

DB | T T T T T T T T
: : : The second torsional mode
: — — = The first torsional mode
o7sk o AT R : i : i
|:|F-" e e ...........................................
e
E
g_ DEE e e e e e e e
[y
=
o
=2
E DE R
=
=
[m)
I [Tl T T
|:|5 L
i L i i L i L i i
0.45
2 2.1 2.2 2.3 2.4 2.5 2B 2.7 28 28 3

Field Voltage, E,, (p.u.)

Figure 3.22 : Hopf Bifurcation points for varying values of Ef4
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4. SSR WITH AUTOMATIC VOLTAGE REGULATOR

In this chapter, we include an automatic voltage regulator (AVR) into the SMIB
power system model analyzed in Chapter 3. The primary function of an AVR is to
regulate the generator terminal voltage. In addition, AVR contributes to transient
stability enhancement and regulation of reactive power flow from and to the
generator. New oscillatory modes appear in the model due to the AVR but these
modes are usually stable. The emphasis in this chapter is given to analyzing the
impact of the AVR on the Hopf bifurcation point and the first Lyapunov coefficient
which is used to identify the type of Hopf bifurcations (i.e. supercritical or

subcritical) occurring in the SMIB power system under study.

4.1 Excitation System with AVR

Automatic Voltage Regulator (AVR) of type DCIA described in [64] are included
into the excitation system in the model. The exciter saturation effects are neglected
and the limiters are not taken into account. It is also possible to add a power system
stabilizer (PSS) to the model. PSS can provide additional damping for the
oscillations with frequency well below the torsional oscillation mode frequencies,
which are the primary focus in this dissertation. Therefore, PSS is not included into

the model.

Fig.4.1 shows the block diagram of the excitation system with AVR.

Damping
V
+ — VF SKF
Vref —> ]
1+ sTg
Transducer
1 K. |Vr 1
Vi —> - g > Efq
1+STR VC_ 1+STA KE+STE
Regulator Exciter

Figure 4.1 : Block diagram of the excitation system with AVR
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Defining Ve =[V¢ Vi Vi Efd]T, Vexc €E R*, the state equations describing the

dynamics of the excitation system with AVR can be written as follows:

av
de;xc =P Vexc+Q 4.1)
where
-1
T_ 0 0 0
R
. L Ke KK
_ Te TrTg TrTg
P=lk, -k, -1 . 4.2)
Ty Ty Ty
1 Ky
o 0 = —
_ T, Tg
Y g Kay g ' 4.3
Q_ _TR (TA ref) ( * )

V; in (4.3) is the generator terminal voltage. Neglecting the transients, it can be

expressed as:

Vi | (CrataXiq)Crady = Xata + Xagaira) (4.4)
Parameters of the excitation System with AVR are given below.

Regulator : Kpy=250, T,=0.002s
Exciter : Kg=1, Tg=0.02s
Damping : Kg=0.03, Te=1s

Transducer : Tg=0.020 s

4.2 Complete Mathematical Model with AVR

We define the state vector x = [ig Vi Ry Veye]",x € R™ and combine (3.19),
(3.20), (3.32) and (4.1) as follows:
Blw,(C ig+D)]

G Ry+H
P Vexc+Q
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There are 19 state variables in the complete mathematical model: i, igr i lkas
lkdr €cdr €cqr W1, 01, W3, 05, Wy, 6y, Wy, 04, Ve, Vg, Vegand Ery The control parameters
vector consists of five variables: AVR gain (K,), AVR Reference Voltage (Vif), the
series compensation factor (u), mechanical torque input to the generator (7,,,) and the

network voltage level (V).

4.3 Bifurcation Analysis

We use the series compensation factor (u =X./X; 1) as the bifurcation parameter and
carry out the bifurcation analysis by monitoring the real parts of the eigenvalues of
the Jacobian matrix at system equilibrium solutions for the values of u from 0 to 1.
The other five control parameters are kept constant at set values (7,,=0.91, K,=250,

Vi=1.0 and V,,;=1.0953).

4.3.1 Equilibrium Solutions

In order to obtain the equilibrium solutions for the SMIB power system with AVR,

firstly the initial values of the state variables iy, e, and R, for the known values of
T, Vo and Efq(u=0) are determined as described in Section 3.3.1. Then, the

generator terminal voltage (V) is calculated using (4.4). Then, the initial values of

the excitation system state variables can be found as follows.

Veo=Ve (4.6)
VRO = KEEfd (4.7)
VFO = 0 (4.8)

The AVR reference voltage is computed as
Vref: Vco+ Efd/ KA (4°9)

Accordingly, the equilibrium points of the set of ODEs in (4.5) are calculated for the
values of u from 0 to 1 at incremental steps of 0.001. At each step, the equilibrium
solution obtained at the previous step is used as the initial values for the solution of

the ODEs and equilibrium points are calculated for the current value of u.
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4.3.2 Stability of Equilibrium Solutions in SMIB Power System with AVR

The stability region of the equilibrium points is determined by computing the
eigenvalues of the Jacobian matrix. The real parts of all eigenvalues are less than
zero in a stable system. As shown in Fig. 4.2, Hopf bifurcations occur at yu =0.51968

and u =0.73448.

Comparison of Fig 4.2 and Fig. 3.6 reveals that the generator rotor angle is less prone

to variations in the series compensation factor in the model with AVR.

1 I I l I I 1 1 1
: =table Region
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Compensation factor ()

Figure 4.2 : Generator rotor angle (7,~0.91, K4=250, V,=1.0 and V,,;=1.0953)

4.3.3 Oscillatory Modes

Fig. 4.3 shows the oscillatory modes of the SMIB power system model with AVR. In
addition to the oscillatory modes identified in Chapter 3, two more oscillatory modes

appear with frequencies 58.8 Hz and 6.1 Hz in the model due to the AVR.

As the series compensation factor increases, the subsynchronous electrical mode
frequency decreases and interacts with all three torsional modes and one AVR
oscillator mode resulting in movement of the real part of the corresponding

eigenvalues towards to the zero-axis, as shown in Fig. 4.4.
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Figure 4.4 : Real parts of the torsional mode eigenvalues of the model with AVR
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The subsynchronous electrical mode interacts with the third torsional mode at
1 =0.0701 but the system stability is preserved. The real part of the second torsional
mode eigenvalue crosses the zero-axis at u=0.5197, as a result of interaction with
the subsynchronous electrical mode and the system stability of equilibrium is lost
through a Hopf bifurcation. Although the second torsional mode regains stability at
u=0.8152, the overall system stability is not regained because of the Hopf

bifurcation occurring at u = 0.7345 in the first torsional mode.

Table 4.1 shows the eigenvalues of the SMIB power system with AVR at Hopf
bifurcation points u=0.5197 and pu=0.7345.

Table 4.1: Computed Eigenvalues for y=0.5197 and u=0.7345

Eigen- u=0.5197 u=0.7345
Real Part  Imaginary  Imaginary Real Imaginary  Imaginary
value 1
Number (s7) Part Part Pe_t}*t Part Part
(Rad/s) (Hz) (s) (Rad/s) (Hz)
1,2 -10.416 +545.105 86.756  -10.942 586.908 93.409
3,4 -277.539 £369.418 58.795 -277.545 369.432 58.797
5,6 -0.049 +321.037 51.095 -0.049 321.037 51.095
7,8 -8.083  +208.057 33.113 0.026 203.359 32.366
9,10 0.000 +203.766 32.430 -8.085 164.799 26.229
11,12 -0.344  +155.596 24.764 0.000 157.451 25.059
13, 14 -36.154 +38.110 6.065 -36.460 37.835 6.022
15,16 -1.225 +9.785 1.557 -1.502 10.204 1.624
17 -6.860 -6.961
18, 19 -1.206 + 0.605 0.096 -1.157 + 0.626 0.100

The complex vectors p and q satisfying (2.11) and (2.12) are given in Table 4.2.
Using (2.13), the first Lyapunov coefficients at the Hopf bifurcation points
Uy = 0.5197 and py,= 0.7345 have been computed as -0.00015794 and -0.0026534,
respectively. The negative sign of the first Lyapunov coefficients show that the type
of Hopf bifurcation for both torsional modes is supercritical. The inclusion of AVR
into the model under study results in the occurrence of supercritical Hopf
bifurcations. For this reason, stable limit cycles are born out of the Hopf bifurcation
points. On the contrary, the Hopf bifurcations are found subcritical in the model
without AVR analyzed in Chapter 3. It is important to note that these findings are
only valid in the local region of the Hopf bifurcation points. Various forms of
bifurcations and nonlinear events may occur in the range of control parameter values,

at which the dynamic system is not stable.
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Table 4.2: Complex vectors p and q for u=0.5197 and pu=0.7345

(1=0.5197

(1=0.7345

Complex vector, p

Complex vector, q

Complex vector, p

Complex vector, q

-0.0052155981 1.5569366376 0.0020481012 -7.2271383787
-0.0289729037 0.4322003947 0.0284354742 -6.6267268033
-0.0024188405 -1.2728005072 0.0009511072 6.2863643145
-0.0275732938 -0.3435249499 0.0271372379 5.4887412153
-0.0027977159 -1.2686517206 0.0013189771 6.2185692067
-0.0101503441 0.2935219446 0.0132869309 -2.7952478788
0.0011202924 -0.9206675224 0.0000230088 2.5323445866
-0.0043774193 -9.5709197507 -0.0019167871 -28.3724877331
-0.0191686049 -13.4237484893 -0.0059309603 -20.4140472347
0.0012575492 16.9313157157 -0.0004440404 -41.1793620921
0.0054730428 23.9042259342 -0.0013799266 -29.4859646914
-0.0010155458 -7.4693154549 0.0013960282 72.9799536651
-0.0043292280 -11.1881568559 0.0043208010 54.8104882592
-0.0017132946 -0.0987440877 0.0018443686 0.7563486171
-0.0072968791 -0.1427577312 0.0057060071 0.5442932572
-0.0056400788 -0.0018091071 0.0066857968 -0.0362531816
0.0017781911 -0.0037297520 -0.0028974343 -0.0121242362
0.9708259733 -0.0000122822 -0.9551202873 0.0001124581
0.0581754304 -0.0000359538 -0.0948499864 0.0014424640

4.3.4 Time Domain Simulations

In order to verify the bifurcation analysis results, time domain simulations have been
carried out in MATLAB-Simulink. The embedded M-file consisting of the set of
ODE:s obtained in (4.5) has been incorporated in the Simulink model. Fig. 4.6 shows
the generator rotor speed response to a disturbance of 0.46 p.u. pulse torque on the
synchronous generator shaft at t=1s for a duration of 0.5s at the Hopf bifurcation
point (1, = 0. 5197). Following the disturbance, the generator rotor speed oscillates

at decaying magnitudes until the appearance of a limit cycle of small magnitude.

The second torsional mode has a pair of purely imaginary eigenvalues (i.e. zero real
parts) at the Hopf bifurcation point, u,; = 0. 5197. Hence, no decay or increase in the
magnitude of oscillations in the second torsional mode with frequency is observed on
the PSD estimation, even though the other two oscillatory modes disappear

substantially within 20s following the disturbance, as shown in Fig. 4.6.

The simulation is repeated at a slightly higher compensation factor (¢=0.525) and the
generator rotor speed and load angle responses are shown in Figs. 4.7-8. The
oscillations of small magnitude appear following the disturbance as in the case
with u=0.5197. It is evident from Fig. 4.9 that the dynamic responses converge to a

limit cycle.
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Analytic finding that the Hopf bifurcation is supercritical has been verified by time
domain simulations. It is important to emphasize that various forms of bifurcations

can occur in the region at which the system is not stable.

4.3.5 Impact of the AVR Gain on /;(0)

We analyze the impact of the AVR gain (K4) on the Hopf bifurcation point and the
first Lyapunov coefficient. Taking the series compensation factor as the bifurcation
parameter, the bifurcation analysis is carried out for the values of K, between 50 and
450. The Hopf bifurcation point and the first Lyapunov coefficient are evaluated
accordingly. The other three control parameters are kept constant (7,,=0.91, Vy=1.0

and Vi.~1.0869).

Variation of the Hopf bifurcation point with the AVR gain is almost negligible, as
shown in Fig. 4.10. On the other hand, the first Lyapunov coefficients increase with
the AVR gain. Fig 4.11 shows that significant increase in the first Lyapunov
coefficient occurs when the AVR gain is changed from 50 to 150. In the remaining

range from 150 to 450, however, the increase is gradual.

52



n.a T T T ! L = - -
: : : : The second torsional mode

: : : — — = The first torsional mode
o7k L TR T e i

PR ——— Y el et R R

=

i
T
1

OESsk----- ......... ......... ......... ......... .......... ........ J

=

(=3
¥
1

Hopf Bifurcation pnint,|_11_|

nssk---- .......... ......... ......... .......... ......... ......... ........ J

05k o R ......... ......... ......... SRR ........ 4

0.45 1 1 1 i 1 1 1 1
a0 100 150 200 260 300 350 400 450 s00
The AVE Hegulator Gain, KA

Figure 4.10 : Variation of Hopf bifurcation point with the AVR Gain

ook b ......... ......... ......... TR __.
oondbko ,f ......... TR ......... ......... ........ .

DO0B | g ol S e, TR e R 1

onosf A TR e S TR e T ]

The first Lyapunoy coefficient
oy

aotby .......... ......... ......... U ......... ......... ........ .

oozl T SRR S :
: : : : The second torsional mode

— — = The first torsional mode

_I:II:I-]‘,l I I I I 1 1 1 1
a0 100 140 200 250 300 350 400 450 a00
The AWR Regulator Gain, KA

Figure 4.11 : Variation of the first Lyapunov coefficients with AVR gain, K,

53



54



5. DELAYED FEEDBACK CONTROLLER

This chapter introduces a novel controller based on the delayed feedback control
theory to stabilize unstable torsional oscillations on the turbine-generator shaft
system due to the SSR. Also known as Time-Delay Auto Synchronization (TDAS),
the delayed feedback control scheme makes use of the current and time delayed
values of an observable state variable in a dynamic system to obtain a stabilizing

signal.

Over the last decade, the TDAS control method has been successfully implemented
in quite diverse experimental systems to stabilize both unstable periodic orbits and
unstable steady states. From the view point of optimization requirements, the time
delay (1) and the DFC gain (Kprc) are the only parameters to be optimally set in the
proposed controller. It is found that the optimum value of the DFC time delay is

related to the imaginary parts of the unstable mode eigenvalues.

The Delayed Feedback Controller (DFC) developed in this Dissertation is combined
into the SMIB power system model through the excitation system with AVR and

uses the generator rotor angular speed signal as the only input.

5.1 Delayed Feedback Controller

The block diagram of the DFC is shown in Fig. 5.1. The DFC uses the generator
rotor angular speed as the sole input signal. The difference between t-time delayed
input signal and its current value is multiplied by a gain to obtain the stabilizing

output signal (V).

Time Delay

oty PRI v,

Figure 5.1 : Delayed Feedback Controller (DFC)
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The output signal Vs is then added to the AVR block as shown in Fig. 5.2.

Ve sKr
4—
1+ sTg
Transducer
1 Vg 1
Vi—> Ka > > Efa
1+STR 1+STA KE+STE
Regulator Exciter

wr —»  DFC
Figure 5.2 : Excitation System with AVR and DFC
The expression for Vs can be written as
Vs (£)=Korc (@ (t-7) — 0y (1) (5.1

Due to the intricate nature of the delayed nonlinear differential equations, an analytic
approach to study the DFC effect on the model dynamic stability is extremely

complex.

5.2 The DFC Performance

The effectiveness of the DFC is investigated by time domain simulations using the
software MATLAB-Simulink. A negative pulse torque disturbance identical to the
one in Chapters 3 and 4 is applied on the generator operating at steady state for the

purpose of exciting the natural oscillation modes in the model.

Fig. 5.3 shows the generator rotor speed response without DFC at 55% series
compensation. The unstable torsional oscillations increase in magnitude until a
sudden drop after t=27s. The dynamic response is in the form of sudden drop
following the growing oscillations in the unstable modes for the series compensation

levels at which the system is unstable.

With 7,=0.91, K4=250, V,=1.0 and V,.r=1.0953, the generator rotor angular speed
response is obtained for the cases with the controller at for u=0.55, u=0.75 and
1=0.85 at all three of which the nonlinear dynamic system is not stable. Figs. 5.4 to

5.16 show the generator rotor speed responses with DFC.
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It is evident from the time domain simulations that the designed controller gives
superior results. Consequently, provided that the control parameters are set correctly,
the controller effectively damps the unstable torsional oscillations due to SSR in the

model.

Figs. 5.7 to 5.9 show the output of DFC. Due to the local mode oscillations following
the disturbance, DFC output remains high until the local mode oscillations decay and
disappear. Blocking the controller output along the period during which the
magnitude of the local mode oscillations remains higher than a certain limit or
filtering out the low frequency components in the input signal of the controller can
improve the controller performance by preventing the controller action for the stable

modes.

It is important to note that the generator terminal voltage is also affected by DFC
since the controller is combined with AVR. Terminal voltage regulating function of
AVR is critical from the view point of transient stability and operational reliability.
Therefore, the impact of DFC on the regulating duty of AVR is also investigated. It
is evident from Figs. 5.10 to 5.12 that the generator terminal voltage is successfully

maintained at its set value following the initial oscillations.

DFC output {poul)

time (=)

Figure 5.7 : The DFC output (¢=0.55, 1=0.0185s, Kppc=76)
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Figure 5.8 : The DFC output (u=0.75, t=0.0175s, Kppc=76)
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Figure 5.9 : The DFC output (4=0.85, t = 0.0135s, Kprc=76)
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Figure 5.12 : Generator voltage with the DFC (1=0.0135s, Kppc=76)

It is important to emphasize that the DFC effectiveness in stabilizing the unstable
torsional oscillations due to SSR depends on the optimal setting of the control
parameters T and Kpgc. Furthermore, applying a high pass filter to the input signal w,
can improve the overall dynamic response by eliminating the effect of the local
swing mode oscillation which is stable on the controller output and therefore no
damping improvement is needed for the purpose of preventing the turbine-shaft

fatigue.

5.3 Optimization of the DFC Parameters

In the absence of a convenient method to obtain the DFC control parameters
analytically, the Optimization Performance Index (OPI) based on the evaluation of

time domain simulations is defined as follows:
OPI(t, Kppc)=max (w,(t)) — min (w,(t)) 5.2

over a time interval from t=13s to t=15s. The selection of other time intervals is also
possible as long as the OPI variations are significant along the time range and the

initial stable oscillations disappear substantially before the start of the selected time
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interval. Difference between the maximum and minimum values of the generator
rotor speed at the specified time interval is a measure of the stabilizing performance

of the DFC with the set control parameters.

The optimization procedure involves performing time domain simulations and
determining the OPI for various values of 1. The optimum DFC time delay is the
value at which the minimum OPI is achieved. Upon determining the optimum time
delay for the controller, in a similar manner, the time domain simulations are carried
out for a certain range of Kprc. The optimum value of Kpgc is the gain with which
the minimum OPI is obtained. The procedure also allows assessing the control

parameter sensitivity of the DFC.

With 7,,=0.91, K,=250, Vy=1.0 and V,,,=1.0953, the generator rotor is subjected to
the identical disturbance as in Section 5.2 in order to excite the system natural
oscillation modes. Figs. 5.15 to 5.17 show the OPI values for a range of the DFC
time delay at three levels of the series compensation factor, u=0.55, u=0.75 and
u=0.85 for which the optimum DFC time delays are found 0.185s, 0.175s and 0.135

for Kprc=76, respectively.

Cptirmization Performance Index, OP1 (pou)

0 i i 1 i 1 i i 1 i
0015 0.Me 017 0018 0018 002 0021 0022 0023 0024 0.025
DFC time delay (=)

Figure 5.13 : OPI vs DFC time delay. t,,=0.0185s (u=0.55, Kprc=76)
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Figure 5.15 : OPI vs DFC time delay. 1,,=0.0135s (u=0.85, Kprc=76)

Figs. 5.15 to 5.17 show the evaluated OPI values that result in good performance of
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the controller for a range of the DFC time delay at three levels of the series
compensation factor, u=0.55, u=0.75 and p=0.85 for which the optimum DFC time
delays of 0.185s, 0.175s and 0.135 for respectively. It is concluded that setting Kpgc
parameter to a value between 70 and 80 results in an effective DFC performance as

long as T is optimally set.

The time delay values of the controller giving the optimum performance based on the
evaluated OPI for the values of the series compensation levels through which the
dynamic system is unstable due to the Hopf bifurcations occurring in the first and the

second torsional modes are shown in Fig. 5.21.

It is interesting to observe that setting the time delay to 0.018 for the series
compensation levels at which the second torsional mode is unstable results in an
acceptable performance. As for the series compensation levels through which the
first torsional mode is unstable, setting the time delay to 0.014 ensures that the

controller provides damping the unstable torsional oscillations adequately.

Ciptirnization Performance Index, OF1 (pou)

DFC Gain

Figure 5.16 : OPI vs DFC gain (u=0.55, t=0.0185s)
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Figure 5.18 : OPI vs DFC gain (¢=0.85, 1=0.0135s)
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Figure 5.19 : DFC time delay optimum values (7,,=0.91, V,,;=1.0953, Kprc=76)
5.4 DFC Performance at Different Operating Conditions

The optimum values of the DFC parameters which are effective at one operating
condition may not yield the same performance at other operating conditions. The
correct setting of the DFC time delay parameter is important to ensure an effective
controller performance. With fixed series compensation factor, the optimum value of
the DFC time delay varies depending on the operating conditions such as the loading

level (i.e. mechanical torque input) of the generator and the AVR reference voltage.

5.4.1 DFC Optimum Time Delay Depending on the Loading Level

Fig 5.22 and Fig 5.23 show the generator rotor speed responses for 7,,=0.60 and
T,=0.75, respectively. The AVR reference voltage is adjusted to regulate the
generator terminal voltage at 1.09 p.u. Employing the optimization procedure
described in 1.3, the optimum value of t for 7,=0.60 has been computed as 0.022s.
Repeating the procedure for 7,,=0.75 gives an optimum value of 0.20s. In each case,

the disturbance torque applied on the generator shaft is 50% of 7,,.
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5.4.2 DFC Optimum Time Delay Depending on the AVR Reference Voltage

The AVR regulates the generator terminal voltage by comparing the actual terminal
voltage with the AVR reference voltage set value (V). The optimum t also varies
with V... In Section 4.3, the optimum 1 was evaluated as 0.0185s for V,,,=1.0953
p.u. (u=0.55, 7,,=0.91). The generator terminal voltage was regulated at 1.0871 p.u.
In order to assess the effectiveness of the DFC with 1=0.0185s at a lower generator
terminal voltage regulated at 1.0577 p.u. (V,,r=1.0657 p.u.), an external torque of
50% of T, is applied and the generator rotor speed response is obtained as shown in

Fig. 5.24.

Evaluation the OPI values reveals that the optimum 7 is 0.0160s for V,.,=1.0657 and
it is smaller than the optimum t computed for V,.,=1.0953. Fig. 5.25 shows the
generator rotor speed response with 1=0.0160s. The DFC performances for both
cases are almost the same and the equilibrium condition is reached. Extending the
DFC parameters optimization to evaluate the DFC gain (Kpgc), the optimum Kppc
has been found as 45. With both parameters optimized, the DFC yields a slightly

better performance, as shown in Fig. 5.26.
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Figure 5.22 : Generator rotor speed (u=0.55, 7,,=0.91, V,,,=1.0657, T = 0.0185s)
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Figure 5.24 : Generator rotor speed (1=0.55, V,,,=1.0657, 7=0.0160s, Kprc=45)
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The nonlinear state feedback controller proposed by Harb and Widyan [28] requires
two state signals to obtain a control signal, which is computed by subtracting w1’
(the first-turbine generator section) from w,”. Although the nonlinear controller
stabilizes the operating point at all realistic series compensation levels, the damping
of torsional oscillations takes much longer when compared with the DFC, which
requires the measurement of only one state signal (w,). The fast damping of the

torsional oscillations prevents high cycle fatigue formation on the shatft.

As a result, it is required that both control parameters of the DFC (i.e. T and Kprc)
are optimized in order to obtain an effective performance from the controller. The
DFC optimum set values depend upon the operating parameters such as the series
compensation, the mechanical torque input to the generator and the AVR reference

voltage.

In order to overcome the difficulties with the requirement to compute the DFC
parameters optimally for each operating condition, an adaptive approach which
involves changing the DFC parameters based on the on-line performance evaluation

of the damping performance can be implemented.
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6. THE EFFECT OF LIMITERS ON THE DFC PERFORMANCE

In this chapter, the limiters will be included in the AVR and the delayed feedback
controller and their effect on the controller performance will be investigated. The
function of AVR limiter is to limit the output of the regulator so that the exciter and
synchronous generator operate within design limits. The DFC limiters are applied to
prevent the stabilizing control signal from blocking voltage regulation function of the

AVR.

6.1 AVR and DFC with Limiters

The block diagram of the excitation system with AVR and DFC with limiters is
shown in Fig. 6.1. The regulator output limiter keeps V within the limits Vgzmax and
VrMmin. The DFC output limiter acts to limit stabilizing control signal (Vz) within the

limits VSMAX and VSMAX-

+ VF SKF
1+ sTg
Transducer V rmax
1 [ ]
V,—>» o [— > Epry
1+sTg 1+sT;| [ Ve |Ke+sTg

Regulator Vrmin Exciter

wr —» DFC

Vsmin
Figure 6.1 : AVR and DFC with limiters

The settings of the limiters are given below:
VRMAX =73 p-u. VRMIN =73 p-u.

VSMAX =0.15 p-u. VSMIN =-0.15 p.u.
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6.2 The DFC Performance with Limiters

The effect of the limiters on the DFC performance is studied for the cases u=0.55,
u=0.75 and u=0.85. The presence of limiters prevents the DFC and the AVR output
from reaching to unrealistic values. Therefore, the representation of the power
system under study is more accurate. With 7,,=0.91, Vy=1.0 and V,.r=1.0953, the
synchronous generator rotor is subjected to the identical torque disturbance of 0.46

p-u. at t=1s in order to excite the natural oscillation modes, as in Chapter 5.

Figs 6.2 and 6.3 show the generator rotor speed response and the load angle for
u=0.55, respectively. It is evident that both state variables remain within the
acceptable limits and the effectiveness of the DFC is not altered significantly with
the introduction of the limiters at the series compensation level of 0.55. As shown in
Fig. 6.4, the DFC and AVR limiters become active for several seconds following the
disturbance. During the short time interval that the DFC and AVR outputs are
limited, the stabilizing performance of the delayed feedback controller is not
effective. The generator terminal voltage momentarily drops to 0.97 p.u. and rises to

1.22 p.u. before it eventually reaches to near equilibrium, as shown in Fig. 6.5-b.
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0,585 i " i i i
0 5 10 15 o0 o5 a0
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Figure 6.2 : Generator rotor speed with DFC and AVR limiters (u=0.55)
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Figure 6.5 : (a) Exciter output, E¢q and (b) Terminal voltage, V; (u=0.55)

Similarly, the case with u=0.75 yields an effective controller performance with the
DFC and AVR limiters. Fig. 6.6 shows that the generator rotor speed reaches to
equilibrium without experiencing unstable oscillations. The load angle also remains

within the transient stability range, as shown in Fig. 6.7.

The DFC and AVR limiters cut in shortly after the disturbance as in the case with
u=0.55. As a result of the rapid decay in the local swing mode oscillations, the
regulator limiter cuts out at t = 3s. The DFC limiter becomes active relatively shorter

than the regulator limiter, as shown in Fig. 6.8.

Different from the case u=0.55, the DFC and AVR outputs continue to oscillate at
decaying magnitudes even though the state variables reach near equilibrium at t = 8s.
Moreover, Fig. 6.9 shows that the generator terminal voltage experiences minimum

and maximum instantaneous values of 0.97 p.u. and 1.23 p.u., respectively.

Consequently, the inclusion of DFC and AVR limiters do not cause a significant
reduction on the effectiveness of the controller and it can effectively damp the
unstable torsional oscillations due to SSR even at a practically high level of series

compensation.
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The DFC with limiters does not yield effective performance in stabilizing the
subsynchronous oscillations for the case with u=0.85. Fig. 6.10 shows that the
magnitude of generator rotor speed oscillations increases following the disturbance
and equilibrium condition is not reached. The reason for ineffective controller
performance is that the DFC and AVR limiters become active following the

disturbance as shown in Fig. 6.11.

It is thought that the eigenvalue real part of the unstable mode (oy,s) plays an
important role on the effectiveness of the DFC. The greater oy, results in faster
increase in the magnitude of the unstable oscillations. In the cases at which the DFC
effectively stabilized the unstable modes, u=0.55 (oyuns=0.25 s'l) and p=0.75
(Ouns1=0.67 s and 6,,9=0.02 s']), the value of oy is relatively small when compared
with the case at which the DFC is not effective, u=0.85 (6us=1.99 s™). From the
view point of practical operating limits for series capacitors, the compensation factor
usually lies between 0.20 and 0.70 [65]. Therefore, the effectiveness of the DFC
performance at series compensation levels lower than 80% is considered to be

adequate.

Generator Rotor Speed, A (p.ul

Figure 6.10 : Generator rotor speed with DFC and AVR limiters (u=0.85)
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7. CONCLUSION

In this dissertation, Hopf bifurcations in the first system of the IEEE Second
Benchmark Model for SSR studies have been analyzed using the bifurcation theory.
Damper windings of the synchronous generator have been included in the nonlinear
model. The first-order nonlinear autonomous ODEs were obtained to represent the
dynamics of the dynamic model. The existence of Hopf bifurcations in the model has
been verified. Instead of employing the Floquet theory, we have computed the first
Lyapunov coefficients analytically in order to determine whether the Hopf
bifurcations are subcritical or supercritical. The compensation factor has been used

as the bifurcation parameter.

In the case with constant field voltage, the type of Hopf bifurcations occurring in the
nonlinear model is found subcritical. On the other hand, supercritical Hopf
bifurcation occurs in the model with AVR. The effects of variations in the
mechanical torque input to the generator, network voltage, field current and the AVR
gain on the type of Hopf bifurcation and the Hopf bifurcation point have also been
investigated. The Hopf bifurcation points Time domain simulations in MATLAB-

Simulink have been presented to demonstrate the validity of analytic findings.

In addition, a novel controller based on the delayed feedback control theory for
damping the unstable torsional oscillations caused by SSR has been developed. The
proposed TDAS controller uses the synchronous generator rotor angular speed
signal, an accessible state variable, as the only input. Time domain simulations show
that the TDAS controller successfully stabilizes the unstable torsional oscillations
provided that the time delay and gain parameters are optimized. An optimization
performance index has been defined and the optimum parameters for the time delay
and the gain of the TDAS controller have been evaluated. Despite the inclusion of
AVR and DFC limiters results in ineffective stabilizing performance at very high
compensation levels, the designed controller yields effective performance within the

practical range of series compensation levels.
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In summary, the following conclusions are made:

In the IEEE SBM for SSR studies, the Hopf bifurcations occurring in the first
and the second torsional mode are subcritical if the excitation system supplies

constant field voltage.

The inclusion of Automatic Voltage Regulator into the excitation system

results in supercritical Hopf bifurcations.

The operating parameters other than the series compensation factor have also

impact on the Hopf bifurcation point and the type of Hopf bifurcation.

The proposed TDAS controller based on the delayed feedback control theory
is effective for damping the unstable torsional oscillations due to SSR in the

studied model.

The optimum time delay parameter of the TDAS controller depends on the

imaginary part of the eigenvalue of the unstable mode.

At the practical levels of the series compensation factor (i.e. 0.20-0.75), the
proposed TDAS controller yields effective performance even if the AVR

limiters are included into the model.

As the eigenvalue real part of the unstable mode increases, the effectiveness

of the TDAS controller decreases.

The major contributions in this dissertation are as follows:

l.

Use of the first Lyapunov coefficient in order to determine the type of the

Hopf bifurcations in a power system experiencing SSR.

Development of a novel controller based on the delayed feedback control
theory for the purpose of stabilizing the unstable torsional oscillations due to

SSR. The proposed TDAS controller yields an effective performance.

Development of an optimization performance index for the evaluation of

optimum parameters of the TDAS controller.
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The future study based on the contributions in this dissertation should concentrate on

the following areas:

1. Improvement of the evaluation procedure for the optimum control parameters

of the TDAS controller.

2. Adaptive determination of the TDAS controller optimum parameters

depending on various operating conditions.

3. Application of the TDAS controller to the other models for SSR studies (e.g.
IEEE First Benchmark Model) and to the power systems with various

configurations.

4. Investigation of effectiveness of the TDAS controller in damping local mode

oscillations as an alternative to Power System Stabilizers.

5. Application of the TDAS controller to provide additional damping for

torsional oscillation modes for mitigating fatigue deformation.

6. Development of an analytic framework to explain the effectiveness of the
TDAS controller and identify methods for optimal tuning of the control

parameters

83



84



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

IEEE Committee Report, 1992. Reader’s Guide to Subsynchronous
Resonance, IEEE Trans. on Power Systems, 7, No. 1, 150-157.

Balance J. W. and Goldberg S., 1973. Subsynchronous Resonance in Series
Compensated Transmission Lines, /IEEE Trans. On PAS, 92, 1649-
1658.

Walker D. N., Bowler C. E., Jackson R. L., and Hodges D. A., 1975. Results
of Subsynchronous Resonance Test at Mohave, I[EEE Trans. on PAS,
94, 1878-18809.

Farmer R. G., Katz E. and Schwalb A. L., 1977. Navajo Project on
Subsynchronous Resonance Analysis and Solutions, /EEE Trans. on
PAS, 96, 1226-1232.

IEEE Power System Engineering Committee Report, 1985. Terms,
Definitions & Symbols for Subsynchronous Oscillations”, [EEE
Trans. on PAS, 104, 1326-1334.

Kabiri K., Dommel H. W. and Henschel S., 2001. A simplified System for
Subsynchronous Resonance Studies, International Conference on
Power Systems Transients, Rio de Janeiro, Brazil, June 24-28.

Joyce J. S., Kulig T. and Lambrecht D., 1978. Torsional Fatigue of Turbine-
Generator Shafts Caused by Different Electrical System Faults and
Switching Operations, IEEE Trans. on Power Apparatus and Systems,
97, 1965-1977.

IEEE SSR Working Group, 1977. First Benchmark Model for Computer
Simulation of Subsynchronous Resonance, [EEE Trans. on Power
Apparatus and Systems, 96, 1565-1572.

IEEE SSR Working Group, 1985. Second Benchmark Model for Computer
Simulation of Subsynchronous Resonance, [EEE Trans. Power

Apparatus and Systems, 104, 1057-1066.

85



[10] Kilgore L. A., Ramey D. G. and Hall M. C., 1977. Simplified transmission and
generation system analysis procedures for subsynchronous resonance,
IEEE Transactions on Power Apparatus and Systems, 96, 1840-1846.

[11] Agrawal B. L. and Farmer R. G., 1979. Use of frequency scanning technique
for subsynchronous resonance analysis, /[EEE Transactions on Power
Apparatus and Systems, 98, 341-349.

[12] Iravani M. and Edris A.A., 1995, Eigen analysis of series compensation
schemes reducing the potential subsynchronous resonance, /EEE
Trans., PWRS-10, no.2, 876-883.

[13] Gross G., Imparato C. F. and Look P. M., 1982. A tool for the comprehensive
analysis of power system dynamic stability, /EEE Transactions on
Power Apparatus and Systems, 101, no. 1, 226-234.

[14] Canay I. M., 1982. A novel approach to the torsional interaction and electrical
damping of synchronous machine, part I: Theory, IEEE Trans. Power
Apparatus and Systems, 101, no. 10, 3630-3638.

[15] Canay I. M., 1982. A novel approach to the torsional interaction and electrical
damping of synchronous machine, part II: Application to an arbitrary
network, /IEEE Trans. Power Apparatus and Systems, 101, no. 10,
3639-3647.

[16] Lei X., Buchholz B., Lerch E., Povh D. and Retzmann D., 2000. A
Comprehensive simulation program for subsynchronous resonance
analysis, [EEE PES Summer Meeting, Seattle, USA, July 16-20, 695-
700.

[17] Gross G. and Hall M. C., 1978. Synchronous Machine and Torsional Dynamics
Simulation in the Computation of Electromagnetic Transients, /EEE
Transactions on Power Apparatus and Systems, 97, 1074-1085.

[18] Zhu W., Mohler R. R., Spee R., Mittelstadt W. A. and Maratukulam, 1995.
An EMTP Study of SSR Mitigation Using the Thyristor Controlled
Series Capacitor, /IEEE Transactions on Power Delivery, 10, No. 3,
1479-1485.

[19] Hingorani N. G., 1981. A New Scheme for Subsynchronous Resonance, /EEE

Transactions on Power Systems, 7, no. 1, 150-157.

86



[20] Zhao X. and Chen C., 1999. Damping Subsynchronous Resonance Using an
Improved NGH SSR Damping Scheme, /IEEE PES Summer Meeting,
Edmonton, Canada, Jul 18-22, 780-785.

[21] Keshavan, B.K. and Prabhu, N., 2001. Damping of subsynchronous
oscillations using STATCOM - a FACTS device, IEEE T&D
Conference and Exposition, Atlanta, USA, Oct 28-Nov 2, 1-7.

[22] Padiyar K. R. And Prabhu N., 2008. Design and Performance Evaluation of
Subsynchronous Damping Controller with STATCOM, [EEE Trans.
on Power Delivery, 21, no. 1, 1398-1405.

[23] Wang L. And Hsu Y. Y., 1988. Damping of Subsynchronous Resonance Using
Excitation Controllers and Static VAR Compensators: A Comparative
Study, IEEE Transactions on Energy Conversion, 3, no. 1, 6-13.

[24] Yan A. and Yu Y., 1982. Multi-Mode Stabilization of Torsional Oscillations
Using Output Feedback Excitation Control, /EEE Trans. on PAS, 101,
1245-1253.

[25] Hsu Y. Y. and Wu C. J., 1988. Design of PID Static VAR Controllers for the
Damping of Subsynchronous Oscillations, /[EEE Transactions on
Energy Conversion, 3, no. 2, 210-216.

[26] Wang L. and Tseng H. Y., 1999. Suppression of Common-Mode Torsional
Oscillations of Nonidentical Turbine-Generators Using SMES, /EEE
PES Winter Meeting, New York, USA, Jan 31-Feb 4, 1, 117-122.

[27] Wang L., 1991. Damping of torsional oscillations using excitation control of
synchronous generator: the IEEE Second Benchmark Model
Investigation, IEEE Trans. on Energy Conversion, 6, No. 1, 47-54.

[28] Harb A. M. and Widyan M. S., 2002. Controlling Chaos and Bifurcation of
Subsynchronous Resonance in Power System, Nonlinear Analysis:
Modeling and Control, 7, no. 2, 15-36.

[29] Abed E. H. and Varaiya P., 1984. Nonlinear Oscillations in Power Systems,
International Journal of Electric Power and Energy Systems, 6, no. 1,
373-343.

[30] Wang H. O., Abed E. H., and Hamdan A. M. A., 1994. Bifurcations, chaos,
and crises in voltage collapse of a model power system, /EEE
Transactions on Circuits and Systems — I: Fundamental Theory and

Applications, 41, 294-302.

87



[31] Rajagopalan C., Sauer P. W., and Pai M. A., 1989. Analysis of voltage
control systems exhibiting Hopf bifurcation, /EEE Proceedings of the
28™ Conference on Decision and Control, Tampa, USA, Dec 13-15,
pp. 332-335.

[32] Ajjarapu V. and Lee B., 1992. Bifurcation theory and its application to
nonlinear dynamical phenomena in an electrical power system, /EEE
Transactions on Power Systems, 7, 424-431.

[33] Lerm A. A. P. and Silva A. S., 2004. Avoiding Hopf Bifurcations in Power
Systems via Set-Points Tuning, IEEE Transactions of Power Systems,
19, no. 2, 1076-1084.

[34] Wang S., Crouch P. and Armbruster D., 1996. Bifurcation Analysis of
Oscillations in Electric Power Systems, [EEE 35" Conference on
Decision and Control, Kobe, Japan, Dec 11-13, 4, pp. 3864-3869.

[35] Zhu W., Mohler R. R., Spee R., Mittelstadt E. A. and Maratukulam D.,
1995. Hopf Bifurcations in a SMIB Power System with SSR, /EEE
Transactions on Power Systems, 11, no. 3, 1579-1584.

[36] Iravani M. R. and Semlyen A., 1992. Hopf Bifurcations in Torsional
Dynamics, IEEE Transactions of Power Systems, 7, no. 1, 28-36.

[37] Harb A. M., 1996. Application of Bifurcation Theory to Subsynchronous
Resonance in Power Systems, Ph.D. dissertation, Dept. Electrical
Eng., Virginia Polytechnic Institute and State Univ., Blacksburg.

[38] Harb A. M., 2000. On the Effect of Machine Saturation on SSR in Power
Systems, Electric Machines and Power Systems, 28, 1019-1035.

[39] Mitani Y., Tsuji K., Varghese M., Wu F. and Varaiya P., 1998. Bifurcations
Associated with Sub-Synchronous Resonance, IEEE Transactions on
Power Systems, 13, no. 1, 139-144.

[40] Kuznetsov Y. A., 2004. Elements of Applied Bifurcation Theory, Springer-
Verlag, New York.

[41] Guckenheimer J. and Kuznetsov Y. A., 2008. Bautin bifurcation [Online].
Available: http://www.scholarpedia.org/article/ Bautin_bifurcation

[42] Kucukefe Y. and Kaypmaz A., 2008. Hopf bifurcations in the IEEE Second
Benchmark Model for SSR Studies, /6™ Power Systems Computations
Conference, Glasgow, United Kingdom, July 14-18.

88



[43] Pyragas K., 1992. Continuous control of chaos by self-controlling feedback,
Physics Letters A, 170, 421-428.

[44] Pyragas K., Pyragas V. and Benner H., 2004. Delayed feedback control of
dynamical systems at a subcritical Hopf bifurcation, Physical Review
E, 70, 056222.

[45] Ahlborn A. and Parlitz U., 2004. Stabilizing Unstable Steady States using
Multiple Delay Feedback Control, Physical Review Letters, 93,
264101.

[46] Dahms T., Hovel P. and Schéll E., 2007. Control of unstable steady states by
extended time-delayed feedback, Physical Review E, 76, 056201.

[47] Hikihara T. and Kawagoshi T., 1996. An experimental study on stabilization
of unstable periodic motion in magneto-elastic chaos, Physics Letters
A, 211, 29-36.

[48] Guderian A., Munster A. F., Kraus M. and Schneider F. W., 1998,
Electrochemical Chaos Control in a Chemical Reaction: Experiment
and Simulation, Journal of Physical Chemistry A, 102, 5059-5064.

[49] Krodkiewski J. M. and Faragher J. S., 2000, Stabilisation of motion of
helicopter blades using delay feedback — Modelling, computer
simulation and experimental verification, Journal of Sound and
Vibration, 234, 591-610.

[50] Hall K., Christini D. J., Tremblay M., Collins J. J., Glass L. and Billette J.,
1997, Dynamic control of cardiac alternans, Physical Review Letters,
78, 4518-4521.

[51] Olgac N., Sipahi R., and Ergenc A. F., 2004. Feedback time delay as a
stabilizing tool in trajectory tracking, analysis and Experiments,
Proceedings of the 2004 American Control Conference, Boston, USA,
June 30 — July 2, pp. 5443-5448.

[52] Olgac N. and Holm-Hansen B., 1995. Design considerations for Delayed-
Resonator Vibration Absorbers, J Eng Mech-ASCE, 121, no. 1, 80-89.

[53] Drazin P. G., 1992. Nonlinear Systems, Cambridge University Press,
Cambridge.

[54] Seydel R., 1994. Practical Bifurcation and Stability Analysis, From Equilibrium
to Chaos, Springer-Verlag, New York.

89



[55] Kale J. K. and Kocak H., 1991. Dynamics and Bifurcations, Springer-Verlag,
New York.

[56] Hamzi B., Kang W. and Krener A. J., 2005. The Controlled Center Dynamics,
Multiscale Model. Simul., 3, no. 4, 838-852

[57] Sotomayor J., Mello L. F. and Braga D. C., 2007. Bifurcation analysis of the
Watt governor system, Computational & Applied Mathematics, 26,
19-44

[58] Govaerts W. and Kuznetsov A., 2007. Continuation Software in Matlab:
MatCont, [Online], Available: http://www.matcont.ugent.be

[59] Anderson P. M., Agrawal B. L. and Van Ness J. E., 1990. Subsynchronous

Resonance in Power Systems, IEEE Press, New York.

[60] Yu Y., 1983. Electric Power System Dynamics, Academic Press, New York.

[61] Krause P. C., 1986. Analysis of Electric Machinery, McGraw-Hill, New York

[62] Harb A. M. and Widyan M.S., 2004, Chaos and bifurcation control of SSR in
the IEEE second benchmark model, Chaos Solitons and Fractals, 21,
537-552.

[63] Kundur P., 1994. Power System Stability and Control, McGraw-Hill, New
York.

[64] IEEE Standard 421.5, 1992. Recommended Practice for Excitation System
Models for Power System Stability Studies, New York.

[65] Griinbaum R., Halvarsson B. and Wilk-Wilczynski A., 1999, FACTS and
HVDC LIGHT for Power System Interconnections, Power Delivery
Conference, Madrid, Spain, September 1999.

90



APPENDICES

APPENDIX A.1 : Calculation of p and ¢ Complex Vectors, Extracted from [58]

91



92



APPENDIX A.1

Calculation of p and ¢ Complex Vectors

Define Vq and Dq as the eigenvectors matrix and the eigenvalue matrix of the
Jacobian matrix (J,.,) at the Hopf bifurcation point so that J * Vq =V * Dq. Matrix
Vq is the modal matrix - its columns are the eigenvectors of J. Matrix Dq is the

canonical form of J - a diagonal matrix with J's eigenvalues on the main diagonal.

Let iy, denote the eigenvalue index with real (Ainy) = 0 and imag (Ain,) of the
eigenvalues of J. Orthogonal-triangular decomposition of the real and imaginary

vector of Vi, , where j=1,2,....n, gives the unitary matrix Q.

Define also Vp and Dp as the eigenvectors matrix and the eigenvalue matrix of J .
at the Hopf bifurcation point so that J* Vp = V Dp. Matrix Vp is the modal matrix -
its columns are the eigenvectors of J'. Matrix Dp is the canonical form of J - a

diagonal matrix with J''s eigenvalues on the main diagonal.

Let iy, denote the eigenvalue index with real (Aixp) = 0 and imag (Airp) = wo , Wo >0,
of the eigenvalues of J'. Orthogonal-triangular decomposition of the real and

imaginary vector of Vj, , where j=1,2,...,n, gives the unitary matrix Q.

R=J*J+wi* L, (A.1)
R Q1"

V= lQZI' Ozle [Onxz IZxZ] (A.Z)
R Q1

W= IQS 02le [Onxz 12x2] (A.3)

Aq = V1T:n,1 *Jx Vo — iwovf?nﬁ * Vi o (A4)

Bq = _VlT:n,l * J * Vl:n,Z + iwovf:n,l * Vl:n,z (A.S)

Ap =Wl *JTx Wyo +iwgWi, 1 % Wiy, (A.6)
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— T T : T
Bp - _wl:n,l *J Wl:n,z - lwowl:n,l * Wl:n,z

Qo = Aq * Vi + Bq * Vi,
Po=Ap*Wyp1 + By x Wy

Finally, normalization of q4 and pg gives p and g :

g= %0
1 (qo)H)?

Po

P =4 *po)

94

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)



CURRICULUM VITAE

Full name: Yasar KUCUKEFE
Place and date of birth: 23.08.1971

Permanent Address: Emlak Konutlari, Sardunya-1 Apt. Daire:23 Corlu-
Tekirdag

Universities and

Colleges attended: Middle East Technical University
Balikesir Cumhuriyet Lisesi

Publications:

= Kucukefe Y. and Kaypmaz A., 2008: Hopf bifurcations in the IEEE Second
Benchmark Model for SSR Studies, 16" Power Systems Computations Conference,
July 14-18, 2008 Glasgow, United Kingdom.

» Kucukefe Y. and Kaypmaz A., 2008: Bir Tam Tasit Modelinin Zaman Gecikmeli
Geribesleme Kontrolii ile Aktif Stispansiyonu, Otomatik Kontrol Tiirk Milli
Komitesi, Otomatik Kontrol Ulusal Toplantisi, November 13-15, 2008 Istanbul,
Turkey.

» Kucukefe Y. and Kaypmaz A, 2009: Delayed Feedback Control as Applied to
Active Suspension of a Ground Vehicle, IEEE Region-§ EUROCON Conference,
May 18-23, 2009 St. Petersburg, Russia.

95



