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NULL SPACE APPROACH OF FISHER DISCRIMINANT 

ANALYSIS FOR FACE RECOGNITION 

SUMMARY 
 
A wide variety of systems require reliable personal recognition schemes to either 

confirm or determine the identity of an individual requesting their services. The 

purpose of such schemes is to ensure that the rendered services are accessed only by 

a legitimate user, and not anyone else. Examples of such applications include secure 

access to buildings, computer systems, laptops, cellular phones and ATMs. 

Biometric recognition, or simply biometrics, refers to the automatic recognition of 

individuals based on their physiological and/or behavioral characteristics. Face 

recognition from images is a sub-area of the general object recognition problem. 

Identifying an individual from his or her face is one of the most nonintrusive 

modalities in biometrics. It is of particular interest in a wide variety of applications. 

PCA is a techique commonly used in dimension reduction in computer vision and 

particularly in face recognition. PCA techniques, also known as Karhunen-Loeve 

methods, choose a linear projection that reduces the dimensionality while 

maximizing the scatter of all projected samples. The null space of the within-class 

scatter matrix is found to express most discriminative information for the small 

sample size problem (SSSP). The null space-based LDA takes full advantage of the 

null space while the other methods remove the null space. It proves to be optimal in 

performance. From the theoretical analysis, we present the NLDA algorithm and the 

most suitable situation for NLDA. Our method is simpler than all other null space 

approaches, it saves the computational cost and maintains the performance 

simultaneously. Experiments are carried out on different face data sets, different 

facial expression, different class count and different eigenvalue count to demonstrate 

the effectiveness of the proposed methods. 

 
Keywords: Face Recognition, PCA, LDA, Null Space, Eigenface, Fisherface, 

NLDA, DLDA 
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YÜZ TANIMA �Ç�N FISHER D�SKR�M�NANT ANAL�Z�NE 

SIFIR UZAYI YAKLA�IMI 

ÖZET 
 
Günümüzde birçok farklı sistem, insanların kendi servislerine eri�imlerinde kimlik 

onaylamak veya belirlemek için güvenilir kimlik tanıma projelerine ihtiyaç 

duymaktadır. Bu tür projelerdeki asıl amaç sunulan servislere eri�imlerin sadece 

yetkili kullanıcıya verilmesini garanti etmektir. Bu ve buna benzer birkaç uygulama 

binalara, bilgisayar sistemlerine, dizüstü bilgisayarlara, telefonlara, ATM’lere 

güvenli eri�imlerdir. Biometrik tanıma veya sadece biometrik, insanların fiziksel ve 

davranı�sal özelliklerinin otomatik tanınması anlamına gelmektedir. Bu çalı�mada, 

yüz tanıma için Fisher Diskriminant Analizine sıfır uzay yakla�ımı 

gerçekle�tirilmi�tir. Yüz tanıma genel nesne tanıma problemlerinin bir alt alanıdır. 

Herhangi birini yüzünü baz alarak tanımak biometrik içerisinde yanıltılması güç bir 

yöntemdir. PCA ise görüntü i�leme alanında boyut küçültmede sıkça kullanılan bir 

yöntemdir. Aynı zamanda Karhunen-Loeve olarak da bilenen bu metot, boyutları 

küçülten bir lineer izdü�üm seçerek tüm izdü�üm örnekleri arasındaki da�ılımı en 

yüksek dereceye getirir. Sınıfiçi da�ılım matrisinin sıfır uzayı küçük örnek boyutu 

probleminin en diskriminatif bilgisini göstermektedir. Di�er metotlar sıfır uzayını 

kaldırdı�ı halde, sıfır uzay tabanlı Lineer Diskriminant Analizi sıfır uzayının tüm 

avantajlarını kullanmaktadır. Bu yöntem performans için en uygun oldu�unu 

kanıtlamaktadır. Sıfır Uzayı Lineer Diskriminant Analizi algoritması ve bunun için 

en uygun durum çalı�mada gösterilmi�tir. Yöntemimiz di�er bütün sıfır uzayı 

yakla�ımlarından daha basit, i�lemsel maliyet ve performans açısından daha 

uygundur. Deneyler farklı yüz veritabanlarında, farklı yüz ifadeleri kullanılarak, 

farklı sınıf sayısı ve farklı özvektör sayısı baz alınarak gerçekle�tirilmi� ve önerilen 

metotların etkinlikleri ölçülmü�tür. 

 
Anahtar Kelimeler: Yüz tanıma, PCA, LDA, özyüzler, Fisher yüzleri, sıfır uzayı, 
NLDA, DLDA
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1. INTRODUCTION 

In recent years face recognition has received substantial attention from researchers in 

biometrics, pattern recognition, and computer vision communities [1,3,4]. The 

machine learning and computer graphics communities are also increasingly involved 

in face recognition. This common interest among researchers working in diverse 

fields is motivated by our remarkable ability to recognize people and the fact that 

human activity is a primary concern both in everyday life and in cyberspace [5]. 

Besides, there are a large number of commercial, security, and forensic applications 

requiring the use of face recognition technologies. These applications include 

automated crowd surveillance, access control, mugshot identification (e.g., for 

issuing driver licenses), face reconstruction, design of human computer interface 

(HCI), multimedia communication (e.g., generation of synthetic faces), and content-

based image database management. A number of commercial face recognition 

systems have been deployed. 

1.1. Definition of Biometrics 

A concise definition of biometrics is “the automatic recognition of a person using 

distinguishing traits.” A more expansive definition of biometrics is “any 

automatically measurable, robust and distinctive physical characteristic or personal 

trait that can be used to identify an individual or verify the claimed identity of an 

individual.” This definition requires elaboration [2]. 

Measurable means that the characteristic or trait can be easily presented to a sensor, 

located by it, and converted into a quantifiable, digital format [5]. This measurability 

allows for matching to occur in a matter of seconds and makes it an automated 

process. 

The robustness of a biometric refers to the extent to which the characteristic or trait 

is subject to significant changes over time. These changes can occur as a result of 
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age, injury, illness, occupational use, or chemical exposure [4]. A highly robust 

biometric does not change significantly over time while a less robust biometric will 

change. For example, the iris, which changes very little over a person’s lifetime, is 

more robust than one’s voice. 

Distinctiveness is a measure of the variations or differences in the biometric pattern 

among the general population [6]. The higher the degree of distinctiveness, the more 

individual is the identifier. A low degree of distinctiveness indicates a biometric 

pattern found frequently in the general population [8,9]. The iris and the retina have 

higher degrees of distinctiveness than hand or finger geometry. 

Biometrics are used for human recognition which consists of identification and 

verification. The terms differ significantly. With identification, the biometric system 

asks and attempts to answer the question, “Who is X?” In an identification 

application, the biometric device reads a sample and compares that sample against 

every record or template in the database [1]. This type of comparison is called a 

“one-to-many” search (1:N). Depending on how the system is designed, it can make 

a “best” match, or it can score possible matches, ranking them in order of likelihood. 

Identification applications are common when the goal is to identify criminals, 

terrorists, or other “wolves in sheep’s clothing,” particularly through surveillance. 

Verification occurs when the biometric system asks and attempts to answer the 

question, “Is this X?” after the user claims to be X. In a verification application, the 

biometric system requires input from the user, at which time the user claims his 

identity via a password, token, or user name (or any combination of the three). This 

user input points the system to a template in the database [13]. The system also 

requires a biometric sample from the user. It then compares the sample to or against 

the user-defined template. This is called a “one-to-one” search (1:1). The system will 

either find or fail to find a match between the two. Verification is commonly used for 

physical or computer access. 
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1.2. Examples of Biometrics 

Biometric technologies may seem exotic, but their use is becoming increasingly 

common, and in 2001 MIT Technology Review named biometrics as one of the “top 

ten emerging technologies that will change the world.” While this briefing focuses on 

facial recognition, there are many different types of biometrics [11]. Examples 

include: 

Iris Scan 

Iris scanning measures the iris pattern in the colored part of the eye, although the iris 

color has nothing to do with the biometric. Iris patterns are formed randomly. As a 

result, the iris patterns in a person’s left and right eyes are different, and so are the 

iris patterns of identical twins. Iris scanning can be used quickly for both 

identification and verification applications because the iris is highly distinctive and 

robust. 

Retinal Scan 

Retinal scans measure the blood vessel patterns in the back of the eye. The device 

involves a light source shined into the eye of a user who must be standing very still 

within inches of the device. Because users perceive the technology to be somewhat 

intrusive, retinal scanning has not gained popularity; currently retinal scanning 

devices are not commercially available. 

Facial Recognition 

Facial recognition records the spatial geometry of distinguishing features of the face. 

Different vendors use different methods of facial recognition, however, all focus on 

measures of key features of the face. Because a person’s face can be captured by a 

camera from some distance away, facial recognition has a clandestine or covert 

capability (i.e. the subject does not necessarily know he has been observed). For this 

reason, facial recognition has been used in projects to identify card counters or other 

undesirables in casinos, shoplifters in stores, criminals and terrorists in urban areas. 
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Speaker / Voice Recognition 

Voice or speaker recognition uses vocal characteristics to identify individuals using a 

pass-phrase. A telephone or microphone can serve as a sensor, which makes it a 

relatively cheap and easily deployable technology. However, voice recognition can 

be affected by environmental factors such as background noise. This technology has 

been the focus of considerable efforts on the part of the telecommunications industry 

and the U.S. government’s intelligence community, which continue to work on 

improving reliability. 

Fingerprint 

The fingerprint biometric is an automated digital version of the old ink and paper 

method used for more than a century for identification, primarily by law enforcement 

agencies. The biometric device involves users placing their finger on a platen for the 

print to be electronically read. The minutiae are then extracted by the vendor’s 

algorithm, which also makes a fingerprint pattern analysis. Fingerprint biometrics 

currently have three main application arenas: large-scale Automated Finger Imaging 

Systems (AFIS) generally used for law enforcement purposes, fraud prevention in 

entitlement programs, and physical and computer access. 

Hand/Finger Geometry 

Hand or finger geometry is an automated measurement of many dimensions of the 

hand and fingers. Neither of these methods takes actual prints of the palm or fingers. 

Spatial geometry is examined as the user puts his hand on the sensor’s surface and 

uses guiding poles between the fingers to properly place the hand and initiate the 

reading. Finger geometry usually measures two or three fingers. Hand geometry is a 

well-developed technology that has been 

field-tested and is easily accepted by users. Because hand and finger geometry have a 

low degree of distinctiveness, the technology is not well suited for identification 

applications. 

Dynamic Signature Verification 

We have long used a written signature as a means to acknowledge our identity. 

Dynamic signature verification is an automated method of measuring an individual’s 

signature. This technology examines such dynamics as speed, direction, and pressure 
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of writing; the time that the stylus is in and out of contact with the “paper,” the total 

time taken to make the signature; and where the stylus is raised from and lowered 

onto the “paper.” 

Keystroke Dynamics 

Keystroke dynamics is an automated method of examining an individual’s 

keystrokes on a keyboard. This technology examines such dynamics as speed and 

pressure, the total time taken to type particular words, and the time elapsed between 

hitting certain keys. This technology’s algorithms are still being developed to 

improve robustness and distinctiveness. One potentially useful application that may 

emerge is computer access, where this biometric could be used to verify the 

computer user’s identity continuously. 

1.3. Biometrics are used for Authentication 

Authentication may be defined as “providing the right person with the right 

privileges the right access at the right time. In general, there are three approaches to 

authentication. In order of least secure and least convenient to most secure and most 

convenient, they are: 

• Something you have - card, token, key. 

• Something you know – PIN, password. 

• Something you are - a biometric. 

Any combination of these approaches further heightens security. Requiring all three 

for an application provides the highest form of security. 

All three authentication mechanisms have drawbacks, so security experts routinely 

recommend using two separate mechanisms, a process called two-factor 

authentication. But implementing two-factor authentication requires expensive 

hardware and infrastructure changes. Therefore, security has most often been left to 

just a single authentication method. 

Passwords are cheap, but most implementations offer little real security. Managing 

multiple passwords for different systems is a nightmare, requiring users to maintain 

lists of passwords and systems that are inevitably written down because they can't 
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remember them. The short answer, talked about for decades but rarely achieved in 

practice, is the idea of single sign-on. 

Using security tokens or smart cards requires more expense, more infrastructure 

support and specialized hardware. Still, these used to be a lot cheaper than biometric 

devices and, when used with a PIN or password, offer acceptable levels of security, if 

not always convenience. 

Biometric authentication has been widely regarded as the most foolproof - or at least 

the hardest to forge or spoof. Since the early 1980s, systems of identification and 

authentication based on physical characteristics have been available to enterprise IT. 

These biometric systems were slow, intrusive and expensive, but because they were 

mainly used for guarding mainframe access or restricting physical entry to relatively 

few users, they proved workable in some high-security situations. Twenty years later, 

computers are much faster and cheaper than ever. This, plus new, inexpensive 

hardware, has renewed interest in biometrics.  

1.4. A Brief History of Face Recognition  

It has been over a decade since the “Eigenfaces” approach to automatic face 

recognition, and other appearance-based methods, made an impression on the 

computer vision research community and helped spur interest in vision systems being 

used to support biometrics and human-computer interface [1] . Appearance-based 

approaches to recognition complement feature-or shape-based approaches, and a 

practical face recognition system should have elements of both [17]. Eigenfaces is 

not a general approach to recognition, but rather one tool out many to be applied and 

evaluated int the appropriate context. 

It is often observed that the human ability to recognize faces is remarkable [10]. 

Faces are complex visual stimuli, not easily described by simple shapes or patterns; 

yet people have the ability to recognize familiar faces at a glance after years of 

separation. Lest we marvel too much at human performance, it should be noted that 

the inability to recognize a face is sometimes remarkable as well [5,6,9]. Quite often 

we strain to see the resemblance between a picture (e.g., a driver’s license photo) and 

the real person, and sometimes we are greeted in a friendly, familiar manner by 

someone we do not remember ever seeing before [14]. Although face recognition in 

humans may be impressive, it is far from perfect. Yet there is something about the 
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perception of faces that is very fundamental to the human experience. Early in life 

we learn to associate faces with pleasure, fulfillment, and security. As we get older, 

the subtleties of facial expression enhance our explicit communication in myriad 

ways. The face is our primary focus of attention in social intercourse; this can be 

observed in interaction among animals as well as between humans and animals [2]. 

The face, more than any other part of the body, communicates identity, emotion, 

race, and age, and is also quite useful for judging gender, size, and perhaps even 

character.  

The subject of visual processing of human faces has received attention from 

philosophers and scientists such as Aristotle and Darwin for centuries. The ability of 

a person to recognize another person (e.g., a mate, a child, or an enemy) is important 

for many reasons. Recognition is not only visual; it may occur through a variety of 

sensory modalities, including sound, touch, and even smell. For people, however, the 

most reliable and accessible modality for recognition is the sense of sight. Using 

vision, a person may be recognized by one’s face, but also by one’s clothing, 

hairstyle, gait, silhouette, hands, etc. People often distinguish animals not by their 

faces but by  characteristic markings on their bodies. Similarly, the human face is not 

the only, and may not even be the primary, visual characteristic used for person 

identification. For  example, in a home or office setting, the person’s face may be 

used merely in verifying identity, after identity has already been established based on 

other factors such as clothing, hairstyle, or a distinctive moustache.  Indeed, the 

identification of humans may be viewed as a Bayesian classification system, with 

prior probabilities on several relevant random variables. For example, a parent is 

predisposed to recognize his child if, immediately prior to contact, he sees a school 

bus drive by and then hears yelling and familiar light footsteps [15]. Nevertheless, 

because faces are so important in human interaction, no other avenue to person 

identification is as compelling as face recognition. 

There has been a good deal of investigation into human face recognition 

performance, seeking to understand and characterize the representations and 

processes involved [18]. Face-specific cells (cells that appear to respond selectively 

to the presence of faces) have been found in monkeys and sheep. Prosopagnosia, the 

specific inability to recognize faces, has been identified and studied in human 

patients. There have been many interesting studies in experimental and 
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developmental psychology that have probed the limits human face recognition, 

suggesting models and constraints on representation and processing. Nevertheless, it 

is still the case that a through understanding of how humans (and animals) represent, 

process, and recognize faces remains a distant goal [20]. Although studies of face 

recognition in physiology, neurology, and psychology provide insight into the 

problem of face recognition, they have yet to provide insight into the problem of face 

recognition, they have yet to provide substantial practical guidance for computer 

vision systems in this area. 

What does it mean to recognize a face? There are several aspects of recognizing 

human identity and processing facial information that make the problem somewhat 

ill-defined. As mentioned above, recognition of a person’s identity is not necessarily 

(and perhaps rarely) a function of viewing the person’s face in isolation. In addition, 

face recognition is closely related to face (and head and body) detection, face 

tracking, and facial expression analysis. Figure 1.a, b, c  shows a few typical 

engineering approaches to the overall problem. In the first example, a face is initially 

detected, then recognized. In the second example, detection and recognition are 

performed in tandem; detection is merely a successful recognition. In the third 

example, facial feature tracking is performed and expression analysis occurs before 

attempting to recognize the normalized (expressionless) face. There are, of course, 

many additional variations possible [8]. 

Just as the human task of face recognition is neither clearly defined nor clearly 

differentiated from related tasks, automatic face recognition by computers is not a 

single defined problem. Face recognition systems may be useful in several contexts, 

for example: 

- Given a database of standard face images (e.g., criminal mug shots), 

determine whether or not a new mug shot is of one of the people in the 

database. 

- In the same situation, determine possible identity when the new image 

originates from a completely different source (e.g., a surveillance camera at a 

bank), with different (and probably unknown) imaging conditions. 

- Identify the new computer user as one of the registered users in order to allow 

login access. 
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- Determine that a face is present in an image, at a particular location and scale, 

in order to correctly color balance the image, or to compress the image 

properly. 

“Face recognition” and “face identification” describe the same task. That is, given an 

image of a human face, classify that face as one of the individuals whose identity is 

already known by the system, or perhaps as an unknown face. “ Face detection” 

means detecting the presence of any face, regardless of identity. “Face location” is 

specifying the 2D position (and perhaps orientation) of a face in the image [14]. 

“Face tracking” is updating the (2D or 3D) location of the face. “Facial feature 

tracking” is updating the (2D or 3D) locations, and perhaps the parameterized 

descriptions, of individual facial features. “Face pose estimation” is determining the 

position and orientation of a face. “Facial expression analysis” is computing 

parametric, and perhaps also symbolic, descriptions of facial deformations. 

 

 
Figure 1.1: Typical approaches to face recognition 
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1.5. Face Recognition Also Provides a Surveillance Capability 

Although the concept of recognizing someone from facial features is intuitive, facial 

recognition, as a biometric, makes human recognition a more automated, 

computerized process [7,8]. What sets apart facial recognition from other biometrics 

is that it can be used for surveillance purposes. For example, public safety authorities 

want to locate certain individuals such as wanted criminals, suspected terrorists, and 

missing children. Facial recognition may have the potential to help the authorities 

with this mission. 

Facial recognition offers several advantages. The system captures faces of people in 

public areas, which minimizes legal concerns for reasons explained below. 

Moreover, since faces can be captured from some distance away, facial recognition 

can be done without any physical contact. This feature also gives facial recognition a 

clandestine or covert capability. 

For any biometric system to operate, it must have records in its database against 

which it can search for matches [12]. Facial recognition is able to leverage existing 

databases in many cases. For example, there are high quality mugshots of criminals 

readily available to law enforcement. Similarly, facial recognition is often able to 

leverage existing surveillance systems such as surveillance cameras or closed circuit 

television (CCTV). 

1.6. Five Steps to Face Recognition 

As a biometric, facial recognition is a form of computer vision that uses faces to 

attempt to identify a person or verify a person’s claimed identity. Regardless of 

specific method used, facial recognition is accomplished in a five step process. 

• First, an image of the face is acquired. This acquisition can be accomplished 

by digitally scanning an existing photograph or by using an electro-optical 

camera to acquire a live picture of a subject. As video is a rapid sequence of 

individual still images, it can also be used as a source of facial images. 

• Second, software is employed to detect the location of any faces in the 

acquired image. This task is difficult, and often generalized patterns of what a 

face “looks like” (two eyes and a mouth set in an oval shape) are employed to 

pick out the faces. 
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• Once the facial detection software has targeted a face, it can be analyzed. As 

noted in slide three, facial recognition analyzes the spatial geometry of 

distinguishing features of the face. Different vendors use different methods to 

extract the identifying features of a face. Thus, specific details on the methods 

are proprietary. The most popular method is called Principle Components 

Analysis (PCA), which is commonly referred to as the eigenface method. 

PCA has also been combined with neural networks and local feature analysis 

in efforts to enhance its performance. Template generation is the result of the 

feature extraction process. A template is a reduced set of data that represents 

the unique features of an enrollee’s face. It is important to note that because 

the systems use spatial geometry of distinguishing facial features, they do not 

use hairstyle, facial hair, or other similar factors. 

• The fourth step is to compare the template generated in step three with those 

in a database of known faces. In an identification application, this process 

yields scores that indicate how closely the generated template matches each 

of those in the database. In a verification application, the generated template 

is only compared with one template in the database – that of the claimed 

identity. 

• The final step is determining whether any scores produced in step four are 

high enough to declare a match. The rules governing the declaration of a 

match are often configurable by the end user, so that he or she can determine 

how the facial recognition system should behave based on security and 

operational considerations. 

1.7. Human Difficulties with Face Recognition Surveillance 

People are generally very good at recognizing faces that they know. However, people 

experience difficulties when they perform facial recognition in a surveillance or 

watch post scenario [9,10]. Several factors account for these difficulties: most 

notably, humans have a hard time recognizing unfamiliar faces. Combined with 

relatively short attention spans, it is difficult for humans to pick out unfamiliar faces. 

Considerable evidence supports this claim. For example, in a British study, trained 

supermarket cashiers were tested on their ability to screen shoppers using credit 

cards that included a photograph of the card owner [16]. Each shopper was issued 
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four cards: one with a recent picture of the shopper, one that included minor 

modifications to the shopper’s hairstyle, facial hair or accessories (e.g., glasses, hat), 

another card with a photograph of a person similar in appearance to the shopper, and 

the last card with a photograph of a person who was only of the same sex and race as 

the shopper. When the various cards were presented to the checkout clerks, more 

than half of the fraudulent cards were accepted. The breakdown was as follows: 34 

percent of the cards that did not look like the shopper were accepted, 14 percent of 

the cards where the appearance had been altered were accepted, and 7 percent of the 

unchanged cards were rejected by the clerks. 

In addition to unfamiliar face recognition problems, the ability of human beings to 

detect critical signals drops rapidly from the start of a task, and stabilizes at a 

significantly lower level within 25 to 35 minutes. Thus the ability of people to focus 

their attention drops significantly after only half an hour. 

1.8. Technical Difficulties with Face Recognition Surveillance 

Machines also experience difficulties when they perform facial recognition in a 

surveillance or watch post scenario. Performing face recognition processes with 

relatively high fidelity and at long distances remains technically challenging for 

automated systems [17]. At the most basic level, detecting whether a face is present 

in a given electronic photograph is a difficult technical problem. It is noted that 

subjects should ideally be photographed under tightly controlled conditions. For 

example, each subject should look directly into the camera and fill the area of the 

photo for an automated system to reliably identify the individual or even detect his 

face in the photograph. Thus, while the technology for facial recognition systems 

shows promise, it is not yet considered fully mature. 
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2. PRINCIPAL COMPONENT ANALYSIS (PCA) 

2.1. Introduction 

This chapter is designed to give the reader an understanding of Principal 

Components Analysis (PCA). PCA is a useful statistical technique that has found 

application in fields such as face recognition and image compression, and is a 

common technique for finding patterns in data of high dimension [19,20]. 

Before getting to a description of PCA, this chapter first introduces mathematical 

concepts that will be used in PCA. It covers standard deviation, covariance, 

eigenvectors and eigenvalues [20,21]. This background knowledge is meant to make 

the PCA section very straightforward, but can be skipped if the concepts are already 

familiar.There are examples all the way through this tutorial that are meant to 

illustrate the concepts being discussed. 

2.2. Background Mathematics 

This section will attempt to give some elementary background mathematical skills 

that will be required to understand the process of Principal Components Analysis. 

The topics are covered independently of each other, and examples given. It is less 

important to remember the exact mechanics of a mathematical technique than it is to 

understand the reason why such a technique may be used, and what the result of the 

operation tells us about our data. Not all of these techniques are used in PCA, but the 

ones that are not explicitly required do provide the grounding on which the most 

important techniques are based. 

I have included a section on Statistics, which looks at distribution measurements, or, 

how the data is spread out. The other section is on Matrix Algebra and looks at 

eigenvectors and eigenvalues, important properties of matrices that are fundamental 

to PCA. 
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2.2.1. Statistics 

The entire subject of statistics is based around the idea that you have this big set of 

data, and you want to analyse that set in terms of the relationships between the 

individual points in that data set. I am going to look at a few of the measures you can 

do on a set of data, and what they tell you about the data itself. 

2.2.1.1. Standart Deviation 

To understand standard deviation, we need a data set. Statisticians are usually 

concerned with taking a sample of a population. To use election polls as an example, 

the population is all the people in the country, whereas a sample is a subset of the 

population that the statisticians measure. The great thing about statistics is that by 

only measuring (in this case by doing a phone survey or similar) a sample of the 

population, you can work out what is most likely to be the measurement if you used 

the entire population. 

In this statistics section, I am going to assume that our data sets are samples of some 

bigger population. There is a reference later in this section pointing to more 

information about samples and populations. 

Here’s an example set: 

X=[1  2  4  6  12  15  25  45  68  67  65  98] 

I could simply use the symbol X to refer to this entire set of numbers. If I want to 

refer to an individual number in this data set, I will use subscripts on the symbol X to 

indicate a specific number. Eg. X3 refers to the 3rd number in X, namely the number 

4. Note that X1 is the first number in the sequence, not X0 like you may see in some 

textbooks. Also, the symbol n will be used to refer to the number of elements in the 

set X. 

There are a number of things that we can calculate about a data set. For example, we 

can calculate the mean of the sample. I assume that the reader understands what the 

mean of a sample is, and will only give the formula: 

n

Xi
X

n

i
�

== 1               (2.1) 
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Notice the symbol X (said “X bar”) to indicate the mean of the set X. All this 

formula says is “Add up all the numbers and then divide by how many there are”. 

Unfortunately, the mean doesn’t tell us a lot about the data except for a sort of 

middle point. For example, these two data sets have exactly the same mean (10), but 

are obviously quite different: 

[0  8  12  20]  and  [8  9  11  12] 

So what is different about these two sets? It is the spread of the data that is different. 

The Standard Deviation (SD) of a data set is a measure of how spread out the data is. 

How do we calculate it? The English definition of the SD is: “The average distance 

from the mean of the data set to a point”. The way to calculate it is to compute the 

squares of the distance from each data point to the mean of the set, add them all up, 

divide by n-1, and take the positive square root. As a formula: 

  s=
)1(

)(
1

2

−

−�
=

n

XXi
n

i                (2.2) 

Where “s” is the usual symbol for standard deviation of a sample. I hear you asking 

“Why are you using  (n-1) and not n?”. Well, the answer is a bit complicated, but in 

general, if your data set is a sample data set, ie. you have taken a subset of the real-

world (like surveying 500 people about the election) then you must use (n-1) because 

it turns out that this gives you an answer that is closer to the standard deviation that 

would result if you had used the entire population, than if you’d used “n” . If, 

however, you are not calculating the standard deviation for a sample, but for an 

entire population, then you should divide by “n” instead of “(n-1)”. 



 16 

Table 2.1: Calculation of Standart Deviation Set 1 

X (X- X ) (X- X )2 

0 -10 100 

8 -2 4 

12 2 4 

20 10 100 

Total  208 

Divide by (n-1)  69,333 

Square Root  8,3266 

 

Table 2.2: Calculation of Standart Deviation Set 2 

Xi (Xi- X ) (Xi- X )2 

8 -2 4 

9 -1 1 

11 1 1 

12 2 4 

Total  10 

Divide by (n-1)  3,333 

Square Root  1,8257 

So, for our two data sets above, the calculations of standard deviation are in Table 

2.1. And so, as expected, the first set has a much larger standard deviation due to the 

fact that the data is much more spread out from the mean. Just as another example, 

the data set: 

[10  10  10  10] 

also has a mean of 10, but its standard deviation is 0, because all the numbers are the 

same. None of them deviate from the mean. 

2.2.1.2. Variance 

Variance is another measure of the spread of data in a data set. In fact it is almost 

identical to the standard deviation. The formula is this: 

s2  =  
)1(

)( 2

1

−

−�
=

n

XX
n

i
i

             (2.3) 
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You will notice that this is simply the standard deviation squared, in both the symbol 

(s2) and the formula (there is no square root in the formula for variance). s2 is the 

usual symbol for variance of a sample. Both these measurements are measures of the 

spread of the data. Standard deviation is the most common measure, but variance is 

also used. The reason why I have introduced variance in addition to standard 

deviation is to provide a solid platform from which the next section, covariance, can 

launch from. 

2.2.1.3. Covariance 

The last two measures we have looked at are purely 1-dimensional. Data sets like this 

could be: heights of all the people in the room, marks for the last COMP101 exam 

etc. However many data sets have more than one dimension, and the aim of the 

statistical analysis of these data sets is usually to see if there is any relationship 

between the dimensions. For example, we might have as our data set both the height 

of all the students in a class, and the mark they received for that paper. We could 

then perform statistical analysis to see if the height of a student has any effect on 

their mark. 

Standard deviation and variance only operate on 1 dimension, so that you could only 

calculate the standard deviation for each dimension of the data set independently of 

the other dimensions. However, it is useful to have a similar measure to find out how 

much the dimensions vary from the mean with respect to each other. 

Covariance is such a measure. Covariance is always measured between 2 dimensions. 

If you calculate the covariance between one dimension and itself, you get the 

variance. So, if you had a 3-dimensional data set (x, y, z), then you could measure 

the covariance between the x and y dimensions, the x and z dimensions, and the y 

and z dimensions. Measuring the covariance between x and x, or y and y, or z and z 

would give you the variance of the x, y and z dimensions respectively. 

The formula for covariance is very similar to the formula for variance. The formula 

for variance could also be written like this: 

Var (X) = 
)1(

))((
1

−

−−�
=

n

XXXX
n

i
ii

            (2.4) 
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where I have simply expanded the square term to show both parts. So given that 

knowledge, here is the formula for covariance: 

Cov (X,Y) = 
)1(

))((
1

−

−−�
=

n

YYXX
n

i
ii

            (2.5) 

It is exactly the same except that in the second set of brackets, the X’s are replaced 

by Y’s. This says, in English, “For each data item, multiply the difference between 

the x value and the mean of x , by the the difference between the y value and the 

mean of y . Add all these up, and divide by (n-1)”. 

How does this work? Lets use some example data. Imagine we have gone into the 

world and collected some 2-dimensional data, say, we have asked a bunch of 

students how many hours in total that they spent studying COSC241, and the mark 

that they received. So we have two dimensions, the first is the H dimension, the 

hours studied, and the second is the M dimension, the mark received. The calculation 

of cov(H,M), the covariance between the Hours of study done and the Mark received. 

So what does it tell us? The exact value is not as important as it’s sign (ie. positive or 

negative). If the value is positive, as it is here, then that indicates that both 

dimensions increase together, meaning that, in general, as the number of hours of 

study increased, so did the final mark. 

If the value is negative, then as one dimension increases, the other decreases. If we 

had ended up with a negative covariance here, then that would have said the 

opposite, that as the number of hours of study increased the final mark decreased. In 

the last case, if the covariance is zero, it indicates that the two dimensions are 

independent of each other. 

The result that mark given increases as the number of hours studied increases can be 

easily seen by drawing a graph of the data. However, the luxury of being able to 

visualize data is only available at 2 and 3 dimensions. Since the covariance value can 

be calculated between any 2 dimensions in a data set, this technique is often used to 

find relationships between dimensions in high-dimensional data sets where 

visualisation is difficult. 
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You might ask “is cov(X,Y) equal to cov(Y,X)”? Well, a quick look at the formula for 

covariance tells us that yes, they are exactly the same since the only difference 

between cov(X,Y)  and cov(Y,X) is that (Xi- X )(Yi-Y ) is replaced by (Yi-Y )(Xi- X ). 

And since multiplication is commutative, which means that it doesn’t matter which 

way around I multiply two numbers, I always get the same number, these two 

equations give the same answer. 

2.2.1.4. The Covariance Matrix 

Recall that covariance is always measured between 2 dimensions. If we have a data 

set with more than 2 dimensions, there is more than one covariance measurement 

that can be calculated. For example, from a 3 dimensional data set (dimensions x, y, 

z) you could calculate cov(x,y), cov(x,z) and  cov(y,z). In fact, for an n-dimensional 

data set, you can calculate   
2*)2(

!
−n

n
  different covariance values. 

Table 2.3: Two dimensional data set and covariance calculation 

 Hours (H) Mark (M) (Hi- H ) (Mi- M ) (Hi- H )(Mi- M ) 
  9 39   -4.92 -23.42 115.23 
15 56 1.08   -6.42    -6.93 
25 93   11.08  30.58 338.83 
14 61  0.08   -1.42    -0.11 
10 50 -3.92 -12.42    48.69 
18 75  4.08  12.58     51.33 
  0 32  -13.92   -30.42   423.45 
16 85   2.08   22.58     46.97 
  5 42 -8.92 -20.42    182.15 
19 70   5.08     7.58     38.51 
16 66   2.08     3.58       7.45 

Data 

20 80   6.08    17.58    106.89 
Totals 167      749       1149.89 

Averages       13.92       62.42          104.54 
 
A useful way to get all the possible covariance values between all the different 

dimensions is to calculate them all and put them in a matrix. I assume in this tutorial 

that you are familiar with matrices, and how they can be defined. So, the definition 

for the covariance matrix for a set of data with n dimensions is: 

Cnxn = (ci,j , ci,j  = Cov ( Dimi,  Dimj ) ),           (2.6) 
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Where Cnxn  is a matrix with n rows and n coloumns, and Dimx is the xth dimension. 

All that this ugly looking formula says is that if you have an n-dimensional data set, 

then the matrix has n rows and coloumns (so is square) and each entry in the matrix 

is the result of calculating the covariancebetween two separate dimensions. Eg. the 

entry on row 2, coloumn 3, is the covariance value calculated between the 2nd 

dimension and the 3rd dimension. 

An example. We’ll make up the covariance matrix for an imaginary 3 dimensional 

data set, using the usual dimensions x, y and z. Then, the covariance matrix has 3 

rows and 3 columns, and the values are this: 

 C =  
�
�
�

�

�

�
�
�

�

�

z)cov(z,       y)cov(z,      ),cov(
z)cov(y,       y)cov(y,     ),cov(
z)cov(x,       y)cov(x,     ),cov(

xz

xy

xx

              (2.7) 

Some points to note: Down the main diagonal, you see that the covariance value is 

between one of the dimensions and itself. These are the variances for that dimension. 

The other point is that since cov(a,b) = cov(b,a), the matrix is symmetrical about the 

main diagonal.   

2.3.2. Matrix Algebra 

This section serves to provide a background for the matrix algebra required in PCA. 

Specifically I will be looking at eigenvectors and eigenvalues of a given matrix. 

Again, I assume a basic knowledge of matrices. 
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Figure 2.1: Example of one non-eigenvector and one eigenvector 
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Figure 2.2: Example of how a scaled eigenvector is still and eigenvector 
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2.3.2.1. Eigenvectors 

 
As you know, you can multiply two matrices together, provided they are compatible 

sizes. Eigenvectors are a special case of this. Consider the two multiplications 

between a matrix and a vector in Figure 2.1. 

In the first example, the resulting vector is not an integer multiple of the original  

vector, whereas in the second example, the example is exactly 4 times the vector we 

began with. Why is this? Well, the vector is a vector in 2 dimensional space. The 

vector ��
�

�
��
�

�

 2 
 3 

 (from the second example multiplication) represents an arrow pointing 

from the origin, (0,0), to the point (3,2). The other matrix, the square one, can be 

thought of as a transformation matrix. If you multiply this matrix on the left of a 

vector, the answer is another vector that is transformed from it’s original position. 

It is the nature of the transformation that the eigenvectors arise from. Imagine a 

transformation matrix that, when multiplied on the left, reflected vectors in the line y 

= x. Then you can see that if there were a vector that lay on the line y = x, it’s 

reflection it itself. This vector (and all multiples of it, because it wouldn’t matter how 

long the vector was), would be an eigenvector of that transformation matrix. 

What properties do these eigenvectors have? You should first know that eigenvectors 

can only be found for square matrices. And, not every square matrix has 

eigenvectors. And, given an nxn matrix that does have eigenvectors, there are n of 

them. Given 3x3 matrix, there are 3 eigenvectors. 

Another property of eigenvectors is that even if I scale the vector by some amount 

before I multiply it, I still get the same multiple of it as a result. This is because if 

you scale a vector by some amount, all you are doing is making it longer, not 

changing it’s direction. Lastly, all the eigenvectors of a matrix are perpendicular, ie. 

at right angles to each other, no matter how many dimensions you have. By the way, 

another word for perpendicular, in maths talk, is orthogonal. This is important 

because it means that you can express the data in terms of these perpendicular 

eigenvectors, instead of expressing them in terms of the x and y axes. We will be 

doing this later in the section on PCA. 

Another important thing to know is that when mathematicians find eigenvectors, they 

like to find the eigenvectors whose length is exactly one. This is because, as you 
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know, the length of a vector doesn’t affect whether it’s an eigenvector or not, 

whereas the direction does. So, in order to keep eigenvectors standard, whenever we 

find an eigenvector we usually scale it to make it have a length of 1, so that all 

eigenvectors have the same length. Here’s a demonstration from our example above. 

��
�

�
��
�

�

 2 
 3 

 

is an eigenvector, and the length of that vector is 

13)23( 22 =+  

so we divide the original vector by this much to make it have a length of 1. 
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How does one go about finding these mystical eigenvectors? Unfortunately, it’s only 

easy(ish) if you have a rather small matrix, like no bigger than about 3x3. After that, 

the usual way to find the eigenvectors is by some complicated iterative method 

which is beyond the scope of this tutorial (and this author). If you ever need to find 

the eigenvectors of a matrix in a program, just find a maths library that does it all for 

you. A useful maths package, called newmat, is available. 

2.3.2.2.  Eigenvalues 

Eigenvalues are closely related to eigenvectors, in fact, we saw an eigenvalue in 

Figure 2.1. Notice how, in both those examples, the amount by which the original 

vector was scaled after multiplication by the square matrix was the same? In that 

example, the value was 4. 4 is the eigenvalue associated with that eigenvector. No 

matter what multiple of the eigenvector we took before we multiplied it by the square 

matrix, we would always get 4 times the scaled vector as our result (as in Figure 2.2) 

So you can see that eigenvectors and eigenvalues always come in pairs. When you 

get a fancy programming library to calculate your eigenvectors for you, you usually 

get the eigenvalues as well. 
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2.4. Principal Component Analysis 

Finally we come to Principal Components Analysis (PCA). What is it? It is a way of 

identifying patterns in data, and expressing the data in such a way as to highlight 

their similarities and differences. Since patterns in data can be hard to find in data of 

high dimension, where the luxury of graphical representation is not available, PCA is 

a powerful tool for analysing data. 

The other main advantage of PCA is that once you have found these patterns in the 

data, and you compress the data, ie. by reducing the number of dimensions, without 

much loss of information. This technique used in image compression, as we will see 

in a later section. 

This chapter will take you through the steps you needed to perform a Principal 

Components Analysis on a set of data. I am not going to describe exactly why the 

technique works, but I will try to provide an explanation of what is happening at each 

point so that you can make informed decisions when you try to use this technique 

yourself. 

2.4.1. Method 

Step 1. Get some data 

In my simple example, I am going to use my own made-up data set. It’s only got 2 

dimensions, and the reason why I have chosen this is so that I can provide plots of 

the data to show what the PCA analysis is doing at each step. 

The data I have used is found in Figure 2.3, along with a plot of that data. 
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Table 2.4: Data and Data Adjust 

 x y  x y 
2.5 2.4 0.69 0.49 
0.5 0.7 -1.31 -1.21 
2.2 2.9 0.39 0.99 
1.9 2.2 0.09 0.29 
3.1 3.0 1.29 1.09 
2.3 2.7 0.49 0.79 
2 1.6 0.19 -0.31 
1 1.1 -0.81 -0.81 

1.5 1.6 -0.31 -0.31 

Data 

1.1 0.9 

Data Adjust 

-0.71 -1.01 
 

 
Figure 2.3: PCA example data, original data on the left, data with 

the means subtracted on the right, and a plot of the data 

Step 2: Substract the mean 

For PCA to work properly, you have to subtract the mean from each of the data 

dimensions. The mean subtracted is the average across each dimension. So, all the x 

values have x  (the mean of the x values of all the data points) subtracted, and all the 

y values have y  subtracted from them. This produces a data set whose mean is zero. 
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Step 3: Calculate the covariance matrix 

This is done in exactly the same way as was discussed before. Since the data is 2 

dimensional, the covariance matrix will be 2x2. There are no surprises here, so I will 

just give you the result: 

cov = ��
�

�
��
�

�

.716555556       .615444444
.615444444       616555556 .

 

So, since the non-diagonal elements in this covariance matrix are positive, we should  

expect that both the x and y variable increase together. 

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix 

Since the covariance matrix is square, we can calculate the eigenvectors and 

eigenvalues for this matrix. These are rather important, as they tell us useful 

information about our data. I will show you why soon. In the meantime, here are the 

eigenvectors and eigenvalues: 

eigenvalues = ��
�

�
��
�

�

1.28402771   
 0490833989 .  

 

eigenvectors = ��
�

�
��
�

�

.735178656-    .677873399    
  .677873399-    .735178656-  

 

It is important to notice that these eigenvectors are both unit eigenvectors ie. their 

lengths are both 1. This is very important for PCA, but luckily, most maths packages, 

when asked for eigenvectors, will give you unit eigenvectors. 

So what do they mean? If you look at the plot of the data in Figure 2.4 then you can 

see  how the data has quite a strong pattern. As expected from the covariance matrix, 

they two variables do indeed increase together. On top of the data I have plotted both 

the eigenvectors as well. They appear as diagonal dotted lines on the plot. As stated 

in the eigenvector section, they are perpendicular to each other. But, more 

importantly, they provide us with information about the patterns in the data. See how 

one of the eigenvectors goes through the middle of the points, like drawing a line of 

best fit? That eigenvector is showing us how these two data sets are related along that 

line. The second eigenvector gives us the other, less important, pattern in the data, 
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that all the points follow the main line, but are off to the side of the main line by 

some amount. 

So, by this process of taking the eigenvectors of the covariance matrix, we have been 

able to extract lines that characterise the data. The rest of the steps involve 

transforming the data so that it is expressed in terms of them lines. 

 
Figure 2.4: A plot of the normalized data (mean subtracted) with the  

eigenvectors of the covariance matrix overlayed on top. 

Step 5: Choosing components and forming a feature vector 

Here is where the notion of data compression and reduced dimensionality comes into 

it. If you look at the eigenvectors and eigenvalues from the previous section, you will 

notice that the  eigenvalues are quite different values. In fact, it turns out that the 

eigenvector with the highest eigenvalue is the principle component of the data set. In 

our example, the eigenvector with the larges eigenvalue was the one that pointed 

down the middle of the data. It is the most significant relationship between the data 

dimensions. 

In general, once eigenvectors are found from the covariance matrix, the next step is 

to order them by eigenvalue, highest to lowest. This gives you the components in 

order of significance. Now, if you like, you can decide to ignore the components of 

lesser significance. You do lose some information, but if the eigenvalues are small, 

you don’t lose much. If you leave out some components, the final data set will have 

less dimensions than the original. To be precise, if you originally have n dimensions 



 27 

in your data, and so you calculate n eigenvectors and eigenvalues, and then you 

choose only the first p eigenvectors, then the final data set has only p dimensions. 

What needs to be done now is you need to form a feature vector, which is just a 

fancy name for a matrix of vectors. This is constructed by taking the eigenvectors 

that you want to keep from the list of eigenvectors, and forming a matrix with these 

eigenvectors in the columns. 

FeatureVector = (eig1 eig2 eig3 ……….eign)           (2.8) 

Given our example set of data, and the fact that we have 2 eigenvectors, we have two 

choices. We can either form a feature vector with both of the eigenvectors: 

��
�

�
��
�

�

    .677873399              .735178656-   
    .735178656-            .677873399-   

 

or, we can choose to leave out the smaller, less significant component and only have 

a single column: 

��
�

�
��
�

�

   .735178656-   
   .677873399-   

 

We shall see the result of each of these in the next section. 

Step 5: Deriving the new data set 

This the final step in PCA, and is also the easiest. Once we have chosen the 

components (eigenvectors) that we wish to keep in our data and formed a feature 

vector, we simply take the transpose of the vector and multiply it on the left of the 

original data set, transposed. 

FinalData = RowFeatureVector x RowDataAdjust           (2.9) 

where RowFeatureVector  is the matrix with the eigenvectors in the columns 

transposed so that the eigenvectors are now in the rows, with the most significant 

eigenvector at the top, and RowDataAdjust  is the mean-adjusted data transposed, ie. 

the data items are in each column, with each row holding a separate dimension. I’m 

sorry if this sudden transpose of all our data  confuses you, but the equations from 

here on are easier if we take the transpose of the feature vector and the data first, 
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rather that having a little T symbol above their names from now on. FinalData is the 

final data set, with data items in columns, and dimensions along rows. 

What will this give us? It will give us the original data solely in terms of the vectors 

we chose. Our original data set had two axes, x and y , so our data was in terms of 

them. It is possible to express data in terms of any two axes that you like. If these 

axes are perpendicular, then the expression is the most efficient. This was why it was 

important that eigenvectors are always perpendicular to each other. We have changed 

our data from being in terms of the axes x and y, and now they are in terms of our 2 

eigenvectors. In the case of when the new data set has reduced dimensionality, ie. we 

have left some of the eigenvectors out, the new data is only in terms of the vectors 

that we decided to keep. 

To show this on our data, I have done the final transformation with each of the 

possible feature vectors. I have taken the transpose of the result in each case to bring 

the data back to the nice table-like format. I have also plotted the final points to show 

how they relate to the components. 

In the case of keeping both eigenvectors for the transformation, we get the data and 

the plot found in Figure 2.5. This plot is basically the original data, rotated so that the 

eigenvectors are the axes. This is understandable since we have lost no information 

in this decomposition. 

The other transformation we can make is by taking only the eigenvector with the 

largest eigenvalue. The table of data resulting from that is found in Table 2.6. As 

expected, it only has a single dimension. If you compare this data set with the one 

resulting from using both eigenvectors, you will notice that this data set is exactly the 

first column of the other. So, if you were to plot this data, it would be 1 dimensional, 

and would be points on a line in exactly the x positions of the points in the plot in 

Figure 2.5. We have effectively thrown away the whole other axis, which is the other 

eigenvector. 

So what have we done here? Basically we have transformed our data so that is 

expressed in terms of the patterns between them, where the patterns are the lines that 

most closely describe the relationships between the data. This is helpful because we 

have now classified our data point as a combination of the contributions from each of 

those lines. Initially we had the simple x and y axes. This is fine, but the x and y 
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values of each data point don’t really tell us exactly how that point relates to the rest 

of the data. Now, the values of the data points tell us exactly where (ie. above/below) 

the trend lines the data point sits. In the case of the transformation using both 

eigenvectors, we have simply altered the data so that it is in terms of those 

eigenvectors instead of the usual axes. But the single-eigenvector decomposition has 

removed the contribution due to the smaller eigenvector and left us with data that is 

only in terms of the other. 

2.4.1.1. Getting the old data back 

Wanting to get the original data back is obviously of great concern if you are using 

the PCA transform for data compression (an example of which to will see in the next 

section). 

Table 2.5: Transformed Data 

 X Y 
-.827970186 -.175115307 
1.77758033 .142857227 
-.992197494 .384374989 
-.274210416 .130417207 
-1.67580142 -.209498461 
-.912949103 .175282444 
.0991094375 -.349824698 
1.14457216 .0464172582 
.438046137 .0177646297 

 
 
 
 
 

Transformed Data 

1.22382056 -.162675287 
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Figure 2.5: The table of data by applying the PCA analysis using  

both eigenvectors, and a plot of the new data points. 

 
Table 2.6: The data after transforming using only the  

most significant eigenvector 

X 

-.827970186 
1.77758033 
-.992197494 
-.274210416 
-1.67580142 
-.912949103 
.0991094375 
1.14457216 
.438046137 
1.22382056 

 

So, how do we get the original data back? Before we do that, remember that only if 

we took all the eigenvectors in our transformation will we get exactly the original 

data back. If we have reduced the number of eigenvectors in the final transformation, 

then the retrieved data has lost some information. 

Recall that the final transform is this: 
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FinalData = RowFeatureVector x RowDataAdjust         (2.10) 

which can be turned around so that, to get the original data back, 

RowDataAdjust = RowFeatureVector-1 x FinalData         (2.11) 

where RowFeatureVector-1  is the inverse of RowFeatureVector . However, when we 

take all the eigenvectors in our feature vector, it turns out that the inverse of our 

feature vector is actually equal to the transpose of our feature vector. This is only 

true because the elements of the matrix are all the unit eigenvectors of our data set. 

This makes the return trip to our data easier, because the equation becomes 

RowDataAdjust = RowFeatureVectorT x FinalData         (2.12) 

But, to get the actual original data back, we need to add on the mean of that original 

data (remember we subtracted it right at the start). So, for completeness, 

    RowOriginalData = (RowFeatureVectorT x FinalData) + OriginalMean       (2.13) 

This formula also applies to when you do not have all the eigenvectors in the feature 

vector. So even when you leave out some eigenvectors, the above equation still 

makes the correct transform. 

 
Figure 2.6: The reconstruction from the data that 

was derived using only a single eigenvector 
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I will not perform the data re-creation using the complete feature vector, because the 

result is exactly the data we started with. However, I will do it with the reduced 

feature vector to show you how information has been lost. Figure 2.6 show this plot. 

Compare it to the original data plot in Figure 2.3 and you will notice how, while the 

variation along the principle eigenvector (see Figure 2.4 for the eigenvector 

overlayed on top of the mean-adjusted data) has been kept, the variation along the 

other component (the other eigenvector that we left out) has gone. 
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3. LINEAR DISCRIMINANT ANALYSIS 

3.1. Introduction 

There are many possible techniques for classification of data. Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) are two commonly used 

techniques for data classification and dimensionality reduction. Linear Discriminant 

Analysis easily handles the case where the within-class frequencies are unequal and 

their performances has been examined on randomly generated test data. This method 

maximizes the ratio of between-class variance to the within-class variance in any 

particular data set thereby guaranteeing maximal separability. The prime difference 

between LDA and PCA is that PCA does more of feature classification and LDA 

does data classification. In PCA, the shape and location of the original data sets 

changes when transformed to a different space whereas LDA doesn’t change the 

location but only tries to provide more class separability and draw a decision region 

between the given classes. This method also helps to better understand the 

distribution of the feature data. 

Linear Discriminant Analysis (LDA) has been successfully applied to face 

recognition. The objective of LDA is to seek a linear projection from the image space 

onto a low dimensional space by maximizing the between-class scatter and 

minimizing the within-class scatter simultaneously [16]. Belhumeur compared 

Fisherface with Eigenface on the HARVARD and YALE face databases, and showed 

that LDA was better than PCA, especially under illumination variation. LDA was 

also evaluated favorably under the FERET testing framework. 

In many practical face recognition tasks, there are not enough samples to make the 

within-class scatter matrix Sw nonsingular, this is called a small sample size problem 

[17,18,19]. Different solutions have been proposed to deal with it in using LDA for 

face recognition. 
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The most widely used methods (Fisherface) applies PCA firstly to reduce the 

dimension of the samples to an intermediate dimension, which must be guaranteed 

not more than the rank of Sw so as to obtain a full-rank within-class scatter matrix 

[6,15,17]. Then standard LDA is used to extract and represent facial features. All 

these methods above do not consider the importance of null space of the within-class 

scatter matrix, and remove the null space to make the resulting within-class scatter 

full-rank. 

Yang et al. proposed a new algorithm which incorporates the concept of null space. It 

first removes the null space of the between-class scatter matrix Sb and seeks a 

projection to minimize the within-class scatter (called Direct LDA / DLDA) [7,19]. 

Because the rank of Sb is smaller than that of Sw, removing the null space of Sb may 

lose part of or the entire null space of Sw, which is very likely to be full-rank after the 

removing operation. 

Chen et al. proposed a more straightforward method that makes use of the null space 

of Sw. The basic idea is to project all the samples onto the null space of Sw, where the 

resulting within-class scatter is zero, and then maximize the between-class scatter 

[3,5,11]. This method involves computing eigenvalue in a very large dimension since 

Sw is an n×n matrix. To avoid the great computational cost, pixel grouping method is 

used in advance to artificially extract features and to reduce the dimension of the 

original samples. 

Huang et al. introduced a more efficient null space approach. The basic notion 

behind the algorithm is that the null space of Sw is particularly useful in 

discriminating ability, whereas, that of Sb is useless [8,12,13]. They proved that the 

null space of the total scatter matrix St is the common null space of both Sw and Sb. 

Hence the algorithm firstly removes the null space of St and projects the samples 

onto the null space of Sw . Then it removes the null space of the between-class scatter 

in the subspace to get the optimal discriminant vectors. 

Although null space-based LDA seems to be more efficient than other linear 

subspace analysis methods for face recognition, it is still a linear technique in nature 

[6]. Hence it is inadequate to describe the complexity of real face images because of 

illumination, facial expression and pose variations. The kernel technique has been 

extensively demonstrated to be capable of efficiently representing complex nonlinear 
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relations of the input data. Kernel Fisher Discriminant Analysis  (KFDA) is an 

efficient nonlinear subspace analysis method, which combines the kernel technique 

with LDA [15]. After the input data are mapped into an implicit feature space, LDA 

is performed to yield nonlinear discriminating features of the input data. 

In this paper, some elements of state-of-the-art null space techniques will be looked 

at in more depth and our null space approach is proposed to save the computational 

cost and maintain the performance simultaneously. Furthermore, we concentrate on 

the advantages of both the null space approach and the kernel technique [18,19]. A 

kernel mapping based on an efficient kernel function, called Cosine kernel, is 

performed on all the samples firstly. In kernel space, we can find that the total scatter 

matrix is full rank, so the procedure of the null space approach is greatly simplified 

and more stable in numerical computation. 

3.2. Previous Work 

Some assumptions and definitions in mathematics are provided at first. Let n denote 

the dimension of the original sample space, and c is the number of classes. The 

between-class scatter matrix Sb  and the within-class scatter Sw are defined as below 

[17,18,19]: 

Sb  =  �
=

−−
c

i

T
iii mmmmN

1

))((     = ΦbΦb
T  ,           (3.1) 
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T
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))(( = ΦwΦw
T ,          (3.2) 

where  Nj is the number of samples in class Ci (i=1,2,….,c), N is the number of all 

samples, mj is the mean of the samples in the class Ci, and m is the overall mean of 

all samples [17]. The total scatter matrix i.e. the covariance matrix of all the samples 

is defined as: 

                          S t = S b  + S w  = �
=

−−
N

i

T
ii mxmx

1

))((    = Φt Φ tT ,            (3.3) 

LDA tries to find an optimal projection: W = [w1, w2, w3, …….., wc-1],which 

satisfies 
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J(W) = 
w
maxarg  

  

  

WSW

WSW

w
T

b
T

,                                  (3.4) 

that is just Fisher criterion function.  

3.2.1. Standart LDA 

As well known, W can be constructed by the eigenvectors of Sw

-1
Sb. But this method 

is numerically unstable because it involves the direct inversion of a likely high-

dimensional matrix [15,16]. The most frequently used LDA algorithm in practice is 

based on simultaneous diagonalization. The basic idea of the algorithm is to find a 

matrix W that can simultaneously diagonalize both Sw and Sb, i.e., 

             WT SW W = I , WTSbW = Λ.                                     (3.5) 

Most algorithms require that Sw be non-singular, because the algorithms diagonalize 

Sw first. The above procedure will break down when Sw becomes singular [12,15]. It 

surely happens when the number of training samples is smaller than the dimension of 

the sample vector, i.e. the small sample size problem (SSSP). The singularity exists 

for most face recognition tasks.  

An available solution to this problem is to perform PCA to project the n-dimensional 

image space onto a lower dimensional subspace. The PCA step essentially removes 

null space from both Sw and Sb. Therefore, this step potentially loses useful 

information. 

In fact, the null space of Sw contains the most discriminative information especially 

when the projection of Sb is not zero in that direction. The Direct LDA (DLDA) 

algorithm is presented to keep the null space of Sw. 

DLDA removes the null space of Sb firstly by performing eigen analysis on Sb , then 

a simultaneous procedure is used to seek the optimal discriminant vectors in the 

subspace of Sb, i.e. 

WTSbW = I,  WTSwW = Dw.             (3.6) 

Because the rank of Sb is smaller than that of Sw in majority, removing the null space 

of Sb may lose part of or the entire null space of Sw, which is very likely to be full-
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rank after the removing operation. So, DLDA does not make full use of the null 

space [10].  

3.2.2. Direct LDA  

D-LDA method proposed, which draws on a variant of discriminant analysis 

criterion and exploits the strength of the D-LDA algorithm. 

3.2.2.1 A Variant Criterion Function 

Most LDA based algorithms including Fisherfaces and D-LDA utilize the 

conventional Fisher criterion defined in (3.7), while some authors use the alternative 

given in (3.8) proposed by Liu.  

ΦΦΦΦ =
Φ

maxarg
ΦΦ

ΦΦ

w
T

b
T

S

S
                (3.7) 

ΦΦΦΦ =
Φ

maxarg
ΦΦ

ΦΦ

t
T

b
T

S

S
               (3.8) 

where Sb, Sw and St are the between-class scatter matrix, within-class scatter matrix 

and population scatter matrix respectively. 

We propose the use of a variant of Fisher criterion expressed as follows: 

  ΦΦΦΦ =
Φ

maxarg
ΦΦ

ΦΦ

w
T

t
T

S

S
                 (3.9) 

3.2.2.2. A Variant D-LDA 

The between-class scatter matrix, which is of size NxN, can be expressed as  Sb= 
T
bbΦΦ , where Φb = � 	)(),...( 11 µµµµ −− ccnn ,  N is the dimensionality of the 

samples, ni is the number of samples of  i-th class, µ i is the mean of  i-th class, µ  is 

the total mean vector of all samples, and C is the number of classes. Turk and 

Pentland  proposed an indirect method to find the eigenvectors of  Sb= T
bbΦΦ  which 

can be indirectly derived from the eigenvectors of the matrix, T
bbΦΦ , of size CxC.  

Let iλ  and ei be the i-th eigenvalue and its corresponding eigenvector of  T
bbΦΦ , 
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where i= 1,2,…,C, and let iλ  be sorted in the decreasing order of magnitude. Since 

( T
bbΦΦ )( ibeΦ ) = iλ Φb ei , yi = ibeΦ  is the eigenvector of Sb. As the rank, m, of Sb 

satisfies m= rank (Sb) = min(N, C-1) there is no discriminative information in the null 

space of Sb . The first m eigenvectors, Y = [y1,y2, … , ym] = ΦbEm , whose 

corresponding eigenvalues are greater than 0, are used, where  Em= [e1,e2,…,em]. 

Let Db = diag [λ1, λ2, … , λm] , and further let Z=Y 2
1

−
bD  denote a projection matrix. 

Projecting Sw into the subspace spanned by Z, we have 

~

wS =  ZT Sw Z 

Let ui be the i-th eigenvector of  
~

wS , where i=1,2,…,m , corresponds to the i-th 

eigenvalue '
iλ . The diagonal matrix of eigenvalues is denoted as Dw = diag [ '

1λ , …, 

'
mλ ], which corresponds to the matrix, U, of eigenvectors of  

~

wS . 

Let  P = ZU and further let Q = P 2
1

−
wD  be a projection matrix. Projecting St and Sw 

into the subspace spanned by Q, we have 

    QT Sw Q = I 

QT St Q = 
~

tS  

In order to maximize Eq.(3.9), we need only to select the eigenvectors of 
~

tS . Let us 

denote the selected eigenvectors as V =[v1, v2,…, vm], the corresponding diagonal 

matrix of eigenvalues as Dt. Note that Dt is an m’xm’ diagonal matrix. The optimal 

discriminant feature extractor can be derived through A=VTQT. 

According to the above analysis, the steps of the new D-LDA algorithm can be 

summarized as follows: 

Input: A set of training face images {xi, i=1,2, …, nt}, each of which is represented 

as an N-dimensional vector. 

Output: A low-dimensional representation x* of x with enhanced discriminatory 

power obtained by transformation x*=Ax. 
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Algorithm: 

Step1. Determine the set Em =[e1, … ,em] of eigenvectors of  b
T
b ΦΦ  associated with 

the   

m ≤  c-1 non-zero eigenvalues. 

Step 2. Calculate the first m most significant eigenvectors and the corresponding 

eigenvalues of Sb by Y =ΦbEm  and  Db 

Step 3. Let  Z=Y 2
1

−
bD  . Calculate the eigenvectors U and the corresponding 

eigenvalues Dw of   ZT SW Z 

Step 4. Let P=ZU, Q= P 2
1

−
wD . Calculate the first n most significant eigenvectors V 

and the corresponding eigenvalues Dt of QT St Q, ie. VTQT St QV=Dt 

Step 5. Let A=VTQT=(QV)T . The low dimensional transformed vector x*  for each 

testing sample x is 

x* =Ax 

3.2.3. Null Space-Based LDA 

From Fisher’s criterion that is objective function (3.4), we can find that: In standard 

LDA, W is seeked such that (3.5), so the form of the optimal solution provided by 

standard LDA is  

LDA
optimum  = 

W
max

  

  

WSW

WSW

w
T

b
T

 = Λ  = opt max/1.        (3.10) 

In DLDA, W is seeked such that (3.6), so the form of the optimal solution provided 

by DLDA is 

DLDA
optimum  = 

W
max

  

  

WSW

WSW

w
T

b
T

 = 
wD

1
= 

min
1

opt
  .            (3.11) 

Compared with above LDA approaches, a more reasonable method (Chen), we called 

Null Space-based LDA, has been presented. In Chen’s theory, null space-based LDA 

should reach below: 
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NULL

optimum  = 
W

max
  

  

WSW

WSW

w
T

b
T

 = 
0
maxopt

  .            (3.12) 

That means the optimal projection W should satisfy 

WSW w
T = 0,  WSW b

T = Λ,           (3.13) 

i.e. the optimal discriminant vectors must exist in the null space of Sw. 

In a performance benchmark, we can conclude that null space-based LDA generally 

outperforms LDA (Fisherface) or DLDA since 

   
NULL

optimum   =  ∞   ≥   
DLDA

optimum  ≥  
LDA

optimum .         (3.14) 

Because the computational complexity of extracting the null space of S is very high 

because of the high dimension of S. So a pixel grouping operation is used in advance 

to extract geometric features and to reduce the dimension of the samples [12,16]. 

However, the pixel grouping preprocess is irresponsible and may arouse a loss of 

useful facial features.  

3.3. Suggested Null Space Method (NLDA)  

In this section, the essence of null space-based LDA in the SSSP is revealed by 

theoretical justification, and the most suitable situation of null space methods is 

discovered [6]. Next, we propose the NLDA algorithm, which is conceptually simple 

yet powerful in performance. 

3.3.1. Most Suitable Situation 

For the small sample size problem (SSSP) in which n>N, the dimension of null space 

of Sw is very large, and not all null space contributes to the discriminative power. 

Since both Sb and Sw are symmetric and semi-positive, we can prove, as mentioned in 

[6], that 

N(St) = N(Sb) ∩ (Sw)                      (3.15) 

From the statistical perspective, the null space of Sb is of no use in its contribution to 

discriminative ability. Therefore, the useful subspace of null space of Sw is 
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Λ
N (Sw) = N(Sw) – N(St) = N(Sw) ∩ )( tSN          (3.16) 

The sufficient and necessary condition so that null space methods work is 

 
Λ
N (Sw) ≠ Φ 
 N(Sw) ⊃ N(St) 
 dim N(Sw) > dim N(St) 
  

  rank(St) > rank(Sw) (3.17) 

In many cases, 

   rank(St) = min{n, N-1}, rank(Sw) =min{n,N-c}        (3.18) 

the dimension of discriminative null space of Sw can be evaluated from (3.15): 

  dim
Λ
N (Sw) = rank(St) - rank(Sw).         (3.19) 

If  n ≤ N-c, due to rank(St) = n ≤  rank(Sw) = N-c, the necessary condition (3.17) is 

not satisfied so that we can not extract any null space. That means any null space-

based method does not work in the large sample size case. 

If N-c< n< N-1, due to rank(St) = n > rank(Sw) =N-c, the dimension of effective null 

space can be evaluated fron (3.19): dim
Λ
N (Sw) = n-N+c < c-1. Hence, the number of 

discriminant vectors would be less than c-1, and some discriminatory information 

maybe lost. 

Only when n ≥ N-1 (SSSP), for rank(St) = N-1> rank(Sw) = N-c, we derive dim 
Λ
N (Sw) = c-1. The dimension of extracted null space is just c-1, which coincides with 

the number of ideal features for classification [6,7,8]. Therefore, we can conclude 

that null space methods are always applicable to any small sample size problem. 

Especially when n is equal to N-1, St is full-rank and N(St) is null. By (3.16) we have  
Λ
N (Sw) = N(Sw) , it follows all null space of Sw contributes to the discriminative 

power. Hence, we conclude the most suitable situation for null space-based methods: 

 n  = N-1.             (3.20) 
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3.3.2. NLDA 

Combining (3.15)-(3.19), we develop our null space method [24]. 

1. Remove the null space of St 

Perform PCA to project the n-dimensional image space onto a low dimensional 

subspace, i.e. perform eigen-analysis on St., the dimension of the extracted subspace 

is usually N-1 [17]. The projection P, whose columns are all the eigenvectors of St 

corresponding to the nonzero eigenvalues, are calculated firstly, and then the within-

class scatter and between-class scatter in the resulting subspace are obtained. 

PT St P = Dt, P
T Sw P = S’w, PT Sb P = S’b.          (3.21) 

2. Extract the null space of Sw’. 

Diagonalize Sw’, we have 

                 VT  Sw’ V = Dw            (3.22) 

Where VTV = I, Dw is diagonal matrix sorted in increasing order. Discard those with 

eigenvalues sufficiently far from 0, keep c-1 eigenvectors of Sw’ int most cases. Let Y 

be the first c-1 columns of V, which is the null space of Sw’, we have 

YT Sw’Y = 0, YT Sb’ Y =  S”b .          (3.23) 

3. Diagonalize S”b  (usually a (c-1)x(c-1) matrix ) which is full-rank. 

Perform eigen-analysis:  

UT Sb’ U = Λ,           (3.24) 

Where UTU=I, Λ is diagonal matrix sorted in decreasing order. 

The final projection matrix is: 

W = PYU,           (3.25) 

W is usually an nx(c-1) matrix, which diagonalizes both the numerator and the 

denominator of Fisher’s criterion to (c-1)x(c-1) matrices as (3.13), especially leads to 

a denominator of 0 matrix. 

It is notable that the third step of Huang’ algorithm is used to remove the null space 

of S”b . In fact, we are able to prove that it is full-rank once through the previous two 

steps. 
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Lemmas Sb’’ is full-rank, Sb’’ is defined in step2 of algorithm I. 

Proof: 

From step1 and 2, we derive that  Sb’’ = YTS’bY+ YTS’wY = YT(S’b + S’w)Y = 

YTPT(Sb+Sw)PY = YTPTStPY =YT DtY,  for any vector α  whose dimension is equal to 

that of Sb’’, αTSb”α = αTYTDtYα =(Dt
1/2Yα)T(Dt

1/2Yα) ≥  0, so Sb’ ’is semi-positive. 

Suppose there exists α such that αT Sb’’α = 0, then Dt
1/2Yα = 0. By step1, we know 

Dt   is full-rank, thus Yα = 0. And by step2, we derive that Y is full-rank in columns 

since it is the extracted null space. Hence α=0, iff. αTSb”α = 0. Therefore Sb” is a 

positive matrix which is of course full-rank. 

The third step is optional. Although it maximizes the between-class scatter in the null 

subspace, which appears to achieve best discriminative ability, it may incur 

overfitting. Because projecting all samples onto the null space of Sw is powerful 

enough in its clustering ability to archieve good generalization performance, step3 of 

algorithm I should be eliminated in order to avoid possible overfitting. 

NLDA algorithm: 

1. Remove the null space of St, i.e. 

PTStP = Dt, PTSwP=S’w, 

P is usually nx(N-1). 

2. Extract the null space of Sw’, i.e. 

     YTSw’Y = 0, 

Y is the null space, and is usually (N-1) x (c-1). 

The final NLDA projection matrix is: 

        W=PY, 

PY is the discriminative subspace of the whole null space of Sw and is really useful 

for discrimination. The number of the optimal discriminant vectors is usually c-1, 

which just coincides with the number of ideal discriminant vectors [10,11]. 

Therefore, removing step3 is a feasible strategy against overfitting. 

Under situation, St is full-rank and step1 of the NLDA algorithm is skipped. The 

NLDA projection can be extracted by performing eigen-analysis on Sw directly. The 

procedure of NLDA under this situation is most straightforward and only requires 
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one eigen-analysis. We can discover that NLDA will save much computational cost 

under the most suitable situation it is applicable to [24]. 
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4. SIMILARITY & DISTANCE MEASURES 

Once images are projected into a subspace, there is the task of determining which 

images are most like one another. There are two ways in general to determine how 

alike images are. One is to measure how similar two images are. When measuring 

distance, one wishes to minimize distance, so two images that are alike produce a 

small distance. When measuring similarity, one wishes to maximize similarity, so 

that two like images produce a high similarity value [10]. There are many possible 

similarity and distance measures; I will discuss five. 

L1 norm: The L1 norm is also known as the city block norm or the sum norm. It sums 

up te absolute difference between pixels [10]. The L1 norm of an image A and an 

image B is: 

The L1 norm is a distance measure. 

L2 norm: The L2  norm is also known as the Euclidean norm or the Euclidean 

distance when its square root is calculated. It sums up the squared difference between 

pixels [10]. The L2 norm of an image A and an image B is: 

The L2 norm is a distance measure. 
 

Covariance: Covariance is also known as the angle measure. It calculates the angle 

between two normalized vectors [10,7,13]. Taking the dot product of the normalized 

vectors performs this calculation. The covariance between  images A and  B is: 
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Covariance is a similarity measure. By negating the covariance value, it becomes a 

distance measure. 

Mahalanobis distance: The Mahanolobis distance calculates the product of the 

pixels and the eigenvalue of a specific dimension and sums all these products [10]. 

The Mahanolobis distance between an image A and an image B is: 

Mahalanobis distance is a distance measure. 

 

Correlation: Correlation measures the rate of change between the pixels of two 

images. It produces a value ranging from –1 to 1, where a value of –1 indicates the 

images are opposites of each other and a value of 1 indicates that the images are 

identical [10]. The correlation between an image A and an image B is: 

 

where �A is the mean of A and �A  is the standart deviation of A.
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5. EXPERIMENTS 

The YALE Face Database contains 165 grayscale images in GIF format of 15 

individuals. There are 11 images per subject, one per different facial expression or 

configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-

light, sad, sleepy, surprised and wink. 

    
Center Light 

 
Glasses 

 
Happy 

 
Left Light 

 
No Glasses 

 
Normal 

 

    

 

Right Light Sad Sleepy Surprised Wink  

Figure 5.1: An example from the YALE Face Database 

 
The ORL Face Database contains 400 images, 10 pictures of 40 people.  

     
Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 

     

Pose 6 Pose 7 Pose 8 Pose 9 Pose 10 

Figure 5.2: An example from the ORL Face Database 
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FERET Database 1 contains 160 pictures of 40 people. For each people there are 4 

pictures. 

    

Figure 5.3: An example from the FERET Database 1 (Normalized FERET) 

 
FERET Database 2 contains 90 pictures of 15 people. For each people there are 6 

pictures. 
 

      

Figure 5.4: An example from the FERET Database 2 

 

 
Figure 5.5: The Application 

 

 Experiment results for the YALE, ORL, FERET Database1 and FERET Database 2 

are shown in tables Table 5.1 to Table 5.13.  Each database is tested for different 

subject counts such as 10, 15 , 20 peoples. Tests are made on different methods such 

as FLDA, DLDA, NLDA, HEFLDA, HEDLDA and HENLDA. The results below 

show the success rates obtained by these tests.  
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Table 5.1: HEFLDA : YALE Face Database Success Rate for 15 People  
(For each people 10 train 1 test images) 

 HEFLDA: YALE EXPERIMENT  
Eigenvector Count center-light w/glasses happy leftlight w/no glassess normal right-light sad sleepy surprised wink 

15 53,33% 73,33% 86,67% 60% 93,33% 80% 53,33% 93,33% 86,67% 80% 86,67% 
20 53,33% 73,33% 86,67% 60% 93,33% 93,33% 53,33% 93,33% 86,67% 80% 86,67% 
25 86,67% 86,67% 93,33% 80% 93,33% 93,33% 60% 93,33% 93,33% 93,33% 100% 
30 86,67% 86,67% 93,33% 80% 93,33% 100% 80% 93,33% 93,33% 93,33% 100% 

 
Table 5.2: HEDLDA: YALE Face Database Success Rate for 15 People 

(For each people 10 train 1 test images) 

 HEDLDA : YALE  EXPERIMENT  
Eigenvector Count center-Light w/glasses happy leftlight w/no glassess normal right-light sad sleepy surprised wink 

15 46,7% 60% 86,67% 46,7% 80% 80% 53,33% 86,67% 93,33% 80% 86,67% 
20 53,3% 60% 93,33% 46,7% 93,33% 93,33% 53,33% 86,67% 93,33% 93,33% 93,33% 
25 86,67% 73,33% 93,33% 73,33% 93,33% 100% 73,33% 93,33% 100% 93,33% 100% 
30 86,67% 86,67% 93,33% 73,33% 93,33% 100% 73,33% 93,33% 100% 93,33% 100% 

 
Table 5.3: HENLDA : YALE Face Database Success Rate for 15 People  

(For each people 10 train 1 test images) 

 HENLDA : YALE  EXPERIMENT  
Eigenvector Count center-light w/glasses happy leftlight w/no glassess normal right-light sad sleepy surprised wink 

15 46,7% 60% 86,67% 60% 80% 80% 53,33% 86,67% 100% 80% 86,67% 
20 53,3% 60% 100% 60% 93,33% 100% 60% 93,33% 100% 100% 100% 
25 86,67% 73,33% 100% 80% 93,33% 100% 80% 93,33% 100% 93,33% 100% 
30 93,33% 86,67% 100% 86,67% 93,33% 100% 86,67% 93,33% 100% 93,33% 100% 
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Figure 5.6: HEFLDA: YALE Face Database Success Rate for 15 People 

 
In Figure 5.6 histogram equalization applied Fisher LDA results for the YALE Face 

Database in Table 5.1 are shown. The “leave one out” method is used for this 

experiment. For the illimunation changes such as center-light, right-light, left-light 

the results are good enough if we want to compare them without histogram 

equalization. When we choose more eigenvectors the success rate obtained is 

increases.  
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Figure 5.7: HEDLDA: YALE Face Database Success Rate for 15 People 

 
In Figure 5.7 histogram equalization applied Direct LDA method results for the 

YALE Face Database in Table 5.2 are given. When we compare the results for the 
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Figure 5.6 we can say that Direct LDA performs better than Fisher LDA on YALE 

Face Database. The results for the illimunation changes are not good enough if we 

want to compare them for the face expressions such as sad, happy, wink. 
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Figure 5.8: HENLDA: YALE Face Database Success Rate for 15 People 

 
In Figure 5.8 histogram equalization applied Null Space LDA method results for the 

YALE Face Database in Table 5.3 are given. When we compare the results in Table 

5.1 and in Table 5.2 we can conclude that Null Space LDA performs best. The 

success rates for especially illimunation changes increased. For the face expressions 

such as happy, normal, sleepy and wink the success rate reaches to top. 
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Table 5.4: HEFLDA : ORL Face Database Success Rate for 15 People  
(For each people 9 train 1 test images) 

 HEFLDA:  ORL EXPERIMENT  
Eigenvector Count  Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8 Pose 9 Pose 10 

15 100% 93,33% 93,33% 93,33% 100% 93,33% 100% 100% 100% 93,33% 
20 100% 93,33% 93,33% 100% 100% 93,33% 100% 100% 100% 93,33% 
25 100% 100% 100% 100% 100% 100% 100% 100% 100% 86,67% 
30 100% 100% 100% 100% 100% 100% 100% 100% 100% 86,67% 

 
Table 5.5: HEDLDA: ORL Face Database Success Rate for 15 People 

(For each people 9 train 1 test images) 

 HEDLDA:  ORL EXPERIMENT  
Eigenvector Count  Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8 Pose 9 Pose 10 

15 100% 100% 93,33% 100% 93,33% 100% 93,33% 100% 100% 93,33% 
20 100% 93,33% 93,33% 100% 93,33% 100% 93,33% 100% 100% 93,33% 
25 100% 100% 100% 100% 93,33% 100% 93,33% 100% 100% 86,67% 
30 100% 100% 100% 100% 93,33% 100% 93,33% 100% 100% 86,67% 

 
Table 5.6: HENLDA : ORL Face Database Success Rate for 15 People  

(For each people 9 train 1 test images) 

 HENLDA:  ORL EXPERIMENT  
Eigenvector Count Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8 Pose 9 Pose 10 

15 100% 100% 93,33% 100% 100% 100% 100% 100% 100% 100% 
20 100% 93,33% 100% 100% 100% 100% 100% 100% 100% 86,67% 
25 100% 100% 100% 100% 100% 100% 100% 100% 100% 86,67% 
30 100% 100% 100% 100% 100% 100% 100% 100% 100% 93,33% 
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Figure 5.9: HEFLDA: ORL Face Database Success Rate for 15 People 

In Figure 5.9 histogram equalization applied Fisher LDA method results for the ORL 

Face Database in Table 5.4 are given. “Leave one out” method is used for the 

experiments. When we compare the results in Figure 5.6 and Figure 5.9, we can 

easily say that HEFLDA method on ORL Face Database performs better for than 

YALE Face Database. For 30 eigenvectors selected nearly all results reaches 100 

percent.  
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Figure 5.10: HEDLDA: ORL Face Database Success Rate for 15 People 

 

In Figure 5.10 histogram equalization applied Direct LDA method results for the 

ORL Face Database in Table 5.5 are given. When we compare the results in Figure 

5.7 and  Figure 5.10, we can easily say that HEDLDA method on ORL Face 
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Database performs better than YALE Face Database. If we want to compare the 

results in Figure 5.9 and Figure 5.10, it can be seen that HEFLDA performs better 

than HEDLDA on ORL Face Database.  

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

15

20

25

30

 
Figure 5.11: HENLDA: ORL Face Database Success Rate for 15 People 

 
In Figure 5.10, histogram equalization applied Null Space LDA method results for 

the ORL Face Database in Table 5.6 are given. When we compare the results in 

Figure 5.8 and Figure 5.11 we can easily say that HENLDA method on ORL Face 

Database performs better than YALE Face Database. If we want to compare the 

results in Figure 5.9, Figure 5.10 and Figure 5.11 we can conclude that HENLDA 

and HEFLDA performs better than HEDLDA on ORL Face Database. Furthermore 

the success rates obtained from ORL Database are better than the results obtained 

from YALE Database. 

 
Table 5.7: FERET Database 1 Success Rates for 15 People 

(For each people 3 train, 1 test images) 

Eigenvector Count 
 15 20 25 30 
 FLDA  86,67% 86,67% 93,33% 93,33% 
 DLDA 86,67% 86,67% 86,67% 86,67% 
 NLDA   86,67% 93,33% 93,33% 93,33% 
 HEFLDA 86,67% 93,33% 86,67% 93,33% 
 HEDLDA 86,67% 86,67% 86,67% 93,33% 
 HENLDA 93,33% 86,67% 93,33% 93,33% 
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Figure 5.12: FERET Database 1 Success Rates for 15 People 

 
Table 5.8: FERET Database 1 Success Rates for 20 People 

(For each people 3 train, 1 test images) 

Eigenvector Count 
 15 20 25 30 
 FLDA   90% 90% 95% 95% 
 DLDA 85% 85% 90% 90% 
 NLDA   90% 95% 90% 95% 
 HEFLDA 90% 95% 90% 95% 
 HEDLDA 85% 85% 90% 95% 
 HENLDA 90% 90% 95% 95% 
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Figure 5.13: FERET Database 1 Success Rates for 20 People 
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Table 5.9: FERET Database 1 Success Rates for 25 People  
(For each people 3 train, 1 test images) 

Eigenvector Count 
 15 20 25 30 
 FLDA   88% 88% 92% 92% 
 DLDA 84% 84% 88% 88% 
 NLDA   88% 88% 92% 92% 
 HEFLDA 88% 92% 92% 92% 
 HEDLDA 84% 88% 88% 88% 
 HENLDA 92% 92% 96% 92% 
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Figure 5.14: FERET Database 1 Success Rates for 25 People 

 
In Figure 5.12 to  Figure 5.14  there are different numbers of samples (15, 20, 25). 

From the figures the numbers corresponds the test results for the below given. 

1) FLDA, 2) DLDA, 3) NLDA, 4) HEFLDA, 5) HEDLDA, 6) HENLDA 

Generally success rates decreases when we select more number of samples in 

training set. When we carefully analize the results obtained from these figures we 

can conclude that histogram equalization applied training samples performs better 

success rates than the others. Histogram equalization increases success rate nearly 3 

percent.  HENLDA performs best when we want to compare it with the others. 

However DLDA performs worst. The success rates obtained from these figures are 

better than YALE Face Database because the training images (samples) are 

normalized before the test is done. However the results are not good enough when 

compared with the results obtained from ORL Face Database. Finally we can 

conclude that the more eigenvector selected the more success rate obtained.  
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Table 5.10: FERET Database 2 Success Rates for 15 People  
(For each people 4 train, 2 test images) 

Eigenvector Count 
 15 20 25 30 
FLDA   84,85% 84,85% 87,88% 90,09% 
NLDA 90,09% 84,85% 90,09% 90,09% 
HEFLDA 84,85% 87,88% 87,88% 90,09% 
HENLDA 90,09% 93,33% 93,33% 93,33% 

 
 

Table 5.11: YALE Database Success Rates for Different  
Face Expressions for 15 People 

For each people  6 train (glasses, no-glasses, normal, center-light, left-light, right-light) 
5 test (happy, sad, sleepy, surprised, wink) images 

Eigenvector Count 
 15 20 25 30 
FLDA   82,66% 82,66% 88% 92% 
NLDA  82,66% 88% 92% 92% 
HEFLDA 92% 92% 93% 93% 
HENLDA 92% 92% 92% 92% 

 
 

Table 5.12: YALE Database Success Rates for Illumination Changes for 15 People 
For each people 8 train, 3 test (center-light, left-light, right-light) images 

Train images are happy, sad, sleepy, surprised, wink, with-glasses, no-glasses and normal 

Eigenvector Count 
 15 20 25 30 
FLDA   66,67% 66,67% 66,67% 71,10% 
NLDA  71,10% 66,67% 71,10% 71,10% 
HEFLDA 73,30% 73,30% 77,70% 77,70% 
HENLDA 66,67% 86,60% 86,60% 77,70% 

 
 

Table 5.13: ORL Database success rates for different poses for 15 People 
For each people 6 train, 4 test images 

Pose 1, Pose 3, Pose 6, Pose 7, Pose 8 and Pose 9 are train images 
Pose 2, Pose4, Pose 5 and Pose 10 are test images 

Eigenvector Count 
 15 20 25 30 
FLDA   88,33% 88,33% 88,33% 90% 
NLDA  88,33% 88,33% 90% 90% 
HEFLDA 88,33% 90% 90% 91,67% 
HENLDA 90% 90% 91,67% 91,67% 
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6. CONCLUSION 

Face recognition is one of the several techniques for recognizing people.  

There are several methods that can be used for that purpose. Some of the most 

common are using PCA or eigenfaces.  There are other new techniques more simple 

to understand use and implement but also with very good performance. The null 

space-based LDA takes full advantage of the null space. It proves to be optimal in 

performance. 

In this thesis the PCA and LDA methods are used for face recognition. Null-space 

approach is also used to improve recognition performance. The YALE, ORL and 

FERET face databases are used for test and train images. Histogram equalization 

applied train and test images  before FLDA and NLDA experiments to overcome the 

illumination problems. Finally from the result of experiments when we choose the 

more number of eigenvectors, the more success rate obtained. When we take the 

more number of the classes the less success rate obtained. Furthermore face 

expression and illumination changes successfully recognized by my application. 
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