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AVAILABILITY-CONSTRAINED ROUTING AND WAVELENGTH
ASSIGNMENT AND SURVIVABILITY IN OPTICAL WDM NETWORKS

SUMMARY

Due to the tremendous development in the Internet applications, user demands which
point to high bit rate downlink and uplink capacity with reliable, secure and robust
connection requests have been increasing continuously. At this point, optical networks
have appeared as the best solution for the Internet backbone due to the huge capacity
of the fiber. A single fiber is able to multiplex the transmission capacity of a number
of wavelength channels so that each separate connection can transmit its data stream
at the speed of light and at a specific frequency without interfering the other channels.
Thus, a single fiber can offer terrabits of bandwidth by multiplexing those wavelength
channels each offering a transmission capacity of some tens gigabits per second. This
multiplexing scheme is called Wavelength Division Multiplexing (WDM).

Besides the advantage of the huge capacity offered by the fiber, a serious problem
due to this huge capacity co-exists with the advantages. In case of a failure of any
optical component, such as a fiber or an optical node, all the connections passing
through those components are prone to lose huge amount of data. Moreover, based
on the repair time of the component, due to the long service outage time, the data lost
may increase dramatically. Therefore, survivability schemes are proposed to set up
the connections with pre-determined reliability requirements. Basically a survivability
scheme reserves spare resources for a connection to be used in case of a failure along
the connection’s primary path. The spare resources can correspond to a whole path,
spare links, sub-paths or ring-mesh protection structures. The spare resources can
either be dedicated to a single connection or shared by a group of connections.

The probability of a connection to be in operational state at an arbitrary time is called
the availability of the connection. Setting up a connection with a survivability scheme
does not guarantee that the corresponding connection has 100% availability. Long
switching time durations to the protection resources, multi-failures corresponding
to the primary and backup resources or multi-failures corresponding to the sharing
group of connections may cause a connection to be unavailable. Therefore, setting
up a connection which consists of routing and wavelength assignment (RWA) has to
consider these constraints to guarantee high availability for the provisioned connection.

This thesis study deals with availability constrained routing and wavelength
assignment and survivability in optical networks. A detailed literature survey is
provided for the related work in availability constrained connection provisioning.
The main contribution of the thesis study to the literature has three main
parts: 1) Availability-aware connection provisioning for network planning,
2)Availability-aware routing and wavelength assignment for differentiated availability
services, 3)Availability analysis and connection provisioning in shared segment
protection. Generally, the common target of all of the three points is to deal with
the tradeoff between backup resource consumption and connection availability.

xv



The first part deals with shared backup path protection (SBPP) to offer high availability
for the connections under static and dynamic traffic demands by considering the
resource consumption. A provisioning scheme, dynamic sharing, is derived from
a conventional scheme that attempts to decide a feasible sharing degree for the
wavelength channels, and assigns the costs of the arcs in the topology graph by
using this estimated feasible sharing degree. The performance of this scheme is
compared to a previously proposed scheme under SBPP and to a dedicated path
protection (DPP) method. DPP is used as a reference for the connection availability and
wavelength utilization. It is shown that the proposed scheme offers better availability
to the connections in a static demand matrix and keeps the wavelength utilization
significantly lower than DPP.

The dynamic sharingscheme is then adapted to work under dynamic traffic
environment, and called Global Shareability Surveillance (GSS). Obviously,
determination of the sharing degree for the wavelength channels is a heuristic. Relying
on the tradeoff between availability and the resource consumption, an integer linear
programming (ILP) model is built to determine the feasible sharing degrees per-link
basis, and called Link-By-Link Shareability Surveillance (LSS). The determined global
and link-by-link sharing degrees are used to assign appropriate link costs for RWA. The
proposed schemes are compared to a conventional connection provisioning scheme.
It is shown that GSS and LSS introduce better availability to the connections while
keeping the resource overbuild in a feasible range. Moreover, LSS seems to outperform
GSS and the conventional reliable connection provisioning scheme.

The second part of the thesis study deals with connection provisioning with
differentiated availability requirements under dual failure consideration and resource
limited environment. GSS and LSS are modified to work under differentiated
availability requirements and dual failure consideration, and evolve to Global
Differentiated Availability-Aware Connection Provisioning (G-DAP)and Link-By-Link
Differentiated Availability-Aware Connection Provisioning (LBL-DAP). Here, the
estimated global and link by link feasible sharing degrees for the RWA link cost
assignment are considered per-availability-class-basis. Obviously, G-DAP runs
a heuristic periodically to obtain a global feasible sharing degree for a specific
availability class while LBL-DAP constructs an ILP model periodically to obtain
feasible sharing degrees on each link for each availability class. The proposed schemes
are compared to a conventional reliable connection provisioning scheme, and it is
shown that the proposed schemes introduce high acceptance rate to the connections
while providing availability satisfaction. Besides this does not increase the resource
overbuild.

In the last part, other than SBPP, the thesis study focuses on a different survivability
scheme which is overlapping shared segment protection. Since there is no specific
availability analysis for shared segment protection, an availability calculation method
is introduced. The proposed method treats a segment protected connection as a serial
system of protection domains. Each protection domain consists of the corresponding
primary link and the segments that can provide spare capacity for it. Besides this,
availability constraints due to sharing are also considered in the proposed availability
analysis model. The proposed method is verified by simulation under different failure
rate values and different loads.
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The last part of the contribution in the thesis study proposes two availability aware
connection provisioning schemes that are built on top of a conventional segment
selection scheme, Generalized Segment Protection (GSP). The first proposed scheme
can be considered as the availability-aware version of GSP. Therefore it is named
as Availability Constrained Generalized Segment Protection (AC-GSP). The second
scheme considers the tradeoff between connection availability and resource overbuild.
It attempts to arrange the link costs by using this tradeoff function and its output
of feasible sharing degree for each availability class. Therefore it is named
as Shareability Driven Availability Constrained Generalized Segment Protection
(SDAC-GSP). SDAC-GSP also forces the connections to be protected by more number
of segments by assigning the link costs for this aim under consideration of the feasible
sharing degrees. The two proposed schemes are proposed under different environments
and with respect to different performance parameters. The applicability of each of them
is justified in terms of environmental constraints and certain parameters.

In summary, in this thesis, new approaches for availability planning of optical
networks, differentiated availability aware routing and wavelength assignment under
SBPP are proposed. Besides this, a less popular but more robust survivability scheme
with availability constraint is also considered with availability-aware connection
provisioning and its applicability. It is expected that the introduced methods are
considerable for the service providers for their long term decisions.
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SÜRDÜRÜLEBİL İR OPTİK WDM A ĞLARINDA KULLANILAB İL İRL İK
KISITI ALTINDA YOL VE DALGA BOYU ATAMA VE
SÜRDÜRÜLEBİL İRL İK

ÖZET

İnternet uygulamalarındaki hızlı ilerleme, kullanıcıların yüksek bit hızında veri
alışverişinde bulunan, güvenilir, güvenli ve dayanıklı bağlantı isteklerindeki artışı
da beraberinde getirdi. Bu şartlar altında, optik fiberin yüksek kapasitesinden
ötürü, optik ağlar internet omurgası için en uygun çözüm olarak görünmüştür. Bir
optik hat üzerindeki fiber, her biri farklı frekansta çalışarak birbiriyle girişimde
bulunmayan ve ışık hızında veri iletimi sağlayan çok sayıdaki dalgaboyu kanalını
üzerinde çoğullayabilmektedir. Dalgaboyu Bölmeli Ço˘gullama (Wavelength Divison
Multiplexing (WDM))olarak adlandırılan bu yaklaşım kullanılarak, her biri saniyede
on gigabitler (Gbps) düzeyinde iletim kapasitesi sağlayan çok sayıda dalgaboyu
kanalı bir fiber üzerinde çoğullanarak saniyede terrabitler (Tbps) düzeyinde kapasite
sağlanmaktadır.

Optik fiberin iletim kapasitesinden kaynaklanan avantajların yanı sıra, aynı
özelliğinden kaynaklanan problemler de bulunmaktadır. Fiber veya optik
düğümlerdeki kısa süreli bir arıza bile, sözkonusu optik elemanları kullanan tüm
bağlantıların çok yüksek miktarda veri kaybında yol açabilir. Üstelik optik
elemanlarda oluşan arızanın giderilme süresinin uzunluğuna bağlı olarak, kaybedilen
veri miktarı da çarpıcı miktarda artabilir. Bu nedenle, bağlantı isteklerini önceden
belirlenmiş güvenilirlik gereksinimlerini karşılayacak şekilde kurmak amacına
yönelik sürdürülebilirlik mekanizmaları önerilmiştir. Temel olarak, sürdürülebilirlik
yöntemleri, kurulan bir bağlantının kullandığı asal ışık yolu (primary lightpath)
üzerindeki bir veya birden fazla hatta oluşabilecek hata durumunda, bağlantının
kesintisiz devam etmesini sağlamak amacıyla yedek kaynak ayırırlar. Yedek kaynaklar
kimi zaman kaynaktan varışa bütün bir yola karşılık düşerken kimi zaman bir
hatta, birkaç optik hattın oluşturduğu parçalı bir yola veya halka-örgü yapılara
karşılık düşebilir. Ayrılan yedek kaynaklar, tümüyle bir bağlantıya yedek kaynak
olarak atanmış olabileceği gibi, bir grup bağlantı tarafından yedek kaynak olarak da
paylaşılabilirler.

Bir bağlantının rastgele bir anda çalışır durumda olması, bağlantının kullanılabilirlik
özelliği olarak tanımlanmaktadır. Bir bağlantının herhangi bir sürdürülebilirlik
yöntemi ile birlikte kurulmuş olması 100% kullanılabilirlik özelliği olduğu anlamına
gelmez. Asal ışık yolundan yedek kaynaklara anahtarlanma süresinin uzunluğu, asal
ve yedek kaynaklar üzerinde çoklu hata durumlarından veya yedek kaynakları paylaşan
bağlantılardan kaynaklanan çoklu hata durumlarından kaynaklanan nedenlerden ötürü
bağlantının kullanılamaz olması durumu her zaman sözkonusudur. Bu nedenle, yol
ve dalgaboyu atamadan oluşan bağlantı kurma aşaması, kurulan bağlantıya yüksek
düzeyde kullanılabilirlik sağlayabilmek amacıyla bu kısıtları göz önünde bulundurmak
durumundadır.
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Bu tez çalışması optik ağlarda kullanılabilirlik kısıtı altında yol ve dalgaboyu
atama ve sürdürülebilirlik konularını ele almaktadır. Kullanılabilirlik kısıtlı bağlantı
kurma yöntemleri üzerine ayrıntılı bir literatür taraması kitabın ilk bölümlerinde
verilmektedir. Bu çalışmanın literatüre ana katkısı temel olarak 3 bölümden
oluşmaktadır: 1) Optik ağ planlamaya yönelik kullanılabilirlik kısıtlı bağlantı
kurma, 2) Farklı servis sınıfları için kullanılabilirlik kısıtlı yol ve dalga boyu atama
3)Paylaşımlı segman koruma için kullanılabilirlik analizi ve kullanılabilirlik kısıtlı
bağlantı kurma. Genel olarak her üç bölümün de üzerine eğildiği temel sorun
kullanılabilirlik ve kaynak tüketimi arasındaki çelişkidir.

İlk bölüm paylaşılan ışık yolu korumasını (Shared Backup Path Protection, SBPP)
sürdürülebilirlik yöntemi olarak kullanmakta ve kaynak tüketimini göz önünde
bulundurarak, sabit bir trafik matrisinde belirtilen bağlantı isteklerine koşullar
elverdiğince yüksek kullanılabilirlik sağlamayı amaçlamaktadır. Daha önceden
önerilmiş ve bilinen bir yöntemden türetilerek dinamik paylaşım (dynamic sharing)
olarak adlandırılan bu yöntem, dalgaboyu kanallarının olası paylaşılabilirlik derecesini
dinamik olarak kestirmeye çalışmakta ve elde ettiği olasıl paylaşılabilirlik değerini
de topolojide iki düğüm arasındaki her bir bağın maliyetini atamakta kullanmaktadır.
Önerilen bu yöntemin, önceden önerilen yöntemle ve atanmış yol koruması (dedicated
path protection-DPP) ile başarım karşılaştırması yapılmıştır. DPP’nin kullanım
nedeni, bağlantı kullanılabilirliği ve dalgaboyu tüketimi için bir referans noktası
oluşturmasından kaynaklanmaktadır. Önerilen yöntemin, bilinen yönteme kıyasla
bağlantı başına kullanılabilirlik değerini arttırdığı ve dalgaboyu tüketiminin de
DPP’den büyük oranda düşük tuttuğu görülmüştür.

Dinamik paylaşım yöntemi, dinamik trafik ortamına uyarlanmış ve Global
Paylaşılabilirlik Gözetimi (Global Shareability Surveillance (GSS)) olarak
adlandırılmıştır. Dalgaboyu kanalları üzerindeki olası paylaşılabilirlik değerlerinin
kestirimi sezgisel bir yönteme dayanmaktadır. Kullanılabilirlik ve kaynak tüketimi
arasındaki çelişkiden yola çıkarak bir optimizasyon modeli (integer linear
programming (ILP) model) kurulmuş ve ILP modelinin çözümü ile her bir optik
hat için ayrı bir paylaşılabilirlik değeri kestirilmeye çalışılmıştır. Bu gelişmiş
yöntem, Optik Hat Bazında Payla¸sılabilirlik Gözetimi (Link-By-Link Shareability
Surveillance, LSS) olarak adlandırılmıştır. Elde edilen paylaşılabilirlik değerleri, yol
ve dalgaboyu atama sırasında uygun maliyet atanması için kullanılmaktadır. GSS ve
LSS yöntemlerinin başarımları, geleneksel bir güvenilir bağlantı kurma yöntemi ile
karşılaştırılmıştır. GSS ve LSS’nin bağlantı istekelerine daha yüksek kullanılabilirlik
sağladığı ve yedek kaynak tüketim oranını da kabul edilebilir bir aralıkta tuttuğu
gözlenmiştir. Ayrıca kendi aralarındaki başarımları göz önünde bulundurulduğunda
LSS yönteminin GSS ve geleneksel güvenilir bağlantı kurma yönteminin çok üzerinde
bir başarım ile kullanılabilirlik sağladığı görülmüştür.

Çalışmanın literatüre katkısının ikinci kısmı, çoklu (çift) hata olasılığı bulunan ve
kaynak kısıtlı ortamda, farklılaşmış servis sınıfları için kullanılabilirlik kısıtlı yol
ve dalgaboyu atama problemini ele almaktadır. GSS ve LSS çift hata olasılığı,
kaynak kısıtı ve farklı kullanılabilirlik sınıflarının bulunduğu ortamda çalışacak
değişikliklerle yenilenerek sırasıyla Global Farklılaşmış Kullanılabilirlik-Kısıtlı
Bağlantı Kurma(Global Differentiated Availability-Aware Connection Provisioning,
G-DAP) ve Optik Hatlar Bazında ve Farklıla¸smış Kullanılabilirlik-Kısıtlı Bağlantı
Kurma (Link-By-Link Differentiated Availability-Aware Connection Provisioning,
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LBL-DAP) adlarını almışlardır. Burada, dalgaboyu kanallarının, global veya optik
hat bazında kestirimi yapılan paylaşılabilirlik değerleri her bir kullanılabilirlik sınıfı
için ayrı ayrı hesaplanmaktadır. G-DAP, her bir kullanılabilirlik sınıfı için periyodik
olarak çalıştırdığı bir kestirim fonksiyonu aracılığıyla kanal paylaşılabilirlik değerini
kestirmektedir. LBL-DAP ise, aynı amaca yönelik kurduğu bir ILP modelini
periyodik olarak çalıştırmakta ve her bir kullanılabilirlik sınıfına yönelik dalgaboyu
paylaşılabilirlik değerini her bir optik hat için ayrı ayrı hesaplamaktadır. Önerilen
yöntemler geleneksel bir güvenilir bağlantı kurma yöntemiyle karşılaştırılmış ve
önerilen yöntemlerin yüksek bağlantı kullanılabilirliği, yüksek bağlantı kabul oranı
sağladıkları, bunun karşılığında da yedek kaynak tüketim oranında da bir artışa neden
olmadıkları gösterilmiştir.

Çalışma son kısmında, farklı bir sürdürülebilirlik mekanizmasının, örtüşen paylaşımlı
segman korumanın üzerine eğilmektedir. Paylaşımlı segman koruma için bilinen
belirli bir kullanılabilirlik analizi yöntemi bulunmamasından ötürü, öncelikle
paylaşımlı segman koruma için bir kullanılabilirlik hesaplama yöntemi önerilmiştir.
Önerilen hesaplama yöntemi, segman korumalı bir bağlantıyı seri bağlı koruma
alanları olarak değerlendirmektedir. Her bir koruma alanı, bağlantının asal ışık
yolundaki bir optik hat, ve bir hata durumunda o optik hat üzerinden akan
trafiğin kotarılabileceği koruma segmanından oluşmaktadır. Bunun dışında, önerilen
kullanılabilirlik hesaplama yönteminde, yedek dalgaboyu kanallarının paylaşımından
kaynaklanan kullanılabilirlik kısıtı da göz önünde bulundurulmaktadır. Önerilen
yöntem, simulasyonlar aracılığıyla farklı hata oranları ve yükler altında test edilerek
doğrulanmıştır.

Son olarak, genelleştirilmiş segman koruması (Generalized Segment Protection,
GSP) olarak bilinen geleneksel bir segman seçme algoritmasının üzerine kurulan iki
farklı, kullanılabilirlik kısıtlı bağlantı kurma tekniği, paylaşımlı segman koruma için
önerilmiştir. Birinci teknik, GSP’nin kullanılabilirlik kısıtını göz önünde bulunduran
versiyonu olarak düşünülebilir. Bu nedenle Kullanılabilirlik Kısıtlı Genelleştirilmiş
Segman Koruma(Availability-Constrained Generalized Segment Protection, AC-GSP)
adı verilmiştir. İkinci teknik ise, kullanılabilirlik ve yedek kaynak tüketim oranı
arasındaki çelişkiyi göz önünde bulundurmaktadır. Bu çelişkiden yararlanarak, segman
oluşturmaya aday optik hatlar üzerindeki kanallar için olası paylaşılabilirlik dereceleri
kestirmeye çalışarak, elde ettiği değerleri yol seçimindeki maliyet atamasında
kullanmaktadır. Sözkonusu ikinci yöntem, Paylaşılabilirli ğe Yönelik Kullanılabilirlik
Kısıtlı Genellleştirilmiş Segman Koruma(Shareability Driven Generalized Segment
Protection, SDAC-GSP) olarak adlandırılmıştır. SDAC-GSP aynı zamanda, bağlantı
isteklerini, paylaşılabilirlik değerlerini de göz önünde bulundurarak, daha fazla
segmanla korunacak şekilde yol seçimi yapmaya zorlamaktadır. Önerilen iki yöntem
farklı başarım parametreleri ile farklı ortamlarda denenmiş ve karşılaştırılmıştır.
Yöntemlerin uygulanabilirliği, çalıştıkları ortama ve başarım parametrelerine bağlı
olarak belirlenmiş ve doğrulanmıştır.

Özetle, bu tez çalışması, paylaşımlı yol koruması altında optik ağların kullanılabilirlik
planlaması ve farklı servis sınıflarının kullanılabilirlik kısıtlı bağlantı kurma gibi
temel sorunlarına yeni yaklaşımlar tanıtmaktadır. Buna ek olarak, optik ağlarda
kullanılabilirlik kısıtı altındaki çalışmalarda değinilmemiş olan paylaşımlı segman
koruması da sözkonusu kısıt ile birlikte bağlantı kurma problemi ile ele alınmış
ve uygulanabirliği tartışılmıştır. Çalışmanın bütününde, servis sağlayıcılar ve ağ
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operatörlerinin uzun vadeli kararlarını alırken yararlanabilecekleri bilgilerin içerildiği
umulmaktadır.
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1. INTRODUCTION

As a result of the increase in the bandwidth demand of the next generation Internet

applications, optical networks appeared as the best solution in order to offer bandwidth

values in Tb/s by partitioning this bandwidth into a number of gigabits per second

wavelength channels [1].

The deployment of optical networking can be either circuit switched (Wavelength

Division Multiplexing, WDM) [2] or optical packet/burst switched (OBS/OPS) [3, 4].

Obviously, packet/burst switched architectures provide more efficient utilization of

the fiber capacity, and they are the strongest candidates for future optical networking

technology. However, currently, due to the lack of optical logic and constraints due

to optical buffering, WDM seems the main concern for today’s Internet backbone.

Therefore, in this work, we focus on WDM as the optical networking technology.

The main components of a WDM network are the optical nodes consisting of optical

cross-connects (OXC) and the transceivers. This node architecture routes the data

transmission of the connections over several wavelength channels without interfering

each other. Once the connection is provisioned, the data stream is converted to the

optical format, and sent from source to the destination in the optical domain with

neither any processing nor any optical-electronic-optical (o-e-o) conversion. The

connection can either use the same wavelength or different wavelengths along the

lightpath based on the deployment of wavelength converters at the intermediate nodes.

Similar to the previous work in this topic, this thesis study deals with the nodes

with wavelength conversion capability. Thus, a connection can switch between the

wavelengths along the lightpath.

In WDM, each wavelength channel in a fiber is used as a virtual circuit, namely a

light path, for an accepted connection request. Thus, each connection can transmit

data at the speed of light. The capacity of fiber is partitioned into wavelength channels
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that provide the connections to use tens of gigabits per second. However, in case

of a service interrupt on any component along the light path, the amount of data

loss is also huge since the offered bandwidth is as huge as the fiber capacity [5].

Therefore, in case of a failure of a physical component along the lightpath, the delivery

of the data to destination without error, preemption and loss introduces the problem of

survivability and reliability in optical networks. Based on this fact, optical WDM

networks should be designed based on a pre-determined survivability and reliability

criteria for protection due to physical component failure. The survivability policy can

be either protection or restoration. Protection reserves backup resources in advance at

the time of connection provisioning while restoration finds an available lightpath on

which the connection is to be switched when a failure occurs. Most of the survivability

work relies on the protection schemes because of guaranteed recovery. Therefore, in

this work we use the term "survivability policy" to represent "protection strategy".

Basically, survivability schemes can be implemented based on link protection, path

protection [6] path-segment protection [7], or p-cycles [8]. These schemes can

be implemented based on dedicated backup or shared backup concepts. Both the

dedicated and shared protection schemes have advantages and disadvantages. The

former one consumes more network resources while the latter one leads to less

availability as it requires less redundancy. This phenomenon shows the trade-off

between resource redundancy and restoration capability. Path-segment protection

combines the advantages of the path protection and segment protection schemes [9].

On the other hand, p-cycle protection provides a mesh-like redundancy and ring-like

restoration speed [10]. However, p-cycles lead to a high computational overhead

during the cycle selection process.

Although an efficient survivability scheme is employed, in case of multiple errors

and / or long switching durations to the backup path / segment / link, availability

constraint on some links, channels, nodes and/or other physical components occurs.

This phenomenon introduces the availability constraint as an input parameter for

survivable protection/restoration and routing-and-wavelength assignment schemes in

optical WDM network design [11]. Therefore, the availability of a connection is

a function of the precise details of the failures (repair times, locations, etc.), the

amount of backup resources, and the backup resource allocation scheme (shared

2



/ dedicated) [1]. Generally, availability (A) of a network resource (switch, fiber,

wavelength channel, amplifier, multiplexer, demultiplexer, etc.) is computed as given

in Eq.1.1, where MTTF is the mean time to fail, and MTTR is the mean time

to repair. MTTR is usually fixed. The availability values of the components are

obtained by the statistical data collected from the industry related to MTTF and MTTR

parameters. MTTF is represented in terms of FIT (number of failures in 109 hours)

while MTTR is represented in terms of hours. Besides these, since users require

significantly high availability of resources, in most cases the unavailability (U) is also

a major concern, and it is the complement of availability parameter as shown in Eq.1.2

A = MTTF
MTTF+MTTR (1.1)

U = 1−A = 1− MTTF
MTTF+MTTR = MTTR

MTTF+MTTR (1.2)

As it is seen from the equations above, availability stands for the probability of a

system to be operational at an arbitrary time [12]. Therefore, a connection between

a source-destination (s−d) pair is said to be available if it is in the onstate at a random

time.

Availability requirements of a connection are usually specified in the Service Level

Agreement (SLA) which is signed between the user and the service provider. In case

of a violation of the SLA, the service provider faces a certain penalty. Therefore,

availability-constrained network design and connection provisioning is one of the key

concerns for the network operator [13]. Some hardware solutions exist in the standards,

such as the tandem connection monitoring module of the ITU-T G.709 standard. Thus,

when a signal degradation is monitored by the module, the link is shut down before

the failure occurs on the corresponding link so network availability and optical link

availability is increased and the users are protected from the failure [14,15]. However,

rather than link-by-link hardware solutions, protocol based solutions are still emergent

to guarantee the SLA requirements of the connections.

In the literature, majority of the routing and wavelength assignment (RWA) and

survivability schemes do not consider the availability issue as a constraint. There are

some availability analysis for the dedicated path protection (DPP), shared backup path

protection (SBPP) [16], and p-cycles [17]. However, availability has started to be

considered as a major concern in routing and wavelength assignment recently [18–22].
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Most of the availability aware design schemes are centralized, however, there are also

some works that consider distributed provisioning [23,24]. Majority of the availability

design works assume a working and backup path pair for the availability guaranteed

provisioning of the connection, however it is rarely considered for a connection

to be protected by multiple backup paths [25] or provisioned over multipaths [26]

considering the availability constraints. In addition to all, although most of the

availability-aware schemes deal with SBPP and DPP, there are also availability-aware

design connection provisioning works with p-cycles [27], WDM rings [28, 29], and

demand-wise shared protection which is a compromise of DPP and SBPP [30]. There

are also some studies that deal with the economical solutions to offer certain level of

availability for the connections [31].

In this thesis study, we come up with centralized survivable and reliable design

schemes for optical WDM networks where the RWA for the connection provisioning

is constrained to connection availability. We consider the trade-off between resource

consumption and connection availability. Thus, the higher consumption, the better

availability. However, in resource-scarce environment connections can be blocked

either due to resource limitation or due to availability dissatisfaction. Therefore backup

resource consumption is also considered by the proposed schemes. We work on shared

protection schemes, namely SBPP and overlapping shared segment protection.

We start with connection provisioning in non-differentiated environment where

connections are attempted to be provisioned by targeting the maximum availability

per connection under consideration of the resource consumption. We propose an

availability constrained connection provisioning scheme that is designed for and

evaluated under static traffic demand and shared backup protection. The proposed

scheme takes a two-step conventional connection provisioning scheme as a base. It

is widely known that there is a tradeoff between efficient usage of resources and

connection availability [32]. By using the tradeoff between availability and resource

consumption, it tries to find the appropriate number of connections that can share

a backup channel, namely the sharing degree. Obviously, sharing degree is one

of the major factors that affect connection availability; the more shareability the

less availability. We show that the proposed design scheme introduces enhanced

unavailability to the connections, and it still consumes significantly less resources

4



compared to a provisioning scheme with dedicated path protection [11]. In SBPP part

of the work we use two topologies, namely 14-node NSFNET and 28-node European

Optical Network(EON) topologies to evaluate also the topology dependence of the

proposed schemes.

We adapt the proposed scheme that is for static traffic matrices to provide

maximum availability for the dynamically arriving and releasing connections and

resource-plentiful networks. The adapted scheme is called Global Shareability

Surveillance (GSS), and attempts to find a feasible global sharing degree for the

backup channels on the links. As time passes, the protocol increments or decrements

the feasible sharing degree on the links based on the feedback information on the

connection availability and backup resource consumption information collected from

the network. We then construct an ILP based model, Link-by-Link Shareability

Surveillance (LSS), to predict a separate feasible sharing degree for each link’s

channels in the network. This scheme periodically takes a snapshot of the network,

and builds an ILP model. The output of the ILP model is a set of the feasible sharing

degrees on the links. In the proposed techniques estimated shareability values are

used to define link costs for backup path search. We evaluate GSS and LSS in terms

of resource overbuild and average unavailability per connection and show that the

proposed schemes lead to enhanced unavailability per connection while keeping the

resource overbuild in a feasible range.

The second part of the work related to SBPP considers connections arriving with

differentiated availability requirements. Here, the network is also assumed to

be resource-scarce. Therefore, connection blocking probability arises as another

issue other than connection availability and resource overbuild. We propose two

connection provisioning schemes that are derived from GSS and LSS to work under

differentiated availability, and are called Global Differentiated Availability-Aware

Connection Provisioning (G-DAP)and Link-By-Link Differentiated Availability-Aware

Connection Provisioning (LBL-DAP). G-DAP attempts to determine a feasible global

sharing degree for each availability class by running a heuristic function. LBL-DAP

constructs and runs an ILP model to determine a separate feasible sharing degree for

each availability class on each link. We show that the proposed schemes lead to low
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blocking probability, low resource overbuild, and high availability per connection. We

also support the performance evaluation of the schemes by various statistical data.

Segment protection can be either overlapping or non-overlapping way [9, 33].

Non-overlapping segment protection leads to sub-path protection where the availability

analysis is not hard but can be done by partitioning the availability analysis

of SBPP. To the best of our knowledge, availability-constrained overlapping

segment protection is not considered in the literature. Here, we also propose an

availability analysis method for this protection policy. We validate our proposed

method by simulation. Based on our proposed analysis model, we present two

availability aware connection provisioning schemes, namely Availability Constrained

Generalized Segment Protection (AC-GSP), and Share ability Driven Availability

Constrained Generalized Segment Protection (SDAC-GSP)that are availability-aware

adaptation of a conventional segment selection algorithm, namely the Generalized

Segment Protection (GSP)[34]. We evaluate and analyze the performance of

our proposed schemes under resource-plentiful and resource-scarce environments.

The reference topology used for performance evaluation of availability-constrained

segment protection is the USNET topology which has more number of nodes and

heterogeneous connectivity.

The rest of the thesis chapters are organized as follows:

• Chapter 2 starts with a summary of the survivability schemes in optical networks,

defines the availability concept, and the existing availability analysis methods for

different protection schemes. This chapter also summarizes existing availability-aware

connection provisioning approaches.

• Chapter 3 includes the non-differentiated availability-aware optical network design

issues under resource-plentiful environment with SBPP. It contains two subsections for

the design under static and dynamic traffic, respectively. The performance evaluation

and simulation details are also given at the end of the chapter.

• Chapter 4 presents the proposed differentiated availability-aware connection

provisioning schemes for optical WDM networks under resource-scarce environment

with SBPP. Performance analysis, comparison and the simulation details are also

included at the end of the chapter.
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• Chapter 5 proposes an availability analysis scheme for overlapping shared segment

protection. This chapter includes the validation of the proposed analysis. Following the

validation, based on the analysis we propose two availability-constrained connection

provisioning schemes for overlapping shared segment protection. We analyze and

compare the performance of the proposed schemes under resource-plentiful and

resource-scarce environments. We support the performance comparison by presenting

statistical data for the schemes under each condition.

• Chapter 6 concludes the thesis by discussing the outcomes and the possible future

directions for the work.
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2. SURVIVABLE OPTICAL NETWORKS AND AVAILABILITY

2.1 Survivability

Due to the huge capacity of the fiber, in case of a component failure, the data

loss can be as huge as the capacity of the fiber. A component can be an OXC,

a wavelength channel, an amplifier, a transceiver, or the fiber itself. Therefore,

optical network connections have to be provisioned with a pre-determined survivable

design. Survivable connection provisioning is achieved by protection and restoration

mechanisms [35]. The most basic protection strategy is the deployment of the

self-healing rings for the ring topologies [36]. In Figure 2.1 working of a self-healing

ring is illustrated. The figure on the left show the normal working condition. The

traffic from node Ato node Dflows through node Band node C. As seen in the figure

on the right, once the link between B and C fails, the traffic is re-routed and switched

on the protection path, i.e it is sent through node E. The connection can switch from

the working path to the protection path in approximately 50-60 ms. Although this

switching time is significantly fast, the overhead of this protection strategy occurs

in resource consumption where 100% redundancy exists. Here, note that the terms

primary path and working path are used interchangeably so as the terms backup path

and protection path.

Figure 2.1: A sample of self-healing protection before and after the failure
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Obviously, self-healing rings are not the appropriate protection strategy for the mesh

topologies. To avoid resource consumption, span or path oriented protection-based

strategies are used [37]. These protection techniques can be implemented either as

dedicated protection or shared protection [6]. Restorability and redundancy are the

main design objectives in survivable optical networks.

Restorability=
Restored_capacity
Failed_capacity

(2.1)

Redundancy=
Number_o f_spare_capacity

Number_o f_protected_capacity
(2.2)

As seen in the equations, there exists a tradeoff between restorability and redundancy.

Thus, the more redundant resources are deployed, the more restorable connections are

provisioned.

2.1.1 Span-oriented protection

The aim of the span oriented protection is the recovery of the traffic on a single span

if a failure occurs on the corresponding location. Once a component fails on the span,

the traffic is rerouted on the backup span which surrounds the failed span [6]. The

protection can be implemented either in dedicated or shared way. In Figure 2.2.a,

dedicated link protection scenario is illustrated. In case of a failure on the links 1-2 or

5-6, the traffic flowing from node1 to node2 has to be routed through the nodes 1-5-2

over the wavelength λ2. Similarly, the traffic between 5-6 has to be routed through the

path 5-2-6 over the wavelength channel λ1. As it is seen, the backup paths for the spans

1-2 and 5-6 intersect on the link 2-5. Therefore the traffic flows should be carried on

different wavelength channels in case of failure.

Figure 2.2: Span Protection a. Dedicated b.Shared
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Figure 2.2.b illustrates the same protection strategy by means of shared protection

where the traffic flows can share their backup resources. The spans 1-2 and 5-6 are

protected by the same backup route. However, on the shared link in their backup

paths, they share the dedicated wavelength, λ1. Thus, in case of a failure on either of

the links, the shared resource is activated by the connection that has the failed span on

its working path. However, if both of the spans fail, only one of the connections is able

to activate and use the protection path for the failed span while the other connection

is unavailable. Therefore for the sake of decreasing the resource consumption, this

mechanism can restore at most one of the failures while the dedicated scheme survives

in case of dual-failure (and multi-failure).

2.1.2 Path protection

Path protection is an enhanced version of link protection. Similar to link protection,

path protection may be dedicated or shared as link protection is implemented.

In path protection, the primary path is protected by a backup path which is

link-and-wavelength-disjoint to itself. In Figure 2.3, a dedicated path protection

scenario is shown. In the figure, two connections are illustrated. Conection− 1

is set between node 1 and node 3 while Connection− 2 is set between node 4

and node 6. Figure 2.3.a, shows a dedicated path protection scenario for these

connections. Connection− 1 is routed along the path 4-5-6 over the wavelength λ1.

Connection−2 is routed through the path 1-2-3 over the wavelength λ1. Backup paths

of the connections are routed along the lightpaths (4-1-2-6, λ2), and (1-5-2-6-3, λ1)

respectively. Here the notation (i − j −k, λw) represents the lightpath passing through

the nodes i, j, k and uses the wavelength λw on the links.

Figure 2.3: Path Protection a. Dedicated b.Shared
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Figure 2.3.b illustrates shared backup path protection scenario for the same

connections in Figure 2.3.a. Thus, the primary and backup routes for Connection−1

and Connection− 2 are the same as they are in DPP. Wavelength utilization for the

primary paths of the connections is also the same as it is in DPP. However, the backup

paths are routed over the same wavelength, namely λ2 for both of the connections. The

backup paths of the connections intersect on the link 2-6. However, the backup paths

are allowed to share the wavelength λ2 for restoration. In case of a failure on the path

passing through the links 4-5-6, Connection−1 switches to its backup path and utilizes

the backup wavelengths on each link, and vice versa. If there is a concurrent failure

on the primary paths of the connections, at most one of them can utilize the backup

wavelength on the shared link. Thus, the other one will be unavailable.

Here, the term shared risk link group (SRLG) occurs. The connections that are affected

by the failure of each other’s primary resources are supposed to be in the same SRLG.

In a network that is designed with a survivability constraint, the connections that are

in the same SRLG, affect the availability parameter of each other. It is worth noting to

mention that Figures 2.1, 2.2, and 2.3 are adapted from [38].

2.1.3 Segment protection

A hybrid of path protection and span protection is called path-segment protection or

segment protection [39]. The primary path of the connection is partitioned into fixed or

variable length path-segments. Each segment is protected by a protection segment. The

primary segment and its protection segment form a protection domain. The consecutive

protection domains may be either overlapping or non-overlapping.

If there exists two disjoint paths between a source and a destination, then a

non-overlapping segmented protection solution is guaranteed for any selected primary

path. However, for any primary path, disjoint end-to-end protection paths are not

guaranteed. Therefore, segment protection is resource efficient like span protection and

timely as path protection. Thus, path-segment protection introduces the advantages of

low blocking probability, QoS guarantee, and improved resource utilization [40].

Figure 2.4 shows a sample of overlapping segment protection. The primary path

is partitioned into adjacent segments, and each segment is covered in a protection

domain [41] that overlaps with its adjacent protection domains. In case of a failure
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Figure 2.4: Overlapping Segment Protection

in any primary segment, the traffic flowing over that segment is dilated within the

corresponding protection domain. Thus, this scheme can handle multi-failure along

the primary lightpath, and even multi-failure on the backup links set. Figure 2.4

also illustrates a simple failure scenario. There are three protection domains in the

figure. The start and the end node pairs of the protection domains are as follows:

(Source, N3), (N2, N6), and (N5, Destination). Once link−4 which is in the second

protection domain fails, the traffic from the Sourcenode to the Destinationnode is

routed through the protection segment of the protection domain between N2 and N6.

The traffic is routed through the primary path beyond N6.

In shared implementation of the segment protection, to guarantee 100% survivability,

the connections can share the all the backup channels on the protection segments unless

those segments protect the common links of the primary paths of the connections.

Thus, shared risk group concept works similar to path protection.

2.1.4 Pre-configured Protection Cycles

Pre-configured protection cycles (p-cycles) are proposed to be a compromise between

self-healing rings and mesh protection. They offer ring-like fast recovery, and

mesh-like capacity efficiency [8,10,38,42]. A simple illustration of p-cycle protection

is shown in Figure 2.5. Under the failure-free state, the allocated spare capacity is idle.

There are two types of links, namely the on-cycle links and the straddling links. Like a

self-healing ring, an on-cycle link on a p-cycle is protected by the remaining part of the

cycle in the reverse direction. A straddling link has its end nodes on the cycle although

it is not on the cycle. Therefore a straddling link is protected by two protection paths
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in opposite directions. Several integer linear programming (ILP) solutions [10] and

heuristics [43–45] are proposed for determining and/or reconfiguration of p-cycles for

single or multiple failure cases.

Figure 2.5: A sample p-cycle protection

In the figure above, the sample p-cycle consists of the links between the nodes

0-4-8-5-9-7-6-2-3-0. The spare capacities on the links are used to form the p-cycle

which between the nodes 0-3-2-6-7-9-5-8-4-0. 0-3, 3-2, 2-6, 6-7, 7-9, 9-5, 5-8, 8-4,

4-0 are the on-cycle links. The straddling links that are off-cycle and whose end nodes

are on the cycle for this p-cycle are 0-2, 2-4, 2-5, 3-5, 3-6, 3-7, 4-5, 5-6, 6-9, and 8-9.

Consider the on-cycle link 4-8 fails. The traffic on the failed link is routed on the path

4-0-3-2-6-7-9-5-8. Consider the straddling link 4-5 fails. The traffic on the failed link

is routed either through the path 4-8-5 or 4-0-3-2-6-7-9-5.

2.2 Availability

Survivability is a major concern as explained in the previous subsection. However,

although the network is designed by using an appropriate survivability scheme, the

connection is not guaranteed to be always at the "on" state. Due to dual/multiple

failure of some components or long switching durations to the backup resources,

availability constraint on the connections occurs. Basically, as a design constraint,

availability stands for the probability of a network component, a wavelength channel

or a connection path working at a random time t [46]. For a restorable system, the

mathematical formulation for the availability (A) is introduced in Equation 1.1 where

MTTF stands for the mean-time-to-failure, and MTTRstands for mean-time-to-repair

after a component fails. Theoretically, A lies between 0 and 1. However, practically it
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is expected to be at the level of 0.99. Therefore, in some calculations, the unavailability

parameter U (U = 1 - A) is preferred as the design constraint. The closed formulation

for unavailability is also given in Equation.1.2. The MTTF and MTTR values are

statistical data that are usually collected from the industry.

In network’s point of view, the availability of a connection is a function of the failure

probabilities of the hardware components along the transmission path [11]. Most of

the studies model the failure of a component as a memoryless system with a constant

failure rate λ in terms of FIT (1 FIT = probability of one failure in 109 hours). Thus, λ

stands for 1
MTTF . Failure rates are usually modeled with respect to Poisson arrival

distribution. Thus, for a connection to have one failure in a time duration of t is

shown below in Equation 2.3. MTTRcan follow exponential, weibull or lognormal

distribution [47]. However, it is very common that MTTR is taken as fixed or

exponentially distributed. Thus, the probability distribution of the repair model of a

system is considered as shown in Equation 2.4.

P(Failure, t) =
t

MTTF
·e−( t

MTTF) (2.3)

P(Repair, t) =
t

MTTR
·e−( t

MTTR) (2.4)

In [19, 48], the availability formulae of the parallel and series systems are given. Let

the availability of a series system consisting of n elements be represented by As, and

let the ith component in the system has the availability Ai . As can be represented by

the closed formula in Equation 2.5. If the system is parallel configured, at least one

component has to be available for the system to be available. Therefore, As can be

calculated as given in Equation 2.6. The product term stands for the unavailability of

the system where all the components are unavailable. Taking one’s complement of the

system leads to the availability of the parallel system.

As = ∏
i

Ai (2.5)

In optical networking research, common assumption is that the optical nodes have

100% availability so the major failures are on the optical links. However, there are

also some works that deal with availability in presence of node failure [49].
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Ap = 1−∏
i

(1−Ai) (2.6)

2.2.1 Availability Analysis in Optical WDM Networks

2.2.1.1 Linear Models

The first studies on availability in optical networks starts with the SONET rings [50,

51]. Later, it is also possible to see some works on availability and multi-services

IP networks [52]. Today, majority of the works on availability and optical networks

move towards optical WDM networks [6, 11, 16, 53–57], and multi-granular optical

networks [18, 58].

In [57], the availability of the optical connections are analyzed subject to the distance

between the nodes and the number of hops in the route. The failure rates of the network

components are based on realistic measurements of the recent studies. The summary

of the failure rates of those components are given in 2.1. The network components

considered for the availability analysis are as follows:

The failure rate of a (de)multiplexer (MUX / DEMUX) is considered to be proportional

to the number of wavelengths per fiber. The failure rate of the optical amplifier (EDFA)

is considered to be constant.

Two different optical switch architectures are considered, namely Optical Switch 1 and

Optical Switch 2. Optical Switch 1 (OSW1)is an optical add/drop multiplexer (OADM)

with two dimensional microelectromechanical systems (2D-MEMS). W incoming

lightpaths are switched to M ports. In [59] the authors give an upper bound of 21 FIT

for the failure rate of a 2D-MEMS based OADM. Therefore, in an optical network, the

failure rate of an OSW1 can be considered as 21 ·W ·M. Optical Switch 2 (OSW2)is

based on 3D-MEMS and wavelength selective optical cross-connects (OXCs) can be

considered in this category. Since the 3D-MEMS-based switches have mirrors that are

twice the number of inlets, the wavelength selective switch has 2N input and output

ports. Thus, based on [59], the failure rate of OSW2 can be taken as 21 ·2 ·2N FIT.

Digital Switch 1 (DSW1)can operate with opaque OADMs that support W

wavelengths. The failure rate for a 4 ∗ 4 switch is given as 3500 FIT so, assuming

that the failure rate is proportional to the number of input channels, the failure rate
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for a DSW1 is 875 ·W FIT. Digital Switch 2 (DSW2)operates with opaque OXCs and

supports N ·W channels where N is the number of incoming fibers and W is the number

of wavelengths per fiber. By using the same method above, the failure rate for DSW2

is found as 875 ·W ·N.

Three types of couplers can be considered, namely Coupler− 1, Coupler− 2, and

Coupler− 3. The failure rate of a coupler is considered to be proportional to the

number of the outgoing ports. A lower bound (25 FIT) for a coupler is determined

in previous studies. Thus, Coupler1 is a 1 : 2 splitter so the failure rate for Coupler1

is 50 FIT. Coupler2 is a 1 : W/4 splitter. Therefore it has a failure rate of 25 ·W/4

FIT. Failure rate of Coupler3 which is a 1 : (N− 1) splitter can be calculated in a

similar way. Here, N is the number of incoming fibers to the OXC. The failure rate

of Coupler3 is 25 · (N−1) FIT. Failure rates for Tunable Transmitter, Fix Transmitter,

Tunable Receiver, Fix Receiver are given in [57] based on the previous research. It is

also possible to find other values used for the availability of the optical components

[60, 61]

Table 2.1: Component Failure Rates. W = Number of wavelengths per fiber, N =
Number of incoming fibers

Component Symbol Failure Rate (FIT)
MUX/DEMUX MUX 25 · W

EDFA EDFA 2850
Optical Switch 1 OSW1 21 ·W ·W/4
Optical Switch 2 OSW2 21 ·2 ·2N

Coupler 1 COUP1 25 ·2
Coupler 2 COUP2 25 ·W/4
Coupler 3 COUP3 25 · (N−1)

Tunable Transmitter TTx 745
Tunable Reciever TRx 470
Fix Transmitter FTx 186

Fix Reciever FRx 70
Digital Switch 1 DSW1 875 ·W
Digital Switch 2 DSW2 875 ·W ·N

Wavelength Blocker W/B 50 ·W

In [57], the authors draw the availability of a connection by paying attention to the path

length and the number of hops traversed. 40 wavelengths are assumed to be supported,

and 310 FIT per kilometer is taken as the link failure rate. To draw a closed formula

for connection availability, they define the availability penalty (AP) for a system which

is given in Equation 2.7 where FR stands for failure rate of the system.
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AP= 10−9 ·FR·MTTR (2.7)

The connection availability is derived using the availability penalty for the components

along the path, and the closed formula of the connection availability is given in

Equation 2.8. APlink−km, APadd, APdrop, APpassthr, APreg, and Preg stands for link

availability penalty per kilometer, availability penalties due to adding, dropping,

passing through, regeneration node operations, and the ratio of the nodes where signal

regeneration is required.

Ac = 1 − (APlink−km·D + APdrop + APadd +

APpass_thr ·� (NH−1) · (1−Preg)� + APreg ·� (NH−1) ·Preg �) (2.8)

Based on the assumptions and the formulae given above, availability maps are derived

for wavelength selective, select-and-broadcast and opaque OADMsand OXCs. It is

shown that the transparent node architectures outperform the opaque architectures

in terms of availability. Moreover, when OADMs are used, wavelength selective

structure has to be preferred for high availability while wavelength selective and

select-and-broadcast architectures lead to the same performance when OXCsare used.

In [20], a comparison on analytical and simulation approach for availability analysis of

optical transport network is given. Two network architectures are considered, namely

passive WDM network (PWN) and automatic switched WDM network (ASWN). In

PWN, static cross-connecting is used, and no restoration is allowed. On the other hand,

AWSN performs dynamic wavelength path provisioning. Component availability

model is based on Markovian ON/OFF process. The network availability is calculated

by using a logical transport entities hierarchy. At the bottom of the transport entities

hierarchy, wavelength channel exists. On top of the wavelength channel, wavelength

path and logical channel exists. At the highest level, there is the logical connection

entity. Network availability analysis is performed for no protection, 1 + 1 dedicated

path protection, and path restoration (1 : m) schemes.

Arci et. al [16] study the availability models for the most common protection

techniques by giving the relations between the dedicated and shared protection

techniques and some network parameters assuming that the RWA has just been

employed. The analysis starts with the basic 1 : 1 protection scheme, then the
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numbers of working lightpaths and protection lightpaths are increased (1 : N and M : N

protection respectively). These schemes are given in Figure 2.6. For the mesh shared

cases, 2 ∗ (1 : 1) shared protection and m∗ (1 : 1) shared protection schemes that are

shown in Figure 2.7 are considered. In the book, the difference between reliability and

availability is formulated as follows, Exy being a random variable pointing the state of

the component xy:

• Exy: xy has never failed up to time t ⇒ P{Exy} :Reliability

• Exy: xy operates at time t independent of the previous events ⇒ P{Exy} :

aaaaaAvailability

Figure 2.6: Dedicated and Shared Path Protection Schemes for availability analysis
(a) 1:1 (b) 1:N (c) N:1 (d) 2:N (Arci, 2003)

In [16], the availability of an entity is represented by Axy where x represents the

entity itself, and y represents the index of the element. y stands for the index of

the entity while x can be either w or p representing the working or the primary path

of the corresponding entitiy respectively. Thus, the analysis starts with Awi, namely

the availability of the working path i. The closed form expression of Awi is given in

Equation 2.9. As it is seen, a working path is a series of wavelength channels.

Awi = ∏
∀λ j ∈ Λwi

Aλ j (2.9)
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Figure 2.7: Shared Backup Path Protection Schemes for availability analysis (a)
2*(1:1) mesh protection (b) m*(1:1) mesh protection (Arci, 2003)

The open form of the availability of the 1 : 1 system (Figure 2.6.a) is given in Equation

2.10. In the figure, a 1 : 1 system with one connection (k1) is given. The system consists

of a parallel configuration. Therefore the system is available either the primary path

(w1) or the protection path (p1) works. For 1 : N protection case in Figure 2.6.b, N

is taken as 2. The same principle works here with a little difference; at most one

of the primary paths can be down and be protected by the protection path. Thus, the

availability of the system is formulated in Equation 2.11. Besides this, a general closed

form expression is given for a generic number of N in Equation 2.12. If we would like

to compute the availability of a single connection i, either its primary path has to work

or in case of a failure of its primary paths, all the other primary paths have to work.

Then the closed form of a single connection’s availability is given in Equation 2.13.

A11 = Ak1 = Aw1 +Ap1 −Aw1 ·Ap1 (2.10)

A12 = Aw1 · Aw2 +Aw1 · Ap1 +Ap1 · Aw2 −2 ·Aw1 · Aw2 Ap1 (2.11)

A1N = (1−N ·Ap1) ·
N

∏
j=1

Aw j +
N

∑
h=1

[Ap1 ·
N

∏
j=1

Aw( j �=h)] (2.12)

Aki
1N = Awi +(1−Awi) ·Ap1 ·

N

∏
j=1

Aw( j �=h) (2.13)
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As it is seen in Figure 2.6.c, one connection is protected by M protection paths (M : 1).

In the figure, M = 2 so either the working path has to be operating or if it fails, at least

one of the protection paths has to work. This condition is formulated in Equation 2.14

for 2:1 DPP. Under these circumstances, for connection k1, the generalized form of the

availability function is also given in Equation 2.15.

A21 = Aw1 + (1−Aw1) · (1−Ap1) ·Ap2 + (1−Aw1) · (1−Ap2) ·Ap1 (2.14)

Ak1
21 = Aw1 + (1−Aw1) ·

m

∑
i=1

[
m

∏
j=1

(1−Ap( j �=i))] ·Ai (2.15)

Availability analysis of M : N scheme is the last and the most complicated of the DPP

schemes. To keep it simple, it is assumed that M=2 since there are C(N + 2, N)

different cases to be considered for availability analysis. For 2 : N scheme, three cases

should be considered: 1) All the primary paths work, 2) One primary path fails and it

is protected by a protection path, and 3) Two primary paths fail and they are protected

by the two protection paths. This scenario is formulated in Equation 2.16 to calculate

the availability of the 2 : N protection system.

AM2 =
N

∏
i=1

Awi +
N

∑
i=1

[(1−Awi) · (Ap1 +Ap2 −Ap1 ·Ap2) ·
N

∏
j=1

Ap( j �=i)]

+
N

∑
i=2

i−1

∑
j=1

(1−Awi) · (1−Aw j) ·Ap1 ·Ap2 ·
N

∏
k=1

Aw(k�=i, j) (2.16)

In [16], the availability of two mesh shared protection schemes are also analyzed.

As shown in Figure 2.7, the simplest shared backup path protection (SBPP) scheme

is 2 ∗ (1 : 1) mesh protection. To calculate the availability of the system, the cases

where at most one connection fails have to be considered. Dual failure case leads

to unavailability since the connections share a link on their protection paths. The

availability of the system is formulated in Equation 2.17. To draw the availability

of a connection (k1) in this scenario, dual failure cases have to be taken into account.

In Figure 2.7.a, the π i symbols on the links represent the wavelengths on which the

corresponding connection carries its traffic. Connection k1 is available if one the

following four conditions holds: 1)Both of the primary paths work, 2)Primary paths

of both of the connections work. 3)Primary path of k1 fails, protection path of k1 is

activated, primary path of k2 fails, and the wavelength (π2) on the first link of the
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protection path fails, 4) Primary path of k1 fails, protection path of k1 is activated,

primary path of k2 fails, the wavelength (π2) on the first link of the protection works,

and the wavelength (π4) on the last link of the protection path fails. Thus, the

availability of the connection k1 is evaluated in Equation 2.18.

Amesh
2(1:1) = Aw1 ·Aw2 + (1−Aw1) ·Aw2 ·Ap2 +(1−Aw2) ·Aw1 ·Ap1 (2.17)

Ak1
2(1:1) = Aw1 + (1−Aw1)Ap1 ·Aw2 + (1−Aw1) ·Ap1 ·(1−Aw2) ·(1−Aπ2)

+ (1−Aw1) ·Ap1 · (1−Aw2) ·Aπ2 · (1−Aπ4) (2.18)

In Figure 2.7, m∗ (1 : 1) shared mesh protection scenario is illustrated. In the figure,

multiple failure cases are discarded to derive the system availability expression [16].

Therefore, system availability is approximated to the formula given in Equation 2.19.

For the system to be available, either all of the primary paths have to work or there has

to be at most one failed primary path which is recovered by its protection path. For a

single connection’s point of view, it is available if either its primary path works or the

traffic that flows over its failed primary path is recovered by its protection path while

the primary paths of the remaining connections are active. This is also formulated in

Equation 2.20.

Amesh
m(1:1)

∼=
m

∏
i=1

Awi +
m

∑
j=1

(1−Aw j) ·Ap j ·
m

∏
h=1

Aw(h�= j) (2.19)

The analytical availability evaluations given above are compared with the simulation

work, and it is shown that this approach is capable of estimating the system and

connection availability. It is also shown that, for M : N SBPP scheme, the number of

shared paths affect the availability, other than the number of sharing paths. Therefore,

the most important availability parameters are proposed to be the connection path

length and the number of shared paths for the SBPP [16]. It should be noted that,

these analyzes consider only link and wavelength channel failures. The effect of the

path length on the availability was also stated in [57].

Another availability analysis approach for SBPP is proposed in [62]. Here, on the

contrary of the former analysis, the connection is supposed to have the chance to

survive if its working path fails together with one or more working paths in its sharing

group. When there are n working path failures in its sharing group, the connection c
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Aki
m(1:1) = Awi + (1−Awi) ·Api ·

m

∏
k=1

Aw(k�=i) (2.20)

is still supposed to get the shared backup channel with a probability of δ as shown in

Equation 2.21. As seen in the equation, connection c is said to be available either its

working path (Awc) is available or when its working path fails, its backup path is still

available (Apc) and in case of n working path failures (ρn) in its risk group it has the

chance to survive (δ (c)
n ).

Ac = Awc + (1−Awc) ·Apc ·∑
n

ρn ·δ (c)
n (2.21)

A comparative study for the analysis of different protection schemes is done in [63].

The related work deals with three protection schemes namely, span protection, path

protection and protection cycles. The authors also provide an estimation for the

availability optimization potential. One of the major contributions of this work is

that it provides a comparison between these three protection methods with respect

to availability and redundancy.

Another analytical model for availability calculation under multi-failure assumption

with SBPP is presented in [64]. In the proposed scheme, a connection is assumed

to be provisioned with a working path and n backup paths. The closed formula for

availability calculation of the connection is given in Equation 2.22. The term in the

parenthesis refers to the unavailability of the connection where m is the total number

of possible failures in the network, Pi is the probability of the f ailure− i to occur, and

Ui
d is the probability of the connection to be unavailable when f ailure− i occurs.

Ac = 1− (
m

∑
i

U i
c ·Pi) (2.22)

Calculation of the term in the parenthesis is done by the proposed algorithm in [64]

based on the assumption that the network fault state prtobabilities (Pi) are known in

advance. The algorithm attempts to obtain Ui
c values by considering each failure state,

all of the working / backup paths of the connections, and the sharing information on

the backup links. It is stated that the algorithm can calculate the availability of a

connection less than one minute. Thus, the proposed method can be considered to be

used for network planning rather than a dynamic environment.
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A restoration aware connection availability analysis is introduced in [65]. The physical

unavailability of a span is used to obtain the equaivalent unavailabilityof the span

which is used to calculate the availability of the connection. Equivalent unavailability

is a function of the physical unavailability of the span, physical unavailability of the

other spans, and the restorability of the traffic on the span. The unavailability of a

connection is the sum of the equivalent unavailability of its working spans. Thus the

equivalent unavailability of the working span i is calculated as shown in Equation

2.23 where U phy
i is the physical unavailability of the ith working span, NTi/ds,t is the

probability of non-restorable traffic from s to t, and cj is 0.5 or 1 based on whether one

sequence of dual failure affects the availability of the connection. Once the equivalent

unavailability for the spans are obtained, connection unavailability is derived by using

Equation 2.24. Based on these two equations, the authors in [65] derive closed and

extended formulas with detailed analysis for SBPP under dual failure presumption.

U∗
i = U phy

i · ∑
j∈S, j �=i

(cj ·U phy
j ·NTi/ds,t) (2.23)

Uc =
n

∑
i=1

U∗
i (2.24)

Since p-cycles have been less considered than the mesh protection schemes, there are

rare works on availability and p-cycles [17,27,66]. In a recent work [17], unavailability

of end-to-end traffic is studied in WDM mesh networks protected by p-cycles. It is

shown that, to get the same level of unavailability, shorter primary paths have to be

protected by longer p-cycles when compared to the p-cycles that protect the longer

primary paths. The availability analysis of p-cycle protection includes four sets of

spans as follows for the p-cycle x:

Op
x : The set of on-cycle spans that are on the working path.

Op′
x : The set of on-cycle spans that are not on the working path.

Sp
x : The set of straddling spans that are on the working path.

Sp′
x : The set of straddling spans that are not on the working path.

The sets given above are considered to draw six dual failure scenarios. Dual failures

are represented by x and y. The failure scenarios are given below under six categories:
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Category 1: {x ∈ Op
x ∧ y ε Op′

x }
Category 2: {x ∈ Op

x ∧ y ε Sp′
x }

Category 3: {x ∈ Op
x ∧ y ε Sp

x}
Category 4: {x ∈ Sp

x ∧ y ε Op′
x }

Category 5: {x ∈ Sp
x ∧ y ε Sp′

x }
Category 6: {x ∈ Sp

x ∧ y ε Sp
x}

The authors calculate the unavailability for each category. Each p-cycle is considered

as an independent domain so a path consisting of a number of domains has an

unavailability value which is the sum of the unavailability value of each domain along

the path. Based on these analysis approaches, an ILP formulation is constructed

where the objective function is minimizing the total spare capacity. The ILP

formulation consists of conventional p-cycle determination constraints other than the

objective function and additional constraints. The additional constraints are about the

unavailability calculation of the six scenarios and the unavailability calculation of the

paths. In this model, there is also a limit for each path which is a constraint for the

unavailability of that path to be lower than or equal to the unavailability value specified

in SLA. This model introduces low- capacity redundancy and better availability values

than a model that limits the length of p-cycles.

2.2.1.2 Markovian Analysis

Another availability analysis method is presented in [67] where the failure process

is defined by a Markovian process. The modeling of the failures is based on the dual

failure assumption. As seen in Figure 2.8, each state represents a failure state. State−0

represents no failure, while state− i represents the failure of link − i, and state−
i j represents the failure of link− i followed by the failure of link− j . Steady state

probabilities are represented by the π symbols. When the Markovian equations are

solved, the steady state probabilities, πi and πi j are obtained.

The construction of the balance equations are explained from Equation 2.25 to

Equation 2.27. In the equations, λi represents the failure probability of link− i which

is specified as 1/MTTFi . Besides µi stands for the repair rate on link − i which is

equal to 1/MTTRi . In Equation 2.25, λT represents the total of all failure probabilities
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Figure 2.8: Markov modeling for state transition of network failures (Mello, 2005)

on the links in the network. Equation 2.25 stands for the probability of link− i being

in the failed state. Next equation (2.26) stands for the conditional probability of dual

failure when link− j fails following the failure of link− j . The last balance equation

(2.27) is to confirm that the probability of the network being in any of the states is one.

(λT −λi + µi) ·πi = λi ·π0 +
L

∑
j=1, j �=i

µ j(πi, j +π j,i) (2.25)

πi, j =
λ j

µi + µ j
·πi (2.26)

π0 +
L

∑
i=1

πi +
L

∑
i=1

L

∑
j=1, j �=i

πi, j = 1 (2.27)

Obviously, Equation 2.26 can directly be substituted into the equations 2.25 and 2.27.

Thus, Equation 2.28 and Equation 2.29 are obtained as follows:

(λT −λi + µi) ·πi = λi ·π0

+
L

∑
j=1, j �=i

λ j ·µ j

µi + µ j
·πi +

λi ·µ j

µi + µ j
·π j (2.28)

Once the linear model based on the last two balance equations is solved, steady state

probabilities for single link failures (πi) are obtained. Substituting the πi values in

Equation 2.26 gives the steady state probabilities for dual failure which is represented

as πi, j . Based on the steady state probabilities, availability of a connection is shown

in Equation 2.30 where Sc and is the set of connections that share at least one backup

resource with connection− c [68]. It is clear that Wc and Pc are the working and the

protection paths of connection−c respectively.
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π0 +
L

∑
i=1

πi +
L

∑
i=1

L

∑
j=1, j �=i

λ j

µi + µ j
·πi = 1 (2.29)

Ac = 1 − [ ∑
k∈Wc, l∈Pc

πk,l + ∑
k∈Wc, l∈(Pc∪Sc)

πl ,k] (2.30)

When connections arrive with differentiated availability requirements, if the

availability requirement of a connection can be met by the working path, the

connection can be provisioned as unprotected. In this case, the availability estimation

changes. As seen in Equation 2.31, an unprotected connection is unavailable if one of

the following three conditions hold:

1) One link in its working path fails (first summation term),

2) Dual failure occurs where one of the failures belongs to the connection’s working

path (second summation term),

3) Dual failure occurs where both of the failures are from the connection’s working

path (third summation).

Ac = 1 − [ ∑
k∈Wc

πk + ∑
k∈Wc, l∈(Wc)

(πl ,k +πk,l ) + ∑
k,l∈Wc,k�=l

πk, l ] (2.31)

In our work, to keep it simple, under non-differentiated availability conditions, we

use the availability analysis formula in Equation 2.20. However, in differentiated

availability case, the connections arrive with different availability requirements.

Therefore, we have to assume more than one failure in the network for a connection

to survive so we use the Markovian analysis approach. Since there is no specific

availability analysis for overlapping shared segment protection, we propose our own

availability analysis method and verify it.

2.2.2 Connection Provisioning and Availability in Optical WDM Networks

Recently, in [11, 69], an availability design scheme is proposed for dedicated and

shared protection schemes. The proposed availability design scheme consists of two

steps. The first step is maximum connection availability design(MCAD). In this

step, capacity allocation is performed for each connection demand. The second step is

availability− constrained physical resources optimization(ACPRO). MCAD starts

with an empty network with an infinite number of available fibers. Therefore there is
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not a physical resource constraint. MCADand ACPROare both designed to work with

DPP (MCAD−DPP) and SBPP (MCAD−SBPP).

MCAD−DPP, begins with routing and fiber and wavelength assignment (RFWA) as

the resource allocation. However, the topology is represented as a multi-layered graph,

such that there exists one arc per WDM channel and W WDM channels are grouped to

represent a fiber. The weight of each arc is assigned to the "unavailability (U)" value of

the corresponding WDM channel. Then, the DPP connection forms a parallel system

with two paths, namely the working path and the protection path with the unavailability

values of Uw and Up respectively. Thus, the unavailability of the DPP connection

becomes; Uc = Uw ·Up. The problem is reduced to finding a cycle that minimizes

Uc in the idle part of the multi-layered graph. First, two-step Dijkstra’s algorithm is

run to find two link-disjoint paths with the least cost. Then, a set of two link-disjoint

paths that satisfies min {Uw + Up} is searched within one step by using the Bhandari’s

algorithm [70]. The details of the Bhandari’s algorithm is given in Appendix-A. The

one that leads to the minimum Uc value is selected among the one-step and two-step

approaches. Once, all connection demands are provided physical resources, empty

fibers are removed from the multi-layered graph.

For the SBPP case, MCAD-SBPP uses a heuristic approach by starting with an idle

network and infinite number of physical resources. For each connection request, a

working path wc, is found by applying Dijkstra on the multi-layered graph where

the link weights are the WDM channel unavailability values. The connections whose

working paths share at least one link with wc is collected in a list Y(c). The links of

w are removed from the multi-layered graph, and a protection path pc that share no

links with the protection paths of the connections in Y(c) is searched. When all the

connections are provided physical resources, the empty fibers are removed from the

multi-layered graph.

The second step of the availability design (ACPRO) covers the resource optimization

process based on availability constraint. ACPRO is transparent to the protection

mechanism employed. The input of ACPROis the output of MCADand a margin value,

M which stands for the tolerance rate that the unavailability value of a connection

provided by MCAD must stay in. After completing the greedy step for resource

allocation maximizing the connection availability for each connection request, the

28



fibers are ordered based on the number of wavelengths that are utilized on them.

Starting from the least utilized fiber, each fiber is probed once by releasing the

connections that pass through it. An alternative routing and fiber and wavelength

assignment (RFWA) is searched for each connection. If each released connection can

be assigned to a RFWA that leads to an unavailability value which does not exceed the

former unavailability with a tolerance factor M, the new configurations are accepted

and the empty fibers are removed. The algorithm is given in Appendix-B.

A detailed comparative study for DPP-based availability aware connection

provisioning schemes can be found in a recent work in [71].

CAFES(Compute−A−Feasible−Solution) is proposed for connection provisioning

in dynamic traffic environment [62]. The input of CAFESis a directed graph such that

G = {V, E, C, λ}, the set of vertices v = {ve | e ∈ E}, source and destination

nodes s, d, and an integer K which stands for the number of alternate path pairs. The

algorithm computes the set of K minimal cost paths from s to d; k ∈ {1...K}. For

each kth trial, the algorithm keeps l kw as the working path obtained from the kth minimal

cost path. For each of these working paths, a minimal cost backup path is computed as

shown in Equation 2.32.

Cb(e) =




∞ i f e∈ l kw∨ (λ e
f = 0∧ (∃e′ ∈ lw,ve′

e = v∗e))
ε ∗C(e) i f ∀e′ ∈ lw,ve′

e < v∗e
C(e) otherwise


 (2.32)

In the equation above, λ e
f is the residual capacity on link e in terms of wavelength

channels. C(e) is the actual cost of the link e. ε is a significantly small number close to

zero that is multiplied with the cost of the link, if the link is shareable by the connection

request from s to d. This operation forces the channel to be shared by the incoming

connection. The terms ve′
e and v∗e are explained by the concept of con f lict set. ve is

the conflict set for link e. The elements of ve are the subsets shown as ve′
e . Each subset

ve′
e stands for the number of working paths utilizing link e′ that use link e as a backup

resource. v∗e is the star closure of ve, and stands for the maximum number of backup

bandwidth (wavelengths) that has to be reserved on link e to protect the connections

that refer to the conflict set. Upon computing the k− pathpairs for the connection c,

the pair that least to minimal total cost is selected, such that min{Wk
c +Pk

c}.
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The link costs may be assigned either to the unavailability value of a single WDM

channel on the corresponding link or to the negated logarithm value of a single WDM

channel on the link. Negative logarithm approach uses multiplication-to-summation

(MTS) technique which is employed by several studies [18, 55, 62]. Equation 2.33

shows the idea behind multiplication-to-summation. Unavailability, which is one’s

complement of the availability, is additive therefore minimum cost leads to the

minimum total value of unavailability values on the links [11,69]. In all of the schemes

in this study, we select the working/backup path pair with the least unavailability which

is practical and easy to implement.

As =
n

∏
i=1

ai = a1 ·a2 · .... ·an

−logAs = −log(
n

∏
i=1

ai) = −(
n

∑
i=1

log(ai)) = −(log(a1)+ log(a2)+

....+ log(an)) (2.33)

In [62], the authors show that k = 2 and k = 3 gives the best performance in terms

of resource overbuild and blocking probability when the connections arrive with

differentiated availability requirements. Therefore in our work, we take CAFES−k =

3 as the basis for the proposed provisioning schemes. The backup path search is the

same for each candidate working path. However, the working paths are selected as

follows:

• w1
c: Maximum reliable path (MRP) where the unavailability values of the WDM

channels are used as the link weights

• w2
c: Maximum reliable path where the link with the minimum unavailability in w1

c

is deleted from the graph

• w3
c: Shortest path based on the hop count

In [55], Availability Guaranteed Service Differentiated Provisioning (AGSDP)

algorithm is proposed to enhance the performance of CAFES. AGSDP consists of five

steps before provisioning the connection: 1) Compute the MRP and assign it as the

working path of the connection. Compute the availability of MRP. If AMRP� ASLA, set

up the connection unprotected. 2) If connection cannot be provisioned unprotected,

search for a backup path by using Equation 2.34. The first line in the equation

corresponds to the links in the conflict set. The second line forces the connections
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to share wavelengths by considering the backup utilization of the link where αe stands

for the ratio of the sharing connections to the utilized backup wavelengths on link e.

The third line corresponds to the condition where a new backup channel has to be

added for the connection on link e. Thus, βe is an updated ratio of αe. 3) Compute the

availability of the connection considering the working/backup paths. If it is not less

than the availability requirement, set up the connection. 4) If the availability of the

shared backup protected connection does not meet the availability requirement, an idle

wavelength is reserved on link e so the connection is provisioned by DPP. 5)Calculate

the availability of the conenctions traversing link e as a backup link. If the availability

of any of them is violated, then go back to the previous step.

Cb(e)=




∞ i f e∈ l kw∨ (λ e
f = 0∧ (∃e′ ∈ lw,ve′

e = v∗e))
ε ·αe · (−log ae) shareable backup wavelength pool

1+ ε ·βe · ((−log ae)) otherwise




(2.34)

AGSDPis shown to outperform CAFESin terms of resource overbuild and availability

satisfaction. However, it can perform better than CAFESonly under light load levels,

and it leads to higher blocking probability under moderate and heavy loads due to the

tradeoff between resource consumption and availability satisfaction [55].

Holding Time-aware AGSDP (HT − AGSDP) is proposed as an adaptation of the

fundamental holding time-aware routing scheme, PHOTO[72] into AGSDP in [22].

PHOTOis based on the assumption that the holding time for each connection request

is known at the time of arrival. Upon a connection setup request, working path is

searched by using the same strategy in CAFES. However, backup path search considers

connection holding times to utilize the shared backup resources more. For each link,

each time a link state changes, it updates the offset time (∆τk) between two consecutive

link state changes. Here, since a separate link cost is calculated at each time interval,

the terms related to the conflict set (ve′
e and v∗e) are kept per interval such as ve′

e (∆τk)

and v∗e(∆τk). At each time interval (link state update ∆τk), the link cost is calculated as

seen in Equation 2.35. Thus if there is a shareable wavelength on the link during the

corresponding interval, the link cost is multiplied by a negligible value ε , otherwise it

is kept as it is. For the whole holding time of the connection, each separate cost value

is summed and normalized with the total holding time of the connection as seen in
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Equation 2.36 where m and th are the total number of link state updates (intervals) and

the holding time of the connection respectively.

Cb(e,∆τk) =




∞ i f e∈ l kw∨ (λ e
f = 0∧ (∃e′ ∈ lw,ve′

e (∆τk) = v∗e(∆τk)))
ε ·C(e) shareable backup wavelength pool
C(e) otherwise




(2.35)

Cb(e) =
1
th
·

m

∑
k=1

(∆τk) ·Cb(e,∆τk) (2.36)

HT-AGSDP uses the AGSDP algorithm for connection provisioning, but uses cost

assignment approach of PHOTO when searching for a backup path for an incoming

connection. Thus, the link costs are assigned the availability values of the links and

when running the shortest path algorithm, MTS is employed to make the availability

values additive as shown in Equation 2.33. The idea behind the holding time-aware

schemes is forcing a connection to utilize the shared backup channels that are more

utilized during its holding time. The normalization in the Equation 2.36 is explained

as follows: As the connection approaches to be permanent, its holding time approaches

to infinity. Therefore link costs are not differentiated in that case. PHOTO and

HT-AGSDP aims to decrease the resource overbuild when compared to CAFES and

AGSDP respectively [22, 72]. In another similar recent work [73], remaining holding

time awareness and failure tracks of the connections are used to re-define the SLA

requirements of the existing connections to increase the acceptance rate for the future

requests.

Another time-aware similar approach for availability-guarantee is also proposed

recently in [74]. The proposed scheme uses the fact that the connection’s availability

requirement varies with its SLA requirement during the holding time. It dynamically

adds and releases the backup paths based on the change in the availability requirement

of the connection during the holding time.

In [75], the authors propose a heuristic for SLA-constrained sharing. The proposed

heuristic algorithm is tested under several provisioning strategies defined in [76]

such as most reliable working/backup pair, the working/backup pair that leads to

an availability just above a threshold value, the route pair with minimal cost, and

iteratively selecting and replacing a route pair among the demands pool. The
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provisioning strategies set up the connections either as unprotected or by DPP. Upon

running each tested provisioning scheme, backup lightpath modification is done based

on the proposed algorithm called SLA-Constrained Sharing Algorithm (SCSA). The

algorithm consists of two main steps: 1) Starting from the lowest number, for

each wavelength w on each backup link e, check if wavelength w is shareable by

the incoming connection considering the SRLG constraints. If the wavelength is

shareable, compute the new availability values for the connections that are protected

by the corresponding wavelength. If the availability requirement of any connection

is violated, proceed with the next wavelength. 2) If the corresponding wavelength is

shareable and it does not lead to any availability violation for the other connections,

release the dedicated channel for the connection and assign wavelength was the

backup resource for it on link e. If the connection cannot be assigned on any of the

shared wavelengths on link e, it is left as dedicated protected on the related link.

In [46], a network availability algorithm that considers the network performance is

proposed. A new network performance metric (P) is proposed as a function of accepted

rate (R) and availability for the incoming requests (A) as follows: P = R·A. If

the network offers high availability, more resources are required to be allocated to

protect the connection, then this leads to high blocking probability. On the other hand,

if the network offers low availability, protection can be achieved by fewer backup

resources, then the blocking probability will be low. Therefore, in the proposed

network availability algorithm, network availability is dynamically modified to force

the network performance converge to its best value.

The algorithm works as follows: If the performance value is greater than the last one,

the availability offered to the connection requests is modified with the same trend

as the last change. Thus, if the last trend was increase, the availability offered is

increased, otherwise it is decreased. If the performance value is less than the last

one, the availability offered is modified with the reverse of the last trend. This means

that the availability is increased if the last trend is decrease, it is decreased if the last

trend was increase. The availability adjustment for increase and decrease is given in

Equation 2.37. It is also guaranteed that if the availability offered is increased, it does

not exceed 1. If A is decreased, according to Equation 2.37, it can get a negative value.

Therefore decrease operation can be done if current value of the availability offered is
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equal to or greater than 0.5. In the equation, N is a big number to decrease the second

term to a significantly small number.

A+ = A∓ 1−A
N

(2.37)

The performance aware network availability algorithm is designed to work with SBPP.

The availability of a connection (Ak) is calculated based on the formula in Equation

2.10. If Ak > A, the connection request is accepted and the working / backup path pair is

assigned to the connection. It should be noted that, if the working path itself, provides

the required availability degree, there is no need to search for a protection path.

Routing is based on Dijkstra’s shortest path algorithm. However, when calculating

the working path (Wk), link costs are assigned to links by taking the logarithm of the

link availability values. If the set of free wavelengths on a link e (λ e
f ) is empty, the cost

of this link is assigned to infinity. When calculating the protection path (P2), another

parameter which is the link-disjoint degree of the primary and the backup paths, ξ , is

used to determine the link costs. As it is seen in Eq.2.38, when ξ is small, it is more

likely to find a link-disjoint pair for the primary and the protection paths.

Cb(e) =




−ln(ξ ·ae) (i, j) ∈ Wk

−ln ae λWk�e
f �= ∅

∞ λWk�e
f = ∅


 (2.38)

In [58], three routing schemes are proposed that use failure information. Failure

Independent Routing (FIR), creates a generic view of the network, and partitions the

topology into bi-connected components. For each bi-connected component, disjoint

working and backup paths are calculated based on Dijkstra’s algorithm with minimum

hop count constraint. These disjoint segments are then connected to form the working

and backup paths between source and destination. Failure Driven Routing (FDR)

constructs the network view by using the span failure state. Therefore, the connection

requests are routed over working spans. In Failure-Aware Diverse routing, working

path is constructed by considering the span failures. However, backup paths are

allowed to be selected by considering the failure impacted spans. Since the probability

of multiple (more than 2) simultaneous failures is significantly low [77], it is assumed

that the backup path can be repaired until a possible failure of the working path so the

connection can still be available.
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Figure 2.9: Error patterns for failure independent, failure driven, and failure aware
routing (Velasco, 2006)

In Figure 2.9, the behavior of these 3 techniques is illustrated. There are three routes

(1-3) to be assigned to incoming connection requests, and six connection requests (a−
f ). At time ta, all of the three paths are available so each policy assigns route− 1 as

the primary path, route−2 as the backup path. At time tb, route−1 experiences a span

failure, for all of the scenarios (routing schemes), connection ais still available but it

is failure impacted. At this time interval, if another connection request (connection b)

arrives, FIR assigns 1− 2 since it routes the requests independent of the failure state;

FDR routes connection bover route−2 and route−3. FAR has to select an available

primary path so it routes the request over route− 2; it selects the failed path as the

backup route unless an available disjoint path is found. Here, route− 3 is available

therefore FAR selects route− 3 as the backup path. At tc, route− 2 also fails and

route− 1 is expected to be repaired at the end of this timeslot. A new connection

request arrives as connection c. Since FIR always selects route− 1 and route− 2

independent of the failure state, connection cis unavailable if it is routed based on FIR.

FDR attempts to route the primary and the backup path over working paths. Therefore,

since route− 1 and route− 2 are failure impacted, it routes the incoming connection

request over route− 3. FAR behaves as a compromise between the former routing

schemes. Thus, it selects the available route, route−3 as the primary path and route−1

as the backup path. At the end of this time period, route−1 will also be repaired and

the connection will be fully available. As it is seen in the figure, the unavailability

pattern of the incoming connections are minimum when they are routed based on FAR.

The authors show that, as the holding time increases, FAR and FDR outperforms FIR.
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However, for holding times varying from 8 hours to 365 days, FAR leads to higher

availability of the connections. On the other hand, FDR and FAR schemes increase the

blocking probability significantly when compared to FIR, since FIR does not consider

the failure state to setup a connection [58]. This routing scheme also can be designed

for circuit switched WDM networks where wavelength continuity constraint holds.

There are also distributed approaches for availability-constrained connection

provisioning. In [78, 79], a link and resource availability (LRA) based connection

provisioning algorithm is proposed to work with SBPP. The proposed scheme is not

completely distributed but it employs a distributed link-state database in order to

inform the nodes on the failure characteristics of the other network components. All

nodes are assumed to have wavelength conversion capability. The availability of the

links is calculated by deriving a simple graph from the physical configuration of a

logical link. Physical link configuration graph (PLG) and simplified PLG are shown

for a simple case in Figure 2.10 where a physical link between two nodes is represented

by a simplified PLG. In the simplified PLG, each physical component is represented

as a single component node. The relative positions of the components in the PLGhave

to be the same in the simplified PLG. If one or more wavelength channels go through

two adjacent component nodes, they are connected by an undirected line, and the lines

are tagged with the WDM channel IDs.

Figure 2.10: Physical link configuration graph and simplified PLG for link and
resource availability calculation (Huang, 2004)

To compute the availability parameter of a link (LRA), simplified PLG has to be

decomposed to consist of m independent simple graphs. Decomposition starts with

selecting the node with the highest connectivity (Ci). Ci’s transparent and Ci’s

complement PLGsare constructed. As a simple example, we consider the simplified

PLG in Figure 2.10.b. In the figure, C9 is expected to be selected. In order to obtain
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the transparent graph of C9, the component nodes that are connected to the inlets and

outlets of C9 are to be connected by a directed line that is tagged by the indices of the

WDM channels λ1λ2 and λ3λ4 respectively. In the transparent graph of C9, PLG is

separated into two distinct graphs. The decomposition goes unless the transparent or

complement PLGs of Ci is a simple graph. When PLG decomposition is complete, the

LRA parameters of the simple graphs are computed by using the availability values of

each component. Hence, LRA value of each link is calculated recursively as given in

Equation 2.39, where αi is the availability value of the ith component.

LRA{PLGN(C = C1, ...CN)} =
αi ·LRA{LRA{PLGn−1

t (C = C1, ....CN−1)}}+
(1−αi) ·LRA{LRA{PLGn−1

c (C = C1, ....CN−1)}} (2.39)

When a lightpath of a connection is set up or torn down, LRAparameters of all links

along the path are updated. The channel used to set up a connection is removed from

the simplified PLGwhile the released channel is added to the PLGwhen the connection

is torn down. A lightpath is considered as a series of links so the availability of a

lightpath is the multiple of the LRAvalues of the links along itself. If the availability

requirement of a connection in the SLA is provided by only the working path, a

backup path is not required. A connection’s availability (Ac) is calculated by using

the availability values of its working and backup paths (Aw and Ap respectively) as

shown in Equation 2.40. Backup path is selected based on SBPP scheme. In , δ stands

for the availability of the shared backup path in case of a multiple failure.

Ac =
{

Aw c : unprotected
1− (1−Aw) · (1−δ ·Ap) c : working and backup paths

}
(2.40)

When a connection request arrives, the source node computes the primary path which

has the maximum LRA factor. If Ap > SLAc then the connection is setup. Otherwise,

a backup path is searched. Backup path search takes the following steps: 1) Compute

a temporary LRA value, LRAt , for each link using available resources that are free

or reserved by the primary paths that are link-disjoint with the working path of

connection c. 2) For each link on the working path of connection c, LRA is degraded

by a fraction of β which is proportional to the channel availability on the link. Working

and backup paths are preferred to be link-disjoint but they are not constrained to. 3)

Find a route that has the highest LRAt product value. If Ac > SLAc, resources are
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allocated, and for each link in the network LRAparameter is updated. However, instead

of removing the links that are reserved as the primary paths, LRAsof the links on the

working path are updated by decreasing with a ratio of β . In [56], the authors propose

link state availability design to work with also DPP policy.

Another distributed availability aware connection provisioning framework is recently

proposed as destination routing [23, 24]. Each node in the network uses a separate

database for three alternate paths to every node. Three alternate paths are selected

based on the three minimum costs with respect to the value shown in Equation 2.33.

Once a connection request arrives at a source node, the source node prepares and sends

three probe messages through the alternate paths to the destination. An intermediate

node that receives a probe message updates the message based on the utilization of the

wavelengths at its output ports. Routing is done at the destination node based on the

collected information from the three probe messages.

Connection provisioning takes three steps in destination routing. At the first step, the

destination node tries each of the three candidate paths as the working path for the

connection. If any of the paths leads to a greater or equal availability value of the SLA

requirement of the arriving connection, the connection is provisioned as unprotected

and the nodes from destination to the source node are informed to reconfigure their

OXCs. If the first step is not successful, every path out of the three candidates is tried

to be assigned as a backup path if there are shareable wavelengths along the path.

Each checked path assumes that one of the other two paths will be the working path

for the connection. For any working/backup path pair that can be found based on this

search criteria, the availability of the connection is calculated, and compared to its

SLA requirement. If the calculated availability is not less than the required availability

level, the connection is provisioned. If the second step fails to provision the connection,

the third step tries three alternate combination of the alternate paths and assigns idle

wavelengths along the backup paths, i.e DPP. If any of the DPP solutions satisfies the

availability requirement of the connection, the nodes from destination to the source are

informed to reconfigure their OXCs and update their local databases.

In [80], a conservative sharing protocol and a preemptive sharing protocol for

availability-aware connection provisioning are proposed. Although the schemes are
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initially proposed to be implemented centralized, their distributed implementations are

also outlined by the authors.

Although this study focuses on WDM networks, the next step to extend the

availability aware connection provisioning seems to be multi-granular optical networks

and Generalized Multi-Protocol Label Switching (GMPLS). In [18], the authors

propose an availability model for SBPP based on spare capacity availability within

partial protection/restorability concept for GMPLS networks. This concept can be

explained by two different scenarios, subject to the failure pattern set R: First, the

working path is partially protected by one or more backup paths where a specific set of

failure patterns in R is restorable. Second, the spare capacity allocated along a backup

path is a fraction of the bandwidth of the primary path. Thus, the switching node of the

backup path switches the specified amount of the working bandwidth (Θc) and drops

the rest. Four failure patterns are defined due to the effect of the failure on working or

protection path and they are as follows: 1) Dual failure occurs, and both of the failures

affect both of the working and backup paths where the availability impairment is 100%

(R1), 2) Either single or dual failure occurs, and only the working path is affected

where the availability impairment leads to (1−Θc) (R2), 3) Dual failure occurs, the

first failure affects neither working nor backup path, but the second failure affects the

working path where the availability impairment is approximately (1− Θc) (R3), 4)

Dual failure occurs and none of the paths is affected where there is no impairment.

The proposed spare capacity reconfiguration model is formulated as an LP model based

on failure independent (FID−SCA) and failure dependent (FD−SCA) concepts. The

objective of failure independent spare capacity allocation is minimizing the total spare

capacity to be allocated to satisfy the end-to-end availability of the connections. The

outputs of the optimization model are the protection level for connection c(Θc) and the

spare capacities to be allocated on each separate link. Since only three failure patterns

can affect the availability of a connection, the availability of a connection (Ac) is given

by Equation 2.41 where πr is the probability of the failure pattern r occurs.

Ac = 1− ∑
r∈R1

πr − ∑
r∈R2∪R3

(1−Θc) ·πr (2.41)

Failure Dependent Spare Capacity Allocation (FD − SCA) has the same objective

function with the failure independent SCA. However, Θc is modified Θc,r to represent
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the protection level of a connection cin case of the failure pattern r . Therefore, the

outputs of the optimization model here are the protection level for connection cin case

of the failure pattern r (Θc,r ) and the spare capacities to be allocated on each separate

link. The availability calculation is also modified to include failure dependency as seen

in Equation 2.42.

Ac = 1− ∑
r∈R1

πr − ∑
r∈R2∪R3

(1−Θc,r) ·πr (2.42)

Reconfiguration of spare capacity allocation is employed upon the occurrence of a

network event which is defined as a specific number of connection setup or release.

When connection carrives, its availability (Ac) is calculated by assuming 100%

protection level. If it is greater than or equal to the availability requirement specified in

SLA, spare capacity reconfiguration is employed. Otherwise, the connection request

is blocked. Whenever a network event occurs, if the previous reconfiguration process

is finished, the LP model is constructed and solved to update the spare capacities on

the links. This theoretical model is validated in the related work [18]. Performance

of FID-SCA and FD-SCA is compared with respect to average protection level and

spare capacity saving ratio. FID-SCA provides better protection level while FD-SCA

outperforms FID-SCA when they are compared with respect to spare capacity saving

ratio. A similar work is also done in [81] that focuses on working and spare capacity

allocation under dual failure assumption with different failure patterns.

In literature, most of the availability-aware connection provisioning schemes consider

DPP and SBPP, and use linear connection availability analysis approaches. Majority

of the proposed schemes are centralized rather than distributed. HT-AGSDP or SCSA

provide enhancement to the conventional connection provisioning scheme CAFES.

However, they do not solve the trade off between all of the performance parameters,

namely resource consumption, availability and blocking probability at all load levels.

For network planning phase, the two-step approach MCAD/ACPRO seems to perform

well and efficient to guarantee high connection availability and degraded resource

consumption. Most of the works deal with the nodes that have full wavelength

conversion capability since optimal working / backup path pair search problem is

shown to be NP-Complete [82]. Although it is rare today, there are some works like
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FD/FID-SCA and FAR that consider connection availability GMPLS networks other

than optical WDM networks.
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3. AVAILABILITY - AWARE DESIGN AND CONNECTION PROVISIONING
FOR NETWORK PLANNING

3.1 Network Planning Under Static Demand

In [11], the authors propose a two-step design approach for availability-constrained

network planning under static traffic. This scheme is explained in detail in Chapter 2.

In this work, we use this scheme as a basis for our proposed provisioning scheme. The

first step is greedy, and it tries to provision maximum connection availability for each

connection request. It starts with an empty and over-provisioned network. By using a

multi-layered graph model, the working path of each connection is first routed over the

MRP which leads to minimum unavailability where the cost at each hop is assigned to

the unavailability of the corresponding wavelength channel. To find the backup path,

the links of the working path are deleted while each arc related to wavelength channel

is assigned a cost as shown in Equation 3.1 where Ui is the actual unavailability value

of channel-i on the related link, c(i) is the number of connections whose either working

or backup paths pass through wavelength channel-i, wk and pk are the working and the

backup paths of connection-k respectively.

Cb(i) =




Ui i f c(i) = 0
0 i f c(i) > 0 ∧∃k, i ∈ pk

∞ otherwise


 (3.1)

In our work, we implement this scheme as follows: Once the wavelength is assigned

for each hop, their shareability is checked. If the wavelength is being used by one

or more connections that are in Sc, another shareable wavelength is searched. If

another shareable wavelength cannot be found on the same fiber, a new free wavelength

is added. The greedy step aims to maximize the connection availability for each

connection request. After this step, the fibers are ordered based on the number of

wavelengths that are utilized on them. Starting from the least utilized fiber, each fiber

is probed once by releasing the connections that pass through it. An alternative routing
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and fiber and wavelength assignment (RFWA) is searched for each connection. If each

released connection can be assigned to a RFWA that leads to an unavailability value

which does not exceed the former unavailability with a tolerance factor M, the new

configurations are accepted and the empty fibers are removed. In this second step, to

obtain better availability, we assign the backup path of the connections first to shared

channels, then a posterior search is done on the assigned fiber for a free wavelength.

If there is a free wavelength, the backup path of the connection is assigned to that free

wavelength. It is obvious that this posteriori search in the second step will increase

the utilized channels when compared to previously proposed ACPRO scheme [11],

and it will also decrease unavailability. The details of this MCAD-ACPRO scheme is

explained in Chapter 2 and Appendix-A.

In [11], it is assumed that the nodes are nearly-perfect hence the failures correspond to

WDM channel unavailability. The unavailability of a WDM channel iis calculated as

given in Equation 3.2 where Utx is the unavailability of a transponder, a multiplexer or

a booster (Utx = Utransp+Umux+Ubooster); Urx is the unavailability of a pre-amplifier,

demultiplexer, and amplified receiver (Urx = Upre+Udemux+Uamp−rcv); Uspan is the

unavailability of the cable span; Lspanis the distance between two neighbor amplifiers.

The unavailability values used in this study are given in Table 3.1, and they are taken

from [11].

Ui = Utx +Urx +[round(
L

Lspan
)−1] ·Uspan (3.2)

3.1.1 Dynamic Sharing

In [83], we propose a connection provisioning scheme with dynamic sharing degree

which is built on top of the two step provisioning approach, MCAD/ACPRO that is

explained in Chapter 2. Here, we attempt to provision the arriving connection requests

by arranging the sharing degree per channel dynamically. To achieve this, we define a

tradeoff function T as seen in Equation 3.3 for the ith arranging period where ROand

U are the resource overbuild and average unavailability per connection respectively.

Resource overbuild stands for the ratio between the backup channels and the working

channels. As pointed in the previous studies, there exists a tradeoff between availability
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Table 3.1: Component Availability Values for WDM Networks

Transmitter
Component MTTF (khour) MTTR (hour) A
Transponder 196 2 0.999990
Multiplexer 606 2 0.999997

Booster 211 2 0.999991
Receiver

Component MTTF (khour) MTTR (hour) A
Pre-amplifier 370 2 0.999995

De-multiplexer 279 2 0.999993
Amp. Receiver 210 2 0.999990

Terrestrial Link Lspan=100 km
Component MTTF (khour) MTTR (hour) A
Amplifier 211 2 0.999991

Submarine Link Lspan=57 km
Component MTTF (khour) MTTR (hour) A
Amplifier 20 ·103 336 0.999983

and resource requirement which was stated for SBPP in [69, 84–86], and for DPP

in [87].

T(i) = RO(i) ·U(i) (3.3)

The value of this tradeoff function is to be minimized. To achieve this, we

construct a function, U pdateTradeo f f() which runs upon n connection arrivals. The

tradeoff update approach is derived from the network availability arrangement in [46].

However, we aim to arrange the shareability on the channels. We set an upper

bound (UPPERBOUND) for the maximum sharing degree in order to avoid maximum

sharing degree (S(n)) grow unnecessarily. In the simulations, we set this value to

eight. We start the greedy provisioning step by setting S(0) and T(0) to four and zero

respectively. In our work, we set n equal to ten. U pdateTradeo f f() function is shown

in Appendix-C where we give information on the simulation environment.

Working path of each connection is routed over the most reliable path. For the backup

path, the cost of each arc is arranged as given in Equation 3.4 where K is some large

value. In our simulations, we set the value of K to 30 empirically. The reason for

this modification is forcing the connections to select the less-shared backup channels

among the shared ones. This enforcement causes the unavailability to decrease as

expected from Equation 3.3.
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CdynamicShare
b (i) =




Ui i f c(i) = 0
Ui ·/K i f c(i) > 0 ∧∃k, i ∈ pk

∞ otherwise


 (3.4)

After provisioning all the connections with maximum connection availability design,

we remove all of the empty fibers, and start the second step (resource optimization

step explained in 2.2.2). We also aim to obtain a better availability in the second step

by setting the unavailability tolerance to one. In the second step, for each released

connection, we search the maximum reliable path as the working path. For the backup

path, we employ routing on a single-layered graph. Apart from the previous approach,

each arc represents the unavailability value of the one channel on the corresponding

link, and the arcs that belong to the working path of that connection are temporarily

disabled before searching the backup route. Whenever a backup route is found, the

first free channel on the corresponding link is assigned to every hop of that route. If a

new channel cannot be added, another backup channel which satisfies the shareability

requirement is searched. This search operation can be completed in O(W) time.

The global sharing degree parameter is not modified in this step since a few RFWA

configurations are expected to change. For each probed fiber, if each reconfigured

connection can be offered an unavailability level equal to or less than the previous one,

the reconfiguration for the RFWA of the connections are accepted.

3.1.2 Performance Evaluation

In our simulations, we use the channel availability model and the corresponding MTTF

and MTTR values in Table 3.1 to obtain unavailability values for the arcs. It should also

be noted that a channel failure corresponds to a link failure at the same time. Therefore

a WDM channel is considered as a serial system consisting of a transmitter (tx), a

receiver (rx), and an amplifier (amp). Then, the unavailability of the ith WDM channel

is calculated as given in Equation 3.2 where Lspan is a function whose value increases

with the length of the fiber and takes lower values for terrestrial links, higher values for

submarine links. We assume that all nodes have wavelength conversion capability. We

run our simulations for W ∈ {2,4,8,16,32} where W is the number of wavelengths

per fiber. We first employ the NSFNET topology consisting of all terrestrial links as

seen in Figure C.2 and the static traffic demand matrix in [88] where 360 bidirectional
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connection demands are to be provisioned. In the figures, we illustrate the results taken

for the first and second step provisioning of the dynamic sharing degree approach, and

the two-step approach discussed in MCAD and ACPRO, respectively. The availability

tolerance is set to one for trying to achieve better availability in the second step of

provisioning. We represent the first and the second step of our proposed approach as

Dynamic−Sharing−Step− 1 and Dynamic−Sharing−Step− 2 respectively. To

interpret the results better, we also illustrate the performance of DPP by using the

two-step provisioning approach in [11]. In DPP, the connections are provisioned by

running Dijkstra’s and Bhandari’s link-disjoint path algorithms [70]. The path pair

that gives the less unavailability value is selected as the working and backup path pair.

In [69], it is shown that this path pair leads to the optimum value for the unavailability

obtained by the link-disjoint path pairs. Therefore, also in our simulation results,

DPP provides an upper bound for channel consumption and a lower bound for average

unavailability per connection.
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Figure 3.1: Average unavailability per connection under NSFNET

In Figure 3.1, the unavailability per connection is shown for the first and the second

step of connection provisioning when different approaches are employed under the

NSFNET topology. Figure 3.2 shows the total number of utilized channels by the

connection provisioning approaches. To support the results in Figure 3.2, Figure

3.3 illustrates the decrease in WDM channels in terms of percentage with respect to

the total WDM channels utilized by DPP. As it is seen from the figures, Dynamic−
Sharing−Step−2 leads to a decreased unavailability due to spreading the sharing on
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the backup channels and forcing the connections to select backup channels that are less

utilized. When the number of wavelengths per fiber is 32, the dynamic-sharing scheme

has almost similar performance with the former ones because there are several free

channels to use in the backup paths and the RFWA schemes start getting closer to the

DDP scheme. However, the aim of decreasing unavailability with the dynamic-sharing

idea increases the number of utilized channels when compared to the conventional

two-step provisioning approach.
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Figure 3.2: Total number of utilized WDM channels under NSFNET
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Figure 3.3: Decrease in WDM channels for DPP under NSFNET

In Figure 3.2 and Figure 3.3, it is also seen that this increase in channel consumption is

not as much as the difference between the utilized channels by the SBPP provisioning

schemes and DPP scheme. Therefore we can still say that the proposed scheme
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attempts to provide a compromise between resource consumption and connection

unavailability. It is also obvious that, Dynamic−Sharing−Step−2 is successful since

it starts with the RFWA configuration obtained by Dynamic−Sharing−Step−1 which

provisions the arriving connections so that the average unavailability per connection

is significantly decreased in comparison to the first step of the former provisioning

approach.

Since the topology change may have effect on the availability performance of the

network [89], We also evaluate the performance of the proposed scheme by generating

five static traffic matrices in which 400 unidirectional connection demands are

uniformly distributed among the nodes of 28-node EON topology in [90] which is also

shown in Figure C.3. We generate five uniformly distributed demand matrices since

we could not notice a realistic traffic demand matrix for this 28-node EON topology.

We regard the links between Glasgow-Amsterdam, London-Dublin, London-Paris,

Oslo-Copenhagen, and Rome-Athens as unidirectional submarine links for each

direction. The unavailability of the WDM channels is higher in submarine links than

the terrestrial links. The route selection in connection provisioning is affected by the

difference between terrestrial and submarine links in terms of availability.
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Figure 3.4: Average unavailability per connection under EON

In Figure 3.4 and Figure 3.5, we present the average of the results obtained by those

five static traffic matrices and 90% confidence intervals obtained by the results. The

figures show the average unavailability per connection and total utilized number of

channels respectively. The average unavailability per connection increases with the
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EON topology for each scheme since larger hop counts, and the effect of submarine

links occur. The proposed scheme gives better performance in 28-node EON topology

with a significant decrease achieved in unavailability in the first greedy step. In the

second step a less decrease can be obtained in terms of unavailability but it still

offers better availability to the incoming connections. The results referring to channel

consumption are very similar to those obtained when NSFNET topology is employed.

We can still observe that the proposed scheme does not consume as many channel as

the dedicated path protection does. Figure 3.6 also supports the results in Figure 3.6

that shows the decrease in the total number of utilized channels in terms of percentage

with respect to DPP.
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Figure 3.5: Total number of utilized WDM channels under EON
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Figure 3.6: Decrease in WDM channels for DPP under EON
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3.2 Network Planning Under Dynamic Demand

In this section, we focus on dynamic traffic environment, and propose two connection

provisioning algorithms that attempt to offer better availability to the connection

requests while keeping the resource overbuild in a feasible range [91]. The first

provisioning approach is based on a heuristic. It modifies the feasible sharing degree

for the links based on the current average unavailability and resource overbuild.

The second scheme is based on an ILP model where each link is determined to

have a feasible sharing degree for the channels in it. We evaluate our provisioning

schemes under dynamic traffic. The simulation results under 14-node NSFNET and

28-node EON topologies show that the proposed schemes improve the performance

of conventional availability aware provisioning scheme CAFES, without violating the

resource overbuild of shared backup path protection. The simulation results that belong

to the ILP model show that, the optimized performance to solve the tradeoff between

availability and resource overbuild is obtained when maximum sharing degree mostly

takes values of two and three. In Section 2.2.2 we present a conventional connection

provisioning approach, namely Compute-a-Feasible-solution (CAFES). In this section,

in 3.2.1 and 3.2.2, we present our proposed connection provisioning schemes, namely

Global Shareability Surveillance (GSS) and Link-By-Link Shareability Surveillance

(LSS). In 3.2.3, we evaluate the performance of the these schemes with respect to

average connection availability and resource overbuild, and compare them to CAFES.

3.2.1 Global Shareability Surveillance (GSS)

To enhance the performance of CAFES, we propose a dynamic shareability heuristic,

namely Global Shareability Surveillance(GSS) for the dynamic environment. We

provision the arriving connection requests by arranging the feasible sharing degree for

the channels dynamically. To achieve this, we use the trade-off function T shown in

Equation 3.3 for the ith arranging period where ROand U are the resource overbuild

and average unavailability per connection respectively. Resource overbuild stands for

the ratio of the backup channels to the working channels.
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GSS determines a global feasible sharing degree (SHAREABLE) for the network by

using the U pdateTradeo f f() function given in Appendix C. Upon arrival of each

N connection requests, U pdateTradeo f f() function runs, and updates the average

sharing degree for the network. It attempts to minimize the T(i) value in Equation

3.3. Therefore, if currently calculated T(i) is greater than previously calculated value,

it reverses the action taken on the global sharing degree; i.e, increase global sharing

degree if it was decreased in the last period and vice versa. If currently calculated T(i)

is less than the previously calculated value, the last action on the global sharing degree

is kept; i.e decrement if it was decremented previously and vice versa. The working

and backup paths are calculated the same way as described for CAFES. However,

links costs are assigned as shown in Equation 3.5 where B(λk) is the total number of

connections sharing wavelength λk as a backup resource.

Cb(e)GSS=




∞ i f e∈ wi ∨∀w∈ b(∃connk|e∈ bk∧ (∃l |l ∈ wk∧ l ∈ wi))
ε ·Cb(e) i f wi � e∧

(∃connj |e∈ bj ∧ (∃λk ∈ e(B(λk) < SHAREABLE)))
Ce otherwise




(3.5)

The backup paths of the connection requests are routed over the links using the cost

metric above and assigned to the wavelength that has the minimum B(λk) value. If

that wavelength is not shareable due to being assigned to another connection whose

working path has at least one common link with connection i, a new wavelength is

reserved on the link. Here, we set N to be equal to 100. By this dynamic shareability

approach, we aim to spread the sharing of backup resources between the backup

channels to overload a few number of backup channels.

3.2.2 Link-By-Link Shareability-Surveillance (LSS)

In order to offer better availability per connection and avoid shared-backup

protection violation, we modify the GSS by adapting an ILP, and call this scheme

Link by Link Shareability Surveillance(LSS). Here, we assign separate sharing

degrees (SDi) for each link. We set the objective function to present the tradeoff

between resource overbuild and unavailability per connection. In every M connection

arrivals, the shareability arrangement algorithm takes the snapshot of the current
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configuration in the network. Using the current configuration, it determines the sharing

degree per channel on each link.

In the ILP model, RD is the backup channel gain, SDj is the sharing degree per channel

on link− j , and Utotal is the total unavailability of the active connections. Besides

these, SAVG is the average sharing degree for one channel per link, C stands for the set

of currently active connections, and B stands for the set of backup links. The other

variables used in the model are H, A, and U(i) that represent the total backup hop

counts of all active connections, average connection availability, and the unavailability

of connection irespectively.

In LSS, the tradeoff between availability and resource consumption is considered

again. However, as seen in Equation 3.6, the tradeoff function is modified and called

TLSS. According to TLSS, as the backup channel gain (RD) increases, the amount of

backup resources to protect the connections decreases where the network tends to

offer less availability per connection (A). On the other hand, when backup channel

gain is low, more backup resources are required to protect the connections where

higher availability is offered for each connection. Here, it is worth noting that the

clear definition for backup channel gain is given in the explanation of the ILP model.

TLSS= RD·A (3.6)

The tradeoff function in Equation 3.6 is non-linear. Therefore, we derive an

approximation by using the previous values of RD and A, RD′and A′ respectively.

Thus, the objective function for TLSS is re-defined as given in the ILP model below.

Each time the ILP is executed, the RD and A values are saved to be used as RD′and A′

in the next optimization.

As seen in the first constraint of the ILP model in Equation 3.8, A is calculated by

taking the average of one’s complement of the total unavailability (Utotal). The total

unavailability is calculated by taking the sum of all active connections’ unavailability

(U(i)). The first product of U(i) is the unavailability of the working path of the

connection as seen in Equation 3.9. However, to present the effect of shareability

in terms of availability impairment, we increase the unavailability of each link j

along the backup path of the connection iby the sharing degree per channel on the

corresponding link (SDj ) as shown in Equation 3.10. The average sharing degree
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Objective

minRD′ ·A + RD·A′ (3.7)

Subject To

A =
1
|C| · (1−Utotal) (3.8)

Utotal = ∑
c∈C

U(c) (3.9)

Uc = ( ∑
i∈wc

Uλi
) · ( ∑

j∈Bc

Uλ j
·SDj) ∀c∈C (3.10)

SAVG =
∑SDj

|B| ∀ j ∈ B (3.11)

RD= |B| ·SAVG − Hb ·C (3.12)

2 ≤ SDj ≤UPLIMIT ∀ j ∈ B (3.13)

RD≥ 0 (3.14)

(SAVG) is calculated by dividing the sum of sharing degrees by the number of backup

links Equation 3.11. The backup channel gain (RD) stands for the number of idle

channels if the currently active connections were re-configured based on the SDj values

to be calculated Equation 3.12. In Equation 3.13, the sharing degrees for each link are

limited by the lower bound of two and the upper bound of UPLIMIT which is set to

eight in this work. Equation 3.14 stands for the positivity constraint for the resource

gain.

Following the arrival of M connections, the ILP model runs to update the sharing

degrees (SDj ) of the links. For a connection, the working path is found the same as

in CAFES. For the backup path, the path with the minimum cost is selected where the

link costs are obtained as in Equation 3.15. The second line in the equation prevents

resource overbuild due to longer path selection. The cost of the link is decreased but

the amount of decrease is aimed to be kept in a feasible range.
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Cb(e)LSS=




∞ i f e∈ wi ∨∀w∈ b(∃connk|e∈ bk∧ (∃l |l ∈ wk∧ l ∈ wi))
Cb(e)
SDe

i f wi � e∧
(∃connj |e∈ bj ∧ (∃λk ∈ e(B(λk) < SDe)))

Ce otherwise




(3.15)

3.2.3 Performance Evaluation

We run our simulations by using the simulation environment developed by Visual

C++ and CPLEX [92] as explained in Appendix C. We use the channel availability

model and the corresponding MTTF and MTTR values in Table 3.1 to obtain the

unavailability of each channel. We deploy the 14-node NSFNET topology in Figure

C.2 and 28-node European Optical Network (EON) in Figure C.3. Each fiber is

assumed to have 16 wavelength channels. The connections arrive with a Poisson

arrival rate, λ per second. The average connection holding time (µ) is set to 1

second, to be coherent with the previous studies. To let GSS work more efficient

and relaxed, we force it to update the TRADEOFF value (T(i)) once in every

hundred connection arrivals. For TLSS, we update the link sharing degrees in every

thousand connection arrivals. We run our simulations for 105 connection arrivals.

UPLIMIT is taken as eight to prevent unnecessary growth of sharing degree as in

3.1. We run our simulations five times for each point in the graph and present 90%

confidence interval here. We compare the performance of GSS and LSS with CAFES

which is a conventional reliable connection provisioning scheme in terms of average

unavailability per connection and resource overbuild. Here, we use CAFES-k=3

where three different working/backup path pairs are searched and the connection is

provisioned by one of those candidates.

In Figure 3.7, the average unavailability per connection offered by the network is

shown under NSFNET. In the figure, GSS leads to a slight improvement in the

performance of CAFESdue to spreading the resource sharing among the backup

channels. On the other hand, LSSimproves the performance of CAFESsignificantly

with lower average unavailability offering for the incoming connections. The reason

of this significant improvement is closely related to using separate sharing degree for

the links. The output of the optimization shows that most of the channels are forced
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Figure 3.7: Average unavailability per connection of GSS and LSS under NSFNET

Figure 3.8: Maximum sharing degree probability with LSS at arrival rate 200
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by the model to have sharing degree of two and three and a very little portion of the

channels to have sharing degree of four as seen in Figure 3.8. Hence, the availability

degradation due to sharing is assumed to be fair among the channels, and a lower

unavailability value is obtained per connection.

In Figure 3.9, the connection provisioning schemes are compared in terms of resource

overbuild. Our proposed schemes cause a slight increase in resource overbuild to offer

better availability to the connections. However, it is obvious that the slight increase in

the resource overbuild does not violate shared backup protection by becoming similar

to the dedicated path protection. Moreover, the increase in the resource overbuild is

kept in one unit of magnitude.

Figure 3.9: Average resource overbuild of GSS and LSS under NSFNET

We also run the same simulations under 28-node EON topology, and obtained very

similar results to those taken under NSFNET in terms of average unavailability per

connection and average resource overbuild respectively. As seen in Figure 3.10, LSS

gives better results in terms of unavailability under EON. The result of this behavior

is that a greater portion of the channels are assigned sharing degree of two when

compared to the case where NSFNET topology is used. This is an expected output

since the nodal degree distribution is non-uniform in the EON topology.

Figure 3.11 illustrates the comparison of the three connection provisioning schemes

with respect to resource overbuild. The results are very similar to those obtained under

NSFNET topology. The proposed schemes distribute sharing among the channels so
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Figure 3.10: Average unavailability per connection of GSS and LSS under EON

they consume more resources compared to CAFES. However, the increase in resource

overbuild is still kept within one unit of magnitude.

Figure 3.11: Average resource overbuild of GSS and LSS under EON

In summary, under static traffic, the simulation results show that our proposed

provisioning scheme with dynamic shareability introduces a compromise between

resource consumption and average unavailability per connection. On the other hand,

under dynamic traffic, the trade-off heuristic (GSS) leads to a slight improvement in

terms of availability while optimized sharing degree assignment (LSS) introduces a

significant enhancement due to spreading the sharing fairly among the channels. We

also show that, the increase in resource overbuild introduced by the proposed schemes

is kept in a feasible margin at each load level.
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4. DIFFERENTIATED AVAILABILITY-AWARE CONNECTION
PROVISIONING

This chapter presents two adaptive differentiated availability-aware connection

provisioning schemes, namely Global Differentiated Availability-Aware Provisioning

(GDAP) and Link-By-Link Differentiated Availability-Aware Provisioning

(LBL-DAP) in detail [93,94]. GDAP and LBL-DAP are designed to work under SBPP

and differentiated availability requirements. The aim of both schemes is monitoring

the status of the network and determining feasible global/local sharing degrees for the

links and availability classes. G-DAP attempts to specify a global sharing degree on

the links for each availability class. To achieve this target, G-DAP uses the shareability

arrangement heuristic which was presented in Appendix-C. LBL-DAP is derived from

G-DAP, however, it performs the status monitoring in a link-by-link manner. The

output of LBL-DAP scheme contains three sets of sharing degree values where each

set corresponds to an availability class. Each set keeps the sharing degree of each link

for that class. LBL-DAP constructs and solves an ILP model periodically to obtain

these sets. [92]

We evaluate the performance of these schemes under the 14-node NSFNET topology

(Figure C.2) and the 28-node EON topology (Figure C.3) in terms of blocking

probability, average unavailability per connection, average resource overbuild. We

show that the proposed schemes enhance the performance of the conventional scheme,

CAFES, under both topologies in terms of blocking probability and connection

availability. Moreover, LBL-DAP leads to a significant enhancement in resource

overbuild at each load level. G-DAP performs almost the same as CAFES under heavy

loads while for the light load levels, it introduces a slight increase in resource overbuild.

At the end of the chapter, we also present a comparative analysis on the protection

schemes based on provisioning by giving the percentage of unprotected,dedicated, and

shared connections for each scheme. Moreover, the results showing the percentage
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of connections blocked due to availability requirements and resource limitations are

given and discussed.

4.1 Connection Availability Analysis Method Used

To guarantee that the proposed schemes are robust to dual failure, we use a matrix

based availability analysis method to consider more than a single failure. In [67],

the authors propose a matrix-based unavailability estimation method for SBPP. As we

also explain in 2.2.1.2, the proposed method is based on a Markov-chain model and

considers dual failure. Each node in the Markov-chain stands for the state of failure in

the network. Thus, πi stands for the steady-state failure probability of the link i while

πi j stands for the steady-state probability for the failure of link i followed by the failure

of link j . When the Markovian equations are solved, the steady state probabilities, πi

and πi j are obtained. The detailed information on the construction and solution of

the Markovian equations exists in [67] and in Section 2.2.1.2. Here, we present the

availability estimation formulae that are derived from the solution of this model. Based

on the steady state probabilities, availability of a connection is shown in Equation 2.30.

We allow the connections that have common links in their working paths to share

the backup resources unless their availability requirements are not violated. As seen

in Equation 4.1, we add one more term in the parenthesis different from the work

in [67] where Wsc is the set of working links of the connections in Sc. The terms

in the parenthesis stand for the unavailability of the connection. Hence, a protected

connection is unavailable due to one of the three reasons: 1) A link from its working

path fails followed by the failure of a link in its backup path (1st summation term), 2)

A failure in its backup path or working path of any connection in Sc (2nd summation

term), 3) A single working link which is common with any other connection in Sc fails

(3rd summation term).

Ac = 1− [ ∑
k∈Wc∧l∈Bc

πkl + ∑
k∈Wc,l∈(Bc∪Sc)

πlk + ∑
k∈(Wc∩Wsc)

πk] (4.1)

If the availability requirement of a connection can be met by the working path, the

connection does not require a backup path, thus, it can be provisioned as unprotected.

In this case, the availability estimation changes. As shown in Equation 2.31, an

unprotected connection is unavailable if one of the following three conditions hold:
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1) Single failure occurs in the working path (first summation), 2) Dual failure

occurs where one of the failed links exists in the connection’s working path (second

summation), 3) Dual failure occurs where both of the failed links are in the working

path of the connection(third summation).

4.2 CAFES and Differentiated Availability

In [62], the conventional reliable service provisioning method, namely

Compute-A-Feasible-Solution (CAFES) is presented. As explained in 2.2.2, a

number of candidate path pairs are searched as the working and the backup paths. The

path pair that leads to the highest availability (or lowest unavailability) is selected.

The authors show that the performance with respect to resource consumption and

acceptance rate does not change significantly by setting the number of candidate path

pairs beyond two. Therefore, we search for three alternative working paths for the

path pairs based on different criteria. Three alternative working paths are selected by

the following criteria: 1) The path with the minimum cost with respect to the link cost

assignment (most reliable path (MRP) in this case), 2) The path with the minimum

cost after removing the link in Route-1 with the highest availability, 3) Shortest hop

count. In 1 and 2, we assign channel unavailability values on the links as the link costs

due to the additive property of unavailability. For backup path searching, link costs

are arranged as shown in Equation 4.2 where λs(e), λ f (e), and Cold
b (e) are the total

spare and free capacities on link e, and the link cost that is assigned while searching

for a working path, respectively. It is worth noting that spare capacity stands for the

wavelengths that are utilized as backup resources by the other connections while free

capacity corresponds to unutilized WDM channels. Cold
b (e) stands for the link cost

used while searching the working path.

Cnew(CAFES)
b (e) =




∞ i f e∈Wc∨ (λs(e)+λ f (e) = 0)
ε ·Cold

b (e) i f λs(e) > 0
Cold

b (e) otherwise


 (4.2)

In the backup path search step, the link cost is assigned to infinity due to two reasons:

1) It has neither free nor spare wavelengths, 2) It belongs to the working path of the

connection. If there is a spare wavelength on the link, then its former cost is degraded

by a negligible value, ε which we set to 10−5 in this work to force the channel to be
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shared by the incoming connections. If none of these two conditions holds, then the

former cost value of the link is kept. To avoid increase in the resource overbuild, we

stop CAFES if MRP in the working paths satisfies the SLA requirements. Thus, the

connection is provisioned as unprotected.

Wavelength assignment follows the working and backup path selection. Wavelengths

are selected as first-fit assignment based on the criteria of not violating the availability

requirement of any active connection. If a wavelength selection without violating

the availability requirements of the connections cannot be found, a free wavelength

is searched on the link. If those two wavelength assignment attempts both fail,

the connection is blocked. Moreover, once an RWA configuration is selected for a

connection, the connection availability is re-calculated. If the calculated connection

availability does not meet the availability requirement specified in the SLA, the

connection is blocked. Hence, a connection can be blocked due to one of the following

two reasons: 1) Resource limitation, 2) Availability requirement in the SLA.

4.3 Global Differentiated Availability-Aware Connection Provisioning (G-DAP)

In this section, we present a new availability aware connection provisioning scheme

that enhances the performance of CAFES. The new provisioning scheme was

first presented in [93], and it is called Global Differentiated Availability-Aware

Provisioning (G−DAP). G-DAP can be considered as an adapted version of GSS

which was presented in Chapter 3, and it works under differentiated availability

requirement case. G-DAP attempts to monitor the network status, and predict

a feasible sharing degree, Sk for each class on the links. Determination of the

sharing degree for the kth availability class is done by running a heuristic function,

U pdateTradeo f f Di f f() periodically. The heuristic is a modified version of the

U pdateTradeo f f() heuristic which was defined in Chapter 3 and Appendix-C. The

heuristic, U pdateTradeo f f Di f f() works with different availability classes. The main

input of the heuristic is the tradeo f f function (T(k)n) for each availability class as

shown in Equation 4.3 where T(k)n , RO(n− 1), Ak
(n−1) are the tradeoff values for

the connections of class− k calculated for the next (nth) period, resource overbuild

calculated at the end of the last period ((n−1)th), and the average availability value for

the active connections of class−k at the end of the last period ((n−1)th) respectively.
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Resource overbuild (RO) stands for the ratio of the backup resources (channels) to the

working resources (channels) in the network.

T(k)n = RO(n−1) · (1−Ak
(n−1)) (4.3)

This tradeoff function has the same aim as the tradeoff function defined for GSS.

However, here the tradeoff is kept per-class basis. As the resource overbuild

increases, more backup resources are utilized to protect the connections so the

unavailability (1 −Ak) for a class decreases, and vice versa. Hence, the so called

U pdateTradeo f f Di f f() heuristic function has to minimize this tradeoff value. A

period consists of N connection arrivals as in GSS. At the end of the period, the

heuristic runs. The heuristic pseudocode can be found in Appendix-C. Here, we adapt

the performance maximization idea behind [46] to tradeoff minimization concept.

U pdateTradeo f f Di f f() function runs following the arrival of every N connections.

For each availability class, the heuristic calculates the corresponding tradeoff value. If

the tradeoff value for the related class (T(k)n) is less than the previous tradeoff value

for the same class, the sharing degree for class− k is updated by taking the same

previous action; i.e if the previous step was decrementing, decrement sharing degree

for the class, if it was incrementing, increment the sharing degree for the related class.

Conversely, if the tradeoff value for the related availability class is greater than its

previous value, the sharing degree for the related class is updated by taking the reverse

of the previous action on it. It is worth noting that, update on Sk is limited by a value of

UPLIMIT from above and by DOWNLIMIT from below. Besides this, sharing degree

for an availability class Sk is not a strict sharing degree, but a determined feasible

shareability value for the corresponding class.

In order to handle RWA configuration, for each link, G-DAP assigns a cost metric that

corresponds to the tradeoff value on the link. The cost metric is shown in Equation

4.4 where Cw(e) is the cost assigned to link e for the working path search, Ae is the

availability of one WDM channel in link e, and λw(e) and λw(e) are the working and

the spare capacities on link e respectively.

Cw(e) =
λs(e)+ ε
λw(e)+ ε

· (1−Ae) (4.4)
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For backup RWA selection for a connection from the availability class− k, G-DAP

modifies the link costs based on the sharing degree values for class−k obtained from

the tradeoff update heuristic as shown in Equation 4.5 where w is a wavelength channel

on the link e and λ (w) is the number of connections that share channel was a backup

resource. Thus, a link is removed from the topology by setting its cost to infinity if

one of the following two conditions holds: 1) The link does not have any spare or

free channels, 2) It is used in the working path of the connection. If the link has at

least one spare channel that is shared by a number of connections less than the feasible

sharing degree for the incoming connections class, the cost of the link is degraded by

the sharing degree of that class to force the channel to be shared. Otherwise, the link

cost is left as it is.

Cnew(G−DAP)
b (e) =




∞ i f e∈Wc∨ (λs(e)+λ f (e) = 0)
1
Sk
·Cold

b (e) i f λs(e) > 0∧∃w∈ e : λ (w) < Sk

Cold
b (e) otherwise


 (4.5)

Wavelength assignment for the backup path follows the backup route selection. On

each link, spare wavelengths are sorted with respect to the λ (w) values in increasing

order. The sorted spare wavelengths set is checked starting from the least λ (w)

value in terms of availability violation. If any spare wavelength does not violate

the availability requirements of the currently active connections and the incoming

connection, the wavelength is reserved on that link. If none of the spare wavelengths

can be reserved as the backup wavelength on that link, a free channel is tried. In

case of an unsuccessful spare or free wavelength assignment on that link for the

incoming connection, the attempt for the corresponding working/backup path pair is

blocked. Following the blocking of the working/backup lightpath assignment attempt,

the reserved backup channels in the previous hops and the RWA configuration for the

corresponding working path are deallocated for the connection.

The RWA configurations for the three alternative working / backup lightpath pairs are

collected. If there is no RWA configuration collected, the connection is discarded due

to "resource limitation". Otherwise, another check is done on availability satisfaction.

If any of the candidate lightpath pairs does not meet the availability requirement of the

connection, the corresponding RWA is deallocated. After this removal process, if there

is no path pair collected, the connection is blocked due to "availability requirement".
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Otherwise, for each alternative pair k, a resource consumption metric (RCMk) is

calculated as seen in Equation 4.6. RCMk is the product of the relative resource

consumption calculation and the unavailability of the corresponding connection c

when kth RWA configuration is used. The second term is seen clearly in the equation

as (1−Ac(k)). The relative resource consumption calculation is the sum of working

channels and the number of backup channels divided by the average actual sharing

degree along the path. Since the actual average sharing degree on each link is summed

and divided by the number of backup links along the path, the numerator of RCMk

has another Hops(b)
k as a factor which introduces a square operation on the related

parameter.

RCMk = [Hops(w)
c(k) +

[Hops(b)
k ]2

∑e∈Bc
( 1

λs(e)
·∑w∈eλ (w))

] · (1−Ac(k)) (4.6)

RCMk is used if there are more than one working/backup lightpath candidate for the

incoming connection, and the one that leads to the minimum RCMk value is selected

as the RFWA configuration for connection c. G-DAP runs in O(W ·L) time for the link

cost arrangement which is the same as in CAFES where L and W are the number links

and the number of wavelengths per link, respectively. When assigning wavelengths on

the selected routes, G-DAP checks each wavelength on each link. In the wavelength

assignment phase, the channels are first grouped as working, spare and free channels.

Hence, searching for a spare channel takes O(W) time in the worst case.

4.4 Link-By-Link Differentiated Availability-Aware Connection Provisioning

(LBL-DAP)

Based on the results obtained in Chapter 3 under GSS and LSS, it seems

possible to adapt and modify LSS into differentiated availability-aware environment,

and enhance the performance of G-DAP. For this reason, we construct a more

detailed provisioning model, namely Link−By−Link Di f f erentiated availability−
Aware Connection Provisioning(LBL−DAP) which monitors the status and adapts the

sharing degrees of each availability class in link-by-link manner. Thus, in LBL-DAP,

Sk is modified to represent the sharing degree for class−k on the link l , and evolves to

S(l)
k . Similar to G-DAP, LBL-DAP takes the snapshot of the network, and determines
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these values by running an ILP model periodically. Thus, it is an enhanced version

of G-DAP and an adapted version of LSS to differentiated availability-aware service

provisioning. Here, we use the metric, resource gainthat is used in LSS but here, it is

modified to work under differentiated services. We define resource gainas the possible

idle capacity gained after forming lightpaths based on the obtained S(l)
k values. Thus,

a contradiction exists between resource gain and connection availability. Increase in

resource gain leads to increase in sharing degree; high sharing degree leads to less

connection availability. Resource gain concept is first defined in LSS (Chapter 3) for

availability-aware network planning without availability class differentiation. The new

tradeoff function for class− k in LBL-DAP is constructed in terms of resource gain

and availability of class-k as shown in Equation 4.7.

Tradeo f fLBL−DAP
(k) = RGk ·Ak (4.7)

To make the ILP model clear and explain how Sk
(l) is obtained, we define below the

variables and the related parameters used in the model:

RGk: Resource gain for class−k
Ac: Availability approximation of connection c
A(k): Average availability approximation for the connections in class−k

S(k)
avg: Average sharing degree for class−k

l (k)c : Set of connections from class−k on link l
SCl : Number of spare wavelengths on link l
Lb: Set of backup links
Hopsk: Total number of backup links

of the connections of class−k
C(k): Set of connections of class−k

S(k)
l : Feasible sharing degree of class−k on link l

ρl : Number of connections using the backup link l

The formulae between Equation 4.8 and Equation 4.16 forms the ILP model to obtain

the feasible sharing degrees on each link per availability class. It is worth to note

that the tradeoff function in Equation 4.7 is non-linear so it cannot be used in the ILP

model as it is. Therefore, we make an approximation by differentiating the tradeoff

function by using the previous values of its dependent variables resource gain and

availability. The differentiated form of the tradeoff function contributes the ILP model

as the objective function as seen in Equation 4.8. We use the values of the resource

gain(RG
′
k) and the average availability in the last period (A

′(k)) where RGk and Ak
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stand for the resource gain and the average availability for the connections of class−k

respectively.

The first constraint in Equation 4.9 is the calculation of availability of each

connection cfrom the class− k. As seen in the formulation, we make another

approximation in the availability calculation in order to include the feasible sharing

degrees on the related links. The terms after the availability (Ac) stand for the

unavailability of connection c. According to the approximation, connection cis

unavailable if one of the two conditions holds: 1) A link from its working path fails

followed by a backup path fail, 2)A link from the backup path fails followed by the

failure of a link from the working path. However, these two conditions reflect the

nature of a connection provisioned with DPP. Therefore, to include the sharing and

possible unavailability property of SBPP, in the summations, we include each backup

link with a contribution to the unavailability of a connection cof class kproportional

to the sharing degree of class kon it. The next two constraints in Equations 4.10-4.11

are straightforward that they represent the average availability (modified) per each

availability class and average sharing degree per class respectively. Equation 4.12

introduces a capacity-related constraint. It guarantees that, with the obtained sharing

degree S(k)
l , the link l is capable of handling all of the active connections of class k

that are using the channels on the link as backup resources. Resource gain for the

availability class k is defined in Equation 4.13. As seen in the formula, resource

gain concept is the same as the one used in LSS with a difference of differentiated

availability services support. Equation 4.14 aims to force the links with equal backup

utilizations to have equal sharing degrees for each class. Equations 4.15 and Equation

4.16 stand for the boundary constraints of the model. The former bounds the sharing

degrees by using UPLIMIT and DOWNLIMIT while the latter guarantees that the

resource gain always has a non-negative value.

Since running ILP may take time until getting a feasible solution, LBL-DAP runs

ILP to update the feasible sharing degrees on the links for the classes S(k)
l following

the arrival of every N connections. The outputs of the ILP optimization model are

used to update the link costs for backup route selection for the incoming connections.

Working and backup lightpath search and assignment strategy is the same as in G-DAP.

However, in backup route search, link costs include the feasible sharing degrees for
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Ob j. min ∑
k

RG
′
k ·A(k) + RGk ·A′(k) k = 1,2,3 (4.8)

Sub jectTo

Ac + ∑
pεWc,bεBc

πpb ·S(b)
k + ∑

pεWc,bεBc

πbp ·S(b)
k = 1∀ c,k | cεC(k) (4.9)

A(k) =
1

|C(k)| ·∑c
Ac, ∀ k (4.10)

S(k)
avg =

1
|Lb| · ∑

lεLb

S(k)
l , ∀ k (4.11)

SCl ·S(k)
l ≥ |l (k)c |, ∀ k (4.12)

|Lb| ·Sk
avg−Hopsk · |C(k)| = RGk, ∀ k (4.13)

S(k)
l = S(k)

m , ∀ l ,mεLb | ρl

SCl
=

ρm

SCm
(4.14)

DONWLIMIT≤ S(b)
k ≤UPLIMIT ∀ k, l (4.15)

RGk ≥ 0, ∀ k (4.16)

the availability class of the incoming connections in their costs. The link costs are

shown in Equation 4.17. For backup path search of an incoming connection from

class− k, a link is temporarily removed from the physical topology by assigning its

cost to infinity if one of the following two conditions holds: 1)link e has neither free

nor spare wavelengths, 2) It is used in the working path of the incoming connection.

If link-e has at least one spare channel that is utilized by a number of connections less

than the feasible sharing degree for the corresponding class on link e (S(e)
k ) as a backup

resource, the link is assigned the cost 1
S(e)

k ·λs(e)
where λs(e) is the spare capacity on the

link e. By this modification on its cost, link e becomes preferable as a shared backup

resource for the incoming connections. If this second condition does not hold, then

the link cost has to be assigned a value that significantly greater than the link cost of a

preferably shareable link, but significantly less than INFINITY, so it is assigned to the

value of DOWNLIMIT.

LBL-DAP has similar properties with G-DAP in terms of running time. It also runs in

O(W.L) time for link cost assignment. Since the working and backup RWA strategy is
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Cnew(LBL−DAP)
e =




∞ eε Wc∨ λs(e)+λ f (e) = 0
1

S(e)
k ·λs(e)

λs(e) > 0∧∃wεe : λ (w) < S(e)
k

DOWNLIMIT else


 (4.17)

the same as G-DAp except the link costs, searching for a spare channel with LBL-DAP

can be completed in O(W) for the worst case. However, LBL-DAP introduces an

overhead which comes from the ILP optimization. It runs periodically. Moreover, as

we mention in the performance evaluation section, the slowest optimization phase takes

at most the average holding time of one connection, and majority of the optimization

runs end within few milliseconds which corresponds to one hundredth of a the average

connection holding time.

4.5 Performance Evaluation

We run our simulations on a P4 with 3.00GHz CPU and 3.50GB memory space

using Visual C++. The ILP model in LBL-DAP is solved by the help of CPLEX

9.0 [92]. We generate the arrival of the connection requests with respect to Poisson

model, and the connection holding times are negative exponentially distributed by

normalizing the average holding time to 1s. There are 16 wavelength channels on

each link, and it is assumed that all the nodes have wavelength conversion capability.

In the figures, we present the average of five runs with 90% confidence intervals.

Our simulation results are taken under the 14-node NSFNET topology in Figure C.2

and the 28-node EON topology in Figure C.3. We warm up the network with thirty

thousand connection requests and then collect the results for the next thirty thousand

connection requests. The running duration for the tradeoff update heuristic in G-DAP,

and the ILP model in LBL-DAP is set to the arrival of every one thousand connections.

For LBL-DAP to obtain the S(l)
k values, the ILP runs in a few milliseconds and it is

bounded by 1s which is the average connection holding time. There are five availability

classes, which require availability levels of 0.98, 0.99, 0.999, 0.9999, 0.99999. We

collect the results for 50000 connection arrivals after a warm up duration. To make

it similar to a realistic environment, the connections are first distributed uniformly

among the availability classes, and then the corresponding portions for the classes are

made to be heterogeneous so that there exist less number of connections from the

highest availability classes, and the majority of the connections are from the moderate
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availability classes. Therefore, class1, class2, class3, class4, class5 form 12%,

25%, 32%, 23%, and 8% of the incoming connection requests respectively. To be

able to handle these availability requests, the availability values of the fiber links are

evenly distributed on the following set {0.999, 0.9999, 0.99999}. Failure rates and

their corresponding 1/MTTF values are obtained from the assigned link availability

values. We use the formula in Equation 1.1 to obtain these parameters.

Since we obtain similar behavior when we apply uniform incoming requests, we do

not present them in these section but the results obtained under uniform connection

distribution among the availability classes in Appendix-E.

4.5.1 Results Taken Under NSFNET

The first part of performance evaluation consists of the results taken under the

NSFNET topology. In the NSFNET topology, we set the MTTRto 12 hours [68].
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Figure 4.1: Blocking probability of LBL-DAP and G-DAP per connection under
NSFNET

In Figure 4.1, the conventional availability aware connection provisioning scheme,

CAFES and the adaptive differentiated availability aware connection provisioning

schemes are compared in terms of connection blocking probability. The line with

the highest blocking probability represents the results obtained by running CAFES.

As seen from the figure, the adaptive differentiated schemes decrease the blocking

probability significantly. The reason of this behavior is that G-DAP and LBL-DAP
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select the backup links by considering both the WDM channel availability on the links

and the feasible sharing degree for the availability class of the incoming connection.

Moreover, LBL-DAP considers the feasible sharing degree for the availability class

of an incoming connection on each link separately. Therefore, LBL-DAP performs

better than G-DAP in terms of blocking probability due to this link-by-link per-class

shareability monitoring.
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Figure 4.2: Resource overbuild with LBL-DAP and G-DAP under NSFNET

In Figure 4.2, the three techniques are compared in terms of average resource

overbuild. Resource overbuild stands for the ratio of the number of backup channels

to the number of working channels. In each case, resource overbuild decreases as

load gets heavier. The reason of this behavior is that, as the load gets heavier, the

connections tend to share the backup resources more. Although G-DAP leads to a

slight increase in resource overbuild, it starts to perform almost the same as CAFES

under heavy load levels. Moreover, the network experiences approximately one unit of

decrease in resource overbuild when LBL-DAP is employed under light and moderate

loads. Since LBL-DAP attempts to control the sharing degree for each availability class

on each link separately, it achieves to control the utilization of backup resources. Using

ILP also has an important effect on this achievement. Once, a feasible shareability is

determined for the WDM channels on a link, the determined value is projected on the

link cost for the backup search for the incoming connections. The link costs avoid
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selecting longer backup paths due to the decreasing the original cost at backup routing

phase.
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Figure 4.3: Average unavailability per connection with LBL-DAP and G-DAP under
NSFNET

Although the adaptive schemes G-DAP and LBL-DAP decrease the connection

blocking probability and consider resource overbuild, they do not violate the average

unavailability per connection as seen in Figure 4.3. Moreover, a slight decrease is also

experienced by running LBL-DAP where G-DAP also tends to decrease unavailability

under heavy loads. It can be explained by the adaptive schemes’ considering the

tradeoff between backup resource utilization and the unavailability. Due to this

consideration, while searching the backup lightpaths, G-DAP and LBL-DAP arrange

the link costs by using the feasible sharing degree that is the output of an ILP model

or a heuristic that uses this tradeoff. Thus, rather than creating stacks of sharing

groups on the links, distributing the sharing groups in the network adaptively, keeps

the unavailability per connection equal to or lower than the conventional provisioning

scheme CAFES.

A connection is blocked due to one of the following two reasons : 1) Resource

limitation 2) Availability dissatisfaction with respect to SLA. In Figure 4.4, we show

the percentage of the blocked connections due to availability requirement. As seen

in Figure 4.1, beyond the load level of 150 Erlang, blocking probability of LBL-DAP

starts to increase sharply. The reason for the increase is the lack of available resources
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Figure 4.4: Ratio of blocked connections due to SLA requirement with LBL-DAP,
G-DAP, and CAFES under NSFNET

to protect the connections. Under light and moderate load levels, LBL-DAP utilizes the

resources efficiently so a greater amount of the blocked connections are dropped due

to SLA requirement. Moreover, the overall blocking probability for LBL-DAP is also

significantly low, and as it is seen in Figure 4.5, majority of the blocked connections are

from class−5 which requires the highest availability level while class−4 and class−3

contribute the overall blocking probability with negligible blocking ratios. On the

other hand, G-DAP blocks less amount of connections due to SLA requirement when

compared to CAFES starting from 50 Erlang network load level. As seen in Figure

4.3, G-DAP introduces better availability per connection when compared to CAFES.

This behavior of G-DAP causes a decrease in the amount of connections blocked due

to SLA. Since class−3 and class−4 also contribute the overall blocking probability

in CAFES and G-DAP, unavailability per connection can be regarded as the key factor

that affects the ratio of the connections blocked due to SLA requirements.

Except the conditions where the load is so heavy that the protection resources are not

sufficient, we can say that majority of the connections are blocked due to availability

requirement of a connection that is specified in the SLA as seen in Figure 4.12. Indeed,

the major contribution to the overall blocking probability is expected to come from

the highest SLA class which is class− 5 in this work. This situation can also be

observed in Figure 4.5. The figure shows that the higher the availability requirement
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Figure 4.5: Blocking probabilities per each availability class with LBL-DAP, G-DAP,
and CAFES under NSFNET

the more contribution to the blocking probability. class− 1 and class− 2 require the

least availability levels which means provisioning by the fiber link availabilities even

without protection. Therefore, blocking probability of these two classes is almost zero.

For each SLA class, the proposed connection provisioning schemes lead to lower

blocking probabilities when compared to CAFES. The behavior of the schemes for

each class is the same as it is in overall blocking probability. The order for blocking

probability among the schemes is the same as their order for the overall blocking

probability. As it is stated before, blocking probability obtained by LBL-DAP for

class− 3 and class− 4 is significantly lower than those obtained by CAFES and

G-DAP. Therefore, LBL-DAP outperforms CAFES and also G-DAP in terms of overall

blocking probability.

In Figure 4.6, we illustrate the distribution of the protection types at the time of

provisioning for the incoming connections from class− 3, class− 4, and class− 5.

class3 requires the least availability level among these SLA classes. Since the

connections from class−3 require less availability, their availability requirements are

more likely to be met by a primary path. Thus, as seen in the figure, at least 70% of

the class− 3 connections are provisioned with only a primary path, i.e unprotected.

The portions for the class3 and class4 connections are more under G-DAP than those
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Figure 4.6: Distribution of protection types when provisioning the connections under
NSFNET

under CAFES.This introduces the slight increase in resource overbuild in Fig.4.2. On

the other hand, for class5 connections, G-DAP provisions less dedicated connections

than CAFES does. Therefore under heavy loads its performance is close to that of

CAFES in terms of resource overbuild, and the slight increase in resource overbuild

under light load levels is not as significant as the decrease lead by LBL-DAP. The

highest portion for the shared provisioned connections is obtained under LBL-DAP.

Moreover, as an explanation to the significant decrease in resource overbuild, for

each SLA class, LBL-DAP provisions less amount of dedicated connections compared

to G-DAP and CAFES. For class− 5 connections, the amount of initially dedicated

provisioned connections is 2% under LBL-DAP while this ratio is 13% and 12% under

CAFES and G-DAP respectively. For instance, 92% of the class− 5 connections are

provisioned shared by LBL-DAP, while this ratio is 80% and 81% under CAFES and

G-DAP respectively. These two phenomena let LBL-DAP keep the resource overbuild

below CAFES under moderate and heavy loads as shown in Figure 4.2.
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4.5.2 Results Taken Under 28-node EON

The second part of our simulations are run by employing the 28-node European Optical

Network (EON) topology in Figure C.3. The fiber lengths are taken as the distances

between the cities. MTTR values are taken to be 20 hours. 1/MTTF values and the

failure rates on the fiber links are calculated by using the same approach for NSFNET.
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Figure 4.7: Blocking probability of LBL-DAP and G-DAP per connection under EON

In Figure 4.7, the three schemes are compared with respect to the overall connection

blocking probability. Here, topology used, EON, is larger, and the nodal degree

distribution is not as uniform as in NSFNET, the blocking probabilities obtained here

are higher in three of the schemes. However, G-DAP and LBL-DAP still lead to

an enhanced acceptance rate in comparison to the conventional reliable connection

provisioning scheme CAFES. When the two adaptive schemes are compared to each

other, it seems that, due to the advantage of considering the feasible sharing degrees

for each class link-by-link by using the tradeoff minimization, LBL-DAP still performs

better than G-DAP as under the NSFNET topology. However, the difference between

LBL-DAP and G-DAP lines is slightly closer to each other compared to that under

the NSFNET topology. Besides this, the actual values of the blocking probabilities

are also higher than those taken under NSFNET. The reason of this observation is the

non-uniform nodal degree distribution and the greater size of the EON topology in
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comparison to the NSFNET. As seen in Figure C.3, the nodal degrees vary from two

to five so some of the links have to be overloaded. As a result, determining a global

sharing degree for each class and assigning appropriate link costs gets closer to setting

negligible costs to the shareable links as the load gets heavier and the network starts

suffering from available resources. As a supplementary result to the overall blocking

probability is thought to be the per-class blocking probability experiment which is

shown in Figure 4.8. Similar to the per-class blocking probabilities under NSFNET,

the major contribution to the overall blocking probability comes from the connections

of class−5, and the difference between G-DAP and LBL-DAP results for class−5 are

less than those obtained under the NSFNET. However, under LBL-DAP, class−4 and

class−3 connections still experience significantly low blocking probability compared

to those under CAFES and G-DAP.
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Figure 4.8: Blocking probabilities per each availability class with LBL-DAP, G-DAP,
and CAFES under EON

In Figure 4.9, availability aware provisioning schemes are compared in terms of

average resource overbuild under 28-node EON. Similar to the results taken under

the NSFNET topology, LBL-DAP lead to a significant decrease in resource overbuild.

Moreover, G-DAP does not introduce an increase to CAFES in resource overbuild.

Thus, here, the adaptive techniques relatively utilize less amount of backup resources

to protect the working resources. Moreover, the decrease in the resource overbuild

is sharper here when compared with the results under the NSFNET topology. The
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reason of this behavior lies in the following points: 1) The connectivity of the EON is

heterogeneous, 2) The links in the topology are shorter than NSFNET so short fibers

have high availability, 3) The lightpaths consist of shorter hops, 4) The ratio of the

shared connections is increased.
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Figure 4.9: Resource Overbuild with LBL-DAP and G-DAP under EON

In Figure 4.10, we present the distribution of the protection schemes for the class−4

and class−5 connections under G-DAP and LBL-DAP. For both of the SLA classes,

LBL-DAP provisions more amount of shared connections compared to G-DAP.

Besides this, LBL-DAP provisions less amount of connections with dedicated path

protection for both of the classes. Thus, backup resource consumption of LBL-DAP is

quite less than G-DAP which confirms the result illustrated in Figure 4.9.

The following results present the average unavailability per connection for CAFES,

G-DAP, and LBL-DAP under 28-node EON topology. In Figure 4.11, it seems that,

all of the three schemes lead to almost close unavailability levels. However, similar to

the results under the NSFNET topology, LBL-DAP leads to a degraded unavailability,

and as the load level goes beyond 100 Erlangs, G-DAP introduces a slight decrease

in average unavailability per connection. As in the performance evaluation part

under the NSFNET, the corresponding figure shows that the adaptive connection

provisioning schemes do not cause any availability degradation on the conventional
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Figure 4.10: Distribution of protection types when provisioning the connections under
EON

reliable connection provisioning scheme CAFES although they decrease the blocking

probability and limit resource overbuild under the 28-node EON topology.
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Figure 4.11: Average unavailability per connection with LBL-DAP and G-DAP under
EON

As a supplement for the results in Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.11,

we also present the statistically collected data showing the blocking reason of the
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dropped connections as seen in Figure 4.12. Similar to the results in Figure 4.4, under

the heavy load levels, the amount of the blocked connections that are dropped due to

their availability requirements are less in G-DAP and LBL-DAP when compared to

those in CAFES. Under light and moderate loads, due to efficient resource utilization,

low blocking probability, and the major contribution of class− 5 connections to

the resource overbuild, LBL-DAP drops less amount of connections due to resource

unavailability. As a result, the adaptive schemes do not cause a decrease in the

unavailability per connection while they introduce improvement in terms of blocking

probability and resource overbuild.
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Figure 4.12: Ratio of blocked connections due to SLA requirement with LBL-DAP,
G-DAP, and CAFES under EON

As a concluding remark, we have seen that the proposed schemes lead to higher

acceptance rates. Moreover, G-DAP leads to a close resource overbuild value

while LBL-DAP significantly degrades the resource overbuild of the conventional

scheme. Besides these, G-DAP introduces almost the same availability level with

the conventional reliable connection provisioning scheme. As the load gets heavier,

G-DAP also enhances the connection availability. LBL-DAP introduces better

connection availability at each load level. Thus, the proposed adaptive schemes lead

to better blocking probabilities, and resource overbuild values without violating the

average connection unavailability. Moreover, we also show that, LBL-DAP leads to
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the best performance when this performance parameters are considered, and under

both of the topologies while its performance in terms of blocking probability gets

closer to that of G-DAP under EON due to the heterogeneous nodal degree distribution

in EON. As a supporting result, we have also shown that the proposed adaptive

schemes decrease the amount of the blocked connections that are dropped due to their

availability requirement under heavy load levels since they offer better availability per

connection.
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5. AVAILABILITY AND OVERLAPPING SHARED SEGMENT
PROTECTION

As seen in the literature survey in Chapter 2, most of the previous work in this field

focuses on the availability constrained connection provisioning under dedicated or

shared path protection. In this chapter, we deal with availability and shared segment

protection. First, we present an availability analysis method for overlapping segment

protection. We verify our theoretical availability calculation with the actual availability

of a connection. We show that our proposed availability calculation lies within a

very small precision interval. Relying on the verified availability analysis, we present

two availability constrained connection provisioning schemes that work under shared

segment protection and that are built on top of the Generalized Segment Protection

(GSP)[34]. The first scheme is called Availability-Constrained Generalized Segment

Protection (AC-GSP). The objective of AC-GSPis assigning working and protection

segments by offering maximum availability for the incoming connections. The second

scheme is called Shareability Driven Availability-Constrained Generalized Segment

Protection (SDAC-GSP)[95]. SDAC-GSPis a modified version of AC-GSP. It attempts

to decide feasible sharing degrees for the intersecting linksof the backup segments.

For a connection, intersecting linksof a backup segment are the links that intersect

with the working path of the connection. We show that SDAC-GSPintroduces higher

acceptance rate and increased availability per connection due to the attempt of forcing

to protect every working link with more than one segment. However, protection of

a working link with more than one protection segment is not a must. Thus, since the

more segments the better availability and the less blocking probability for a connection,

this approach increases resource consumption in a feasible range.
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5.1 Preliminary Information For Shared Segment Protection

Segment protection is a compromise between link protection and path protection.

The working path of a connection is partitioned into segments and each segment

is protected by a backup segment [9, 33]. The partitioned segments can be either

overlapping [33,34,41] or non-overlapping [96]. In this work, we consider overlapping

segment protection as shown in Figure 2.4, and we ue the term shared segment

protection to point overlapping shared segment protection. In the related figure,

three overlapping backup segments are illustrated to protect the working path between

source and destination. The protection capacity is twice for the links at the overlapping

sections of the backup segments. In the illustrated scenario, link−4 (between node−2

and node− 3) and link − 6 (between node− 5 and node− 6) are protected by two

segments per each.

Another advantage of shared segment protection is its robustness to multi-failure.

Let us consider the protection scenario in Figure 2.4. Assume that the link between

node− 2 and node− 3 fails, followed by the failure of any link or links in the

protection segment that starts from node−2 and ends at node−6. Moreover, assume

another concurrent failure on the working path between node−1 and node−2. In this

multi-failure scenario, the protection segment originating at sourceand ending at node

node− 3 is activated. Thus, the traffic from sourceto destinationis switched on this

protection segment starting at source. The traffic is switched onto the working path,

and forwarded to the destinationat node−3.

A number of algorithms are previously proposed for segment protection [33,34,40,97].

We investigate some of this algorithms briefly in Chapter 2. Several shared segments

protection schemes are based on GSP [98, 99]. Therefore, as a basis to our proposed

availability constrained provisioning schemes, we use the Generalized Segment

Protection (GSP) algorithm in [34] to select the protection domains constructed by

the segments. We give a brief explanation on the working principle of the algorithm.

At the beginning, K working paths are selected based on a pre-determined criteria

(shortest path, minimum unavailability, shortest hop count, etc.). Upon selecting the

K-paths, for each working path, the links along the working path are reversed. The cost
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of every link that has at least one spare channel is degraded by a negligible coefficient

ε . Each link that originates out of the working path but ends on the working path is

modified so that its end point is moved to the previous node on the working path. At the

end, a path with minimum cost is selected from source to destination. Following the

path selection, the modified links are restored, and the connection is provisioned with

the corresponding overlapping backup segments [34, 98]. The working path/backup

segments group with the minimum cost is selected out of K different solutions. The

algorithm is given in Appendix-D.

5.2 Availability Analysis under Shared Segment Protection

To best of our knowledge, no availability analysis formulation for shared segment

protection exists in the literature. Therefore, here, we define our analytical estimation

method for connection availability under overlapping shared segment protection. A

connection is available if one of the following conditions holds: 1) all the links on

its working path are available, 2) If there is a link failure in the working path, the

corresponding segment protection of the failed link is available. Here, it is worth

noting that segment protection of a linkstands for the set of the protection segments

that protects the corresponding link on the working path. Thus, in its fundamental

form, this statement can be formulated as in Equation 5.1 where Ac is the availability

of the connection, Wc is the set of links in the working path of the connection, Ai

is the availability of the ith link in the working path, and ASi is the availability of

the segment protection of the ith link of the working path. Due to overlapping of

Ac = ∏
i∈Wc

(Ai +ASi −Ai ·ASi) (5.1)

the protection segment, a working link can be protected by more than one backup

segments. Therefore the availability of the segment protection of link i (ASi ) is the

sum of the availabilities of its protecting segments excluding the probabilities including

more than once. This can be formulated as shown in Equation 5.2 where Segi is the set

of the segments protecting the link i.

A segment is available if all the links along this segment are available. However,

connection cmay share the backup resources with other connections on a segment.

When a link on the working path of connection cfails, in case of a failure along the
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ASi = ∑
s∈Segi

(As)− ∑
p∈Segj

∑
s∈Segi ,i �= j

(As ·Ap)

+ ∑
r∈Segk

∑
p∈Segj , j �=r

∑
s∈Segi ,i �= j

(As ·Ap ·Ar)− ... ∼= 1− ∏
s∈Segi

(1−As) (5.2)

working path of any of the connections in the sharing group of connection cat the

same time, connection cmay not get the resources along the corresponding backup

segment. Therefore, the availability of a protection segment for the ith working link of

the connection-c has to be expressed with additional constraints. A protection segment

is available to a link on the working path of connection cif one of the following two

conditions holds: 1) The working paths of all connections that are in the sharing group

of the connection-c on this segment are available, 2) If there is at least one failure in

those working paths, connection-c can still have the backup segment channels with a

probability of δ . These can be generalized and formulated as seen in Equation 5.3

where SGs represents the set of connections that share at least one backup channel

with connection con segment s. It is assumed that a failure in the working path of

the connections in the sharing group SGs affects the availability of the segment sif the

failed link is protected by the corresponding segment. Therefore we include |Segz| in

the denominator to normalize the unavailability of the working path of connection−z

with the number of its protection segments where connection−z is in the sharing group

of connection−c whose availability is being calculated.

As = (∏
k∈s

Ak) · [ ∏
z∈SGs

[1− (1−∏ j∈Wz
Aj)

|Segz| ]

+[1− ∏
z∈SGs

[1− (1−∏ j∈Wz
Aj)

|Segz| ]] ·δ ] (5.3)

When we substitute the formulations in Equation (5.2) and Equation (5.3) into

Equation (5.1), we obtain the generalized open formula in Equation 5.4 for availability

calculation of the connection c.

According to the availability analysis, it can be said that a connection is available

if all of its protection domains are available. Each protection domain is formed

by the working links and their corresponding backup segments. Hence, the more

protection by more backup segments, the more availability offered to a connection. In
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Ac = ∏
i∈Wc

[Ai

+1− ∏
s∈Segc

{1− [(∏
k∈s

Ak) · [ ∏
z∈SGs

(1− (1−∏ j∈Wz
Aj)

|Segz| )

+[1− ∏
z∈SGs

(1− (1−∏ j∈Wz
Aj)

|Segz| ]) ·δ ]]}

−Ai ·+1− ∏
s∈Segc

{1− [(∏
k∈s

Ak) · [ ∏
z∈SGs

(1− (1−∏ j∈Wz
Aj)

|Segz| )

+[1− ∏
z∈SGs

(1− (1−∏ j∈Wz
Aj)

|Segz| ]) ·δ ]]} (5.4)

performance evaluation section, we show the validation of this analysis by numerical

results.

5.3 Availability-aware Connection Provisioning For Shared Segment Protection

In this section, we present the two availability constrained connection provisioning

schemes that we introduced [95] under overlapping shared segment protection. Both of

the schemes are derived from Generalized Segment Protection (GSP) algorithm [34].

5.3.1 Availability-Constrained Generalized Segment Protection (AC-GSP)

Relying on the availability analysis model in the previous section, we modify and

adapt the Generalized Segment Protection algorithm to availability constrained

connection provisioning. We call this adapted scheme, Availability Constrained

General Segment Protection (AC-GSP). AC-GSP starts with searching for three

alternative working paths (W(1)-W(3)). The search criteria for the working parts are as

follows:

- W1: Most Reliable Path: The path that leads to the minimum cost when each

link is set to the cost of the unavailability value of a wavelength channel on it. When

connections arrive with previously specified availability requirements, and W1 leads

to a value greater than the availability requirement of the connection, there is no need

to search for a backup lightpath for the connection. Thus, the connection can be

unprotected.

- W2: The path that leads to the minimum cost when each link is set to the cost

of the unavailability value of a wavelength channel on it (one’s complement of the
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availability), and the link with the minimum cost in W1 is removed.

- W3: The path that leads to the shortest hop count.

The corresponding backup path search for the working paths is straightforward. Link

cost assignment for the backup path search is shown in Equation 5.5 where λ f (e) and

λs(e) are the free and spare capacity on link-e respectively, ē is the link between the

same nodes but in the reverse direction of the link-e. Cold
e is the link cost used for

searching the corresponding working path which is the unavailability of linke for the

first two working paths, and one for the last candidate working path. We set ε to 10−5

in AC-GSP and its counterpart which is presented in the next subsection.

Cnew
e =




∞ e∈ Wc∨ λs(e)+λ f (e) = 0
−Cold

e ē ∈ Wc

ε ·Cold
e λs(e) > 0

Cold
e else




(5.5)

Upon assigning the link costs for the backup path search, the modification of the links,

searching for the minimum cost path between source-destination, and the restoration

of the modified links are done as in GSP. Once AC-GSP has the backup paths for the

alternative working paths of the connection, it assigns wavelengths for the backup

paths. Wavelength assignment is done by sorting the wavelengths on each link

according to the number of connections sharing those channels as backup resources in

ascending order. Then hop-by-hop, AC-GSP searches an available wavelength starting

from the first wavelength in the sorted list. If assigning the selected wavelength does

not cause any availability violation for any of the currently provisioned connections,the

wavelength is assigned, and AC-GSP proceeds with wavelength assignment for the

next hop. If the wavelength assignment is rejected due to availability violation for any

other connection, the algorithm proceeds with the the next spare wavelength in the

list. If all the spare wavelengths reject the assignment, a free wavelength is tried to be

assigned. If there is neither a shareable spare wavelength nor a free wavelength for the

connection on the corresponding link, connection provisioning for the corresponding

working path is blocked due to lack of resource.

Upon obtaining the candidate working paths and their corresponding backup segments,

the working path/backup segment pair that leads to the highest availability is selected.

If neither of the pairs provide a solution set, the connection is blocked due to resource

88



limitation. On the other hand, if the connection arrives with a specific availability

requirement in its service level agreement (SLA), and if the selected working/backup

group does not meet the availability requirement, the connection is blocked due to

availability non-satisfaction.

5.3.2 Shareability Driven Availability-Constrained Generalized Segment

Protection (SDAC-GSP)

We modify AC-GSP to provide shareability awareness for sake of introducing higher

availability and less blocking probability for the incoming connections. We call the

modified scheme shareability driven availability constrained connection provisioning

(SDAC-GSP). SDAC-GSP inherits all the main properties of AC-GSP, like being

based on GSP and working with differentiated availability requirements. As we see

in Equation 5.4, the more protection segments the more availability introduced to a

connection. A segment intersects the working path of a connection at two points

which are the beginning and the end point of the segment. Therefore the more

intersecting points the more protection segments, and the more availability. Hence,

for each availability class, SDAC-GSP attempts to estimate a feasible sharing degree

on the intersecting links. Feasible sharing degree estimation was used in the adaptive

availability-aware connection provisioning schemes in Chapter 3 and Chapter 4 for

SBPP. Similar the concept for those schemes, we define a tradeoff function by using

the periodically collected data from the network. As seen in Equation 5.6, the

unavailability per connection for the corresponding class and the resource overbuild

are the input parameters of the tradeoff function. Obviously, the value of the tradeoff

function is updated periodically, and aimed to be minimized. The idea behind the

sharing degree modification approach is inherited from the availability modification

in [46] as in the other works [83, 91, 93]. In Equation 5.6, T(k)
n , stands for the tradeoff

value for the connections of class kcalculated for the (nth) period while R(n−1), and

A(k)
(n−1) stand for the ratio between resource overbuild and the average availability value

at the end of the last period ((n−1)th) respectively.

T(k)
n = R(n−1) · (1 − A(k)

n−1) (5.6)

Increase in the number of protection segments leads to increase in the number of WDM

channels. This behavior decreases the average connection unavailability (1−A). As

89



expected, the opposite way of change in backup resource consumption also causes the

connection unavailability to increase. This inverse relation is investigated periodically

where a period consists of N connection arrivals. At the end of the each period, the

heuristic runs to update the feasible sharing degrees on the intersecting linksfor each

availability class.

The pseudocode of the algorithm to update the sharing degree is shown in Appendix-C.

According to the sharing degree update heuristic, the tradeoff value for an availability

class is compared to its previously calculated value. If current value is less than the

previous one, the update heuristic repeats the last action taken for the sharing degree of

the corresponding availability class. If the last action was to increment, sharing degree

is incremented, otherwise it is decremented. However, if currently calculated tradeoff

value for the corresponding availability class is greater than its previous tradeoff value,

the opposite of the last action is taken for the sharing degree of the related class. Similar

to our previous works using this tradeoff update, sharing degree for class k(Sk) is

limited by an upper bound, UPLIMIT , and a lower bound, DOWNLIMIT.

SDAC-GSP uses the same strategy with AC-GSP for routing and wavelength

assignment. However, it differs from AC-GSP in assigning costs when searching for

the backup segments. Equation 5.7 shows the link cost assignment of SDAC-GSP for

the backup segment search where Cold
e is set to the cost of the link used in working path

selection. According to the equation, the connection is preferred to select as much as

backup segments it can, however, it is also forced to select the intersecting linksthat

form the segments considering the shareability for the corresponding availability class.

It is expected that, forcing the connection to have more backup segments forces every

single link of the working path to be protected by double segments. As a result, a

resource consumption overhead is also introduced by SDAC-GSP for sake of enhanced

availability and acceptance rate as we discuss in the performance evaluation section.

Cnew
e =




∞ e∈ Wc∨ λs(e)+λ f (e) = 0
−Cold

e ē ∈ Wc

ε · (−SHk) ·Cold
e λs(e) > 0∧λs(e) < SHk∧e∩Wc �= φ

ε ·Cold
e λs(e) > 0

Cold
e else




(5.7)

Since AC-GSP and SDAC-GSP use the same routing and wavelength assignment

strategy, they have the same running time complexity due to sorting the wavelength
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channels on each link. During the backup segment search, link cost assignment takes

O(W ·L) time since each wavelength on each link is checked once. In the wavelength

assignment step, the channels are first grouped as working, spare and free channels,

and then the spare channels are sorted. Thus, the time for searching and assigning a

spare channel takes O(W) time in the worst case on each link.

5.4 Performance Evaluation

This section presents the validation of the availability analysis for shared segment

protection, and evaluates the performance of the proposed connection provisioning

schemes, namely AC-GSP and SDAC-GSP under different network constraints. We

run our simulations by using Visual C++, and use the simulation environment defined

in Appendix-C. We use the topology in Figure C.4. We use the formula in Equation

1.1 to calculate the link availabilities. Each point in the graphs represent the average of

five simulation runs and we also present 90%confidence intervals in the figures. In the

connection provisioning schemes AC-GSP, and SDAC-GSP, the negligible coefficient

ε is set to 10−5 in backup segment search. We assume that all the nodes have

wavelength conversion capability.

5.4.1 Availability Analysis Validation

To validate our proposed availability analysis method, we assume that the network

is capable of provisioning a working path and its corresponding backup segments to

every incoming connection arriving without a pre-specified availability requirement,

i.e the network has infinite amount of resources.

In availability analysis validation step, connection provisioning scheme is selected

to be AC-GSP. It is worth noting that due to running the simulations to compare

the actual and calculated availability values of the connections, the connections

are not blocked due to availability requirements. Therefore, we modify AC-GSP

appropriately to handle this situation. MTTR values on the links are distributed

negative exponentially with mean of 12 hours. In the simulations, failures arrive

following a Poisson distribution. At each run, we introduce 2000 failures into the

network. The validation of the availability analysis is two-fold: 1) We apply different

error rate values (1/MTTF) as 200 FIT, 400 FIT, 600 FIT, 800 FIT, and 1000 FIT to a

91



fixed number of provisioned connections where FIT corresponds to the failures in 109

hours. 2) We set the 1/MTTF value to 400 FIT and run the same simulation scenarios

for different number of connection demands.
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Figure 5.1: Actual and theoretical availability per connection with different failure
rates

We compare the theoretical availability and the actual availability per connection

in Figure 5.1. The results are collected from 150 connections that are uniformly

provisioned previously. Although the failure rate increases estimation error ratio, the

maximum value for estimation error ratio is still at the level of 0.15% as seen in the

figure above.
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Figure 5.2: Actual and theoretical availability per connection with different
connection demands
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In the second step, the 1/MTTF value is set to 400 FIT and the availability analysis

method is tested with the simulation scenarios for different number of connection

demands. The results are shown in in Figure 5.2. According to the results, the

availability estimation error ratio is at the level of 10−6. As a result, the availability

analysis approach also holds under different traffic loads.

Based on the validation of the analysis, it can be concluded that the theoretical and

the actual availability comparisons in the figures verify that the proposed availability

analysis for overlapping shared segment protection can be used as a basis for

availability calculation of the connection provisioning policies proposed to work with

shared segment protection. Hence, the performance comparison section evaluates the

performance of AC-GSP and SDAC-GSP by using this availability analysis for the

incoming connections with pre-specified SLA requirements.

5.4.2 Performance Comparison

This part of the simulations evaluate and compare the performance of AC-GSP

and SDAC-GSP under resource-plentiful and resource-scarce environments. In the

resource plentiful environment the number of wavelengths per fiber is set to 32

while in the resource-scarce environment it is set to 16. Thus, we compare both

of the techniques in terms of blocking probability, connection availability, resource

consumption, and resource dependency. Connections arrive with previously specified

availability requirements. Three availability levels are assumed as 0.98, 0.99,

and 0.999. Based on AC-GSP and SDAC-GSP, a connection can be provisioned

unprotected, shared backup path protected or shared segment protected. If the most

reliable path (W(1)) satisfies the availability requirement of an incoming connection by

itself, SDAC-GSP and AC-GSP ends and provision the connection unprotected.

In the simulations, we set 1/MTTF to 400 FIT and MTTRto 12 hours. Connections

arrive following a Poisson distribution. The average connection holding time is

negative exponentially distributed and is normalized to 1s. Since the connections

arrive with pre-specified availability requirements, connection blocking can be due to

either resource limitation or availability requirement as in the schemes work under

SBPP. Blocking due to resource limitation stands for the case where AC-GSP or

SDAC-GSP returns three empty sets in the routing phase of the RWA process. Then,
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blocking due to availability requirement corresponds to the case where AC-GSP or

SDAC-GSP successfully configures the RWA for a connection but the configured

RWA leads to less availability compared to the availability requirement of the related

connection. We run our simulations for 30000 connection arrivals after a warming

up period. In SDAC-GSP, we set the DOWNLIMIT and UPLIMIT values to two and

eight respectively which are determined empirically in previous studies [83, 91, 93].

In SDAC-GSP, the running period for the tradeoff update heuristic is selected as 1000

connection arrivals as in [93].
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Figure 5.3: Blocking probability vs load with AC-GSP and SDAC-GSP

The first evaluation and comparison metric is blocking probability of AC-GSP and

SDAC-GSP under resource-plentiful and resource-scarce environments in Figure 5.3.

The results collected under resource-plentiful environment are represented by the

straight lines where the results corresponding to the resource-scarce environment are

represented by the dashed lines. In the resource-scarce environment, connections are

expected to be blocked due to both availability requirement and resource limitation.

For this reason, as load gets heavier, the connections are more likely to be blocked

due to resource constraints and the blocking probabilities in the resource-scarce

environment is greater than those in the resource-plentiful environment. For the same

reason, SDAC-GSP seems to outperform AC-GSP in resource-plentiful environment.

However, in the resource-scarce environment, as the load gets heavier, e.g after the

network load of 100 Erlangs, blocking probability increases. SDAC-GSP forces

connections to use more protection segments considering feasible sharing degrees on
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the WDM channels on links for each class, it leads to higher resource consumption

where the network can hardly handle the incoming requests as the load gets heavier.

Under resource-plentiful environment, SDAC-GSP leads to lower blocking probability

at each load level as seen from the straight lines in the figure. Since SDAC-GSP

aims to protect the links of the connection with as much as protection segments, and

also considers the feasible sharing degrees on the backup channels, it targets high

availability for the connections. As a result, SDAC-GSP can satisfy the availability

requirement of more connections compared to AC-GSP. It is worth noting to say that,

in the resource-plentiful environment, connections are not blocked due to resource

limitation but to availability requirements. Thus, SDAC-GSP is runs efficiently under

sufficient number of wavelengths per fiber at each load level or under restricted number

of wavelengths at light and moderate load levels. We also evaluate the effect of the ε

parameter to the heuristics, and present the results in the Appendix section in Fig.F.1.
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Figure 5.4: Blocking Probability for different classes under AC-GSP and SDAC-GSP
in resource-scarce environment

Figure 5.4 shows the blocking probabilities for each availability class in

resource-scarce environment. As expected, the major contribution to the blocking

probability comes from the blocked connections of class3. This can be seen in the

figure for both of the schemes, AC-GSP and SDAC-GSP. For the load levels less than

120 Erlangs, SDAC-GSP blocks less number of connections compared to AC-GSP.

SDAC-GSP aims to introduce better availability for the incoming connections,

therefore, it forces the connections to select more number of segments considering
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feasible sharing degrees on the intersecting linksof the segments. Thus, SDAC-GSP

gives priority to class−3 connections in terms of availability, and allows introducing

degraded availability to class2 and class1 connections. Since the major contribution

of the overall blocking probability comes from the dropping of the highest availability

class connections, this figure is a supplement for the results illustrating the overall

blocking probability in Figure 5.3.
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Figure 5.5: Average connection availability vs load for AC-GSP and SDAC-GSP

We evaluate and compare the performance of AC-GSP and SDAC-GSP under the

two different environments in terms of availability per connection in Figure 5.5.

In the resource-plentiful environment, connection blocking is due to availability

requirements of the incoming connections so SDAC-GSP is supposed to introduce

higher availability to the connections as a result of leading to high acceptance rate

seen in Figure 5.3. SDAC-GSP aims to increase the availability connection by

forcing them to select more protection segments by considering the feasible sharing

degree on the intersecting links, it leads to better connection availability even in

resource-scarce environment when compared to AC-GSP. Another observation and a

required justification on the result is that, both of the provisioning schemes offer the

same connection availability until the load level of 100 Erlangs. Beyond 100 Erlangs,

due to the resource constraints, both of the techniques provide less availability for

the provisioned connections than those they offer in resource-plentiful environment.

Moreover, the performance difference with respect to the connection availability starts

to occur after this load level.
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Table 5.1: Average availability per connection for different values when W=32

Scheme Load Class-1 Class-2 Class-3
20 0.9919 0.9973 0.9997

AC-GSP 60 0.9917 0.9970 0.9996
100 0.9915 0.9967 0.9995
140 0.9914 0.9965 0.9995
20 0.9919 0.9974 0.9997

SDAC-GSP 60 0.9917 0.9971 0.9996
100 0.9916 0.9969 0.9995
140 0.9916 0.9968 0.9995

Table 5.2: Average availability per connection for different values when W=16

Scheme Load Class-1 Class-2 Class-3
20 0.9918 0.9974 0.9997

AC-GSP 60 0.9917 0.9970 0.9996
100 0.9915 0.9967 0.9995
140 0.9913 0.9964 0.9995
20 0.9919 0.9974 0.9997

SDAC-GSP 60 0.9917 0.9971 0.9995
100 0.9916 0.9969 0.9995
140 0.9912 0.9966 0.9995

We summarize the connection availability per-class basis in Table 5.1 under different

load levels for AC-GSP and SDAC-GSP in resource-plentiful environment. Obviously,

the availability values of the connections are close to each other. Furthermore, both

of the schemes lead to the same availability levels for class3 connections. However,

being coherent with the results presented in Figure 5.5, under heavier loads SDAC-GSP

provides better availability for class− 2 and class− 1 connections which causes the

overall availability per provisioned connection to be better for SDAC-GSP in Fig 5.5.

The results taken in resource-scarce environment are given in Table 5.2 and are also

similar to the ones taken in resource-plentiful environment. The difference between the

availability values of class1 and class2 connections under the lightest and the heaviest

loads also complies with the connection availability comparison between AC-GSP and

SDAC-GSP.

Since the connections can be blocked either due to availability requirement or due

to resource limitation in resource-scarce environment, in Figure 5.6, blocking reason

of the blocked connections is shown under varying load. According to the figure,

SDAC-GSP tends to block the connections are blocked due to resource limitation
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Figure 5.6: Connection blocking reason under AC-GSP and SDAC-GSP in
resource-scarce environment

rather than availability requirement as the load gets heavier. SDAC-GSP offers higher

connection availability as the load gets heavier. Offering high connection availability

is done by protecting the working path with increased number of overlapping

segments by taking into consideration the shareability constraint. This introduces

increased wavelength consumption where insufficient resources problem occur for

future connections. As a result, SDAC-GSP starts blocking the connections due to

resource constraints more than AC-GSP does.
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Figure 5.7: Wavelength utilization of AC-GSP and SDAC-GSP

To explain the results related to blocking probability, connection availability, and

connection blocking reason, we compare the proposed schemes in terms of wavelength

utilization and resource overbuild in Figure 5.7 and Figure 5.8under resource-plentiful
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Figure 5.8: Average resource overbuild under AC-GSP and SDAC-GSP

and resource-scarce environment, respectively. As seen in the figures, SDAC-GSP

leads to an increased number of utilized wavelength in the network, especially

in the resource-plentiful environment. SDAC-GSP also leads to an enhanced

resource utilization under resource-plentiful environment. However, in resource-scarce

environment, as the network load gets heavier, both of the schemes get closer to each

other in terms of resource overbuild due to the limited amount of resources under heavy

loads.

Figure 5.9 illustrates the protection strategies of the provisioned connections in

resource-plentiful environment. At first sight, the basic difference is on the number

of protection segments. SDAC-GSP provisions a little portion of the connections with

five segments. However, the maximum number of segments with AC-GSP is four

for each availability class. As we have shown in the previous results, SDAC-GSP

modifies the costs of the intersecting links by considering the sharing degree, and

offers better availability to the connections. Therefore, figure also complies with

the previously obtained results. As seen in Figure 5.9.a and Figure 5.9.b, majority

of the conenctions from class− 1 are unprotected. For class− 2 connections, the

portion for unprotected connections, the ones protected with one segment, the ones and

protected with two segments have close ratios to each other. It is expected that a minor

amount of class−3 connections are unprotected due to having the highest availability

requirement. The figure complies with this presumption, and it is also seen that the

majority of the connections are provisioned with one or two protection segments. It

is worth noting that the amount of the connections provisioned with three protection
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Figure 5.9: Protection strategies of connections in resource-plentiful environment
under AC-GSP and SDAC-GSP
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segments is significantly greater than the amount of those unprotected when both of

the schemes run. Table 5.3 shows the results taken in resource-scarce environment to

investigate the portions of the protection strategies under both schemes. The results

are similar to those obtained under W=32. Based on this, it can be concluded that the

protection type of a connections is not directly related to the resource restriction of the

environment. In Table 5.3, U stands for the ratio of unprotected connections of the

related class, and n−S stands for the ratio of the connections that are protected by n

backup segments in the corresponding availability class.

Table 5.3: Provisioning of connections according to their protection when W=16

Scheme Availability Class U 1-S 2-S 3-S 4-S 5-S
Class-1 0.769 0.077 0.116 0.033 0.006 -

AC-GSP Class-2 0.369 0.280 0.288 0.055 0.008 -
Class-3 0.012 0.643 0.304 0.037 0.005 -
Class-1 0.766 0.049 0.100 0.066 0.017 0.003

SDAC-GSP Class-2 0.376 0.196 0.289 0.113 0.023 0.004
Class-3 0.010 0.523 0.359 0.089 0.018 0.002

Based on the analysis and simulation results, it can be said that, SDAC-GSP is

convenient to be deployed where connections are more probable to be blocked

due to availability requirements, and AC-GSP is convenient to be deployed where

connections are blocked also due to resource limitation while AC-GSP can be preferred

in a resource restricted environment and under heavy traffic to provision more number

of connection requests. Thus, AC-GSP is preferred to be used in resource-scarce

environment while SDAC-GSP can be preferred for resource-plentiful environment

for sake of enhanced availability for the connections.
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6. CONCLUSION AND FUTURE DIRECTIONS

Routing and wavelength assignment in optical networks have been studied a lot

in the literature. As survivable optical network design started to be considered,

availability-aware connection provisioning have been a key issue for the robust design

and planning of optical WDM networks. Basically, availability of a connection stands

for the probability of a connection to be in the operating state at an arbitrary time. Due

to the single, multi-failures, long switching durations to the backup paths, there might

be connection service outages which lead to unavailability.

There are several previous works focusing on availability aware optical network design

and connection provisioning. Majority of the schemes deal with availability-aware

provisioning under DPP and SBPP. Since it is hard to come up with a single precise

availability calculation method for a shared protection system, there are various

availability analysis methods analyzing the availability of the connections that are

protected by shared resources. Some of the availability analysis approaches are based

on linear models while there are also Markovian models. Availability aware connection

provisioning schemes attempt to guarantee high availability and / or SLA satisfaction

by controlling resource consumption.

This thesis study has focused on availability aware connection provisioning for

different protection schemes. As the first step, we have proposed a two-step connection

provisioning scheme for availability design of optical networks. The proposed scheme

is built on top of a previously proposed scheme which works under static traffic

matrix and over-provisioned network. In the first step, it attempts to arrange the

feasible sharing degree on the channels dynamically. Determination of the feasible

sharing degree is done periodically by a tradeoff update function. The tradeoff

update function uses the contradiction between connection unavailability and resource

overbuild. The connections are routed over a multi-layered graph with respect to

minimum unavailability target where each arc corresponds to a wavelength channel,
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and where the arc costs are assigned by taking the calculated feasible sharing degree

into consideration. The second step of this scheme is the same as the second step

of the scheme which forms a base for it. Starting from the least utilized fiber, each

fiber is released together with the connections passing through it, and an alternate

RWA configuration for the released connections is searched by not violating the

former unavailability value. However, in the corresponding step, routing is done on

a single-layered graph by considering the feasible sharing degree at the end of the

first step. The second step assigns the wavelengths by starting from the least utilized

wavelength on the selected optical link. Here, the sharing degree can be violated if

a less utilized wavelength cannot be shared by the corresponding connection. The

dynamic sharing scheme is evaluated and compared with the previously proposed

scheme which forms a base for it. According to the simulation results under different

topologies and traffic matrices, the dynamic sharing scheme seems to offer less

unavailability to the connections. It causes an increase in the wavelength utilization.

However, it still leads to a significantly less resource consumption than a DPP-based

availability aware connection provisioning scheme does.

The design scheme in the first step has been modified to work under dynamic traffic

environment as a matter of network planning under SBPP. The proposed scheme is

named as Global Shareability Surveillance (GSS). GSS monitors the network status

periodically, and by running the tradeoff heuristic, it determines the feasible sharing

degree on the channels of the fibers. An enhanced version of GSS is also proposed,

namely Link-By-Link Shareability Surveillance (LSS)which collects information from

the network, and constructs an ILP model based on those collected information. The

output of the solution of the ILP model provides the feasible sharing degrees for the

wavelength channels of each link. Performance of GSS and LSS is evaluated and

compared to that of a conventional reliable connection provisioning scheme CAFES.

The results show that the GSS and LSS lead to decrease in the connection unavailability

in comparison to CAFES. Moreover, the decrease in unavailability under LSS is more

significant when compared to that under GSS. The proposed schemes introduce an

increase in resource overbuild due to many reasons discussed in the text, however, the

increase is kept less than one unit of magnitude which is reasonable.
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As the next step, differentiated availability has been considered where the connections

arrive with pre-specified availability requirements in their SLAs. Markovian

unavailability analysis is used which considers dual failure issue. Two connection

provisioning schemes have been proposed which are the adapted versions of GSS

and LSS to differentiated and resource restricted environment. The first one is named

as Global Differentiated Availability-aware Connection Provisioning (G-DAP) which

aims to estimate a feasible sharing degree for the wavelength channels on the links

for each availability class. The second scheme is the adapted version of LSS, and it

attempts to estimate a feasible sharing degree for each class on the channels of each

link separately. This scheme is called Link-By-Link Availability Aware Differentiated

Connection Provisioning (LBL-DAP). LBL-DAP constructs an ILP model and runs

it periodically based on the collected data from the network to estimate the feasible

sharing degrees on each link for each availability class. We have evaluated the

performance of the proposed schemes G-DAP and LBL-DAP, and compared the

performance to that of CAFES. The proposed schemes decrease the overall blocking

probability and the blocking probability for the highest availability classes. G-DAP and

LBL-DAP do not introduce higher resource overbuild and unavailability than those of

CAFES. The reason for the better performance of the proposed schemes is that the

intelligent route and wavelength selection based on the feedback collected from the

network, considering the feasible sharing degrees. Obviously, LBL-DAP introduces

the best performance due to considering each link and availability class separately in

the ILP model.

The last part of the thesis focuses on shared segment protection. To the best of our

knowledge, there is not a work for availability analysis in shared segment protection.

Thus, we have proposed an availability calculation method for shared segment

protection. According to the proposed availability analysis, a connection is said to

be available if the protection domain of each link along its working path is available.

the protection domain is defined as the link itself and its corresponding backup

segments. Here, the contribution of the backup segments to the availability is affected

by the size of the sharing group on the backup channels of the protection segment.

The model is verified by simulation and used in the availability calculation of the

incoming connections for the connection provisioning schemes that we have proposed
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for availability aware shared segment protection. We have modified and adapted

a conventional segment selection scheme (Generalized Segment Protection-GSP) to

support availability aware routing and wavelength assignment. The proposed scheme

is called Availability Constrained Generalized Segment Protection (AC-GSP). We have

derived another provisioning scheme which is a hybrid of G-DAP and AC-GSP. The

proposed scheme is based on AC-GSP, however, it attempts to estimate a feasible

sharing degree for each availability class on the links which are candidates to originate

or end the protection segments by running the tradeoff heuristic periodically. It

assigns appropriate costs to the corresponding links considering the estimated feasible

sharing degree. The performance of the proposed schemes is evaluated and compared

under resource plentiful and resource scarce environments in terms of connection

availability, blocking probability, and resource consumption. It has been shown that

SDAC-GSP is appropriate to be used in resource plentiful environment or in resource

scarce environment under low and moderate load levels. On the other hand, AC-GSP

performs better in resource scarce environment under heavy load levels.

This work is open to be extended for future studies. WDM-based availability aware

concept can be extended to availability design of GMPLS and multi granular optical

networks where optimal design of multi granular optical networks exist in the literature

[100, 101] as a reference guide for this extension. Layer-1 virtual private networks

(VPN) are also becoming attractive for the service providers and the enterprizes,

and there are several works for the survivable design of Layer-1 VPNs [102, 103].

Availability design of Layer-1 VPNs seems to be an open issue for future extensions of

availability design of optical WDM networks. As it is mentioned in the introduction,

optical packet and burst switching seem to be the most attractive future services of

optical networks. To the best of our knowledge, availability and optical packet/burst

switching are not considered as a design constraint which seems to be an open issue

for the researchers in this field.
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APPENDIX A: Bhandari’s Algorithm

In MCAD-DPP Bhandari’s one-step diverse path search algorithm [70] is used together
with the two-step Dijkstra’s algorithm [11]. In our work (Chapter 3), two-step
Dynamic Sharing, we have also used MCAD-DPP as a reference to evaluate the
connection unavailability and the wavelength utilization of our proposed scheme.
Therefore, in this section we give a brief definition of the Bhandari’s one-step shortest
path search algorithm which is not commonly deployed as Dijkstra’s shortest path
algorithm. The pseudocode for the algorithm can be seen in Algorithm 1.

Algorithm 1 Bhandari’s algorithm

1: {INPUT}
2: {N: Set of nodes in the network}
3: {E: Set of unidirectional links}
4: {C: Cycle of minimum cost consisting of links}
5: P1 ← Shortest path f rom S to D
6: for i=1 to | N | do
7: for j=1 to | N | do
8:

9: if ei j ∈ P1 then
10: ei j ← ∞
11: e ji ←−e ji

12: end if
13: end for
14: end for
15: P2 ← Shortest path f rom S to D
16: for i=1 to | N | do
17: for j=1 to | N | do
18: if ei j ∈ P1 AND e ji ∈ P2 then
19: P1 ← P1−{ei j}
20: P2 ← P2−{e ji}
21: end if
22: end for
23: end for
24: C ←{P1}∪{P2}

The algorithm above starts the cycle search by calculating the shortest path, P1,
between the source and the destination node. Upon finding the shortest path, it sets
the costs of the links on the found path to infinity, and negates the costs of the links
which are in the opposite directions to those links. As the second step, by using the
modified topology, it computes another path, P2 consisting of set of links. Once P1
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and P2 are obtained, the links on which P1 and P2 intersect in reverse directions are
removed from the two sets. Finally the remaining parts of the two sets are merged and
the links in the union set form a cycle that passes through the source and destination.
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APPENDIX B: ACPRO Pseudocode and explanation

In Chapter 3, the second step of our our proposed scheme (Dynamic Sharing-2) is built
on top of the second step of the MCAD/ACPRO approach which was proposed in [11].
In Chapter 3, we define our proposed scheme in details, however, it is worth to include
the pseudocode of the second step of its counterpart in this section.

Algorithm 2 ACPRO (X(f),M)

1: {Input}
2: {ΩMCAD[X( f )]: MCAD Result Set}
3: {M: Tolerance margin}
4: {Output}
5: {ACPRO[X( f )]: ACPRO Result Set}
6: K ← 0
7: while K < W −1 do
8: {Remove Empty Fibers}
9: K ← K +1

10: while any K-fibers exist do
11: {Store ΩMCAD[X( f )]}
12: U1 ←U{ΩMCAD[X( f )]}
13: {Deallocate X(f)}
14: {Disable f temporarily}
15: if alternate configuration (Ω∗) exists then
16: U2 ←U{Ω[X( f )]}
17: if U2 > M ·U1 then
18: {Restore Ω[X( f )]}
19: else
20: Ω[X( f )] ← Ω∗[X( f )]
21: end if
22: else
23: {Restore Ω[X( f )]}
24: end if
25: end while
26: end while

In the ACPRO pseudocode, K stands for a counter and a K− f iber stands for a fiber that
has K allocated WDM channels. Currently processed fiber is represented by f . W is
the number of WDM channels per fibers. X( f ) represents the set of connections either
their working or protection path passes through. Ω[X( f )] stands for the particular
RFWA solutions for the connections in X( f ). The unavailability values for the RFWA
solutions of the connections in X( f ) is represented by U{Ω[X( f )]}. ACPRO attempts
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to search for an alternate RFWA solution for the connections passing on each fiber by
keeping the connection unavailability in a feasible range.
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APPENDIX C: Simulation environment

Simulation Structure

We have developed our simulation environment by using Visual C++ using the discrete
event simulation methodology. The main objects of the simulation environment are
event, topology, link, f iber, channel, and connection.

An event can be connection_arrival(), connection_release(),
link_failure(), link_repair(). Each event has a timestamp and a
corresponding event code. Events are kept in a queue, eventQueue sorted by their
timestamps.

When the simulation starts, a connection arrival event is generated at time zero, and
pushed into the eventQueue. As the connection is generated and pushed into the queue,
immediately its release time is calculated and an appropriate event for that is generated
and pushed into the queue. Then the simulation starts running in its main loop. The
pseudocode for the main loop in the simulation is shown in Algorithm 3. Each event
object in the eventQueue occurs with its timestamp. Since the simulations run in
discrete time, the global clock of the simulation, CurrentTime is updated each time
an event is popped from the queue.

Algorithm 3 Main Loop

1: while arrivals < totalConnections AND eventQueue NOT EMPTY do
2: nextEvent ← eventQueue.getNextEvent()
3: CurrentTime ← nextEvent.time
4: if nextEvent.eventType = arrival then
5: releaseCon ← newEvent()
6: nextArrive ← newEvent()
7: eventQueue.push(releaseCon)
8: eventQueue.push(nextArrive)
9: end if

10: if nextEvent.eventType = f ailure then
11: repairLink ← newEvent()
12: nextFailure ← newEvent()
13: eventQueue.push(repairLink)
14: eventQueue.push(nextFailure)
15: end if
16: runprocessEvent()
17: end while
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The topology includes two main matrices, namely the distance matrix (DM), and
the link cost matrix (CM) containing the distance between the nodes and the link
costs which corresponds to the unavailability value of a single WDM channel in our
simulations respectively. The main objects of the simulation environment are the link,
f iber, channel, and connection objects. In Figure C.1, the main properties and the
functions of these classes, and the relation between them can be seen.

Figure C.1: Optical link, fiber, channel, and connection structures with main
properties and functions

An object from the link class consists of several objects from the f iber class. Similarly
a f iber consists of several channels. The property of the class channel named as uType
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stands for the utilization type of the corresponding channel, i.e unutilized, working
channel, or backup channel. Thus, utilizingGroup is a vector of the ID(s) of the
connection(s)that utilize(s) the corresponding channel. MT T F , MT T R, length, U
stand for the mean time to fail, mean time to repair, length and the unavailability of
the corresponding channel respectively. The main functions of a WDM channel are
defined as adding or dropping a function. A link and a fiber have extra functions to get
their spare, free, and total utilized capacities. A connection has its working and backup
path information in the related vectors. For the simulations run under shared segment
protection, properties related to each backup segment are added to the connection class.

Figure C.2: NSFNET topology used in the simulations (Tornatore, 2006)

Figure C.3: 28-node European Optical Network topology used in the simulations
(Maesschalck, 2003)

In the simulations for DPP and SBPP we use the 14-node NSFNET and the 28-node
European Optical Network topologies that are shown in Figure C.2 and Figure C.3
respectively. The length of the links are assigned as the distances between cities in
kilometers. In the simulations run under shared segment protection, we require a larger
and more heterogeneous topology to be able to provision each connection with more
than one segment so we use the topology in Figure C.4.
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Figure C.4: US nationwide topology used when testing the performance of the
segment protection-based schemes (Zhang, 2007)

Feasible Sharing Degree Update
In Dynamic Sharing-Step-1, GSS, G-DAP and SDAC-GSP our proposed schemes
attempt to define feasible sharing degrees on the channels. Dynamic Sharing-Step-1
and GSS are the connection provisioning schemes for availability aware network
planning. Thus, the connections are attempted to be provisioned with high availability
and low resource consumption, i.e non-differentiated SLAs. The pseudocode for
updateTradeo f f () function is given below. The algorithm runs in Dynamic
Sharing-Step-1 and GSS. The tradeoff update approach is adopted from the network
availability arrangement in [46]. Here, we aim to arrange the shareability on the
channels. In [104], the authors propose to limit the sharing degree around six.
According to [104], a well selected sharing limit eliminates the capacity penalties.
Therefore, relying on the sharing degree of six as a reference; to allow the system
oscillate freely between different sharing degrees, we do not specify a strict sharing
limit but set an upper bound (UPPERBOUND) of eight which is close to but even
more than the proposed value in the related reference, for the global feasible sharing
degree in order to avoid the corresponding value (S(n)) grow unnecessarily.

G-DAP and SDAC-GSP run the function, updateTradeo f f _Di f f (k) for different
availability classes. In this case, the modified parameter is the feasible sharing degree
for class k which is Sk. Therefore, the tradeoff value is also kept per-class basis,
namely Tk(n). Tradeoff for the nth period of class k is calculated as shown in Equation
C.1 where Uk(n−1) and RO(n−1) stand for the average unavailability per connection
of class k and the resource overbuild respectively, at the end of the (n−1)th period.

Tk(n) = RO(n−1) ·Uk(n−1) (C.1)
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Algorithm 4 updateTradeoff ()

1: {Input}
2: {RO(n): Resource overbuild at the end of the nth period}
3: {U(n): Avg. unavailability per connection at the end of the nth period}
4: {T : Last value of the tradeoff function}
5: {Output}
6: {T ′: New calculated value of the tradeoff function}
7: {S(n+1): New calculated value for the feasible sharing degree}
8: T ′ ← RO(n) ·U(n)
9: if T ′ < T then

10: if LAST_ACT ION = INCREMENT then
11: if S(n) < UPPERBOUND then
12: S(n+1) ← S(n)+1
13: end if
14: LAST _ACT ION ← INCREMENT
15: else
16: if S(n) > LOWERBOUND then
17: S(n+1) ← S(n)−1
18: end if
19: LAST _ACT ION ← DECREMENT
20: end if
21: end if
22: if T ′ ≥ T then
23: if LAST_ACT ION = DECREMENT then
24: if S(n) < UPPERBOUND then
25: S(n+1) ← S(n)+1
26: end if
27: LAST _ACT ION ← INCREMENT
28: else
29: if S(n) > LOWERBOUND then
30: S(n+1) ← S(n)−1
31: end if
32: LAST _ACT ION ← DECREMENT
33: end if
34: end if
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APPENDIX D: The basis scheme for AC-GSP and SDAC-GSP: Generalized
Segment Protection (GSP) Algorithm

Our proposed availability constrained connection provisioning schemes AC-GSP
and SDAC-GSP that work under shared segment protection are built on top of a
conventional segment selection algorithm, namely Generalized Segment Protection
(GSP) [34]. In this section, we provide the detailed pseudocode of the GSP algorithm
that we also use in our proposed schemes. The pseudocode is given in Algorithm 4.

Algorithm 5 GSP(node S, node D)

1: {Input}
2: {N: Set of nodes}
3: {L: Set of links}
4: {S,D: Source and destination pair}
5: {W []: vector of working paths}
6: {S[]: vector of solution sets}
7: {Output}
8: {Smin: Solution with the minimum cost}
9: for k = 1 to | N | do

10: for li j ∈W [k] do
11: Cost(li j) ← ∞
12: Cost(l ji) ← 0
13: if λs(li j) > 0 then
14: Cost(li j) ←−Cost(li j)
15: end if
16: if li j ∩W [k] �= AND j �= D then
17: li j ← li, j−1

18: end if
19: P ← Di jsktra(S,D,Cost[])
20: {Restore the modified links}
21: S[k] ← current solution
22: end for
23: end for
24: Smin ← min(S[])

At the beginning, K working paths are selected based on a predetermined criteria
(shortest path, minimum unavailability, shortest hop count, etc.). Upon selecting the
K-paths, for each working path, the links along the working path are reversed. The cost
of every link that has at least one spare channel is degraded by a negligible coefficient
ε . Each link that originates out of the working path but ends on the working path
is modified so that its end point is moved to the previous node on the working path.
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Finally a path from source to destination is selected. Upon obtaining the path, the
modified links are restored, and the connection is provisioned with the corresponding
backup segments
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APPENDIX E: Performance of the adaptive schemes, G-DAP and LBL-DAP under
uniformly distributed SLA-classes

We have evaluated the performance of the differentiated availability aware schemes
by distributing the incoming connections uniformly among the SLA classes. In
this chapter we include the results that correspond to blocking probability, resource
overbuild and average connection unavailability under under NSFNET and 28-node
EON topology as seen from Figure E.1 to Figure E.7. The illustrated results mostly
coincide with the results where the connections are heterogeneously distributed among
the classes in Chapter 4.
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Figure E.1: Blocking probability when SLA-class distribution is uniform under
NSFNET
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Figure E.2: Resource overbuild when SLA-class distribution is uniform under
NSFNET
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Figure E.3: Average connection unavailability when SLA-class distribution is uniform
under NSFNET
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Figure E.4: Blocking probability when SLA-class distribution is uniform under
28-node EON
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Figure E.5: Blocking probability when SLA-class distribution is uniform under
28-node EON
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Figure E.6: Resource overbuild when SLA-class distribution is uniform under
28-node EON
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Figure E.7: Average connection unavailability when SLA-class distribution is uniform
under 28-node EON
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Figure E.8: Blocking probability per SLA class class when SLA-class distribution is
uniform under 28-node EON
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APPENDIX F: Blocking probability for AC-GSP and SDAC-GSP for a different
epsilon value

As seen in Figure F.1, the behavior of availability constrained connection provisioning
techniques do not show a significant change when ε is taken as 0.001. Hence, we
can say that the performance of the connection provisioning techniques is independent
of the ε parameter which is used in the cost assignment function for the backup path
search.

0 50 100 150 200
10

−2

10
−1

10
0

Load (Erlang)

B
lo

ck
in

g 
P

ro
ba

bi
lti

y

AC−GSP W=16
SDAC−GSP W=16
AC−GSP W=32
SDAC−GSP W=32

Figure F.1: Blocking probability for AC-GSP and SDAC-GSP when epsilon
parameter is 0.001

It is an expected result since the ε parameter is only used to decrease the cost of the
links that are shareable for the connections. Thus, a factor which is less than one and
close enough to zero works to let the links be preferred by an incoming connection.
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