

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Mutlu ÖNDER, B.Sc.

Department : Computer Engineering

Programme: Computer Engineering

JUNE 2004

USING XML AS A DATA STRUCTURE IN AN

ELECTRONIC CATALOG MANAGEMENT SYSTEM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62729538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Mutlu ÖNDER, B.Sc.

(504011403)

Date of submission : 26 April 2004

Date of defence examination: 20 May 2004

 Supervisor (Chairman): Prof. Dr. Bülent Örencik

Members of the Examining Committee Assoc. Prof.Dr.Coşkun Sönmez (İTÜ.)

 Assoc. Prof.Dr. Ali Okatan (BÜ.)

JUNE 2004

USING XML AS A DATA STRUCTURE IN AN

ELECTRONIC CATALOG MANAGEMENT SYSTEM

 17

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BİR ELEKTRONİK KATALOG YÖNETİM SİSTEMİNDE

XML’İN VERİ YAPISI OLARAK KULLANILMASI

YÜKSEK LİSANS TEZİ

Müh. Mutlu ÖNDER

(504011403)

MAYIS 2004

Tezin Enstitüye Verildiği Tarih : 26 Nisan 2004

Tezin Savunulduğu Tarih : 20 Mayıs 2004

Tez Danışmanı : Prof.Dr. Bülent ÖRENCİK

Diğer Jüri Üyeleri Doç.Dr. Coşkun SÖNMEZ

 Prof.Dr. Ali OKATAN (B.Ü.)

 i

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Mutlu ÖNDER, B.Sc.
(504011403)

Date of submission : 26 April 2004

Date of defence examination: 20 May 2004

SUPERVİSOR (CHAİRMAN): Prof. Dr. Bülent Örencik

Members of the Examining Committee Assoc. Prof.Dr.Coşkun Sönmez (İTÜ.)

 Prof.Dr. Ali Okatan (BÜ.)

MAY 2004

USING XML AS A DATA STRUCTURE IN AN

ELECTRONIC CATALOG MANAGEMENT SYSTEM

 ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Bülent Örencik for his important

comments and support. I also thank Devrim Ergel, Burak Barı and all other people

from Parsera Information Technologies for their priceless remarks. Finally my big

thanks belong to my mother, father and sister for their great support.

April 2004 MUTLU ÖNDER

 iii

TABLE OF CONTENTS

ABBREVIATIONS vii

LIST OF TABLES viii

LIST OF FIGURES x

ÖZET xii

SUMMARY xiii

1. INTRODUCTION 1

2. FEATURES OF OUR ECMS 3

3. DATA STRUCTURE 4

3.1 Elements of Data Structure 5

3.1.1 Atomic Elements 5

3.1.1.1 Text 5

3.1.1.2 Number 5

3.1.1.3 Date 5

3.1.2 Non-Atomic Elements 5

3.1.2.1 Language 5

3.1.2.2 Unit 5

3.1.2.3 Member 6

3.1.2.4 Member Group 6

3.1.2.5 Catalog 6

3.1.2.6 Catalog tree 6

3.1.2.7 Group 6

3.1.2.8 Property Group 6

3.1.2.9 Product Family 6

3.1.2.10 Property 6

3.1.2.11 Value 6

3.1.2.12 Product: 6

3.1.2.13 Picture 7

3.1.2.14 File 7

3.1.2.15 XSL View: 7

3.2 Hierarchy of the Data Structure Elements 7

3.3 Rule Base 8

3.4 Property Groups 9

 iv

3.4.1 Property Group Mode 0 9

3.4.2 Property Group Mode 1 10

3.4.3 Property Group Mode 2 10

3.4.4 Property Group Mode 3 11

3.4.5 Property Group Mode 4 11

3.4.6 Property Group Mode 5 11

3.4.7 Property Group Mode 6 12

3.4.8 Property Group Mode 7 12

3.4.9 Property Group Mode 8 13

3.5 Forkability 13

3.6 Complete Example 14

4. XML IMPLEMENTATION 16

4.1 Realizing Data Structure Elements in XML Format 16

4.1.1 Unit 16

4.1.2 Property group mode 1, 2 17

4.1.3 Property group mode 3, 4 17

4.1.4 Property group mode 6 17

4.1.5 Property group mode 8 18

4.1.6 Property 18

4.2 Advantages of XML 18

5. GENERAL ARCHITECTURE 22

6. DEVELOPMENT ENVIRONMENT 23

7. MANAGER ARCHITECTURE 24

7.1 XML DB 24

7.2 DB-Bridge 24

7.3 Manager 26

7.3.1 Navigation Related Operations 26

7.3.2 Product Family Related Operations 26

7.3.3 Product Related Operations 26

7.3.4 Supplier Related Operations 26

7.3.5 Data Sharing Operations 26

7.3.6 Administrative Operations 27

7.4 Multimedia Storage in the ECMS System 27

7.4.1 Method 1: Storing the Multimedia Content in the Manager File System 27

7.4.2 Method 2: Storing the Multimedia Content in the XML-DB File System 28

7.4.3 Method 3: Storing the Multimedia Content in the XML-DB File System By

Using Distinct ID 29

7.4.4 Method 4: Direct Approach for Converting Binary Data to XML 31

 v

7.4.5 Method 5: Base 64 Converting 31

7.4.6 Method 6: Huffman Coding Approach 32

7.5 Integration 33

8. WEB CATALOG 34

9. CD CATALOG 36

10. TEST RESULTS 37

10.1 ECMS Performance Test 37

10.2 ECMS Performance Test Variables 38

10.2.1 Test Scenarios 38

10.2.1.1 Scenario 1 38

10.2.1.2 Scenario 2 38

10.2.2 Number of Products 38

10.2.3 PageSize Value 38

10.2.4 DB-Bridge Server 39

10.2.5 Manager Client 39

10.2.6 JVM 39

10.2.7 Network Connection 40

10.3 Test Results 40

10.3.1 Scenario 1-A 40

10.3.2 Scenario 1-B 41

10.3.3 Scenario 1-C 42

10.3.4 Scenario 1-D 44

10.3.5 Scenario 2 45

10.4 ECMS Performance Test Summary 46

10.5 Web Catalog Server Test 47

10.5.1 Test Group 1 47

10.5.2 Test Group 2 48

10.5.3 Test Group 3 48

10.6 Web Catalog Server Test Variables 49

10.6.1 Test Scenario 1 49

10.6.2 Test Scenario 2 49

10.6.3 Test Scenario 3 49

10.6.4 Test Scenario 4 49

10.6.5 Number of Products 50

10.6.6 Catalog Web Server 50

10.6.6.1 Server 1 Configuration 50

10.6.6.2 Server 2 Configuration 50

10.6.7 Memory 51

10.6.8 JVM 51

10.6.9 Network Connection 51

 vi

10.7 Web Catalog Server Test Results 51

10.7.1 Scenario 1 Results 51

10.7.2 Scenario 2 Results 56

10.7.3 Scenario 3 Results 61

10.7.4 Scenario 4 Results 66

10.7.5 Server Comparison 71

10.8 Web Catalog Server Test Conclusions 72

11. CONCLUSION 73

REFERENCES 75

APPENDIX A: SCREENSHOTS OF THE MANAGER 78

APPENDIX B: WEB CATALOG SCREENSHOTS 81

AUTOBIOGRAPHY 84

 vii

ABBREVIATIONS

XML : Extensible Markup Language

SOAP : Simple Object Access Protocol

XSL : Extensible Style sheet Language

JVM : Java Virtual Machine

GUI : Graphical User Interface

RDMS : Relational Database Management System

ECMS : Electronic Catalog Management System

HTTP : Hypertext Transfer Protocol

WML : Website Meta Language

GPRS : General Packet Radio Service

RMI : Remote Method Invocation

XPATH : XML Path Language

XUPDATE : XML Update Language

XQUERY : XML Query Language

J2EE : JAVA 2 Platform, Enterprise Edition

J2SDK : JAVA 2 Platform, Software Development Kit

SKU : Stock Keeping Unit

SQL : Structured Query Language

TCP/IP : Transmission Control Protocol / Internet Protocol

RAM : Random Access Memory

ERP : Enterprise Resource Planning

DB : Database

PDF : Portable Document Format

SMTP : Simple Mail Transfer Protocol

ISBN : The International Standard Book Number

 viii

LIST OF TABLES

Page Number

Table 3.1 Complete Book Example. .. 15

Table 4.1 XML - RDMS Comparison. ... 16

Table 4.2 RDMS Data Example. .. 20

Table 4.3 Modified RDMS Data Example. .. 20

Table 10.1 Scenario 1-A Test Results. .. 40

Table 10.2 Scenario 1-B Test Results. ... 42

Table 10.3 Scenario 1-C Test Results. ... 43

Table 10.4 Scenario 1-C Stress Test Results. ... 44

Table 10.5 Scenario 1-C Test Results. .. 45

Table 10.6 Scenario 1-C Stress Test Results. ... 45

Table 10.7 Scenario 2 Test Results. .. 46

Table 10.8 WEB Catalog Test, Scenario 1, Condition 1, Test Variables 51

Table 10.9 Web Catalog Test, Scenario 1, Condition 1, Average Click Time. 52

Table 10.10 WEB Catalog Test, Scenario 1, Condition 2, Test Variables 52

Table 10.11 Web Catalog Test, Scenario 1, Condition 2, Average Click Time. 53

Table 10.12 WEB Catalog Test, Scenario 1, Condition 3, Test Variables 53

Table 10.13 Web Catalog Test, Scenario 1, Condition 3, Average Click Time. 54

Table 10.14 WEB Catalog Test, Scenario 1, Condition 4, Test Variables 54

Table 10.15 Web Catalog Test, Scenario 1, Condition 4, Average Click Time. 55

Table 10.16 WEB Catalog Test, Scenario 1, Condition 5, Test Variables 55

Table 10.17 Web Catalog Test, Scenario 1, Condition 5, Average Click Time. 55

Table 10.18 WEB Catalog Test, Scenario 2, Condition 1, Test Variables 56

Table 10.19 Web Catalog Test, Scenario 2, Condition 1, Average Click Time. 56

Table 10.20 WEB Catalog Test, Scenario 2, Condition 2, Test Variables 57

Table 10.21 Web Catalog Test, Scenario 2, Condition 2, Average Click Time. 57

Table 10.22 WEB Catalog Test, Scenario 2, Condition 3, Test Variables 58

Table 10.23 Catalog Test, Scenario 2, Condition 3, Average Click Time. 58

Table 10.24 WEB Catalog Test, Scenario 2, Condition 4, Test Variables 59

Table 10.25 Catalog Test, Scenario 2, Condition 4, Average Click Time. 59

Table 10.26 WEB Catalog Test, Scenario 2, Condition 5, Test Variables 60

Table 10.27 Catalog Test, Scenario 2, Condition 5, Average Click Time. 60

Table 10.28 WEB Catalog Test, Scenario 3, Condition 1, Test Variables 61

Table 10.29 Catalog Test, Scenario 3, Condition 1, Average Click Time. 61

Table 10.30 WEB Catalog Test, Scenario 3, Condition 2, Test Variables 62

Table 10.31 Catalog Test, Scenario 3, Condition 2, Average Click Time. 62

Table 10.32 WEB Catalog Test, Scenario 3, Condition 3, Test Variables 63

Table 10.33 Catalog Test, Scenario 3, Condition 3, Average Click Time. 63

Table 10.34 WEB Catalog Test, Scenario 3, Condition 4, Test Variables 64

Table 10.35 Catalog Test, Scenario 3, Condition 4, Average Click Time. 64

Table 10.36 WEB Catalog Test, Scenario 3, Condition 5, Test Variables 65

 ix

Table 10.37 Catalog Test, Scenario 3, Condition 5, Average Click Time. 65

Table 10.38 Catalog Test, Scenario 4, Condition 1, Test Variables. 66

Table 10.39 Catalog Test, Scenario 4, Condition 1, Average Click Time. 66

Table 10.40 Catalog Test, Scenario 4, Condition 2, Test Variables. 67

Table 10.41 Catalog Test, Scenario 4, Condition 2, Average Click Time. 67

Table 10.42 Catalog Test, Scenario 4, Condition 3, Test Variables. 68

Table 10.43 Catalog Test, Scenario 4, Condition 3, Average Click Time. 68

Table 10.44 Catalog Test, Scenario 4, Condition 4, Test Variables. 69

Table 10.45 Catalog Test, Scenario 4, Condition 4, Average Click Time. 69

Table 10.46 Catalog Test, Scenario 4, Condition 5, Test Variables. 70

Table 10.47 Catalog Test, Scenario 4, Condition 5, Average Click Time. 70

Table 10.48 Server Comparison Test Variables .. 71

Table 10.49 Server Comparison Average Click Time .. 71

 x

LIST OF FIGURES

 Page Number

Figure 3.1. ECMS Data Structure Example. .. 4

Figure 3.2 Hierarchy of the Data Structure Elements .. 7

Figure 3.3 Rule Base Diagram. .. 9

Figure 3.4 Property Group Mode 1 Example. .. 10

Figure 3.5 Property Group Mode 2 Example. .. 10

Figure 3.6 Property Group Mode 3 Example. .. 11

Figure 3.7 Property Group Mode 4 Example. .. 11

Figure 3.8 Property Group Mode 5 Example. .. 12

Figure 3.9 Property Group Mode 6 Example. .. 12

Figure 3.10 Property Group Mode 7 Example. .. 13

Figure 3.11 Property Group Mode 8 Example. .. 13

Figure 3.12 Forkability Example. .. 14

Figure 5.1 General Architecture. .. 22

Figure 7.1 Manager Architecture. .. 24

Figure 7.2 Storing the Multimedia Content in the Manager File System 27

Figure 7.3 the Multimedia Content in the XML-DB File System. 28

Figure 7.4 Storing the Multimedia Content in the XML-DB File System By Using

Distinct ID. ... 29

Figure 7.5 Storing Multimedia Content in XML DB ... 30

Figure 7.6 Converting 3-byte into four 6-bit data. .. 31

Figure 7.7 Huffman Conversation Diagram ... 32

Figure 7.8 ECMS Multimedia Storage Diagram. ... 33

Figure 8.1 WEB Catalog Architecture. .. 34

Figure 9.1 CD Catalog Architecture .. 36

Figure 10.1 Scenario 1-A Test Process Time Avarages. ... 40

Figure 10.2 Scenario 1-B Process Time Averages. .. 41

Figure 10.3 Scenario 1-C Test Process Time Averages. .. 43

Figure 10.4 Scenario 1-D Test Process Time Averages. .. 44

Figure 10.5 Scenario 2 Process Time Averages. .. 46

Figure 10.6 WEB Catalog Test, Scenario 1, Condition 1 Test Results. 51

Figure 10.7 WEB Catalog Test, Scenario 1, Condition 2 Test Results. 52

Figure 10.8 WEB Catalog Test, Scenario 1, Condition 3 Test Results. 53

Figure 10.9 WEB Catalog Test, Scenario 1, Condition 4 Test Results. 54

Figure 10.10 WEB Catalog Test, Scenario 1, Condition 5 Test Results. 55

Figure 10.11 WEB Catalog Test, Scenario 2, Condition 1 Test Results. 56

Figure 10.12 WEB Catalog Test, Scenario 2, Condition 2 Test Results. 57

Figure 10.13 WEB Catalog Test, Scenario 2, Condition 3 Test Results. 58

Figure 10.14 WEB Catalog Test, Scenario 2, Condition 4 Test Results. 59

Figure 10.15 Catalog Test, Scenario 2, Condition 5 Test Results. 60

 xi

Figure 10.16 Catalog Test, Scenario 3, Condition 1 Test Results. 61

Figure 10.17 Catalog Test, Scenario 3, Condition 2 Test Results. 62

Figure 10.18 Figure 10.17 Catalog Test, Scenario 3, Condition 3 Test Results. 63

Figure 10.19 Catalog Test, Scenario 3, Condition 4 Test Results. 64

Figure 10.20 Catalog Test, Scenario 3, Condition 5 Test Results. 65

Figure 10.21 Catalog Test, Scenario 4, Condition 1 Test Results. 66

Figure 10.22 Catalog Test, Scenario 4, Condition 2 Test Results. 67

Figure 10.23 Catalog Test, Scenario 4, Condition 3 Test Results. 68

Figure 10.24 Catalog Test, Scenario 4, Condition 4 Test Results. 69

Figure 10.25 Catalog Test, Scenario 4, Condition 5 Test Results. 70

Figure 10.26 Server Comparison Test Results ... 71

Figure A. 1 Catalog Tree & Product Editing Window. .. 78

Figure A. 2 Property Group Editing Menu. ... 79

Figure A. 3 Product Family Editing Menu. .. 79

Figure A. 4 Image Editing Menu.. 80

Figure B. 1 Detailed Product Web Page. .. 81

Figure B. 2 Product Search Web Page. .. 82

Figure B. 3 Search Results Page. ... 83

Figure B. 4 Basket Module Screenshot. ... 83

 xii

ÖZET

Internet kullanımının yaygınlaşması sonucu, bütün dünyada Elektronik Ticaretin

hacminin hızla büyümesi, şirketlerin mevcut pazarlama stratejilerinde yenilikler

yapmasını ve elektronik ticarette kullanılacak ürün bilgisinin en etkin olarak ifade

edilmesini zorunlu hale getirmiştir. Günümüzde basılı katalogların, şirketlerin ürün

bilgilerini yeterince belirtemediği açıktır ve bu konuda Elektronik Kataloglar daha

uygun bir çözümdür. İlişkisel veri tabanı kullanan web tabanlı sistemler bir çözüm

gibi görünse de, bir elektronik katalogun işlevlerini tam olarak yerine getiremez.

Yapılan çalışmada, ürün bilgilerinde bütünlülüğü sağlayıp, elektronik ortamlara aynı

tutarlılıkla dağıtılmasını amaçlayan XML tabanlı bir elektronik katalog sistemi

sunulmaktadır. Ana fikir, ürüne ait bütün detayları, sınırlara bağlı kalmadan, tek bir

platformda toplayıp; web sayfaları, CD gibi elektronik ortamlara aktarılmasını

sağlamaktır. JAVA teknolojilerini baz alan bir istemci mimarisi ile, yerel XML veri

tabanı arasında oluşturulan dağıtık sistemlerde çalışabilen, RMI tabanlı bir iletişim

katmanı oluşturulmuş ve sistemde toplanan ürün bilgisinin SOAP servisleri

kullanılarak, internete aktarılması sağlanmıştır. Sunulan sistemle ilgili analiz,

tasarım, ve uygulama safhaları detaylı olarak ele alınmış; çeşitli testlerle, uygulama

platformunun performans incelenmiştir. Sonuç olarak, XML tabanlı; fiyat, ebat, renk

gibi sınırsız sayıda ürün bilgisini; resimler, videolar, dosyalar, teknik dokümanları

gibi sınırsız sayıda görsel içerik ile, birleştirerek tek bir ortamda saklayabilen, kabul

edilebilir bir performansla çalışan bir Elektronik Katalog sistemi elde edilmiştir.

 xiii

SUMMARY

Impressive growth in the electronic commerce due to the widespread use of Internet

all around the world resulted in reformation in marketing strategies and the effective

representation of the product information became a crucial matter for companies.

Today it is clearly understood that paper catalogs are not enough to inform every

detail about a product and electronic catalogs are the convenient solutions for this

problem. Although a web-based system that uses relational database seems to be a

solution, it cannot provide all needs of an electronic catalog system. This thesis,

offers an XML based electronic catalog system that enables construction of

boundless product details. The striking idea is to collect the detailed product

information in one platform, and distribute them to various platforms such as web

site and CD-ROM in order to avoid inconsistency in product integrity. A client

architecture based on the JAVA technologies communicates with the native XML

database system with the help RMI protocol which enables working on distributed

systems. All the product data is published to internet by using the SOAP services.

Analyze, design and the application phases of the offered system are described in

detail, and the performance analysis of the whole platform is measured by various

test cases. As a result, an XML based Electronic Catalog Management System that

allows an unrestricted storage of product attributes for any product which includes an

unlimited number of description fields (price, size, or color etc.) or an unlimited

number of multimedia attachments such as images, video, design files, marketing

brochures or technical specifications working with acceptable performance is

achieved.

 1

1. INTRODUCTION

Before Internet and the multimedia environment was common and CD-Rom

technology was found, it was impossible to transfer a high quality image with 1.44

diskette, or sending the product information via peer-to-peer connection seemed to be

nonsensical. These insufficiencies were leading the companies to constitute paper

catalogs, but even today they are expensive, they have a limited material for

visuality, and changing a detail is nearly impossible with them. Since the production

of a print catalog takes too long, it cannot be updated easily and regularly, besides it

is hard for a customer to find the appropriate product. Designing a paper catalog

template is another problem, which requires a graphic agency or an extra labor force

for the companies. Distributing the hard-copy catalog to the person concerned is a

hard work as well. With the recent technological developments, these obstacles are

removed one by one. Today, the reasonable speed of the Internet and the comfort of

the multimedia environment enable us to manage product catalogs much more

efficiently by using Electronic Catalogs [1].

Electronic Catalog Management System (ECMS) [2] is an application where a

company can store all product information with multimedia files such as images,

videos, AutoCAD files etc. and publish this information on media such as Internet,

CD for marketing purposes. The catalog content can be updated regularly and all

updates are immediately visible on all media. With such a dynamic nature of

electronic catalogs, companies can immediately respond to changing market

conditions through repackaging, re-pricing etc. In contrast to paper catalogs,

electronic catalogs provide a two-way communication channel between the company

and its customers. The company needs only one product database, which can be

integrated with back-office systems, to be published on different media. Once the

product information is published on the web, the company can easily set up an e-

commerce mechanism on it. Users can navigate through product catalogs using

search engine mechanisms - which should support product specific searching criteria

build a basket, place orders on Internet and make payments via secured online

 2

transaction mechanisms. The company is also able to provide authentication keys to

its suppliers so that, when a supplier enters the company‟s web site with this

authentication key, he/she can see supplier related private information of products

such as pricing, stock etc. and can make online orders. Such a communication ring

accelerates order and payment chains of the company.

In most ECMS it is preferable to store data in a Relational Database Management

System (RDMS) [3] because of its highly optimized nature. However, in this case,

since every product family has a different structure, the data‟s structure is too

dynamic for RDMS; also it needs to be exchanged between different systems and

platforms. Thus XML [4, 5] turns up to be a wiser solution. XML can be transported

safely over the Internet using a wide variety of protocols, such as HTTP, FTP and

SMTP. These qualities indicate why XML should be used in an ECMS.

 3

2. FEATURES OF OUR ECMS

Before offering the XML based ECMS as a solution to the problems given in

introduction section, the necessities and the scope of the product representation

should be defined. If a customer wants to examine or to buy a product, he/she should

find the appropriate product in the catalog, according to specific criteria in his/her

mind. After finding the product, the customer achieves the details about the product.

Search criteria and final details change according to the type of the customer; if the

customer is a supplier, he/she wants to search the product more easily with only

using the SKU number and access to business related details like supplier price or

stock. Meanwhile, end-users make more general searches and they want to see more

multimedia content of products. Therefore, constituting the searching mechanism

becomes the primary objective that should be accomplished by the system.

In our system we considered a search engine which supports search by unique

product number and detailed search. Also the search system should work with the

same principals in every environment. Considering the explanation mentioned above,

we defined our final goal as „representing maximum product information and

providing perfect attainability‟. This excellence is obtained by constructing different

concepts that complement each other. First of all, exposition of the product detail

should be almost limitless. But the untidiness caused by this freedom should be

avoided by providing easiness on the graphical user interface (GUI). The GUI of the

software [6] should be user friendly and navigation should be easy. Also processes

have to be fast in order to sustain performance. Furthermore, once information is

acquired, this should be used several times for different purposes if necessary, which

will provide uniqueness and consistency of the information.

Before trying to integrate these features into software application, the data structure

should be designed and clarified carefully so that necessities will not turn into

restrictions. Only after the data structure is determined, the architecture can fit on it

perfectly. Combination of well-designed structure with a powerful architecture,

allows us to achieve desirable results in an ECMS.

 4

3. DATA STRUCTURE

In this section, the data structure of the system will be given in detail; firstly the

elements of the data structure will be defined which will also be used in the

following chapters; after that, the relation between those elements will be given as a

rule base with concrete examples.

Figure 3.1. ECMS Data Structure Example.

The Data structure is designed according to the features of ECMS. First of all, ECMS

supports several languages (Fig. 3.1.1), which is the root component of the system.

Every other component takes part under a language except the universal objects like

units or numeric values (Fig. 3.1.8.3), which are hierarchically independent. Under a

language, products are grouped into catalogs (Fig. 3.1.2) and categorized by product

families (Fig. 3.1.3). Catalogs are separated from each other according to the primary

distinction between the product species. Each catalog has a product tree (Fig. 3.1.4).

This tree holds the groups (Fig. 3.1.5) and the products (Fig. 3.1.6). Groups are

branches and the products are leaves of the catalog tree. Catalog tree supplies the

general view of the separation among the products in a conventional way. In the

same level with the catalog, product families are defined, which are used as

interfaces laying down the rules. Every product is an instance of a product-family

and obeys the rules of the family, but it contains multimedia content such as pictures,

 5

videos etc. specific to the product itself (Fig 3.1.11). Each product-family consists of

properties (Fig 3.1.7) and each property defines a detail about the product like price,

dimension, color etc.

The system has a complex nature that makes it hard to identify the core elements

clearly. In order to resolve the confusion, elements will be defined in the following

section.

3.1 Elements of Data Structure

System consists of atomic and non-atomic elements in general. Atomic elements

states the final level real data, on the other hand the non-atomic elements states the

high level virtual data. Both atomic and non-atomic elements are put together

hierarchically in a rule base.

3.1.1 Atomic Elements

3.1.1.1 Text

A text represents the data which is formed by a character string. There is no limit for

the length of the string.

3.1.1.2 Number

 Represents a numeric value.

3.1.1.3 Date

Represents a date, which includes the day, month and the year characteristic for the

value.

3.1.2 Non-Atomic Elements

3.1.2.1 Language

The differentiation and the grouping of data start with this elements. As a data, every

single object has a different meaning in every language, in order to express this

principal differentiation; the language element is hierarchically in the top level.

3.1.2.2 Unit

Unit element that is used to express the universal units (such as kg, m, l, etc.).

 6

3.1.2.3 Member

Represents a member; each member has special rights and access to specific

elements of the system, like price, stock, discount rate etc. Every member obeys the

rules that the “member group” defines.

3.1.2.4 Member Group

Defines the access rights of a member.

3.1.2.5 Catalog

Catalog is the primary element that separates the products from each other according

to their functional differentiation.

3.1.2.6 Catalog tree

Catalog tree holds the products and represents the catalog hierarchy in a tree

formation.

3.1.2.7 Group

Groups are the branches of the catalog tree that holds products.

3.1.2.8 Property Group

Property Group defines the value sets and the restrictions for a property about its

value. It has different variations and will be explained in detail.

3.1.2.9 Product Family

Product family is a template for the product. It holds the properties and defines the

way of extending the property groups for each property.

3.1.2.10 Property

Property is the representation of the single detail of a product (like color, price,

dimension etc.). It has a value that is constrained by a property group or a unit.

3.1.2.11 Value

This element represents the value of a property. For instance, in this phrase “The

price of the book is 10 Euro” the book is the category, “price” is a property of a

“book” and “10” is the value of the property.

3.1.2.12 Product:

Product is the pivot element of the system.

 7

3.1.2.13 Picture

Picture is a graphical representation of the product. An image that is related to the

product is also counted as picture in the system. This element defines the image

properties (like image name, size, format etc.) and holds the information about the

image.

3.1.2.14 File

File is a document that contains information about the product (like product manual).

3.1.2.15 XSL View:

XSL View defines how the product will be displayed to catalog viewer.

3.2 Hierarchy of the Data Structure Elements

Each element explained in section 3.1, is arranged in a tree formation in order to

represent the hierarchy between each other. (Figure 3.2)

Figure 3.2 Hierarchy of the Data Structure Elements

 8

3.3 Rule Base

has single: Element has single element.

has: Element has one or more elements.

extends: Element is a template for the other element which attains the value.

Language has catalogs.

Language has units.

Language has property groups.

Language has product families.

Member group has members.

Product Family has properties.

Property extends unit or property group.

Property has values.

Catalog has single catalog tree.

Catalog tree has groups.

Group has groups.

Group has products.

Product extends product family.

Product has pictures.

Product has files.

Product has single XSL View.

 9

Figure 3.3 Rule Base Diagram.

3.4 Property Groups

The most significant element of the system is the property group element. It

determines the restriction rules and how the value will be appointed to a property. In

order to emphasize the importance, in this section the details of the property group

are given detail.

In order to define the best value for a property, the property group structure is

planned to support various data selection in a simple data structure to reduce the

software application‟s load. Such a structure will lessen the software development

time.

The property groups are separated into modes. Each mode defines a different kind of

data selection and embodies the data. As a result, the value of the property becomes

more expressive.

3.4.1 Property Group Mode 0

There is no constrains or rule for attaining value to a property.

 10

3.4.2 Property Group Mode 1

This mode selects single element from predefined list which consists of one or more

elements. The property group object has a domain and a result set that selects single

element form the domain.

Figure 3.4 Property Group Mode 1 Example.

3.4.3 Property Group Mode 2

This mode selects multiple elements form predefined list, which consists of one or

more elements. Mode 2 objects have a domain and a result set that selects multiple

elements from the domain.

Figure 3.5 Property Group Mode 2 Example.

Science Fiction

Novel

Story

Poetry

Property Group (Mode 1): BookType

Domain

Novel

Result Set

Science Fiction

Novel

Story

Poetry

Property Group (Mode 2): BookType

Domain

 Science Fiction

 Novel

Result Set

 11

3.4.4 Property Group Mode 3

This mode selects single element form predefined data tree, which consists of

multilevel data hierarchy. Mode 3 object has a domain and a result set that selects

single tree component from the domain tree.

Figure 3.6 Property Group Mode 3 Example.

3.4.5 Property Group Mode 4

This mode selects multiple elements form predefined data tree, which consists of

multi-level data hierarchy. Mode 4 objects have a domain and a result set that selects

multiple tree components from the domain tree.

Figure 3.7 Property Group Mode 4 Example.

3.4.6 Property Group Mode 5

This mode type is used in mode 7, and restricted atomically by number, text or date.

Domain
Root

 Literature Science Fiction

Poetry Novel Fiction Fantasy

Literature

Level 1

Science Fiction

Level 2

Poetry

Literature

Result Set Root

Domain
Root

 Literature Science Fiction

Poetry Novel Fiction Fantasy

Literature

Level 1

Science Fiction

Level 2

Poetry

Literature

Property Group (Mode 4): Book Type

Fiction

Science Fiction

Result Set Root

Property Group (Mode 3): Book Type

 12

Figure 3.8 Property Group Mode 5 Example.

3.4.7 Property Group Mode 6

This mode is a pointer to another product element in the system. This kind of mode is

used to express the sets. For instance, in a book catalog, the books are defined in a

single formation but there are some other product types like book sets, which consist

of some other books. A single book can be represented by itself, but it can also be a

member of a book set which is another product. With this property group, the data

structure is able to obtain the ability of “pointing product in another product”. In this

property group mode, the domain consists of the all of the products in the system,

and the result set consists one of the book in the system.

Figure 3.9 Property Group Mode 6 Example.

3.4.8 Property Group Mode 7

This mode widens the data structure horizontally. Mode 7 contains other property

groups in itself. Considering the example in the mode 6, pointing the related product

in the system by itself is sometimes not enough to express the data effectively. For

each product pointer, it can be discussed to add another property which will be

meaningful together. In a book set, there can be quantity property for each book to

give the full sense.

Restriction type: Number

Property Group (Mode 5): Quantity of Book

Property Group (Mode 6): Book in the Set

Crime & Punishment (ID: 423)

Faust (ID: 428)

Dorian Gray‟s Portrait (ID: 435)

Old Goriot (ID: 436)

Domain

 * 423

Result Set

 13

Figure 3.10 Property Group Mode 7 Example.

3.4.9 Property Group Mode 8

This property group is specialized to express the unique product number, which

facilitates attainability. But there are some common problems in this subject. A full

text search mentality does not solve the problem perfectly, as an alternate the Mode 8

property group offers a different filtering mechanism. The domain is filtered by a

function that removes some of the characters that are not numeric or a letter. This

filter can be specific to the user.

Figure 3.11 Property Group Mode 8 Example.

As a result, if the user enters the search texts like, 975-6477-19-9 or 975 6477 19 9 or

975.6477.19.9, generally, 975*6477*19*9 (* represents any character other than

numeric or letter based) the result filter will give 9756477199 value, so that

searching by a product number would be highly effective.

3.5 Forkability

With the property group Mode 7 the system enables widening horizontally. But the

system needs of widening vertically, which means attaining multiple values to each

property element respectively. According to that need, system offers another virtual

Property Group (Mode 8): ISBN of Book

Domain Result Set

975-6477-19-9

F

il
te

r
F

u
n

c
ti

o
n

975-6477-19-9

 |

 |

9756477199

Property Group (Mode 7): Set Content

Book in the Set (mode 6)

Quantity of Book (mode 5)

Domain

Book in the Set Quantity of Book
 Crime & Punishment 2

Result Set

 14

ability called “forkability”. Forkability means cloning the property that extends a

property group or a unit element with the same restrictions defined by the property

group or by the unit element. Each cloned element may have a different value. In

order to express this hierarchy, the system uses the mother-child relations. Each

property is signed as mother even if it does not support the forkability. Cloning

operation means, copying the mother element and signing it as a child element.

When the forkability is applied to the example given in the Fig. 3.9, elements of a

book set can be expressed effectively.

Figure 3.12 Forkability Example.

Forkability can be adapted to any kind of property groups. With widening the data

representation both horizontally and vertically, an opportunity of constructing a

boundless detail is obtained as it is proposed.

3.6 Complete Example

Below, there is a book example, taken from Amazon.com which is a well known

ecommerce web site. With this example, we prove that our data structure is capable

of defining any kind of product successfully.

Mass Market Paperback: 576 pages;

Dimensions (in inches): 0.97 x 7.02 x 4.18

Translator: Constance Garnett

Publisher: Bantam;

ISBN: 0553211757

Author: Fyodor Dostoyevsky

Price: 6.99 Euro

Other Editions: Hardcover, Paperback, Library Binding

Property: Books in the Set extends Property Group (Mode 7): Set Content

Book in the Set Quantity of Book Fork Type
Crime & Punishment 2 Mother

The Brothers Karamazov 4 Child

Notes from Underground 1 Child

 15

This terminology is translated into our data structure as shown below:

Table 3.1 Complete Book Example.

Property Name Property Group / Unit Atomic Forkability Value

Author Mode 0 character false Fyodor Dostoyevsky

Translator Mode 0 character false Constance Garnett

Publisher Mode 0 character false Bantam

Book Type Mode 1 (Book Type) character false Novel

ISBN number Mode 8 (Product Code) number false 0553211757

Price Unit (Euro) number false 6.99

Page size Mode 0 number false 576

Thickness Unit (inches) number false 0.97

Height Unit (inches) number false 7.02

Width Unit (inches) number false 4.18

Other Editions Mode 6 (Other Editions) character true - mother Hardcover

child Paperback

child Library Binding

 16

4. XML IMPLEMENTATION

When we consider the abilities of the data structure, which are given in Section 3, we

can easily see that all the data structure elements are in tree model. Constructing and

modifying tree models on RDMS needs too much workload to provide the data

consistency. Therefore XML is chosen to realize the data structure. Below, a table is

given that compares RDMS to XML Database System. Analyzing this table clarifies

the reasons for choosing XML.

Table 4.1 XML - RDMS Comparison.

XML RDMS

Data in single hierarchical structure Data in multiple tables

Nodes have element and/or attribute

values

Cells have a single value

Elements can be nested Atomic cell values

Elements are ordered Row/column order not defined

Elements can be recursive Little support for recursive elements

Schema optional Schema required

Direct storage/retrieval of XML

documents

Joins often necessary to retrieve data

Query with XML standards (XQuery [7] ,

XPath [8], XUpdate)

Query with SQL

4.1 Realizing Data Structure Elements in XML Format

In this section, the transformation of data structure elements to XML [9] will be

given in detail. Before expanding each component one by one, it is important to

explain special attributes that is specific to the XML data structure implementation.

First of all, each element has an ID attribute to become distinct form any other

element. Another primary attribute is the type, which defines the atomic elements.

(Section 3.1.1)

4.1.1 Unit

<unit type="number" ID="2815">mm.</unit>

 17

4.1.2 Property group mode 1, 2

<propertygroup name="Author" ID="5000" mode="1" type="character"

language="English">

<value><![CDATA[Fyodor Dostoyevsky]]></value>

<value><![CDATA[Tolstoy]]></value>

<value><![CDATA[Balzac]]></value>

<value><![CDATA[Umberto Eco]]></value>

</propertygroup>

4.1.3 Property group mode 3, 4

<propertygroup name="Book Type" ID="4956" mode="3” type="character"

language="English" levelsize="2" >

- <value level="0" ID="4957"><![CDATA[Literature]]>

<subvalue level="1" ID="5028"><![CDATA[Classics]]></subvalue>

<subvalue level="1" ID="5029"><![CDATA[Novel]]></subvalue>

<subvalue level="1" ID="5030"><![CDATA[Poetry]]></subvalue>

<subvalue level="1" ID="5031"><![CDATA[Stories]]></subvalue>

</value>

+ <value level="0" ID="4958"><![CDATA[Art]]>

+ <value level="0" ID="4959"><![CDATA[Entertainment]]>

+ <value level="0" ID="4960"><![CDATA[Children]]>

+ <value level="0" ID="4961"><![CDATA[Sport]]>

+ <value level="0" ID="4962"><![CDATA[Food]]>

+ <value level="0" ID="4963"><![CDATA[Science]]>

</propertygroup>

4.1.4 Property group mode 6

 <propertygroup name="Other Editions" ID="5002" mode="6"

language="English" />

 18

4.1.5 Property group mode 8

 <propertygroup name="Product Code" ID="5001" mode="8"

type="character" language="English" />

4.1.6 Property

<property type="character" mode="1" ID="5003" order="5" forkable="false">

<name><![CDATA[Author]]></name>

<propertyGroup ID="5000"><![CDATA[Author]]></propertyGroup>

<property>

4.2 Advantages of XML:

Below there is a simplified product structure of our ECMS to give an overview of the

structure.

<product name = “Crime and Punishment”>

 <properties>

 <property>

 <name>Author</name>

 <unit/>

 <value> Fyodor Dostoyevsky </value>

 </property>

 <property>

 <name>Type</name>

 <unit ID=‟5000‟> (points to the unique ID of the property

group “Book Type”)

 <value>Adventure</value>

 <value>Classics</value>

 </property>

 <property>

 <name>Price</name>

 19

 <unit>Euro</unit>

 <value>6.99</value>

 </property>

 </properties>

 <pictures>

 <picture name=‟cover.jpg‟>

 <info>The cover of the book.</info>

 </picture>

 </pictures>

 <files>

 <file name=‟summary.pdf‟>

 <info>The summary of the book.</info>

 </file>

 </files>

</product>

According to the structure given above, when a new property is added to a product

family, it is automatically included to all existing products. For a relational database,

this means that we have to add a new column to our product table, and all SQL

statements have to be changed in order to include the new column to the searching

mechanism. Changing SQL statements for each modification of the product family

may cause an inconsistency of the platform.

XML represents data with a tree structure. Search (XPATH [10, 11]: query language

for XML, similar to SQL select statements) and update (XUPDATE: update language

for XML, similar to SQL update statements) mechanisms run on the tree directly

(Table 4.1).

Adding a new property to a product family means adding a new leaf to XML

document (to the „properties‟ element), which is automatically added to searching

and updating mechanisms. This structure avoids any inconsistency because XPATH

expressions remain the same by this modification.

 20

Example of a full text search case with input text “Adventure” based on the example

architecture given above.

By using RDMS:

Table 4.2 RDMS Data Example.

P1 (author) P2 (type)

Fyodor Dostoyevsky Adventure

SQL: “Select * from books where P1 = „Adventure‟ or P2 = „Adventure‟ ”

By modification on the table:

Table 4.3 Modified RDMS Data Example.

P1 P2 P3 (price)

Fyodor Dostoyevsky Adventure 6.99

The SQL statement has to be changed: “Select * from books where P1 = „Adventure‟

or P2 = „Adventure‟ or P3 = „Adventure‟ ”

By Using XML:

<properties>

 <property name=“P1”>

<value>Fyodor Dostoyevsky</value>

 </property>

 <property name=“P2”>

<value>Adventure</value>

<value> Classics</value>

 </property>

 </properties>

By modification on the document;

<properties>

 <property name=“P1”>

<value> Fyodor Dostoyevsky</value>

 </property>

 <property name=“P2”>

 21

<value>Adventure</value>

<value> Classics</value>

 </property>

 <property name=“P3”>

<value>10</value>

 </property>

 </properties>

The XPATH expression “/product/properties/property/value[text()=„Adventure‟]”

remains the same.

The major advantage of XML is that the representation of the data is separated from

the data. XML is transformed via Extended Style sheet Language (XSL) [12] to

HTML, WML etc. in order to display the information to the catalog viewer,

according to the platform. In other words, for example if we want to change the

design of the company‟s web site, we neither change the product database nor the

software components; we only change the XSL templates.

Another advantage of XML is that product data can be transformed into any structure

in order to share it with back-office systems, ERPs etc, or to give reports to the

customer in EXCEL, PDF etc. XML can also be sent via a wide variety of protocols

such as HTTP, FTP and SMTP etc, which is an alternative way for integrating

product data (For ex. with SOAP services [13-19]).

 22

Electronic Catalog Server

Data

base

DB-Bridge Layer

Electronic Catalog

Application

Web

Catalog

CD

Catalog

Print

Catalog

5. GENERAL ARCHITECTURE

The platform consists of five modules, which are independent in the structure but

process same XML documents.

Figure 5.1 General Architecture.

Electronic Catalog Server consists of two modules namely the native XML Database

and the DB-Bridge Layer. This server can be installed on any computer and all

services can be accessed via TCP/IP protocol. The database holds the documents and

the DB-Bridge layer processes XML documents. The architecture of the DB-Bridge

is described in next sections.

Electronic Catalog Application will be called as “Manager” for the rest of the thesis.

A person who uses the Manager is called as “user” in the rest of the thesis. This

module is the GUI that translates user‟s GUI actions to XML processing orders for

the DB-Bridge.

Web Catalog, CD Catalog and Print Catalog modules publishes the XML documents

– products – on the WEB, CD and paper media. The detailed architecture of these

modules will be explained in next sections.

 23

6. DEVELOPMENT ENVIRONMENT

The reasons for choosing XML as data structure are explained in Section 4. For the

development of the project, we needed an object oriented programming language

with advanced GUI components and support for XML processing.

Considering today‟s technologies, there were three choices; JAVA, Delphi and

Microsoft .NET Platform.

We have chosen JAVA because first of all it is an open source environment, so we

didn‟t need any investment for the development environment of the project.

On the other hand, there is a wide support of JAVA APIs for different needs. For

example, for generating Excel reports, PDF documents, processing images etc.

On the web server side we have decided to use J2EE technology [20,21], which can

be considered as an extension of JAVA for internet applications, so we had the

chance to use same classes and libraries for the development of the web catalog.

For the communication layer between our software layers we have chosen Java

Remote Method Invocation (RMI) [22] technology on the application side, and

SOAP for our web based application. SOAP is an HTTP based protocol and supports

XML messages, which fits our needs excellently. Java RMI enables the programmer

to create distributed Java technology-based to Java technology-based applications, in

which the methods of remote Java objects can be invoked from other Java virtual

machines, possibly on different hosts. RMI uses object serialization to marshal and

un-marshal parameters and does not truncate types, supporting true object-oriented

polymorphism. [23].

 24

7. MANAGER ARCHITECTURE

Figure 7.1 Manager Architecture.

7.1 XML DB

Once XML was chosen as data structure, a database system was needed to store

XML documents natively (without converting them into relational data), query them

by using XPATH and run XUPDATE commands on documents.

Ten database systems were analyzed and tested with our platform for this purpose.

Some of these systems were commercial such as Tamino XML Server [24],

X-Hive/DB Native XML Storage [25] and some were open-source such as Xindice

[26], Exist [27].

Currently, Xindice is being used in our ECMS, as it is free and robust and also very

successful in our stress tests.

7.2 DB-Bridge

To be successful on the market it is crucial for an ECMS to support at least some of

many existing native XML databases. To do this efficiently, we decided to gather all

database features in one layer; namely the DB-Bridge, and to separate the platform

from the database. The whole platform can then be switched immediately to another

database only by changing the DB-Bridge layer.

RMI

XML

DB Bridge

PDF, Excel Reports

& Other DB

Systems

XML

Integration

Layer
Manager

GUI

XMLDB

 25

DB-Bridge uses JAVA RMI technology in order to talk to Managers. The Manager

itself has no connection with the database directly; thus it sends requests to the DB-

Bridge for database operations with the user‟s authentication token. This work-flow

brings a high security to the platform: Managers cannot request any DB operations

from the DB-Bridge that are not „legal‟ - which do not contain the user‟s

authentication key or which will harm the database - since they are not defined in

DB-Bridge layer.

The workflow of JAVA RMI technology consists of two components: the RMI Server

and RMI clients. Clients can connect to the server by using IP and port specific

addresses and request operations from them. This means that Managers (each

Manager is an RMI client) can connect to our DB-Bridge (RMI Server) from

anywhere using the TCP-IP protocol, in other words using the Internet.

Checking user‟s authentication, supporting multiple users, backing up and restoring

data, terminating sessions of users after a time interval, locking and unlocking

products, product families or catalogs according to the user‟s actions are some of the

capabilities of the DB-Bridge layer.

DB-Bridge contains some extra mechanisms in it, which were missing on XINDICE.

These mechanisms are briefly described below:

Paging: Once an XPATH is run on the product data, a result set is created. When the

result set contains too many elements and if all of them are retrieved in a single step,

this would lead to out of memory problems. Therefore a mechanism is developed for

DB-Bridge layer. DB-Bridge divides the result-set in pages and the results can only

be retrieved page by page. Commercial database systems like Tamino XML Server or

X-Hive/DB Native XML Storage have this capability built-in.

Collection Pool: The major step of database transactions that requires a long time

interval is connecting to the database or to a collection in the database. In order to

avoid this latency, a collection pool mechanism is developed for the DB-Bridge; so

that the DB-Bridge holds a specific number of connections to the database and uses

these present connections for database transactions.

 26

7.3 Manager

As described above, one or more Managers can connect to the DB-Bridge using

TCP-IP and request database operations according to the user‟s actions on the GUI.

In other words, the Manager is only a GUI that translates user‟s actions for the DB-

Bridge as database operations. These actions are categorized as follow:

7.3.1 Navigation Related Operations

The user can navigate through different languages and their catalogs using the GUI.

The user can add/delete groups on the catalog tree add/delete or change the order of

products under a group. The constructed catalog tree will also be used in WEB and

CD Catalog for easy navigation.

7.3.2 Product Family Related Operations

The user can add, delete a product family or modify (add/delete properties, change

properties order, add/delete tables, select an XSL scheme for products, select search

and listing criteria, select supplier specific properties, add/remove fork-ability to

properties etc.) an existing one, which also modify all products that are children of

the mentioned family, accordingly.

7.3.3 Product Related Operations

The user can add, delete or modify a product by changing property values, add or

delete multimedia files and technical data. The user can also backup and restore

current product database.

7.3.4 Supplier Related Operations

The user can add/remove a supplier or modify an existing supplier. Each supplier has

a group and properties can be associated to these groups so that the property is only

visible to the visitor if he/she has an authentication key.

7.3.5 Data Sharing Operations

The user can update the web site of the company, create a new CD catalog, get

reports in Excel or PDF format, can exchange data with other RDMS or ERP

systems.

 27

7.3.6 Administrative Operations

The administrator can add/delete and modify property groups, add/delete and change

user accounts and has the right to modify every component in the system such as

adding and deleting a language.

7.4 Multimedia Storage in the ECMS System

 In the platform, all the data type formats and the data itself are kept in XML, such a

structure has great benefits that clearly explained in the previous chapters. The

desired ECMS, puts forward to hold the multimedia content such as images, videos

etc. In this part of the thesis, the methods of connecting the product with the

multimedia content will be explained. In general, the multimedia content is kept in

file format, and the user associates a product with this file. As a result the problem

definition becomes the connection operation of product with a multimedia file.

7.4.1 Method 1: Storing the Multimedia Content in the Manager File System

The easiest idea of solving this problem can be to store the multimedia file in the

operating system‟s file system. When the user adds a file by selecting the related

document from the file system, the path information is saved in the product element,

and when user removes the path information from the product element, the

connection between the file and the product is cut.

Figure 7.2 Storing the Multimedia Content in the Manager File System

This kind of workflow seems to be simple and has low data cost. But it doesn‟t

support multi-client architecture. Also when the file is removed from the file system

by another application or user, the link from the product do file becomes a dead link

and affects the system consistency negatively. Also when the ECMS system needs

PRODUCT ELEMENT

Image link C:\images\image.jpg

FILE SYSTEM

Path:

C:\images\ image.jpg

 28

that file while performing its normal functions such as updating the web site or

building a CD-Catalog data content, there can be locking problems if another

application or user uses the same file at that time. Moreover, if another product

points another file in the file system with a different path but the same name,

confusion occurs. Since the entire multimedia content will be kept in the same folder

in the web or CD-Catalog, The last selected file overwrites the other file that causes

data loss for the system.

7.4.2 Method 2: Storing the Multimedia Content in the XML-DB File System

Another suggestion can extend the method 1 explained above, which is copying the

selected file to another folder that takes places under the XML-DB applications data

source.

Figure 7.3 the Multimedia Content in the XML-DB File System.

By this method, multi client architecture is supported with a data cost for the system

as the file is copied; the possibility of other user‟s or application‟s action for the

copied file is reduced, but still possible. But the problem of other file with the same

name overwriting is not prevented that causes data loss.

XML – DB APPLICATION

 Application Path

 image.jpg

Select the file

FILE SYSTEM

Path:

C:\images\ image.jpg

Copy the file under the

application path

Product

 XMLDB

XML - DB APPLICATION

Product

 XMLDB

 29

7.4.3 Method 3: Storing the Multimedia Content in the XML-DB File System

By Using Distinct ID

Accepting the data cost, the system can be improved by attaining an ID generated

automatically by the system to each copied file.

Figure 7.4 Storing the Multimedia Content in the XML-DB File System By Using

Distinct ID.

By this method, overwriting the files with the same name is avoided; but still other

applications and user can reach and makes action on the stored file.

For the methods given above, the common problem is; the file saved in the

application‟s storage system is not well protected. Also it should be considered that,

when the products is separated from each other by language, the image that

represents the product doesn‟t change, so for each product in different language, the

same image is saved for different ID and that will cause a huge data cost for the

system. Another problem arises for the integration of the multimedia file operation

with the RMI server. When the user makes an operation via RMI, the related file

should be serialized in order to obey the RMI protocol.

After analyzing the methods listed above, in order to achieve the perfect result, it is

needed to hold the multimedia content inside of the database instead of holding it in

XML – DB APPLICATION

Product

 XMLDB

FILE SYSTEM

Path:

C:\images\

 image.jpg

Copy the file under the

application path and rename

with ID

XML - DB APPLICATION

Product

 XMLDB

Select the file

4233.jpg

 30

the file system. For some of the commercial database system, it is possible built in,

but the general idea in the thesis rejects the database dependency. Hence, the only

alternative for the perfect solution becomes the transformation of the binary data of

the multimedia file into the XML content [28].

Figure 7.5 Storing Multimedia Content in XML DB

XML specification‟s character restriction does not allow embedding every byte

values into XML document. Valid character values that will be used in an XML

documents can only include the following ranges of hexadecimal values: 0x9, 0xA,

0xD, 0x20-0xd7ff, 0xe000-0xfffd, and 0x10000-0x10ffff [4]. The binary data is

embedded within the XML document is received by XML processor that attempts to

interpret the byte sequence following the UTF-8 or UTF-16 encodings. This most

likely causes the parser to encounter invalid sequences and fail. This result implies

that binary data must be encoded into the valid character set before embedding it into

the XML document. Also the XML document should be decoded in the receiving

side.

FILE SYSTEM

Path:

C:\images\

image.jpg

Select the file

 Insert the XML to DB with ID

Product

 XMLDB

XML - DB APPLICATION

Convert to

XML

image.xml

 Product

 XMLDB

XML - DB APPLICATION

4233.xml

 31

7.4.4 Method 4: Direct Approach for Converting Binary Data to XML

The direct approach to solving this encoding problem converts each binary data byte

into its two characters, hexadecimal representation. By doing that, 256 possible byte

values are encoded using for each byte two characters from the character set 0-9, a-f:

Pseudo code:

Prepare a map for encoding. { "00", "01", .. ,"fe", "ff" };

Read the bytes form the binary file,

Convert each byte to character stream according to the map.

Write back the string in to the file.

Although this approach encodes binary data within the XML document, it wastes

network bandwidth. For each byte in the original binary file, we get two characters in

the resulting XML document. For transferring large binary data sets, this is an

important consideration.

7.4.5 Method 5: Base 64 Converting

The next approach, in terms of encoding/decoding complexity, is the Base-64

conversion. This approach is used for mail transporting. The encoding algorithm

processes a byte stream in 3-byte sequences. Each 3-byte sequence parcels into four

6-bit data units as shown in the following figure.

Figure 7.6 Converting 3-byte into four 6-bit data.

Each 6-bit data unit then encodes into the character stream as the corresponding

character from the character set: “A-Z, a-z, 0-9, +, and /. = “

The advantage of this approach is it encodes three data bytes using four characters

resulting in an encoded document that is 33 percent larger than the original binary

document. Compared to the previous approach, you generate 1.33 characters per byte

instead of 2 characters per byte.

 32

Another advantage is that it has been widely used for a long time and many

implementations are available. Also the approach is very fast since it consists of

binary shift and table lookup operations.

7.4.6 Method 6: Huffman Coding Approach

This method uses the statistical properties of binary data sets to compress the

encoded character stream. The first method encodes every binary value using two

characters. In that case, the average code length is fixed at two characters per byte.

For many data sets, when the histogram of each byte value's occurrence in the bytes

of the files is examined, a very uneven distribution can be detected, where some

bytes are used very frequently while others used rarely or even not used.

Huffman coding [29] uses the statistical property of occurrence of bytes to reduce the

average code length. Most frequently used bytes are represented by using single

characters and the least frequently used with longer character sequences. If the byte

value subset of the file is distributed equally, the approach is not effective. Otherwise

the approach is very effective.

Figure 7.7 Huffman Conversation Diagram

Comparing this method with the other two methods, the Huffman encoding

guaranties the minimum data cost. As a result, in the ECMS system, it becomes best

solution to maintain the multimedia content in the system. The adaptation of the

Huffman encoding requires additional processing times but in the ECMS system, this

process will be done in the client‟s computer and will not cause extra work load for

the XML DB layer. XML DB will only save the converted XML document in itself.

Binary

file

Step 1

Determine the

occurance rates

of each byte

Step 3

For most used bytes

use single character

For others, use double

character

And re-create the

character stream

Step 2

Create a map

according to the

results in step 1.

Step 4

Write the map and

the constructed

string as an XML

file

XML

file

 33

Figure 7.8 ECMS Multimedia Storage Diagram.

When a file is requested by the user, system gets the related xml transformation of

the file from the XML-DB and decomposes the map and the data element. After that,

the reverse algorithm is used to decode the xml character in to binary format, and

creates a new binary file and responses back to the user.

This work flow satisfies the storage system of the multimedia files in the ECMS.

7.5 Integration

The integration layer uses the Manager‟s graphical components but it maintains its

independency. Such a structure is chosen to construct a scheduling mechanism on it.

The user can define integration tasks on the system, for example we can assume a

situation such that our system gets the stock information of the products from an ERP

system and updates the web every night at 02.00 am.

When the user schedules such a task, the operation takes place automatically,

avoiding human mistakes, reducing workload and maintaining the up to date ness

and uniqueness of data.

Client

Computer

User

 XML DB

 İmage.xml

 Show the image

Select the realted

image from the DB

İmage.xml

MAP DATA

Create a file on the

fly and send back to

user

İmage.jpg

Transform the character

data into binary data

 34

8. WEB CATALOG

Figure 8.1 WEB Catalog Architecture.

The Web Server consists of three major components: the SOAP Service, which is

responsible for updating procedure, the Servlet Engine, which is responsible for

preparing HTML pages for visitors by processing XML files and the Document

Manager, which is responsible for loading and updating XML documents on

memory. SOAP is a lightweight XML based protocol for exchange of information in

a decentralized, distributed environment. The manager talks to the SOAP server by

using HTTP protocol and XML messages.

In the first step of the update procedure, the Manager requests the update content

from the DB-Bridge and prepares an update package. The DB-Bridge keeps track of

the updated and newly added data after every successful update of the web.

The second step is sending the authentication key to the SOAP service. If the key is

valid, a message including information of the currently idle FTP Server address and

FTP authentication key will be returned. The third step is connection to the FTP

Manager

XML

FTP Updated Content

XML Documents

on Memory

S
E

R
V

L
E

T
 E

E
N

G
IN

E

JSP

XSL

HTTP

Catalog Viewer

DOCUMENT MANAGER

S
O

A
P

 S
E

R
V

IC
E

 35

Server and sending the update package. As a final step the SOAP service will be

informed by the Manager that the upload process is complete. The SOAP service

processes the update package so that it updates the XML documents and multimedia

content of products and makes the information useable for Servlets and JSPs by

processing XML and configuration files, deploying the search engine etc.

An innovative point of the WEB architecture is that XML data is kept in memory.

Hard copy of all products and configuration files are stored on hard disk, but copies

of these documents are loaded into memory. We can achieve such a workflow

successfully due to the XML data structure. This workflow brings two advantages;

firstly we do not need a database, which lowers the expenses, and secondly the

performance of the server increases enormously, since every operation is done on

memory. With the improvement in hardware technology, the cost of hardware

components – RAM in this case – becomes much lower than database software, a big

advantage for our system.

The WEB server has an authentication mechanism for company‟s suppliers that are

defined by the Manager. If a property of a product family is assigned to a supplier

group, unauthorized standard users cannot see this information. An example for such

information can be the discounted price or the current stock of a product.

Another mechanism, supported by the WEB is electronic shopping system. While

navigating through products, the visitor or the supplier can build up a basket and can

either request for a quotation or buy the products using secure socket layer and

common transaction mechanisms.

 36

9. CD CATALOG

Figure 9.1 CD Catalog Architecture

Considering main features, the CD Catalog is very similar to the WEB Catalog.

As for the architecture, instead of the Servlet Engine of the WEB, server-client

architecture is used. The server side is written with JAVA and is responsible for

processing the XML documents. XML documents are being hold in memory like on

the WEB. The reason for choosing JAVA on the server side is the advantage of using

same classes that are used in DB-Bridge and Manager.

The client is written with Macromedia Flash [30] and is responsible for GUI of the

CD Catalog. The requests and responses are sent to the server via a socket using

Macromedia‟s XML Messaging Architecture. The reason for choosing Flash for the

GUI is its dynamic structure, and friendly and interactive graphical components it

has.

The major advantage of this architecture is that there is no need for a detailed

installation to run the CD. All the XML files remain on the CD, for optimal resource

usage.

XML

Documents

MANAGER

CD Catalog Server

CD Catalog GUI

CD Catalog

Components

CD Catalog Architecture

Storage Device

XML Messaging via

Socket Protocol

 37

10. TEST RESULTS

In this thesis, the idea of using XML as a data source is presented starting from its

data structure, implementation and constitution of the architecture respectively. Since

now, the system answers all needs of desired ECMS features. By measuring the

performance, according to the architecture, the sufficiency of the whole platform will

be proved. In order to claim this sufficiency, the platform needs to be tested

extensively. It is needed to show the stability of the architecture when the

components and variables are changed. The solidity of the system should be forced

by some stress tests.

10.1 ECMS Performance Test

In the manager architecture, the manager accesses to the native XML DB by using

the DB-Bridge layer. There are several subjects to measure the performance between

the layers that forms the manager architecture.

Firstly, the whole platform should be stable, when the size of data that kept in the

XML-DB increases. This is completely related to the chosen XML-DB architecture

and the indexing mechanism.

Secondly, when the manager requests huge numbers of data at a time, the total size of

the response of XML DB can exceed the memory limit of the system. The

DB-Bridge uses a paging mechanism in order to solve the out of memory problems,

but sending the product page by page causes a reasonable performance loss. The

optimum page size should be used for the paging mechanism that ensures the

memory sufficiency and minimum delay.

The main goal of these tests will be to show the compatibility of the manager

architecture layers, by finding the suitable page size according to the number of the

products kept in the system and to prove that the number of the products in the

database does not affect the performance. In all test, the Manager uses a total RAM

of 64 Mbytes.

 38

Three variables are measured during the tests;

XPATH Time: The time that XML DB spends for querying product documents.

Connection Time: The time that Manager needs to connect to the DB-Bridge layer.

Process Time: The time that Manager needs to get product documents page by page

and to process them. This time interval also includes XPATH times.

Total Time: Is the sum of Connection and Process Time.

Variant (σ²), standard deviation (σ): All calculations are done five times; the variation

and the standard deviation of these measurements are also calculated to show the

accuracy of test results.

10.2 ECMS Performance Test Variables

10.2.1 Test Scenarios

Defines the scenarios used in the test described below:

10.2.1.1 Scenario 1

Manager requests all product documents in the system from the DB-Bridge and

performs xml operations on these documents. Such an action can be reconstructing

web server content, publishing a CD catalog; publishing PDF & Excel documents or

integrate the content with another system such as databases, ERPs etc.

Since xml operations are done on every product document, the latency related to

these operations is not calculated.

10.2.1.2 Scenario 2

Manager requests a single product document from the DB-Bridge and performs xml

operations on this document. Such an action can be changing a property of a product.

Since xml operations are done on every product document, the latency related to

these operations is not calculated.

10.2.2 Number of Products

Defines the number of products in the system.

10.2.3 PageSize Value

Defines the page size value, which is used by the DB-Bridge.

 39

10.2.4 DB-Bridge Server

The server, which runs the DB-Bridge application. This test is run with a single

variation.

Server Configuration:

INTEL PENTIUM 4 2400 MHz.

Cash Size: L1 8KB, L2 512 KB.

Bus Speed: 400 MHz.

Ram Type, Size: DDR Ram, 768 Mbytes.

Main Board: Desktop PC Architecture

Operating System: Windows 2000 Professional

10.2.5 Manager Client

The client, which runs the Manager application. This test is run with a single

variation.

Client Configuration:

INTEL PENTIUM 4 2000 MHz.

Cash Size: L1 8KB, L2 512 KB.

Bus Speed: 333 MHz.

Ram Type, Size: RD Ram, 256 Mbytes

Main Board: Desktop PC Architecture

Operating System: Windows 2000 Professional

10.2.6 JVM

JVM: Two different JVM are used in the tests, SUN JVM 1.4.2_03 and BEA

JROCKIT 1.4.2_03.

BEA WebLogic JRockit is a Java Virtual Machine (JVM), developed uniquely for

server-side applications and optimized for Intel architectures. JRockit ensures

reliability, scalability, manageability, and flexibility for Java applications and

provides seamless interoperability across multiple hardware and operating system

configurations [31,32].

 40

10.2.7 Network Connection

The network connection is 100 MBits/s.

10.3 Test Results

10.3.1 Scenario 1-A

The product size is constant and equals to 250 products. This test shows the

architecture‟s product processing speed according to the PageSize value by using

SUN‟s JVM.

Process Time Average

5449,6

5385,6

4931,2

4859,2

4700

4800

4900

5000

5100

5200

5300

5400

5500

0 100 200 300 400 500 600

PageSize Value

m
il

is
e
c
o

n
d

s

Figure 10.1 Scenario 1-A Test Process Time Avarages.

Table 10.1 Scenario 1-A Test Results.

XPATH

(ms)

Connection

(ms)

Process

(ms)

Total

(ms)

PageSize = 50

Average 781 991 4416 5407

σ² 91,66667 513,5833 356,9167 1642

σ 9,574271 22,66238 18,89224 40,5216

PageSize = 100

Average 727 1033,2 4352,4 5385,6

σ² 2291,667 2223,583 35566,92 24642

σ 47,87136 47,15489 188,5919 156,9777

 41

XPATH

(ms)

Connection

(ms)

Process

(ms)

Total

(ms)

PageSize = 250

Average 647 999,4 3931,8 4931,2

σ² 2291,667 295,3333 14862 16333,33

σ 47,87136 17,18527 121,9098 127,8019

PageSize = 500

Average 643,2 1001,6 3857,6 4859,2

σ² 1236,917 132,9167 22351,58 24208,33

σ 35,16983 11,52895 149,5045 155,5903

As the results show, with the increase of PageSize variable, the performance of the

platform increases, because the product documents are transported between DB-

Bridge and Manager in fewer steps.

10.3.2 Scenario 1-B

The product size is constant and equals to 250 products. This test shows the

architecture‟s product processing speed according to the PageSize value by using

SUN‟s JVM.

Process Time Average

15612,6

14425,8

13959,8

13786

13500

14000

14500

15000

15500

16000

0 100 200 300 400 500 600

PageSize Value

m
il

is
e
c
o

n
d

s

Figure 10.2 Scenario 1-B Process Time Averages.

 42

Table 10.2 Scenario 1-B Test Results.

XPATH

(ms)

Connection

(ms)

Process

(ms)

Total

(ms)

PageSize = 50

Average 3090,2 995,4 14617,2 15612,6

σ² 54530,25 36,91667 157126,9 160361

σ 233,5171 6,075909 396,3924 400,451

PageSize = 100

Average 2759,6 1016 13409,8 14425,8

σ² 100115 100 213262,9 218592,9

σ 316,4095 10 461,804 467,5392

XPATH

(ms)

Connection

(ms)

Process

(ms)

Total

(ms)

PageSize = 250

Average 2752 995,2 12964,6 13959,8

σ² 3691,667 200 58028,67 56355,33

σ 60,75909 14,14214 240,8914 237,3928

PageSize = 500

Average 2515,6 1131,8 12654,2 13786

σ² 35133,58 85767,33 212450,3 63486,92

σ 187,4395 292,8606 460,9233 251,9661

As the results show, with the increase of PageSize variable, the performance of the

platform increases, because the product documents are transported between DB-

Bridge and Manager in fewer steps.

10.3.3 Scenario 1-C

The product size is constant and equals to 5750 products. This test shows the

architecture‟s product processing speed according to the PageSize value by using

SUN‟s JVM. In Scenario 3 there is also a stress test included, which measures the

platform‟s responses by high PageSize values.

 43

Process Time Average

81452,2

73923,2

67894,8

65919,2
65000

67000

69000

71000

73000

75000

77000

79000

81000

83000

0 100 200 300 400 500 600

PageSize Value

m
ili

s
e

c
o
n

d
s

Figure 10.3 Scenario 1-C Test Process Time Averages.

Table 10.3 Scenario 1-C Test Results.

XPATH

(ms)

Connection

(ms)

Process

(ms)

Total

(ms)

PageSize = 50

Average 17431 1373,6 80078,6 81452,2

σ² 62233,33 0 2586763 2586763

σ 249,4661 0 1608,342 1608,342

PageSize = 100

Average 16621,2 1004,8 72918,4 73923,2

σ² 3978,25 294 218330,9 234032,3

σ 63,07337 17,14643 467,2589 483,7688

PageSize = 250

Average 15652,6 993,2 66901,6 67894,8

σ² 84437,67 66,66667 473945,7 467979

σ 290,5816 8,164966 688,4371 684,0899

PageSize = 500

Average 14731,6 987 64932,2 65919,2

σ² 30026,25 33,33333 88,91667 212,25

σ 173,2808 5,773503 9,429563 14,5688

 44

Table 10.4 Scenario 1-C Stress Test Results.

PageSize XPATH (ms) Connection (ms) Process (ms) Total (ms)

2500 14611 1032 OutOfMemoryException N/A

2000 14571 1001 OutOfMemoryException N/A

1500 14620 1603 OutOfMemoryException N/A

1000 14581 982 63821 79384

As the results show, with the increase of PageSize variable, the performance of the

platform increases, but when the PageSize value exceeds 1000, the Manager throws

java.lang.OutOfMemory exception as shown in Table 10.4, because the product‟s

size climbs over the JVM‟s memory size.

10.3.4 Scenario 1-D

The product size is constant and equals to 5750 products. This test shows the

architecture‟s product processing speed according to the PageSize value by using

BEA JRockit JVM. In Scenario 3 there is also a stress test included, which measures

the platform‟s responses by high PageSize values.

Process Time Av erage

62994,4

59910,4

57701,4

58289,8

57000

58000

59000

60000

61000

62000

63000

64000

0 100 200 300 400 500 600

PageSize Value

m
ili

s
e

c
o

n
d

s

Figure 10.4 Scenario 1-D Test Process Time Averages.

 45

Table 10.5 Scenario 1-C Test Results.

XPATH

(ms)

Connection

(ms)

Process

(ms)

Total

(ms)

PageSize = 50

Average 12179,4 1017,4 61977 62994,4

σ² 234467,6667 1248,666667 304153,6667 321152,3333

σ 484,2186145 35,33647785 551,5012844 566,703038

PageSize = 100

Average 11929,2 1013,4 58897 59910,4

σ² 502 28,66666667 299210,25 301894,25

σ 22,4053565 5,354126135 547,0011426 549,4490422

PageSize = 250

Average 12304,4 1047,6 56653,8 57701,4

σ² 33856,91667 95,33333333 212999 212147,6667

σ 184,0024909 9,763879011 461,518147 460,5949052

PageSize = 500

Average 12888,8 1139,6 57150,2 58289,8

σ² 1183813,667 87196,91667 860296,25 830016,6667

σ 1088,032015 295,2912404 927,5215631 911,0525049

Table 10.6 Scenario 1-C Stress Test Results.

PageSize XPATH (ms) Connection (ms) Process (ms) Total (ms)

2500 14611 1032 Exception N/A

2000 14571 1001 Exception N/A

1500 26268 1041 Exception N/A

1000 11981,2 1129,8 58582,4 59712,2

As the results show, with the increase of PageSize variable, the performance of the

platform increases, but when the PageSize value exceeds 1000, the Manager throws

java.lang.OutOfMemory exception as shown in Table 10.6, because the product‟s

size climbs over the JVM‟s memory size. On the other hand, by using BEA Jrockit

JVM, the performance of the platform increases. But this is a virtual increase,

because the results before JVM caches classes and documents are higher than the one

of SUN‟s JVM.

10.3.5 Scenario 2

This test shows the architecture‟s product processing speed according to the PageSize

value by using SUN‟s JVM and BEA Jrockit JVM.

 46

1486

1334 1344
1390

0

200

400

600

800

1000

1200

1400

1600

milliseconds

SUN - 250 SUN - 1000 SUN - 5750 BEA - 5750

JVM - Product Size

Single Product Results

Figure 10.5 Scenario 2 Process Time Averages.

Table 10.7 Scenario 2 Test Results.

 XPATH (ms) Connection (ms) Process(ms) Total(ms)

SUN – 250 6 1155,6 324,4 1486

SUN - 1000 18 985,2 348,8 1334

SUN - 5750 14 989,4 354,6 1344

BEA - 5750 4 1053,4 336,6 1390

The platform‟s product processing time is independent form the product count on the

system. In every condition approximately same results are measured.

10.4 ECMS Performance Test Summary

If the product count is constant and PageSize variable is changed, average XPATH

query times remains the same as expected, because XPATH time depends on only

product count.

The results also show that connection time remains the same on every condition.

Graphics show clearly that process time is direct proportional to product count and

process time decreases logarithmically to PageSize variable.

In this case we have the best performance when PageSize is set to maximum

available value. With stress tests we have proven that the architecture becomes

instable for PageSize variables ≥ 1500. By using IBM‟s DOM benchmark test classes

 47

[33], total size of 1000 products are measured as approximately 23 Mbytes when

loaded into memory. These results show that the system crashes when 34.5

(1500*0.023) Mbytes limit is exceeded.

The formula to calculate the maximum consistent value for PageSize is:

A: Memory size of the product, which occupies maximum memory among all other

products in the system.

B: Available memory on the system for paging mechanism. B = 34.5.

Optimum PageSize = B/A

In order to decrease the possibility of a system failure and system performance, we

use this formula:

PageSize ≤ (B/A) * 0.80

10.5 Web Catalog Server Test

In the web architecture, the system holds the catalog content in XML format, and

uses the document manager system, which loads all catalog content into memory.

These tests are based on the product count of the catalog, because product count

varies from customer to customer and is the essence variable that affects the system

performance. Another critical variable that will affect the performance is the size of

the physical memory of the operating system. The primary goal of these tests is to

show the constancy of the average response time (time difference between the

catalog viewers request and response actions using a standard web browser) for

catalog viewer who performs operations over the HTTP protocol, which are defined

as the unique product number search, advanced search and view single product.

10.5.1 Test Group 1

Constant: Product number

Conditions: 1- Physical memory is enough to hold all products

 2- Physical memory is not enough to hold all products

The analysis of the test according to the separation defined above, we expect a

decrease in the system performance. Since the system is based on “holding the

 48

catalog content in memory”, system behavior is expected to be under the estimated

performance after the test is completed for condition 2.

Constant: Sufficient Physical memory.

Conditions: 1- Number of product is 1000

 2- Number of product is 10000

As a result of the analysis according to the separation defined above, we expect the

system performance to be stable, if there is physical memory for the products; the

response time for the user should be nearly the same. Otherwise the system behavior

is expected to be under the estimated performance. As a result we can propose that;

with enough memory in the system, the number of the product will not affect the

performance of the system.

By using IBM‟s DOM benchmark test classes [33], total size of 1000 products are

measured as approximately 23 Mbytes when loaded into memory. As expected total

size of 10000 products is 230 Mbytes when loaded into memory.

10.5.2 Test Group 2

There are some other important factors that will effects the performance which are

independent from the ECMS architecture, such as the network traffic and the server‟s

hardware properties. By changing these independent variables, the performance

change in the system will be examined.

10.5.3 Test Group 3

In order to find the perfect server configuration, the JVM used in the web server acts

a very important role for the performance result because, the JVM itself determines

the usage of the memory, and uses its own caching mechanism in itself. The servlet

container TOMCAT is a java based application and runs under the JVM. Since there

are several JVMs for different purposes, we have to find the perfect JVM that is

concordant to the ECMS architecture.

 49

10.6 Web Catalog Server Test Variables

10.6.1 Test Scenario 1

SKU Search Test; catalog viewer selects single product element from document

manager by running an XPATH like: /product/property[@mode = 8 and value() =

„125-544-785‟]

Catalog Viewer enters the SKU number of the product as a parameter in a HTML

form. The SearchBySKU servlet queries all documents on the memory with the

XPATH, until related product is found.

10.6.2 Test Scenario 2

Advanced search test; catalog viewer selects a single element from document

manager by running an XPATH.

The user enters search criteria in several HTML forms. A session is assigned to the

user by Tomcat for tracking user‟s actions and holding search criteria.

As a final step the PerformSearch servlet is invoked, which queries all documents

with XPATH queries and displays the results.

For this scenario, user enters specific criteria to find only one product.

The search engine forces the user to select one specific category at the first step.

Therefore the document count to query is lower than in Scenario 1. If there are

10.000 documents divided into 5 categories, PerformSearch servlet has to query 2000

products. The complexity of Scenario 2 is lower than the complexity of Scenario 1.

10.6.3 Test Scenario 3

Advanced search test; catalog viewer selects all elements from document manager by

running an XPATH.

The workflow is the same as in Scenario 2. As a difference the search result set

consists of multiple documents instead of a single document. Therefore the

complexity of the XPATH expression is lower than the one in Scenario 3. On the

other hand the result set data is higher than the one of Scenario 2.

The complexity of Scenario 3 is approximately the same of Scenario 1.

10.6.4 Test Scenario 4

Catalog viewer selects single element by giving its unique ID.

 50

The viewer selects a product from the catalog tree and the details of the product are

displayed. Considering system architecture this Scenario has the least complexity.

10.6.5 Number of Products

Defines the number of products in the document manager.

10.6.6 Catalog Web Server

Two different web servers are used to test the system. The detailed configuration is

given below:

10.6.6.1 Server 1 Configuration

INTEL CELERON 2000 MHz.

Cash Size: L1 8KB, L2 128 KB.

Bus Speed: 400 MHz.

Ram Type: DDR Ram

Main Board: Desktop PC Architecture

Operating System: REDHAT LINUX 9.0 with standard kernel

J2EE Server: Apache Tomcat Servlet Container 4.5

Web Server: Apache HTTP Server 2.1.1

10.6.6.2 Server 2 Configuration

INTEL PENTIUM 2400 MHz.

Cash Size: L1 8 KB, L2 512 KB.

Bus Speed: 400 MHz.

Ram Type: 1024 Mbytes DDR Ram

Main Board: Server Architecture

Operating System: REDHAT LINUX 9.0 with standard kernel

J2EE Server: Apache Tomcat Servlet Container 4.5

Web Server: Apache HTTP Server 2.1.1

 51

10.6.7 Memory

Total size of the physical memory used in the server.

10.6.8 JVM

Two different JVM are used in the tests, SUN JVM 1.4.2_03 and BEA JROCKIT

1.4.2_03.

10.6.9 Network Connection

100 Mbits /s or 52 Kbits / s (Dial Up Connection) connections are used by the test.

10.7 Web Catalog Server Test Results

10.7.1 Scenario 1 Results

Table 10.8 WEB Catalog Test, Scenario 1, Condition 1, Test Variables

Product Count : 1.000

Server Type: Server 1

RAM: 512 Mbytes.

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect acceptable results, since there is enough memory on the

system.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

SKU Search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

2.000

1.800

1.600

1.400

1.200

1.000

800

600

400

200

Figure 10.6 WEB Catalog Test, Scenario 1, Condition 1 Test Results.

 52

Table 10.9 Web Catalog Test, Scenario 1, Condition 1, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 205 0 0 184928 902

Comments:

This test is successful because the Web Catalog Server responses in average 902 ms

to the user, measured for 60 seconds long.

Table 10.10 WEB Catalog Test, Scenario 1, Condition 2, Test Variables

Product Count : 1.000

Server Type: Server 1

RAM: 256 Mbytes.

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect same results as in Condition 1, because there is still enough memory on

the system, although the physical memory is decreased by 50%.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

SKU Search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

1.400

1.300

1.200

1.100

1.000

900

800

700

600

500

400

300

200

100

Figure 10.7 WEB Catalog Test, Scenario 1, Condition 2 Test Results.

 53

Table 10.11 Web Catalog Test, Scenario 1, Condition 2, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 216 0 0 160141 741

Comments:

Although physical memory size is decreased by 50 %, the average response time of

the Web Catalog Server is approximately the same. The test is successful.

Table 10.12 WEB Catalog Test, Scenario 1, Condition 3, Test Variables

Product Count : 10.000

Server Type: Server 1

RAM: 512 Mbytes.

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

The product count is increased by 1000 %. But there is enough memory on the

system to hold the catalog content on physical memory. A small increase is expected

because the document count to query is 10 times more than in Condition 1 and

Condition 2.

Protocol Times for all URLs

User Simulation: 3 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

SKU Search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

2.600

2.400

2.200

2.000

1.800

1.600

1.400

1.200

1.000

800

600

400

200

Figure 10.8 WEB Catalog Test, Scenario 1, Condition 3 Test Results.

 54

Table 10.13 Web Catalog Test, Scenario 1, Condition 3, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 101 0 0 190918 1907

Comments:

There is an increase on the average click time, but the system is still healthy, because

document size is increased by 1000% but average click time is only increased by

100%. Test is successful.

Table 10.14 WEB Catalog Test, Scenario 1, Condition 4, Test Variables

Product Count : 10.000

Server Type: Server 1

RAM: 256 Mbytes.

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 1 viewer clicks randomly.

Duration: 120 sec.

Expected Result:

The system will collapse down since all documents cannot be loaded into physical

memory and the system will use virtual memory, which is much slower than physical

memory. The catalog viewer count is decreased to 1 because otherwise the system

stops responding and no calculations can be made.

Protocol Times for all URLs

User Simulation: 1 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 2 minutes)

SKU Search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

1101009080706050403020100

T
im

e
 [
m

s
]

60.000

55.000

50.000

45.000

40.000

35.000

30.000

25.000

20.000

15.000

10.000

5.000

0

Figure 10.9 WEB Catalog Test, Scenario 1, Condition 4 Test Results.

 55

Table 10.15 Web Catalog Test, Scenario 1, Condition 4, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 2 0 0 106829 53415

Comments:

The result 53415 ms is not acceptable. The system slowed down by 2700%. Test is

successful.

Table 10.16 WEB Catalog Test, Scenario 1, Condition 5, Test Variables

Product Count : 3.000

Server Type: Server 1

RAM: 512 Mbytes

JVM: SUN JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 6 viewers click randomly.

Duration: 60 sec.

Expected Result:

The system will slow down because SUN JVM is not optimized for server side

applications. The document size is decreased to 3000 and the catalog viewer size is

decreased to 6 in order to avoid OutOfMemory exceptions.

Protocol Times for all URLs

User Simulation: 5 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

SKU Search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

605550454035302520151050

T
im

e
 [
m

s
]

30.000

25.000

20.000

15.000

10.000

5.000

0

Figure 10.10 WEB Catalog Test, Scenario 1, Condition 5 Test Results.

Table 10.17 Web Catalog Test, Scenario 1, Condition 5, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 8 0 0 217777 27222

 56

Comments:

A 1300% increase of average click time is measured. Sun JVM is not suitable for our

application. Test is successful.

10.7.2 Scenario 2 Results

Catalog Viewer selects a single product using advanced search engine.

Table 10.18 WEB Catalog Test, Scenario 2, Condition 1, Test Variables

Product Count : 1.000

Server Type: Server 1

RAM: 512 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect acceptable results, since there is enough memory on the system.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

adv anced search single product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

180

160

140

120

100

80

60

40

20

Figure 10.11 WEB Catalog Test, Scenario 2, Condition 1 Test Results.

Table 10.19 Web Catalog Test, Scenario 2, Condition 1, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 59 0 0 46820 822

 57

Comments:

This test is successful because the Web Catalog Server responses in average 822 ms

to the user, measured for 60 seconds long.

Table 10.20 WEB Catalog Test, Scenario 2, Condition 2, Test Variables

Product Count : 1.000

Server Type: Server 1

RAM: 256 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect same results as in Condition 1, because there is still enough memory on

the system, although physical memory is decreased by 50%.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

adv anced search single product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

240

220

200

180

160

140

120

100

80

60

40

20

Figure 10.12 WEB Catalog Test, Scenario 2, Condition 2 Test Results.

Table 10.21 Web Catalog Test, Scenario 2, Condition 2, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 52 0 0 50626 972

 58

Comments:

Although physical memory size is decreased by 50 %, the average response time of

the Web Catalog Server is approximately the same. The test is successful.

Table 10.22 WEB Catalog Test, Scenario 2, Condition 3, Test Variables

Product Count : 10.000

Server Type: Server 1

RAM: 512 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

The product count is increased by 1000 %. But there is enough memory on the

system to hold the catalog content on physical memory. A small increase is expected

because the document count to query is 10 times more than in Condition 1 and

Condition 2.

Protocol Times for all URLs

User Simulation: 5 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

adv anced search single product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

400

350

300

250

200

150

100

50

Figure 10.13 WEB Catalog Test, Scenario 2, Condition 3 Test Results.

Table 10.23 Catalog Test, Scenario 2, Condition 3, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 48 0 0 57645 1240

 59

Comments:

There is an increase on the average click time, but the system is still healthy, because

document size is increased by 1000% but average click time is only increased by

50%. Test is successful.

Table 10.24 WEB Catalog Test, Scenario 2, Condition 4, Test Variables

Product Count : 10.000

Server Type: Server 1

RAM: 256 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 1 viewer clicks randomly.

Duration: 120 sec.

Expected Result:

The system will collapse down since all documents cannot be loaded into physical

memory and the system will use virtual memory, which is much slower than physical

memory. The catalog viewer count is decreased to 1 because otherwise the system

stops responding and no calculations can be made.

Protocol Times for all URLs

User Simulation: 1 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 2 minutes)

adv anced search single product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

110100908070605040302010

T
im

e
 [
m

s
]

16.000

14.000

12.000

10.000

8.000

6.000

4.000

2.000

0

Figure 10.14 WEB Catalog Test, Scenario 2, Condition 4 Test Results.

Table 10.25 Catalog Test, Scenario 2, Condition 4, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 7 0 0 112465 14053

 60

Comments:

The result 14053 ms is not acceptable for a single catalog viewer. The system slowed

down by 1000%. Test is successful.

Table 10.26 WEB Catalog Test, Scenario 2, Condition 5, Test Variables

Product Count : 3.000

Server Type: Server 1

RAM: 512 Mbytes

JVM: SUN JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 6 viewers click randomly.

Duration: 60 sec.

Expected Result:

The system will slow down because SUN JVM is not optimized for server side

applications. The document size is decreased to 3000 and the catalog viewer size is

decreased to 6 in order to avoid OutOfMemory exceptions.

Protocol Times for all URLs

User Simulation: 7 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

adv anced search single product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

2.000

1.000

Figure 10.15 Catalog Test, Scenario 2, Condition 5 Test Results.

Table 10.27 Catalog Test, Scenario 2, Condition 5, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 41 0 79,17 99070 21734

 61

Comments:

A 1300% increase of average click time is measured and an error rate (responses

over 25s are calculated as errors) of 79% is achieved, which is unacceptable. Test is

successful.

10.7.3 Scenario 3 Results

Catalog Viewer selects all elements using advanced search.

Table 10.28 WEB Catalog Test, Scenario 3, Condition 1, Test Variables

Product Count : 1.000

Server Type: Server 1

RAM: 512 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect acceptable results, since there is enough memory on the system.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

select all adv aced search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

350

300

250

200

150

100

50

Figure 10.16 Catalog Test, Scenario 3, Condition 1 Test Results.

Table 10.29 Catalog Test, Scenario 3, Condition 1, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 63 0 0 67616 1109

 62

Comments:

This test is successful because the Web Catalog Server responses in average 1109 ms

to the user, measured for 60 seconds long.

Table 10.30 WEB Catalog Test, Scenario 3, Condition 2, Test Variables

Product Count : 1.000

Server Type: Server 1

RAM: 256 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect same results as in Condition 1, because there is still enough memory on

the system, although physical memory is decreased by 50%.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

select all adv aced search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

700

650

600

550

500

450

400

350

300

250

200

150

100

50

Figure 10.17 Catalog Test, Scenario 3, Condition 2 Test Results.

Table 10.31 Catalog Test, Scenario 3, Condition 2, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 63 0 0 94873 1597

 63

Comments:

Although physical memory size is decreased by 50 %, the average response time of

the Web Catalog Server is approximately the same. The test is successful.

Table 10.32 WEB Catalog Test, Scenario 3, Condition 3, Test Variables

Product Count : 10.000

Server Type: Server 1

RAM: 512 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

The product count is increased by 1000 %. But there is enough memory on the

system to hold the catalog content on physical memory. A small increase is expected

because the document count to query is 10 times more than in Condition 1 and

Condition 2.

Protocol Times for all URLs

User Simulation: 4 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

select all adv aced search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

550

500

450

400

350

300

250

200

150

100

50

Figure 10.18 Figure 10.17 Catalog Test, Scenario 3, Condition 3 Test Results.

Table 10.33 Catalog Test, Scenario 3, Condition 3, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 63 0 0 96205 1528

 64

Comments:

There is an increase on the average click time, but the system is still healthy, because

document size is increased by 1000% but average click time is only increased by

50%. Test is successful.

Table 10.34 WEB Catalog Test, Scenario 3, Condition 4, Test Variables

Product Count : 10.000

Server Type: Server 1

RAM: 256 Mbytes

JVM: BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 1 viewer clicks randomly.

Duration: 120 sec.

Expected Result:

The system will collapse down since all documents cannot be loaded into physical

memory and the system will use virtual memory, which is much slower than physical

memory. The catalog viewer count is decreased to 1 because otherwise the system

stops responding and no calculations can be made.

Protocol Times for all URLs

User Simulation: 1 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 2 minutes)

select all adv aced search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

120110100908070605040302010

T
im

e
 [
m

s
]

15.000

14.000

13.000

12.000

11.000

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

2.000

1.000

0

Figure 10.19 Catalog Test, Scenario 3, Condition 4 Test Results.

Table 10.35 Catalog Test, Scenario 3, Condition 4, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 4 0 0 82506 27188

 65

Comments:

The result 27188 ms is not acceptable for a single catalog viewer. The system slowed

down by 1600%. Test is successful.

Table 10.36 WEB Catalog Test, Scenario 3, Condition 5, Test Variables

Product Count : 3.000

Server Type: Server 1

RAM: 512 Mbytes.

JVM: SUN JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 6 viewers click randomly.

Duration: 60 sec.

Expected Result:

The system will slow down because SUN JVM is not optimized for server side

applications. The document size is decreased to 3000 and the catalog viewer size is

decreased to 6 in order to avoid OutOfMemory exceptions.

Protocol Times for all URLs

User Simulation: 5 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

select all adv aced search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

24.000

22.000

20.000

18.000

16.000

14.000

12.000

10.000

8.000

6.000

4.000

2.000

Figure 10.20 Catalog Test, Scenario 3, Condition 5 Test Results.

Table 10.37 Catalog Test, Scenario 3, Condition 5, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 37 31 %83 159867 23610

 66

Comments:

A 1300% increase of average click time is measured and the result 23160 ms is

unacceptable. Test is successful.

10.7.4 Scenario 4 Results

Catalog viewer selects one product with unique ID.

Table 10.38 Catalog Test, Scenario 4, Condition 1, Test Variables.

Product Count : 1.000

Server Type: Server 1

RAM : 512 Mbytes

JVM : BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect acceptable results, since there is enough memory on the system.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

v iew one product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

500

450

400

350

300

250

200

150

100

50

Figure 10.21 Catalog Test, Scenario 4, Condition 1 Test Results.

Table 10.39 Catalog Test, Scenario 4, Condition 1, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 233 0 0 101826 437

 67

Comments:

This test is successful because the Web Catalog Server responses in average 437 ms

to the user, measured for 60 seconds long.

Table 10.40 Catalog Test, Scenario 4, Condition 2, Test Variables.

Product Count : 1.000

Server Type: Server 1

RAM : 256 Mbytes

JVM : BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

We expect same results as in Condition 1, because there is still enough memory on

the system, although physical memory is decreased by 50%.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

v iew one product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

700

650

600

550

500

450

400

350

300

250

200

150

100

50

Figure 10.22 Catalog Test, Scenario 4, Condition 2 Test Results.

Table 10.41 Catalog Test, Scenario 4, Condition 2, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 228 0 0 123240 541

Comments:

Although physical memory size is decreased by 50 %, the average response time of

the Web Catalog Server is approximately the same. The test is successful.

 68

Table 10.42 Catalog Test, Scenario 4, Condition 3, Test Variables.

Product Count : 10.000

Server Type: Server 1

RAM : 512 Mbytes

JVM : BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Expected Result:

The product count is increased by 1000 %. But there is enough memory on the

system to hold the catalog content on physical memory. A small increase is expected

because the document count to query is 10 times more than in Condition 1 and

Condition 2.

Protocol Times for all URLs

User Simulation: 4 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

v iew one product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

900

800

700

600

500

400

300

200

100

Figure 10.23 Catalog Test, Scenario 4, Condition 3 Test Results.

Table 10.43 Catalog Test, Scenario 4, Condition 3, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 231 0 0 120198 516

Comments:

There is an increase on the average click time, but the system is still healthy, because

document size is increased by 1000% but average click time is only increased by

20%. Test is successful.

 69

Table 10.44 Catalog Test, Scenario 4, Condition 4, Test Variables.

Product Count : 10.000

Server Type: Server 1

RAM : 256 Mbytes

JVM : BEA Jrockit JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 1 viewer clicks randomly.

Duration: 120 sec.

Expected Result:

The system will collapse down since all documents cannot be loaded into physical

memory and the system will use virtual memory, which is much slower than physical

memory. The catalog viewer count is decreased to 1 because otherwise the system

stops responding and no calculations can be made.

Protocol Times for all URLs

User Simulation: 1 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

v iew one product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

605550454035302520151050

T
im

e
 [
m

s
]

55.000

50.000

45.000

40.000

35.000

30.000

25.000

20.000

15.000

10.000

5.000

0

Figure 10.24 Catalog Test, Scenario 4, Condition 4 Test Results.

Table 10.45 Catalog Test, Scenario 4, Condition 4, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 1 0 0 58107 58107

Comments:

The result 58107 ms is not acceptable for a single catalog viewer. The system slowed

down by 11100%. Test is successful.

 70

Table 10.46 Catalog Test, Scenario 4, Condition 5, Test Variables.

Product Count : 3.000

Server Type: Server 1

RAM : 512 Mbytes

JVM : SUN JVM

Network Speed: 100 Mbits /s

Catalog Viewers: 6 viewers click randomly.

Duration: 60 sec.

Expected Result:

The system will slow down because SUN JVM is not optimized for server side

applications. The document size is decreased to 3000 and the catalog viewer size is

decreased to 6 in order to avoid OutOfMemory exceptions.

Protocol Times for all URLs

User Simulation: 5 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

v iew one product

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

6.000

5.500

5.000

4.500

4.000

3.500

3.000

2.500

2.000

1.500

1.000

500

Figure 10.25 Catalog Test, Scenario 4, Condition 5 Test Results.

Table 10.47 Catalog Test, Scenario 4, Condition 5, Average Click Time.

URL No. Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 1 231 99.5 120198 120198

Comments:

A 1300% increase of average click time is measured and an error rate (responses

over 25s are calculated as errors) of 99.5% is achieved, which is unacceptable. Test is

successful.

 71

10.7.5 Server Comparison

Expected Result:

Since Server 2‟s architecture is more advanced than Server 1‟s architecture, we

expect better results. This benchmark test is done only for Scenario 1.

Table 10.48 Server Comparison Test Variables

Product Count : 10.000

Server Type: Server 2

RAM : 1024 Mbytes

JVM : BEA Jrockit JVM

Network Speed: 52 Kbits /s

Catalog Viewers: 10 viewers click randomly.

Duration: 60 sec.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: TIME (run test f or 1 minutes)

SKU Search

Click Time Time to First Byte Time to Connect Time for DNS

Time [s]

60555045403530252015

T
im

e
 [
m

s
]

1.000

900

800

700

600

500

400

300

200

100

Figure 10.26 Server Comparison Test Results

Table 10.49 Server Comparison Average Click Time

URL No. Name Clicks Errors Errors [%]
Time Spent

[ms]

Avg. Click

Time [ms]

1 201 0 0 187017 930

Comments:

Under same conditions the average click time for Server 1 is measured as 1907 ms

whereas Server 2 responses to the catalog viewer in 930 milliseconds.

 72

10.8 Web Catalog Server Test Conclusions

Test results show that the platform is stable, when there is enough physical memory

to hold all catalog content.

For the stability, the JVM has a critical role and with these test we have proven that

BEA JRockit JVM is more suitable than SUN‟s JVM for our platform.

Average response times are approximately the same and are independent from the

catalog content‟s size as long as there is enough physical memory. Small differences

in the test are caused by the architecture of several components like operating

system, servlet container, web server etc.

 73

11. CONCLUSION

In this thesis, we purposed to establish a new approach to ECMS, based on XML

technologies.

Firstly, the main features of desired ECMS are determined:

Limitless and boundless product detail.

Unique Information.

User friendly management GUI with easy navigation.

Distribution of information to various platforms with the minimum work for the user

Working with an acceptable performance and cost.

According to the features of desired ECMS, the data structure of the system is

designed at first. In order to achieve the boundless product detail, and the unique

information features, the structure of product is analyzed, and then the data

representation of the product is separated in to elements and divided by atomic and

non –atomic elements. The hierarchy and the restrictions of the elements are defined

in order to form a rule base system and a semantic network. Mainly, the product

element consists of property elements, which represents a feature of the product; and

the value set of the related property is restricted and ruled by the property group and

unit elements. Property group elements are divided into “modes” according to their

functionality and have a capability of widening the data horizontally which means,

for each property of the product, a combination of the multiple property groups can

be attached together. Also by using the “forkability”, each property can have

multiple values with the same restrictions and rules. At last, we achieved an

architecture which is capable of widening the data both in horizontally and vertically

for each property of the product.

Many of the data structure components are constructed in tree formation, as a result

XML turns up to be a wise. Because XML is in tree formation and is more capable

than the Relational data structure, as explained in section 4.2.

 74

The data structure elements are transformed into XML documents and the whole data

is kept on a native XML database. A Java based client software application is

developed which is called “Manager”; in order to work with the XML files.

Generally, the Manager is a user friendly GUI, that performs DB operations

according to the user actions. User attains values to each property of the product and

defines the functional criteria for each product family.

Java is chosen as the programming language because of its reasonable support for

XML. The communication layer DB-Bridge is constructed and adapted between the

Manager and the XML DB modules, in order to facilitate the DB operations like

connection pool, paging mechanisms with JAVA RMI support.

As a result, a system, which collects and organizes the product information in an

XML- DB, is constructed.

After that, the organized product information became ready to distribute to related

media.

In order to represent the product data in the internet environment, the Manager

prepares the XML content and sends it to the WEB Catalog by using the SOAP

service. Web Catalog is a J2EE based software application, that consist of JAVA

servlets and JSPs. XSL transformation is used to produce HTML pages from XML

documents.

The same information, created by the manager is also used in the CD Catalog. CD

Catalog is a Macromedia FLASH application that works with JAVA service by using

the socket communication.

Also, by using the Integration layer, Manager communicates with other applications.

The catalog content can be imported to PDF format by this way. Manager can also

import/export from/to the relational data systems by using this interface.

The performance analysis of the system showed us that whole platform is quite

sufficient and stable. And we achieved some keys of adjustment in order to sustain

the performance, such as the page size that is used in the DB-Bridge layer and the

memory balance in the WEB Catalog system.

As a result, we achieved an ECMS which is adaptable for any kind of industry.

 75

REFERENCES

[1] Zygon, Enterprise Catalog Management Executive White Paper,

http://www.zygon.com/files/Enterprise%20Catalog%20Mngt_43.pdf

[2] Segev, A., Wan, D., Beam, C., 1995. Electronic Catalogs: a Technology

Overview and Survey Results, CIKM‟95, Baltimore MD USA.

[3] Danish, S., 1998. Building Database-driven Electronic Catalogs, SIGMOD

Record, Vol. 7, No.4, December 1998.

[4] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F.,

2004. Extensible Markup Language (XML) 1.0 (Third Edition), W3C

Recommendation, http://www.w3.org/TR/2004/REC-xml-20040204/

[5] Boss, B., 2003. XML in 10 points, W3C Communications team, Created 27

March 1999 revised, 13- 11- 2001, last update 02-06-2003.

http://www.w3.org/XML/1999/XML-in-10-points.html

[6] Stolze, M., Koenemann, J., 1999. User interfaces for electronic product

catalogs, CHI '99 extended abstracts on Human factors in computing

systems.

[7] Boag, S., Chamberlin, D., Fernández, M. F., Florescu,D., Robie, J., Siméon, J.,

2003. XQuery 1.0: An XML Query Language, W3C Working Draft 12

November 2003.

[8] Clark.J., DeRose, S. 1999. XML Path Language (XPath) Version 1.0, W3C

Recommendation 16 November 1999.

[9] A special DTD for Electronic Catalogs, http://www.ecx-xml.org/

[10] XML Tutorials, http://www.w3schools.com/xml/

[11] XPATH Tutorials, http://www.zvon.org

[12] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.,

2001. Fine grained access control for SOAP E-services, Proceedings

of the tenth international conference on World Wide Web.

[13] Reuven, M. L., 2001. At the Forge: Introducing SOAP, Linux Journal.

 76

[14] Conan, C. A., 2004. How clean is the future of SOAP?, Communications of

the ACM, Volume 47, Issue 2.

[15] Hogg, K., Chilcott, P., Nolan, M., and Srinivasan B., 2004: An evaluation of

Web services in the design of a B2B application, Proceedings of the

27th conference on Australasian computer science - Volume 26.

[16] Kamalsinh, F. C., 2004. Anatomy of a Web service, The Journal of

Computing in Small Colleges, Volume 19, Issue 3.

[17] Apache Soap Web Site, http://ws.apache.org/soap/

[18] Gudgin, M., Hadley, M., Mendelsohn,N., Moreau, J.J., and Nielsen, H. F.

2003. SOAP Version 1.2 Part 1: Messaging Framework, W3C

Recommendation.

[19] Berglund, A., 2003. Extensible Stylesheet Language (XSL) Version 1.1,

W3C Working Draft, 17 December 2003.

[20] Williams, J., 2003. E-services: The Web services debate: J2EE vs. .NET,

Communications of the ACM, Volume 46, Issue 6.

[21] J2EE Technology, http://java.sun.com/j2ee/

[22] Matjaz, B. J., Rozman, I., Nash, S., Java 2 distributed object middleware

performance analysis and optimization, ACM SIGPLAN Notices,

Volume 35, Issue 8.

[23] JAVA RMI Technology, http://java.sun.com/products/jdk/rmi/

[24]TaminoXMLServer,

http://www2.softwareag.com/corporate/products/tamino/default.asp

[25] X-Hive/DB Native XML Storage, http://www.x-hive.com/

[26] Xindice XML Database, http://xml.apache.org/xindice/

[27] eXist XML Database, http://exist.sf.net/

[28] Sundaresan N., and Moussa R., 2001 Algorithms and programming models

for efficient representation of XML for Internet applications,

Proceedings of the tenth international conference on World Wide Web.

[29] Huffman, D. A., A method for the construction of minimum-redundancy

codes. In Proc. Inst. Radio Eng., Pages 1098-1101, September 1952.

Published as Proc. Inst. Radio Eng., volume 40, number 9.

[30] Macromedia Official Web Site, http://www.macromedia.com

http://www.x-hive.com/

 77

[31] BEA JROCKIT 1.4.2_03. Java Virtual Machine,

http://e-docs.bea.com/wljrockit/docs142/

[32] Neffenger, J., 2003 The Volano Report, http://www.volano.com/report/

[33] Sosnoski, M.D., 2001. A Look At features and performance of XML

document models in JAVA, XML and JAVA Technologies: Document

Models, Part: Performance,

www 106.ibm.com/developerworks/xml/library/x-injava/index.html.

[34] Apache Tomcat official web site, http://jakarta.apache.org/tomcat/

 78

APPENDIX A: SCREENSHOTS OF THE MANAGER

Figure A. 1 Catalog Tree & Product Editing Window.

 79

Figure A. 2 Property Group Editing Menu.

Figure A. 3 Product Family Editing Menu.

 80

Figure A. 4 Image Editing Menu.

 81

APPENDIX B: WEB CATALOG SCREENSHOTS

Figure B. 1 Detailed Product Web Page.

 82

Figure B. 2 Product Search Web Page.

 83

Figure B. 3 Search Results Page.

Figure B. 4 Basket Module Screenshot.

 84

AUTOBIOGRAPHY

Mutlu Önder was born in Yunak, Konya in 1979. He was graduated from İstanbul

Technical University (İTÜ), from the faculty of Electric and Electronic Engineering,

Department of Control & Computer Engineering in 2001. He continued his education

at Computer Engineering Department of Institute of Science and Technology in İTÜ.

He is the founder of the Parsera Information Technologies and working on XML and

software development technologies in İTÜ KOSGEB Technology Development

Center.

 i

